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Abstract. An emerging direction of investigating the resilience of post-quantum
cryptosystems under side-channel attacks is to consider the situations where leaked
information is combined with traditional attack methods in various forms. In
CRYPTO 2020, Dachman-Soled et al. integrated hints from side-channel infor-
mation to the primal attack against LWE schemes. This idea is further developed
in this paper. An accurate characterization of the information from perfect hints
and modular hints is obtained through the establishment of an interesting decom-
position of Zn. It is observed that modular hints with modulus p produce some
orthogonal projection of the secret in Zp, which is exactly an extension of the case
of perfect hints in R. Based on these, a new attack framework is described when
some modular hints with modulus q are available. In this framework, an adver-
sary first reduces the LWE instance using such hints, and then performs various
attacks on the new instance. One of the key characters of our framework is that
the dimension of the secret in the new instance always decreases under some
moderate conditions. A comparison with the previous work shows that our ap-
proach is in some sense more essential and applicable to various kinds of attacks.
The new way of integrating modular hints to primal attack improves the existing
work. The first attempt of using modular hints in dual attack and BKW attack is
also discussed in the paper and better analysis results are produced. Experiments
have been carried out and shown that multiple modular hints with modulus q can
indeed significantly reduce their attack costs. For examples, with just 100 hints,
the blocksize can be reduced by 101 and the time complexity can be reduced by
a factor of 230 in both primal attack and dual attack against a Newhope1024 in-
stance. As for the BKW attack, if 90 hints are available, the number of queries
to the LWE oracle can be decreased by a factor of 260, as do the time complex-
ity and memory complexity when attacking an instance of Regev cryptosystem
(384, 147457, 39.19).



1 Introduction

The establishment of secure and reliable post-quantum cryptosystems becomes an im-
portant and urgent task with the rapid advance of computing technology. If large-scale
quantum computers are ever built, they will compromise the security of many com-
monly used cryptographic algorithms. At present, there are several post-quantum cryp-
tosystems that have been proposed, including lattice-based cryptosystems, code-based
cryptosystems, multivariate cryptosystems, and others. For them, further research is
needed in order to gain more confidence in their security.

As we know, lattice-based cryptography has been widely received because of its
post-quantum feature as well as superior performance. The underlying mathematical
hard problem to support most lattice-based schemes is the so-called learning with er-
ror (LWE) problem (as well as its variants). In particular, in July 2022, the US Na-
tional Institute of Standards and Technology (NIST) has identified four candidate al-
gorithms for Post-Quantum Cryptography (PQC) standardization. The only public-key
encryption/key-establishment algorithm that was selected – Kyber – is based on Module-
LWE (MLWE).

So far, several strategies to analyze the concrete hardness of LWE have been sug-
gested. Two major lattice attack algorithms – dual attack and primal attack – both trans-
form the problem into searching short vectors in some lattice, and then solve it by lat-
tice reduction algorithms. The fact that the number of available samples is restricted in
practice makes them effective choices. An algebraic attack was proposed by Arora and
Ge [10] in 2011, and further analyzed by [2] in 2015. Its essential idea is, solving LWE
can be reduced to solving a system of (error-free) high-degree non-linear equations. As
we know, in the lattice-based schemes, sometimes ciphertexts generated honestly us-
ing a valid public key may result in decryption failures under the corresponding private
key. This property leads to the so-called decryption failure attack [16–18]. Furthermore,
much work has been done on the combinatorial attack based on BKW (Blum, Kalai,
Wasserman) algorithm. One of its advantages is that the complexity can be analyzed
in a standard way. BKW strategy tends to give algorithms with the best performance
for some important parameter choices. However, the need for large amounts of memory
and LWE samples are possible drawbacks of it.

In addition to the above traditional attack methods, there is also a concern about
whether physical effects caused by the operations of a cryptosystem (on the side) can
provide useful extra information about the secret/error, see, for example, [1,8,12,21,31].
In 2020, Dachman-Soled et.al [15] initiated a study of using pieces of side-channel in-
formation about secret/error as “hints”, and integrating them into the primal attack.
This opens a new direction of mixing the theoretical-based lattice attack method and
practical-based side-channel attack method to advance the cryptanalysis of LWE schemes.
Moreover, in 2021, the idea of “hints” was brought to the coded-based schemes by Hor-
lemann et al. [23].

The two main kinds of hints in [15] – perfect hints and modular hints – are both dis-
cussed in this paper, with the latter being our main focus. As we shall see later, perfect
hints and modular hints with modulus p give information over different rings R and Zp
respectively. To further explore the information from modular hints, some mathemati-
cal concepts, such as the projection matrix and pseudo-inversion, are generalized from
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R to Zp. An interesting decomposition of Zn is formulated and proved under certain
conditions that are satisfied with a probability no less than Φ(p)

p , where Φ(·) is the Eu-
ler’s totient function. Based on these analytical tools, we find that modular hints with
modulus p produce an orthogonal projection of the secret in Zp, which is an extension
of the case of perfect hints in R. This discovery indicates a greater potential of modular
hints, especially for those with modulus q (the modulus parameter for LWE schemes).

It is mentioned in [15] that, in a primal attack, only perfect hints can be used to de-
crease the dimension of the lattice for searching short vectors. Modular hints just serve
the purpose of changing its volume (provided that the hints are primitive). Instead of
adding hints directly to the attack, in this paper, we take an approach to find a more
essential way for the integration of hints. To be more precise, hints are firstly used to
reduce the underlying LWE instance to a new one whose secret is of a lower dimension,
and then various attacks can be performed against the new instance. What is noteworthy
is that, in this way, not only perfect hints, but even modular hints with modulus q can
always be used to reduce the dimension of the secret when certain conditions are satis-
fied. The changes in our approach are reflected by two aspects: (1) from the reduction
of attacks to that of LWE instances, (2) from the improvement in parameters of the lat-
tice to those of the secret. We believe that these changes make things more fundamental
and information more fully utilized. As the distribution of the secret is critical in primal
attack and dual attack, we use the Gaussian elimination method in [9] to transform the
secret of the new instance into one that follows the error distribution. Even though some
more (about n) samples are necessary for this case, these additional samples are always
available in several schemes, such as Newhope1024 and LAC.

Various types of attacks can be executed directly against this new instance. The
cases of dual attack, primal attack, and BKW attack are all analysed in this paper. For
the primal attack, we make a comparison between the two methods of adding modular
hints with modulus q in this paper and that in [15], some similarities as well as addi-
tional benefits are found. With some moderate conditions, the new primal attack we
designed performs better than that in [15] except for the case when their attack attains
the optimality. Even in that case, our approach is still at the same cost as their primal
attack (with the best performance). To make this more clear, some situations where our
attack method is more applicable are presented. We also provide a direction for adding
modular hints with modulus q to dual attack and BKW attack. To the best of our knowl-
edge, this is the first time that hints are integrated into these two types of attacks. It is
worth mentioning that, the BKW attack seems to be particularly compatible with our
framework due to its construction. To show this clearly and intuitively, the two methods
of integrating hints to the BKW attack (use hints to directly optimize the BKW attack or
reduce the instance first and then perform the BKW attack) are both described in detail.

For these three types of attacks, extensive experiments have been carried out. It is
shown that multiple modular hints with modulus q can indeed significantly reduce their
attack costs. For examples, with just 100 hints, the BKZ blocksize can be reduced by
101 and the time complexity can be reduced by a factor of 230 in both primal attack
and dual attack against a Newhope1024 instance. As for the BKW attack, if 90 hints
are available, the number of queries required to the LWE oracle can be decreased by
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a factor of 260, as do the time complexity and memory complexity when attacking a
Regev cryptosystem (384, 147457, 39.19) instance.

The paper is organized into 6 sections. Necessary mathematical background and
useful algorithms are given in Section 2. In Section 3, we give an interesting decom-
position of Zn. Based on this, an accurate characterization of the information about
the secret leaked from perfect hints and modular hints is presented and we show how
to directly reduce the LWE instance by modular hints with modulus q. This implies a
new attack framework in which the LWE instance is first reduced by hints and then
attacked. The specific description of lattice attacks (including primal attack and dual
attack) in this framework is provided in Section 4, while BKW attack is analysed in
Section 5. For comparison, the BKW attack with or without our framework are both
discussed. Experiments with these three attacks are conducted and the corresponding
experimental results are shown in Section 6.

2 Preliminaries

In this section, we provide necessary preparations for the discussion of integration of
hints to the LWE instance. For a distribution D, let x ← D represent x is sampled
according to D. We use U(X) to denote the uniform distribution over X for any set X .
fx denotes the pdf (or pmf) of x, where x is an arbitrary random variable or random
vector. Moreover, we writeL(B) as the lattice generated by matrixB. For any matrixA,
we denote the submatrix formed by its i-th to j-th rows by A[i:j]. And v[i:j] represents
the subvector that contains the i-th to the j-th entries of some vector v. For a vector
x ∈ Rm and a subspace V ⊆ Rm, xV is the orthogonal projection of x onto V .

2.1 Statistics

The normal (or Gaussian) distribution is one of the most famous distributions in statis-
tics. Its finite discrete version is especially important in cryptography, as in actual LWE
schemes, the entries of the secret and error are usually selected from Zq according to the
discrete Gaussian distribution. The following is the definition of Gaussian distribution.

Definition 1. Let d be a positive integer. For µ ∈ Rd and a symmetric matrix Σ ∈
Rd×d, we denote Gd,q(µ,Σ) to be the (discrete) multivariate normal distribution de-
rived from the (continuous) multivariate normal distribution Nd(µ,Σ) with the proba-
bility mass function (pmf) being

gd,qµ,Σ(x) =

∑
t∈Zd f

d
µ,Σ(x+ tq)

fdµ,Σ(Zd)
, x ∈ Zdq ,

where fdµ,Σ is the probability density function (pdf) of Nd(µ,Σ), i.e.

fdµ,Σ(x) =

{
1

(2π)
r
2 ·
√
rdet(Σ)

· e− 1
2 (x−µ)

TΣ∼(x−µ), x ∈ µ+ Span(Σ)

0, else
.

Some properties of the normal distribution will be used in our subsequent analysis.
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Lemma 1. Let k, d be two positive integers. Let x ∼ Nd(µx, Σx) be a random vector.
Given A ∈ Rk×d. Then Ax ∼ Nk(Aµx, AΣxAT ).

Lemma 2. Let k < d be two positive integers. Let x ∼ Nd(µx, Σx) be a random
vector. For a matrix M ∈ Rk×d of rank k and a random vector g ∼ Nk(0, Σg), we
denote y = Mx + g. Then the conditional multivariate normal distribution (x|y) also
follows a multivariate normal distribution Nd(µx|y, Σx|y), where{

µx|y = µx +ΣxM
T (MΣxM

T +Σg)
−1(y −Mµx)

Σx|y = Σx −ΣxMT (MΣxM
T +Σg)

−1MΣx
.

