Diamonds are Forever,
Loss-Versus-Rebalancing is Not

Conor McMenamin'-2, Vanesa Daza'?, and Bruno Mazorra'-?
! Department of Information and Communication Technologies, Universitat Pompeu
Fabra, Barcelona, Spain
2 NOKIA Bell Labs, Nozay, France
3 CYBERCAT - Center for Cybersecurity Research of Catalonia

email: (first name).(last name)@upf.edu

Abstract. The always-available liquidity of automated market makers
(AMMs) has been one of the most important catalysts in early cryp-
tocurrency adoption. However, it has become increasingly evident that
AMDMs in their current form are not viable investment options for passive
liquidity providers. This is because of the cost incurred by AMMs provid-
ing stale prices to arbitrageurs against external market prices, formalized
as loss-versus-rebalancing (LVR) [Milionis et al., 2022].

In this paper, we present Diamond, an automated market making proto-
col that aligns the incentives of liquidity providers and block producers
in the protocol-level retention of LVR. In Diamond, block producers ef-
fectively auction the right to capture any arbitrage that exists between
the external market price of a Diamond pool, and the price of the pool
itself. The proceeds of these auctions are shared by the Diamond pool
and block producer in a way that is proven to remain incentive compat-
ible for the block producer. Given the participation of competing arbi-
trageurs, LVR is effectively prevented in Diamond. We formally prove
this result, and detail an implementation of Diamond. We also provide
comparative simulations of Diamond to relevant benchmarks, further
evidencing the LVR-protection capabilities of Diamond. With this new
protection, passive liquidity provision on blockchains becomes rationally
viable, beckoning a new age for decentralized finance.

Keywords: Extractable Value - Decentralized Exchange - Incentives - Blockchain

1 Introduction

Constant function market makers (CFMMs) such as Uniswap [22] have emerged
as the dominate class of automated market making (AMM) protocols. CEMMs

This Technical Report is part of a project that has received funding from the
- European Union’s Horizon 2020 research and innovation programme under
grant agreement number 814284

2 McMenamin, Daza and Mazorra

offer several key advantages for decentralized liquidity provision. They are ef-
ficient computationally, have minimal storage needs, matching computations
can be done quickly, and liquidity providers can be passive. Thus, CFMMs are
uniquely suited to the severely computation- and storage-constrained environ-
ment of blockchains.

Unfortunately, the benefits of CFMMs are not without significant costs.
These costs are definitively formalized and quantified in [I7] as loss-versus-
rebalancing (LVR). It is proved that as the underlying price of a swap moves
around in real-time, the discrete-time progression of AMMSs leave arbitrage op-
portunities against the AMM. In centralized finance, market makers typically
adjust to new price information before trading. This comes at a considerable
cost to AMMs (for CFMMs, [I7] derives the cost to be quadratic in realized
moves), with similar costs for AMMs derived quantitatively in [I8)/7].

Unfortunately, these costs are being realized by liquidity providers in current
AMM protocols. In Uniswap V3 [22], the most prominent AMM by transaction
volume, the realized LVR from just May 2021 to September 2021 was quantified
in [I5] to be $61m. Furthermore, volume trading on AMMs has been decreasing
for multiple consecutive months (Figure , while toxic order flow (similar to
LVR) is consistently profiting against AMM liquidity providers (Figure . All
of these factors point towards unsatisfactory protocol design, and a dire need for
an LVR-resistant automated market maker. In this paper, we provide Diamond,
an AMM protocol which formally protects against LVR.

DEX Trading Volume ‘ @hagaetc

100b

USD Volume

Apr 2022 May 2022 Jun 2022 Jul2022 Aug2022 Sep 2022 Oct 2022

@

Fig. 1: DEX Trading Volumes [11].

Diamonds are Forever, Loss-Versus-Rebalancing is Not 3

Order Flow Toxicity Markout (Net of Fees and Price Impact) Uniswap V3 Flow Toxicity ~ @thiccythot

[sm—_— |

-$20m ————

markout_5m @
markout_1h @
markout_24h @

2340m
£
-360m

-$80m

Oct 2021 Dec2021 Feb2022 Apr2022 Jun 2022 Aug 2022 Oct 2022

Date @

Fig. 2: Toxicity of Order Flow [2I]. This graph aggregates the PnL of all trades
on the Uniswap V3 WETH/USDC pool, measuring PnL of each order after 5
minutes, 1 hour, and 1 day. This shows that the liquidity providers are consis-
tently losing money in the most prominent CFMM.

1.1 Owur Contribution

We present Diamond, an AMM protocol which isolates the LVR being captured
from a Diamond liquidity pool by arbitrageurs, and forces these arbitrageurs to
repay some percentage of this LVR to the pool. As in typical CFMMs, Diamond
pools are defined with respect to two tokens x and y. At any given time, the
pool has reserves of R, and R, of both tokens, and some pool pricing func-
tiorﬂ P(R,, R,). We demonstrate our results using the well-studied Uniswap V2
pricing function of P(R,, R,) = g—:.

We introduce the concept of its corresponding CEMM pool for each Diamond
pool. For a Diamond pool with token reserves (R, R,) and pricing function
P(R;,Ry) = g—z, the corresponding CFMM pool is the Uniswap V2 pool with
reserves (R, R,). If an arbitrageur tries to move the price of the corresponding
CFMM pool adding A, tokens and removing A,, the same price is achieved in
the Diamond pool by adding (1 — a) A, tokens for some « > 0, with « the LVR
rebate parameter. The arbitrageur receives (1 — a)A,. In our framework, it must
be that P(Ry; + (1 — a)A;, Ry — (1 — a)A,) < P(R, + Az, Ry, — A,), which
Ry+(1—a)A, < R.+A,
R,—(1—a)4, Ry—A,
removed from the Diamond pool to move the reserves to the same price as the
corresponding CFMM pool, with these tokens added to the vault.

