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Abstract

The traditional definition of quantum zero-knowledge stipulates that the knowledge gained by
any quantum polynomial-time verifier in an interactive protocol can be simulated by a quantum
polynomial-time algorithm. One drawback of this definition is that it allows the simulator
to consume significantly more computational resources than the verifier. We argue that this
drawback renders the existing notion of quantum zero-knowledge not viable for certain settings,
especially when dealing with near-term quantum devices.

In this work, we initiate a fine-grained notion of post-quantum zero-knowledge that is more
compatible with near-term quantum devices. We introduce the notion of (𝑠, 𝑓) space-bounded
quantum zero-knowledge. In this new notion, we require that an 𝑠-qubit malicious verifier can
be simulated by a quantum polynomial-time algorithm that uses at most 𝑓(𝑠)-qubits, for some
function 𝑓(·), and no restriction on the amount of the classical memory consumed by either the
verifier or the simulator.

We explore this notion and establish both positive and negative results:

• For verifiers with logarithmic quantum space 𝑠 and (arbitrary) polynomial classical space,
we show that (𝑠, 𝑓)-space-bounded QZK, for 𝑓(𝑠) = 2𝑠, can be achieved based on the
existence of post-quantum one-way functions. Moreover, our protocol runs in constant
rounds.

• For verifiers with super-logarithmic quantum space 𝑠, assuming the existence of post-
quantum secure one-way functions, we show that (𝑠, 𝑓)-space-bounded QZK protocols,
with fully black box simulation (classical analogue of black-box simulation) can only be
achieved for languages in BQP.

1 Introduction

Zero-knowledge is a foundational notion in cryptography. Invented in the 80s by Goldwasser, Micali
and Rackoff [GMR85], this notion has slowly transitioned from being a purely theoretical notion
to having applications in practice. Some notable applications of zero-knowledge include secure
computation [GMW87] and cryptocurrencies [SCG+14].

A zero-knowledge proof (or argument) system for a language in NP is an interactive protocol
between a prover, who receives as input an instance-witness pair (𝑥,𝑤) and a verifier, who receives
as input an instance 𝑥. The zero-knowledge property states that the verifier, after interacting
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with the prover, should not gain any information about the witness beyond what is leaked by the
statement. That is, in the words of the inventors of zero-knowledge [GMR85], “. . . what the verifier
sees in the protocol (even if he cheats) should be something which the verifier could have computed
himself. . .". Formally, we define the notion of a simulator and we require that the view of the verifier
after interacting with the prover should be computationally indistinguishable from the output of
the simulator.

When we consider polynomial-time verifiers we typically require the simulator to run in poly-
nomial time. In particular, the storage and the computational power utilized by the simulator can
be an arbitrary polynomial, respectively, in the storage and computational power of the verifier.
One might worry that this definition is not strong enough: the verifier might gain knowledge from
a protocol that would need far more computational resources in order for it to have computed by
itself.1 Nonetheless, this is a reasonable assumption to make in the present day as getting access to
more computational resources is cheaper than ever before.

Quantum Zero-Knowledge. The advancement in quantum technology forces us to re-think the
design of cryptographic protocols. But even before we build protocols that are secure against quan-
tum adversaries, we need to first focus on formal definitions and appropriately define post-quantum
security for existing cryptographic primitives. We focus on the notion of zero-knowledge against
malicious quantum verifiers, also referred to as quantum zero-knowledge. One approach to for-
malize this definition is to modify the definition of classical zero-knowledge as follows: instead of
considering (classical) probabilistic polynomial-time adversaries in the traditional zero-knowledge
definition, we instead consider quantum polynomial-time (QPT) adversaries. And instead of mod-
eling the auxiliary input to the verifier as a classical string, we model it as a quantum state. Almost
all the works [Wat09, BS20, ALP20, ABG+20, ACP21, BKS21, CCY21, LMS21] take this approach
of defining quantum zero-knowledge. While this is the most general definition one can think of, this
definition does not accommodate the subtleties on the computational power of the quantum verifier
that is highlighted by the example below.

Definitional Issues. Let us consider the following language based on integer factorization:

ℒ𝖥𝖠𝖢𝖳𝖮𝖱𝖨𝖭𝖦 = {⟨𝑁,𝐿,𝑈⟩ : ∃ prime 𝑝 that divides 𝑁, s.t.𝐿 ≤ 𝑝 ≤ 𝑈}.

Consider the following protocol for ℒ𝖥𝖠𝖢𝖳𝖮𝖱𝖨𝖭𝖦 between a prover 𝑃 and a verifier 𝑉 :

1. 𝑃 sends a prime 𝑝 that divides 𝑁 and moreover, 𝐿 ≤ 𝑝 ≤ 𝑈

2. 𝑉 checks if: 𝑎) 𝑝 is prime; 𝑏) 𝑝 divides 𝑁 ; and 𝑐) 𝐿 ≤ 𝑝 ≤ 𝑈 . If all the checks pass, then 𝑉
accepts. Otherwise, 𝑉 rejects.

It is not hard to see that this protocol is complete and sound. Interestingly, according to the
existing definition, this protocol satisfies the quantum zero-knowledge property. The simulator
works as follows:

1. Using the Shor’s algorithm for integer factorization [Sho99], find all the prime factors 𝑝1, ..., 𝑝ℓ
of 𝑁 .

1See the discussion on precise zero-knowledge in Section 1.3.
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2. Let 𝑖 be such that 𝑝𝑖 is prime, 𝑝𝑖 divides 𝑁 and 𝐿 ≤ 𝑝𝑖 ≤ 𝑈 . Send 𝑝𝑖 to the verifier.

Notice that when describing the simulator, we did not take into consideration the computational
power of the verifier. In particular, let us consider a malicious verifier 𝑉 ′ which is a hybrid com-
puter, consisting of a quantum device available today (such as the implementations of low-depth
Random Circuit Sampling devices [Aru19], Boson sampling [Zho21], non-universal adiabatic com-
putation [Joh11], etc.) and a classical machine. None of the currently available quantum devices
have the capability to factor large prime numbers. If 𝑉 ′ participates in the protocol described above
then 𝑉 ′ could be gaining knowledge, i.e., a non-trivial factor of 𝑁 , that it could not have been able
to compute by itself; despite the protocol being quantum zero-knowledge!

This discrepancy appears because the definition of quantum zero-knowledge allows the simulator
to be an arbitrary quantum polynomial-time algorithm, regardless of the computational power of
the verifier. For instance, even if the malicious verifier is a classical polynomial-time algorithm, the
simulator is still a quantum polynomial-time algorithm.

A more realistic definition should instead consider the resources used by the verifier and require
the simulator to run under (roughly) the same constraints. There are many resources we can take
into consideration when formulating this definition. In this work, we focus on the resource of
quantum memory. More specifically, we focus on the number of qubits utilized by the simulator in
relation to the number of qubits used by the verifier.

Constructions of QZK: Prior Work. We first observe that the existing works on post-quantum
zero-knowledge propose simulators whose space complexity is a large polynomial overhead in the
space complexity of the verifier. One main reason behind this is the fact that all the existing black-
box simulation techniques [Wat09, Unr12, CCY21, CMSZ22, CCLY21b, LMS21] first purify the
verifier; that is, they convert the next message function of the verifier into a unitary2 by delaying
the measurements. The purification process increases the space complexity, proportional to the
number of intermediate measurements.

Even if we ignore the above issue and consider verifiers where the next message functions are
implemented as unitaries, the existing simulators still have large polynomial overheads in the space
complexity of the verifier. In [Wat09], the reason for this is the fact that the space complexity of the
simulator depends on the communication complexity of the protocol which in turn is some function
of the security parameter. In [CCY21, CCLY21b, LMS21], the simulator runs the verifier coherently
multiple times and thus, the space complexity additionally depends on the number of iterations.

1.1 Our Contributions

We propose a new definition of quantum zero-knowledge, where the amount of quantum memory
used by the simulator is closely related to the quantum memory used by the verifier. We also
investigate the feasibility of the new notion.

1. New Definition: Space-Bounded QZK. We formulate a new definition of post-quantum
zero-knowledge, that we call (𝑠, 𝑓)-space-bounded QZK, where 𝑠 ∈ ℕ and 𝑓(·) is some function.
Suppose the malicious quantum polynomial-time (QPT) verifier is a quantum algorithm that uses
at most 𝑠 qubits of quantum memory. Then, we require that the simulator runs in polynomial time

2Technically, it is converted into a unitary followed by measurement, where the measurement outcome will be the
message communicated to the prover.
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and use the number of qubits is at most 𝑓(𝑠). For example, if 𝑓 is defined to be 𝑓(𝑥) = 2𝑥 then
(𝑠, 𝑓)-space bounded QZK states that the simulator should take up at most twice the number of
qubits as the verifier. On the other hand, we don’t place any restriction on the classical memory of
the simulator. The amount of classical storage of the simulator could be an arbitrary polynomial in
the amount of classical storage of the verifier. Indeed, in reality, classical storage is much cheaper
than quantum storage and thus, we need to be more precise about modeling the latter.

We consider three different notions of (𝑠, 𝑓)-space-bounded QZK:

• Fully Black Box: In this notion, the simulator gets oracle access to the verifier. More precisely,
each round of the verifier is modeled as a sequence of channels (one per round) and the
simulator can make polynomially many queries to each of these channels. This notion of
quantum zero-knowledge is a direct analogue of classical zero-knowledge.

In terms of space complexity, the space undertaken by the simulator would also take into
account the space needed to store the private state of the verifier in-between the executions
of every two consecutive rounds.

In this work, we mainly focus on understanding the feasibility of (𝑠, 𝑓)-space bounded QZK
for different 𝑠(·) functions.

• Black Box: In this notion, the simulator gets oracle access to the purification of the verifier
and its inverse. More precisely, suppose the verifier is represented as a sequence of channels
and let 𝑈1, . . . , 𝑈𝑘 be their canonical purifications3. Then, the simulator gets oracle access
to 𝑈𝑖 and also oracle access to 𝑈 †𝑖 , for every 𝑖 ∈ [𝑘]. Although, in this model, the verifier’s
code is modified before giving access to the simulator, we still call it black box in order to be
consistent with most of the previous works on black box quantum zero-knowledge who adopt
this model.

