
Efficient Hybrid Exact/Relaxed Lattice Proofs
and Applications to Rounding and VRFs

Muhammed F. Esgin1,2, Ron Steinfeld1, Dongxi Liu2, and Sushmita Ruj3

1 Monash University, Australia
2 CSIRO’s Data61, Australia

3 University of New South Wales, Australia

Abstract. In this work, we study hybrid exact/relaxed zero-knowledge
proofs from lattices, where the proved relation is exact in one part and
relaxed in the other. Such proofs arise in important real-life applications
such as those requiring verifiable PRF evaluation and have so far not
received significant attention as a standalone problem.
We first introduce a general framework, LANES+, for realizing such hy-
brid proofs efficiently by combining standard relaxed proofs of knowledge
RPoK and the LANES framework (due to a series of works in Crypto’20,
Asiacrypt’20, ACM CCS’20). The latter framework is a powerful lattice-
based proof system that can prove exact linear and multiplicative rela-
tions. The advantage of LANES+ is its ability to realize hybrid proofs
more efficiently by exploiting RPoK for the high-dimensional part of the
secret witness while leaving a low-dimensional secret witness part for
the exact proof that is proven at a significantly lower cost via LANES.
Thanks to the flexibility of LANES+, other exact proof systems can also
be supported.
We apply our LANES+ framework to construct substantially shorter
proofs of rounding, which is a central tool for verifiable deterministic
lattice-based cryptography. Based on our rounding proof, we then de-
sign an efficient long-term verifiable random function (VRF), named LaV.
LaV leads to the shortest VRF outputs among the proposals of standard
(i.e., long-term and stateless) VRFs based on quantum-safe assumptions.
Of independent interest, we also present generalized results for challenge
difference invertibility, a fundamental soundness security requirement for
many proof systems.

Keywords: Lattice · Zero-Knowledge Proofs · Post-Quantum · Learning
with Rounding · Verifiable Random Function

1 Introduction

Zero-knowledge proofs are fundamental tools for construction of privacy-
preserving cryptographic protocols. Constructing such protocols with security
against quantum attacks is an active research area, with lattice-based techniques
a leading candidate. In such lattice-based privacy-preserving protocols, the de-
sired protocol functionality boils down to constructing a zero-knowledge protocol
for proving a relation of the form

Ar+Bm = t, (1)

over the underlying ring Rq,d (which may be Zq or a d-dimensional poly-
nomial ring modulo an integer q). In the above expression, A,B are pub-
lic matrices, t is a public vector and (r,m) is a pair of secret vectors con-
stituting the prover’s witness in the zero-knowledge proof, having small co-
ordinates in some sets S1, S2 (e.g., Si = {−1, 0, 1}). The witness vectors
may also be required to satisfy additional constraints (e.g., linear relations).
When the zero-knowledge protocol proves knowledge of such a witness sat-
isfying (1) exactly and with coordinates guaranteed to be in the set Si, it
is said to be an exact proof. There is a line of work on constructing such
exact lattice-based proofs, from long Stern-type [Ste93] proofs [LLNW17], to
more compact algebraic proofs [BLS19, YAZ+19], culminating in the state-of-
the-art, which we call the LANES framework, consisting of the combination
of techniques developed in [ALS20, ENS20, LNS20] (the LANES acronym we
use is derived from the initials of the authors of those latter works). How-
ever, even the state-of-the-art LANES framework for exact lattice-based proofs
often results in relatively long proofs in practice. In contrast, some crypto-
graphic functionalities, such as plain signatures [Lyu09, Lyu12, DLL+18], ring
signatures and applications [ESLL19, EZS+19, ESZ22, LNS21b] and group sig-
natures [dPLS18,EZS+19,ESZ22], have been shown to be realizable more com-
pactly without resorting to exact proofs, replacing them with significantly shorter
relaxed (approximate) proofs of knowledge RPoK, i.e., proofs of relations of the
form

Ar′ +Bm′ = c̄t, (2)

for a short “relaxation factor” c̄ ∈ Rq,d, and also allowing some slack in the set
Si in which the coordinates of the witness vector (r′,m′) are proved to be in.

In this paper, we focus on important cryptographic functionalities for which
exact proofs are required for proving the well-formedness of part of the witness.
In such hybrid exact/relaxed proof applications, it is crucial that the proof is
exact for the portion m of the witness (r,m), in the sense that the coordinates
of m are proved to exactly belong in some set Si (and satisfy the appropriate
additional, e.g., linear constraints), but the coordinates of r may have some
soundness slack, and the relation to be satisfied is of the form

Ar′ + c̄Bm = c̄t. (3)

Note that if c̄ is invertible in Rq,d, then (3) can be re-written as Ar+Bm = t for
r := r′/c̄ so that it is exact for the Bm term while the relaxation factor c̄ only
affects the r = r′/c̄ witness part (we remark that when the real witness r has
unconstrained coordinates, this actually becomes an exact proof with extracted
witness r = r′/c̄; the relaxation factor only comes in when we require r to be
short). Unfortunately, a limitation of the LANES framework for exact proofs
is that it is not flexible enough to support such hybrid exact/relaxed relations
efficiently. Namely, when using LANES for such hybrid relations, one is forced
to prove an exact relation for the whole witness (r,m), which leads to long
proofs, as the length of the LANES proof is proportional to the total length of
the witness (we discuss this more precisely in ‘Technical Overview’ section). On

2

the other hand, compact relaxed proofs alone cannot be used due to the exact
proof requirement on the m part of the witness.

A case in point of hybrid exact/relaxed relation that forms the central mo-
tivation of this paper is that of rounding proofs. Given a public matrix A and
a vector t over Zq, and a rounding modulus p, a rounding proof proves knowl-
edge of a secret vector s such that t = ⌊As⌋p := ⌊pq ·As⌋, where the rounding
is done coefficient-wise. Rounding proofs come up in protocols that prove the
well-formedness of lattice-based Pseudo-Random Functions (PRFs) based on
the Learning with Rounding (LWR) problem introduced in [BPR12] and sev-
eral LWR-based constructions of PRFs are known [BPR12, BLMR13, BP14].
Proofs of correct PRF evaluation have applications in Verifiable Random Func-
tions (VRFs) as constructed in this paper, along with privacy-preserving de-
centralized e-cash systems [BCG+14,GM17,CGL+17], stateful anonymous cre-
dentials [CGH09], n-times periodic anonymous authentication [CHK+06], trace-
able ring signatures [FS07], anonymous survey systems [HMPS14], password-
protected secret sharing [JKK14] and unlinkable pseudonyms for distributed
databases [CL15] as stated in [LLNW17]. For p | q, the rounding relation t =
⌊As⌋p can be written in the form q

pt = As − e, where e ∈ [0, q/p − 1]m is the

rounding error. This has the form of (1), where the witness consists of (s, e). In
rounding proofs, it is crucial that the proof is exact for the e part to ensure that
its coordinates are in [0, q/p − 1] for the correct rounding relation, whereas it
turns out to be fine for applications to relax the proof requirement for the s por-
tion of the witness. For example, a set of standard LWR samples does not require
the secret s to be short. In typical applications, the dimension of the relaxed por-
tion s of the witness is dictated by security constraints of the LWR problem,
and is much longer than the dimension of the exact portion of the witness e.
Therefore, rounding proofs are a typical example of hybrid exact/relaxed proofs
where the inflexibility limitation of the plain LANES framework would lead to
long proofs, despite the short dimension of the exact portion of the witness.

The main application of rounding proofs we focus on in this paper is to the
construction of lattice-based long-term (stateless) Verifiable Random Functions
(VRFs). A VRF is a type of pseudorandom function whose output is both au-
thenticated and publicly verifiable [MRV99]. VRFs based on quantum-insecure
assumptions have been used in practice, for example, in the DNSSEC proto-
col [GNP+15], WhatsApp’s key transparency protocol [LL], and in blockchain
Proof-of-Stake consensus protocols [GHM+17,CM19,KRDO17]. Existing quantum-
safe VRF constructions, on the other hand, fall into two classes. The first class
are constructions in the standard model [GHKW17, Bit20, Yam17], which are
relatively inefficient in practice but avoid the use of a common reference string
or random oracle. The second class are constructions in the random oracle
model [YAZ+19, EKS+21, BDE+21]. The latter constructions are more prac-
tically oriented, but are limited due to the lack of compact rounding proofs
or other reasons as discuss below. The lattice-based VRF construction sketched
in [YAZ+19] uses inefficient exact proofs of rounding that have lengths in the or-
der of MBs. Even if improved using the LANES framework, such exact rounding

3

Comm.
Size

Key
Hom.

Long
Term

Stateless
Low Storage &
Fast Keygen

Security

X-VRF [BDE+21] 3 KB ✗ ✓\ ✗ ✗ Hash

LB-VRF [EKS+21] 8.34 KB ✓ ✗ ✓ ✓ Lattice

SL-VRF [BDE+21] 40 KB ✗ ✓ ✓ ✓ Hash

LaV (this work) 10.3 KB ✓ ✓ ✓ ✓ Lattice

Table 1. Comparison of (plausibly) post-quantum practical VRFs. ✓\ means the prop-
erty is partially satisfied. ‘Key Hom.’ means the underlying PRF is (approximately)
‘key homomorphic’. For the communication size (Comm. Size) of LB-VRF, we consider
the sum of proof size, VRF value and public key since the construction is one-time.

proofs would typically still be quite long, in the order of 100 KB4. The lattice-
based VRF construction in [EKS+21] is compact (with proof sizes around 5-8
KB) but, to avoid the need for rounding proofs, it leaks an exact linear relation
on the secret key with each VRF evaluation, which limits the number of times
it can be evaluated to a small value (typically 1-5 evaluations), i.e., the con-
struction in [EKS+21] is a few-time VRF rather than a full-fledged (practically
unlimited-time) VRF as we construct in this paper.

In the application of VRF to Algorand’s blockchain protocol, the few-time
limitation on the VRF of [EKS+21] introduces modifications and additional
overheads to the Algorand consensus protocol, in order to periodically refresh
the VRF keys of the users [EKS+21]. Other applications of VRFs, such as the
DNSSEC protocol [GNP+15], inherently require a long-term VRF. The authors
of [EKS+21] stated that the main bottleneck to constructing an efficient long-
term lattice-based VRF is the lack of an efficient rounding proof. We address
this open problem in this paper.

Two VRF constructions based on symmetric-key primitives are given in [BDE+21],
but also suffer from significant practical limitations. The first construction in [BDE+21],
called X-VRF, achieves compact proofs (around 3 KB) but suffers from a stateful
VRF algorithm and a key generation time and prover storage cost that increases
in proportion to the number of allowed VRF evaluations (e.g., leading to days
long key generation times for 227 VRF evaluations). The second construction
in [BDE+21], called SL-VRF, avoids stateful evaluation and long setup and
memory costs, but suffers from long proofs in the order of 40KB (see Table 1).

Another significant consideration for higher-level applications of VRFs (or
correct PRF evaluation proofs) is (an approximate) key-homomorphism of the
underlying PRF (i.e., PRFsk0(m) + PRFsk1(m) ≈ PRFsk0+sk1(m)), as this is an
important property for various applications such as anonymous e-cash, dis-
tributed PRFs, symmetric-key proxy re-encryption and updatable encryption.
The symmetric-key based proposals in [BDE+21] do not offer key-homomorphism.

4 Even the optimized proof of 1024-dimensional LWE samples with ternary secret and
error (i.e., s, e ∈ {−1, 0, 1}1024) in [LNS21a] is at 33 KB. The magnitude of rounding
error coefficients needs to be bigger for a VRF to circumvent algebraic attacks.

4

1.1 Our Contributions

LANES+ framework: compact hybrid exact/relaxed proofs. We introduce
a novel general framework called LANES+ for constructing compact proofs for
hybrid exact/relaxed relations, addressing the limitations of the LANES frame-
work. LANES+ combines the best of LANES and Relaxed Proofs of Knowledge
(RPoK) to achieve much shorter proofs than LANES when the exact part of
the witness is short compared to the full length of the witness. The LANES+

framework proves relations of the form (3) and supports additional exact linear
relations and polynomial constraints on the exact part m of the witness. Our
LANES+ framework is flexible enough to support different exact proof systems,
including a concurrent work [LNP22] as discussed further in Sec. 1.2.
Compact lattice-based rounding proofs. We present an efficient instantia-
tion of our LANES+ framework applied to the design of compact rounding proofs
for cryptographic protocols based on the LWR problem. Our rounding proof is
substantially shorter than prior proposals [YAZ+19, LLNW17] as they require
communication in the order of MBs. We believe our compact rounding proof
techniques will find future applications for the design of efficient correct PRF
evaluation proofs in lattice-based privacy-preserving protocols such as anony-
mous e-cash [LLNW17]. We leave the application of our techniques to anonymous
e-cash as future work.
LaV: Compact (long-term) lattice-based VRF. To demonstrate the utility
of our new techniques, we present an efficient application of our LANES+-based
rounding proofs to the construction of a compact (long-term) lattice VRF, called
LaV. Our construction is the first practical lattice-based VRF supporting prac-
tically unrestricted number (2128) of VRF evaluations. For typical parameters,
LaV achieves a VRF output size of about 10.3 KB, which is about 1.24× overhead
over the communication size needed in [EKS+21], while allowing for an arbitrary
number of VRF evaluations (versus the 1-5 evaluation limitation of [EKS+21]).
In Table 1, we provide a comparison between practical post-quantum VRF pro-
posals.

To support our new VRF construction and rounding proofs, we also introduce
another technical contribution of potential independent interest as below.
Generalization of challenge difference invertibility bounds. RPoK part
of our LANES+ protocol requires the invertibility of challenge differences in the
underlying polynomial ring and it is important for the practical efficiency of
LaV that dim(Rq,d) = d is small (e.g., d = 32). The latter requirement forces the
protocol challenge c to have relatively large coefficients. To support this, we gen-
eralize the challenge difference invertibility bounds from [ALS20,ESZ22], which
apply only to ternary challenge coordinates. In particular, we derive bounds for
challenges with coefficients of infinity norm γ for any γ ≥ 1. These generalized
results are used to optimize the length of our rounding proofs in LaV, and we
believe they will find further applications in future lattice proof systems. In gen-
eral, compared to prior results applicable for γ > 1 such as [LS18], our new
results allow to use a smaller modulus q and/or a highly-splitting ring Rq,d.