Recall that the discrete Fourier transform of a function f : Zq → C is given by
f̂(y) =

∑
x∈Zq e

−2πix·y
q · f(x), ∀y ∈ Zq . The following lemma on discrete Fourier

transform will be useful in our later discussion.

Lemma 3. ( [34]) Given two positive integers d, q. Let x ∼ Gd,q
(
0, σ2Id

)
be a random

vector. For any v ∈ Zdq , we denote the pmf of (the random variable over Zq) 〈v, x〉

(mod q) by f〈v,x〉, then f̂〈v,x〉(1) ≥ e
− 2π2σ2‖v‖2

q2 .

The Chernoff-Hoeffding inequality is a powerful tool for distinguish attacks.

Lemma 4. Let ξ1, · · · , ξM be real-valued independent bounded random variables with
ξj ∈ [c, d] and E[ξj ] = µj , j = 1, 2, · · · ,M . Then for any ε ≥ 0,

Pr

∣∣∣∣∣∣ 1M
M∑
j=1

(ξj − µj)

∣∣∣∣∣∣ ≥ ε
 ≤ 2 · e−

2Mε2

(d−c)2 .

In cryptanalysis, the so-called bias is often used in conjunction with it. The definition is
as follows. Let φ be a pmf over Zq , then its bias is defined as B(φ) = Ex∼φ

[
e−

2πix
q

]
,

i.e. B(φ) = φ̂(1). Hence, for two pmfs φj1, φj2 and a given xj ∈ Zq , the fact that

the value of e−
2πixj
q is closer to φ̂j1(1) or φ̂j2(1) is useful to the adversary for distin-

guishing between fxj = φj1 and fxj = φj2. As the number of j increases, so does
the attacker’s success rate. The distinguish advantage is relevant to the difference be-
tween φ̂j1(1) and φ̂j2(1), and the number of samples required can be estimated by the
Chernoff-Hoeffding inequality.

2.2 Algebra

One should notice that, we can regard perfect hints and modular hints with modulus p
as giving information about the secret and/or error over different rings R and Zp respec-
tively. So the analysis tools should be adapted accordingly to fit these two scenarios.

The inverse of a matrix is important in our analysis. As we know, the adjoint matrix
is often used to describe the inverse in R. This provides a natural way to extend the
concepts to an arbitrary commutative ring R. In fact, any d × d matrix A over R

satisfies
A∗ ·A = det(A)Id,
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where A∗ is the adjoint matrix of A in R. Hence, for a positive integer p, a matrix A ∈
Zd×dp is invertible in Zp if and only if det(A) is invertible in Zp. If we treat det(A) as an
integer, this means that gcd(det(A), p) = 1 and the inverse ofA isA−1p = (det(A))−1p ·
A∗ (mod p), where (det(A))−1p is the modular inverse of det(A) (mod p).

Integrating hints always results in a situation that leads to the substitution of pseudo-
inverse for inverse. As we know, the definition of pseudo-inverse comes from the or-
thogonal projection matrix. Let Ψ ∈ Rd×k (k ≤ d) be a matrix of rank k and F =
Span(Ψ). We denote the orthogonal projection matrix onto F by ΠΨ (= ΠF ) = Ψ ·
(ΨTΨ)−1 · ΨT , and its complement by Π⊥Ψ (= Π⊥F ) = I − ΠF . Then the pseudo-
inverse of Ψ is defined as Ψ∼ = (ΨTΨ)−1ΨT . It is easy to see that Ψ∼ · Ψ = Ik and
Ψ · Ψ∼ = ΠΨ . These analysis tools are also generalized to Zp.

Definition 2. Let p and k ≤ d be positive integers. For any matrixA ∈ Zk×dp , we define{
Λ⊥p (A) =

{
x ∈ Zd : Ax = 0 (mod p)

}
Λp(A) =

{
x ∈ Zd : x = AT ξ (mod p) for some ξ ∈ Zkp

}
Definition 3. Let p and k ≤ d be positive integers. For any matrix A ∈ Zd×kp that sat-
isfies gcd(det(ATA), p) = 1, we define the orthogonal projection matrix onto Λp(AT )
with respect to Zp as

(ΠA)p = A(ATA)−1p AT (mod p),

and its pseudo-inverse as

A∼p = (ATA)−1p AT (mod p).

It can be proven that the projection matrix and pseudo-inverse with respect to Zp satisfy
some properties similar to those in R. For example,A∼p ·A = Ik (mod p) andA·A∼p =
(ΠA)p (mod p). Moreover, we have the following proposition whose proof is given in
appendix A.

Proposition 1. Let p and k ≤ d be positive integers. For a matrix A ∈ Zd×kp that
satisfies gcd

(
det(ATA), p

)
= 1, we have{

(ΠA)p · z ≡ z (mod p) for any z ∈ Λp(AT )
(ΠA)p · y ≡ 0 (mod p) for any y ∈ Λ⊥p (AT )

.

In some sense, Λp(AT ) and Λ⊥p (A
T ) can be viewed as projection spaces with respect

to Zp that are orthogonal to each other. Their volume can be predicted as follows.

Lemma 5. Let p and k ≤ d be positive integers. If A ∈ Zk×dp is chosen uniformly at
random, i.e. A← U

(
Zk×dp

)
, then

Pr
[
vol
(
Λ⊥p (A)

)
= pk

]
= Pr

[
vol(Λp(A)) = pd−k

]
≥ 1− 1

pd−k
.
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2.3 Lattices

The learning with error (LWE) problem has been the most popular choice for con-
structing cryptographic schemes. In the original definition of LWE [33], the secret is
uniformly and randomly selected. In 2009, Applebaum et.al [9] showed that sampling
the secret by the error distribution does not lose security. Besides, they proposed a way
of transforming the distribution of the secret to be that of the error through Gaussian
elimination. Hence, in practice, several schemes use this strategy to improve efficiency,
such as NIST PQC algorithms Kyber [11], Newhope [6] and LAC [27]. In this paper, we
also focus on this case, which is referred to as LWE in Hermite Normal Form (HNF).

Definition 4. For positive integers n,m, q, let χ be a distribution over Zq with a mean
of 0 and a small standard deviation of σχ, then the Search-LWE (in HNF) with param-
eters (m,n, q, χ) is to find the secret s ∈ Znq , when given the pair

(A, b = As+ e (modq)) ∈ Zm×nq × Zmq , where A← U(Zm×nq ), s← χn, e← χm.

And the Decision-LWE (in HNF) with parameters (m,n, q, χ) is to distinguish pair

(A, b← U
(
Zmq
)
) and (A, b = As+ e (mod q)), where A← U(Zm×nq ), s← χn, e← χm.

The secret-noise transformation For any LWE instance (A, b = As+ e (mod q)) ∈
Zm×nq × Zmq , where s ∈ Znq and e ← χm, it can be transformed into another instance
in HNF by using some additional samples. Suppose that other n samples b = As + e
(mod q) are available, where e← χn, A← Zn×nq andA is invertible in Zq4. We denote
A′ = −A · (A)−1q (mod q), s′ = e and b′ = b+A′b (mod q), then (A′, b′ = A′s′+ e
(mod q)) ∈ Zm×nq × Zmq is an LWE instance in HNF.

As we know, the volume of a lattice Λ with a basis B is defined as vol(Λ) =√
det(BTB) and its dual lattice is Λ∗ =

{
y ∈ Span(B)

∣∣∀x ∈ Λ, 〈x, y〉 ∈ Z
}

. There
are some interesting properties between Λ and Λ∗. For example, if B is a basis of Λ,
then its dual matrix B∼T is a basis of Λ∗. Thus, vol(Λ) = 1

vol(Λ∗) . Moreover, when
considering projecting a lattice onto some subspace, we have the following lemma.

Lemma 6. [29, Proposition 1.3.4] Let Λ ⊆ Rd be a lattice and F be a subspace of
Rd, then (Λ ∩ F )∗ = ΠF · Λ.

Recall that the column vectors of Ψ = (ψ1 · · · ψt) are said a set of primitive vectors
with respect to Λ if they can be extended to a basis of Λ, i.e. Λ ∩ Span(Ψ) = L(Ψ).
The volume of the above intersection lattice is predictable when certain primitiveness
conditions are satisfied. The following is a natural extension of the Lemma 12 in [15]
and its proof is given in appendix B.

Lemma 7. Given a lattice Λ. Suppose that Ψ = (ψ1 · · · ψt) contains linearly inde-
pendent vectors of Λ∗. If {ψj}tj=1 is a set of primitive vectors of Λ∗, then Λ∩Span(Ψ)⊥

is a lattice of volume
√
det(ΨTΨ) · vol(Λ).

4 As done in [9], we can use Φ(q)
q

to estimate the probability that A is invertible in Zq . More
than n additional samples allow such A to be constructed with a high probability.
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Shortest vector problem (SVP) is a fundamental problem surrounding lattice-based
cryptography. The instances of other lattice hard problems can usually be transformed to
those of it and solved by lattice reduction algorithms. We introduce two lattice reduction
algorithms here. The first one is the LLL algorithm, which was proposed by Lenstra et
al. [25] in 1982, is the first polynomial-time reduction algorithm. When given a lattice
basis as input, the algorithm outputs another basis with better orthogonality. The first
vector of the LLL output is a relatively short lattice vector. It is worth noting that, in
the original LLL, the input must consist of linearly independent vectors. This limitation
was overcome by Pohst [32] in 1987. A modification of the LLL algorithm named the
MLLL algorithm was presented, whose input range was extended to a set of spanning
vectors. The second lattice reduction algorithm we need is the BKZ algorithm with
sieving as the SVP oracle. This algorithm is generally regarded as the most common
and efficient choice. There is a blocksize parameter β in it, which determines both
the quality of the output vectors and the complexity of the algorithm. The following
heuristic assumptions are often used for the analysis of BKZ.

Assumption 1 For a d-dimensional lattice Λ, given any of its basis as input, BKZ al-
gorithm with blocksize β provides 20.2075β short vectors in one run when using sieving
as the SVP oracle, whose norms are all close to δ0(β)d · vol(Λ)

1
d .

The above δ0(β) is referred to as the Hermite factor. For a β that is not too small (for
example, β ≥ 50), δ0(β) is predictable by the following heuristic.

Heuristic 1 ( [14]) BKZ with blocksize β(β ≥ 50) achieves Hermite factor

δ0(β) ≈
(

β

2πe
(πβ)

1
β

) 1
2(β−1)

.

The cost of BKZ also depends on β. In particular, an acceleration in the search
process of BKZ could be achieved in the quantum case.