Note that here, we model the quantum space complexity of the simulator as a function of the
quantum space complexity of the original verifier (and not the one obtained after purification).
A (canonically) purified verifier can take significantly more space than the underlying non-
purified verifier. For example, purifying an 𝑠-qubit verifier with ℓ measurements will result in a
unitary that consumes at least 𝑠+ℓ qubits. Thus, (𝑠, 𝑓) space-bounded black-box QZK, for any
polynomial 𝑓(·), is impossible to achieve. On the other hand, prior works [Wat09, ACP21,
CCY21, CCLY21b, LMS21] are (𝑠, 𝑓)-space bounded black box QZK for super-polynomial
𝑓(𝑠) = 2𝜔(log(𝑠))4.

• Non Black Box: Finally, one can consider non black box quantum zero knowledge, where the
simulator is allowed to arbitrarily depend on the verifier and in particular, could make use of
the code of the verifier. This definition resembles the counterpart definition of (classical) non-
black box zero-knowledge. Prior works [BS20, BKS21] satisfy (𝑠, 𝑓)-space bounded non black
box QZK for super-polynomial 𝑓(𝑠) = 2𝜔(𝑙𝑜𝑔(𝑠)). We leave the investigation on the feasibility
of (𝑠, 𝑓)-space bounded non black box QZK, when 𝑓(·) is a polynomial, as an interesting open
problem.

3This means that the purification is computed in a specific manner: that is, by delaying the measurements of the
channel.

4Notice that in these previous results, the number of qubits used by the simulator is polynomial but it might scale
with the time-complexity of the verifier and that is why we can only achieve a super-polynomial upper-bound on the
number of qubits.
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2. Space-Bounded QZK Against Logarithmic Space Verifiers. We first focus on a re-
stricted case case when the malicious QPT verifiers only have access to logarithmically many qubits.
In this case, we demonstrate a feasibility result.

Suppose 𝑠 = 𝑂(log(𝜆)). We show that there exist, even constant-round, (𝑠, 𝑓)-space-bounded
quantum zero-knowledge protocols for NP, where 𝑓(𝑥) = 2𝑥, based on the assumption of post-
quantum one-way functions. In fact, our protocol even achieves fully black-box quantum zero-
knowledge.

3. Space-Bounded QZK Against Super-Logarithmic Space Verifiers. We then investigate
the case when the malicious verifiers have access to super-logarithmically many qubits. In this case,
we present a negative result.

Suppose 𝑠 = 𝜔(log(𝜆)). Assuming the existence of post-quantum one-way functions, we show
that there do not exist fully black-box (𝑠, 𝑓)-space bounded quantum zero-knowledge protocols for
languages outside BQP.

Our negative result only applies to fully black-box quantum zero-knowledge and it is an inter-
esting open problem to either prove a negative result or circumvent our negative result using non
black box techniques.

1.2 Technical Overview

In Section 1.2.1 and Section 1.2.2, we present an overview of the techniques employed in both the
results.

1.2.1 Zero-Knowledge Against Logarithmic Quantum Space Verifiers

Rewinding has been the quintessential technique employed in proving black-box simulation security
of cryptographic protocols against probabilistic polynomial-time classical adversaries. A rewinding-
based simulator has to store copies of the intermediate states of the verifier so that it can use these
copies whenever it rewinds the execution of the verifier to an earlier round. However, adopting
rewinding to prove post-quantum security has not been easy; this was first identified by [VDG97]. At
a high level, the reason for the difficulty arises since rewinding implicitly requires the ability to store
copies of the intermediate states, which the no-cloning theorem [Die82, WZ82]. Thus, most of the
recent works on post-quantum zero-knowledge [Wat09, Unr13, ACP21, CCY21, CMSZ22, CCLY21a,
LMS21] have proposed various rewinding techniques to perform simulation without having the need
to store intermediate copies of the verifier’s state.

State Recovery. To rewind the verifier to an earlier round, the most commonly adopted strategy
is to invert the operations performed by the verifier in the hope that we can completely recover the
earlier states. There are two issues with it:

1. Firstly, this means that the verifier has to be a unitary and thus needs to be purified; that is,
all the intermediate measurements of the verifier needs to be pushed to the end of each round.
As a consequence of the purification process, the simulator could take much larger quantum
space than the verifier.

2. Secondly, each round could potentially disturb the verifier’s intermediate state in an irre-
versible way. Thus, we might no longer be able to recover the earlier states.
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All the recent works on black-box quantum zero-knowledge give up on the first issue. Regarding
the second issue, they provide a workaround by showing that still retains some useful properties
about the original intermediate state, even if the recovered state is quite different from the original
intermediate state. For example, the probability that the verifier does not abort on the recovered
state could be at least as much as the probability that the verifier does not abort on the original
intermediate state. We will not go into the details of how state recovery is performed in each of the
recent works [Wat09, CMSZ22, CCY21, LMS21, CCLY21b] since it is not relevant to our approach.

An observation. Consider an 𝑀 -qubit quantum state 𝜌, where 𝑀 = 𝑂(log(𝜆)). Our observation
is that a maximally mixed state 𝐼

2𝑀
is a good approximation of 𝜌. That is, suppose there exists

a binary positive operator valued measure (POVM) Λ such that 𝑝 = Tr(Λ(𝜌)) then it holds that
𝑝 = Tr(Λ( 𝐼

2𝑀
)) ≥ 𝑝

2𝑀
. This suggests a new approach to perform rewinding: to rewind the verifier

to an earlier round, say 𝑖, simply execute the 𝑖𝑡𝑕 round of the verifier on input 𝐼
2𝑀

. The advantage
of this approach is two-fold. Firstly, there is no need to purify the verifier! Secondly, we only need
𝑀 additional qubits of quantum storage to initialize the maximally mixed state.

Case Study: Four Round Protocol due to Goldreich-Kahan [GK96]. Let us try to use
this idea to prove post-quantum security of a zero-knowledge protocol. We will start with the four-
round protocol due to Goldreich and Kahan [GK96]. Denote the four rounds in the protocol to be
(𝛼, 𝛽, 𝛾, 𝛿).

Simulating Classical Verifiers: We first recall the strategy to simulate classical adversaries. The
classical simulator, running in expected polynomial time, receives as input 𝛼, which is nothing but
the commitment of verifier’s challenges. Let the verifier’s state at this point be 𝗌𝗍.

• First Step. Execution of Main Thread: The simulator then sends 𝛽, which is nothing but the
commitment of 0. There are two things that can happen. Either the verifier aborts, in which
case, even the simulator aborts. Or it could happen that the verifier does not abort. In this
case, the simulator moves on to the second step.

• Second Step. Execution of Lookahead Threads: At this point, the simulator has the opening
of 𝛼, denoted by 𝛾. The simulator then rewinds the verifier to 𝗌𝗍, i.e., the state where it
just sent 𝛼. It uses the information from the opening 𝛾, to compute the commitment 𝛽*. It
sends 𝛽* to the verifier. If the verifier sends 𝛾* then the simulator completes the transcript
(𝛼, 𝛽*, 𝛾*, 𝛿*), and additionally outputs the verifier’s final state. If the verifier aborts then the
simulator keeps repeating the rewinding process until it wins.

The important thing to remember is that the simulator first runs the main thread to decide whether
to continue or not. If it continues, it outputs one of the lookahead threads that did not abort.

Simulating Quantum Verifiers: Suppose we need to simulate quantum verifiers. We extend the
above approach to the quantum setting as follows. The quantum simulator receives as input 𝛼,
which is nothing but the commitment of verifier’s challenges. Let the verifier’s state at this point
be (𝜌, 𝗌𝗍), where 𝜌 is a 𝑀 -qubit quantum state and 𝗌𝗍 is a classical string.

• The first step is the same as above. The simulator executes the verifier on input the state
(𝜌, 𝗌𝗍). Let the resulting state of the verifier be (𝜎, 𝗌𝗍′).
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• If the verifier has not aborted at this point, it moves to the second step. At this point, if
the simulator has to rewind, it no longer has a copy of 𝜌 since it was computed upon in the
first round. Thus, the simulator uses the maximally mixed state 𝐼

2𝑀
in place of 𝜌 whenever it

rewinds.

As per our observation earlier, 𝐼
2𝑀

serves as a good approximation of 𝜌. In particular, if 𝑝 is the
probability that the verifier on input 𝜌 outputs a valid third message then the verifier on input 𝐼

2𝑀

outputs a valid third message with probability at least 𝑝
2𝑀

. It can be argued that, as long as 𝑀 is
logarithmic, the simulator in expected polynomial time can recover a valid transcript (𝛼, 𝛽*, 𝛾*, 𝛿*)
from one of the lookahead threads just like the classical simulator. However, this is not sufficient.
The quantum simulator should not also output the residual state of the verifier along with the
transcript (𝛼, 𝛽*, 𝛾*, 𝛿*). But note that the residual state of the verifier obtained in the lookahead
thread is useless: it is the state obtained by replacing the intermediate state 𝜌 with a maximally
mixed state. One option is to output (𝜎, 𝗌𝗍′), which is the state obtained in the main thread,
along with (𝛼, 𝛽*, 𝛾*, 𝛿*). However, the state (𝜎, 𝗌𝗍′) is obtained in the main thread and hence, is
inconsistent with the lookahead thread transcript (𝛼, 𝛽*, 𝛾*, 𝛿*). Thus, we need a different approach
where we can simulate in such a way that the joint distribution of the transcript and the verifier’s
state is computationally indistinguishable from the real world.

Protocol Template. We propose a different protocol and prove their post-quantum security
using our key observation. As a starting point, we consider a commitment scheme. For the current
discussion, we will consider commitments that are non-interactive and satisfy perfect binding and
computationally hiding property. In the technical sections, we relax the requirement to allow the
commitment to be interactive and moreover, we only require statistical binding.

We present a simplified version of the protocol template first. Let ℒ be the NP language
associated with the protocol. We denote the prover to be 𝑃 and the verifier to be 𝑉 . The prover
receives as input instance-witness pair (𝑥,𝑤) and the verifier receives as input 𝑥.

1. 𝑉 sends two commitments of 𝛼0 and 𝛼1.

2. 𝑃 sends a bit 𝑏.

3. 𝑉 sends the opening of commitment of 𝛼𝑏.

4. 𝑃 uses a witness-indistinguishable protocol to prove to 𝑉 that either 𝑥 ∈ ℒ or it knows 𝛼0⊕𝛼1.

The above protocol is sound since a malicious prover can only receive one of the two decommitments
and thus, will not know 𝛼0⊕𝛼1 in order to complete the WI phase. To prove that the above template
satisfies post-quantum zero-knowledge, we first need to demonstrate a simulator.