Half of the tokens in the vault are then periodically converted into the other
token in one of the following ways:

also holds in our example, as . A further 6, tokens are

1. An auction amongst arbitrageurs.

2. Converted every block by the arbitrageur at the final pool price. If the ar-
bitrageur must buy g tokens to convert the vault, the arbitrageur must
simultaneously sell g futures which replicate the price of the token to the
pool. These futures are then settled periodically, either by

4 See Equation [1] for a full description of pool pricing functions as used in this paper

4 McMenamin, Daza and Mazorra

(a) Auctioning the g tokens corresponding to the futures to the arbitrageurs,
with the protocol paying/collecting the difference.

(b) The use of a decentralized price oracle. In this paper, we consider the
use of the settlement price of an on-chain frequent batch auction, such as
[16], which is proven to settle at the external market price in expectancy.

Importantly, these auctions are not required for protocol liveness, and can be
arbitrarily slow to settle. We prove that all of these conversion processes have
0 expectancy for the arbitrageur or Diamond pool, and prove that the LVR of
a Diamond pool is (1 — «) of the corresponding CFMM pool. We describe an
implementation of Diamond which isolates arbitrageurs from normal users. This
ensures the protections of Diamond can be provided in practice while providing
at least the same trading experience for normal users. Non-arbitrageur orders in
a Diamond pool are performed identically to orders in the corresponding CFMM
pool. We discuss practical considerations for implementing Diamond, including
how decreasing the LVR rebate parameter during protocol inactivity ensures the
protocol continues to process user transactions while still providing some level
of LVR protection.

We present a series of experiments in Section [6] which isolate the benefits
of Diamond. We compare a Diamond pool to its corresponding Uniswap V2
pool, as well as the strategy of holding the starting reserves of both tokens,
demonstrating the power of Diamond. We isolate the effects of price volatility,
LVR rebate parameter, pool fees, and pool duration on a Diamond pool. Our
experiments provide statistically significant evidence that the relative value of
a Diamond pool to its corresponding Uniswap V2 pool is increasing in each of
these variables. These experiments further evidence the limitations of current
CFMMs, and the potential of Diamond.

2 Related Work

There are many papers on the theory and design of AMMSs, with some of the most
important including [2ITJI7J3I4]. The only peer-reviewed AMM design claiming
protection against LVR [14] is based on live price oracles. The AMM must receive
the price of a swap before users can interact with the pool. Such sub-block
time price data requires centralized sources which are prone to manipulation,
or require the active participation of AMM representatives, a contradiction of
the passive nature of AMMs and their liquidity providers. We see this as an
unsatisfactory dependency for DeFi protocols.

Attempts to provide LVR protection without explicit use of oracles either
use predictive fees for all players [10] and/or reduce liquidity for all players
through more complex constant functions [5]. Charging all users higher fees to
compensate for arbitrageur profits reduces the utility of the protocol for genuine
users, as does a generalized liquidity reduction. In Diamond, we only reduce
liquidity for arbitrageurs (which can also be seen as an increased arbitrageur-
specific fee), providing at least the same user experience for typical users as
existing AMMs without LVR protection.

Diamonds are Forever, Loss-Versus-Rebalancing is Not 5

A recent proposed solution to LVR published in a blog-post [12] termed MEV-
capturing AMMs (McAMMSs) considers auctioning off the first transaction/series
of transaction in an AMM among arbitrageurs, with auction revenue paid in
some form to the protocol. Two important benefits of Diamond compared to the
proposed McAMMSs are the capturing of realized LVR in Diamond as opposed
to predicted LVR in McAMMs, and decentralized access to Diamond compared
to a single point of failure in McAMMs.

In McAMMSs, bidders are required to predict upcoming movements in the
AMM. Bidders with large orders to execute over the period (e.g. private price
information, private order flow, etc.) have informational advantages over other
bidders. Knowing the difference between expected LVR excluding this private
information vs. true expected LVR allows the bidder to inflict more LVR on
the AMM than is paid for. As this results in better execution for the winner’s
orders, this may result in more private order flow, which exacerbates this effect.
Diamond extracts a constant percentage of the true LVR, regardless of private in-
formation. McAMMs also centralize (first) access control to the winning bidder.
If this bidder fails to respond or is censored, user access to the protocol is prohib-
ited/more expensive. Diamond is fully decentralized, incentive compatible and
can be programmed to effectively remove LVR in expectancy. Future McAMM
design improvements based on sub-block time auctions are upper-bounded by
the current protection provided by Diamond.

3 Preliminaries

This section introduces the key terminology and definitions needed to understand
LVR, the Diamond protocol, and the proceeding analysis. In this work we are
concerned with a single swap between token x and token y. We use z and y
subscripts when referring to quantities of the respective tokens. The external
market price of a swap is denoted by a lowercase p, while pool prices/ price
functions are denoted using an uppercase P, with the price of a swap quoted as
the quantity of token x per token y.

3.1 Constant Function Market Makers

A CFMM is characterized by reserves (R, R,) € R2 which describes the total
amount of each token in the pool. The price of the pool is given by pool price
function P : Ri — R taking as input pool reserves (R, Ry). P has the following
properties:

OP
(a) P is everywhere differentiable, with OR. > 0, R R, < 0.
(b) lim P=0, lim P=o0, lim P=oc, lim P=0. (1)
R;—0 Ry—00 Ry,—0 Ry—o00

(c) If P(R;, Ry) = p, then P(Ry + ¢, Ry +cp) =p, Ve > 0.