Assumption 2 When using sieving as the SVP oracle, the runtime of BKZ-β is

TBKZ(β) =

{
20.292β classical case
20.265β quantum case

.

As we shall see, for a given lattice Λ, using a larger β in BKZ could lead to finding
shorter lattice vectors, but also with a greater cost. Therefore, provided that the shortest
non-zero vector in Λ can be found, the strategy for selecting β is to choose β as small
as possible, i.e., the smallest β satisfies equation (1) or (2) in the following assumption.

Assumption 3 ( [5, 7]) Given a lattice Λ, the shortest non-zero vector ξ in it can be
found by BKZ-β, if√

β

dim(Λ)
· ‖ξ‖ ≤ (δ0(β))

2β−dim(Λ)−1 · vol(Λ)
1

dim(Λ) . (1)

In particular, if we approximate ‖ξ‖ to be σξ ·
√

dim(Λ), where σξ is the standard
deviation of the distribution that ξ follows, then equation (1) can be simplified to√

β · σξ ≤ (δ0(β))
2β−dim(Λ)−1 · vol(Λ)

1
dim(Λ) . (2)
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3 Reducing the LWE Instance by Hints

The purpose of this section is to build necessary mathematical tools for characterizing
the integration of hints. A useful decomposition of Zn is given in Section 3.1. Based
on that, we accurately characterize the information about the secret brought by perfect
hints as well as modular hints in Section 3.2. It is interesting to note that modular hints
with modulus p imply an orthogonal projection of the secret in Zp, which is exactly
an extension of the case of perfect hints in R. As the original LWE samples are all
based on Zq , it is of special interest to work with modular hints for modulus q to be
better compatible and to gain more useful information. We find that such hints play an
important role in reducing the LWE instance to another one whose secret is of a lower
dimension when certain conditions are met. A detailed process is given in Section 3.3.

3.1 A useful decomposition of Zn

For an LWE instance (A, b = As+ e (mod q)) ∈ Zm×nq ×Zmq , suppose that t(t < n)
linearly independent perfect (modular) hints of s are available and they are expressed
in a matrix form as

Y T s = R
(

or Y T s = R (mod p)
)
,

where Y ∈ Zn×t, R ∈ Zt (or Y ∈ Zn×tp , R ∈ Ztp, p ∈ N+). We call Y a hint descrip-
tion matrix and p the modulus of hints.

Let V = Span(Y ). We define the lattice L = Zn ∩V. It is a t-dimensional integer
lattice and from lemma 6, ΠV · Zn is its dual lattice. According to [15], a basis B of L
can be calculated as follows:

1. Take the column vectors of ΠV · In as input to the MLLL algorithm and get a basis
B∼T of ΠV · Zn.

2. Compute the dual matrix of B∼T and obtain a basis B of L.

Similarly, we define the (n− t)-dimensional integer lattice G = Zn ∩V⊥ and use
the MLLL algorithm to obtain a basis D of it. It is easy to see that BT D = Ot×(n−t) and
DT B = O(n−t)×t. Some other properties of B and D can also be given.

Proposition 2. B, D are both primitive vector sets of Zn.

Proof. Since L(B) = L = Zn∩V = Zn∩Span(B), we know that B is a set of primitive
vectors of Zn. The proof for D is similar. ut

Proposition 3. det(BT B) = det(DT D), i.e. vol(L) = vol(G).

Proof. Because B is a set of primitive vectors of Zn and G = Zn ∩ Span(B)⊥, from
proposition 7, we have√

det(DT D) = vol(G) =
√
det(BT B) · vol(Zn) =

√
det(BT B). ut

Almost all of our subsequent analysis is based on the following theorem.
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Theorem 1. For a positive integer p, the decomposition of Zn:

Zn = L +G + pZn (3)

holds if gcd(det(BT B), p) = 1. In particular, if we regard det(BT B) as a uniformly
random positive integer, i.e. det(BT B) ← U(N+), then equation (3) is true with a
probability no less than Φ(p)

p , where Φ(·) is the Euler’s totient function.

Proof. As (B D) is a basis of L +G and Span(B D) = Rn, L +G is a sublattice of Zn
of full dimension. It should be noted that, there must be some positive integer c such
that cZn ⊆L+G. In fact, for any c ∈ N+, this is true if and only if cIn can be linearly
represented by (B D) with integer coefficients 5, i.e.

cZn ⊆L +G ⇐⇒ c · (B D)−1 ∈ Zn×n,

and it is easy to verify that the inverse of (B D) is:

(B D)−1 =

(
B∼

D∼

)
=

(
(BT B)−1BT

(DT D)−1DT

)
.

Since B and D are both integer matrices, it is easy to see that if c(BT B)−1 ∈ Zt×t and
c(DT D)−1 ∈ Z(n−t)×(n−t), then cZn ⊆ L +G. Actually, we can take c = det(BT B).
On the one hand, det(BT B) · (BT B)−1 = (BT B)∗ ∈ Zt×t, where (BT B)∗ is the adjoint
matrix of BT B. On the other hand, according to proposition 3, det(BT B) · (DT D)−1 =
det(DT D) · (DT D)−1 = (DT D)∗ is also an integer matrix. To sum up, we have

det(BT B) · Zn ⊆L +G.

The point here is that, if gcd(det(BT B), p) = 1, then there are integers u, v, such
that udet(BT B) + vp = 1. Hence,

Zn =
(
udet(BT B) + vp

)
Zn ⊆ det(BT B)Zn + pZn ⊆L +G + pZn.

Because L,G, pZn are all integer lattice, L+G+pZn ⊆ Zn, then Zn = L+G+pZn.
In particular, if we think that det(BT B) ← U(N+), then equation (3) holds with a
probability no less than

Pr
[
a← U(Zd); gcd(a, p) = 1

]
= Pr

[
a← U(Zdq); gcd(a, p) = 1

]
=
Φ(p)

p
. ut

To further figure out the magnitude of Φ(p)p , suppose that the prime factorization of p

is p =
∏k
j=1 p

lj
j , where p1 < p2 < · · · < pk are primes and lj ∈ N+, j = 1, 2, · · · , k.

Then from Euler’s product formula, we have Φ(p)
p =

∏k
j=1

(
1− 1

pj

)
. In the following,

we mainly consider the case where p is a large prime or p is a power of 2, so the
probability of equation (3) being true is always big enough.

5 See also in [28, Theorem 2.1].
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Remark 1. It is easy to see that (B D) is a basis of Rn. However, it may not be a basis of
Zn due to the lack of primitiveness. Theorem 1 implies that, with a certain probability,
all vectors in Zn can be expressed by (B D) in the sense of “mod p”.

There are some other representations of the decomposition in equation (3). In fact,
since L + pZn = Λp(B

T ) ⊆ Λ⊥p (D
T ) and G + pZn = Λp(D

T ) ⊆ Λ⊥p (B
T ), two other

decompositions of Zn can also be obtained.

Corollary 1. For a positive integer p, if gcd
(
det(BT B), p

)
= 1, then{

Zn = Λp(B
T ) + Λp(D

T ) + pZn

Zn = Λ⊥p (B
T ) + Λ⊥p (D

T ) + pZn
.

The following propositions also hold when gcd
(
det(BT B), p

)
= 1, their proofs can

be seen in appendix C and appendix D respectively.

Proposition 4. For a positive integer p, if gcd
(
det(BT B), p

)
= 1, then

Λp(D
T ) = Λ⊥p (B

T ) and Λp(B
T ) = Λ⊥p (D

T ).

Proposition 5. For a positive integer p, if gcd
(
det(BT B), p

)
= 1, then

(ΠB)p + (ΠD)p = In (mod p).

3.2 The information from hints

In this subsection, we describe an accurate characterization of the information brought
by perfect hints and modular hints. The case of perfect hints is relatively easy. In fact,
hints Y T s = R give sV , i.e. the orthogonal projection of s onto the subspace V.
According to lemma 2, with hints Y T s = R, the distribution s ∼ Gn,q

(
0, σ2

χIn
)

becomes
(
s
∣∣Y T s = R

)
∼ Gn,q

(
sV, σ

2
χΠ
⊥
V

)
6. One can directly calculate

sV = ΠV · s = Y (Y TY )−1Y T s = Y (Y TY )−1R.

Next, we discuss what the modular hints Y T s = R (mod p) can tell us about s. It
should be noted that, our analysis is based on the assumption that gcd(det(BT B), p) =
1, i.e. the decomposition of Zn in equation (3) is true. Then s can be decomposed into

s = xs + ys + pus = Bws + Dvs + pus,

where xs ∈L, ys ∈ G, us ∈ Zn. It is easy to see that this decomposition is not unique
and we can always require ws ∈ Ztp, vs ∈ Zn−tp .

6 It is a widely used analytical means to inherit the properties of the continuous case to the
discrete case. From lemma 2, the conditional distribution of a (continuous) multivariate normal
distribution is still a (continuous) multivariate normal distribution. So here we assume that the
conditional distribution of the secret after adding hints is still a discrete normal distribution.
We still use lemma 2 to calculate the mean and covariance matrix.
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In the following, we shall show that, xs (or xs (mod p)) is exactly the information
given by modular hints with modulus p. Firstly, we transform the hint description matrix
from Y to B, as the latter is a set of primitive vectors of Zn. To be specific, as Y ⊆ L,
it can be expressed as Y = BF , where F ∈ Zt×t. Then,

R = Y T s = FT BT s (mod p).

If gcd (det(F ), p) = 1, the inverse of F in Zp exists, and the hints can be rewritten as

F−Tp ·R = BT s = BT Bws (mod p).

As det(BT B, p) = 1, (BT B)−1p exists, and

ws = (BT B)−1p · F−Tp R (mod p).

Since ws ∈ Ztp, we get ws and then xs = Bws. This is exactly the information about s
given by modular hints Y T s = R (mod p). The above is true when

gcd
(
det(BT B), p

)
= 1 and gcd (det(F ), p) = 1, (4)

i.e., with a probability no less than
(
Φ(p)
p

)2
.

Remark 2. In fact, it is easy to verify that xs = (ΠB)p · s (mod p). This can be seen
as a natural extension of the case of perfect hints, since we obtain sV = ΠV · s from
perfect hints Y T s = R. It should be noted that sV and xs (mod p) are similar results
(i.e. some orthogonal projections of s) based on different rings R and Zp.

Remark 3. Actually, only the value of F (mod p) is needed, and we could get it by

F = (BT B)−1p · BTY = B∼p · Y (mod p).

Remark 4. The Chinese remainder theorem may be useful for merging different mod-
ular hints. For example, suppose that the adversary gets xs = zj (mod pj), j =

1, 2, · · · , k, where p1, · · · , pk is pairwise relatively prime. Let P =
∏k
j=1 pj . We de-

note Pj = P
pj

and the modular inverse of Pj (mod pj) by (Pj)
−1
pj , j = 1, 2, · · · , k.

