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Abstract. In this work, we study the security of sponge-based authenticated encryption schemes
against quantum attackers. In particular, we analyse the sponge-based authenticated encryption
scheme Slae as put forward by Degabriele et al. (ASIACRYPT’19) due to its modularity. We
show that the scheme achieves security in the post-quantum (QS1) setting in the quantum random
oracle model by using the one-way to hiding lemma. Furthermore, we analyse the scheme in a
fully-quantum (QS2) setting. There we provide a set of attacks showing that Slae does not achieve
ciphertext indistinguishability and hence overall does not provide the desired level of security.

1 Introduction

Authenticated encryption schemes with associated data (AEAD) [Rog02] are the main employed cryp-
tographic scheme when it comes to securing the communication between two parties who already share
a secret key by ensuring both confidentiality and authenticity of the exchanged messages. Several works
show that AEAD schemes can be constructed purely from sponges [DEM+17,DEM+20,JLM14,DJS19,
DEMS16], which were initially introduced as a tool to construct cryptographic hash functions. Recent
examples of such sponge-based AEAD schemes are Isap [DEM+17,DEM+20] and Slae [DJS19]. Observe
that these schemes are already analysed showing that they are even secure against side-channel leakage,
however, their security against quantum adversaries has yet to be studied.

Unlike public key cryptography that is based on number theoretic problems, which is completely
broken by Shor’s algorithm [Sho94], AEAD schemes are often assumed to be only mildly affected by
Grover’s algorithm [Gro96], although this assumption turns out to be delusive in some cases [BHN+19].
To compensate this, usually one simply doubles the key length. This approach indeed works for many
symmetric schemes in the standard model, namely those where their security proofs can be easily trans-
lated to one against quantum adversaries [Son14]. However, schemes that rely on random oracles [BR93]
cannot be translated in a straightforward manner and hence require more attention. In particular, trans-
lating their security to hold against quantum adversaries requires a proof in the quantum random oracle
model (QROM) [BDF+11], and it has recently been shown that proofs cannot always be translated from
the ROM to the QROM [YZ21]. In particular, this will also apply to sponge-based AEAD schemes where
we typically model the block function that underlies the sponge construction as a random oracle and
includes the schemes in [DEM+17,DEM+20,DJS19].

The security of cryptographic primitives against quantum adversaries can nowadays be divided into
two cases [Gag17,KLLN16b]. The first case corresponds to the setting of post-quantum security (usually
abbreviated as QS1) where the adversary only has quantum computing power. This setting covers the
scenario once the first large-scale quantum computer exists and corresponds to the setting described
above which typically requires switching from the ROM to the QROM. The second case deals with the
setting of quantum security (usually referred to as QS2) where protocol participants also have quantum
computing power. This covers a scenario where quantum computers are ubiquitous but also earlier
scenarios using more sophisticated attacks such as the frozen smart-card attack [GHS16].

Observe that security in the QS2 setting is more involved since the adversary gets superposition
access to the primitive, e.g., it can encrypt/sign messages in a superposition. Many schemes that are
secure in the QS1 setting are however completely broken in the QS2 setting as is shown by a series
of works [IHM+19, ATTU16, AR17, KLLN16a, KM10, KM12, RS15]. Yet another difficulty in the QS2
setting is that there are many different security notions [BZ13b,GHS16,MS16,CEV20,GKS21,CETU20,
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GYZ17, AMRS20, DDKA21]. These notions use different approaches to formalise the idea of allowing
the adversary to “encrypt/sign messages in a superposition” in order to obtain a security notion that
translates the classical intuition of the corresponding security notion to the QS2 setting.

Our Contribution. In this work, we study the security of sponge-based authenticated encryption schemes
against quantum attackers which has so far only received very little attention. In particular, we scrutinize
the scheme Slae as put forward by Degabriele et al. [DJS19] in both settings, namely in the QS1 and
QS2 setting. Observe that the beauty of Slae is its simplicity in terms of their construction, i.e., Slae is
a N2-composition [NRS14] of a symmetric key encryption scheme and a message authentication code. In
particular, Degabriele et al. show that Slae can be viewed in terms of smaller components (with slight
improvements by [KS20]), i.e., the encryption scheme consists of a sponge-based pseudorandom function
(PRF) and a sponge-based pseudorandom generator (PRG) while the MAC consists of the combination
of a sponge-based hash function and a sponge-based PRF (a more detailed description can be found in
Section 3). Note that our analysis does not only contribute towards the study of Slae but rather also
provides a QS1 and QS2 analysis of the core primitives themselves which is of independent interest. Note
that Slae is a leakage-resilient AEAD scheme. However, in this work we do not consider the leakage
setting but rather use the scheme Slae due to its simplicity in order to provide a thorough security
analysis of sponge-based AEAD schemes and the employed core primitives in the QS1 and QS2 setting
closing this gap in the literature.

In the QS1 setting, we are able to establish security for Slae. In particular, by using the one-way to
hiding lemma [Unr15b, AHU19], we can show that the underlying building blocks, namely the sponge-
based PRF and PRG are secure with respect to quantum adversaries. For the sponge-based hash function,
we show that we can leverage existing results [CBH+18] to the construction specifics of Slae. Finally,
being equipped with the established results, we can overall establish security of Slae in the QS1 setting.

In the QS2 setting, we analyse the ciphertext indistinguishability of Slae. Unlike the QS1 setting,
there are different notions for ciphertext indistinguishability in the QS2 setting which do not form a
strict hierarchy. We consider the two strongest, incomparable notions by Gagliardoni et al. [GHS16]
and Mossayebi and Schack [MS16]. We extend these notions to the nonce-based setting and show that
Slae achieves neither of these notions by showing attacks. Finally, we argue that one may establish QS2
security in the sense of [BZ13b] of the generic construction that underlies Slae. However, the security
when studying the sponge-based construction is left as an open problem.

As mentioned above, we chose to analyse Slae rather than other relevant sponge-based schemes
due to its modularity. Since Slae is based on a random transformation, we can leverage techniques
for the QROM, whereas other sponge-based primitives are typically based on a random permutation.
Our results yield post-quantum secure pseudorandom functions, pseudorandom generators, and hash
functions all constructed entirely from sponges. Since these are fundamental cryptographic building
blocks our contribution is more than just a post-quantum security proof for an AEAD scheme and can
be applied elsewhere. In particular, it provides a starting point for proving post-quantum security of
more practical schemes.

Related Work. Sponges were introduced by Bertoni et al. [BDPVA07] as a tool to construct crypto-
graphic hash functions which resulted in the hash function SHA-3. Since then, sponges were shown to
be a versatile tool allowing not only the construction of hash functions but also primitives including
authenticated encryption schemes [DEM+17,DEM+20,JLM14,DJS19,DEMS16].

Research in the realm of QS1 security of sponges mainly targets the security of hash functions. The
first result addresses sponge-based hash functions based on random transformations or non-invertible
random permutations [CBH+18]. The ultimate goal is a post-quantum proof for SHA-3 which is targeted
both by Unruh [Unr21]3 and Czajkowski [Cza21] using Zhandry’s compressed oracle technique [Zha19].
Apart from that we are not aware of other works considering the QS1 security of sponge-based construc-
tions.

In the QS2 setting, [CMSZ19] studies the quantum indifferentiability of sponges and [CHS19] analyses
the quantum indistinguishability of sponge-based pseudorandom functions. The analysis in [CHS19] uses
keyed functions for the underlying block function which allow the adversary only classical access to these
block functions while it has superposition access to the resulting pseudorandom function.

Soukharev et al. [SJS16] study the generic composition paradigms for authenticated encryption in
the QS2 setting according to the security notions put forth by Boneh and Zhandry [BZ13b]. However,

3 Observe that the current version of the paper is flawed.

2



their proof implicitly assumes that superposition queries by the adversary can be recorded which, at this
point, was unclear how to do as was pointed out Chevalier et al. [CEV20].