5

1.2 Technical Overview

LANES+ framework. We first explain in more detail the inflexibility limitations
of the LANES framework. We recall that LANES uses a commitment scheme de-
fined over a cyclotomic polynomial ring Rq,d̂ := Zq[X]/(X d̂ + 1) where d̂ is a
power of 2 and q is chosen so that Rq,d̂ splits into l subrings via the Chinese

Remainder Theorem (CRT). We also use Rq,d to denote the ring where opera-
tions external to LANES are performed. In the following, for a vector x ∈ Rn

q,d,−→x ∈ Zdn
q denotes the (concatenated) coefficient vector of x over Zq. In general,

we will write −→x to denote vectors over Zq and x to denote vectors over Rq,d.
Due to the way relations are proved in LANES, one cannot reduce the proof
size by exploiting the partial exactness of the relation so that a relaxed proof of
knowledge can be leveraged for the relaxed relation part. We elaborate more on
this further below once we set out our target problem next.

Recall that the most common relations in lattice-based cryptography are
of the form (1). We call m as “message” and r as “randomness” for ease of
reference. As far as our framework is concerned, the distinction is merely that
m is the secret vector part that goes into LANES, while r is the remaining part.

It is a common requirement to prove not just that (1) holds, but also that
the message and/or the randomness satisfy certain properties (such as having
small coefficients). Now suppose that we want to prove such a common relation
along with some arbitrary linear relation G1

−→m = G2
−→v for (G1,G2,

−→v) defined
over Zq. First note that revealing −→v or G1

−→m in many cases would leak secret
information (for example, when −→v is the binary decomposition of −→m). Hence,
they need to be part of the prover’s witness. Now, the way to prove these relations
in LANES would be to write all of the relations in the following form(

Rot(A) Rot(B) 0
0 G1 −G2

)
︸ ︷︷ ︸

=:L

·

−→r−→m
−→v


︸ ︷︷ ︸

=:−→x

=

(−→
t
−→
0

)
︸ ︷︷ ︸
=:

−→
t

, (4)

where Rot(·) denotes the representative matrix of its input over Zq, and just
prove this linear relation (along with additional multiplicative relations). How-
ever, the drawback of this approach is that the secret witness dimension here is
dim(−→x) = dim(−→r) + dim(−→m) + dim(−→v). In many cases, the dimension of the
randomness −→r is lower-bounded by the security requirements (such as hiding
and pseudorandomness) and thus cannot be very small. Indeed, there are appli-
cations where the dimension of the message −→m is much smaller than that of the
randomness, i.e., dim(−→m) ≪ dim(−→r). Consider, for example, the case when we
want to prove knowledge of a single LWR sample. Here, r being the secret key
would typically have dim(−→r) ≥ 1024 while m being the rounding error would
just have dim(−→m) = 1. Since the size of a LANES proof output scales linearly in
the dimension of the witness (see (12) in Sec. 2.4), it may not be ideal in such
applications to use the LANES framework directly.

To get around the above efficiency challenge, we introduce a hybrid frame-
work that allows to combine a RPoK with LANES. Particularly, our goal is to

6

Algorithm 1 Standard Lattice-based Relaxed Proof of Knowledge (RPoK)

1: procedure RPoK((A,B, t); (r,m)):
2: Sample short rand. masking y
3: Sample message masking u
4: w = Ay +Bu over Rq,d

5: c← H(A,B, t,w) for a hash H
6: z = y + c · r
7: f = u+ c ·m
8: Rejection samp. on z (and f if req.)
9: return proof π = (c, z, f)
10: end procedure

11: procedure Verify((A,B, t), π):
12: Parse π = (c, z, f)
13: If z (and f) is not sufficiently short,

return 0
14: w′ = Az+Bf − ct over Rq,d

15: If c ̸= H(A,B, t,w′), return 0
16: return 1
17: end procedure

prove the relation in (1) using very efficient RPoK (as those used in ordinary sig-
natures) shown in Alg. 1 and exploit LANES to prove the remaining linear (and
multiplicative) relation (i.e., G1

−→m = G2
−→v). This way, we will be combining

the best of two worlds by (i) proving the (often low-dimensional) G1
−→m = G2

−→v
linear relation exactly (via LANES), and (ii) using the efficient relaxed proofs
whenever possible for the high-dimensional relations as in (1). A technical chal-
lenge here is that LANES protocol does not involve a masked opening of its input
message (i.e., m), preventing the utilization of standard EQ or AND protocol
compositions that use the same masked opening in multiple proof parts.

Using a standard rewinding argument, we can show that RPoK in Alg. 1
proves knowledge of (c̄, z̄, f̄) with short (c̄, z̄) (and possibly short f̄) such that

Az̄+Bf̄ = c̄t, (5)

where c̄, z̄, f̄ are the differences of rewinded protocol outputs (c, z, f) and (c′, z′, f ′).
From Alg. 1, we can see that the masked message opening in RPoK is f = u+c·m.
We exploit this to make a connection between the two proof parts (RPoK and

LANES). Particularly, we prove via LANES that
−→
f = −→u + Rot(c) · −→m over Zq,

ensuring that f is indeed of the desired form, along with the low-dimensional
linear relation G1

−→m = G2
−→v and any other polynomial constraints on the co-

ordinates of −→m. From the LANES witness extractor, a similar relation holds for

the rewinded transcript such that
−→
f ′ = −→u + Rot(c′) · −→m with the same (−→u ,−→m)

by the binding of the LANES commitment. This gives that
−→
f −
−→
f ′ = Rot(c̄) · −→m,

and thus f̄ = c̄m over Rq,d. Plugging this in (5) gives the desired hybrid relation
in (3) with r′ = z̄. With this approach, r is never involved in the LANES part
and we can guarantee the use of the same witness −→m in both LANES and RPoK.

Overall, the goal of LANES+ is to prove knowledge of a tuple (c̄,m, r,−→v) ∈
L+(mp, ulp) (i.e., (ck, (mp, ulp), (c̄,m, r,−→v)) ∈ RLANES+) such that

L+(mp, ulp) =

(c̄,m, r,−→v) :
t = Ar+Bm over Rq,d ∧ G1

−→m = G2
−→v mod q

∧P (−→m,−→v) = 0 mod q ∀P ∈ mp∧
∥c̄r∥∞ ≤ γr ∧ ∥c̄∥∞ ≤ γc for γr, γc ≪ q ∈ Z+

 ,

7

where mp is a set of multivariate polynomials in the coordinates of (−→m,−→v)5

over Zq (for example, enforcing the smallness of the witness coefficients via
Pi(
−→m,−→v) = vi(vi − 1) for −→v = (v0, v1, . . .)), ulp = ((A,B, t), (G1,G2)) is the

collection of linear relations and γr, γc are some public norm-bounds. Note that
the above language does not necessarily require r to be short, but c̄r is short.
Furthermore, the relation in (1) and the operations in LANES are not necessar-
ily defined over the same polynomial ring. Particularly, LANES works internally
over Rq,d̂ and proves relations over Zq, while (1) is over Rq,d. In many cases,

the relation proved by LANES is in fact over the integers (without mod q) and
in those cases, we can use different moduli for the two rings Rq,d and Rq,d̂. This
gives a lot of flexibility in choosing parameters and is critical for our rounding
and VRF applications because the rounding/VRF relation requires a composite
modulus while LANES works with a prime modulus.
Comparison with concurrent work. We further note that an approach from
a concurrent and independent work [LNPS21] may also be adapted to solve our
target problem. As we discuss next, our approach has the following advantages
over a potential adaptation of [LNPS21] to our setting: (i) efficient and simple
support for different system moduli, and (ii) better efficiency for applications
with an expanding matrix B. To use the techniques in [LNPS21] in our setting,
one can use the term w := Ay as a witness for LANES6 and prove the relation
Az + c · Bm = w + c · t via LANES. In this case, it is difficult to use different
moduli for the LANES proof and the main relation Ar + Bm = t because the
main relation is being proven by LANES. It may be possible to overcome this by
proving a relation of the form Az+c ·Bm = w+c ·t+v ·q over Z (without mod
q) with LANES. This requires the LANES modulus to be significantly bigger,
for example exceeding ∥v · q∥∞ , which leads to a longer LANES output, larger
communication and a more complicated protocol overall. Furthermore, since the
LANES witness in a possible approach based on [LNPS21] is (m,w), the proof
length will grow linearly with dim(w) = dim(t). Although our framework focuses
on the case where m is small dimensional, we do not necessarily require/assume
dim(t) to be small. For example, when B is an expanding matrix, we would
have dim(t) > dim(m), implying a lower communication cost in our approach.
Such expanding matrices are used in different contexts, for example, where a
‘gadget’ vector/matrixGmultiplies a scalar messagem, and hence, dim(Gm)≫
dim(m) = 1.

Thanks to the flexibility of our LANES+ framework, we can support other
exact proof systems. Particularly, another concurrent and independent work
[LNP22] recently introduced a new exact proof system, that we call the LNP22
proof. Much like LANES, the LNP22 proof is also a commit-and-prove protocol.
Since our LANES+ framework makes black-box use of LANES, we can easily adapt
LANES+ to work with the LNP22 proof, where the commit-and-prove function-

5 The polynomials need to obey certain restrictions depending on the structure of the
underlying ring Rq,d, which is explained formally in Sec. 2.4.

6 Note that in this case, we need to hide w := Ay. Otherwise, everyone could compute
t−w = Bm, which leaks information on the secret m.

8

alities of LANES would be replaced with those of the LNP22 proof. However,
for our focus of small dimensional message vectors, we found that LANES still
produces shorter proofs than the LNP22 proof. Particularly, in consultation with
Nguyen [Ngu22] (an author of [LNP22]), we looked at the LNP22 proof size of the
exact proof component needed for our VRF application and found it to be 11.2
KB. This is larger than our 7.1 KB proof size using LANES (see Sec. 6.5). More
generally, Nguyen [Ngu22] confirmed that the LNP22 proof size lowerbound is at
least 10 KB for any useful application. Therefore, for our focus applications with
small-dimensional messages in this work, LANES is a better exact proof option
than the LNP22 proof. However, for medium-sized message vectors, equipping
LANES+ with the LNP22 proof as discussed above may result in smaller proof
sizes, extending the advantage of LANES+ to a wider application domain.
Rounding proof technique. As explained above, our proof of rounding applies
our LANES+ framework to the rounding relation t = ⌊Cs⌋p written in the form
q
pt = Cs−e, where e ∈ [0, q/p−1]m is the rounding error vector and C is a ma-

trix. Here, we invoke our LANES+ proof with the witness (m, r,−→v) = (e, s,
−→
b),

where e is the (typically short) part of the witness for which the exact proof is
needed, s is the longer part of the witness for which a relaxed proof is sufficient,

and
−→
b is a β-ary digit decomposition of e for some small β chosen to optimise

the proof length. The main LANES+ matrices are set as (A,B) = (C,−I) to
enforce the rounding relation between s and e, while the LANES+ exact linear
relation matrices are set as (G1,G2) = (I,Gβ), where Gβ denotes the β-ary
digit reconstruction gadget matrix (having powers of β along its rows) to en-

force the β-ary reconstruction relation −→e = Gβ
−→
b . We set the LANES+ exact

polynomial constraint P (bi) =
∏

j∈[β](bi − j) = 0 to enforce the range [0, β − 1]

for the β-ary digits of e encoded as the coordinates bi of
−→
b . Consequently, the

proof length of our call to LANES inside LANES+ depends only on the length of
the (short) witness part e and β, and not on the long witness part s.
Generic folklore VRF construction and LaV. A natural way to construct a
VRF is to combine a PRF function with a NIZK proof of correct PRF evaluation.
In more detail, the VRF public key is a PRF output pk = PRFsk(0) under a
VRF/PRF secret key sk. To evaluate the VRF on a message m using secret key
sk, we compute v = PRFsk(m) as the VRF value. Then, a NIZK proof, π, is
generated to prove the well-formedness of values pk and v under the same secret
key sk. Here, the pseudorandomness property of PRF is used to provide the
VRF pseudorandomness. For the uniqueness of the VRF, we require the PRF
to satisfy additional key-homomorphism (as defined in the introduction) and
key-binding properties, where the latter ensures that if PRFsk0(m) = PRFsk1(m),
then sk0 = sk1. The soundness of NIZK Π also contributes to uniqueness by
ensuring that v is the only output that can pass the NIZK verification test.

We remark that this folklore VRF approach was informally sketched, e.g.,
in [Bit20, Sec. 1.2]. As discussed in Sec. 2.3, ECVRF [PWH+17] and LB-
VRF [EKS+21] are examples of this paradigm. Our instantiation LaV in this
work uses PRFsk(m) := ⌊A · sk⌋p = v with A ← G(m) for a random oracle G

9

(where the PRF enjoys an approximate key homomorphism property), based on
the Module LWR (MLWR) assumption.

In the context of LaV, the exact guarantee for the rounding error e in our
LANES+-based roundness proof NIZK is essential to guarantee the uniqueness
of the VRF (as otherwise the adversary could pass the NIZK verification test
with multiple errors e and break VRF uniqueness). LaV optimizes this generic
construction by shrinking the vector v from a full PRF output to a portion of
it (one ring element), and relaxing the NIZK requirement so it does not need to
prove exact well-formedness of pk; a relaxed proof is sufficient. This is crucial to
the efficiency of LaV as it allows us to use our LANES+ framework as the NIZK
Π, without including the long secret key sk in the underlying LANES exact proof.

2 Preliminaries

We use [n] = {0, . . . , n− 1} for n ∈ Z+ and Zq = [−(q − 1)/2, (q − 1)/2] for an
odd modulus q. We utilize polynomial rings of the form Rq,d = Zq[X]/(Xd + 1)
for power-of-2 d and modulus q ≥ 2. For a positive integer c ≤ q/2, Sc,d denotes
the set of polynomials in Rq,d with infinity norm at most c (w.r.t. the monomial
(coefficient) basis). For a vector x ∈ Rn

q,d,
−→x ∈ Zdn

q denotes the (concatenated)

coefficient vector of x. In general, we will write −→x to denote vectors over Zq and x
to denote vectors over Rq,d. We write ⌊−→x ⌋p to denote ⌊pq ·

−→x ⌋ for −→x ∈ Zm
q , where

the rounding is done coordinate-wise. The same notation extends analogously
to vectors over Rq,d by applying the rounding to the coefficient vector. In this
paper, we use the rounding down operation, but our results easily extend to the
rounding up or to the closest integer operations. For an element of and a matrix
over Rq,d, we write Rot(f) and Rot(A), respectively, to denote its representative
matrix over Zq. For vectors

−→x and −→y over Zq,
−→x ◦ −→y denotes coordinate-wise

multiplication. We use ⃝ to denote coordinate-wise multiplication over a set
of elements. HW(f) denotes the Hamming weight of the coefficient vector of
f ∈ Rq,d, and Dσ,d denotes the d-dimensional discrete Gaussian distribution
with standard deviation σ and center 0. Some preliminaries including formal
VRF definitions, MSIS/MLWR definitions, and rejection sampling are deferred
to App. A.