Then a modular hint with modulus P is derived, as xs (mod P ) is given by

xs =

k∑
j=1

zj · (Pj)−1pj · Pj (mod P ).

3.3 Reducing the LWE instance by modular hints with modulus q

Since the original LWE samples are based on Zq , modular hints with modulus q could
be better compatible and provide more useful information. They are also the focus of
this subsection. As summarized in [15], there are several scenarios to obtain such hints
in practice, for example, by the leakage of the values of intermediate registers or NTT
coefficients.
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It can be seen in [15] that perfect hints can reduce the dimension of the lattice used
by the adversary in the primal attack. However, modular hints are just used for possi-
ble change of its volume but without decreasing the dimension. In this subsection, the
greater potential of modular hints with modulus q is explored. It is shown that such
hints could also be used to reduce the dimension when certain conditions are met. Fur-
thermore, we would like to emphasize two differences compared with [15]. The first
one is that we shall directly use modular hints to reduce the LWE instance rather than
optimizing the attack; the second one is a consequence of the first one, an improvement
in parameter of the secret (i.e. its dimension) is obtained, not that of the lattice (i.e. its
volume). We believe that these may be the changes that make things more fundamental
and information more fully utilized.

The process of converting the original LWE instance (A, b) to another LWE instance
whose secret is of a lower dimension using modular hints with modulus q (Of course,
this process also applies to perfect hints) is as follows.

We assume gcd(det(BT B), q) = 1. According to theorem 1, now Zn = L+G+qZn
holds and the adversary obtains xs (mod q) by hints Y T s = R (mod q). We denote
the j-th column of AT by aj , and it could be decomposed into

aj = xj + yj + quj = Bwj + Dvj + quj ,

where wj ∈ Ztq, vj ∈ Zn−tq and uj ∈ Zn, j = 1, 2, · · · ,m. It is easy to extract vj since

vj = D∼q · aj (mod q), j = 1, 2, · · · ,m. Let V =

v
T
1

...
vTm

 ∈ Zm×(n−t)
q , then we have

As = Axs +Ays = Axs + V DT ys (mod q).

Let c = b−Axs (mod q) and z = DT ys (mod q), a new LWE instance is obtained:

c = V z + e (mod q).

As we shall see, the dimension of the new secret does decrease since z ∈ Zn−tq .
Various attacks can be applied directly to this new instance. However, one point to note
is that, unlike s, z is not particularly short. This has no effect on the BKW algorithm
without a partial guessing step, but a further secret-noise transformation may be neces-
sary when considering primal attack and dual attack. This is because the distribution of
the secret is critical in these two attacks. The details will be given in the next section.

4 Primal Attack and Dual Attack

Given an LWE instance (A, b = As+ e (mod q)) ∈ Zm×nq × Zmq (m > n)7. We

denote S =

(
s
e

)
and d = m + n. In practice, the adversary may gets hints of s

7 In the primal attack and dual attack, m is usually very close to n, and the case where m < n
may occurs in several schemes. However, as mentioned in Section 3.3, after adding hints, a
secret-noise transformation as well as some additional samples are needed. Hence, we suppose
that m > n here. As we shall see, this will not make the dimension of the lattice used by the
attacker larger.
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[1, 12, 31], of e [21], or even of S [15]. So here, we represent the hints in a general
form, that is, XTS = J (mod q), where X ∈ Zd×tq and J ∈ Ztq .

To add these hints to a primal attack or a dual attack, the adversary first transforms
them to some hints of s, and then get a new LWE instance whose secret is of a lower

dimension. To be specific, he/she decomposes X into X =

(
X1

X2

)
, where X1 ∈ Zn×tq

and X2 ∈ Zm×tq . Then J = XT
1 s + XT

2 e = XT
1 s + XT

2 (b − As) (mod q) and then
the hints of s are gotten:

J −XT
2 b =

(
XT

1 −XT
2 A
)
s (mod q).

We denote the hint description matrix of s by Y =
(
X1 −ATX2

)
mod q ∈ Zn×tq and

R = J − XT
2 b (mod q). In the following, we only consider the case of t < n, i.e.

the number of hints does not exceed the number of the entries of the secret. This seems
to be reasonable as when too many hints are given, it may not make sense to analyze
security in terms of the primal attack or dual attack. In this situation, the probability
that Y contains t linearly independent column vectors is very high.

We denote V = Span(Y ) and define the lattices L = Zn ∩V,G = Zn ∩V⊥. As
described in Section 3.1, a basis B of L and a basis D of G could be found by MLLL.

We focus on the case where conditions in equation (4) are met. From theorem 1,
then Zn can be decomposed into Zn = L +G + qZn and s can be decomposed into
s = xs + ys + qus, where xs ∈ L, ys ∈ G, us ∈ Zn. According to Section 3.2, hints
Y T s = R (mod q) give xs = B · (BTY )−1q R (mod q) 8. Then, using the method in
Section 3.3, let c = b−Axs (mod q), V = A ·D∼Tq (mod q) and z = DT ys (mod q),

a new LWE instance (V, c = V z + e (mod q)) ∈ Zm×(n−t)q × Zmq is obtained.
Now, let us perform the secret-noise transformation. Without loss of generality, sup-

pose that the first n− t rows of V are linearly independent and form the matrix V[1:n−t].
Further, we assume that gcd

(
det
(
V[1:n−t]

)
, q
)
= 1, i.e. V[1:n−t] is invertible in Zq . It

should be pointed out that, sincem > n−t, it is quite possible because we can swap the
order of the rows of V . We define V ′ = −V ·

(
V[1:n−t]

)−1
q

(mod q), x = e[1:n−t] and
c′ = c+ V ′ · c[1:n−t] (mod q), then c′ = V ′x+ e (mod q) and c′[1:n−t] = 0. We only
consider the non-zero part. Let g = c′[n−t+1:m],W = V ′[n−t+1:m] and f = e[n−t+1:m],
then a new LWE instance in HNF is obtained:

(W, g =W · x+ f (mod q)) ∈ Z(m−n+t)×(n−t)
q × Zm−n+tq .

To sum up, using t modular hints with modulus q, the original instance (A, b) can be
converted to another LWE instance (V, c) whose secret z ∈ Zn−tq . A further secret-
noise transformation could be performed to get the instance (W, g) in HNF at the cost
of n− t additional samples.

Remark 5. In fact, the original hints XTS = J (mod q) could be extended to the new

instance (W, g). This is because now the new secret and error form S′ =

(
x
f

)
, which is

8 When gcd
(
det
(
BT B

)
, q
)
= 1, (BTY )−1

q exists if and only if gcd(det(F ), q) = 1.
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exactly e! As m > n, we know that when gcd
(
det
(
ATA

)
, q
)
= 1, s can be expressed

as s = A∼q (b−e) (mod q), then J = XT
1 s+X

T
2 e = XT

1 A
∼
q (b−e)+XT

2 e (mod q).
These could be rewritten as hints of e:

J −XT
1 A
∼
q b =

(
XT

2 −XT
1 A
∼
q

)
e (mod q).

We denote K = J −XT
1 A
∼
q b (mod q), P = X2− (A∼q )

TX1 (mod q). In the follow-
ing, we will use the primal attack as an example to show that these inherited hints do
not lead to any improvement. In other words, hints cannot be used twice.

4.1 Primal attack

In this subsection, we discuss the details of adding modular hints with modulus q to the
primal attack. As previously mentioned, with t hints XTS = J (mod q), the original
LWE instance (A, b) is transformed into a new instance (W, g) in HNF with a secret x
whose dimension drops by t. The hints are also inherited as PTS′ = K (mod q).

The primal attack is associated with the so-called Kannan’s embedding, both before
and after adding hints. To perform a primal attack, the adversary constructs the lattice

Lpri(W, g) =


uv
w

 ∈ Zm+1

∣∣∣∣∣Wu+ v − g · w = 0 (mod q)

 .

It is an (m+ 1)-dimensional lattice of volume qm−n+t, and a basis of it is given by

Bpri(W, g) =

−In−t 0 0
W qIm−n+t g
0 0 1

 .

We define S′ =
(
S′

1

)
∈ Zm+1

q and P =

(
P
−KT

)
∈ Z(m+1)×t

q , then S′ is a short

vector in Lpri(W, g) and the hints could also be expressed as P
T
S′ = 0 (mod q).

The essence of the above steps is to reduce the LWE instance by modular hints
with modulus q. Further, we consider whether we could continue to use the rewritten
hints to reduce the primal attack against the new instance. From some ideas of [15],
after the integration of P

T
S′ = 0 (mod q), S′ can be searched in 9 L′pri(W, g) =

Lpri(W, g)∩Λ⊥q
(
P
T
)

. It has been proven in [15] that the dimension of the intersection
lattice remains unchanged, but its volume could be larger, which is advantageous to the
primal attack. However, a fact is discovered is that L′pri(W, g) = Lpri(W, g) always
holds. This means that once some hints have been used to reduce the dimension of the
LWE instance, they can no longer be expected to have a positive effect on the volume
of the lattice again. Some explanations can be seen in appendix E.

9 For the sake of simplification, we omit the steps of homogenization and isotropization, which
is similar to a lightweight implementation in [15]. We use the two core parameters of the lattice
(dimension, volume) as well as assumption 3 to predict the attack cost.
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The new algorithm for the primal attack using modular hints with modulus q is
summarized in algorithm 1. It works if the following conditions are met:

gcd
(
det(BT B), q

)
= gcd (det(F ), q) = gcd

(
det
(
V[1:n−t]

)
, q
)
= 1. (5)

Hence, its success rate could be estimated as
(
Φ(q)
q

)3
. We notice that, in the actual

schemes, q is either chosen to be a large prime number (such as Kyber and Newhope)
or to be a power of 2 (for example, Saber and FrodoKEM). Hence, this probability is
actually (

Φ(q)

q

)3

=


(
1− 1

q

)3
q is a odd prime

1
8 q is a power of 2

.

Algorithm 1: Primal attack using modular hints with modulus q (main steps)
Input: The original instance (A, b = As+ e (mod q)) ∈ Zm×nq × Zmq and

X ∈ Zd×tq , J ∈ Ztq , such that XTS = J (mod q).
Output: The secret s.
Step 1: Transform XTS = J (mod q) into hints of s : Y T s = R (mod q);
Step 2: Add hints of s and obtain a new instance (V, c) ∈ Zm×(n−t)

q × Zmq ;
Step 3: Perform the secret-noise transformation and obtain the instance
(W, g) ∈ Z(m−n+t)×(n−t)

q × Zm−n+tq ;
Step 4: Construct the lattice Lpri(W, g) and search S′ in it by the BKZ algorithm;
Step 5: Recover the secret s by s = A∼q (b− S′) (mod q).