6 McMenamin, Daza and Mazorra

These are typical properties of price functions. Property (a) states the price
of y is increasing in the number of = tokens in the pool and decreasing in the
number of y tokens. Property (b) can be interpreted as any pool price value is
reachable for a fixed R, by changing the reserves of R, and vice versa. Property
(c) states that adding reserves to a pool in a ratio corresponding to the current
price of the pool does not change the price of the pool. These properties trivially
hold for the Uniswap V2 price function of %z, and importantly allow us to
generalize our results to a wider class of CFMMs.

For a CFMM, the feasible set of reserves C' is described by:

C={(Re, Ry) €BE : [(Ry, Ry) = k) (2)

where f : Ri — R is the pool invariant and £ € R is a constant. The pool is
defined by a smart contract which allows any player to move the pool reserves
from the current reserves (R0, Ry,0) € C to any other reserves (Ry 1, Ry 1) € C
if and only if the player provides the difference (R;1 — Ry,0, Ry,1 — Ry.0)-

Whenever an arbitrageur interacts with the pool, say at time ¢ with reserves
(Ry,t, Ryt), we assume as in [I7] that the arbitrageur maximizes their profits
by exploiting the difference between P(R, 4, R, ;) and the external market price
at time ¢, denoted p;. To reason about this movement, we consider a pool value
function V : Ry — R defined by the optimization problem:

V(py)= min pR, + R,, such that f(R,,R,) =k (3)
(RamRy)ERi

Given an arbitrageur interacts with the pool with external market price p;, the
arbitrageur moves the pool reserves to the (R, R,) satisfying V(p;).

3.2 Loss-Versus-Rebalancing

LVR, and its prevention in AMMs is the primary focus of this paper. The for-
malization of LVR [I7] has illuminated the true cost of providing liquidity in
CFMMs. The authors of [I7] provide various synonyms to conceptualize LVR.
In this paper, we use the opportunity cost of arbitraging the pool against the
external market price of the swap, which is proven to be equivalent to LVR in
Corollary 1 of [I7]. The LVR between two blocks B; and By where the reserves
of the AMM at the end of B; are (R;+, Ry +) and the external market price when
creating block Byiq is pi41 is:

Ryt + Rypiy1 — V(pey1) = (Rot — Rup1) + (Ryt — Ry 1)1 (4)

As this is the amount being lost to arbitrageurs by the AMM, this is the quantity
that needs to be minimized in order to provide LVR protection. In Diamond,
this minimization is achieved.

Diamonds are Forever, Loss-Versus-Rebalancing is Not 7

3.3 Auctions

To reason about the incentive compatibility of parts of our protocol, we outline
some basic auction theory results.

First-price-sealed-bid-auction: There is a finite set of players Z and a
single object for sale. Each bidder ¢ € 7 assigns a value of X; to the object.
Each X; is a random variable that is independent and identically distributed
on some interval [0, Vi,qz]. The bidders know its realization x; of X;. We will
assume that bidders are risk neutral, that they seek to maximize their expected
payoff. Per auction, each player submit a bid b; to the auctioneer. The player
with the highest bid gets the object and pays the amount bid. In case of tie, the
winner of the auction is chosen randomly. Therefore, the utility of a player ¢ € 7

is
sz .
B2t if by = max;{b; },
ui(bi,bg) =9 ™’ ' r.nax {bi)
0, otherwise

where m = |argmax;{b; }|. In our protocol, we have an amount of tokens z that
will be auctioned. This object can be exchanged by all players at the external
market price p. In this scenario, we have the following lemma.

Lemma 1. Let T be a set of players that can exchange at some market any
amount of tokens x or y at the external market price p. If an amount z of either
token are auctioned in a first-price auction, then the mazximum bid of any Nash
equilibrium is at least zp.

Proof. By construction, we have that the support of X; is lower bounded by zp.
Therefore, in a second-price auction, in equilibrium, each player will bid at least,
zp. Using the revenue equivalence theorem [13], we deduce that the revenue of
the seller is at least zp obtaining the result.

In one variation of Diamond, it possible to use a periodically updated price
oracle to ensure the incentive compatibility of the protocol. To instantiate a
game-theoretically secure decentralized price oracles, we can use the settlement
price of a decentralized frequent batch auction [I6]. Frequent batch auctions have
been proven to settle in expectancy at the external market price when the auction
is run [6I16]. Such guarantees were originally intended to benefit the users of the
frequent batch auction. However, given the settlement price of the auction has
expectancy equal to the external market price at a specific time, we can use this
as a practical and secure price oracle for settling derivatives depending on this
price, without the need for centralized alternatives like Chainlink [g].

4 Diamond

This section introduces the Diamond protocol. When the core protocol of Sec-
tion is run, some amount of tokens are removed from the pool and placed in
a vault. These vault tokens are eventually re-added to the pool through a conver-
sion protocol. Sections [£.3] and [£:4] detail two conversion protocols which can be

8 McMenamin, Daza and Mazorra

run in conjunction with the core Diamond protocol. Which conversion protocol
to use depends on the priorities of the protocol users, with a comparison of their
trade-offs provided in Section [6] These trade-offs can be summarized as follows:

— The process of Section [{.3]ensures the available liquidity is strictly increasing
in expectancy every block, and can be used in conjunction with a decentral-
ized price oracle to ensure the only required participation of a arbitrageurs
is in arbitraging the pool (see process 2 in Section .

— The process in Section [4.4] incurs less variance in the total value of tokens
owned by the pool (see Figure [3]), and involves a more straightforward use
of an auction.

Section formalizes the properties of Diamond, culminating in Theorem
which states that Diamond can be parameterized to reduce LVR arbitrarily
close to 0. It is important to note that Diamond is not a CFMM, but the rules
for adjusting pool reserves are dependent on a CFMM.

4.1 Model Assumptions

We outline here the assumptions used when reasoning about Diamond. Inkeeping
with the seminal analysis of [17], we borrow a subset of the assumptions therein,
providing here a somewhat more generalized model.