The following fact plays an important role in our rounding proof and VRF.

Fact 1 (adapted from [LLNW17]). Let −→u ∈ Zn
q and −→v ∈ Zn

p for q > p,
where p divides q. Then, −→v = ⌊−→u ⌋p if and only if there exists −→e ∈ Zn such that
−→e ∈ [q/p]n and −→e = −→u − q

p ·
−→v (mod q).

2.1 NIZK and Commit-and-Prove Protocols

We define a commit-and-prove (CP) protocol [Kil90,CLOS02] similar to the de-
scriptions provided in [EG14]. Particularly, let ck, x and w denote a commitment
key, a statement and a witness, respectively. Further, let RL be a polynomial-
time verifiable relation containing tuples (ck, x, w). We define a language Lck as
the set of statements for which there exists a witness w with (ck, x, w) ∈ RL.
In general, a CP protocol allows one to commit to a sequence of messages
m = (m1, . . . ,mN) for N ≥ 1 and prove certain statements about the committed

10

messages. For a commitment output, we will have a pair (t; t′) of public-secret
outputs, where the latter needs to be retained by the prover for further steps.

Formally, a commit-and-prove protocol consists of four polynomial time al-
gorithms Π = (Π.Gen,Π.Com,Π.Prove,Π.Ver) as follows.

pp← Π.Gen(1λ): On input a security parameter λ, generate a commitment key
ck, which also specifies a message space SM , a randomness space SR and a
commitment space SC . Generate further system parameters pp′, if needed,
and output pp = (ck, pp′)

(t; t′)← Π.Compp(m; r): On input public parameters pp containing a commit-
ment key ck, a message m ∈ SM and a randomness r ∈ SR, output a
commitment t ∈ SC along with its secret opening t′.

π ← Π.Provepp(x, (t; t
′)): On input a statement x and commitment output pair

(t; t′), output a proof π.
0/1← Π.Verpp(x, t, π): On input a statement x, a commitment t and a proof π,

output 1 if the proof is accepted. Otherwise, output 0.

If a set of messages are committed in sequence, then we write (
−→
t ;
−→
t′) ←

Π.Compp(
−→m;−→r) to denote (ti, t

′
i)← Π.Compp(mi; ri) where

−→m = (m1, . . . ,mN),
−→r = (r1, . . . , rN),

−→
t = (t1, . . . , tN) and

−→
t′ = (t′1, . . . , t

′
N). We next provide the

properties of a CP protocol, which are similar to those in [EG14,LNS21a].

Definition 1 (Correctness). A commit-and-prove protocol Π =
(Π.Gen,Π.Com,Π.Prove,Π.Ver) has statistical correctness if the following
probability is negligible in λ for all adversaries A

Pr

pp← Π.Gen(1λ); (x,−→m,−→r)← A(pp);
(
−→
t ;
−→
t′)← Π.Compp(

−→m;−→r);
π ← Π.Provepp(x, (

−→
t ;
−→
t′))

: Π.Verpp(x,
−→
t , π) = 0

 ,

where A outputs −→m ∈ SNM and −→r ∈ SNR for some N ≥ 1 with (ck, x,−→m) ∈ RL.

Since our protocols rely on LANES, we define simulatability as in [LNS21a],
where the randomness for the commitment is sampled properly (from χ) as it
would be in the real-world protocol.

Definition 2 (Simulatability). A commit-and-prove protocol Π =
(Π.Gen,Π.Com,Π.Prove,Π.Ver) is simulatable if for all PPT adversaries
A, there exist PPT simulators SimC and SimP such that the following holds

Pr

pp = (ck, pp′)← Π.Gen(1λ); (x,−→m)← A(pp);
−→r ← χN ; (

−→
t ,
−→
t′)← Π.Compp(

−→m;−→r);
π ← Π.Provepp(x, (

−→
t ;
−→
t′))

:
(ck, x,−→m) ∈ RL
∧A(−→t , π) = 1


≈Pr

pp = (ck, pp′)← Π.Gen(1λ); (x,−→m)← A(pp);
−→
t ← SimCpp(x);

π ← SimPpp(x,
−→
t)

:
(ck, x,−→m) ∈ RL
∧A(−→t , π) = 1

 ,

where χ is a probability distribution on SR.

11

Definition 3 (Knowledge Soundness). A commit-and-prove protocol Π =
(Π.Gen,Π.Com,Π.Prove,Π.Ver) satisfies knowledge soundness if for all PPT ad-
versaries A, there exists an expected polynomial time extractor E such that the
following probability is negligible in λ

Pr

pp = (ck, pp′)← Π.Gen(1λ);

(x,
−→
t , π)← A(pp; ρ);

(−→m∗
;−→r ∗

)← E(pp, ρ)
:
Π.Verpp(x,

−→
t , π) = 1∧(

(ck, x,−→m) /∈ RL ∨ Π.Compp(
−→m∗

;−→r ∗
) ̸= −→t

) ,

where E outputs −→m∗ ∈ SNM and −→r ∗ ∈ SNR for some N ≥ 1.

Our soundness definition is similar to the special soundness of Sigma proto-
cols since our application protocols in this work are of the form of a Sigma pro-
tocol, but made non-interactive using the Fiat-Shamir transformation. LANES
protocol has actually 5 moves with an additional ‘randomization’ move, but
still relies on the standard rewinding arguments for soundness. When proving
knowledge soundness of our proposals, we will similarly use standard rewinding
arguments where the extractor rewinds the adversary to a specific point and,
e.g., provides a different random oracle output.

For efficient lattice-based proofs, it is necessary to relax the soundness re-
quirement and have (ck, x,−→m) ∈ R̄L for RL ⊆ R̄L. We adopt the same relaxation
as in many prior works, e.g., [ESLL19,ESS+19, LNS21a]. Therefore, while cor-
rectness and simulatability are defined w.r.t. to a base relation RL, the soundness
only guarantees the extraction of a witness for an extended relation R̄L. An hon-
est prover’s witness is in RL (i.e., an honest run of Π uses a witness from RL).

As discussed in [EG14], a CP protocol is a generalization of a standard non-
interactive zero-knowledge (NIZK) proof, where the same commitment outputs
can be used across multiple NIZKs. Therefore, when considering a NIZK, we use
the same syntax above while omitting Π.Com, the commitment key ck in the
elements of RL and the commitment output t (and t′) in Π.Prove and Π.Ver.

2.2 Desired PRF Properties

A Pseudorandom Function (PRF) is a function that maps an input message m
to a random-looking output v under a secret key sk, i.e., v = PRFsk(m). We
denote the key space by K, and output space by T . We require a PRF to satisfy
the standard pseudorandomness property where no polynomial-time adversary
having adaptive oracle access to the PRF function can distinguish PRF outputs
(under a random key) from independent uniformly random elements in T with
an advantage non-negligible in the security parameter λ. We let κ be the number
of oracle queries allowed in the pseudorandomness game. We sometimes write κ-
pseudorandomness to explicitly denote the number of PRF oracle queries allowed
in the pseudorandomness game. Some prior VRF constructions such as [EKS+21]
only allow a small κ value. As our lattice-based PRF in this work satisfies the
standard pseudorandomness and allows for up to κ = 2λ evaluations (where
λ = 128 for our parameter settings, see Sec. 6), it results in a standard VRF
construction. For the folklore VRF construction based on a PRF, we additionally

12

require the following PRF properties. We note that these properties are defined
w.r.t. an extended key space K′ to accommodate for the relaxed soundness of
efficient lattice-based proofs.

Key-binding. A PRF is statistically key-binding w.r.t. extended key space K′

with K ⊆ K′ if the following probability over the randomness of an adversary
A is negligible

Pr
[
(m, k0, k1)← A : k1 ̸= k0 ∈ K′ ∧ PRFk1

(m) = PRFk0
(m)

]
.

If the adversary A is assumed to be PPT, then the PRF is said to be com-
putationally key-binding.

Additive key-homomorphism. The extended key space K′ is a subset of a
module with operations (+, ·) over some underlying commutative scalar ring
R, the output space T is a subset of a module with operations (⊕,⊗) over
R, and there exists a ‘homomorphism’ space S ⊆ R of scalars such that for
any keys k0, k1 ∈ K′, message m and scalar α ∈ S, we have PRFα·k0+k1(m) =
α⊗ PRFk0

(m)⊕ PRFk1
(m).

2.3 Folklore VRF from PRF and NIZK

We now present the folklore approach to constructing a VRF based on a PRF
and a NIZK proof. Our treatment is a bit more general than the traditional idea
to accommodate for the relaxations in efficient lattice-based NIZKs. We note
that our PRF and NIZK instantiations in this work are in the random oracle
model. We also remark that the PRF in this section can also be viewed as a
commitment scheme by interpreting PRFk(m) = Comck(k), where ck← G(m) for
a random oracle G mapping messages to commitment keys and the key k serves
as the commitment randomness.

Let PRF be a PRF defined as in Sec. 2.2 and Π be a NIZK, proving the
following relation

Rvrf =

{
((m, pk, v), (f, k)) :

f ⊗ pk = PRFk(0) ∧ f ⊗ v = PRFk(m)
∧ f ∈ F ∧ f ′ · k ∈ K′ ∀f ′ ∈ F

}
, (6)

for a message m, a public key pk, a PRF output v, and a set F ⊆ R of “relaxation
factors”. To allow for the use of efficient lattice-based zero-knowledge proofs,
it is necessary to relax the relation guaranteed by the NIZK and, therefore, we
introduce a relaxation factor f . For standard NIZKs outside of the lattice setting,
we simply have f = 1 (and F = {1}), but efficient proofs in the lattice setting
have a soundness gap, where the proved relation has the additional relaxation
factor while an honest prover would simply use f = 1. Hence, we allow the
existence of such a relaxation factor as, e.g., in [ESS+19,ESLL19]. We show in
the uniqueness proof of the VRF how to handle this relaxation (see Thm 1). We
next describe the generic VRF construction.

V.ParamGen(1λ,PRF,Π) : Generate NIZK public parameters pp ← Π.Gen(1λ),
and output pp.

13

V.KeyGen(pp) : Sample a randomness k
$← K and compute pk ← PRFk(0). Re-

turn (pk, sk) for sk = k.
V.Evalpp(pk, sk,m) : Given the message m, together with the key pair pk and

sk = k, proceed as follows:

– Compute v ← PRFk(m).
– Run the NIZK proof system to generate a proof for the relation in (6).

π ← Π.Provepp((m, pk, v), (v; k)).

– Output v as the VRF value and π as the proof.

V.Verifypp(pk,m, v, π) : This algorithm verifies the VRF value v as below.

– Return Π.Verpp(m, pk, v, π).

Existing examples. There are already example instantiations of the general
VRF framework above. Particularly, ECVRF [PWH+17] is an example where
the PRF is instantiated as PRFk(m) = gk with g ← G(m) for a random oracle
G (using multiplicative group notation) and the NIZK proof is a standard proof
of equality of discrete log secrets as logg0(pk) = logg1(v). The PRF in this case
satisfies statistical key-binding with (practically) unlimited pseudorandomness
(i.e., κ = 2λ for a security parameter λ), and hence we get an unconditionally
unique VRF with (practically) unlimited executions per key pair.

Another example is the few-time lattice-based VRF proposal in [EKS+21],
where the PRF is instantiated as PRFk(m) = Ar with A← G(m) for a random
oracle G and the secret PRF key k = r is a short random vector. The NIZK
proof in this case is a relaxed proof of knowledge that proves f · pk = Ar′ and
f ·v = Br′ for some relaxation factor f and short vector r′. The PRF in this case
satisfies computational binding (based on MSIS) with κ-time pseudorandomness
for a very small κ ≤ 5, and hence we get a computationally unique κ-time VRF.

Security analysis. The provability of the folklore VRF in Sec. 2.3 follows from
the correctness of the NIZK. The VRF pseudorandomness, on the other hand,
follows from simulatability of Π and pseudorandomness of PRF. We prove be-
low that the above VRF framework satisfies uniqueness and pseudorandomness
(defined in App. A.1).

Theorem 1. If the NIZK proof Π is statistically (resp. computationally) sound,
the PRF PRF is statistically (resp. computationally) key-binding with respect
to extended key space K′ and additively key-homomorphic, the set of relaxation
factors F is a subset of the homomorphism space (i.e., F ⊆ S), and any element
of F is invertible in R, then the generic VRF constructed over (PRF,Π) in Sec.
2.3 satisfies unconditional (resp. computational) uniqueness.

Proof. Suppose that an adversary A produces (m, pk, v1, π1, v2, π2) such that
V.Verifypp(pk,m, v1, π1) = V.Verifypp(pk,m, v2, π2) = 1. We want to show that
v1 = v2.

14

Now, we use the extractor E of Π to extract (f∗
1 , k

∗
1) and (f∗

2 , k
∗
2) such that

((m, pk, v1), (f
∗
1 , k

∗
1)) ∈ Rvrf and ((m, pk, v2), (f

∗
2 , k

∗
2)) ∈ Rvrf . If Π is computa-

tionally sound, then the extraction works against a PPT A (except for a negli-
gible probability). Then, we get the following expressions

f∗
1 ⊗ pk = PRFk∗

1
(0) =⇒ f∗

2 ⊗ f∗
1 ⊗ pk = PRFf∗

2 ·k∗
1
(0), (7)

f∗
1 ⊗ v1 = PRFk∗

1
(m), (8)

f∗
2 ⊗ pk = PRFk∗

2
(0) =⇒ f∗

1 ⊗ f∗
2 ⊗ pk = PRFf∗

1 ·k∗
2
(0), (9)

f∗
2 ⊗ v2 = PRFk∗

2
(m). (10)

By the statistical (resp. computational) key-binding property of PRF, R being
commutative, and (7) and (9), we must have f∗

2 · k∗1 = f∗
1 · k∗2 over R against the

(resp. PPT) adversary A except for a negligible probability.
Then, by (8) and (10), and the key-homomorphism of PRF, we get

f∗
2 ⊗ f∗

1 ⊗ v1 = PRFf∗
2 ·k∗

1
(m) = PRFf∗

1 ·k∗
2
(m) = f∗

1 ⊗ f∗
2 ⊗ v2,

where the middle equality follows from the fact that f∗
2 · k∗1 = f∗

1 · k∗2 over R.
Hence, we get f∗

2 ⊗ f∗
1 ⊗ v1 = f∗

1 ⊗ f∗
2 ⊗ v2, and thus v1 = v2 by the relaxation

factor invertibility property. ⊓⊔

Remark 1. Note in the above uniqueness proof that, the key-binding property of
the PRF is only applied on pk, and not on (v1, v2). Hence, it is in fact sufficient
if v is generated via a weaker PRF evaluation without a key-binding property,
which is one of the optimizations we employ in LaV in Sec. 6.3.