The complexity model of our new algorithm is quite easy, because the cost is mainly
due to solving the uSVP instance on Lpri(W, g) rather than transforming the LWE
instance. Since the volume and dimension of Lpri(W, g) are obvious, we only need to
figure out the optimal BKZ blocksize β0 and number of samples m′0 by assumption 3.
As n− t samples of thesem′0 samples are for the secret-noise transformation, the actual
number of samples used for searching short vectors in Lpri(W, g) is m0 = m′0−n+ t.

Now let us make a comparison between the method of adding modular hints with
modulus q to the primal attack in this paper and that in [15]. Suppose that an LWE
instance (A, b) with t hints XTS = J (mod q) is given. In [15], hints XTS = J
(mod q) are directly added to the primal attack against (A, b). While in our framework,
we use these hints to transform (A, b) into another LWE instance (W, g) in HNF whose
secret is of a lower dimension and then perform the primal attack against (W, g). In a
sense, it may be more straightforward to directly reduce the instance itself rather than
the attacks on it, and it may be more fundamental to optimize the parameter of the secret
rather than the lattice.

One may notice that our method causes a decrease in dimension, but adding the
rewritten hints of e to Lpri(W, g) can not bring any increase about volume. On the
contrary, by using the method in [15], the volume may be enlarged, but the dimension
remains the same. To give a further mathematical comparison between the effects of the
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decrease in dimension and the increase in volume, we naturally extend the Lemma 13
of [15] as follows, and the proof is given in appendix F.

Proposition 6. Given positive integers p and n ≤ m. LetΛ ⊆ Rm be an n-dimensional
lattice and Ψ = (ψ1 ψ2 · · · ψt) contains linearly independent vectors of Rm. If{
ψj
lj

}t
j=1

is a set of primitive vectors with respect toΛ∗, where lj ∈ N+, j = 1, 2, · · · , t,

then Λ ∩ Λ⊥p (ΨT ) is an n-dimensional lattice of volume pt∏t
j=1 gcd(lj ,p)

· vol(Λ).

It should be noted that proposition 6 is not only an extension to the case with mul-
tiple hints, but also shows an interesting fact. In proposition 6, vol

(
Λ ∩ Λ⊥q (ΨT )

)
≤

ptvol(Λ) and the equality holds if and only if gcd(lj , p) = 1, 1 ≤ j ≤ t. It is a relatively
loose condition, as the primitiveness of Ψ (i.e. lj = 1, 1 ≤ j ≤ t) is no longer required.

The key indicator of performance is the BKZ blocksize used. When the conditions
in equation (5) are met, we see that our approach reduces the dimension of the secret by
t. Recall that the optimal blocksize choice for our case is β0. Now let us see the effect of
having t modular hints with modulus q in the primal attack in [15]. From proposition 6,
vol
(
L′pri(A, b)

)
≤ qt · vol (Lpri(A, b)) = qm+t. When the equality holds, the primal

attack of [15] reaches its best performance and β0 is also its optimal selection. However,
when vol

(
L′pri(A, b)

)
< qm+t, a larger optimal blocksize as well as a higher cost are

needed in [15]. Please see appendix G for a more detailed analysis and some example
for situations that vol

(
L′pri(A, b)

)
< qm+t. We should remark that these depend on

the conditions in equation (5) and come at the cost of more (about n) samples.
In conclusion, our new algorithm could be divided into two parts, the reduction of

the LWE instance and the execution of the BKZ algorithm on Lpri(W, g). It should be
pointed out that, althoughm is larger in our approach, this does not make the dimension
of Lpri(W, g) go higher, since the secret-noise transformation is performed before the
BKZ algorithm. Furthermore, the additional samples needed are available in several
actual schemes. For example, there are 2048 samples can be used in a Newhope1024
instance [6, Section 4.2.3], however, even without hints, just 999 samples are enough for
the primal attack. This number will decrease when more hints are given. The remaining
samples are sufficient for the secret-noise transformation.

4.2 Dual attack

In this subsection, we shall report the first dual attack by using modular hints.
For a given instance (A, b) ∈ Zm×nq × Zmq , the goal of the dual attack is to distin-

guish whether it is an LWE instance or a uniform one. Once t hintsXTS = J (mod q)
are obtained, by a similar process as above, the adversary can transform it to another
instance (W, g) ∈ Z(m−n+t)×(n−t)

q × Zm−n+tq . As mentioned earlier, if (A, b) is an
LWE instance, then (W, g) is also an LWE instance in HNF, i.e. both the secret and
error vectors of (W, g) follow the error distribution. On the other hand, if b is uniform,
then so is g.
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The adversary now only has to make a distinction between the distribution of g in
the two cases. The following lattice is considered:

Ldu(W ) =

{(
v
u

)
∈ Zm

∣∣∣∣WTu = v (mod q)

}
.

It is an m-dimensional lattice of volume qn−t, and has a basis

Bdu(W ) =

(
Im−n+t O
WT qIn−t

)
.

Short vectors will be searched in Ldu(W ) by BKZ. Suppose thatM short vectors wj =(
vj
uj

)
, j = 1, 2, · · · ,M of length at most l are found and used in the dual attack. Then,

for any j, if g ← U(Zm−n+tq ), 〈uj , g〉 could also be viewed as uniform. Otherwise,

〈uj , g〉 = uTj (Wx+ f) = vTj x+ uTj f =

〈(
vj
uj

)
,

(
x
f

)〉
= 〈wj , e〉 (mod q)

is relatively small since wj , e are both short vectors. From lemma 3, as M increases,

∑M
j=1 e

−
2πi〈uj,g〉

q

M
→

∑M
j=1 B

(
f〈uj ,g〉

)
M

=

∑M
j=1 f̂〈uj ,g〉(1)

M

=


∑M
j=1 0

M
= 0 g ← U(Zm−n+tq )∑M

j=1
̂f〈e,wj〉(1)
M

≥
∑M
j=1 e

−
2π2σ2χ‖wj‖

2

q2

M
≥ e−

2π2σ2χl
2

q2 := ε g =Wx+ f (modq)

.

When constructing a distinguisher, only the real part is considered. That is, the adver-

sary calculates
∑M
j=1 cos

(
2π〈uj,g〉

q

)
M and checks whether it is greater than ε

2 . To achieve
a constant success rate of the distinction, according to lemma 4, M = O

(
1
ε2

)
vectors

are needed. The new algorithm for the dual attack using modular hints with modulus q
is summarized in algorithm 2.

Now we shall give the cost model of our new algorithm and the selection method
of each parameter. According to assumption 1, the length of each short vector found
in Ldu(W ) by BKZ-β is l(m,β) = (δ0(β))

m · q n−tm , thereby bringing an advantage

ε(m,β) = e
−

2π2σ2χl(m,β)
2

q2 .
From Chernoff-Hoeffding inequality,O

(
1

ε2(m,β)

)
short vectors are needed to reach

a constant success rate. The process of BKZ must be repeated at least R(d, β) times,
where R(m,β) = max

{
1, 1

ε2(m,β)·20.2075β

}
. Then the cost of the search phase is

T (m,β) = TBKZ(β) ·R(m,β).

Hence, one should choose the optimal blocksize β0 and the total number of samples
m′0 that minimize T (m′0, β0). Actually, m′0 could be regarded as a function of β. From
some ideas of [30] and [26], we have

m′0(β) =

⌈√
ln q

ln (δ0(β))
· (n− t)

⌋
, (6)
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Algorithm 2: Dual attack using modular hints with modulus q (main steps)
Input: The original instance (A, b = As+ e (mod q)) ∈ Zm×nq × Zmq and

X ∈ Zd×tq , J ∈ Ztq , such that XTS = J (mod q).
Output: 0 for b← U(Zmq ) and 1 for b← LWE.
Step 1: Transform XTS = J (mod q) into hints of s : Y T s = R (mod q);
Step 2: Add hints of s and obtain a new instance (V, c) ∈ Zm×(n−t)

q × Zmq ;
Step 3: Perform the secret-noise transformation and obtain the instance
(W, g) ∈ Z(m−n+t)×(n−t)

q × Zm−n+tq ;
Step 4: Construct Ldu(W ) and find M short vectors {wj}Mj=1 in it by BKZ;

Step 5: Calculate

∑M
j=1 cos

(
2π〈uj,g〉

q

)
M

and output 0 if it is smaller than ε
2

, otherwise,
output 1.

where d·cmeans to round to the nearest whole number. This is because before rounding,
it is the only zero of the derivative of l(m,β) with respect to m:

∂l(m,β)

∂m
=

∂

(
(δ0(β))

m · q
n−t
m

)
∂m

= (δ0(β))
m · ln(δ0) · q

n−t
m + (δ0(β))

m · q
n−t
m · ln q ·

(
−
n− t
m2

)
= (δ0(β))

m · q
n−t
m ·

(
ln(δ0(β))− ln q ·

n− t
m2

)
.

Hence, the adversary just needs to search for the optimal β0 = minβ∈N+ {T (m′0(β), β)} ,
and then the optimal number of samples required is m′0(β0).

5 BKW

In this section, the situation where hints (including perfect hints and modular hints with
modulus q) are added to the BKW attack is considered. A matrix representation for
BKW algorithm is presented in Section 5.1. To give a comparison, two methods of in-
tegrating hints to the BKW attack are discussed. Section 5.2 describes the first method
which processes hints by adding them to the BKW attack directly. The second method
is a procedure to carry out BKW attack on the new instance obtained by reducing the
original LWE instance according to the way given in Section 3.3. A description as well
as an analysis of this method can be seen in Section 5.3. To the best of our knowl-
edge, this is the first time that hints are integrated into a BKW attack. Among these
two proposed methods, we find the second one to be more beneficial. It is also worth
mentioning that, as we will see later, BKW attack seems to be particularly compatible
with our attack framework due to its construction.

5.1 The matrix representation of BKW

In this subsection, the two core stages – sample reduction and hypothesis testing – are
both reformulated in a matrix form for more fundamental analysis.
Sample reduction Suppose that the adversary uses m original LWE samples, which
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are denoted by b = As + e (mod q). He/She selects the parameters window width β
and addition depth α.

Then each row of A is divided into α + 1 blocks, where the first α blocks each
contains β entries, and the last one is made up of n−αβ entries. In the j-th (1 ≤ j ≤ α)
iteration of the sample reduction stage, collisions on the j-th block are searched and the
corresponding rows of A are added or subtracted together to produce new samples.

Let us take the first iteration as an example. Suppose that the adversary finds m1

collisions on block 1, that is, there exists a matrix P1 ∈ Zm1×m, such that

P1 ·A = A(1),

where A(1) ∈ Zm1×n, the first β entries in each row of A(1) are all 0, and P1 has rows
with up to two non-zero entries in {−1, 1}.