• The simulator receives as input commitments of 𝛼0 and 𝛼1 from the malicious verifier. Let
(𝜌, 𝗌𝗍) be the state of the verifier at this point, where 𝜌 is the 𝑀 -qubit state and 𝗌𝗍 is the
classical state.

• First Step. Execution of Main Thread: The simulator sends a random bit 𝑏. It receives an
opening of the commitment of 𝛼𝑏 from the verifier. Let the state of the verifier at this point
to be (𝜎, 𝗌𝗍′).
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• Second Step. Execution of Lookahead Threads: The simulator then rewinds the verifier to just
after the first round. This means that the simulator restarts the verifier on the state

(︀
𝐼

2𝑀
, 𝗌𝗍
)︀
.

The simulators sends a random bit 𝑏′ to the verifier and it hopes that 𝑏′ ̸= 𝑏 and the verifier
does not abort. The simulator keeps repeating this process until it succeeds.

Once the simulator succeeds, it has both 𝛼0, 𝛼1. It discards all the lookahead transcripts and only
retains the main thread transcript. Continue the execution of the protocol with the verifier, where
the state of the verifier is (𝜎, 𝗌𝗍′). The simulator then convinces the verifier in the WI phase using
𝛼0 ⊕ 𝛼1.

Note that unlike Goldreich-Kahan, the simulator retains the main thread transcript along with
the verifier’s residual state, just after the rewinding process, whose joint distribution is computa-
tionally indistinguishable from the real world.

While the main approach is sound, implementing the above approach encounters some issues.
We mention the issues and how we fix them. The first issue is that it could happen that the verifier
doesn’t abort with non-negligible probability and also, that the simulator never succeeds when the
verifier does not abort. Indeed, the verifier could decide that it will not abort if and only if the bit 𝑏
sent by the prover is 0. In this case, the simulator will never be able to recover two valid transcripts
if the verifier does not abort. We fix this by increasing the challenge space. Instead of requiring the
verifier to send two commitments, it sends 2𝜆 commitments of messages ((𝛼1,0, 𝛼1,1), . . . , (𝛼𝜆,0, 𝛼𝜆,1))
and in the third message, it opens commitments of messages (𝛼1,𝑏1 , . . . , 𝛼𝜆,𝑏𝜆), where 𝑏1, . . . , 𝑏𝜆 are
the challenge bits sent by the prover in the second message. If the verifier does not abort with
non-negligible probability then there exists an index 𝑖 such that the verifier opens to each value
𝛼𝑖,0, 𝛼𝑖,1 with non-negligible probability. The second issue is on non-malleability. The prover could
launch a malleability attack by leveraging the commitments sent by the verifier in the first message
to cheat the verifier in the WI phase. A first attempt is to make the prover commit to the witness
to be used in the WI phase. But even this is susceptible to the malleability attack. We use a
technique explored in a recent work [ALP20], where the prover commits to some randomness 𝐫*

at the very beginning even before it sees any message from the verifier. At a later point in time,
when the prover commits to the witness, it is expected to use this randomness 𝐫*. This prevents
the mauling attack since if the prover computed its own commitment by mauling the commitment
by the verifier, it would not have the knowledge of the randomness contained in its commitment.
Once we incorporate these fixes, we have a complete description of our protocol.

1.2.2 Zero-Knowledge Against Super-Logarithmic Quantum Space Verifiers

In Section 1.2.1, we restricted our attention to zero-knowledge against logarithmic quantum space
verifiers. We now justify the restriction on the quantum space of the verifiers by showing the follow-
ing: assuming post-quantum one-way functions, only for languages in BQP, there exist protocols
that are space-bounded fully black-box QZK against super-logarithmic quantum space verifiers.

This is shown by first proving that any fully black-box QZK protocol against super-logarithmic
quantum space verifiers should have a straight-line simulator. We design a contrived verifier 𝑉 ′

that is composed of channels Φ1, . . . ,Φ𝑘, where 𝑘 is the number of rounds in the protocol and Φ𝑖

is used to compute the 𝑖𝑡𝑕 round query and suppose 𝑀 = 𝜔(log(𝜆)). We argue that any simulator
simulating this verifier should be of a specific form: it should first make a successful query to Φ1,
then make a successful query to Φ2 and so on. For any 𝑖, a query made by the simulator to Φ𝑖
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is deemed successful5 if Φ𝑖 does not abort on that query. Note that a straightline simulator could
make many unsuccessful queries to any Φ𝑗 (i.e., queries leading to abort answers) in between two
successful queries.

Once we prove that the simulator is straightline, we then show that the language ℒ associated
with the protocol has to be in BQP. This step is relatively more standard and follows similar ideas
employed in prior works [GO94]. We use the straightline simulator to come up with a malicious
prover ̃︀𝑃 who is able to convince the verifier to accept an instance in ℒ with probability close to 1;
for now, assume that the protocol satisfies perfect completeness. At the same time, when given a NO
instance, due to the soundness property, ̃︀𝑃 can convince the verifier to accept only with negligible
probability. Thus, using ̃︀𝑃 and the honest verifier, we can construct a quantum polynomial time
algorithm that decides ℒ.

Forcing Simulator to be Straightline. All that is left is to show that the simulator has to be
straightline with respect to the contrived verifier 𝑉 ′ that we will design below. Since the simulator
has complete control over the intermediate states of the verifier in-between different rounds of the
protocol, it seems challenging to prevent the simulator from making multiple successful queries
to the same channel Φ𝑖, for some 𝑖, where (Φ1, . . . ,Φ𝑘) are as defined above. We leverage the
principles of quantum information to our advantage. Specifically, we use subspace states [AC13], as
intermediate private states of the verifier. Subspace states are known to be unclonable and have
been instrumental in constructing public-key quantum money [AC13, Zha21].

In more detail, 𝑉 ′ is composed of the channels (Φ1, . . . ,Φ𝑛), where Φ𝑖 works as follows:

• It takes as input a state 𝜌𝑖 and the 𝑖𝑡𝑕 round message from the prover.

• It checks if 𝜌𝑖 is indeed the state |𝑆𝑖−1⟩⟨𝑆𝑖−1|, where 𝑆𝑖−1 is a random 𝑀
2 -dimensional subspace

of ℤ𝑀
2 and |𝑆𝑖−1⟩ =

∑︀
𝑥∈𝑆𝑖−1

√
2−|𝑆𝑖−1| |𝑥⟩. The description of the subspace 𝑆𝑖−1 is hardwired

in Φ𝑖.

• If the check fails, Φ𝑖 aborts.

• Otherwise, 𝑉 ′ computes the next message using the honest verifier and outputs this message
along with another subspace state |𝑆𝑖⟩, where 𝑆𝑖 is a random 𝑀

2 -dimensional subspace of ℤ𝑀
2 .

The description of 𝑆𝑖 is hardwired in Φ𝑖 (and Φ𝑖+1).

Let us look at the different possible queries a simulator can submit to (Φ1, . . . ,Φ𝑘).

Out-of-order queries: If the simulator tries to query 𝑉 ′ out-of-order, for example, submit a query to
Φ𝑖+1 before querying Φ𝑖, it would not have the valid subspace state |𝑆𝑖⟩ and thus, Φ𝑖+1 will most
likely abort.

Repeated queries: If the simulator queries the same Φ𝑖 twice then we claim that there can only be at
most one query that passes the subspace state test. If the simulator makes two successful queries to
Φ𝑖 then we argue that it must have two copies of |𝑆𝑖−1⟩, thus violating the unclonability property
of subspace states. We first argue this for 𝑖 = 1: this follows from the fact that the simulator has
only one copy of |𝑆0⟩. Assuming that at most only successful query can made to all Φ𝑗 , for 𝑗 < 𝑖,

5In the technical sections, we call such queries non-abort queries (Definition 5.3).
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we can then invoke the unclonability of |𝑆𝑖−1⟩ to argue that there can be at most one successful
query to Φ𝑖.

One has to be careful when violating the unclonability property: the simulator can make many
unsuccessful queries before making the two successful queries to Φ𝑖. The reduction that violates
the hardness of subspace states needs to be able to discern whether the adversary has submitted a
successful query or not. Moreover, the reduction only receives as input a single copy of |𝑆𝑖−1⟩ and
in particular, does not receive as input a description of 𝑆𝑖−1. Thus, the reduction does not have the
capability to distinguish successful versus unsuccessful queries. We overcome this issue by giving
the reduction access to a oracle that tests if a given state is |𝑆𝑖−1⟩. It was shown by [AC13] that as
long as the subspace has super-logarithmic dimension, unclonability still holds even if the reduction
gets access to the membership oracle.

Missing queries: There might exist some 𝑖 such that the simulator never submits a successful query
to Φ𝑖. By using similar arguments as in the previous cases, we can then argue that it cannot submit
a successful query to the last round, i.e., Φ𝑘. From this, we can come up with a distinguisher that
can distinguish the real world and the ideal world.

From the above cases, we can argue that a successful simulator can only submit successful queries
in-order and moreover, can only submit exactly one successful query for Φ𝑖, for every 𝑖 ∈ [𝑘].

However, there are a couple of issues we need to take into consideration while designing the straight-
line simulator to ensure that 𝑃 is successful. Firstly, we need to modify 𝑉 ′ so that it encrypts its
internal state with a symmetric-key encryption scheme, whose secret key is also hardcoded in all
Φ𝑖. Otherwise, the straightline simulator would expect the internal state in the clear and 𝑃 would
be unable to provide this information to the simulator. Secondly, we need that the internal state
chosen by the simulator on query Φ𝑖 to be exactly the same as the internal state after the query to
Φ𝑖−1. To solve this issue, 𝑉 ′ uses a digital signature scheme to sign its classical internal state. This
forces the simulator to use the internal state chosen by the simulator on query Φ𝑖 to be the internal
state after the query to Φ𝑖−1, otherwise we could violate the unforgeability of the digital signature
scheme.

1.3 Related Work

Knowledge Tightness and Precise Zero-Knowledge. Analogous questions have been ex-
plored in the classical literature. However, the main focus has been on designing zero-knowledge
simulators whose runtime is closely related to the runtime of the verifiers.

Goldreich, Micali and Widgerson [GMW86] (also, [Gol01]) explore the notion of knowledge
tightness which is the ratio of the running time of the simulator and the running time of the verifier.
Some existing protocols [GMW87, GMR85, Blu86] already achieve constant knowledge tightness.
Along the lines of knowledge tightness, Pass and Micali [MP06] formalized a notion called precise
zero-knowledge where the simulator’s runtime is closely related to the runtime of the verifier. Many
followup works [PPS+08, CPT12, DG12] study precise zero-knowledge in different settings.