Theorem 2. If the PRF PRF has κ-pseudorandomness for κ ≥ 1, and Π is
simulatable, then the generic VRF constructed over (PRF,Π) in Sec. 2.3 is κ-
pseudorandom.

Proof (Theorem 2). Let pp← V.ParamGen(1λ) and (sk, pk)← V.KeyGen(pp).
Simulation of OVEval queries. For a V.Eval output (v, π), the simulator Sim
uses the simulator of Π to generate π. For the simulation of v, Sim samples

v
$← {0, 1}m(λ).
Since A is restricted making at most κ − 1 queries to OVEval, and Π is

simulatable, the output of Sim is (computationally) indistinguishable from a
real output of V.Eval.

Using a standard hybrid argument where OVEval queries are simulated as

above and v0 at Step 4 of Exp-PRand is replaced by v0
$← {0, 1}m(λ), we conclude

that PPT A has a negligible probability over 1
2 of outputting b′ = b by the fact

that total number of calls to V.Eval or its oracle did not exceed κ. ⊓⊔

2.4 LANES Framework

In this section, we recall the LANES framework [ALS20,ENS20,LNS20] without
going into its technical details as we will use it as a black-box. Our description
is similar to that in [LNS20]. The framework allows one to prove (unstructured)

15

linear and multiplicative relations over Zq about a committed message without
leaking the secret message information. The zero-knowledge proof is performed
over a polynomial ring Rq,d = Zq[X]/(Xd +1) for a power-of-2 d while allowing
Rq,d to split into l sub-rings for a parameter 2 ≤ l ≤ d by choosing a prime
modulus q with q ≡ 2l+ 1 (mod 4l). We stress here that even though the proof
is performed over Rq,d, the proved relations hold over Zq.

7 Suppose that the
prover P has a vector −→m = (−→m1, . . . ,

−→mN) with −→mi ∈ Zl
q for N ≥ 1 and wants

to prove the satisfiability of a public set, mp, of polynomials in N variables (for
multiplicative proof) Pi : (Zl

q)
N → Zγil

q with maximal degree α and γi ≥ 1,
where addition and multiplication are done component-wise. Further, we let
ulp = (A,−→u) ∈ Zvl×Nl

q × Zvl
q denote the public statement of the linear relation

the prover wants to prove (i.e., A−→m = −→u). One simply pads zero rows, if needed,
to make sure that the number of rows of A is a multiple of l. We also define k
as the smallest positive integer such that q−kd/l is negligible.

Overall, the LANES framework proves knowledge of −→m ∈ L(mp, ulp) for

L(mp, ulp) =
{−→m ∈ ZNl

q : ∀P ∈ mp, P (−→m) =
−→
0 mod q ∧ A−→m = −→u mod q

}
.

That is, the target relation RLANES for a commitment key ck is the following

(ck, (mp, ulp),−→m) ∈ RLANES ⇐⇒ −→m ∈ L(mp, ulp). (11)

Let us present LANES as a CP protocol as described in Section 2.1, where the
commitment scheme is instantiated using the BDLOP commitment [BDL+18].

pp← LANES.Gen(1λ) : generate a commitment key ck for the BDLOP commit-
ment, specifying the message, randomness and commitment spaces. Generate
further systems parameters pp′, if needed. Output pp = (ck, pp′).

(t; t′)← LANES.Compp(
−→m) : sample a randomness r ∈ Sn+ℓ+N+α

1 for the BD-
LOP commitment and commit to the message m̂ = (m̂1, . . . , m̂N) ∈ RN

q,d

where m̂i is the polynomial in Rq,d whose CRT coefficient vector is −→mi for
i = 1, . . . , N . Output the commitment t and the secret state information t′.

π ← LANES.Provepp((mp, ulp), (t; t′)) : run a NIZK proof (see, e.g., [LNS20, Fig.
8]) to prove relation (11) for −→m. Output a proof π.

0/1← LANES.Verpp((mp, ulp), t, π) : Check that π is a valid proof of knowledge
for the relation (11).

The LANES output (t, π) requires (without compression) a total communi-
cation of (n + N + α + 1)d log q + k · (n + ℓ + N + α)d log(12s) bits, where
s denotes the standard deviation of the discrete Gaussian distribution that the
masked randomness follows. Note that the communication size only depends on
the maximal polynomial degree α, not the individual degrees of Pi’s. With the

7 We note here that for l < d, the proved relations actually hold over Fqd/l . However,

with a shortness proof of the form Pi(x) =
∏

j∈[β](x− j) for some β < q ∈ Z+, the

proved relation is restricted to Zq ⊆ Fqd/l . This is explained further in [ENS20, App.
A]. We have such a shortness proof for all of our applications in this work, and
therefore, our description is focused on Zq.

16

compression techniques in [BG14,DLL+18] and considering the entropy of the
discrete Gaussian (instead of a worst-case tail bound), the output size can be
reduced to about (neglecting the size of very small “hints”)

nd(log q −D) + (N + α+ 1)d log q + k · (ℓ+N + α)d log(4.13 · s) bits, (12)

where D denotes the number of least significant bits dropped from commitment
(a.k.a. commitment compression). A typical choice of D is around 13. The con-
stant 4.13 is the result of our empirical tests that showed the entropy of a discrete
Gaussian variable with standard deviation s is very close to log(4.13 · s) for a
wide range of parameters. A reasonable choice of the standard deviation would be
s ≈ w

√
k(ℓ+N + α)d when using the optimized rejection sampling in [LNS21a],

where w is an upper-bound on the ℓ1-norm of the challenge c used in the proto-
col (see, e.g., the fourth move of [ENS20, Fig. 3]). Alternatively, we can use the
very recent results of [KLSS23] to set s ≈ 2

√
2ws0 for s0 =

√
ln(2d(1 + 1/ε))/π

with, e.g., ε = 2−100. The advantages in the latter case are (i) s is independent
of the (dimension) parameters (k, ℓ,N, α, d), (ii) no rejection sampling (inside
LANES) is needed, and (iii) the security argument relies on the standard MLWE
assumption (instead of the “Extended-MLWE” assumption in [LNS21a]).

It is important to note that the commitment phase LANES.Com does not rely
on the multiplicative-linear relations (mp, ulp), which we will exploit in Section 4.
The soundness and zero-knowledge/simulatability properties of this framework
were established in [ALS20,ENS20,LNS20] and we refer the reader to them for
more details.

A classical use-case of LANES is to prove knowledge of a message −→m with
small coordinates, say in [0, T −1] with T < q, that also satisfies a linear relation
A−→m = −→u .8 Using base-β integer decomposition (a.k.a. ‘gadget’) matrices, the
latter relation can easily be transformed into an equivalent relation A′−→m′

= −→u ,
where T = βr and −→m′

is r times bigger than −→m (i.e., dim(−→m′
) = r · dim(−→m)).

In this case, it is sufficient to prove that mi(mi − 1) · · · (mi − (β − 1)) = 0 for
each coordinate mi of −→m′

. This is a multiplicative relation of degree α = β
that will contribute to mp. Looking now at the proof length in (12), for such
protocols, the LANES framework performs the best by choosing α that minimizes
dim(−→m′

) + α = N · r + α = N · logα(T) + α.

In the rest of the paper, we will use hatted notations like d̂, q̂ to distinguish the
parameters of LANES from the rest of the protocol (if they are indeed different).

8 We note here that one does not necessarily need to consider positive ranges [0, T−1].
It is straightforward to “shift” the range to support a more general range [a, b]
with a ≤ b ∈ Z. For example, proving knowledge of −→m ∈ [a, b]N with A−→m = −→u
is equivalent to proving knowledge of −→m′ ∈ [0, b − a]N such that A−→m′

= −→u ′
for

−→u ′
:= −→u − A−→a N

and −→a N
:= (a, . . . , a) ∈ ZN . Hence, the important part is the

width, T , of the range.

17

3 Generalized Challenge Difference Invertibility Results

In this section, we generalize recent results [ESZ22, ALS20] on invertibility of
challenge differences in polynomial rings based on Fourier analysis. Our general-
ization extends the Partition-and-Sample (PaS) challenge distribution of [ESZ22]
and the results of [ALS20] to allow challenge polynomials of infinity norm γ for
any γ ≥ 1, extending the case γ = 1 in [ESZ22,ALS20]. We require the γ > 1
case for our efficient VRF construction in Sec. 6.

Let l ≤ d be powers of 2 and q ≡ 2l+1 (mod 4l) and δ := d/l. Fix a primitive
2l’th root of unity ζ in Zq. Then, the polynomial Xd+1 factors into l irreducible
polynomials gi(X) := Xδ + ζi modulo q, where for i ∈ [l], ζi := ζ2i+1 are the
primitive (2l)-th roots of unity in Zq.

For a(X) ∈ Rq,d and i ∈ [l], we denote by a{i}(X) := a(X) mod gi(X) the

i’th CRT slot of a(X). Let S(δ)γ,d be the set of polynomials in Sγ,d of the form

f(X) = f0 + fδX
δ + · · ·+ f(l−1)δX

(l−1)δ. Our bounds apply to the challenge set
C, defined as

C =
{
c̃0 + c̃1X + · · ·+ c̃δ−1X

δ−1 : c̃i ∈ S(δ)γ,d ∧ HW(c̃i) ≤ w̃
}
. (13)

Note that challenges c(X) =
∑δ−1

k=0 c̃i(X)Xk in C have total Hamming weight
w ≤ δw̃ with non-zero coefficients in [−γ,+γ], and the coefficient index set
Sk := {j ∈ [d] : j = k mod δ} appearing in c̃k(X) has weight ≤ w̃ for each
k ∈ [δ]. We consider the challenge probability distribution C on C defined as
follows: for each k ∈ [δ], we choose a uniformly random subset Tk ⊂ Sk of size
|Tk| = w̃ and independently sample each challenge coefficient in Tk to be zero
with probability pz and uniformly random on [−γ,+γ]\0 with probability 1−pz.

Lemma 1 (Generalization of [ESZ22, Le.1] and [ALS20, Le.3.3]). Let
P2 denote the probability distribution of the coefficient c̃i,k of Xk in the i’th CRT
slot c{i} = c(X) mod gi(X) of a challenge c(X) sampled from the distribution C

on C defined above. Then, for η := lw̃(l−w̃)!
l! and all i ∈ [l] and k ∈ [δ], we have:

max
y

P2(y) ≤ min(M2, N2), (14)

M2 :=
η

q

1 + 2l
∑

j∈Z∗
q/<ζi>

|µ̂(j)|w̃
 , (15)

N2 :=
1

q

1 + 2l
∑

j∈Z∗
q/<ζi>

|P̂2(j)|

 , (16)

and for j ∈ Z∗
q/ < ζi >, we define

µ̂(j) :=
1

l

∑
k∈[l]

µ̂k(j), (17)

18

P̂2(j) :=
1(
l
w̃

) ∑
S⊂[l],|S|=w̃

∏
k∈S

µ̂k(j), (18)

µ̂k(j) := pz +
1− pz

γ

∑
b∈[1,γ]

cos(2πjbζki /q). (19)

Proof (Lemma 1). The proof of the bound M2 follows the same arguments as
in the proof of [ESZ22, Le.1] in the case γ = 1, while the proof of the bound N2

is a generalization of [ALS20, Le.3.3] to the case γ > 1 and w̃ ≤ l so we only
summarise the differences here.

Observe that P2 is the distribution of the random variable Y2 :=
∑

j∈[w̃] hjζ
kj

i

over Zq, with (h = (h1, ..., hw),k = (k1, ..., kw)) sampled from a distribution D2

as follows: hj ’s are identically and independently distributed (iid) with probabil-
ity pz to be zero and probability (1−pz)/(2γ) to take each value in [−γ,+γ]\0,
and k is sampled uniformly at random from the set of all w-tuples from [r] with
distinct coordinates (i.e. kj ̸= kj′ for j ̸= j′).

We first derive the bound M2. Similarly to [ESZ22, Le.1], our first step (be-
low) is to compute a bound M1 on a slightly different distribution P1 of random

variable Y1 :=
∑

j∈[w] hjζ
kj

i defined similarly to Y2 except that in the distri-

bution D1 of (k,h), the kj ’s are sampled iid from the uniform distribution on
[l] (i.e. without the distinct coordinate requirement). The second step follows
the same Rényi divergence of order ∞ argument as in [ESZ22, Le.1] to give
M2 ≤ η ·M1.

To complete our first step and prove the Lemma, it therefore suffices to
bound M1. For this, we generalise the Fourier analysis approach of [ESZ22, Le.1].
Writing P1 : Zq → [0, 1] in terms of its Fourier transform P̂1 over Zq (with respect
to the orthogonal Fourier basis {χj(x) = exp(−2πıjx/q)}j∈Zq , where ı :=

√
−1)

to get:

P1(y) =
1

q
+

1

q

∑
j∈Z∗

q

P̂1(j) · exp(−2πıjy/q). (20)

As the coordinates of h and k are iid, P̂1 is the w̃-fold self-convolution of the

distribution µ of each term hjζ
kj

i in Y1. We have µ(0) = pz. We now study

the distribution of hjζ
kj

i conditioned on hj being non-zero, which happens with
probability (1−pz). In this case, we can write hj = mj ·sj where mj is uniformly
random on [1, γ] and sj is uniformly random on {−1, 1}. Since ζli = −1, v :=
sζki runs through all elements of the group < ζi > of 2l’th roots of unity in

Z∗
q as (s, k) run through {−1,+1} × [l]. Therefore the random variable sjζ

kj

i

is uniformly random on < ζi > and therefore, for each fixed m ∈ [1, γ], the

random variable msjζ
kj

i is uniformly random on the coset m· < ζi > of < ζi >
containing m. Since mj is uniformly random on [1, γ], it follows that µ(0) = pz
and µ(b) = (1 − pz)nb/(2lγ) for b ∈

⋃
b′∈[1,γ] b

′ < ζi >, where we denote by nb

the number of b′ ∈ [1, γ] in the same coset as b (i.e. satisfying b′b−1 ∈< ζi >). So
from the convolution property of the Fourier transform, we have P̂1(j) = µ̂(j)w̃.