Structure of the Paper. In Section 2, we provide the necessary notation and background. The general
sponge construction and the particular instantiation Slae is provided in Section 3. In Section 4, we
provide a security analysis in the QS1 setting while in Section 5, we provide an analysis in the QS2
setting. Finally, we conclude the paper in Section 6.

2 Preliminaries

2.1 Notation

For any positive integer n ∈ N, we use [n] to denote the set {1, . . . , n}. For any two bit strings x and y of
length n, |x| denotes the size of x, x ‖ y denotes their concatenation and by x·y = x1y1⊕x2y2⊕. . .⊕xnyn
we denote their inner product. Furthermore, for a positive integer k ≤ |x|, we use the notation bxck to

denote the string when truncated to its k least significant bits while dxek denotes the string when
truncated to its k most significant bits. We denote the set of bit strings of size n by {0, 1}n, and we
denote by {0, 1}∗ the set of all bit strings of finite length. By writing x←$ X , we denote the process of
sampling at random a value from a finite set X and assigning it to x. We simply denote by par(x) the
parity of x. Furthermore, we denote by YX the set of all functions from X to Y. We assume familiarity
with the basics of quantum computation such as bra-ket notion for quantum states, e.g., |x〉, Hadamard
operators, and measurements. For an in-depth discussion we refer to [NC11].

2.2 Definitions

Authenticated Encryption. We begin with a definition of authenticated encryption with associated
data [Rog02,BN00].

Definition 1. An authenticated encryption scheme with associated data (AEAD) AEAD = (Enc, Dec)
is a pair of efficient algorithms associated with key space K, nonce space N , associated-data space H,
message space M, and ciphertext space C such that:

– The deterministic encryption algorithm Enc : K ×N ×H×M→ C takes as input a secret key K, a
nonce N , associated data A, and a message M . It outputs a ciphertext C .

– The deterministic decryption algorithm Dec : K×N ×H×C →M∪{⊥} takes as input a secret key
K, a nonce N , associated data A, and a ciphertext C . It outputs a message M or ⊥ indicating an
invalid ciphertext.

We say that an AEAD scheme is correct, if for all K ∈ K, N ∈ N , A ∈ H and M ∈ M, it holds that
Dec(K,N ,A, Enc(K,N ,A,M )) = M .

Throughout this work, we consider K = {0, 1}k , N = {0, 1}ν ,H = {0, 1}α,M = {0, 1}µ, and C = {0, 1}γ .
Note that we will use the term symmetric key encryption scheme to refer to an analogously defined
encryption scheme which does not admit associated data as a part of its input.

Security of an AEAD scheme now demands that an adversary cannot distinguish encryptions of
equal-length messages which corresponds to the usual CPA-security notion of encryption schemes. The
formal description of the game can be found on the left side of Fig. 1. Additionally, security also demands
that the adversary is not able to forge further valid ciphertexts which corresponds to an integrity notion
on the ciphertext level. The formal description of the games can be found on the right side of Fig. 1.

Definition 2. Let AEAD be an authenticated encryption scheme with associated data.

– For an adversary A, making qE queries to its encryption oracle, we define its IND-CPA advantage
as

AdvIND-CPA
AEAD (A) = 2 Pr[IND-CPAA → 1]− 1 .

– For an adversary A, making qE and qF queries to its encryption oracle and forge oracle, respectively,
we define its INT-CTXT advantage as

AdvINT-CTXT
AEAD (A) = Pr[INT-CTXTA → 1] .
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IND-CPA

K←$K
Q ← ∅
b←$ {0, 1}

b′ ←$AEnc(K,·,·,·,·)

return (b′ = b)

Enc(K,N ,A,M0,M1)

if |M0| 6= |M1| then
return ⊥

if N ∈ Q then

return ⊥
C ← Enc(K,N ,A,Mb)

Q ← Q∪ {N }
return C

INT-CTXT

K←$K
Q ← ∅
win← 0

AEnc(K,·,·,·),Forge(K,·,·,·)

return win

Enc(K,N ,A,M )

if (N , ·, ·) ∈ Q then

return ⊥
C ← Enc(K,N ,A,M )

Q ← Q∪ {(N ,A,C )}
return C

Forge(K,N ,A,C )

if (N ,A,C ) ∈ Q then

return ⊥
d← Dec(K,N ,A,C )

if d 6= ⊥ then

win← 1

return d

Fig. 1: Security games for AEAD.

Message Authentication Code. Next we will provide the basic definition of a message authentication
code.

Definition 3. A message authentication code (MAC) MAC = (Tag, Vfy) is a pair of efficient algorithms
associated with key space K and domain space X such that:

– The deterministic tagging algorithm Tag : K × X → {0, 1}τ takes as input a key K and an element
X . It returns a tag T of size {0, 1}τ .

– The deterministic verification algorithm Vfy : K × X × {0, 1}τ → {0, 1} takes as input a key K, an
element X , and a tag T and outputs 1 indicating that the input is valid, or otherwise 0.

We say that a MAC scheme is correct, if for all K ∈ K and any admissible input X ∈ X , it holds that
Vfy(K,X , Tag(K,X )) = 1.

SUF-CMA

K←$K
Q ← ∅
win← 0

ATag(K,·),Forge(K,·,·)

return win

Tag(K,M )

T ← Tag(K,M )

Q ← Q∪ {(M ,T )}
return T

Forge (K, M , T )

if (M ,T ) ∈ Q then

return ⊥
d← Vfy(K,M ,T )

if d = 1 then

win← 1

return d

Fig. 2: Security game for MAC.

Definition 4. Let MAC be a message authentication code. We define the SUF-CMA advantage of an
adversary A making at most qT queries to its tag oracle and qF many queries to its forge oracle as

AdvSUF-CMA
MAC (A) = Pr[SUF-CMAA → 1] ,

where the respective game is depicted in Fig. 2.

Pseudorandom Function. Next we define pseudorandom functions and their respective security.

Definition 5. Let F : K × X → Y be a deterministic function. We define the PRF advantage of an
adversary A against F as

AdvPRF
F (A) =

∣∣∣∣ Pr
K←$K

[AF(K,·) → 1]− Pr
F←$ YX

[AF(·) → 1]

∣∣∣∣ .
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Pseudorandom Generator. Next we define a pseudorandom generator and its security. Observe that we
specify a PRG with variable output length, where the length is specified as part of the input.

Definition 6. Let G : S × N → {0, 1}∗ be a pseudorandom generator with associated seed space S and
let ` ∈ N define the PRG’s output length. We define the PRG advantage of an adversary A against G as

AdvPRG
G (A) =

∣∣∣∣ Pr
z←$ S

[A(G(z , `))→ 1]− Pr
R←$ {0,1}`

[A(R)→ 1]

∣∣∣∣ .
Hash Function. Hash functions are a versatile cryptographic primitive that are efficiently computable
functions that compress bit strings of arbitrary length to bit strings of fixed length. Hash functions do
enjoy a variety of security properties and next we define collision resistance over a domain X = {0, 1}∗.

Definition 7. Let H : X → {0, 1}w be a hash function constructed from a random transformation ρ. We
define the collision-resistance advantage of an adversary A against H where the adversary has (quantum)
oracle access to ρ as

AdvCR
H (A) = Pr[(X0,X1)←$Aρ : H(X0) = H(X1) ∧ X0 6= X1 ∧ X0,X1 ∈ X ] .

Since we consider hash functions in the QS1 and QS2 setting in this work, we require two additional
properties when arguing about the security of a hash function, namely collapsing hash functions and
zero-preimage resistance.