Of relevance is the work by Ning and Du [DG11] who consider a stronger notion of precise
zero-knowledge, where the simulator’s space complexity also needs to be closely related to the space
complexity of the verifier. However, they study this notion only in the context of zero-knowledge
against classical verifiers.
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Space-bounded verifiers. Another related model considers proof systems where the verifier,
even the honest one, has bounded space. Some works [AF93, SPY92] have proposed feasibility
results in this model. We remind the reader that in our proof system, we don’t limit the amount of
classical space a malicious QPT verifier can have.

Post-Quantum Zero-Knowledge. Watrous [Wat09] presented the first construction of zero-
knowledge for NP against quantum verifiers. In the past few years, we have seen remarkable
progress in understanding the feasibility of QZK. Bitansky and Shmueli [BS20] presented the first
construction of quantum zero-knowledge in constant rounds. They prove that their construction
satisfies QZK in the non-black box simulation setting. In fact, it was shown by Chia, Chung, Liu
and Yamakawa [CCLY21b] that constant round black box quantum zero-knowledge is impossible.
This negative result was circumvented by a recent work by Lombardi, Ma and Spooner [LMS21] who
achieved black-box constant round QZK in the coherent simulation setting. Relaxations of QZK
systems have been considered in some recent works [ALP20, CCY21]. Post-quantum zero-knowledge
under composition have been studied [JKMR06, ABG+20, ACP21]. Finally, zero-knowledge for
quantum complexity classes such as QMA have also been studied [BJSW16, BG19].

1.4 Future Directions

In this section, we discuss future directions regarding fine-grained notions of quantum zero-knowledge.

Non-black-box quantum space-bounded simulation with superlogarithmic qubits. Our
result in Section 5 shows that fully black-box (𝜔(log 𝜆), ·)-space-bounded quantum zero-knowledge
is impossible, and as we discussed in Section 3.3, (standard) black-box (·, 𝑝)-space bounded quantum
zero-knowledge is impossible for any polynomial 𝑝. We leave as an open problem to explore the fea-
sibility of non-black black-box quantum (𝜔(log 𝜆), 𝑝)-space-bounded simulation for some polynomial
𝑝.

New definitions of “NISQ”-safe zero-knowledge protocols. In this work, we initiated the
study of classical zero-knowledge protocols, whose security is still guaranteed against weaker quan-
tum adversaries.6 We focus here on the number of qubits allowed in the simulation and we leave as
an open question the proposal of other meaningful definitions such as verifiers/simulators that use
a fixed non-universal gateset or even a fixed architecture.

Space-bounded/fully black box simulation. Another interesting direction is to explore the
new notions of simulation that we introduce in this work in the context of other cryptographic
protocols. Specifically, we could explore the feasibility of fully black-box simulation and space-
bounded simulation in both classical protocols and also protocols that use quantum resources such as
quantum oblivious transfer and quantum secure computation protocols [HSS11, ABG+20, GLSV21,
BCKM21].

6As we discussed, since the adversaries are weaker, we can morally break the zero-knowledge property that have
much more power than the verifier.

11



2 Preliminaries

We denote the security parameter by 𝜆. We assume basic familiarity of cryptographic concepts.
We denote (classical) computational indistiguishability of two distributions𝒟0 and𝒟1 by𝒟0 ≈𝑐,𝜀

𝒟1. In the case when 𝜀 is negligible, we drop 𝜀 from this notation. We denote the process of an
algorithm 𝐴 being executed on input a sample from a distribution 𝒟 by the notation 𝐴(𝒟).

2.1 Quantum Preliminaries

Let ℋ be any finite Hilbert space, and let 𝐿(ℋ) := {ℰ : ℋ → ℋ} be the set of all linear operators
from ℋ to itself (or endomorphism). Quantum states over ℋ are the positive semidefinite operators
in 𝐿(ℋ) that have unit trace.

A state over ℋ = ℂ2 is called a qubit. For any 𝑛 ∈ ℕ, we refer to the quantum states over
ℋ = (ℂ2)⊗𝑛 as 𝑛-qubit quantum states. To perform a standard basis measurement on a qubit
means projecting the qubit into {|0⟩ , |1⟩}. A quantum register is a collection of qubits. A classical
register is a quantum register that is only able to store qubits in the computational basis.

Quantum Circuits. A unitary quantum circuit is a sequence of unitary operations (unitary
gates) acting on a fixed number of qubits. Measurements in the standard basis can be performed at
the end of the unitary circuit. A (generalized) quantum circuit is a unitary quantum circuit with
2 additional operations: (1) a gate that adds an ancilla qubit to the system, and (2) a gate that
discards (trace-out) a qubit from the system. A non-uniform quantum polynomial-time algorithm
(QPT) 𝐶 consists of a family {(𝐶𝑛, 𝜌𝑛)}𝑛∈ℕ, where 𝐶𝑛 is an 𝑛-input qubit generalized quantum
circuit of size 𝑝(𝑛) for some polynomial 𝑝(·), and 𝜌𝑛 is a density matrix assigned to a subset of input
qubits of 𝐶𝑛. Unless explicitly specified, all the algorithms considered in this work are non-uniform
algorithms.

Later, in Section 3.2, we present a more rigorous definition of quantum circuits that carefully
describes the interaction between the classical and the quantum memory.

Oracle Access. A QPT algorithm 𝐴 has oracle access to a circuit Φ, denoted by 𝐴Φ, if the
computation proceeds as follows. On input a state 𝜌, defined on two registers 𝐗 and 𝐘, 𝐴Φ first
applies a circuit on 𝜌, then applies Φ on the 𝐘 register, followed by applying another circuit on the
result, followed by applying Φ again on the 𝐘 register and so on.

2.2 Computational Indistinguishability

The following definition is due to [Wat09].

Definition 2.1 (Computational Indistinguishability of Quantum States). Let 𝐼 be an infinite subset
𝐼 ⊂ {0, 1}*, let 𝑝 : ℕ → ℕ be a polynomially bounded function, and let 𝜌𝑥 and 𝜎𝑥 be 𝑝(|𝑥|)-qubit
states. We say that {𝜌𝑥}𝑥∈𝐼 and {𝜎𝑥}𝑥∈𝐼 are quantum computationally indistinguishable
collections of quantum states if for every QPT ℰ that outputs a single bit, any polynomially
bounded 𝑞 : ℕ → ℕ, and any auxiliary collection of 𝑞(|𝑥|)-qubits states {𝜈𝑥}𝑥∈𝐼 , and for all (but
finitely many) 𝑥 ∈ 𝐼, we have that

|Pr [ℰ(𝜌𝑥 ⊗ 𝜈𝑥) = 1]− Pr [ℰ(𝜎𝑥 ⊗ 𝜈𝑥) = 1]| ≤ 𝜖(|𝑥|)
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for some negligible function 𝜖 : ℕ→ [0, 1]. We use the following notation

𝜌𝑥 ≈𝒬,𝜖 𝜎𝑥

and we ignore the 𝜖 when it is understood that it is a negligible function.

2.3 Interactive Protocols

Languages and Relations. A language ℒ is a subset of {0, 1}*. A relation ℛ is a subset of
{0, 1}* × {0, 1}*. We use the following notation:

• Suppose ℛ is a relation. We define ℛ to be efficiently decidable if there exists an algorithm 𝐴
and fixed polynomial 𝑝 such that (𝑥,𝑤) ∈ ℛ if and only if 𝐴(𝑥,𝑤) = 1 and the running time
of 𝐴 is upper bounded by 𝑝(|𝑥|, |𝑤|).

• Suppose ℛ is an efficiently decidable relation. We say that ℛ is a NP relation if ℒ(ℛ) is a
NP language, where ℒ(ℛ) is defined as follows: 𝑥 ∈ ℒ(𝑅) if and only if there exists 𝑤 such
that (𝑥,𝑤) ∈ ℛ and |𝑤| ≤ 𝑝(|𝑥|) for some fixed polynomial 𝑝.

Interactive Models. We consider (classical) interactive protocols between two parties, a prover
𝑃 and a verifier 𝑉 . We only consider interactive protocols corresponding to NP relations. An
interactive protocol for an NP relation ℛ has the following format: a probabilistic polynomial-time
prover 𝑃 takes as input an NP instance 𝑥 and a witness 𝑤 while a probabilistic polynomial time
verifier 𝑉 takes as input 𝑥. Both the parties exchange some messages with each other. At the end
of the protocol, the verifier 𝑉 outputs either Accept or Reject.

Notation. We use the following notation in the rest of the paper.

• ⟨𝑃, 𝑉 ⟩ denotes the interactive protocol between 𝑃 and 𝑉 . We denote the ⟨𝑃 (𝑦1), 𝑉 (𝑦2)⟩ to
be (𝑧1, 𝑧2), where 𝑧1 is the prover’s output and 𝑧2 is the verifier’s output. Sometimes we omit
the prover’s output and write this as 𝑧 ← ⟨𝑃 (𝑦1), 𝑉 (𝑦2)⟩ to indicate the output of the verifier
to be 𝑧.

• 𝖵𝗂𝖾𝗐𝑉 (⟨𝑃 (𝑦1), 𝑉 (𝑦2)⟩) denotes the view of the 𝑉 in the protocol Π, where 𝑦1 is the input
of 𝑃 and 𝑦2 is the input of 𝑉 . The view includes the output of 𝑉 and the transcript of the
protocol.

2.3.1 Proof and Argument Systems

We start by recalling the definitions of the completeness and soundness properties of a classical
interactive proof system.

Definition 2.2 (Proof System). Let Π be an interactive protocol between a classical PPT prover 𝑃
and a classical PPT verifier 𝑉 . Let ℛ(ℒ) be the NP relation associated with Π.

Π is said to be a proof system if it satisfies the completeness and the soundness properties defined
below.
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• Completeness: For every (𝑥,𝑤) ∈ ℛ(ℒ),

𝖯𝗋[𝖠𝖼𝖼𝖾𝗉𝗍← ⟨𝑃 (𝑥,𝑤), 𝑉 (𝑥)⟩] ≥ 1− 𝗇𝖾𝗀𝗅(|𝑥|),

for some negligible function 𝗇𝖾𝗀𝗅.