19

Computing the Fourier transform µ̂ of µ, we get for each j ∈ Z∗
q that

µ̂(j) := pz +
1− pz
2lγ

∑
v∈

⋃
b′∈[1,γ] b

′<ζi>

nv exp(2πıjv/q)

= pz +
1− pz
2lγ

∑
b∈[1,γ]

∑
k∈[2l]

exp(2πıjbζki /q)

= pz +
1− pz
lγ

∑
b∈[1,γ]

∑
k∈[l]

cos(2πjbζki /q),

where we have used ζli = −1, cos(.) is even, and sin(.) odd.
The rest of the proof is identical to [ESZ22, Le.1]:

P1(y) =
1

q

1 +
∑
j∈Z∗

q

µ̂(j)w̃ exp(−2πıjy/q)


≤ 1

q

1 +
∑
j∈Z∗

q

|µ̂(j)|w̃
 =

1

q

1 + 2l
∑

j∈Z∗
q/<ζi>

|µ̂(j)|w̃
 ,

where the inequality uses the triangle inequality (taking magnitude) and the
equality uses the fact that µ̂(j) = µ̂(j′) for j, j′ in the same coset of < ζi > in
Z∗
q and that the size of each coset is 2l. The last bound is M1, as claimed.

For the bound N2, we directly bound the distribution P2 of Y2 =
∑

k∈S hkζ
k
i

similarly to [ALS20, Le.3.3]. For a subset S ⊆ [l] of size |S| = w̃, let P2(·|S)
denote the conditional distribution of Y2 over the choice of the hj ’s, conditioned
on {k1, . . . , kw̃} = S. Since {k1, . . . , kw̃} is a uniformly random subset of [l] of
size w̃, we have P2(x) = 1

(l
w̃)

∑
S⊂[l],|S|=w̃ P2(x|S). Let P̂2(·|S) and P̂2 denote

the Fourier transform of P2(·|S) and P2, respectively. By linearity of the Fourier
transform, we therefore have: P̂2(j) = 1

(l
w̃)

∑
S⊂[l],|S|=w̃ P̂2(j|S). Now, for each

fixed S, the w̃ terms in the sum Y2 =
∑

k∈S hkζ
k
i are independent, so the distri-

bution P2(·|S) is a w̃-fold convolution of the distributions µk of hkζ
k
i for k ∈ S,

and by the convolution property of Fourier transform, P̂2(j|S) =
∏

k∈S µ̂k(j).
Since hk is zero with probability pz and conditioned on hk being non-zero, µk is
uniformly random over ([−γ, γ] \ 0) · ζki , we find that µ̂k(j) and P̂2(j) are given
by Eqs. (19) and (18), respectively.

The rest of the proof is similar to the one for M1:

P2(y) =
1

q

1 +
∑
j∈Z∗

q

P̂2(j) exp(−2πıjy/q)


≤ 1

q

1 +
∑
j∈Z∗

q

|P̂2(j)|

 =
1

q

1 + 2l
∑

j∈Z∗
q/<ζi>

|P̂2(j)|

 ,

20

q d l w̃ γ log2 pinv |C|
61 32 2 2 16 −91.5 2160

13 64 2 2 2 −99 2128

Table 2. Sample challenge space parameters and challenge difference invertibility
bounds over Rq,d. Here, q and γ are minimised subject to challenge invertibility prob-
ability bound pinv ≤ 2−90 computed using Corollary 1.

where the inequality uses the triangle inequality (taking magnitude) and the
equality uses the fact that the size of each coset is 2l and P̂2(j) = P̂2(j

′) for j, j′

in the same coset of < ζi > in Z∗
q . The last fact holds because, writing j′ = jζci

for some c, we have j′ζki = jζk+c
i . So, for any S,

∏
k∈S µ̂k(j) =

∏
k∈S′ µ̂k(j

′) with
S′ := S − c mod l (i.e. the set S′ is obtained by subtracting c mod l from each
element in S). As the mapping S 7→ S′ = S − c is one-to-one on the collections
of subsets of [l] of size w̃, the sum over S in P̂2 remains unchanged for j, j′ in
the same coset of < ζi > in Z∗

q . The last bound above is N2, as claimed. ⊓⊔

Using the independence of the δ coefficients of each CRT slot, and the fact
that a challenge difference c(X) − c′(X) is non-invertible in Rq,d if and only if
one of its CRT slots is 0, we immediately get the following corollary.

Corollary 1 (Generalization of [ESZ22, Cor.1]). Let c(X), c′(X) denote a
pair of challenges independently sampled from distribution C. The probability that
c(X)−c′(X) is not invertible in Rq,d is upper bounded by pinv := lmin(M2, N2)

δ,
where M2, N2 are the bounds from Lemma 1.

We remark that as in [ESZ22], we can split the computation of the invertibil-
ity bound of Cor. 1 into two phases. In the longer pre-computation step that does
not depend on w, we compute a table of µ̂ and in the faster post-computation
step, we compute the bound M2 using this table. The computation time cost
O(q/l) of our post-computation step is similar to that in [ESZ22]. However, our
table pre-computation step computation time cost is O(γq/l), which is O(γ)
times larger than the table computation time in [ESZ22] in the case γ = 1.
Table 2 shows the resulting computed bounds for two sets of challenge space
parameter choices. Our actual optimised VRF parameter set in Sec. 6.5 uses the
parameters in the first row of the table (d = 32).

4 LANES+ : A Framework for Hybrid Exact/Relaxed
Lattice-Based Proofs

We recall from Sec. 1.2, that the goal of LANES+ is to prove knowledge of a tuple
(c̄,m, r,−→v) ∈ L+(mp, ulp) (i.e., (ck, (mp, ulp), (c̄,m, r,−→v)) ∈ RLANES+) such that

L+(mp, ulp) =

(c̄,m, r,−→v) :
t = Ar+Bm over Rq,d ∧ G1

−→m = G2
−→v mod q

∧P (−→m,−→v) = 0 mod q ∀P ∈ mp∧
∥c̄r∥∞ ≤ γr ∧ ∥c̄∥∞ ≤ γc for γr, γc ≪ q ∈ Z+

 .

(21)

21

where ulp = ((A,B, t), (G1,G2)) and mp is a set of polynomials over Zq as in
Sec. 2.4. By setting d = 1, the whole relation becomes over Zq. Hence, there is
no loss of generality and we stick to the naming ‘unstructured’ linear relation
for (A,B, t). Often the relation is over a polynomial ring for better efficiency.

As discussed in Section 1.2, the approach of LANES+ to proving the hybrid
exact/relaxed relation (21) is to use an efficient RPoK to prove the (typically)
high-dimensional relation t = Ar+Bm, and use the costly exact LANES frame-
work only to prove the (typically) low-dimensional relationsG1

−→m = G2
−→v mod q

and P (−→m,−→v) = 0 mod q, along with the well-formedness of the RPoK masked
message relation f = u+ cm that links the RPoK and LANES proofs.

We provide the full LANES+ protocol as a commit-and-prove protocol in
Alg. 2, where ulp = ((A,B, t), (G1,G2)) as before. We write the steps relating
to LANES in purple colour to make it easy to distinguish them from RPoK steps.
The flag flagrs is used to specify if a rejection sampling on m is done.

4.1 Security Analysis

The analysis of our LANES+ framework is fairly intuitive. Correctness follows
straightforwardly from the completeness of a standard RPoK and the correctness
of LANES. The simulatability (or zero-knowledge) property follows from the
simulatability properties of a standard RPoK and LANES. The more difficult
part is the soundness, which we look at more closely next.

Theorem 3. LANES+ protocol in Alg. 2 is

1. correct if LANES is correct,
2. simulatable if LANES is simulatable, and
3. knowledge sound if LANES is knowledge sound and any non-zero difference

of challenges in C is invertible in Rq,d.

Proof. The correctness of LANES+ follows straightforwardly. The simulation of
LANES+ output (tL, (πL, π̂)) also follows via standard arguments as discussed
next. By assumption, LANES is simulatable and thus (tL, πL) can be simulated
using the simulator of LANES, given the public input (f , c) to the LANES prove
algorithm. Here, f and c must be simulated first using the simulator for the
remaining proof part π̂ = (c, z, f), which follows from the rejection sampling. In
particular, if the ‘uniform’ rejection sampling in [Lyu09] is used for z (and f),
then simulation of z (and f) is done by sampling each coefficient from a known
uniform distribution. If the ‘Gaussian’ rejection sampling in [Lyu12] is used for
z (and f), which is what is described in Alg. 2, then simulation of z (and f) is
done by sampling each coefficient from a known discrete Gaussian distribution

(i.e., z
$← Ddim(r)

ϕη,d and u
$← DV

ϕmηm,d). If no rejection sampling is used, then
each coordinate in f are simply sampled as a uniformly random element of Rq,d.

The simulator picks c
$← C and then programs the random oracle H such that

H(pp,mp, ulp, tL,Az+Bf − ct; ρ) = c. This concludes the simulatability proof.
We now investigate soundness, which is the more critical property. Using

a standard rewinding argument (e.g., [BN06]), we get two accepting protocol

22

Algorithm 2 LANES+ : Framework for Hybrid Exact/Relaxed Proofs

1: procedure LANES+.Gen(1λ)
2: Pick H : {0, 1}∗ → C ⊆ Rq,d

3: ppL ← LANES.Gen(1λ)
4: return pp = (ppL,H)
5: end procedure

6: procedure LANES+.Compp(m, r,−→v) ▷ (m,−→v) ∈ RV
q,d × ZMl

q and G1
−→m = G2

−→v
7: Set public params η, ηm, ϕ, ϕm s.t. η ≥ ∥cr∥ and ηm ≥ ∥cm∥ for any c ∈ C
8: Sample msg masking u

$← DV
ϕmηm,d if flagrs = true; otherwise u

$←RV
q,d

9: −→s = (−→u ,−→m,−→v) ∈ Z2V d+Ml
q

10: (tL; t
′
L)← LANES.ComppL(

−→s)
11: return (t; t′) = (tL; (t

′
L,m, r,−→v ,u)) ▷ t is public and t′ is secret

12: end procedure

13: procedure LANES+.Provepp((mp, ulp), (t; t′); ρ) ▷ ρ is optional; only used as H input

14: Parse (t; t′) = (tL; (t
′
L,m, r,−→v ,u))

15: Sample short randomness masking y
$← Ddim(r)

ϕη,d

16: Compute w = Ay +Bu
17: c← H(pp,mp, ulp, t,w; ρ)
18: z = y + c · r
19: f = u+ c ·m ∈ RV

q,d

20: Restart if Rej(z, cr, ϕ, η)
21: Restart if flagrs = true and Rej(f , cm, ϕm, ηm)

22: ulp′ =

(
L,

(−→
f
−→
0

))
where L :=

(
IV d IV ⊗ Rot(c) 0
0 G1 −G2

)
23: πL ← LANES.ProveppL((mp, ulp′), (tL; t

′
L))

24: return the proof π = (πL, π̂) with π̂ = (c, z, f)
25: end procedure

26: procedure LANES+.Verpp((mp, ulp), t, π; ρ) ▷ ρ is an optional argument
27: Parse π = (πL, (c, z, f))
28: If ∥z∥∞ > 6ϕη or (flagrs = true and ∥f∥∞ > 6ϕmηm), return 0
29: Compute w′ = Az+Bf − ct
30: If c ̸= H(pp,mp, ulp, t,w′; ρ), return 0
31: Set ulp′ as in LANES+.Prove
32: return LANES.VerppL((mp, ulp′), tL, πL)
33: end procedure

outputs π = (πL, (c, z, f)) and π′ = (π′
L, (c

′, z′, f ′)) for c ̸= c′ w.r.t. the same
hash input (pp,mp, ulp, t,w; ρ). From the verification Step 29, we have

c̄t = Az̄+Bf̄ over Rq,d, (22)

where c̄ := c − c′, z̄ := z − z′ and f̄ := f − f ′. Note that ∥z̄∥∞ ≤ 12ϕη and
∥f̄∥∞ ≤ 12ϕmηm (if flagrs = true) by Step 28.

23

Now, we will use the extractor E0 of LANES, which itself also relies on a
standard rewinding, as in [ENS20, Theorem 4.1] to extract a witness −→s ∗

. First,
it is important to observe that the commitment phase LANES.Com is performed
before the challenge computation at Step 17. The special soundness of LANES
requires this commitment to be binding and thus a PPT adversary cannot find
two distinct openings. As a result, when running E0 on both sets of transcripts
w.r.t. c and c′, the commitment opening returned by E0 will be the same for
both cases, except with negligible probability.

With the above in mind, we use E0 to extract a witness−→s
∗
:= (−→u ∗

,−→m∗
,−→v ∗

) ∈

Z2V d+Ml
q for ulp =

(
L,

(−→
f
−→
0

))
where L :=

(
IV d IV ⊗ Rot(c) 0
0 G1 −G2

)
such that

P (−→s ∗
) = 0 mod q for all P ∈ mp, and (23)

L ·

−→u ∗

−→m∗

−→v ∗

 =

(−→
f
−→
0

)
mod q, (24)

which is equivalent to

f = u∗ + c ·m∗ over Rq,d, and (25)

G1
−→m∗

= G2
−→v ∗

over Zq, (26)

where u∗ and m∗ are the vectors of polynomials in Rq,d corresponding to −→u ∗

and −→m∗
, respectively (i.e., −→u ∗

= −→u ∗
and −→m∗

= −→m∗
).

From the above discussion for the same witness −→s ∗
= (−→u ∗

,−→m∗
,−→v ∗

), we
similarly use E0 to obtain

f ′ = u∗ + c′ ·m∗ over Rq,d. (27)

Plugging (25) and (27) into (22), we get

c̄t = Az̄+ c̄Bm∗ over Rq,d, (28)

for −→s ∗
= (−→u ∗

,−→m∗
,−→v ∗

) and −→m∗
= −→m∗

. By assumption, c̄ is invertible in Rq,d,
and hence the extractor can compute r∗ := z̄/c̄ mod q such that (21) holds w.r.t.
(c̄,m∗, r∗,−→v). This concludes the proof. ⊓⊔

Remark 2. Note that the extracted randomness r∗ in the proof of Theorem 3
is not proven to be short, but this is not needed for our applications. In our
rounding proof and VRF applications, the shortness proof will be done using
LANES for the message part, which will correspond to an error term. Moreover,
we do also prove a relaxed relation as in (28), where the randomness z̄ is short.

Remark 3 (Using different system moduli). Suppose that we want to use different
moduli, e.g., q̂ in LANES and q in RPoK. To achieve this, we need to focus on
the components that are used both in LANES and RPoK. In particular, we need
to assume the following

24

1. ∥−→s ∥∞ < q̂/2,
2. q is large enough that f = u+ cm holds without mod q, (i.e. ∥f∥∞ < q/2),
3. ∥f∥∞ , ∥cm∗∥∞ < q̂/4,
4. q̂ is large enough that G1

−→m = G2
−→v holds without mod q̂.