1. External market prices follow a martingale process.

2. The risk-free rate is 0.

3. There exists a population of arbitrageurs able to frictionlessly trade at the
external market price, who continuously monitor and periodically interact
with the CFMM pool.

. No liquidity providers enter or leave the system.

5. An optimal solution (R, RZ) to Equation [3| exists for every external market

price p > 0.

W

The use of futures contracts in one version of the Diamond protocol makes
the risk-free rate an important consideration for implementations of Diamond.
If the risk free rate is not 0, the PnL related to owning token futures vs. physical
tokens must be considered. Analysis of a non-zero risk-free rate is beyond the
scope of this paper.

4.2 Core Protocol

We now describe the core Diamond, which is run by all Diamond variations.
A Diamond pool @ is described by reserves (R, Ry), a pricing function P(), a
pool invariant function f(), an LVR-rebate parameter o € (0,1), and conversion
frequency T € N.

We define the corresponding CFMM pool of @, denoted CFMM(®P), as the
CFMM pool with reserves (R, R,) whose feasible set is described by pool in-
variant function f() and pool constant k = f(R,, R,). Conversely, ¢ is the cor-
responding Diamond pool of CFMM(®P). It is important to note that CFMM(P)

Diamonds are Forever, Loss-Versus-Rebalancing is Not 9

changes every time the @ pool reserves change. The protocol progresses in blocks,
with one reserve update per block.

Consider pool reserves (R o, Ry0) in ¢ and a player wishing to move the
price of @ to P; # g:g For a player wishing to move the price of CFMM(®P)
to P, from starting reserves (Rz,0,Ry0), let this require A, > 0 tokens to be
added to CFMM(®), and A, > 0 tokens to be removed from CFMM(®P). The

same price in @ is achieved by the following processﬂ

1. Adding (1 — a)A, tokens to @ and removing (1 — a)A, tokens.
2. Removing ¢, > 0 tokens such that:

P(Ry0— (1 —a)A; — 65, Ryo+ (1 —a)A,) = P[] (5)
These 0, tokens are added to the vault of ®.

After this process, let there be (vy,v,) € Ri tokens in the vault of @. If
Vyp1 > Vg, add (vg, ;—j) tokens into @ from the vault. Otherwise, add (vyp1,vy)
tokens into @ from the vault. This is a vault rebalance.

Every T blocks, after the vault rebalance, the protocol converts half of the
tokens still in the vault of @ (there can only be one token type in the vault after
a vault rebalance) into the other token in @ according to one of either conversion
process 1 (Section[4.3)) or 2 (Section[4.4)). After the conversion process, all tokens
still in the vault of @ are added into the @ pool.

4.3 Per-block Conversion vs. Future Contracts

After every arbitrage, the arbitrageur converts 6 equal to half of the total tokens
in the vault at the pool price P., equivalent to buying 6 tokens for P.. Simul-
taneously, the arbitrageur sells to the pool 6 future contracts in the same token
denomination at price P.. Given the pool buys 6 future contracts at conversion
price P, and the futures settle at price pr, the protocol wins §(pr — P.).

These future contracts are settled every T blocks, with the net profit or
loss being paid in both tokens, such that for a protocol settlement profit of
PnL measured in token z and pool price Pr, the arbitrageur pays (s, s,) with
PnL = s; + s, Pr and s; = s, Pr. These contracts can be settled in one of the
following (non-exhaustive) ways to settle futures:

1. Every T blocks, an auction takes place to buy the offered tokens from the
players who converted the pool at the prices at which the conversions took
place. For a particular offer, a positive bid implies the converter lost/the
pool won to the futures. In this case the converter gives the tokens to the

® If A, > 0 tokens are to be removed from CFMM(®) with A, > 0 tokens to be added
in order to achieve Pi, then (1 — a)A, tokens are removed from & and (1 — a)A,
tokens are added to @, with a further J, > 0 removed from ¢ and added to the vault
such that P(Rz,0 4+ (1 — @)Az, Ry — (1 — a)Ay — dy) = P1.

5 Achievable as a result of properties(a) and (b) of Equation

10 McMenamin, Daza and Mazorra

auction winner, while the pool receives the winning auction bid. A negative
bid implies the converter won/the pool lost to the futures. In this case, the
converter must also give the tokens to the auction winner, while the pool
must pay the absolute value of the winning bid to the auction winner.

2. Every T blocks, a blockchain-based frequent batch auction takes place in the
swap corresponding to the pool swap. The settlement price of the frequent
batch auction is used as the price at which to settle the futures.

4.4 Periodic Conversion Auction

Every T blocks, 6 equal to half of the tokens in the vault are auctioned to
all players in the system, with bids denominated in the other pool token. For
winning bid b in token x (or token y), the resultant vault quantities described
by (sz = b,8y =0) (or (s =6,s, = b)) are added to the pool reserves. In this
case, unlike in Section there are no restrictions placed on z—z As such, they
may be in a different ratio than the pool reserves.

4.5 Diamond Properties

This section outlines the key properties of Diamond. Omitted proofs are included
in Appendix [A] due to space constraints. We first prove that both conversion
process have at least 0 expectancy for the protocol.

Lemma 2. Conwverting the vault every block vs. future contracts has expectancy
of at least 0 for a Diamond pool.

Lemma 3. A periodic conversion auction has expectancy of at least 0 for a
Diamond pool.

Corollary 1. Conversion has expectancy of at least 0 for a Diamond pool.

With these results in hand, we now prove the main result of the paper. That
is, the LVR of a Diamond pool is (1 — «) of the corresponding CFMM pool.