• Soundness: For every prover 𝑃 * (possibly computationally unbounded), every 𝑥 /∈ ℛ(ℒ),
every state 𝜌,

𝖯𝗋 [𝖠𝖼𝖼𝖾𝗉𝗍← ⟨𝑃 *(𝑥, 𝜌), 𝑉 (𝑥)⟩] ≤ 𝗇𝖾𝗀𝗅(|𝑥|),

for some negligible function 𝗇𝖾𝗀𝗅.

We also consider the notion of argument systems where the prover is restricted to be a QPT
algorithm.

Definition 2.3 (Argument System). Let Π be an interactive protocol between a classical PPT prover
𝑃 and a classical PPT verifier 𝑉 . Let ℛ(ℒ) be the NP relation associated with Π.

Π is said to be an argument system if it satisfies completeness (as defined in Definition 2.2) and
computational soundness (defined below).

• Computational Soundness: For every QPT prover 𝑃 *, every 𝑥 /∈ ℛ(ℒ), for every poly(|𝑥|)-
qubit state 𝜌,

𝖯𝗋 [𝖠𝖼𝖼𝖾𝗉𝗍← ⟨𝑃 *(𝑥, 𝜌), 𝑉 (𝑥)⟩] ≤ 𝗇𝖾𝗀𝗅(|𝑥|),

for some negligible function 𝗇𝖾𝗀𝗅.

2.3.2 Quantum Witness-Indistinguishable Proofs for NP

For our construction, we use a proof system that satisfies a property called quantum witness indis-
tinguishability. We recall this notion below.

Definition 2.4 (Quantum Witness-Indistinguishability). An interactive protocol between a (classi-
cal) PPT prover 𝑃 and a (classical) PPT verifier 𝑉 for a language 𝐿 ∈ 𝖭𝖯 is said to be a quantum
witness-indistinguishable proof system if in addition to completeness, unconditional soundness,
the following holds:

• Quantum Witness-Indistinguishability: For every QPT verifier 𝑉 *, for every 𝑥 ∈ ℒ,
𝑤1, 𝑤2 such that (𝑥,𝑤1) ∈ ℛ(ℒ) and (𝑥,𝑤2) ∈ ℛ(ℒ), with poly(|𝑥|)-qubit advice 𝜌, the follow-
ing holds: {︀

𝖵𝗂𝖾𝗐𝖵𝖾𝗋𝗂𝖿𝗒* (⟨𝑃 (𝑥,𝑤1), 𝑉
*(𝑥, 𝜌))

}︀
≈𝒬

{︀
𝖵𝗂𝖾𝗐𝖵𝖾𝗋𝗂𝖿𝗒* (⟨𝑃 (𝑥,𝑤2), 𝑉

*(𝑥, 𝜌))
}︀

Instantiation. By suitably instantiating the constant round WI argument system of Blum [Blu86]
with statistically binding commitments (which in turn can be based on post-quantum one-way
functions [Nao91]), we achieve a 4 round quantum WI proof system for NP. Moreover, this proof
system is a public-coin proof system; that is, the verifier’s messages are sampled uniformly at
random.
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2.4 Statistically Binding and Quantum-Concealing Commitments

A bit commitment protocol is a two-party protocol defined between two parties, a committer (𝖢𝗈𝗆𝗆)
and a receiver (𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝗋).

The protocol consists of two phases:

• Commit phase: in this phase, 𝖢𝗈𝗆𝗆 commits to a bit 𝑏 and 𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝗋 does not receive any
input.
In this work, we only consider commitments with two-message commit phases.

• Opening phase: in this phase, 𝖢𝗈𝗆𝗆 reveals 𝑏 and any relevant randomness used in the
commit phase. 𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝗋 then outputs accept or reject.
In this work, we consider only canonical opening phases. That is, they only consist of a single
message. Moreover, the opening consists of the revealed bit and all the random bits used by
𝖢𝗈𝗆𝗆.

As a result of considering canonical opening phases, we have the following property, referred to
as message recovery property: given just the randomness used by the committer, the receiver can
recover the bit used in the commit phase.

Properties. We consider a two-message commitment scheme that satisfies the following two prop-
erties.

Definition 2.5 (Statistically Binding). A two-message commitment scheme between a committer
(𝖢𝗈𝗆𝗆) and a receiver (𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝗋), both running in probabilistic polynomial time, is said to satisfy
statistical binding property if the following holds for any adversary 𝒜:

𝖯𝗋

⎡⎢⎢⎢⎣
(𝐜,𝑟1,𝑥1,𝑟2,𝑥2)←𝒜

and

𝖢𝗈𝗆𝗆(1𝜆,𝐫,𝑥1;𝑟1)=𝖢𝗈𝗆𝗆(1𝜆,𝐫,𝑥2;𝑟2)=𝐜

and

𝑥1 ̸=𝑥2

: 𝐫← 𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝗋(1𝜆)

⎤⎥⎥⎥⎦ ≤ 𝗇𝖾𝗀𝗅(𝜆),

for some negligible function 𝗇𝖾𝗀𝗅.

Definition 2.6 (Quantum-Concealing). A commitment scheme 𝖢𝗈𝗆𝗆 is said to be quantum con-
cealing if the following holds. Suppose 𝒜 be a non-uniform QPT algorithm and let 𝐫 be the message
generated by 𝒜(1𝜆). We require that 𝒜 cannot distinguish the two distributions, {𝖢𝗈𝗆𝗆(1𝜆, 𝐫, 𝑥1)}
and {𝖢𝗈𝗆𝗆(1𝜆, 𝐫, 𝑥2)}, for any two inputs 𝑥1 ∈ {0, 1}, 𝑥2 ∈ {0, 1}.

Instantiation. We can instantiate statistically binding and quantum-concealing commitments
from post-quantum one-way functions [Nao91].

Generalizations. We can extend the above definition to commitments of long messages and not
just bits. We consider a specific instantiation of commitments of long messages. To commit to
a long message, the committer commits to each bit separately. Note that even this instantiation
satisfies the message recovery property.
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2.5 Query Lower Bounds for Cloning Subset States

In the impossibility result (Section 5), we use the following theorem stated and proved by Aaronson
and Christiano [AC13] in the context of public-key quantum money schemes.

Subspace states. For a subspace 𝐴 ⊆ 𝔽𝑛
2 , for some 𝑛 ∈ ℕ, we denote |𝐴⟩ =

∑︀
𝑥∈𝐴

1√
2|𝐴| |𝑥⟩. We

also denote 𝑈𝐴 to be the following unitary. It maps an 𝑛 + 1-qubit state |𝐴⟩ |𝑦⟩ into |𝐴⟩ |𝑦 ⊕ 1⟩,
and for every |𝜓⟩ orthogonal to |𝐴⟩, it leaves |𝜓⟩ |𝑦⟩ unchanged. Notice that 𝑈𝐴 can be efficiently
implemented with the description of 𝐴.

Space complexity of testing subspace states. In Section 5, we will need to implement the
following projective measurement Π = { |𝐴⟩⟨𝐴|⏟  ⏞  

outcome=0

, 𝐼 − |𝐴⟩⟨𝐴|⏟  ⏞  
outcome=1

}, where 𝐴 ⊆ 𝔽𝑛
2 is a subspace of

dimension 𝑘, with low quantum memory complexity.
We will demonstrate an efficient implementation of Π that takes space 𝑂(𝑛) qubits. In order

to implement Π, we first describe how to implement an unitary 𝐶𝐴 that maps |0𝑘⟩ |0𝑛⟩ ↦→ |0𝑘⟩ |𝐴⟩,
given some basis 𝑣1, . . . , 𝑣𝑘 of the subspace 𝐴. We denote the first 𝑘 qubits to be the register 𝐗
and the next 𝑛 qubits to be the register 𝐘. Notice that we can assume without loss of generality,
we can assume that 𝑣𝑖 and 𝑣𝑗 are orthogonal for 𝑖 ̸= 𝑗.

𝐶𝐴 can be implemented as follows:

1. Apply 𝐻⊗𝑘 to the first register 𝐗,

2. For each 𝑖 = 1, . . . , 𝑘:

2.1. On the 𝑖-th qubit of 𝐗 and 𝑖-th qubit of 𝐘, perform the following operation: |𝑏⟩ |𝑥⟩ ↦→
|𝑏⟩ |𝑏 · 𝑣𝑖 ⊕ 𝑥⟩

3. For each 𝑖 = 1, . . . , 𝑘:

3.1. With the 𝑖-th qubit of 𝐗 and 𝑖-th qubit of 𝐘, perform the following operation: |𝑏⟩ |𝑥⟩ ↦→
|𝑏⊕ ⟨𝑥, 𝑣𝑖⟩⟩ |𝑥⟩ , where ⟨𝑦, 𝑧⟩ is the inner product of 𝑦, 𝑧 ∈ 𝔽𝑛

2 .

After step 2, we have the state of the form
∑︀

𝐛∈{0,1}𝑘 2
−𝑘/2 |𝐛⟩ |⊕1≤𝑖≤𝑘𝐛𝑖𝑣𝑖⟩, and that step 3 un-

computes the first register 𝐗 (and here we use the crucial fact that the basis is orthogonal).
In order to finally perform the projective measurement { |𝐴⟩⟨𝐴|⏟  ⏞  

outcome=0

, 𝐼 − |𝐴⟩⟨𝐴|⏟  ⏞  
outcome=1

} on some state 𝜌,

we can then simply prepend the state |0𝑘⟩ to it, perform the unitary 𝐶†𝐴, trace out 𝐗 and then
measure the last register in the computational basis. If we get the value 0𝑛 then the outcome of Π
is set to be 0, otherwise it is set to be 1.

To see, why this is the correct implementation, notice that Tr𝐗

(︁
𝐶𝐴 |0𝑘⟩ |0𝑛⟩ ⟨0𝑘| ⟨0𝑛|𝐶†𝐴

)︁
=

Tr𝐗(|0𝑘⟩⟨0𝑘| ⊗ |𝐴⟩⟨𝐴|) = |𝐴⟩⟨𝐴|.
We notice that to implement this projective measurement, we need only 𝑘 extra qubits. Thus,

the total memory complexity needed to implement Π is 𝑛+ 𝑘 qubits.
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Testing subspace states. Throughout this work, we will consider the test 𝖳𝖾𝗌𝗍𝑈𝐴(𝜌) to check if
𝜌 is a subspace state |𝐴⟩ when we have oracle access to 𝑈𝐴:

1. Query the oracle 𝑈𝐴 on input 𝜌⊗ |0⟩⟨0|.

2. Measure the last qubit, with output 𝑏. Let 𝜎𝑏 be the reduced state on the first register after
the measurement.

3. Return |𝑏⟩⟨𝑏| ⊗ 𝜎𝑏.

Whenever the first bit is |1⟩⟨1|, we say that the test passes, otherwise we say that the test fails.
We have the following lemma regarding the resulting state of the verification test.