With the above assumptions, the witness −→s = (−→u ,−→m,−→v) of LANES is a vector
over Z with coordinates in [−(q̂ − 1)/2, (q̂ − 1)/2], and hence can be seen as Zq̂

elements without any change. Also, no coefficient of the expression f = u+ cm
exceeds q or q̂, and it can be proven without any change in the two proof parts.

Particularly, LANES will prove that
−→
f = −→u ∗

+ IV ⊗Rot(c) ·−→m∗
mod q̂ and

−→
f ′ =

−→u ∗
+IV ⊗Rot(c′)·−→m

∗
mod q̂. Hence,

−→
f −
−→
f ′ = IV ⊗(Rot(c)−Rot(c′))·−→m

∗
mod q̂.

By the above infinity-norm assumptions, we get
−→
f −
−→
f ′ = IV ⊗(Rot(c)−Rot(c′))·−→m∗

over Z, which implies that f̄ = c̄m∗ over Rd := Z[X]/(Xd + 1) (without
mod q or q̂), as needed. Finally, the linear relation proven by LANES now holds
over the ring Rd and hence it also holds over the ring Rq,d (with mod q).

The above assumptions in Remark 3 naturally hold for our application to
VRFs because the message m will be an error term with coefficients much less
than q and q̂. Hence, we can also easily construct f via rejection sampling to make
sure that it has relatively small coefficients. The linear relation (G1,G2) will rep-
resent an integer decomposition of the error coefficients and hence G1

−→m = G2
−→v

will readily hold over Z. As a result, we will have more flexibility in choosing
concrete parameters in our application without imposing aggressive conditions.

The total average number of repetitions for LANES+ will be about µ(ϕ) ·
µ(ϕm) ·ML (and µ(ϕ) ·ML if no rejection sampling is done for m), where ML

denotes the average number of repetitions in LANES and µ(ϕ) = e12/ϕ+1/(2ϕ2)

as defined in Alg. 5. Recall that ML = 1 if the results of [KLSS23] are used.

5 Proof of Rounding

In this section, we describe our protocol that allows proving knowledge of a
vector satisfying a rounding relation of the form

Rrnd =
{
((B,v); s) : s ∈ Rm

q,d ∧ v = ⌊Bs⌋p mod p
}
. (29)

In the rest of the paper, q is assumed to be a multiple of p so that we can use
Fact 1. Typical applications would require that (B,v) does not leak information
about s since otherwise it may not make sense to prove the rounding relation in
zero-knowledge. However, we do not necessarily assume B to be binding.

The proof relies on the observation in Fact 1. Particularly, given public (B,v),
the prover proves knowledge of (s, e) satisfying the following relation

R′
rnd =

{
((B,v); (s, e)) : s ∈ Rm

q,d ∧ e = Bs− q

p
v mod q ∧ −→e ∈ [q/p]V d

}
, (30)

which is equivalent to proving (29). To prove this relation, we make use of
LANES+ such that the knowledge of s is proven efficiently via RPoK while having

25

Algorithm 3 Proof of Correct Rounding

1: procedure R.Gen(1λ)
2: return pp← LANES+.Gen(1λ)
3: end procedure

4: procedure R.Prove(pp, (B,v), s; ρ) ▷ ρ is an optional argument
5: e = Bs− q

p
· v

6: Set (β, r) s.t. q/p = βr

7: Compute
−→
b ∈ ZdV r as the base-β digits of the coefficients in e

8: P (−→e ,
−→
b) = ⃝i∈[β](

−→
b − −→i) for

−→
i := (i, . . . , i), where ⃝ denotes coordinate-

wise multiplication over a set of elements
9: mp := {P}
10: G = IV d ⊗ g with g = (1, β, . . . , βr−1) ▷ −→e = G

−→
b

11: ulp =
((

B,−IV d,
q
p
v
)
, (IV d,G)

)
12: (t; t′)← LANES+.Compp(e, s,

−→
b)

13: π ← LANES+.Provepp((mp, ulp), (t; t′); ρ)
14: return (t, π)
15: end procedure

16: procedure R.Ver(pp, (B,v), (tL, π); ρ) ▷ ρ is an optional argument
17: Set mp and ulp as in R.Prove
18: return LANES+.Verpp((mp, ulp), t, π; ρ)
19: end procedure

small coefficients for e is proven via LANES. Note that we do not necessarily need
to prove that s is short and hence an RPoK is an ideal solution for that part.
However, LANES+ already proves knowledge of an f such that f · s is short
(which is not made explicit in the above relation). Now, we set q/p = βr and

run the commitment step of LANES+ with input (e, s,
−→
b), where

−→
b denotes

the base-β representation of the coefficient vector of e. We can then prove in

LANES that the coordinates of
−→
b are in [β] using a multiplicative relation of

the form bi(bi − 1) · · · (bi − (β − 1)) = 0 and also prove that they re-construct
the coefficients of e via a linear relation such that the coefficients remain in the
desired range. As a result, we prove (30), and hence (29). The full rounding
protocol is presented in Alg. 3.

In certain cases (as our VRF application), we may not be able to set q0 :=
q/p = βr for 2 ≤ β < q0, e.g., since q0 = q/p needs to be prime. In such cases,
we can set βr > q0, which raises the issue that proof of being in the range [βr] is
not equivalent to that of being in [q0]. However, we can get around it by using
an integer reconstruction vector g (Step 10 of Alg. 3) that replaces the entry
βr−1 with a smaller value, say β′, such that the reconstructed integer of the form
b0 + b1β+ · · ·+ br−2β

r−2 + br−1β
′ is always smaller than q0 (while spanning the

whole range [q0]) for bi ∈ {0, . . . , β − 1}. This may mean that decomposition is
not unique, however we do not require unique decomposability as we just want

26

to prove that e has (exactly) bounded coefficients. It is not difficult to observe

that β′ = q0−βr−1

β−1 can be set.

It is easy to see that the size of a proof output σ = (t, π) = (tL, (πL, c, z, f))
for Alg. 3 can be approximated by (ignoring the very small size of c)

|σ| ≈ |tL|+ |πL|︸ ︷︷ ︸
size of LANES

+ |z|+ |f |︸ ︷︷ ︸
size of RPoK

. (31)

The advantage of our proof comes from (i) minimizing the entropy of the secret
witness of LANES, and (ii) exploiting the efficient lattice-based RPoK for the
high-entropy secret witness part. Particularly, the dimension over Z of the secret
witness −→s in LANES is equal to 2V d+ V dr = V d(2 + r). In the case of a single
module LWR sample, we have V = 1. We can also reasonably assume that
d ≤ d̂, where d̂ = 128 in LANES is the default choice. Let us take d = 32 as in the
concrete parameters of our VRF proposal. Finally, if we take q/p = 24 and β = 4
as an example, then we end up with r = 2. Hence, dim(−→s) = V d(2+r) = 128. On
the other hand, if we directly apply the LANES framework to prove knowledge of
a single module LWR sample (i.e., (s, e) such that q

pv = ⟨b, s⟩+e), we would have
the same cost for decomposition of the error e plus the much bigger dimension of
−→s compared to dim(−→e) = d. In practice, we would likely need dim(−→s) ≥ 1024,
hence the total dimension of the secret witness in LANES would be 1088 using
the same (V, d, r) = (1, 32, 2), which pushes LANES to its less efficient realm
where multiple proof responses need to be sent.

Theorem 4. Assume that LANES+ is correct, simulatable and knowledge sound
as in Theorem 3, and uses a prime modulus q̂ for LANES and another modulus
q for RPoK with p | q. Further assume that any non-zero difference of challenges
in C is invertible in Rq,d and that the assumptions in Remark 3 hold. Then, the
protocol in Alg. 3 is correct, simulatable and sound w.r.t. the relation in (29).

Proof (Theorem 4). Correctness and simulatability properties follow from cor-
rectness and simulatability of LANES+.

For the knowledge soundness, running the extractor EL of LANES+ as in the

proof of Thm. 3, we obtain (e∗, s∗,
−→
b∗) such that

q

p
· v = Bs∗ − e∗ over Rq,d, (32)

−→
e∗ = G

−→
b∗ mod q̂, and (33)

⃝i∈[β](
−→
b −−→i) = 0 mod q̂ for

−→
i := (i, . . . , i). (34)

Since q̂ is prime by assumption, (34) implies that
−→
b∗ ∈ [β]V dr. Then, by the

structure of G, (33) gives that
−→
e∗ ∈ [q/p]

V d
. Since v ∈ RV

p,d, we conclude that
v = ⌊Bs∗⌋p by Fact 1. ⊓⊔

27

6 LaV: Our Efficient Long-Term Lattice-Based VRF

In this section, we first describe our concrete instantiations of the PRF and the
NIZK from lattices to realize the general VRF framework from Sec. 2.3. Then,
we optimize over this proposal and describe our final VRF scheme, LaV.

6.1 Instantiation of the PRF

We describe our MLWR-based PRF below that is parametrized by η with q >
η ≥ 1. The PRF is then defined as

PRFk(m) = ⌊Ar⌋p , where A← G(m) and k = r, (35)

for a short vector r ∈ K := Sℓη,d and a random oracle G : {0, 1}∗ → Rn×ℓ
q,d . The

output space is therefore T = Rn
q,d. We also define an extended key space of

our PRF as in Sec. 2.2. In particular, for some parameter η1 ≥ η, the extended
key space of the PRF is Sℓη1,d

, which may be larger than the key space Sℓη,d for
honest PRF executions. This property is useful for efficient lattice-based zero-
knowledge proofs, and we want to make sure that the PRF is key-binding for
the extended key space (which includes the key space).

Lemma 2. The PRF defined above is computationally key-binding w.r.t. the
extended key space Sℓη1,d

(see Sec. 2.2) if MSIS∞n,d,n+ℓ,q,βSIS
is hard for βSIS =

max{2η1, 2q/p}. It also satisfies computational κ-pseudorandomness (see Sec.
2.2) if MLWRℓ,d,nκ,q,p,η is hard and p divides q.

Proof. Key-binding. Let r, r′ ∈ Sℓη1,d
be valid keys for a PRF output v with

(i) r ̸= r′ over Rq,d, and (ii) ∥r∥∞ , ∥r′∥∞ ≤ η1. We want to show that such two
keys lead to an MSIS solution. We have v = ⌊Ar⌋p = ⌊Ar′⌋p (mod p). Defining
e := Ar − q

p · v mod q and e′ := Ar′ − q
p · v mod q, we have the coefficients of

e, e′ in [q/p]. Then, consider the following

q

p
v = Ar− e = Ar′ − e′ (mod q), (36)

⇐⇒
(
In A

)
·
(
e′ − e
r− r′

)
︸ ︷︷ ︸

=:s

= 0 (mod q). (37)

Since r ̸= r′ over Rq,d, s ̸= 0 yields a solution to MSIS∞n,d,n+ℓ,q,βSIS
for βSIS =

max{2η1, 2q/p}.
κ-pseudorandomness. It is easy to see that each PRF output is an instance
of MLWRℓ,d,n,q,p,η. So, κ PRF outputs will be an instance of MLWRℓ,d,nκ,q,p,η.
Hence, the collection of such κ outputs will be indistinguishable from a uniformly
random element of Rnκ

p,d if MLWRℓ,d,nκ,q,p,η is hard and p divides q. ⊓⊔

28

6.2 Instantiation of the NIZK

We first define the set of relaxation factors as F := {c− c′ : c, c′ ∈ C ∧ c ̸= c′}
for C defined in (13). For the invertibility of relaxation factors, we rely on our
results from Sec. 3 and set the parameters accordingly. We define ζ := 2wγ with
w = δw̃. Then, we say that (f, r) is a valid opening of a PRF output v if, for
some parameter η̄ < q,

– ∥r∥∞ ≤ η̄, ∥f∥1 ≤ ζ with f ∈ F , and
– v = ⌊A(r/f)⌋p, where division is done mod q.

We require the NIZK to prove knowledge of such a valid opening and also
set η1 = ζη̄ so that f ′ · r falls in the extended key space for any f ′ ∈ F . Now,
let A ← G(0) and B ← G(m) be two matrices output by a random oracle G.
Denote pk = t as the public key and v = v as the VRF value. Recall that we are
interested in proving (6), which corresponds to proving the following relation for
our concrete PRF instantiation

Rlbvrf =

{
((A,B, t,v), (f, r)) :

t = ⌊A(r/f)⌋p ∧ v = ⌊B(r/f)⌋p
∧∥f∥

1
≤ ζ ∧ ∥r∥∞ ≤ η̄

}
. (38)

The above itself is equivalent to proving the following

(
t
v

)
=

⌊(
A
B

)
(r/f)

⌋
p

,

which can be easily done using our rounding proof from Sec. 5. So, the NIZK
for the above rounding relation together with the PRF from Sec. 6.1 is enough
to instantiate the generic VRF proposal from Sec. 2.3. However, the scheme in
this case is sub-optimal and, in the next section, we introduce a more efficient
protocol that leads to our final long-term VRF proposal, LaV.

We remark that our MLWR-based PRF satisfies an approximate variant of
additive key-homomorphism (as also observed in [BLMR13]) which suffices for
the VRF uniqueness argument in the proof of Theorem 1 to go through, ex-
ploiting the fact that the key-binding property of our PRF also holds up to
some approximation error in the PRF output. In more detail, observe that a
PRF output v with a relaxed opening (f, r) satisfies q

p · v = Ar/f − e mod q
where e is the rounding error. In this case, for small scaling factor α, we have
α · qp · v = Aαr/f − αe which is approximately a PRF evaluation under αr up
to small error αe. The binding-based argument used in the proof of Theorem 1
still holds for our PRF in the presence of such small errors using an MSIS-based
argument with respect to the matrix [In ∥A] as discussed in Sec. 6.4.

6.3 Final Unrolled VRF Scheme

We employ several optimizations over the general VRF framework instantiation.
First, one can observe that a user is bound to a particular opening (f, r) by the
opening proof of the public key pk = t (see Remark 1). Therefore, the VRF
value v need not be a full-sized PRF output and we shrink it to a single Rq,d

element. That is, we set v = ⌊⟨b, s⟩⌋p for a user secret key sk = s and b← G(m).