The collapsing property of hash functions is due to Unruh [Unr16], who observed that collision resis-
tance is not sufficient to construct commitment schemes secure against quantum adversaries.4 Intuitively,
a hash function is collapsing if an adversary can not distinguish between a measurement of the output
(the hash value) and a measurement of the input. In [Unr15a, Lemma 25], Unruh shows that collaps-
ing hash functions are also collision resistant. Next we simply review the collapsing property of hash
functions [Unr16] in the formalisation of [CBH+18].

Definition 8. For algorithms A and B, consider the following games given in Fig. 3. There are quantum
registers S and M , and M(M) is a measurement of M in the computational basis.

For a set m, we call an adversary (A,B) valid on m for HO if and only if Pr[HO(m) = h ∧m ∈m]
when we run (S,M, h)← AO() and measure M in the computational basis as m.

A function H is collapsing on m if and only if for any quantum-polynomial-time adversary (A,B)
that is valid for HO on m and |Pr[b = 1: Game1]− Pr[b = 1: Game2]| is negligible.

Game1

(S,M, h)← AO()

m←M(M)

b← BO(S,M)

Game2

(S,M, h)← AO()

b← BO(S,M)

Fig. 3: Collapsing Games.

Zero-preimage resistance states that it is infeasible for the adversary to output an element from the
function’s domain which evaluates to the zero string.

Definition 9. Let fρ : {0, 1}x → {0, 1}y be a function. We define the zero-preimage resistance advantage
of an adversary A against fρ where the adversary has (quantum) oracle access to ρ as

AdvZP
fρ (A) = Pr[fρ(X ) = 0y : X ←$Aρ] .

4 In a nutshell, a quantum adversary can open a commitment to an arbitrary message but not to two different
messages. Thus it breaks the binding property without finding a collision.
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Quantum Random Oracle Model and One-way to Hiding Lemma. The quantum random oracle model
(QROM) was formalised by Boneh et al. [BDF+11] extending the random oracle model (ROM) [BR93]
to the quantum setting. The QROM has become the de-facto standard for analysing primitives which
rely on random oracles. Boneh et al. [BDF+11] gave a separation between the ROM and the QROM, yet
under non-standard assumptions. Recently, Yamakawa and Zhandry [YZ21] provided a separation under
standard assumptions. More precisely, let H : {0, 1}n → {0, 1}n ,5 then the QROM allows a quantum
adversary access to the unitary UH that does the following∑

x,y∈{0,1}n
αx,y |x〉 |y〉 7→

∑
x,y∈{0,1}n

αx,y |x〉 |y ⊕ H(x)〉 .

We write AH to denote that A has oracle access to H which means having access to an oracle performing
the unitary above.

The one-way to hiding (O2H) lemma is a fundamental tool for proofs in the quantum random oracle
model (QROM) . It provides an upper bound on the distinguishing advantage of a quantum adversary
between different random oracles when having superposition access to it. The first variant was given
by Unruh [Unr15b]. Subsequently, variants achieving tighter bounds were given in [AHU19, BHH+19,
KSS+20], yet at the cost of a more restricted applicability.

Below we recall the O2H lemma by Unruh [Unr15b], albeit in the formulation put forth by Ambainis
et al. [AHU19].

Lemma 10 (One-way to hiding (O2H) [AHU19]). Let G, H : X → Y be random functions, let z be
a random bitstring, and let S ⊂ X be a random set such that ∀x /∈ S, G(x) = H(x). (G,H,S, z) may have
arbitrary joint distribution. Furthermore, let AH be a quantum oracle algorithm which queries H at most
q times. Define an oracle algorithm BH as follows: Pick i ← $ [q ]. Run AH

q (z) until just before its i-th
query to H. Measure the query in the computational basis, and output the measurement outcome. Then
it holds that ∣∣Pr[AH(z)→ 1]− Pr[AG(z)→ 1]

∣∣ ≤ 2q
√

Pr[x ∈ S |BH(z)→ x] .

3 The sponge construction and Slae

In this section, we provide the basic syntax about the sponge construction. Being equipped with the
required syntax, we review Slae which is a N2-based authenticated encryption scheme [NRS14] based
on the sponge construction. Recall that a N2-construction follows the Encrypt-then-MAC paradigm
and Slae is a refinement that builds a nonce-based AEAD scheme from a nonce-based symmetric key
encryption scheme and a vector MAC.

3.1 Sponge Construction

The sponge construction has been introduced by Bertoni et al. [BDPVA07] and has been used to build
various cryptographic primitives. In Fig. 4, we provide an illustration of the plain sponge construction.

0 ρ
⊕

N1

ρ
⊕

N2

ρ
⊕

N3

ρ
⊕

N4

ρ

Z1 Z2

absorb squeeze

Fig. 4: Plain sponge using four rounds of absorbing and two rounds of squeezing.

The sponge construction consists of a so-called absorbing phase and a squeezing phase that is built
upon a transformation ρ that is iteratively called on its input. This transformation basically maps strings

5 We assume that domain and co-domain are of the same size as it is the only case we are considering in this
work.
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of length n to strings of the same length, and in particular one can decompose n into two values r + c
where r is called the rate and c is called the capacity. After each iteration of the transformation we
refer to its output as the state S . Furthermore, we usually refer to the leftmost r bits of the state as
the outer part S̄ , which is equivalent to dSer , and we refer to the remaining c bits as the inner part Ŝ ,
which is equivalent to bScc . In order to input some element N , this input is first padded to a non-zero
multiple of the rate r . For this, we use an injective padding function pad to get l ≥ 1 input blocks
N1 ‖ N2 ‖ . . . ‖ Nl = pad(N ). At the ith iteration, Ni is XORed with the outer part S̄ before being
inputted to the transformation, i.e., more formally Yi ← (Ni ⊕ S̄i) ‖ Ŝi and evaluating Si+1 ← ρ(Yi). In
the squeezing phase, one can produce an output in one or more iterations obtaining r bits of output per
iteration, i.e., more formally at the jth iteration the output Zj is produced by Zj ← S̄j .

3.2 The FGHF’ Construction and Slae

Slae-Enc(K,N ,A,M )

C ← SlEnc(K,N ,M )

T ← SlMac(K, (N ,A,C ))

return (C ,T )

SlEnc-Enc(K,N ,M )

z ← SlFunc(K,N )

Z ← SPrg(z , |M |)
C ← Z ⊕M

return C

SlMac-T(K, (N ,A,C ))

H ← SvHash(N ,A,C )

T ← SlFunc(K, H)

return T

SlFunc(K,N )

l ←
⌈
|N |
r

⌉
Y0 ← K

for i = 1..l

Si ← ρ(Yi−1)

Yi ← (Ni ⊕ S̄i) ‖ Ŝi
Sl+1 ← ρ(Yl)

return Sl+1

SPrg(z , y)

l ←
⌈
y
r

⌉
S0 ← z

for i = 1..l

Si ← ρ(Si−1)

Zi ← S̄i

Z ← Z1 ‖ . . . ‖ Zl

return bZ cy

SvHash(N ,A,C )

S0 ← 0n

Y0 ← (N ⊕ S̄0) ‖ Ŝ0

S1 ← ρ(Y0)

u←
⌈
|A|
r

⌉
for i = 1..u

Yi ← (Ai ⊕ S̄i) ‖ Ŝi
Si+1 ← ρ(Yi)

Ŝu+1 ← Ŝu+1 ⊕ (1 ‖ 0c−1)

v ←
⌈
|C |
r

⌉
for i = u+ 1..u+ v

Yi ← (Ci−u ⊕ S̄i) ‖ Ŝi
Si+1 ← ρ(Yi)

h← bSu+v+1cw
return h

Fig. 5: Pseudocode of Slae and the underlying components. We only provide the details of the encryption
and tagging algorithms. Decryption and verification works in the obvious reversed way.