Lemma 2.7. The state 𝜎1 corresponding to the quantum state returned when 𝖳𝖾𝗌𝗍𝑈𝐴(𝜌) passes is
equal to |𝐴⟩⟨𝐴|.

The proof of this lemma follows directly from the definition of 𝑈𝐴.

Unclonability of subspace states. We state now the result from [AC13] regarding the unclon-
ability of subspace states. For that, let 𝒮 be the set of all subspaces of 𝔽𝑛

2 of dimension 𝑛
2 .

Lemma 2.8 (Theorem 25, [AC13]). Let 𝐴 ⊆ 𝔽𝑛
2 be a subspace sampled uniformly at random from

𝒮. Then given |𝐴⟩, as well as oracle access to 𝑈𝐴, any quantum algorithm 𝐶 needs Ω(
√
𝜀2𝑛/4)

queries to prepare a 2𝑛-qubit state 𝜌 that projects into |𝐴⟩⟨𝐴|⊗2 with probability (over choice of 𝐴,
𝐶 and the projection onto |𝐴⟩⟨𝐴|⊗2) at least 𝜀, for all 𝜀 = 𝜔(2−𝑛/2).

More formally, 𝐶 needs Ω(
√
𝜀2𝑛/4) queries to prepare a 2𝑛-qubit state 𝜌 such that,∑︀

𝐴∈𝒮
1
|𝒮|Tr(|𝐴⟩⟨𝐴|

⊗2𝐶𝑈𝐴(|𝐴⟩⟨𝐴|)) ≥ 𝜖.

3 Space-bounded Quantum Zero-Knowledge: Definitions

We present the definition of quantum zero knowledge with space bounded simulation. First, we will
revisit the definition of zero-knowledge in Section 3.1. Towards defining space-bounded simulation,
we present the computational model in Section 3.2. This model will explicitly capture the interaction
between the classical memory and the quantum memory. We then define space-bounded quantum
zero-knowledge in Section 3.3.

3.1 Defining Quantum Zero-Knowledge

We discuss the different types of quantum zero-knowledge below. We first start with the notion
of quantum zero-knowledge, referred to as black-box quantum zero-knowledge, considered in the
literature.

Black-Box QZK. Consider the following two definitions.

Definition 3.1 (Canonical purification). Let 𝑉 be a quantum channel that is implemented with
quantum gates, intermediate measurements and trace-out operations. We denote the canonical pu-
rification of 𝑉 as P(𝑉 ), which consists of the unitary circuit that performs all the measurements
coherently and replaces all the trace-out operations with identity gates.
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Any circuit can be expressed as its purification followed by measurements and trace out operations.

Definition 3.2. Let 𝑉 be a party in a 𝑘-round interactive protocol. We define C (𝑉 ) = (Φ1, ...,Φ𝑘),
where Φ𝑖 :ℳ𝑖 × 𝒱𝑖 → ℳ𝑖+1 × 𝒱𝑖+1 to be the quantum channel corresponding to the computation
performed by 𝑉 on the 𝑖𝑡𝑕 round of the protocol, where 𝒱𝑖 is the Hilbert space corresponding to the
memory of 𝑉 on round 𝑖 and ℳ𝑖 is the Hilbert space corresponding to message sent in round 𝑖.

We denote P(𝑉 ) = (P(Φ1), . . . ,P(Φ𝑘)), where C (𝑉 ) = (Φ1, . . . ,Φ𝑘) and P is as defined
in Definition 3.1. Similarly, we define P(𝑉 )† =

(︀
P(Φ1)

†, . . . ,P(Φ𝑘)
†)︀.

Most of the recent works [Wat09, ACP21, CCY21, CCLY21b, LMS21, CCLY21a] consider the
following definition of quantum zero-knowledge.

Definition 3.3 (Black-Box Quantum Zero-Knowledge). A proof (resp., argument) system (𝑃, 𝑉 )
for an NP relation ℛ is black-box quantum zero-knowledge if there exists a QPT simulator 𝖲𝗂𝗆 such
that for every QPT verifier 𝑉 *, for every (𝑥,𝑤) ∈ ℛ, for every poly(|𝑥|)-qubit state 𝜌,

𝖵𝗂𝖾𝗐𝑉 * (⟨𝑃 (𝑥,𝑤), 𝑉 *(𝑥, 𝜌)⟩) ≈𝒬,𝜀(|𝑥|) 𝖲𝗂𝗆P(𝑉 *),P(𝑉 *)†(𝑥, 𝜌),

where 𝖲𝗂𝗆 having oracle access to P(𝑉 *) and P(𝑉 )† is denoted by 𝖲𝗂𝗆P(𝑉 *),P(𝑉 *)† , P(·) is as
defined in Definitions 3.1 and 3.2 and 𝜀(|𝑥|) is a negligible function in |𝑥|.

Comparison with Classical Black-Box ZK: In the definition of black-box classical zero-knowledge,
the simulator has oracle access to the verifier circuit 𝑉 . However, in Definition 3.3, the simulator
does not have direct access to the verifier’s circuit. Instead it has oracle access to the purification of
the verifier circuit. Not only that, it also has oracle access to the inverse of the purification as well.
Thus, we believe that the above definition is not the true quantum analogue of classical black-box
zero-knowledge.

Fully Black-Box QZK. We consider a new definition that resembles the black-box definition
in the classical setting. We call this definition fully black-box QZK. Just like the classical setting,
the simulator in the fully black-box QZK only gets oracle access to the verifier circuit, and not the
purified version as considered in Definition 3.3.

We now present our definition of fully black-box zero-knowledge.

Definition 3.4 (Fully Black-Box Quantum Zero-Knowledge). A proof (resp., argument) system
(𝑃, 𝑉 ) for an NP relation ℛ is fully black-box quantum zero-knowledge if there exists a QPT
polynomial-time simulator 𝖲𝗂𝗆 such that for every QPT malicious verifier 𝑉 *, for every (𝑥,𝑤) ∈ ℛ,
for every state 𝜌,

𝖵𝗂𝖾𝗐𝑉 * (⟨𝑃 (𝑥,𝑤), 𝑉 *(𝑥, 𝜌)⟩) ≈𝒬,𝜀(|𝑥|) 𝖲𝗂𝗆C (𝑉 *)(𝑥, 𝜌),

where 𝖲𝗂𝗆 having oracle access to C (𝑉 *) is denoted by 𝖲𝗂𝗆C (𝑉 *), C (·) is as defined in Definition 3.2
and 𝜀(|𝑥|) is negligible in |𝑥|.

Non Black-Box QZK. We can also define the most general definition of QZK where the simulator
can depend arbitrary on the code of the verifier. We call this non black box QZK. This definition
was considered in a few recent works [BS20, ALP20, BKS21].
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Definition 3.5 (Non Black-Box Quantum Zero-Knowledge). A proof (resp., argument) system
(𝑃, 𝑉 ) for an NP relation ℛ is non black-box quantum zero-knowledge if for every QPT verifier 𝑉 *,
there exists a QPT polynomial-time simulator 𝖲𝗂𝗆, for every (𝑥,𝑤) ∈ ℛ, for every poly(|𝑥|)-qubit
state 𝜌,

𝖵𝗂𝖾𝗐𝑉 * (⟨𝑃 (𝑥,𝑤), 𝑉 *(𝑥, 𝜌)⟩) ≈𝒬,𝜀(|𝑥|) 𝖲𝗂𝗆(𝑥, 𝜌),

where 𝜀(|𝑥|) is negligible in |𝑥|.

3.2 Computational model

Towards defining space-bounded simulation, we define the model of quantum computation albeit
using a different terminology. The new terminology is necessary to carefully model the interaction
between the classical memory and the quantum memory since we are explicitly measuring the
amount of quantum memory required for any computation.

First, we start with a weaker computational model. The following definition considers quantum
circuits that take as input a unitary and a state and output the computation of the unitary on the
state.

Definition 3.6 (𝑀 -qubit programmable quantum computer). We say that 𝑄 is an 𝑀 -qubit pro-
grammable quantum computer, if 𝑄 receives as an input an 𝑀 -qubit quantum state |𝜓⟩, the (classi-
cal) description of an 𝑀 -qubit unitary 𝑈 and it outputs the state 𝑈 |𝜓⟩. We depict such a quantum
device in Figure 1.

⟨𝑈⟩ ∙

𝑄· · · · · · 𝑈 |𝜓⟩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|𝜓⟩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Figure 1: 𝑀 -qubit programmable quantum computer

We now generalize the above model in the following way. After the computation of the unitary, we
allow for some classical preprocessing. This is enabled by measuring a subset of the qubits of the
state obtained after the unitary computation and the resulting measurement outcomes can be used
to choose the function to be applied on the classical memory.

This entire computation is considered to be a block of computation. Later, we will consider the
most general model where the computation is defined to a sequence of blocks.

Definition 3.7 (𝑀 -qubit of unitary quantum computation with classical post-processing). An 𝑀 -
qubit of unitary quantum computation with classical post-processing is defined by a tuple (𝑐, ⟨𝑈⟩, ℓ, |𝜓⟩ , 𝑓),
where 𝑐 ∈ {0, 1}𝐿 is a classical register, ⟨𝑈⟩ is the description of an 𝑀 -qubit unitary, ℓ ∈ [𝑀 +1] is
the number of qubits that will be measured, |𝜓⟩ is the input state of the quantum computation and
𝑓 is a classical function used for post-processing.

The computation proceeds as follows:

1. Using an 𝑀 -qubit programmable quantum computer 𝑄, we run the unitary 𝑈 on the state |𝜓⟩,
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2. We measure the first ℓ qubits of the output, having outcome 𝑜 and the state on the last 𝑀 − ℓ
qubits is |𝜑𝑜⟩,

3. We apply a classical function 𝑓 on (𝑐, ⟨𝑈⟩, ℓ, 𝑜), resulting in (𝑐′, ⟨𝑈 ′⟩, ℓ′),

4. The first ℓ qubits are reset to |0⟩,

5. The output of the computation is (𝑐′, ⟨𝑈 ′⟩, ℓ′, |𝜓′⟩), where |𝜓′⟩ = |0ℓ⟩ |𝜑𝑜⟩.

We depict such a computation in Figure 2.