29

Algorithm 4 LaV : Our long-term lattice-based VRF construction

1: procedure LaV.ParamGen(1λ)
2: pp′ ← R.Gen(1λ)
3: Pick random G : {0, 1}∗ →Rℓ

q,d

4: A
$←Rn×ℓ

q,d

5: return pp = (pp′,A,G)
6: end procedure

7: procedure LaV.KeyGen(pp)

8: s
$← Sℓ

B,d

9: t = ⌊As⌋p
10: return (pk, sk) = (t, s)
11: end procedure

12: procedure LaV.Evalpp(pk, sk,m)
13: b← G(m) and let t = pk

14: v = ⌊⟨b, s⟩⌋p and e′ = ⟨b, s⟩ − q
p
v

15: Sample y for Step 15 of Alg. 2
16: w2 = JAyKK for 2K ≈ wγ · q/p · nd
17: (t, π)← R.Prove(pp′, (b, v), s;w2)
18: Parse π = (πL, (c, z, f))
19: ŵ2 = Az− c · q

p
t mod 2K

20: if ∥ŵ2∥∞ > 2K−1 − wγ q
p
, then Restart

21: return VRF value v and proof σ = (t, π)

22: end procedure

23: procedure LaV.Verifypp(pk,m, v, σ)
24: Parse σ = (t, (πL, (c, z, f)))
25: b← G(m) and let t = pk
26: w′

2 = JAz− c · q
p
tKK

27: return R.Ver(pp′, (b, v), σ;w′
2)

28: end procedure

The second optimization arises from the fact that we do not need to prove the
well-formedness of the public key exactly, and can just bind the user to a short
secret key sk′ = (s′, e′) such that c̄ · qpt = As′− e′ for a relaxation factor c̄ using
a RPoK. From an MSIS-based binding argument, it is computationally hard to
find another triple (c̄1, s

′
1, e

′
1) such that c̄1 · qpt = As′1 − e′1 with s′1/c̄1 ̸= s′/c̄.

Hence, proving that v = ⌊⟨b, s′/c̄⟩⌋p is sufficient to ensure uniqueness. This is
further discussed in Sec. 6.4.

Lastly, we make use of the Bai-Galbraith compression technique [BG14] at
Step 26 of LaV.Eval. In Alg. 4, we describe the full LaV VRF scheme, where the
challenge space C is instantiated as in (13) and JxKK denotes dropping K ≥ 1
least-significant bits of each coefficient in x. For simplicity, we sample the matrix
A at random in Step 4, instead of generating it via a random oracle.

Remark 4. The NIZK proof in LaV.Eval can also be seen as executing LANES+

with ulp = ((A′,b′, t′), (Id,G)) where G is the integer reconstruction matrix for

e′ as in R.Prove, A′ =

(
A −In
b⊤ 0⊤

)
, b′ =

(
0
−1

)
, and t′ =

(q
p · t
q
p · v

)
. The

secret witness for LANES+ (i.e., input of LANES+.Com) is then

((
s
e

)
, e′,
−→
b

)
,

where
−→
b is the base-β decomposition of the coefficients of e′.

The total average number of restarts in LaV is approximately equal to µ(ϕ) ·
µ(ϕm) ·exp(1) ·ML for 2K ≈ wγ ·q/p ·nd, where ML denotes the average number

of repetitions in LANES and µ(ϕ) = e12/ϕ+1/(2ϕ2) as defined in Alg. 5. Recall
that ML = 1 if we use the results of [KLSS23] in LANES since that approach
does not require rejection sampling. We can perform a single rejection sampling
on the concatenated vector (z, f) if B ≈ q/p. In this case, we would have ϕm = ϕ
and the total average number of repetitions ≈ µ(ϕ) · exp(1) ·ML.

30

We list in Assumption 1, the assumptions needed to establish a secure VRF
from Alg. 4. We refer to each requirement in Assumption 1 as ‘Sub-Assumption
i’. We discuss in Sec. 6.4 that our optimizations do not harm the security of LaV.
Assumption 1 We assume the following to establish security of LaV with (at
most) κ evaluations per key pair.

1. Any non-zero difference of challenges in C is invertible in Rq,d.

2. q̂ > max{24ϕmηm, wγβr} and q > 12ϕmηm (these assumptions ensure that
those in Remark 3 are satisfied).

3. q > βSIS and MSIS∞n,d,n+ℓ,q,βSIS
for βSIS = 4wγ ·max{12ϕη, 2K} is hard.

4. MLWRℓ,d,n+κ,q,p,B is hard.

5. Internal parameters for LANES are set properly.

6.4 Security Discussion of LaV

As we have already formally proved the security of the generic VRF construction
in Sec. 2.3 and the required properties of the concrete lattice-based instantiation,
we now discuss the impact of our optimizations.

Assume that a user creates at most κ VRF outputs per key pair. Since
the underlying NIZK used in LaV.Eval is zero-knowledge (or simulatable), for
pseudorandomness, it is sufficient to consider the information leaked by the
public key pk and the VRF values vi’s for 1 ≤ i ≤ κ. The difference of Alg. 4
from the generic approach is that each VRF output leaks a single MLWR sample
rather than n samples. As a result, in LaV, n+ κ MLWR samples are produced
after κ VRF outputs. Hence, it is sufficient to assume Sub-Assumption 4.

For the uniqueness property of LaV, the intuition is that we do not need to
prove the well-formedness of the public key exactly, and can just bind the user to
a short secret key sk′ = (s′, e′) such that c̄ · qpt = As′−e′ mod q for a relaxation
factor c̄ using a RPoK. Let us discuss the uniqueness of LaV in more detail.

Uniqueness of LaV. Let (v, (t, (πL, (c, z, f)))) and (v′, (t′, (π′
L, (c

′, z′, f ′)))) be
two valid VRF outputs for the same message m and public key pk = t. We want
to show that v = v′. Similar to [EKS+21], we use a double rewinding argument.
Rewind 1: We rewind w.r.t. to the first output and obtain another accepting

output (v, (t, (π
(0)
L , (c(0), z(0), f (0))))). Define z̄ := z − z(0), and c̄ := c − c(0).

Then, by Step 26 of LaV.Verify (note that w′
2 goes as an input to the random

oracle H and thus must not change between rewindings), we get

JAz− c · q
p
tKK = JAz(0) − c(0) · q

p
tKK (39)

⇐⇒ c̄ · q
p
t = Az̄− ē =: A′ · s̄ (mod q), (40)

for some ē with ∥ē∥∞ ≤ 2K , s̄ :=

(
z̄
ē

)
and A′ := [A ∥ − In]. Note that

∥s̄∥∞ ≤ max{12ϕη, 2K}.

31

Rewind 2: We do a similar rewinding w.r.t. to the second output and obtain
the following

c̄′ · q
p
t = A′ · s̄′ (mod q). (41)

Again, we have ∥s̄′∥∞ ≤ max{12ϕη, 2K}. Multiplying (40) by c̄′ and (41) by
c̄ to equalize the left-hand sides of both expressions, and then subtracting the
results, we get

A′ · (c̄′s̄− c̄s̄′) = 0 (mod q). (42)

Observe that ∥c̄′s̄ − c̄s̄′∥∞ ≤ 4wγ ·max{12ϕη, 2K} =: βSIS. By the hardness of
MSIS∞ in Sub-Assumption 3, we conclude that

c̄′s̄ = c̄s̄′. (43)

Note that q must be strictly bigger than βSIS > ∥c̄′s̄∥∞ , ∥c̄s̄′∥∞ to ensure MSIS∞

hardness. Hence, the above equality holds without mod q.
Now, by the soundness of R.Prove, we have that v = ⌊⟨b, s∗⟩⌋p and v′ =

⌊⟨b, s′∗⟩⌋p, where s∗ := z̄/c̄ mod q and s′∗ := z̄′/c̄′ mod q as shown at the end
of the soundness proof of Thm. 3. Since c̄′ · z̄ = c̄ · z̄′ mod q by (43), we can use
the fact that c̄, c̄′ are invertible mod q to conclude that z̄/c̄ = z̄′/c̄′ mod q and
hence s∗ = s′∗ and v = v′.

6.5 Parameter Setting

As noted as a footnote in Sec. 2.4, it is easy to shift the range for the NIZK proof
so that it is centred at zero. Hence, we can apply it (for free in communication)

so that the error e′ has coefficients in
[
− q

2p ,
q
2p

)
∩ Z to save a factor 2 when

bounding ∥e′∥∞ . In MSIS and MLWE/MLWR problems, it is also often the case
that the solution coefficients are centred at zero. Hence, we assume the same
shifting of the range when estimating their hardness.

Setting parameters external to LANES. One of the most critical assumptions
that restrict our choice of parameters is Sub-Assumption 1. This is because we
need q to be composite so that p | q and we can use Fact 1. If we have q = q0 · p
for prime values q0 and p, then Rq,d

∼= Rq0,d ×Rp,d does not split further w.r.t.
the integer modulus q. As a result, Sub-Assumption 1 is satisfied if and only
if challenge differences are invertible in Rq0,d and Rp,d. That is, we need to
guarantee the results from Sec. 3 in both Rq0,d and Rp,d. Since we want to
minimize q0 to reduce the entropy of the input message, e′, for LANES, this task
itself reduces to focusing onRq0,d. As a result, we looked at the smallest d we can
set while satisfying Sub-Assumption 1 and found that d = 32 is the best choice.
Otherwise, we need q0 > 212, which is quite large. Hence, we choose d = 32 first.

Having fixed d = 32, the smallest q0 = q/p while satisfying Sub-Assumption
1 is q0 = 61 from the results of Sec. 3. In this case, the assumption holds with
probability at least 1 − 2−91.5. We also set (w, γ) = (32, 16) from the results in
Table 2, where w = δw̃ = 16 · 2 is the full weight of a challenge in (13).

Now, since q0 = q/p is prime, we cannot exactly have q0 = q/p = βr for
2 ≤ β < q0. Instead, we choose (β, r) = (3, 4) such that βr ≥ q/p. As dis-
cussed before in Sec. 5, this choice is still fine. In particular, we can set the

32

integer reconstruction vector g = (1, 3, 9, 17) (instead of g = (1, 3, 9, 27)) so that
reconstructed integers always fall below q0 = 61.

We also set ϕ = ϕm = 12 as a typical choice and B = 1 to minimize the
communication size. In terms of (η, ηm) (the ℓ2-norm bounds in Alg. 2), they
are computed as η = wγB

√
ℓd and ηm = wγ⌊q0/2⌋

√
d (recall that the coefficients

of e′ are centred at zero and hence ∥e′∥∞ ≤ ⌊q0/2⌋).
Finally, we look at the practical MSIS/MLWR requirements against known

attacks to set the module ranks n and ℓ (forMSIS∞ andMLWR, respectively) and
the modulus q = q0 · p. When estimating the security of these problems against
lattice attacks, we consider the “root Hermite factor (RHF)”, a common metric
used to measure the practical hardness ofMSIS andMLWE/MLWR problems, and
aim for RHF ≈ 1.0045 as in, e.g., [EZS+19,ALS20,ENS20,LNS20]. For MSIS∞,
we used “Asymmetric-MSIS” scripts of [ESZ22] and found that setting n = 48
and q ≈ 237 (i.e., p ≈ 231) leads to a RHF of 1.0045. Since challenge difference
invertibility requirement is satisfied for a much smaller modulus q0 ≪ p, finding
a suitable prime p is easy.

For MLWR with (d, q, p,B) ≈ (32, 237, 231, 1), we set ℓ = 40 to achieve a
root Hermite Factor ≈ 1.0045 against lattice attacks, estimated using the LWE
estimator [APS15] BKZ quantum sieve model for LWE with a ternary coordinate
secret distribution. We also estimated using the LWE estimator the complexity
of algebraic Gröbner Base (GB) attacks against MLWR with κ+ n samples over
Rq,d, assuming semi-regularity of the system, based on the model in [ACF+15].
The system of equations in the nd secret coordinates over Zq includes d(κ +
n) equations of degree q0 = 61 (the rounding error interval size) and also nd
equations of degree 2B + 1 = 3 (the secret coordinate interval size). However,
with our parameter set (d, q, p,B) ≈ (32, 237, 231, 1) the estimated GB attack
complexity always exceeded the lattice attack complexity, for any number of
MLWR samples κ ≤ 2128, indicating that the LaV VRF with our parameter set is
secure against known attacks with an essentially unbounded number of outputs.

Setting internal parameters for LANES. One of the advantages of our pro-
posal is that we have the flexibility to minimize the dimension (and entropy) of
the input message for LANES so as to push it towards its more efficient realm.
In particular, from the above setting of β = 3, we get the maximal polynomial
degree in mp as α = β = 3. Furthermore, we can use the partition-and-sample
technique in [ESZ22] (i.e., γ = 1 case of the results in Sec. 3) to have Rq̂,d̂ split

into l = 32 factors with d̂ = 128 while also keeping the ℓ1-norm of the challenge
cL used in LANES (see the fourth move of [ENS20, Fig. 3]) small. In this case, we
can set k = 1 and the challenge differences will be invertible with overwhelming
probability. Particularly, we set ∥cL∥1 ≤ ŵ = 44, which leads to a challenge
space of size about 2152 for LANES. With the choice of (d, l, r) = (32, 32, 4), we
end up with N = d(2 + r)/l = 6 as the input message dimension over Zl

q̂.
Then, using the “Hint-MLWE” approach of [KLSS23], we looked at the pos-

sible choices of (log q̂, n̂, ℓ̂) for LANES with our small-dimensional input message

and found that choosing (log q̂, n̂, ℓ̂) = (26, 6, 7) leads to a RHF ≈ 1.0045, which
is similar to the choices in [ALS20, ENS20, LNS20]. Since we do not have any

33

additional condition (over those needed in LANES) on the shape of q̂, it can be
set as a suitable prime with q̂ ≡ 2l + 1 (mod 4l). Note also that both moduli
q and q̂ are sufficiently large to satisfy Sub-Assumption 2. We also assume that
D = 13 for commitment compression in LANES ([ENS20,LNS20] use D = 14).

The above parameter setting for LANES leads to a total communication size
of |tL|+ |πL| ≈ 7.1 KB (using (12) with s ≈ 2

√
2ws0 defined in Sec. 2.4) for the

LANES part of LaV output.
Overall, the above parameter setting leads to 3.18 KB for RPoK, and the

total proof size of LaV is |σ| ≈ 10.27 KB. The VRF value v is 124 bytes and the
public key size is about 5.81 KB. One could apply the public key compression
technique in Dilithium [DLL+18] to reduce the public key size further (which
may come at a cost in proof size). Since communication of a public key in (long-
term) VRF is often a one-time task, we consider the proof cost as the major
factor.

Acknowledgements. This research was supported in part by ARC Discovery
Project grants DP180102199 and DP220101234.

References

ACF+15. Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick,
and Ludovic Perret. Algebraic algorithms for LWE problems. ACM Com-
mun. Comput. Algebra, 49(2):62, 2015.

ALS20. Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical prod-
uct proofs for lattice commitments. In CRYPTO (2), LNCS, pages 470–499.
Springer, 2020.

APS15. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hard-
ness of learning with errors. J. Math. Cryptol., 9(3):169–203, 2015. Code
available at https://bitbucket.org/malb/lwe-estimator/src/master/.