Degabriele et al. [DJS19] provide a generic N2-construction [NRS14] of a leakage-resilient authenti-
cated encryption scheme with associated data called the FGHF’ construction. In particular, they show
that the encryption component can be constructed from a fixed-input length function family that retains
pseudorandomness in the presence of leakage (F ) combined with a (standard) pseudorandom genera-
tor (G) while the authentication component is built from a collision-resistant hash function (H) and
a fixed-input length function family that retains both pseudorandomness and unpredictability in the
presence of leakage (F ′). Overall this yields a leakage-resilient AEAD scheme. Observe that Krämer
and Struck [KS20] showed that leakage-resilient pseudorandom functions suffice to build the scheme of
Degabriele et al. [DJS19] dropping the unpredictability requirement.

Furthermore, Degabriele et al. [DJS19] show that the generic construction FGHF’ can be instantiated
entirely from the sponge construction using a random transformation. Their particular sponge construc-
tion is called Slae which is composed of a symmetric key encryption scheme SlEnc and a MAC SlMac
according to the N2-construction. In particular, viewing each of the schemes in terms of their smaller
components, Degabriele et al. build SlEnc from a leakage-resilient function SlFunc and a pseudoran-
dom generator SPrg while SlMac can be built from a collision-resistant hash function SvHash and a
leakage-resilient function SlFunc, and a formal description is given in Fig. 5. Regarding the security of
Slae, they prove the security via a composition theorem for the N2-construction in the leakage setting
as established by Barwell et al. [BMOS17].
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However, the quantum resistance of Slae has not been considered yet. In the following, we will
scrutinize the Slae construction in this regard and we set the respective leakage sets to be empty.
Therefore, we analyse the construction in the standard setting without leakage.

4 Post-Quantum (QS1) Security

In this section we analyse the security of Slae against quantum adversaries in the QS1 setting.

4.1 Security of SlFunc

The sponge-based pseudorandom function SlFunc is illustrated in Fig. 6 while the pseudocode can be
found in Fig. 5. The function initialises the state of the sponge with the key and then absorbs the input,
in case of Slae the nonce N , r bits at a time. After the nonce has been absorbed, the output is obtained
by applying the transformation ρ a final time and outputting the state. Note that the function outputs
the full state rather than squeezing it over several rounds. That is also the reason why ρ is required to
be a random transformation rather than a random permutation. Otherwise, an adversary could simply
undo the transformation from the output by applying the inverse permutation. The theorem below gives
a bound on distinguishing SlFunc from a random function when having superposition access to the
underlying random oracle ρ. The proof utilises the O2H lemma (cf. Lemma 10).

K ρ ρ ρ ρY0 S1 Y1 S2 Yl−1 Sl Yl Sl+1

⊕ ⊕ . . .

. . .

⊕ ⊕

N1 N2 Nl−1 Nl

Fig. 6: Sponge-based pseudorandom function SlFunc.

Theorem 11. Let F = SlFunc be the function displayed in Fig. 6. Then for any quantum adversary
A, making qF (classical) queries to SlFunc and qρ (quantum) queries to ρ, it holds that

AdvPRF
SlFunc(A) ≤ q2

F + qF
2n+1

+ 2qρ

√
2ν

2n
.

Proof. Let l =
⌈
ν
r

⌉
be the number of absorption steps and we assume for simplicity that ν is a multiple

of the rate. We further recursively define sets Yi as

Y0 = {K} and Yi = {R ‖ bρ(x)cc |R ∈ {0, 1}
r , x ∈ Yi−1}

for all i ∈ {1, . . . , l}, i.e., Yi is the set of all possible values that can occur as input to ρ while evaluating
F(K, ·). It follows that |Yi| ≤ 2ir and, in particular, |Yl | ≤ 2lr = 2ν . Note that every input N defines a
sequence of states Y0,Y1, . . . ,Yl that occur while evaluating the sponge. For an input N , let Yi[N ] denote
the state Yi for this particular input, e.g., Y1[N ] = (dρ(K)er ⊕N1) ‖ bρ(K)cc , where N = N1 ‖ . . . ‖ Nl .
In particular, for every input N it holds that Y0[N ] = K.

We want to bound the following difference

AdvPRF
SlFunc(A) =

∣∣∣∣ Pr
K←$K

[AF(K,·),ρ → 1]− Pr
F←$ YX

[AF(·),ρ → 1]

∣∣∣∣ .
In order to do this, we define the oracle ρ∗, where ρ∗(Yl [N ]) = F(N ) for all Yl [N ] ∈ Yl . That is, oracle
ρ∗ is reprogrammed on all final input states Yl [N ] to output the output of a random function F on the
input N . Then it holds that∣∣∣∣ Pr

K←$K
[AF(K,·),ρ → 1]− Pr

F←$ YX
[AF(·),ρ → 1]

∣∣∣∣
≤
∣∣∣∣ Pr
K←$K

[AF(K,·),ρ → 1]− Pr
F←$ YX

[AF(·),ρ∗ → 1]

∣∣∣∣
+

∣∣∣∣ Pr
F←$ YX

[AF(·),ρ∗ → 1]− Pr
F←$ YX

[AF(·),ρ → 1]

∣∣∣∣ .
8



For the first difference on the right-hand side, the oracles are consistent in both cases. However, if the
adversary finds a collision on the final input to ρ for SlFunc(K, ·), more precisely, two inputs N and N ′

such that dN eν−r 6= dN ′eν−r and Yl [N ] = Yl [N
′], then these two inputs will result in the same output

for F and (most likely) different outputs for F . Finding such a collision is a counting argument over the
number of queries to the function and an application of Gaussian summation. Hence, it follows that∣∣∣∣ Pr

K←$K
[AF(K,·),ρ → 1]− Pr

F←$ YX
[AF(·),ρ∗ → 1]

∣∣∣∣ ≤ q2
F + qF
2n+1

.

For the second difference, we can apply the O2H lemma (cf. Lemma 10) which yields∣∣∣∣ Pr
F←$ YX

[AF(·),ρ∗ → 1]− Pr
F←$ YX

[AF(·),ρ → 1]

∣∣∣∣ ≤ 2qρ

√
Pr[x ∈ Yl | BF(·),ρ → x] .

Recall that BF(·),ρ simply runs AF(·),ρ and outputs the measurement outcome of a randomly chosen
query to ρ. However, A has no information about the set Yl , hence we conclude with

2qρ

√
Pr[x ∈ Yl | BF(·),ρ → x] ≤ 2qρ

√
|Yl |
2n
≤ 2qρ

√
2ν

2n
.

Collecting everything yields

AdvPRF
SlFunc(A)=

∣∣∣∣ Pr
K←$K

[AF(K,·),ρ → 1]− Pr
F←$ YX

[AF(·),ρ → 1]

∣∣∣∣ ≤ q2
F + qF
2n+1

+ 2qρ

√
2ν

2n
. ut

We would like to point out the following. The length of the nonce ν is typically of fixed size, e.g., in case
of the NIST lightweight cryptography standardization process [NIST15] the nonce is assumed to be 12
bytes long. In particular, ν will be much smaller than the size of the sponge n.

4.2 Security of SPrg

In this section we show that the sponge-based pseudorandom generator SPrg is secure against adversaries
having superposition access to the underlying random oracle ρ. The PRG SPrg is displayed in Fig. 7 and
the respective pseudocode is given in Fig. 5. The construction deviates from more common constructions
for pseudorandom generators since it initialises the state of the sponge with the seed rather than absorbing
it. The output is then generated by squeezing r bits at each iteration of the sponge. Similar to the previous
section, the proof relies on the O2H lemma.

ρ ρ ρ ρz S1 S2 S3 S4 Sl−1 Sl

. . .

. . .

Z1 Z2 Z3 Z4 Zl−1 Zl

Fig. 7: Sponge-based pseudorandom generator SPrg.