𝑐

𝑓

𝑐′

⟨𝑈⟩ ∙ ⟨𝑈 ′⟩

ℓ ∙ ℓ′

𝑄

∙ |0⟩

∙ |0⟩ |𝜓′⟩

· · · · · · · · ·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|𝜓⟩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
𝐵𝑖

Figure 2: 𝑀 -qubit of unitary quantum computation with classical post-processing

Our Model. We are now ready to define the model that we consider in this work. As mentioned
earlier, the model below comprises of a sequence of blocks of computation, where each block is an
𝑀 -qubit of unitary computation with classical post-processing.

Definition 3.8 (𝑀 -qubit quantum channel). An 𝑀 -qubit of quantum computation with classical
post-processing is defined by a tuple (𝑐0, ⟨𝑈0⟩, ℓ0, |𝜓0⟩ , 𝑓), where 𝑐 ∈ {0, 1}𝐿 is a classical register,
⟨𝑈0⟩ is the description of an 𝑀 -qubit unitary, ℓ0 ∈ [𝑀 + 1] is the number of qubits that will be
measured, |𝜓0⟩ is the input state of the quantum computation and for 𝑓 is a classical function used
for post-processing.

The computation proceeds as follows: We run an M-qubit of unitary quantum computation with
classical post-processing (Definition 3.7) defined by (𝑐𝑖, ⟨𝑈𝑖⟩, ℓ𝑖, |𝜓𝑖⟩ , 𝑓) and we let the output of the
computation be (𝑐𝑖+1, ⟨𝑈𝑖+1⟩, ℓ𝑖+1, |𝜓𝑖+1⟩). If ⟨𝑈𝑖+1⟩ =⊥, this process stops and output 𝑐′, ℓ′ and
|𝜓′⟩.

We depict such a computation in Figure 3.

We consider 𝑀 -qubit channels that are efficiently implementable.

Definition 3.9 (𝑀 -qubit Quantum Polynomial Time Algorithm). A (non-uniform) quantum poly-
nomial algorithm 𝐶 is said to be an 𝑀 -qubit (resp. non-uniform) strict quantum polynomial-time
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𝑐0 𝑐𝑘

⟨𝑈0⟩ · · · ⊥

ℓ0 · · · ℓ𝑘

|𝜓0⟩

𝐵1 𝐵2 𝐵𝑘

|𝜓𝑘⟩

Figure 3: 𝑀 -qubit quantum computation with classical post-processing. Each block 𝐵𝑖 corresponds
to the circuit in Figure 2 with the corresponding choices of input and classical post-processing 𝑓𝑖.

algorithm if it is an 𝑀 -qubit quantum channel and there is a polynomial 𝑝 such that each of the
blocks runs in time at most 𝑝(|𝑥|) and after 𝑝(|𝑥|) rounds, the procedure stops (i.e., there exists some
𝑘 ≤ 𝑝(|𝑥|) such that ⟨𝑈𝑘⟩ =⊥).

A (non-uniform) quantum polynomial algorithm 𝐶 is said to be an 𝑀 -qubit (resp. non-uniform)
expected quantum polynomial-time algorithm if it is an 𝑀 -qubit quantum channel and there is a
polynomial 𝑝 such that each of the blocks runs in time at most 𝑝(|𝑥|) and the expected number of
rounds of the procedure is 𝑝(|𝑥|) (i.e., 𝔼[𝑘 |⟨𝑈𝑘⟩ =⊥] ≤ 𝑝(|𝑥|), where the expectation is over the
measurement outcomes of the procedure).

Oracle Access. In order to discuss space-bounded black-box zero-knowledge, we need to define
how the to give oracle access to an 𝑀 -qubit quantum channel and how the memory of the overall
channel is counted.

An 𝑀𝐴-qubit quantum channel 𝐴 has oracle access to an 𝑀𝐵-qubit quantum channel 𝐵, for
𝑀𝐴 ≥𝑀𝐵, then 𝐴 prepares a classical register 𝐁𝐂 and 𝑀𝐵-qubit quantum register 𝐁𝐐, and then
runs the channel 𝐵 on input registers 𝐁𝐂 and 𝐵𝑄. 𝐴 then has access to the output of 𝐵, consisting
again of a classical register and an 𝑀𝐵-qubit quantum register.

3.3 Space-Bounded Quantum Zero-Knowledge

Equipped with the computational model described in Section 3.2, we state the definition of space-
bounded quantum zero-knowledge. Roughly speaking, the definition states that the number of
qubits consumed by the simulator should be a fixed polynomial in the number of qubits consumed
by the verifier. Ideally, we would like the polynomial to be of low degree; however, we place no such
restriction on the definition below.

Definition 3.10 ((𝑠, 𝑝)-space-bounded QZK). Let 𝒳 ∈ {fully black box, black box,non black box}.
An 𝒳 QZK proof (resp., argument) system (𝑃, 𝑉 ) for a language ℒ is said to be (𝑠, 𝑓)-space-bounded
𝒳 QZK proof (resp., argument) system if the following property is satisfied:

• Suppose 𝑉 * is an ℓ𝑉 *-qubit QPT (Definition 3.9), where ℓ𝑉 * = 𝑠(|𝑥|). Then, 𝖲𝗂𝗆 is an
ℓ𝖲𝗂𝗆-qubit QPT, where ℓ𝖲𝗂𝗆 ≤ 𝑓(𝑠(|𝑥|)).

In the case of the black box QZK (Definition 3.3), the amount of quantum memory utilized by 𝖲𝗂𝗆 is
compared against the amount of quantum memory utilized by 𝑉 * before its purification. Moreover,
by definition, the quantum memory of 𝖲𝗂𝗆 contains the memory of the purified verifier 𝑉 *. For
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any polynomial 𝑓(·), for any 𝑠, it is possible to come up with an 𝑠-qubit channel7 (Definition 3.8)
such that purifying this channel would require strictly more than 𝑓(𝑠) qubits. This means that any
black box simulator against a verifier represented as this 𝑠-qubit channel would utilize more than
𝑓(𝑠) qubits. Hence, (𝑠, 𝑓)-space bounded black box QZK, for any polynomial 𝑓 , is impossible to
achieve. On the other hand, for superpolynomial 𝑓(·), existing works demonstrate that (𝑠, 𝑓)-space
bounded QZK exists .

From the above discussion, it follows that the only two meaningful notions of space bounded
QZK to consider are fully black box QZK and non black box QZK.

4 Zero-Knowledge against Logarithmic Quantum Space Verifiers

We present the construction of an argument system Π for the NP relation 𝑅(ℒ) which is space-
bounded fully black-box zero-knowledge against 𝑂(log(𝜆))-qubit quantum channels (Definition 3.8).

We use the following tools in our construction.

• Statistically-binding and quantum-concealing commitment protocol (see Section 2.4), denoted
by (𝖢𝗈𝗆𝗆,𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝗋,𝖮𝗉𝖾𝗇).

• Four round quantum witness-indistinguishable proof system Π𝗐𝗂 (Definition 2.4). The relation
associated with Π𝗐𝗂, denoted by ℛ(ℒ𝗐𝗂), is defined as follows:

ℛ(ℒ𝗐𝗂) =

{︃(︁(︁
𝑥, 𝐜*, 𝐜**, {𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

)︁
; (𝑤, 𝐫*, 𝑟, 𝑖*)

)︁
: (𝑥,𝑤) ∈ ℛ(ℒ) or

𝖮𝗉𝖾𝗇(𝐜*) = (𝐫*, 𝑟) and 𝖮𝗉𝖾𝗇(𝐜**) = ((𝑖*, 𝛼𝑖*,0 ⊕ 𝛼𝑖*,1), 𝐫
*)

}︃
We present the construction of Π in Figure 4.

Completeness. The completeness of the protocol Π in Figure 4 follows from the completeness
of Π𝗐𝗂.

4.1 Proof of Soundness

Proposition 1. The protocol Π in Figure 4 satisfies soundness.

Proof. Let 𝑃 * be a (non-uniform) malicious prover. Let 𝑥 ∈ {0, 1}* be such that 𝑥 /∈ ℒ. We claim
that 𝖯𝗋 [𝖠𝖼𝖼𝖾𝗉𝗍← ⟨𝑃 *(𝑥), 𝑉 (𝑥)⟩] ≤ 𝗇𝖾𝗀𝗅(𝜆).

From the soundness of Π𝗐𝗂, the following holds:

𝖯𝗋 [𝖠𝖼𝖼𝖾𝗉𝗍← ⟨𝑃 *(𝑥), 𝑉 (𝑥)⟩] ≤ 𝖯𝗋 [𝐱𝗐𝗂 ∈ ℒ𝗐𝗂] + 𝗇𝖾𝗀𝗅(𝜆), (1)

where 𝑥𝗐𝗂 is a random variable that is assigned the WI instance sampled in the execution of 𝑃 *(𝑥).
Therefore, to prove soundness, it suffices upper bound the value 𝜀 := 𝖯𝗋[𝐱𝗐𝗂 ∈ ℒ𝗐𝗂].

7For example, consider an 𝑠-qubit channel contains 𝑓(𝑠) bits of classical memory. After canonical purification,
the overall amount of quantum memory would be more than 𝑓(𝑠) qubits. Note that we don’t rule out other types of
purification which critically use the structure of the 𝑠-qubit channel to not increase the quantum memory significantly.
However, this is not in the spirit of black box QZK and we consider such variants to be closer to non black box QZK.
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Input of 𝑃 : Instance 𝑥 ∈ ℒ along with witness 𝑤.
Input of 𝑉 : Instance 𝑥 ∈ ℒ.

Trapdoor Phase:

1. 𝑃 ↔ 𝑉 : 𝑃 and 𝑉 engage in an execution of the commitment protocol, where 𝑃 plays
the role of the committer and 𝑉 plays the role of the receiver. 𝑃 commits to 𝐫*, where
𝐫*

$←− {0, 1}𝜆. Denote the commitment to be 𝐜*. Let the randomness used by 𝑃 in the
commitment protocol be 𝑟.

2. 𝑉 ↔ 𝑃 : 𝑃 and 𝑉 run 2𝜆 parallel executions of the commitment protocol, with 𝑉 playing
the role of the committer and 𝑃 playing the role of the receiver. We index the executions
using the notation (𝑖, 𝑏), where 𝑖 ∈ [𝜆] and 𝑏 ∈ {0, 1}. In the (𝑖, 𝑏)𝑡𝑕 execution, 𝑉 commits
to 𝛼𝑖,𝑏, where 𝛼𝑖,𝑏

$←− {0, 1}𝜆. Denote the commitments by
(︀
{𝐜𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

)︀
.