Similarly, after the j-th (2 ≤ j ≤ α) iteration, suppose that mj samples are ob-
tained, then there exists Pj ∈ Zmj×mj−1 , such that

Pj · Pj−1 · · ·P1 ·A = Pj ·A(j−1) = A(j),

whereA(j) ∈ Zmj×n, the first β ·j entries in each row ofA(j) are all 0, and P1, · · · , Pj
are integer matrices with at most two non-zero entries that belong to {−1, 1} per row.
Let P = Pα ·Pα−1 · · ·P1 ∈ Zmα×m, then after the sample reduction process, we have

PA = A(α).

The first α · β entries in each row of A(α) are all 0. Let A′ be the submatrix consisting
of the (αβ + 1)-th to the n-th columns of A(α) and s′ = s[αβ+1:n], then A′s′ = A(α)s.
We denote b′ = Pb (mod q), e′ = Pe (mod q), then

b′ = P (As+ e) = PAs+ e′ = A(α)s+ e′ = A′s′ + e′ (mod q).

To sum up, let n′ = n − td, the original LWE instance (A, b) ∈ Zm×nq × Zmq is
transformed to another instance (A′, b′) ∈ Zmα×n′q ×Zmαq . The dimension of the secret
is reduced, at the cost of amplified noises.

Hypothesis testing Now we just need to check the qn
′

possibilities of s′. All values
can be tested simultaneously by an FFT.

For each secret candidate s̃′ ∈ Zn′q , it corresponds to an error candidate ẽ′ = b′ −
A′s̃′ (mod q) in Zmαq . The distribution of ẽ′ in the two cases where s̃′ is equal to
s′ or not is the key to distinguishing. When the guess is wrong, ẽ′ is considered to
obey a uniform distribution in Zmαq . While the true e′ approximately follows a discrete
Gaussian distribution. More specifically, each coefficient of e′ could be regarded as a
sum of 2α entries of e, and the independence among the coefficients of e′ is supposed.
These actually imply the following assumption.

Assumption 4 e′ = Pe and PPT = 2αImα .

From lemma 1, we have

e′ = Pe ∼ Gmα,q
(
0, P · σ2

χIm · PT
)
= Gmα,q

(
0, σ2

χ2
αImα

)
.
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Hence, for each ẽ′, the adversary needs to distinguish whether it obeysGmα,q
(
0, σ2

χ2
αImα

)
or U(Zmαq ). To further determine the number of final samples required (i.e. mα), we
regard each entry of ẽ′ as the inner product between ẽ′ and a specified vector, that is,

ẽ′j =
〈
ẽ′, γj

〉
, j = 1, 2, · · · ,mα,

where γj is the unit vector in Zmα with only the j-th entry being 1. Then the advantage
from each inner product could be estimated by lemma 3. A distinguisher is thus implied.
For each key candidate s̃′, we calculate

∑mα
j=1 e

−
2πi〈b′−A′s̃′,γj〉

q

mα
=

∑mα
j=1 e

−
2πi〈ẽ′,γj〉

q

mα
−→

∑mα
j=1 B

(
f〈ẽ′,γj〉

)
mα

=

∑mα
j=1 f̂〈ẽ′,γj〉(1)

mα


=

∑mα
j=1 0

mα
= 0 s̃′ 6= s′

≥
∑mα
j=1 e

−
2π2·2ασ2χ‖γj‖

2

q2

mα
= e
−

2α+1π2σ2χ

q2 := ε s̃′ = s′
.

Therefore, the guessed candidate is the one that satisfies

s0 = argmaxs̃′∈Zn′q Re

∑mα
j=1 e

−
2πi〈b′−A′s̃′,γj〉

q

mα

 .

According to the Chernoff-Hoeffding inequality (lemma 4),

mα = O

(
1

ε2

)
= C · e

2α+2π2σ2χ

q2

samples are sufficient to achieve a constant success rate, where C is a constant 10.

5.2 Constructing error-free samples using hints

Transforming hints into those of the secret seems to be more natural in the BKW attack.
This is because now s and e play different roles in different stages, while in the primal
attack and dual attack, they are combined to form a short vector S. In this subsection,
we discuss the direct enhancement on BKW attack by hints. To be specific, the hints
(including perfect hints and modular hints with modulus q) are directly added to the
BKW attack against the original instance (A, b).

As we know, in the sample reduction stage, the colliding samples are added (or sub-
tracted) to reduce the dimension of the secret that “works 11”. However, this magnifies
the noises. Large noises also make it difficult to identify the true secret (or more pre-
cisely, part of the secret) among other candidates during the hypothesis testing stage. In

10 Our result is consistent with that in [13], where C is regarded as a small constant.
11 For example, after the j-th (2 ≤ j ≤ α) iteration, the first β · j entries in each row of A(j) are

all 0. This implies that the first β · j entries of s do not work.
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the following, we shall show that t perfect hints of s are bound to provide qt error-free
samples. Adding or subtracting such samples does not result in an increase in noises.
Moreover, based on the decomposition idea in Section 3, t modular hints with modulus

q could give the same information with a probability of
(
φ(q)
q

)2
.

Let us start with a specific explanation of the case with modular hints. Given the
LWE instance (A, b = As+e (mod q)) ∈ Zm×nq ×Zmq and t(t < n) linearly indepen-
dent modular hints Y T s = R (mod q), where Y ∈ Zn×tq and R ∈ Ztq . Just like before,
let V = Span(Y ), we define lattices L = Zn ∩V,G = Zn ∩V⊥ and their bases
B, D. According to Section 3.2, we could obtain (ΠB)q · s (mod q) by these hints when

conditions in equation (4) are met, and the probability of them being true is
(
φ(q)
q

)2
.

In the following, we also focus on this case.
Now we consider how to incorporate this information into the sample reduction

phase, in which the values (after mod q) of the inner products between s and all vec-
tors in Znq are taken into account. Actually, for any a ∈ Zn, 〈a, s〉 (mod q) could be
decomposed using the orthogonal projection matrices onto Λq(BT ) and Λq(DT ). From
proposition 5, we have

〈a, s〉 = 〈(ΠB)q · a+ (ΠD)q · a, (ΠB)q · s+ (ΠD)q · s〉
= 〈(ΠB)q · a, (ΠB)q · s〉+ 〈(ΠD)q · a, (ΠD)q · s〉 (mod q).

It is easy to see that for those a ∈ Zn such that (ΠD)q · a = 0 (mod q), we could
directly calculate 〈a, s〉 = 〈(ΠB)q · a, (ΠB)q · s〉 (mod q) by hints.

In fact, such a’s exactly form the lattice Λq(BT ). According to corollary 1, suppose
that a = a1 + a2 + qu, where a1 ∈ Λq(B

T ), a2 ∈ Λq(D
T ), u ∈ Zn. Then from

proposition 1, (ΠD)q ·a = a2 (mod q) and hence (ΠD)q ·a = 0 (mod q) ⇐⇒ a2 = 0
(mod q) ⇐⇒ a = a1 + qu ∈ Λq(BT ).

To sum up, for any a ∈ Λq(BT ), the value of 〈a, s〉 (mod q) could be calculated
directly without any queries. This gives a sample without noise. One might wonder
how many such samples could the adversary obtain from the hints Y T s = R (mod q).
Since Λq(BT ) is a subgroup of Zn and qZn is a subgroup of Λq(BT ), the proportion of
the vectors that belong to Λq(BT ) in Znq is∣∣Znq ∩ Λq(BT )∣∣∣∣Znq ∣∣

(
=
|Λq(BT )|
|Zn|

)
=

1

[Zn : Λq(BT )]
=

1

|det(Bq)|
=

1

vol(Λq(BT ))
,

and hence qn

vol(Λq(BT ))
samples without noises are available.

As we can see, this number is related to the volume of Λq(BT ). Since Λq(BT ) =
L + qZn, by applying the MLLL algorithm on (B qIn), a basis of Λq(BT ) as well as
vol
(
Λq(B

T )
)

could be obtained.

Remark 6. Actually, an estimation of vol
(
Λq(B

T )
)

could be given even without calcu-
lating the basis. We have done many experiments by taking Y ← U

(
Zn×tq

)
. A fact is

discovered is that in this case B can also be approximated as uniform. Then from lemma
5, Pr

[
vol
(
Λq(B

T )
)
= qn−t

]
≈ 1 and qn

qn−t = qt samples without noises are gotten.
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The case with perfect hints Now we suppose that t linearly independent perfect hints
Y T s = R are obtained by the attacker, where Y ∈ Zn×t and R ∈ Zt. We define V,L
and B similarly. As described in Section 3.2, the adversary gets sV = ΠV · s by these
hints. Then for any a ∈ Znq and u ∈ Zn,

〈a, s〉 = 〈a+ qu, s〉 =
〈
(a+ qu)V , sV

〉
+
〈
(a+ qu)V⊥ , sV⊥

〉
(mod q).

We notice that if a+ qu ∈L, then

〈a, s〉 = 〈a+ qu, s〉 = 〈a+ qu, sV〉 (mod q)

can be computed. Further, it is easy to verify that{
a ∈ Znq

∣∣∃u ∈ Zn, s.t. a+ qu ∈L
}
= Λq(B

T ) ∩ Znq .

To sum up, the same error-free samples can be obtained. The only difference is that,
unlike the case with modular hints, the integration process of perfect hints always holds.

Remark 7. This is somewhat different from lattice attacks. According to [15], perfect
hints and modular hints have different effects in a primal attack. The former is stronger,
as they can cause changes both in dimension and volume. However, as we can see, in a
BKW attack, modular hints and perfect hints are likely to bring the same boost, whether
hints are added by the method given in Section 5.2 or Section 5.3. Let us try to give an
explanation. As we mentioned earlier, perfect hints and modular hints are based on
different rings. Since BKW is an attack built on Zq , a hint on R is no more helpful than
that on Zq . To be specific, in the sample reduction stage, we only consider the value
of 〈a, s〉 (mod q) for all a ∈ Znq . Although sV provides more information of s than
xs, it could not give more error-free samples. On the contrary, the integration process
of modular hints seems to be more convenient and all operations can be limited to Zq .
Therefore, as long as the conditions in equation (4) hold, we suggest adding perfect
hints in the form of modular hints to BKW.

5.3 Reducing the dimension in BKW

In the previous subsection, we show that some error-free samples could be obtained
by perfect hints or modular hints with modulus q, using such samples for collisions
avoids the amplification of noises. However, because the adversary has no control over
the samples he/she can get from the LWE oracle, it is difficult to make full use of the
information from hints. Therefore, another way of adding hints to BKW is considered.