Theorem 12. Let SPrg be the pseudorandom generator displayed in Fig. 7. Then for any quantum
adversary A, making q (quantum) queries to ρ, and receiving an input of length µ it holds that

AdvPRG
SPrg(A) ≤ 2lq√

2c
,

where l =
⌈
µ
r

⌉
is the number of squeezing steps to obtain the required output length µ.

Proof. Let l =
⌈
µ
r

⌉
be the number of squeezing steps. We assume, for sake of simplicity, that µ is a

multiple of r . For a seed z , let S1,S2, . . . ,Sl denote the sequence of states that occur during evaluation of
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the sponge, i.e., Si = ρi−1(z ), where ρi corresponds to i consecutive evaluations of ρ. We want to bound
the following difference

AdvPRG
SPrg(A) =

∣∣∣∣ Pr
z←$ S

[Aρ(Z )→ 1]− Pr
R←$ {0,1}µ

[Aρ(R)→ 1]

∣∣∣∣ ,
where Z = Z1 ‖ . . . ‖ Zl = SPrg(z , lr), i.e., obtaining an output of length lr using SPrg on seed z
and R = R1 ‖ . . . ‖ Rl , such that |Zi| = |Ri| = r . We write R[i,j] for Ri ‖ . . . ‖ Rj , the same for Z . In
particular, R[i,j] for i > j equals the empty string. In the following we leave out the probability spaces
for readability. We obtain

AdvPRG
SPrg(A) =

∣∣Pr[Aρ(Z[1,l])→ 1]− Pr[Aρ(R[1,l])→ 1]
∣∣

≤
l∑
i=1

∣∣Pr[Aρ(R[1,i−1] ‖ Z[i,l])→ 1]− Pr[Aρ(R[1,i] ‖ Z[i+1,l])→ 1]
∣∣ .

We start with the first difference, that, after simple rewriting, is,∣∣Pr[Aρ(Z1 ‖ Z[2,l])→ 1]− Pr[Aρ(R1 ‖ Z[2,l])→ 1]
∣∣

≤
∣∣Pr[Aρ(Z1 ‖ Z[2,l])→ 1]− Pr[Aρ1(R1 ‖ Z[2,l])→ 1]

∣∣
+
∣∣Pr[Aρ1(R1 ‖ Z[2,l])→ 1]− Pr[Aρ(R1 ‖ Z[2,l])→ 1]

∣∣ ,
where ρ1(R1 ‖ [S1]c) = S2. Then it holds that the first difference above is 0, as the relation between R1

and ρ1 is the same as between Z1 and ρ, and we merely need to bound the second difference, which only
differs in the random oracle (ρ and ρ1) at input R1 ‖ [S1]c . Let S1 = {R1 ‖ [S1]c}, then we can apply
the O2H lemma (cf. Lemma 10) to obtain∣∣Pr[Aρ1(R1 ‖ Z[2,l])→ 1]− Pr[Aρ(R1 ‖ Z[2,l])→ 1]

∣∣ ≤ 2q
√

Pr[x ∈ S1 | Bρ(R1 ‖ Z[2,l])→ x] .

While A knows R1, it has no information about [S1]c (note that Zi, for i > 1 provides no information
about S1 due to ρ being one-way in the random oracle model). This yields

Pr[x ∈ S1 | Bρ(R1 ‖ Z[2,l])→ x] ≤ |S1|
2c
≤ 1

2c
.

The same argument applies to the other differences, where more and more r bit blocks of A’s input are
replaced with Ri. More precisely, we obtain∣∣Pr[Aρ(R[1,i−1] ‖ Z[i,l])→ 1]− Pr[Aρ(R[1,i] ‖ Z[i+1,l])→ 1]

∣∣
≤ 2q

√
Pr[x ∈ Si | Bρ(R[1,i] ‖ Z[i+1,l])→ x] ≤ 2q√

2c
,

where Si = {Ri ‖ [Si]c}. Collecting everything then yields

AdvPRG
SPrg(A) =

∣∣Pr[Aρ(Z[1,l−1])→ 1]− Pr[Aρ(R[1,l−1])→ 1]
∣∣

≤
l∑
i=1

∣∣Pr[Aρ(R[1,i−1] ‖ Z[i,l])→ 1]− Pr[Aρ(R[1,i] ‖ Z[i+1,l])→ 1]
∣∣

≤
l∑
i=1

2q
√

Pr[x ∈ Si | Bρ(R[1,i] ‖ Z[i+1,l])→ x] ≤ 2lq√
2c
. ut

4.3 Security of SvHash

In this section we analyse the QS1 security of SvHash which we display in Fig. 8 and its respective
pseudocode can be found in Fig. 5. Observe that in order to compute a hash digest, the internal state
is initialised to an evaluation of the random transformation of a zero bit string of length n XORed with
the passed nonce. Afterwards the padded associated data and padded ciphertext are absorbed blockwise.
Degabriele et al. chose to employ a domain separation to separate the boundary between associated data
and ciphertext consisting of XORing the string 1 ‖ 0c−1 to the inner state Ŝ as soon as the associated
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data has been absorbed. Observe that the domain separation can be viewed as a sponge construction
with a rate increased by one bit. In this sense, an adversary A against SvHash with rate r and capacity
c can be viewed as an adversary against the plain sponge-based hash function with rate r + 1 and
capacity c − 1, where A guarantees that the (r + 1)th bit of each input block is 0 except for the block
which corresponds to absorbing the first ciphertext block. Hence a bound for the plain sponge-based
hash function directly yields a bound for SvHash by accounting for the one bit loss in the capacity.

0 ρ
⊕

N

ρ
⊕

A1

. . .

. . .

ρ
⊕

Au

ρ
⊕

⊕

C1

. . .

. . .

1 ‖ 0c−1

ρ
⊕

Cv

Fig. 8: Sponge-based Hash function SvHash.

Theorem 13. Let SvHash be the hash function as displayed in Fig. 8. Then for any quantum adversary
A making q (quantum) queries to ρ, it holds that

AdvCR
SvHash(A) ≤

√
ε1 + l · ε2 + ε3 ,

where ε1 ≤ (q + 1)22−c+4, ε2 ≤ q3
(
δ′+324
2c−1

)
+ 7δ

√
3(q+4)3

2c and ε3 ≤ q3
(
δ′+324
2w+1

)
+ 7δ

√
3(q+4)3

2w+2 with

non-zero constants δ and δ′ as well as l =
⌈
µ
r

⌉
where µ is the length of the (padded) message.

Proof. The above collision resistance bound can be obtained from a combination of results from Cza-
jkowski et al. [CBH+17] and Unruh [Unr15a] with a slight modification that stems from the way SvHash
is constructed. Observe that the small modification is due to the interpretation that we consider a sponge-
based hash function with the capacity being reduced by one bit and hence the rate being increased by
one bit. We take care of this one bit loss when applying the following results.

A crucial property in the realm of hash functions in the post-quantum setting is called the collapsing
property which is a strengthening of collision resistance and Unruh has showed in [Unr15a,Unr16] that
if a hash function is collapsing then this also implies that it is quantum collision resistant. Additionally,
Czajkowski et al. [CBH+17,CBH+18] showed that if the underlying function of the sponge construction
is a random transformation then the sponge construction is collapsing. Being equipped with their result,
we can derive the required bound for our setting.

We will follow the proof strategy put forward by Czajkowski et al. [CBH+17, Theorem 33] to show
that the sponge construction is collapsing. This requires to show that the inner state Ŝ is collapsing in
the absorbing phase while the outer state S̄ is collapsing in the squeezing phase and that there are no
zero-preimages in the inner state Ŝ . Then using [Unr15a, Lemma 25] provides us with the implication
that the sponge construction is then also collision resistant. It now remains to apply the above strategy
appropriately to derive the bound.