Theorem 1. For a CFMM pool CFM M (®) with LVR of L > 0, the LVR of &,
the corresponding pool in Diamond, has expectancy of at most (1 — «)L.

5 Implementation

We now detail an implementation of Diamond. In our implementation, we con-
sider block producers as arbitrageurs, with names interchangeable, with block
producers in Diamond not charged protocol fees. The main focus of our imple-
mentation is ensuring user experience in a Diamond pool is not degraded com-
pared to the corresponding CFMM pool. To this point, applying an a-discount
on every Diamond pool trade is not viable. To avoid this, we only consider LVR
on a per-block, and not a per-transaction basis. Given the transaction sequence,

Diamonds are Forever, Loss-Versus-Rebalancing is Not 11

in/exclusion and priority auction capabilities of block producers, block producers
can either capture the block LVR of a Diamond pool themselves, or effectively
sell this right to other arbitrageurs.

From an implementation standpoint, who captures the LVR is not important,
but it is the block producer who must repay the LVR of a block. To enforce this,
for a Diamond pool, we check the pool state in the first pool transaction each
block and take escrow from the block producer. This escrow is be used in part
to pay the realized LVR of the block back to the pool. The first pool transaction
also returns the collateral of the previous block producer, minus the realized LVR,
(computable from the difference between the current pool state and the pool
state at the beginning of the previous block). To ensure the collateral covers
realized LVR, each proceeding pool transaction verifies that the LVR implied
by the pool state as a result of the transaction can be repaid by the deposited
collateral. Our implementation is based on the following two assumptions:

1. A block producer always sets the final state of a pool to the state which
maximizes the LVR.

2. The block producer realizes net profits of at least the LVR corresponding to
the final state of the pool.

If the final price of the block is not the price maximizing LVR, the block
producer has ignored an arbitrage opportunity. The block producer can always
ignore non-block producer transactions to realize the LVR, therefore, any addi-
tional included transactions must result in greater or equal utility for the block
producer than the LVR.

5.1 Core Protocol

The first transaction interacting with a Diamond pool @ in every block attests
to the maximum and minimum prices attained by @ during the block, P,,., and
Pin respectively. We call this transaction the pool unlock transaction. Only one
pool unlock transaction is executed per pool per block. Given a current pool price
of Py corresponding to reserves (R, o, Ry 0), it must be that P, < Py < Prga.
As such, given a move to P, some amount A\, > 0 must be returned to the @
pool and vault by the block producer. Similarly, given a move to Prqz, Ay > 0
must be returned to the @ pool and vault by the block producer. For a final pool
price P; with A; > 0 tokens added to the pool and A, > 0 tokens removed
(implying Py > FPp), aA, tokens are removed from g, while A, tokens are
returned to the producer who deposited A,. A further §, tokens are removed
from A, such that:

P(RJL’»O_ (1 _a)AZL’ _5I3Ry,0+(1 —Q)Ay) :Pl. (6)

The A\, and remainder of A, if any, are returned to the producer who deposited
Az and Ay. Given P; < Fy, the same process is repeated with aA, and J, paid
to the pool and vault respectively. These amounts (A, A,) must be deposited to
the protocol contract in the pool unlock transaction.

12 McMenamin, Daza and Mazorra

Every proceeding user transaction interacting with @ in the block first verifies
that the implied pool move stays within the bounds [Pin, Pmas] specified at
the start of the block. Non pool-unlock transactions are executed as they would
be in the corresponding CEMM pool CF M M (®) without an « discount on the
amount of tokens that can be removed. If a transaction implies a move outside
of these bounds, it is not executed.

The next time a pool unlock transaction is submitted (in a proceeding block),
given the final price of the preceding block was P; the actual amount of token
x or y required to be added to the pool and vault (the aA and ¢ of the required
token, as derived earlier in the section) is taken from the deposited escrow, with
the remainder returned to the block producer who deposited those tokens.

Remark 1. Setting the LVR-rebate parameter too high can result in protocol
censorship and/or liveness issues as certain block producers may not be equipped
to frictionlessly arbitrage, and as such, repay the implied LVR to the protocol.
To counteract this, the LVR rebate parameter should be reduced every block in
which no transactions take place. As arbitrageurs are competing to extract LVR
from the pool, the LVR rebate parameter will eventually become low enough for
block producers to include Diamond transactions.

5.2 Conversion Protocols

The described implementations in this section assume the existence of a decen-
tralized on-chain auction. []

Per-block Conversion vs. Futures Given per-block conversion (Section,
further deposits from the block producer are required to cover the token require-
ments of the conversion and collateralizing the futures. The conversions for a
pool @ resulting from transactions in a block take place in the next block a pool
unlock transaction for @ is called. Given a maximum expected percentage move
over T' blocks of o, and a conversion of A, tokens at price P, the block producer
collateral must be in quantities 7, and m, such that if the block producer is long
the futures:

P Ty P
1. 7 — >)N(P—-——), and 2. — = . 7
g +7ry1—|—aT* y(1+0’T) an Ty 1+ o1 (7)
If the block producer is short the futures it must be that:
Lyt my— b > A, Po and 2. °% = P(1 + o) (8)
T Ygop =070 Tmy v

7 First-price sealed-bid auctions can be implemented using a commit-reveal protocol.
An example of such a protocol involves bidders hashing bids, committing these to
the blockchain along with an over-collaterlization of the bid, with bids revealed when
all bids have been committed.

Diamonds are Forever, Loss-Versus-Rebalancing is Not 13

The first requirement in both statements is for the block producer’s collateral to
be worth more than the maximum expected loss. The second requirement states
the collateral must be in the ratio of the pool for the maximum expected loss
(which also ensures it is in the ratio of the pool for any other loss less than the
maximum expected loss). This second requirement ensures the collateral can be
added back into the pool when the futures are settled.