As we mentioned earlier, the BKW attack consists of two core stages, sample reduc-
tion and hypothesis testing, in which the secret and the error play different roles. It is
important to point out that, the dimension of the secret s (i.e. n) is a particularly critical
parameter in the sample reduction stage, as it determines the number of required sam-
ples m, the window width β and hence the final attack cost. Therefore, it seems natural
and reasonable to reduce the dimension of the secret following our attack framework.
To be specific, using the method in Section 3.3, we can transform the original LWE
instance (A, b) into another LWE instance (V, c) whose secret z is of dimension n− t.
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As A← U
(
Zm×nq

)
, we can think that V ← U

(
Zm×(n−t)q

)
. It is worth noting that the

error vector e stays the same throughout this process, so does the sample size m 12.
It should be noted that, in the standard BKW algorithm [3, 19], the BKW attack

works regardless of the distribution of the secret, as long as each coefficient of it belongs
to Zq . So the secret-error transformation process is not necessary in a BKW attack 13.
We then directly perform the sample reduction stage on the new instance. Collisions
between {vj}mj=1 are looked for, instead of {aj}mj=1. More specifically, as described in
Section 5.1, we could find a matrix P ∈ Zmα×m, such that PPT = 2αImα and the
first α · β entries in each row of P · V are 0. We denote the submatrix consisting of the
(αβ + 1)-th to the (n − t)-th columns of PV by V ′. Let z′ = z[αβ+1:n−t], c

′ = Pc
(mod q) and e′ = Pe (mod q), then a new instance (V ′, c′ = V ′z′ + e′ (mod q)) ∈
Zmα×(n−t−αβ)q ×Zmαq is obtained and z′ can be found by the hypothesis testing stage.
This process will be repeated until the whole z is gotten. Then the original secret s can
also be solved since s = xs + ys = xs + (ΠD)q · ys = xs + D(DT D)−1q z (mod q).

In particular, some of the techniques that can boost the sample reduction stage such
as the coding techniques [20, 22], lazy modulus transformation [4] or quantization [24]
are still applicable. The new algorithm for the BKW attack using modular hints with
modulus q is summarized in algorithm 3.

Algorithm 3: BKW attack using modular hints with modulus q (main steps)
Input: The original instance (A, b = As+ e (mod q)) ∈ Zm×nq × Zmq and

X ∈ Zd×tq , J ∈ Ztq , such that XTS = J (mod q).
Output: The secret s.
Step 1: Transform XTS = J (mod q) into hints of s : Y T s = R (mod q);
Step 2: Add hints of s and obtain a new instance (V, c) ∈ Zm×(n−t)

q × Zmq ;
Step 3: Perform the sample reduction procedure and obtain the instance
(V ′, c′) ∈ Zmα×(n−t−αβ)

q × Zmαq ;
Step 4: Find z′ by the hypothesis testing process;
Step 5: Perform back substitution and recover the whole z;
Step 6: Obtain s by s = xs + D(DT D)−1

q z (mod q).

Essentially, after adding t modular hints with modulus q, the current attack cost can
be viewed as that of a standard BKW attack against an LWE instance whose secret is
of n − t dimension. As done in [19, 22], we consider operations over C to have the

12 There may be several samples that lose their effect after the integration of hints. Specifically,
if aj ∈ Λq(B

T ), then vj = 0. From another angle, in this case, 〈aj , s〉 (mod q) can be
calculated directly, so those noisy samples that correspond to aj are no longer needed. Such
aj appears with a probability of 1

vol(Λq(BT ))
= 1

qn−t . In fact, this is a natural extension of the

no-hint case. Because even without hints, Pr
[
aj ← U(Znq ); aj = 0

]
= 1

qn
.

13 We notice that a partial guessing step was introduced in [22], where the standard deviation of
the secret entries plays a key role. In that case, one could also do the secret-error transformation
as primal attack and dual attack.
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same complexity as those over Zq and let the small constant in the complexity of the
fast Fourier transform be 1. The following is a corollary of the Theorem 17 in [19].

Corollary 2. Given an LWE instance with parameters (n, q, σχ) and t modular hints
with modulus q (or perfect hints). Let α, β ∈ N+ such that (α + 1) · β = n − t. For
any ε ∈ (0, 1), define ε′ = 1−ε

α+1 . For 0 ≤ j ≤ α, let m(j, ε) = 8 · β · log
(
q
ε

)
·(

1− 2π2σ2
χ

q2

)−2α+1−j

. Then, the time complexity of the BKW attack with success rate

ε ·
(
Φ(q)
q

)2
is c1 + c2 + c3 + c4, where

c1 =
(
qβ−1

2

)
·
(
α·(α−1)

2 · (n+ 1− t)− β
6 ((α+ 1) · α · (α− 1))

)
c2 =

∑α
j=0m(j, ε′) · α−j2 · (n+ 2− t)

c3 = 2
(∑α

j=0m(j, ε′)
)
+ (n− t) · qβ · log(q)

c4 = α · (α− 1) · β · q
β−1
2

.

The number of calls to the LWE oracle is

α · q
β − 1

2
+m(0, ε),

and the memory complexity is(
qβ − 1

2
· α ·

(
n+ 1− t− β · α− 1

2

))
+m(0, ε) + qβ .

Remark 8. As mentioned earlier, the structure of BKW makes it fit well with our frame-
work. Firstly, since the dimension of s (not S or e) is a core parameter in the sample
reduction phase, it makes the process of converting hints into those about s natural.
Secondly, as BKW is built on Zq , perfect hints and modular hints with modulus q may
be equivalent under certain conditions. This means that even if the attacker gets some
perfect hints, our framework could still be used in a BKW attack, without any loss
of information. Finally, if the partial guessing step is not performed, the secret-error
transformation as well as additional samples are not necessary.

6 Experiments

In this section, we shall show the effect of modular hints with modulus q on the primal
attack, dual attack and BKW attack respectively. The fact is discovered is that such hints
can obviously improve these three attacks, especially when sufficiently many hints are
available. In primal attack and dual attack, we take Newhope1024 as an example. As
for BKW attack, Regev cryptosystem (384, 147457, 39.19) is considered.

6.1 Primal attack and dual attack

In Newhope1024 [6], n = 1024, q = 12289 and σχ = 2. For each Newhope1024
instance, 2048 samples are available. So we limit the number of samples the adversary
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can use to that. The success rate of the primal attack and dual attack (i.e. the probability
of equation (5) being true) is

(
1− 1

12289

)3 ≈ 0.999756. In this subsection, we will
show the relationship between the number of hints and the reduced cost of the primal
attack and dual attack respectively.

For each number t, the following parameters are listed. β0 represents the optimal
blocksize andm′0 is the corresponding optimal number of samples.m0 of these samples
are used for searching short vectors in Lpri(W, g) or Ldu(W ) by BKZ. Given β0,m′0,
we denote the time complexities of the primal attack and dual attack in the classical
case by T (c)

pri and T (c)
du respectively. While T (q)

pri and T (q)
du are for the quantum case.

Table 1: Primal attack with hints against Newhope1024.

t m′0 m0 β0 log2

(
T

(c)
pri

)
log2

(
T

(q)
pri

)
0 2023 999 887 259.00 235.06

100 1856 932 786 229.51 208.29
200 1645 821 687 200.60 182.06
300 1487 763 588 171.70 155.82
400 1256 632 492 143.66 130.38
500 1086 562 396 115.63 104.94

As we shall see in table 1 and 2 , with the number t increases, the optimal blocksize
β0 as well as the logarithms of the costs log2

(
T

(c)
pri

)
, log2

(
T

(q)
pri

)
, log2

(
T

(c)
du

)
, log2

(
T

(q)
du

)
all decrease linearly. We know that the complexities for dual attack and primal attack
are quite similar for most cryptosystems, this phenomenon is also inherited after adding
hints. On average, in both cases, each modular hint can reduce the required blocksize
by approximately 1, and multiple hints always result in a significant cost reduction. For
examples, with just 100 hints, the blocksize can be reduced by 101 and the time com-
plexity can be reduced by a factor of 230 in both attacks in the classical case. Although
the blocksize can only be taken as an integer in the BKZ algorithm, regarding it as a
real number leads to relatively smooth curves of m′0 and m0 in the primal attack. The
left-hand figure in table 1 shows the case where the precision of β is set to 0.1. As for
the dual attack, computing m′0 in equation (6) without rounding also gives a smoother
result.
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Table 2: Dual attack with hints against Newhope1024.

t m′0 m0 β0 log2

(
T

(c)
du

)
log2

(
T

(q)
du

)
0 2048 1024 882 257.54 233.73

100 1882 958 781 228.05 206.97
200 1691 867 683 199.44 181.00
300 1498 774 585 170.82 155.03
400 1305 681 489 142.79 129.59
500 1108 584 394 115.05 104.41

6.2 BKW attack

The setting of BKW attack is that an LWE oracle is given, i.e. we assume access to an
unbounded number of LWE samples. The situations where different numbers of hints
are added to an instance of Regev cryptosystem [33] with parameters n = 384, q =
147457, σχ = 39.19 are shown in table 3.

We set the success rate of the algorithm to be 0.99 ·
(
Φ(q)
q

)2
≈ 0.989987. Then, for

each number t, the following parameters are listed. The optimal addition depth α0 that
minimizes the cost, and its corresponding number of queries to the LWE oracle Nq . We
denote the time complexity by Tt and the memory complexity by Tm.