We have that l =
⌈
µ
r

⌉
and by [CBH+17, Theorem 33], we know that the collapsing advantage

is bounded by
√
ε1 + l · ε2 + ε3, where ε1 corresponds to the probability of finding zero-preimages,

ε2 corresponds to the collapsing advantage of the inner state and ε3 corresponds to the collapsing
advantage of the outer state, respectively. By applying [CBH+17, Lemma 19], we obtain that ε1 ≤
(q + 1)22−c+4. By a simple combination of [CBH+17, Lemma 32] and [Unr15a, Theorem 38], we can

derive ε2 ≤ q3
(
δ′+324
2c−1

)
+ 7δ

√
3(q+4)3

2c and ε3 ≤ q3
(
δ′+324
2w+1

)
+ 7δ

√
3(q+4)3

2w+2 where both δ and δ′ are

non-zero constants. Then by [Unr15a, Lemma 25], we have a tight reduction from collapsing to collision
resistance and hence the same bound holds for the collision resistance of the sponge construction. ut

4.4 Security of Slae

In this section we show that the IND-CPA and INT-CTXT security of the authenticated encryption
scheme Slae in the QS1 follows from the QS1 security of the underlying primitives SlFunc, SPrg, and
SvHash.
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IND-CPA Security of Slae. IND-CPA security follows from SlFunc and SPrg being a secure PRF and
PRG, respectively. Theorem 14 first shows that SlFunc and SPrg yield SlEnc being IND-CPA-secure
while Theorem 15 then establishes the IND-CPA security of Slae.

Theorem 14. Let SlFunc be a pseudorandom function and SPrg a pseudorandom generator. Let
further SlEnc be the symmetric key encryption scheme constructed from SlFunc and SPrg as shown
in Fig. 5. For any quantum adversary A, making qEnc queries to its encryption oracle, against the
IND-CPA security there exist adversaries Aprf and Aprg against SlFunc and SPrg, respectively, such
that

AdvIND-CPA
SlEnc (A) ≤ 2 AdvPRF

SlFunc(Aprf ) + 2q AdvPRG
SPrg(Aprg) .

Proof. The proof can be obtained from [DJS19] by dropping everything related to the leakage setting.
It proceeds in two game hops. The first game hop replaces the function SlFunc by a random function
which can be straightforwardly bound by the PRF advantage of SlFunc. More precisely, Aprf uses
its own oracle for everything related to SlFunc while simulating SPrg using (classical) queries to the
random oracle ρ. All (quantum) queries by A to ρ are simply forwarded by Aprf , as are the responses
back to A.

The second game hop replaces the output of SPrg by a random output. A standard hybrid argu-
ment [FM21] shows that this can be bound by the security of SPrg. The reduction Aprg picks a random
query of A to its encryption oracle, where it uses its own input (either the output of SPrg or a random
bit string) to encrypt the message. Prior queries are answered by XORing random bit string to the
message while subsequent queries are answered by simulating SPrg using (classical) queries to ρ. All
(quantum) queries by A to ρ are simply forwarded by Aprg , as are the responses back to A.

The resulting game yields identically distributed ciphertexts, irrespectively of the message. The factor
2 accounts for doing the game hops for both cases b = 0 and b = 1. ut

Theorem 15. Let SlEnc be the symmetric key encryption scheme and SlMac be a MAC. Let further
Slae be the authenticated encryption scheme constructed from SlEnc and SlMac as shown in Fig. 5.
For any quantum adversary A, making qEnc queries to its encryption oracle, against the IND-CPA security
there exists an adversary Ase , such that

AdvIND-CPA
Slae (A) ≤ AdvIND-CPA

SlEnc (Ase) .

Proof. The proof proceeds by a simple reduction. In more detail, the reduction Ase picks a key for the
MAC SlMac. For every query to the encryption oracle by A, Ase invokes its own encryption oracle and
locally computes the tag of the ciphertext using (classical) queries to ρ before sending the ciphertext and
the tag back to A. Every (quantum) query by A to ρ is simply forwarded by Ase . ut

INT-CTXT Security of Slae. The INT-CTXT security follows from SlFunc being a secure PRF and
SvHash being a collision-resistant hash function. In Theorem 16, we show that both yield a SUF-CMA-
secure MAC SlMac. Subsequently, Theorem 17 shows that the SUF-CMA security of SlMac ensures
INT-CTXT security of Slae.

Theorem 16. Let SlFunc be a function and SvHash a hash function. Let further SlMac be the MAC
constructed from SlFunc and SvHash as shown in Fig. 5. For any quantum adversary A, making
qT queries to its tagging oracle and qF to its forge oracle, against the SUF-CMA security there exist
adversaries Aprf and Ahash against SlFunc and SvHash, respectively, such that

AdvSUF-CMA
SlMac (A) ≤ AdvPRF

SlFunc(Aprf ) + AdvCR
SvHash(Ahash) +

qF
2τ

.

Proof. We assume that all messages queried by A result in different hash values, otherwise, we obtain a
simple reduction Ahash from the collision resistance of SvHash.

Then the proof proceeds by a game hop in which SlFunc is replaced by a random function. The
reduction Aprf will invoke its own function to simulate the tagging and verification of SlMac and
(classical) queries to ρ to evaluate SvHash. Every (quantum) query to ρ by A is simply forwarded by
Aprf .

The resulting game is bound by a simple counting argument that A predicts the output of a random
function. ut
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Theorem 17. Let SlEnc be the symmetric key encryption scheme and SlMac be a MAC. Let further
Slae be the authenticated encryption scheme constructed from SlEnc and SlMac as shown in Fig. 5.
For any quantum adversary A, making qE queries to its encryption oracle and qF queries to its forge
oracle, against the INT-CTXT security there exists an adversary Amac, such that

AdvINT-CTXT
Slae (A) ≤ AdvSUF-CMA

SlMac (Amac) .

Proof. The reduction Amac picks a key for the symmetric key encryption scheme SlEnc. For every query
to the encryption oracle by A, Amac locally computes the ciphertext using (classical) queries to ρ and
obtains the tag using its own tagging oracle. It then sends the ciphertext and the tag back to A. For
every forgery attempt by A, Amac queries the ciphertext and the tag as its own forgery attempt. If the
tag verifies correctly, Amac locally decrypts the ciphertext using the sampled key and (classical) queries
to ρ and sends the message back to A, otherwise, i.e., if the tag was invalid, Amac simply returns ⊥ to
A. Every (quantum) query by A to ρ is simply forwarded by Ase . ut

5 Quantum (QS2) Security

In this section we study the security of Slae in the QS2 setting, where both the adversary and the
challenger are quantum. Unlike the QS1 setting, the QS2 setting comes with several security notions.
We analyse Slae, or even more precisely its encryption component SlEnc, with respect to the quantum
security notions put forward in [BZ13b,GHS16,MS16] providing positive and negative results.

5.1 QS2 Security Notions for SKE

Unlike the QS1 setting, there are several notions in the QS2 setting for encryption schemes. The first
notion, called IND-qCPA, was presented by Boneh and Zhandry [BZ13b]. This notion allows the adversary
superposition queries in the learning (qCPA) phase, while its challenge (IND) phase is restricted to
classical queries. They further showed that simply allowing a quantum indistinguishability phase results
in an unachievable security notion, called fqIND-CPA. More precisely, they consider a left-or-right oracle
which performs the following∑

x0,x1,y

αx0,x1,y |x0〉 |x1〉 |y〉 7→
∑

x0,x1,y

αx0,x1,y |x0〉 |x1〉 |y ⊕ Enc(K, xb)〉 .

This operator entangles the ciphertext register with one of the message registers. Boneh and Zhandry
show how this entanglement can be exploited to determine the bit b, irrespectively of the underlying
encryption scheme.