At settlement, if the futures settle in-the-money for the block producer, to-
kens are removed from the pool in the ratio specified by the settlement price
with total value equal to the loss incurred by the pool, and paid to the block
producer. If the futures settle out-of-the-money, tokens are added to the pool
from the block producer’s collateral in the ratio specified by the settlement price
with total value equal to the loss incurred by the block producer. The remaining
collateral is returned to the block producer. The pool constant is adjusted to
reflect the new balances.

Remark 2. As converting the vault does not affect pool availability, the auctions
for converting the vault can be run sufficiently slowly so as to eliminate the risk
of block producer censorship of the auction. We choose to not remove tokens
from the pool to collateralize the futures as this reduces the available liquidity
within the pool, which we see as an unnecessary reduction in benefit to users
(which would likely translate to lower transaction fee revenue for the pool). For
high volatility token pairs, T should be chosen sufficiently small so as to not to
risk pool liquidation.

If Diamond with conversion versus futures is run on a blockchain where the
block producer is able to produce multiple blocks consecutively, this can have
an adverse effect on incentives. Every time the vault is converted and tokens are
re-added to the pool, the liquidity of the pool increases. A block producer with
control over multiple blocks can move the pool price some of the way towards
the maximal LVR price, convert the vault tokens (which has 0 expectancy from
Lemma , increase the liquidity of the pool, then move the pool towards the
maximal LVR price again in the proceeding block. This process results in a
slight increase in value being extracted from the pool in expectancy compared to
moving the pool price immediately to the price corresponding to maximal LVR.
Although the effect on incentives is small, re-adding tokens from a conversion
slowly /keeping the pool constant constant mitigates/removes this benefit for
such block producers.

Periodic Conversion Auction Every T blocks, given 6 tokens in the vault,

g of these tokens are auctioned off, with bids placed in the other token. The
winning bidder receives these g. The winning bid, and the remaining g tokens

in the vault are added to the pool.
6 Experimental Analysis

This section presents the results of several experiments, which can be repro-
duced using the following anonymized repository [20]. The results provide fur-
ther evidence of the performance potential of a Diamond pool versus various

14 McMenamin, Daza and Mazorra

benchmarks. These experiments isolate the effect that different fees, conversion
frequencies, daily price moves, LVR rebate parameters, and days in operation
have on a Diamond pool. Each graph represents a series of random-walk simu-
lations which were run, unless otherwise stated, with base parameters of:

— LVR rebate parameter: 0.95.

— Average daily price move: 5%.

— Conversion frequency: Once per day.

— Blocks per day: 10.

— Days per simulation: 365.

— Number of simulations per variable: 500.

Each graph plots the final value of the Diamond Periodic Conversion Auction
pool (unless otherwise stated) relative to the final value of the corresponding
Uniswap V2 pool. The starting reserve values are $100m USDC and 76,336
ETH, for an ETH price of $1,310, the approximate price and pool size of the
Uniswap ETH/USDC pool at the time of writing [22].

Fees Expected Daily Price Move

® Periodic Conversion Auction ® 5% °
Conversion vs. Futures ° 10%

I
.
1)

L]
L]
e HODL 4 1107 o 15 P oa® .V.

108{ o ‘:so\ e
= ° = 1.08 0 [o ° °
z [° z % % , o
S 1.06 4 © °
5 R . B 106
® 1.04 " £
a 8 1.04

1.02

-
o
N}

W) Wd 0% e

[

500 1000 1500 2000 2500 3000 0 2000 4000 6000 8000
final price final price

Fig.3 Fig. 4

Figure |3| compares four strategies over the same random walks. Periodic
Conversion Auction and Conversion vs. Futures replicate the Diamond protocol
given the respective conversion strategies (see Section [4). HODL (Hold-On-for-
Dear-Life), measures the performance of holding the starting reserves until the
end of the simulation. The final pool value of these three strategies are then taken
as a fraction of the corresponding CFMM pool following that same random walk.
Immediately we can see all three of these strategies outperform the CFMM
strategy in all simulations (as a fraction of the CEMM pool value, all other
strategies are greater than 1), except at the initial price of 1310, where HODL
and CFMM are equal, as expected.

The Diamond pools outperform HODL in a range around the starting price,
as Diamond pools initially retain the tokens increasing in value (selling them
eventually), which performs better than HODL when the price reverts. HODL
performs better in tail scenarios as all other protocols consistently sell the token
increasing in value on these paths. Note Periodic Conversion slightly outperforms
Conversion vs. Futures when finishing close to the initial price, while slightly
underperforming at the tails. This is because of the futures exposure. Although

Diamonds are Forever, Loss-Versus-Rebalancing is Not 15

these futures have no expectancy for the protocol, they increase the variance
of the Conversion vs. Futures strategy, outperforming when price changes have
momentum, while underperforming when price changes revert.

Figure [4] identifies a positive relationship between the volatility of the price
and the out-performance of the Diamond pool over its corresponding CFMM
pool. This is in line with the results of [I7] where it is proved LVR grows quadrat-
ically in volatility. Figure[5|demonstrates that, as expected, a higher LVR-rebate
parameter « retains more value for the Diamond pool.

alpha Conversion Frequency
® 05 ® every day
1.018
1.012 0.95 every week
1.016
Z 1.010 £ 1.014
S S
)
3 S1o12{ © =8, .’?4. s ¢
§ 1.008 § "’A“"~ i oe ®0.°
£ €1010] oOhgely® e w
s] s »
a . o W gt 2
° ° 1.008 2]
1.006 °
o © °
1.006
Q . 9% °
1.004 1.004
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
final price final price
Fig.5 Fig. 6

Figure |§| shows that higher conversion frequency (1 day) has less variance for
the pool value (in this experiment once per day conversion has mean 1.011234
and standard deviation 0.000776 while once per week conversion has mean
1.011210 and standard deviation 0.002233). This highlights an important trade-
off for protocol deployment and LPs. Although lower variance corresponding to
more frequent conversion auctions is desirable, more frequent auctions may cen-
tralize the players participating in the auctions due to technology requirements.
This would weaken the competition guarantees needed to ensure that the auction
settles at the true price in expectancy.