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anony-
mous payments from bitcoin. In IEEE Symposium on Security and Privacy,
pages 459–474. IEEE Computer Society, 2014.

BDE+21. Maxime Buser, Rafael Dowsley, Muhammed F. Esgin, Shabnam Kasra Ker-
manshahi, Veronika Kuchta, Joseph K. Liu, Raphael Phan, and Zhenfei
Zhang. Post-quantum verifiable random function from symmetric primi-
tives in pos blockchain. IACR Cryptol. ePrint Arch., page 302, 2021.

BDL+18. Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner, and
Chris Peikert. More efficient commitments from structured lattice assump-
tions. In SCN, volume 11035 of LNCS, pages 368–385. Springer, 2018.

BG14. Shi Bai and Steven D. Galbraith. An improved compression technique
for signatures based on learning with errors. In CT-RSA, volume 8366 of
LNCS, pages 28–47. Springer, 2014.

Bit20. Nir Bitansky. Verifiable random functions from non-interactive witness-
indistinguishable proofs. J. Cryptol., 33(2):459–493, 2020.

BLMR13. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghu-
nathan. Key homomorphic prfs and their applications. In CRYPTO (1),
volume 8042 of LNCS, pages 410–428. Springer, 2013.

34

BLS19. Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic tech-
niques for short(er) exact lattice-based zero-knowledge proofs. In CRYPTO
(1), volume 11692 of LNCS, pages 176–202. Springer, 2019.

BN06. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In ACM CCS, pages 390–399. ACM,
2006.

BP14. Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic
pseudorandom functions. In CRYPTO (1), volume 8616 of LNCS, pages
353–370. Springer, 2014.

BPR12. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom func-
tions and lattices. In EUROCRYPT, volume 7237 of LNCS, pages 719–737.
Springer, 2012.

CGH09. Scott E. Coull, Matthew Green, and Susan Hohenberger. Controlling access
to an oblivious database using stateful anonymous credentials. In Public
Key Cryptography, volume 5443 of LNCS, pages 501–520. Springer, 2009.

CGL+17. Alessandro Chiesa, Matthew Green, Jingcheng Liu, Peihan Miao, Ian
Miers, and Pratyush Mishra. Decentralized anonymous micropayments.
In EUROCRYPT (2), volume 10211 of LNCS, pages 609–642, 2017.

CHK+06. Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyan-
skaya, and Mira Meyerovich. How to win the clonewars: efficient periodic
n-times anonymous authentication. In ACM CCS, pages 201–210. ACM,
2006.

CL15. Jan Camenisch and Anja Lehmann. (un)linkable pseudonyms for govern-
mental databases. In ACM CCS, pages 1467–1479. ACM, 2015.

CLOS02. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Univer-
sally composable two-party and multi-party secure computation. In STOC,
pages 494–503. ACM, 2002.

CM19. Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed
ledger. Theor. Comput. Sci., 777:155–183, 2019.

DLL+18. Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gre-
gor Seiler, and Damien Stehlé. Crystals–Dilithium: Digital signatures from
module lattices. In CHES, volume 2018-1, 2018.

dPLS18. Rafaël del Pino, Vadim Lyubashevsky, and Gregor Seiler. Lattice-based
group signatures and zero-knowledge proofs of automorphism stability. In
ACM CCS, pages 574–591. ACM, 2018.

EG14. Alex Escala and Jens Groth. Fine-tuning groth-sahai proofs. In Public
Key Cryptography (PKC), volume 8383 of LNCS, pages 630–649. Springer,
2014.

EKS+21. Muhammed F. Esgin, Veronika Kuchta, Amin Sakzad, Ron Steinfeld, Zhen-
fei Zhang, Shifeng Sun, and Shumo Chu. Practical post-quantum few-time
verifiable random function with applications to algorand. In Financial
Cryptography and Data Security (2), volume 12675 of LNCS, pages 560–
578. Springer, 2021. (Full version at ia.cr/2020/1222).

ENS20. Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical
exact proofs from lattices: New techniques to exploit fully-splitting rings. In
ASIACRYPT (2), volume 12492 of LNCS, pages 259–288. Springer, 2020.
Full version at ia.cr/2020/518.

ESLL19. Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu.
Lattice-based zero-knowledge proofs: New techniques for shorter and faster
constructions and applications. In CRYPTO (1), volume 11692 of LNCS,
pages 115–146. Springer, 2019.

35

ia.cr/2020/1222
ia.cr/2020/518

ESS+19. Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, and
Dongxi Liu. Short lattice-based one-out-of-many proofs and applications
to ring signatures. In ACNS, volume 11464 of LNCS, pages 67–88. Springer,
2019.

ESZ22. Muhammed F. Esgin, Ron Steinfeld, and Raymond K. Zhao. MatRiCT+:
More efficient post-quantum private blockchain payments. In IEEE Sympo-
sium on Security and Privacy (S&P), pages 1281–1298. IEEE, 2022. (Full
version at ia.cr/2021/545).

EZS+19. Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K. Liu, and
Dongxi Liu. MatRiCT: Efficient, scalable and post-quantum blockchain
confidential transactions protocol. In ACM CCS, pages 567–584. ACM,
2019.

FS07. Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In Public
Key Cryptography, volume 4450 of LNCS, pages 181–200. Springer, 2007.

GHKW17. Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters. A
generic approach to constructing and proving verifiable random functions.
In TCC (2), volume 10678 of LNCS, pages 537–566. Springer, 2017.

GHM+17. Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. Algorand: Scaling byzantine agreements for cryptocurrencies.
In SOSP, pages 51–68. ACM, 2017.

GM17. Matthew Green and Ian Miers. Bolt: Anonymous payment channels for
decentralized currencies. In ACM CCS, pages 473–489. ACM, 2017.

GNP+15. Sharon Goldberg, Moni Naor, Dimitrios Papadopoulos, Leonid Reyzin,
Sachin Vasant, and Asaf Ziv. NSEC5: provably preventing DNSSEC zone
enumeration. In NDSS. The Internet Society, 2015.

HMPS14. Susan Hohenberger, Steven A. Myers, Rafael Pass, and Abhi Shelat. AN-
ONIZE: A large-scale anonymous survey system. In IEEE Symposium on
Security and Privacy, pages 375–389. IEEE Computer Society, 2014.

JKK14. Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal
password-protected secret sharing and T-PAKE in the password-only
model. In ASIACRYPT (2), volume 8874 of LNCS, pages 233–253.
Springer, 2014.

Kil90. Joe Kilian. Uses of randomness in algorithms and protocols. MIT Press,
1990.

KLSS23. Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song. Toward
practical lattice-based proof of knowledge from hint-mlwe. Cryptology
ePrint Archive, Paper 2023/623, 2023. https://eprint.iacr.org/2023/

623.
KRDO17. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman

Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain pro-
tocol. In CRYPTO (1), volume 10401 of LNCS, pages 357–388. Springer,
2017.

LL. Sean Lawlor and Kevin Lewi. Deploying key transparency at
WhatsApp. https://engineering.fb.com/2023/04/13/security/

whatsapp-key-transparency/. Accessed: 2023-05-16.
LLNW17. Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-

knowledge arguments for lattice-based prfs and applications to e-cash. In
ASIACRYPT (3), volume 10626 of LNCS, pages 304–335. Springer, 2017.

LNP22. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Lattice-
based zero-knowledge proofs and applications: Shorter, simpler, and more

36

ia.cr/2021/545
https://eprint.iacr.org/2023/623
https://eprint.iacr.org/2023/623
https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/
https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/

general. In CRYPTO (2), volume 13508 of LNCS, pages 71–101. Springer,
2022.

LNPS21. Vadim Lyubashevsky, Ngoc Khanh Nguyen, Maxime Plançon, and Gregor
Seiler. Shorter lattice-based group signatures via “almost free” encryption
and other optimizations. In ASIACRYPT (4), volume 13093 of LNCS,
pages 218–248. Springer, 2021.

LNS20. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Practical
lattice-based zero-knowledge proofs for integer relations. In ACM CCS,
pages 1051–1070. ACM, 2020.

LNS21a. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter
lattice-based zero-knowledge proofs via one-time commitments. In Public
Key Cryptography (1), volume 12710 of LNCS, pages 215–241. Springer,
2021.

LNS21b. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. SMILE:
set membership from ideal lattices with applications to ring signatures and
confidential transactions. In CRYPTO (2), volume 12826 of LNCS, pages
611–640. Springer, 2021.

LS18. Vadim Lyubashevsky and Gregor Seiler. Short, invertible elements in
partially splitting cyclotomic rings and applications to lattice-based zero-
knowledge proofs. In EUROCRYPT (1), volume 10820 of LNCS, pages
204–224. Springer, 2018.

Lyu09. Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice
and factoring-based signatures. In ASIACRYPT, pages 598–616. Springer,
2009.

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In EURO-
CRYPT, pages 738–755. Springer, 2012. (Full version).

MRV99. Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random
functions. In FOCS, pages 120–130. IEEE Computer Society, 1999.

Ngu22. Ngoc Khanh Nguyen. Private communication, 2022.
PWH+17. Dimitrios Papadopoulos, Duane Wessels, Shumon Huque, Moni Naor, Jan

Včelák, Leonid Reyzin, and Sharon Goldberg. Making NSEC5 practical
for DNSSEC. Cryptology ePrint Archive, Report 2017/099, 2017. https:
//eprint.iacr.org/2017/099.

Ste93. Jacques Stern. A new identification scheme based on syndrome decoding.
In CRYPTO, volume 773 of LNCS, pages 13–21. Springer, 1993.

Yam17. Shota Yamada. Asymptotically compact adaptively secure lattice ibes
and verifiable random functions via generalized partitioning techniques.
In CRYPTO (3), volume 10403 of LNCS, pages 161–193. Springer, 2017.

YAZ+19. Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, and
William Whyte. Efficient lattice-based zero-knowledge arguments with
standard soundness: Construction and applications. In CRYPTO (1), vol-
ume 11692 of LNCS, pages 147–175. Springer, 2019.

37

https://eprint.iacr.org/2017/099
https://eprint.iacr.org/2017/099

A Further Preliminaries

A.1 Verifiable Random Function (VRF)

A Verifiable Random Function (VRF) comprises the following four polynomial
time algorithms [MRV99].

V.ParamGen(1λ): Given the security parameter λ, this algorithm generates pub-
lic parameters pp.

V.KeyGen(pp): With the parameters pp, this algorithms generates the private
key sk and the corresponding public key pk.

V.Evalpp(pk, sk,m): Given the message m and the private key sk, this algorithm
generates the VRF value v ∈ {0, 1}m(λ) and a proof π.

V.Verifypp(pk,m, v, π): This algorithm returns 1 or 0, indicating whether v can
be verified with the remaining parameters.

We next define the properties a VRF should satisfy. We adopt the κ-pseudo-
randomness and (full) uniqueness properties from [EKS+21].

Provability: This property requires the following condition to hold for all valid
messages m.

Pr

pp← V.ParamGen(1λ),
(sk, pk)← V.KeyGen(pp),
(v, π)← V.Evalpp(pk, sk,m)

: V.Verifypp(pk,m, π, v) = 1

 = 1.

κ-Pseudorandomness: Let A = (A1,A2) be a polynomial-time adversary
playing the following experiment Exp-PRand:

1. pp← V.ParamGen(1λ)

2. (pk, sk)← V.KeyGen(pp)

3. (m, st)← AOVEval(·)
1 (pk)

4. (v0, π0)← V.Evalpp(pk, sk,m)

5. v1
$←− {0, 1}m(λ)

6. b
$←− {0, 1}

7. b′ ← AOVEval(·)
2 (vb, st)

where OVEval(·) is an oracle (that can be queried at most κ − 1 times by
the adversary)9 that on input a value m outputs the VRF value v and the
corresponding proof of correctness π(sk,m). A VRF scheme is said to satisfy
κ-pseudorandomness if the following holds for any PPT adversary A that
did not issue any queries to OVEval on the value m:

Pr[b = b′ | A runs Exp-PRand] ≤ 1

2
+ negl(λ).

9 Note that together with the challenge query to V.Eval(·) in the pseudorandomness
experiment, a total of κ V.Eval(·) queries can be made in total in the experiment.

38

(Full) Uniqueness: A VRF scheme satisfies (full) uniqueness if the following
probability is negligible in λ for any adversary A.

Pr

pp← V.ParamGen(1λ),
(m, pk, v1, π1, v2, π2)← A(pp)

:
V.Verifypp(pk,m, v1, π1) = 1∧
V.Verifypp(pk,m, v2, π2) = 1∧
v1 ̸= v2


If the adversary A is assumed to be PPT, then we call this property compu-
tational (full) uniqueness.

Note that the adversary has full control over the generation of the public key in
the above uniqueness experiment.

A.2 Security Assumptions

Definition 4 (MSIS∞n,d,m,q,β). For positive integer parameters (n,m, q, β) with

m > n, given A = [In ∥A′] ∈ Rn×m
q,d with A′ $← Rn×(m−n)

q,d , the MSIS problem
asks to find a short non-zero vector v ∈ Rm such that Av = 0 ∈ Rn

q,d and
∥v∥∞ ≤ β.

We define the module variant of LWR problem introduced in [BPR12], with
the generalization that the secret coefficients can be sampled from a narrower
distribution rather than just uniform over Rq,d.

Definition 5 (MLWRℓ,d,m,q,p,B). For positive integer parameters (ℓ,m, q, p,B)
with p < q, the MLWR problem asks to distinguish between the following two

cases: (i) (A, ⌊u⌋p) for (A,u)
$← Rm×ℓ

q,d × Rm
p,d, and (ii) (A, ⌊As⌋p) for A

$←

Rm×ℓ
q,d and s

$← SℓB,d.

In the case that p divides q, ⌊u⌋p is itself uniform over Rm
p,d.

A.3 Rejection Sampling

Our proposals make use of a standard ‘Gaussian’ rejection sampling technique
[Lyu12]. We describe the rejection sampling function in Alg. 5 and refer the
reader to [Lyu12] for further details. As a shortcut, we add the last infinity-
norm check ‘∥z∥∞ > 6σ’ to make sure that no coefficient is too large.

Algorithm 5 Rej(z, c, ϕ, T)

1: σ = ϕT ; µ(ϕ) = e12/ϕ+1/(2ϕ2); u← [0, 1)

2: if u > 1
µ(ϕ)
· exp

(
−2⟨z,c⟩+∥c∥2

2σ2

)
, then return 1

3: if ∥z∥∞ > 6σ, then return 1
4: else return 0

39

	Efficient Hybrid Exact/Relaxed Lattice Proofs and Applications to Rounding and VRFs