Later, Gagliardoni et al. [GHS16] and Mossayebi and Schack [MS16] provided security notions
which allow the challenge (IND) phase to be quantum while not suffering from the impossibility re-
sult from [BZ13b].

An exhaustive study of QS2 security notions for encryption schemes is given by Carstens et al. [CETU20].
Their study includes the aforementioned notions, along with many variants differing in the number of
queries during challenge resp. learning phase. They show, surprisingly, that the notions do not form a
strict hierarchy. Instead, the notions by Gagliardoni et al. [GHS16] and Mossayebi and Schack [MS16]
are incomparable but, together, imply all other notions. To ensure security in the QS2 setting, schemes
have to be analysed with respect to both of these notions.

Nonce-respecting Adversaries in the QS2 Setting. Another question that arises for the security of Slae,
deals with the nonce selection. Typically, adversaries are assumed to be nonce-respecting, meaning that
they never repeat a nonce. While this is well defined in both the classical as well as QS1 setting, there is
no definition for such adversaries in the QS2 setting. Kaplan et al. [KLLN16a] mention this problem and
sidestep it by letting the game pick the nonce at random. Thus, they essentially switch to the weaker IV
setting which is well-studied in the classical setting. In our adapted security notions, we let the adversary
submit a nonce register along with its message(s). We observe that it is not necessary to observe nonces
in superposition since all QS2 notions for encryption schemes [BZ13b, MS16, CEV20, GHS16, GKS21]
consider the randomness (in case of Slae the nonce) to be classical.6 To comply with this, we let the
challenger measure the nonce register, thus ensuring a classical nonce, and reject a query if a nonce
repeats.

6 The same applies to QS2 notions for MACs and signatures [BZ13b,BZ13a,AMRS20,DDKA21].
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5.2 Left-or-Right Security of SlEnc

The notion by Gagliardoni et al. [GHS16] follows a left-or-right approach, similar to the one by Boneh and
Zhandry [BZ13b], in which the adversary submits two messages (possibly in superposition) and receives
the encryption of one of the two. The main difference is that Gagliardoni et al. use type-2 operators
which operate directly on the register (instead of XORing the output to a separate output register).
These operators are more powerful than the corresponding type-1 operator and they can only be realised
for functions that are reversible. Type-2 operators were first studied by Kashefi et al. [KKVB02] and
have further been studied by Carstens et al. [CETU20] for symmetric key encryption and by Gagliardoni
et al. [GKS21] for public key encryption.

More formally those operators can be formalised as follows. Let F : {0, 1}n → {0, 1}n be a function.

The type-1 operator for F is the unitary U
(1)
F that does the following∑

x,y∈{0,1}n
αx,y |x〉 |y〉 7→

∑
x,y∈{0,1}n

αx,y |x〉 |y ⊕F(x)〉 .

Observe that the realisation of U
(1)
F is efficient if F can be realised efficiently [NC11]. The type-2 operator

for F is the unitary U
(2)
F that does the following∑

x∈{0,1}n
αx |x〉 7→

∑
x

αx |F(x)〉 .

A realisation of a type-2 operator is, unlike for type-1 operators, not straightforward. Kashefi et al. [KKVB02]
show that they can be realised using type-1 operators for both F and F−1. Gagliardoni et al. [GHS16]
use this to show that type-2 operators for symmetric key encryption schemes can be realised using type-1
operators for encryption and decryption (cf. Fig. 9).

Using type-2 operators, Gagliardoni et al. [GHS16] bypass the impossibility result by Boneh and
Zhandry [BZ13b]. Since the adversary only receives a ciphertext register, it can not exploit the entan-
glement between registers as was the case for fqIND-CPA.

U
(1)
Enc U

(1)
Dec

|N 〉

|M 〉

|0〉

|N 〉

|C 〉

|0〉

Fig. 9: Circuit for realising the type-2 operator U
(2)
Enc using type-1 operators U

(1)
Enc and U

(1)
Dec for Enc and

Dec, respectively.

Below we define LoR-qIND security. This is the notion given in [GHS16] restricted to a single challenge
and no learning queries. The difference is that our notion allows the adversary to specify a register con-
taining the nonce used for encryption. To ensure the usage of classical randomness, we let the challenger
measure this register. We restrict ourselves to the weaker LoR-qIND notion, since we show below that
Slae does not even achieve this notion. Extension to the stronger LoR-qINDqCPA (allowing multiple
challenges and learning queries) is straightforward by giving the adversary oracle access to a left-or-right
oracle and a learning oracle implementing the type-2 encryption operator. The nonce-respecting property
is ensured by letting the challenger reject queries for which the measurement of the nonce register yields
an already measured nonce.

Definition 18. Let Σ = (Enc, Dec) be symmetric key encryption scheme and the security game LoR-qIND
be defined as in Fig. 10. For any adversary A we define its LoR-qIND advantage as

AdvLoR-qIND
Σ (A) =

∣∣2 Pr[LoR-qINDA → 1]− 1
∣∣ .

The following theorem shows that the sponge-based encryption scheme SlEnc is not LoR-qIND-
secure. The attack uses a Hadamard distinguisher, following the one given in [GHS16], that exploits the
quantum insecurity of the one-time pad approach.
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LoR-qIND

K←$K

implement U
(2)
Enc using K

b←$ {0, 1}
|N 〉N , |ϕ0〉M , |ϕ1〉M ←$A1 ()

Measure register |N 〉N
trace out |ϕ1−b〉

|ψ〉 ← U
(2)
Enc (|N 〉N |ϕb〉M )

b′ ←$A2 (|ψ〉)
return (b′ = b)

Fig. 10: Security notion LoR-qIND following [GHS16].

Theorem 19. Let SlEnc be the sponge-based encryption scheme displayed in Fig. 5 with message space
{0, 1}µ. Then there exist an adversary A such that

AdvLoR-qIND
SlEnc (A) = 1− 1

2µ
.

Proof. We construct the following adversary A = (A1 ,A2 ). It picks a nonce N ←$ {0, 1}ν and prepares
the states |ϕ0〉 = H |0µ〉 = |+〉⊗µ and |ϕ1〉 = |0µ〉. It outputs the state

|ϕ〉 = |N 〉 ⊗ |+〉⊗µ ⊗ |ϕ1〉 .

Upon receiving the state |ψ〉, A2 applies the Hadamard operator to it and measures the register. If the
measurement output is 0µ, A0 outputs 0, otherwise, it outputs 1.

Before analysing the different cases, note that measuring the nonce register as well as tracing out one
of the message registers does not affect the other registers as they are all unentangled. Let us now start
with the case distinctions.

If b = 0, the game encrypts the left message, i.e., the state

|ϕ〉 = H |0µ〉 = |+〉⊗µ =
1√
2µ

 ∑
x∈{0,1}µ

|x〉

 .

A2 receives the state

|ψ〉 =
1√
2µ

 ∑
x∈{0,1}µ

|N 〉 |x⊕ SPrg(SlFunc(K,N ))〉

 = |ϕ〉 ,

i.e., the state |ϕ〉 is left unchanged. Application of the Hadamard operator therefore yields the state |0µ〉,
for which the measurement outcome is 0µ with probability 1. Thus we get

Pr[ALoR-qIND → 0 | b = 0] = 1 .

If b = 1, A2 receives the state

|ψ〉 = |Enc(K,N , 0µ)〉 = |0µ ⊕ SPrg(SlFunc(K,N ))〉 .

Application of the Hadamard operator yields

H |ψ〉 =
1√
2µ

 ∑
x∈{0,1}µ

(−1)x·SPrg(SlFunc(K,N )) |x〉

 .