Fees (Given 10% of pool TVL trades per day) Lifetime of Pool

o fee=0% |pihiipeniieg ®o © ° 1.035{ e 1lyear

1.10 fee = 0.03% 3 years
o fee=03%

1.030

[g
o
N}
g

1.020

Diamond / CFMM
-

t | r
&

Diamond / CFMM

1.015

1.02 vy
CRPORIINIID s oo o0 roie “" ‘

500 1000 1500 2000 2500 3000 3500 0 1000 2000 3000 4000 5000 6000
final price

Fig.7 Fig. 8

Figure[7] compares Diamond to the CEMM pool under the specified fee struc-
tures (data-points corresponding to a particular fee apply the fee to both the
Uniswap pool and the Diamond pool) assuming 10% of the total value locked
in each pool trades daily. The compounding effect of Diamond’s LVR rebates

16 McMenamin, Daza and Mazorra

with the fee income every block result in a significant out-performance of the
Diamond protocol as fees increase. This observation implies that given the LVR
protection provided by Diamond, protocol fees can be reduced significantly for
users, providing a further catalyst for a DeFi revival. Figure [§| demonstrates that
the longer Diamond is run, the greater the out-performance of the Diamond pool
versus its corresponding CEMM pool.

7 Conclusion

We present Diamond, an AMM protocol which provably protects against LVR.
The described implementation of Diamond stands as a generic template to ad-
dress LVR in any CFMM. The experimental results of Section [f] provide strong
evidence in support of the LVR protection of Diamond, complementing the for-
mal results of Section It is likely that block producers will be required to
charge certain users more transaction fees to participate in Diamond pools to
compensate for this LVR rebate, with informed users being charged more for
block inclusion than uninformed users. As some or all of these proceeds are paid
to the pool with these proceeds coming from informed users, we see this as a
desirable outcome.

Given the protocol-level protections provided by Diamond, research must
now focus on user protections in order to keep protocol utility in the hands of
protocol contributors. Rook [19] and CoW protocol [9] have taken important
steps in this regard, although many open problems still exist.

References

1. Adams, H., Keefer, R., Salem, M., Zinsmeister, N., Robinson, D.: Uniswap V3 Core
(2021), https://uniswap.org/whitepaper-v3.pdf

2. Adams, H., Zinsmeister, N., Robinson, D.: Uniswap V2 Core (2020), https://
uniswap.org/whitepaper.pdf

3. Bartoletti, M., Chiang, J.H.y., Lluch-Lafuente, A.: A Theory of Automated Market
Makers in DeFi. In: Damiani, F., Dardha, O. (eds.) Coordination Models and
Languages. pp. 168-187. Springer International Publishing, Cham (2021)

4. Bartoletti, M., Chiang, J.H.y., Lluch-Lafuente, A.: Maximizing Extractable Value
from Automated Market Makers. In: Financial Cryptography and Data Security.
Springer Berlin Heidelberg, Berlin, Heidelberg (2022)

5. Bichuch, M., Feinstein, Z.: Axioms for Automated Market Makers: A Mathematical
Framework in FinTech and Decentralized Finance (2022), https://arxiv.org/
abs/2210.01227

6. Budish, E., Cramton, P., Shim, J.: The High-Frequency Trading Arms Race:
Frequent Batch Auctions as a Market Design Response *. The Quarterly Journal
of Economics 130(4), 1547-1621 (07 2015). https://doi.org/10.1093/qje/qjv027,
https://doi.org/10.1093/qje/qjv027

7. Capponi, A., Jia, R.: The adoption of blockchain-based decentralized exchanges
(2021), https://arxiv.org/abs/2103.08842

8. Chainlink: https://chain.link/

https://uniswap.org/whitepaper-v3.pdf
https://uniswap.org/whitepaper.pdf
https://uniswap.org/whitepaper.pdf
https://arxiv.org/abs/2210.01227
https://arxiv.org/abs/2210.01227
https://doi.org/10.1093/qje/qjv027
https://doi.org/10.1093/qje/qjv027
https://arxiv.org/abs/2103.08842
https://chain.link/

Diamonds are Forever, Loss-Versus-Rebalancing is Not 17

9. CoW Protocol: https://docs.cow.fi/

10. Evans, A., Angeris, G., Chitra, T.: Optimal fees for geometric mean market mak-
ers. In: Bernhard, M., Bracciali, A., Gudgeon, L., Haines, T., Klages-Mundt, A.,
Matsuo, S., Perez, D., Sala, M., Werner, S. (eds.) Financial Cryptography and Data
Security. FC 2021 International Workshops. pp. 65-79. Springer Berlin Heidelberg,
Berlin, Heidelberg (2021)

11. @hagaetc: https://dune.com/queries/4494

12. Josojo: Mev capturing amms (2022), https://ethresear.ch/t/
mev-capturing-amm-mcamm/13336

13. Krishna, V.: Auction theory. Academic press (2009)

14. Krishnamachari, B., Feng, Q., Grippo, E.: Dynamic automated market mak-
ers for decentralized cryptocurrency exchange. In: 2021 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC). pp. 1-2 (2021).
https://doi.org/10.1109/ICBC51069.2021.9461100

15. Loesch, S., Hindman, N., Richardson, M.B., Welch, N.: Impermanent Loss in
Uniswap v3 (2021), https://arxiv.org/abs/2111.09192