Table 3: BKW attack with hints against Regev cryptosystem (384, 147457, 39.19).

t α0 log2(Nq) log2(Tt) log2(Tm)

0 25 257.23 269.18 264.93
30 25 237.42 249.26 245.00
60 25 217.61 229.32 225.06
90 25 197.80 209.37 205.11

120 25 177.98 189.40 185.15
150 25 158.17 169.42 165.16

To give a more intuitive display of the changes in complexities after adding hints,
we assume that β = n−t

α+1 ∈ R∗, which has very little effect on the results. As we shall
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see, log2(Nq), log2(Tt), log2(Tm) all decrease linearly as t increases. With 90 hints,
the number of queries can be decreased by a factor of 260, as do the time complexity
Tt and memory complexity Tm. Moreover, it is mentioned in [3] that, the optimal α0

usually depends on σχ and q. That is the reason why α0 stays the same in table 3.
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7. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key Exchange—A new
hope. In: 25th USENIX Security Symposium (USENIX Security 16). pp. 327–343. USENIX
Association, Austin, TX (Aug 2016)

8. Amiet, D., Curiger, A., Leuenberger, L., Zbinden, P.: Defeating newhope with a single trace.
In: Ding, J., Tillich, J.P. (eds.) Post-Quantum Cryptography – PQC 2020. pp. 189–205.
Springer International Publishing, Cham (2020)

9. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-
secure encryption based on hard learning problems. In: Halevi, S. (ed.) Advances in Cryp-
tology - CRYPTO 2009. pp. 595–618. Springer Berlin Heidelberg (2009)

10. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L., Henzinger,
M., Sgall, J. (eds.) Automata, Languages and Programming. pp. 403–415. Springer Berlin
Heidelberg (2011)

11. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
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20. Guo, Q., Johansson, T., Mårtensson, E., Stankovski, P.: Coded-bkw with sieving. In: Takagi,
T., Peyrin, T. (eds.) Advances in Cryptology – ASIACRYPT 2017. pp. 323–346. Springer
International Publishing, Cham (2017)

21. Guo, Q., Johansson, T., Nilsson, A.: A key-recovery timing attack on post-quantum prim-
itives using the fujisaki-okamoto transformation and its application on frodokem. In: Mic-
ciancio, D., Ristenpart, T. (eds.) Advances in Cryptology – CRYPTO 2020. pp. 359–386.
Springer International Publishing, Cham (2020)

22. Guo, Q., Johansson, T., Stankovski, P.: Coded-bkw: Solving lwe using lattice codes. In:
Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology – CRYPTO 2015. pp. 23–42.
Springer Berlin Heidelberg (2015)

23. Horlemann, A.L., Puchinger, S., Renner, J., Schamberger, T., Wachter-Zeh, A.: Information-
set decoding with hints. In: Wachter-Zeh, A., Bartz, H., Liva, G. (eds.) Code-Based Cryp-
tography. pp. 60–83. Springer International Publishing, Cham (2021)

24. Kirchner, P., Fouque, P.A.: An improved bkw algorithm for lwe with applications to cryptog-
raphy and lattices. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology – CRYPTO
2015. pp. 43–62. Springer Berlin Heidelberg (2015)
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A The proof of proposition 1

For any z ∈ Λp(AT ), suppose that z = Aξ (mod p), then

(ΠA)p · z = A(ATA)−1p AT ·Aξ = Aξ = z (mod p).

For any y ∈ Λ⊥p (AT ), AT y = 0 (mod p), then

(ΠA)p · y = A(ATA)−1p AT · y = 0 (mod p).

B The proof of lemma 7

vol
(
Λ ∩ Span(Ψ)⊥

)
=

1

vol ((Λ ∩ Span(Ψ)⊥)∗)
=

1

vol
(
Π⊥Ψ · Λ∗

) =
vol (Λ∗ ∩ Span(Ψ))

vol (Λ∗)

= vol (L(Ψ)) · vol(Λ) =
√

det (ΨT · Ψ) · vol(Λ).

C The proof of proposition 4

Let us take Λp(DT ) = Λ⊥p (B
T ) as an example. Since BT D = Ot×(n−t), it is easy to see

that Λp(DT ) ⊆ Λ⊥p (BT ). Conversely, when gcd
(
det(BT B), p

)
= 1, from theorem 1, for

any x ∈ Zn, we can suppose that x = Bw + Dv + pu, where w ∈ Zt, v ∈ Zn−t and
u ∈ Zn. Hence, if x ∈ Λ⊥p (BT ), then 0 = BTx = BT Bw (mod p). As (BT B)−1p exists,
we have w = 0 (mod p). That means x = Dv (mod p), i.e. x ∈ Λp(DT ).

D The proof of proposition 5

When gcd
(
det(BT B), p

)
= 1, from corollary 1 and proposition 4, for any v ∈ Zn,

it could be decomposed into v = x + y + qu, where x ∈ Λp(B
T ) = Λ⊥p (D

T ), y ∈
Λp(D

T ) = Λ⊥p (B
T ) and u ∈ Zn. Then according to proposition 1,

((ΠB)p + (ΠD)p) · v = (ΠB)p · v + (ΠD)p · v = x+ y = v (mod p).
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E L′
pri(W, g) = Lpri(W, g)

To show that L′pri(W, g) = Lpri(W, g), we only need to prove that Lpri(W, g) ⊆
Λ⊥q
(
P
)
, i.e. P

T ·Bpri(W, g) = 0 (mod q).

As P =

(
P
−KT

)
and Bpri(W, g) =

−In−t 0 0
W qIm−n+t g
0 0 1

, in the following, we

shall show that (a) PT ·
(
−In−t
W

)
= 0 (mod q) and (b) PT ·

(
0
g

)
−K = 0 (mod q).

(a) Firstly, we reformulate W as W = V ′[n−t+1:m] = −V[n−t+1:m] ·
(
V[1:n−t]

)−1
q

=

−A[n−t+1:m]D
∼T
q

(
A[1:n−t]D

∼T
q

)−1
q

(mod q), then

P
T ·
(
−In−t
W

)
= (X

T
2 −X

T
1 A
∼
q ) ·

( −In−t
−A[n−t+1:m]D

∼T
q

(
A[1:n−t]D

∼T
q

)−1

q

)

= (X
T
2 −X

T
1 A
∼
q ) ·

( −In−t
−A[n−t+1:m]D

∼T
q

(
A[1:n−t]D

∼T
q

)−1

q

)
· (A[1:n−t]D

∼T
q ) ·

(
A[1:n−t]D

∼T
q

)−1

q

= (X
T
1 A
∼
q −X

T
2 )

(
A[1:n−t]D

∼T
q

A[n−t+1:m]D
∼T
q

)
·
(
A[1:n−t]D

∼T
q

)−1

q
= (X

T
1 A
∼
q −X

T
2 )AD

∼T
q ·

(
A[1:n−t]D

∼T
q

)−1

q

= (X
T
1 −X

T
2 A)D

∼T
q

(
A[1:n−t]D

∼T
q

)−1

q
= 0 (mod q),

since X1 −ATX2 ∈ Zn ∩V and D is a basis of Zn ∩V⊥. Also because of this,

P
T

(
0
g

)
−K = P

T
c
′ −K = P

T
(V
′
x+ e)−K = P

T
V
′
x = (X

T
1 A
∼
q −X

T
2 ) · V (V[1:n−t])

−1
q x

= (X
T
1 A
∼
q −X

T
2 ) · A · D∼Tq · (V[1:n−t])

−1
q · x = (X

T
1 −X

T
2 ) · D∼Tq · (V[1:n−t])

−1
q · x = 0 (mod q).

F The proof of proposition 6

We denote Ψ ′ =
(
ψ1

l1
· · · ψtlt

)
⊆ Rm×t. As it is a set of primitive vectors with respect

to Λ∗, it can be extended to a basis Ψ ′ = (Ψ ′ ?) of Λ∗, where the data in ? could be
omitted. Then Ψ ′

∼T
is a basis of Λ and Ψ ′

T · Λ = Ψ ′
T · Ψ ′∼TZn = Zn.

On the other hand, since Ψ ′
T · Λ =

(
Ψ ′T

?

)
· Λ =

(
Ψ ′T · Λ
?

)
, we know that

Ψ ′T · Λ = Zt, i.e.
〈
ψj
lj
, Λ
〉
= Z, j = 1, 2, · · · , t. This means that 〈ψj , Λ〉 = ljZ and

〈ψj , Λ〉 (mod p) = Z p
gcd(p,lj)

, j = 1, 2, · · · , t. To sum up, we have

ΨTΛ (mod p) =


Z p

gcd(p,l1)

...
Z p

gcd(p,lt)

 := Z̃t.

We define the group morphism φ : Λ→ Z̃t, x 7→ ΨTx (mod p). It is an epimorphism
and kerφ = Λ ∩ Λ⊥p (ΨT ). Then from the fundamental homomorphism theorem,∣∣∣∣ Λ

Λ ∩ Λ⊥p (ΨT )

∣∣∣∣ = ∣∣∣Z̃t∣∣∣ = ∣∣∣Z p
gcd(p,l1)

∣∣∣ · · · ∣∣∣Z p
gcd(p,lt)

∣∣∣ = t∏
j=1

p

gcd(p, lj)
=

pt∏t
j=1 gcd(p, lj)

.
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G A comparison

In [15], the adversary constructs the lattice Lpri(A, b) ⊆ Zm+n+1 and searches the

shortest non-zero vector ofL′pri(A, b) = Lpri(A, b)∩Λ⊥q (X
T
), whereX =

(
X
−JT

)
∈

Zm+n+1
q . According to [15], this does not change the dimension of the lattice, i.e.

dim
(
L′pri(A, b)

)
= dim (Lpri(A, b)) = m + n + 1. While from proposition 6, we

know that vol
(
L′pri(A, b)

)
≤ qt · vol (Lpri(A, b)) = qm+t.

Different from [15], by our approach, when conditions in equation (5) are met, the
dimension of the secret is bound to decrease by t using t modular hints. After all the
transform steps, dim (Lpri(W, g)) = m+ 1 and vol (Lpri(W, g)) = qm−n+t.

As we know, for a lattice, an increase in volume and a decrease in dimension both
make it easier to solve the uSVP instance on it. Let β0, β1 be the optimal blocksize for
the primal attack on Lpri(W, g) and L′pri(A, b) respectively. Then we shall show that,
β0 ≤ β1 always holds when conditions in equation (5) are met. The equation holds only
if vol

(
L′pri(A, b)

)
= qm+t. This is because in that case, from assumption 3,

β0 = argminβ∈N+

{
∃m′ > n, s.t.

√
β · σχ ≤ (δ0(β))

2β−m′−2 · q
m′−n+t
m′+1

}
m=m′−n
======== argminβ∈N+

{
∃m ∈ N+, s.t.

√
β · σχ ≤ (δ0(β))

2β−m−n−2 · q
m+t

m+n+1

}
= β1.

To some extent, it shows that, an increase in volume by a factor of qt has the same effect
as a decrease in dimension by t.

Although the probability of vol
(
L′pri(A, b)

)
= qm+t may be not low, there are

also some other situations. An example is given as follows.

It is easy to see that B−Tpri (A, b) =

−In AT

q
0

0 1
q
Im 0

0 − 1
q
bT 1

 is a basis of Lpri(A, b). Hence,

 It
Om×t
?

 (t < n) is a set of primitive vectors of L∗pri(A, b), where “?” can be arbitrary.

Now we suppose that q is a power of 2 and the hint description matrix X =

(
2It
Om×t

)
.

Then, J = XTS = 2S[1:t] (mod q) and X =

 2It
Om×t
−2ST[1:t]

. It is noticed that 1
2X is

primitive and from proposition 6, vol
(
L′pri(A, b)

)
= qt

2t · vol (Lpri(A, b)) =
qm+t

2t .

Remark 9. It should be pointed out that, as the method of [15] requires a smaller num-
ber of samples, the matrix “A” in the attack against (A, b) should be a submatrix of the
“A” in the attack against (W, g). But this does not affect our analysis above.
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