Measurement yields a random x ∈ {0, 1}µ. Since A2 outputs 0 if and only if the measurement yields 0µ,
we obtain

Pr[ALoR-qIND → 0 | b = 1] =
1

2µ
.
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Collecting everything yields

AdvLoR-qIND(A) =
∣∣Pr[ALoR-qIND → 0 | b = 0]− Pr[ALoR-qIND → 0 | b = 1]

∣∣
= 1− 1

2µ
. ut

Observe that there is no security notion for AEAD schemes using type-2 operators. Both [GHS16]
and [GKS21] only focus on encryption schemes. The obvious question is whether the MAC can be
implemented using a type-2 operator. Regardless of this, we point out that the attack does not necessarily
extend to Slae. The reason is that the register containing the tag will be entangled which thwarts an
attack by simply discarding the tag.

Note that the same attack applies to the encryption scheme underlying the sponge-based AEAD
schemes ISAP [DEM+17] and its successor ISAP v2.0 [DEM+20].

5.3 Real-or-Random Security of SlEnc

The notion by Mossayebi and Schack [MS16] follows a real-or-random approach, where the adversary
submits only a single message (possibly in superposition) and receives back the message along with a
ciphertext. The ciphertext is either the encryption of the submitted message or of the permuted message
using a permutation picked at random. Usage of the permutation ensures that the number of messages in
superposition is the same for both the submitted and permuted message. Mossayebi and Schack [MS16]
also defined the corresponding security with respect to chosen ciphertext attacks. The relevance of this
notion is questionable, as it assumes non-cheating adversaries, that do not try to decrypt the challenge
ciphertext with its decryption oracle.

In this notion, there is only a single message register that will always be entangled with the ciphertext
register. This bypasses the impossibility result by Boneh and Zhandry [BZ13b].

RoR-qIND

K←$K

implement U
(1)
Enc using K

b←$ {0, 1}
π ←$ P({0, 1}µ)

|N 〉N |M 〉M |C 〉C ←$A1 ()

Measure register |N 〉N
if b = 0

|ψ〉 ← U
(1)
Enc (|N 〉N |M 〉M |C 〉C)

if b = 1

|ψ〉 ← ((id⊗ π−1 ⊗ id) ◦ U (1)
Enc ◦ (id⊗ π ⊗ id))(|N 〉N |M 〉M |C 〉C)

b′ ←$A2 (|ψ〉)
return (b′ = b)

Fig. 11: Security notion RoR-qIND following [MS16].

Below we define RoR-qIND security, where the adversary is restricted to a single challenge query
and no learning query, again, extended by letting the adversary send a register with the nonce that is
measured by the challenger. Extension to RoR-qINDqCPA security works by providing the adversary a
real-or-random challenge oracle and a learning oracle and reject queries where (measured) nonces repeat.

Definition 20. Let Σ = (Enc, Dec) be a symmetric key encryption scheme and the security game
RoR-qIND be defined as in Fig. 11. For any adversary A we define its RoR-qIND advantage as

AdvRoR-qIND
Σ (A) =

∣∣2 Pr[RoR-qINDA → 1]− 1
∣∣ .

The following theorem shows that the sponge-based encryption scheme SlEnc is not RoR-qIND-
secure. The attack follows [CEV20] exploiting the outcome of a measurement in the Hadamard basis on
two entangled registers. The full proof details can be found in the full version of the paper [JS22].

16



U
(2)
π U

(1)
Enc U

(2)

π−1

|N 〉

|M 〉

|0〉

|N 〉

|M 〉

|Enc(K,N , π(M ))〉

Fig. 12: Circuit for real-or-random security notion. The permutation π is applied if b = 1.

Theorem 21. Let SlEnc be the sponge-based encryption scheme displayed in Fig. 5. Then there exist
an adversary A such that

AdvRoR-qIND
SlEnc (A) =

1

2
.

5.4 IND-qCPA Security of Slae and FGHF’

In Section 5.1, we have discussed various different security notions for symmetric key encryption schemes
in the QS2 setting. So far we have shown that SlEnc is neither LoR-qIND nor RoR-qIND secure. Observe
that the attacks also apply to the generic construction FGHF’, as the weakness lies in the one-time pad
(OTP) approach exploiting an inherent insecurity of the OTP against quantum attackers.

Observe that both the generic FGHF’ construction as well as Slae are stream ciphers. Following the
results by Anand et al. [ATTU16], we obtain that both constructions are IND-qCPA secure which is a
direct consequence from the established IND-CPA security in the QS1 sense.

6 Conclusion

In this work we have given both positive and negative results for the security of the sponge-based AEAD
scheme Slae. On the one hand, we have shown that Slae as well as the underlying core primitives are
post-quantum secure. On the other hand, we have shown that their quantum security is not fully clear
yet. While Slae, as well as the generic FGHF’ construction, are easily seen to be not quantum secure
for notions that allow challenge queries by the adversary to be in superposition, its quantum security
with respect to IND-qCPA is still open. More precisely, we argued that its IND-qCPA security reduces
to the quantum security of the underlying function SlFunc via the generic FGHF’ construction.

In the realm of quantum security, it is open to analyse the quantum security of the sponge-based
function SlFunc as well as addressing the quantum unforgeability of Slae and its underlying MAC
SlMac. The reason is that the landscape of quantum unforgeability notions is still unclear as the
existing notions [BZ13b,GYZ17,AMRS20,DDKA21] suffer from some drawbacks that allow for intuitive
forgeries that are not covered by the notions.

Regarding the post-quantum security of Slae, one can investigate whether tighter bounds can be
achieved. Generally, our bounds establish for the first time post-quantum security for the AEAD scheme
and the underlying primitives but they are rather conservative and there might be room for improvements.
For example, for SlFunc one may be able to use the semi-classical variant of the O2H lemma developed
by Ambainis et al. [AHU19] and for SPrg one may get tighter bounds by using the doubled-sided O2H
lemma by Bindel et al. [BHH+19]. One can also consider an adaptive version, where the random oracle
is reprogrammed only on the points that the adversary queries to its classical oracle.
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GKS21. Tommaso Gagliardoni, Juliane Krämer, and Patrick Struck. Quantum indistinguishability for public
key encryption. In Jung Hee Cheon and Jean-Pierre Tillich, editors, Post-Quantum Cryptography
- 12th International Workshop, PQCrypto 2021, pages 463–482. Springer, Heidelberg, 2021. doi:

10.1007/978-3-030-81293-5_24.
Gro96. Lov K. Grover. A fast quantum mechanical algorithm for database search. In 28th ACM STOC,

pages 212–219. ACM Press, May 1996. doi:10.1145/237814.237866.
GYZ17. Sumegha Garg, Henry Yuen, and Mark Zhandry. New security notions and feasibility results for

authentication of quantum data. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part II, volume 10402 of LNCS, pages 342–371. Springer, Heidelberg, August 2017. doi:10.1007/

978-3-319-63715-0_12.
IHM+19. Gembu Ito, Akinori Hosoyamada, Ryutaroh Matsumoto, Yu Sasaki, and Tetsu Iwata. Quan-

tum chosen-ciphertext attacks against Feistel ciphers. In Mitsuru Matsui, editor, CT-RSA 2019,
volume 11405 of LNCS, pages 391–411. Springer, Heidelberg, March 2019. doi:10.1007/

978-3-030-12612-4_20.
JLM14. Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2c/2 security in sponge-based au-

thenticated encryption modes. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part I, volume 8873 of LNCS, pages 85–104. Springer, Heidelberg, December 2014. doi:10.1007/

978-3-662-45611-8_5.
JS22. Christian Janson and Patrick Struck. Sponge-based authenticated encryption: Security against quan-

tum attackers. Cryptology ePrint Archive, Report 2022/139, 2022. https://eprint.iacr.org/2022/
139.

KKVB02. Elham Kashefi, Adrian Kent, Vlatko Vedral, and Konrad Banaszek. Comparison of quantum oracles.
Physical Review A, 65(5):050304, 2002.
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