16. McMenamin, C., Daza, V., Fitzi, M., O’Donoghue, P.: Fairtradex: A decentralised
exchange preventing value extraction. In: Zhang, F., McCorry, P. (eds.) Proceed-
ings of the 2022 ACM CCS Workshop on Decentralized Finance and Security. ACM
(2022)

17. Milionis, J., Moallemi, C.C., Roughgarden, T., Zhang, A.L.: Quantifying loss in
automated market makers. In: Zhang, F., McCorry, P. (eds.) Proceedings of the
2022 ACM CCS Workshop on Decentralized Finance and Security. ACM (2022)

18. Park, A.: The conceptual flaws of constant product automated market making.
ERN: Other Microeconomics: General Equilibrium & Disequilibrium Models of
Financial Markets (2021)

19. Rook: https://docs.rook.fi/reference/

20. Diamond simulation: https://anonymous.4open.science/r/LVR-0D11/
MainProtocolSimulation.py

21. @thiccythot: https://dune.com/thiccythot/uniswap-markouts

22. Uniswap: https://app.uniswap.org/

A Proofs

Lemma 4. Converting the vault every block vs. future contracts has expectancy
of at least 0 for a Diamond pool.

Proof. Consider a conversion of 6 tokens which takes place at time 0. Let the
conversion be done at some price p., while the external market price is pg. WLOG
let the protocol be selling 6§ y tokens in the conversion, and as such, buying 6 y
token futures at price P.. The token sells have expectancy (P, — pg). For the
strategy to have at least 0 expectancy, we need the futures settlement to have
expectancy of at least 6(py — P.). In Section two versions of this strategy
were outlined. We consider both here. In both sub-proofs, we use the assumption
that the risk-free rate is 0, it must be that the external market price at time ¢
is such that E(p;) = po. We now consider the two options for settling futures
outlined in Section 3]

Option 1: Settle futures by auctioning tokens at the original con-
verted price. The arbitrageur who converted tokens for the pool at price P,

https://dune.com/queries/4494
https://ethresear.ch/t/mev-capturing-amm-mcamm/13336
https://ethresear.ch/t/mev-capturing-amm-mcamm/13336
https://doi.org/10.1109/ICBC51069.2021.9461100
https://arxiv.org/abs/2111.09192
https://anonymous.4open.science/r/LVR-0D11/MainProtocolSimulation.py
https://anonymous.4open.science/r/LVR-0D11/MainProtocolSimulation.py
https://dune.com/thiccythot/uniswap-markouts
https://app.uniswap.org/

18 McMenamin, Daza and Mazorra

must auction off the tokens at price P.. Let the auction happen at time ¢, with
external market price at that time of p;. Notice that what is actually being sold
is the right, and obligation, to buy € tokens at price P.. This has value (p, — P,),
which can be negative. As negative bids are paid to the auction winner by the
protocol, and positive bids are paid to the protocol, we are able to apply Lemma
As such, the winning bid is at least 6(p; — P.), which has expectancy of at
least

E(0(ps — P.)) = 0(E(pt) — Pe) = 0(po — Poe). ()

Thus the expectancy of owning the future for the protocol is at least 8(p. — Pp),
as required.

Option 2: Settle futures using frequent batch auction settlement
price. For a swap with external market price p; at time ¢, a batch auction in
this swap settles at p; in expectancy (see Theorem 5.2 of [16]). Thus the futures
owned by the protocol have expectancy

E(0(p: — P.)) = 0(E(p;) — P.) = 0(po — Po). (10)

Lemma 5. A periodic conversion auction has expectancy of at least 0 for a
Diamond pool.

Proof. Consider a Diamond pool ¢ with vault containing 26 tokens. WLOG let
these be of token y. Therefore the pool must sell 6 tokens at the external market
price to balance the vault. Let the conversion auction accept bids at time ¢, at
which point the external market price is p;. For the auction to have expectancy
of at least 0, we require the winning bid to be at least 6p;. The result follows
from Lemma [l

Theorem [Il For a CFMM pool CFM M (®) with LVR of L > 0, the LVR of &,
the corresponding pool in Diamond, has expectancy of at most (1 — a)L.

Proof. To see this, we first know that for CFM M (P) at time t with reserves
(Rz,t, Ry.+), the optimal solution to the pool value function with external market
price pyy1 corresponds to updated reserve values (R;;t s Ry +1) which mini-
mize:

(Rat — Ropr1) + (Ryt — Rye41)pes1. (11)
Let this quantity be
L= (Rm,t - R:,t+1) + (Ry,t - RZ,t+1)Pt+1~ (12)

In Diamond, a player trying to move the reserves of @ to (R, ;1,1 ;4,) only
receives (1 — a)(R;, ;1 — Ry) while giving (1 — a)(R}, ;11 — Ry +) to @. Thus,
an arbitrageur wants to find the values of (R} ,,q, R ;.) that maximize:

(1 —a)(Ry 1 — Ret) + (1 —) (R, ;1 — Ryt)pes1 + E(conversion). (13)

where E(conversion) is the per-block amortized expectancy of the conversion
operation for the arbitrageurs. From Lemma |1} we know E(conversion) > 0

Diamonds are Forever, Loss-Versus-Rebalancing is Not 19

for the @. Therefore, the LVR of @ corresponds to the values (R}, 1, R} ;1 1)
minimizing the function:

(1- a)((R$7t - ;,t+1) + (Ry,t - R;;7t+1)pt+l) (14>

which is just the negative of Equation From Equation we know this has
a minimum at (R, 1, R} ;1) = (R} 441, Ry 111). Therefore, the LVR of & is at
most:

(1= a)(Rat = Ry 1) + (Rye = By y1)pe1) = (1 = @) L. (15)

	Diamonds are Forever,Loss-Versus-Rebalancing is Not