3. 𝑃 → 𝑉 : 𝑃 sends 𝐛1, . . . ,𝐛𝜆, where 𝐛𝑖
$←− {0, 1}𝜆.

4. 𝑉 → 𝑃 : 𝑉 sends the openings of all the commitments ({𝐜𝑖,𝐛𝑖
}𝑖∈[𝜆]). Denote the opening

of the (𝑖,𝐛𝑖)
𝑡𝑕 commitment to be 𝑜𝑖,𝐛𝑖

= 𝖮𝗉𝖾𝗇(𝐜𝑖,𝐛𝑖
). If any of the openings are invalid, 𝑃

rejects. Otherwise, 𝑃 parses 𝑜𝑖,𝐛𝑖
as (𝛼𝑖,𝐛𝑖

, 𝑟𝑖,𝐛𝑖
).

5. 𝑃 ↔ 𝑉 : 𝑃 and 𝑉 engage in another execution of the commitment protocol, where 𝑃 plays
the role of the committer and 𝑉 plays the role of the receiver. 𝑃 commits to 0, using the
randomness 𝐫*. Denote the commitment to be 𝐜**.

6. 𝑉 → 𝑃 : 𝑉 sends the rest of the openings of
(︀
{𝐜𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

)︀
. That is, it sends

{𝑜𝑖,1−𝐛𝑖
}𝑖∈[𝜆], where 𝑜𝑖,1−𝐛𝑖

= 𝖮𝗉𝖾𝗇(𝐜𝑖,1−𝐛𝑖
). If any of the openings are invalid, 𝑃 re-

jects. Otherwise, 𝑃 parses 𝑜𝑖,1−𝐛𝑖
as (𝛼𝑖,1−𝐛𝑖

, 𝑟𝑖,1−𝐛𝑖
).

WI Phase: 𝑃 and 𝑉 engage in Π𝗐𝗂 with the common input being the following:

𝐱𝗐𝗂 =
(︁
𝑥, 𝐜*, 𝐜**, {𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

)︁
Additionally, 𝑃 uses the witness (𝑤,⊥,⊥,⊥).

Figure 4: Description of the protocol Π.

Lemma 4.1. 𝜀 ≤ 𝗇𝖾𝗀𝗅(𝜆).

Proof. Let 𝐱𝗐𝗂 =
(︁
𝑥, 𝐜*, 𝐜**, {𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

)︁
be the Π𝗐𝗂 instance computed during the execution

of 𝑃 *(𝑥) and 𝑉 (𝑥). Define the following event, parameterized by a set of values:

Event 𝐄
[︁
{𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

]︁
: Output 1 if there exists an 𝐢 ∈ [𝜆] such that the commitment 𝐜** sent
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by 𝑃 * is a commitment of (𝛼𝐢,0 ⊕ 𝛼𝐢,1).

Consider the following hybrid argument.

𝖧0: This corresponds to the execution of 𝑃 *(𝑥) and 𝑉 (𝑥).
Let {𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1} be the values committed by 𝑉 in Step 2. Since 𝑥 /∈ ℒ, the following holds:

𝖯𝗋
[︁
𝐄
[︁
{𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

]︁
= 1 in 𝖧0

]︁
= 𝖯𝗋 [𝐱𝗐𝗂 ∈ ℒ𝗐𝗂] = 𝜀

𝖧1: We modify the description of 𝑉 (𝑥) as follows. Sample 𝛼𝑖
$←− {0, 1}𝜆, 𝛼𝑖,𝑏

$←− {0, 1}𝜆 such that
𝛼𝑖 = 𝛼𝑖,0 ⊕ 𝛼𝑖,1.

The two hybrids 𝖧0 and 𝖧1 are identical. Thus, we have the following:

𝖯𝗋
[︁
𝐄
[︁
{𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

]︁
= 1 in 𝖧1

]︁
= 𝜀

𝖧2.(𝑖*,𝑏*) for 𝑖* ∈ [2𝜆], 𝑏* ∈ {0, 1}: The verifier behaves as in 𝖧1 except for the following: for every

𝑖 ∈ [𝜆], it additionally samples 𝛽𝑖,0
$←− {0, 1}𝜆, 𝛽𝑖,1

$←− {0, 1}𝜆. Furthermore, for every 𝑖 ≤ 𝑖*, 𝑏 ≤ 𝑏*,
the (𝑖, 𝑏)𝑡𝑕 committed value by 𝑉 in Step 2 is 𝛽𝑖,𝑏. We emphasize that for every 𝑖 ∈ [𝜆], it still

samples 𝛼𝑖,0
$←− {0, 1}𝜆, 𝛼𝑖,1

$←− {0, 1}𝜆.
We prove the following two claims.

Claim 1. Assuming the quantum-concealing property of (𝖢𝗈𝗆𝗆,𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝗋,𝖮𝗉𝖾𝗇), there exists a neg-
ligible function 𝜈(𝜆) such that the following holds:

1. For every 𝑖* ∈ [𝜆],⃒⃒⃒
𝖯𝗋
[︁
𝐄
[︁
{𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

]︁
in 𝖧2.(𝑖*.0)

]︁
− 𝖯𝗋

[︁
𝐄
[︁
{𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

]︁
in 𝖧2.(𝑖*.1)

]︁⃒⃒⃒
≤ 𝜈(𝜆)

2. For every 𝑖* ∈ [𝜆− 1],⃒⃒⃒
𝖯𝗋
[︁
𝐄
[︁
{𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

]︁
in 𝖧2.(𝑖*−1.1)

]︁
− 𝖯𝗋

[︁
𝐄
[︁
{𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

]︁
in 𝖧2.(𝑖*.0)

]︁⃒⃒⃒
≤ 𝜈(𝜆),

3. ⃒⃒⃒
𝖯𝗋
[︁
𝐄
[︁
{𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

]︁
in 𝖧1

]︁
− 𝖯𝗋

[︁
𝐄
[︁
{𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

]︁
in 𝖧2.(1.0)

]︁⃒⃒⃒
≤ 𝜈(𝜆)

Proof. We will prove just the first bullet and the other items follow analogously.
Let 𝛿𝑖.𝐛 = 𝖯𝗋

[︁
𝐄
[︁
{𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

]︁
in 𝖧2.(𝑖.𝐛)

]︁
. Suppose the first bullet does not hold. This

means that there exits 𝑖* ∈ [𝜆] and a non-negligible function 𝜈(𝜆) such that |𝛿𝑖*.0 − 𝛿𝑖*.1| ≥ 𝜈(𝜆).
We construct a non-uniform reduction ℬ as follows. It receives as non-uniform advice, (𝐫*, 𝐜*, 𝜎𝖺𝖽𝗏)

generated as follows:

• Run 𝑃 *(𝑥) to generate 𝐜*.
• Let 𝐫* be the value committed in 𝐜*.
• Let 𝜎𝖺𝖽𝗏 be the state of 𝑃 *(𝑥) after the execution of step 1 of Π in Figure 4.

ℬ proceeds as follows:
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• For every 𝑖 ∈ {0, 1}𝜆, it samples 𝛼𝑖,0, 𝛼𝑖,1, 𝛽𝑖,0, 𝛽𝑖,1
$←− {0, 1}𝜆,

• It runs 𝑃 *(𝑥) starting from step 2 of Π in Figure 4. 𝑃 * is initialized with the state 𝜎𝖺𝖽𝗏.

• For all the (𝑖, 0)𝑡𝑕 and (𝑖, 1)𝑡𝑕 executions of step 2 of Π, ℬ plays the role of 𝑉 (𝑥). That is,
in the (𝑖, 𝑏)𝑡𝑕 execution, for 𝑖 < 𝑖*, it commits to 𝛽𝑖,𝑏. In the (𝑖, 𝑏)𝑡𝑕 execution for 𝑖 > 𝑖*, it
commits to 𝛼𝑖,𝑏. Similarly, for 𝑖 = 𝑖*, in the (𝑖, 0)𝑡𝑕 execution, it commits to 𝛽𝑖,𝑏. For the
(𝑖*, 1)𝑡𝑕 execution, it acts as an intermediary between the external challenger, which plays
the role of sender in (𝖢𝗈𝗆𝗆,𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝗋,𝖮𝗉𝖾𝗇), and the prover 𝑃 *(𝑥). The challenger uses the
challenge message pair (𝛼𝑖*,1, 𝛽𝑖*,1) in the quantum-concealing experiment when interacting
with ℬ, who plays the role of the malicious receiver.

• ℬ continues the execution of 𝑃 *(𝑥) by emulating the verifier 𝑉 (𝑥) until step 5 of Π.

• Let 𝐜** be the commitment sent by 𝑃 *(𝑥) in step 5.

• ℬ recovers the message 𝛾 from 𝐜** using 𝐫*. If the recovery fails, it aborts.

• If there exists 𝑖 ∈ [𝜆] such that 𝛾 = 𝛼𝑖,0 ⊕ 𝛼𝑖,1, ℬ outputs 1. Otherwise, it outputs 0.

If the challenger uses the message 𝛼𝑖*,1 in the execution of the commitment protocol then the prob-
ability that ℬ outputs 1 is precisely 𝛿𝑖*,0. Similarly, if the challenger uses 𝛽𝑖*,1 then the probability
that ℬ outputs 1 is precisely 𝛿𝑖*,1.

Since |𝛿𝑖*,0 − 𝛿𝑖*,1| ≥ 𝜈(𝜆), where 𝜈(𝜆) is non-negligible, we have that ℬ violates the quantum-
concealing property of (𝖢𝗈𝗆𝗆,𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝗋,𝖮𝗉𝖾𝗇), a contradiction. Thus, 𝜈(𝜆) is negligible which
completes the proof of the claim.

As a corollary and from the fact that 𝖯𝗋
[︁
𝐄
[︁
{𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

]︁
= 1 in 𝖧1

]︁
= 𝜀, we have the following.

Corollary 4.2. ⃒⃒⃒
𝖯𝗋
[︁
𝐄
[︁
{𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

]︁
in 𝖧2.(𝜆.1)

]︁⃒⃒⃒
≥ 𝜀− (2𝜆) · 𝜈(𝜆)

Proof. Follows by applying triangle inequality on Claim 1.

Claim 2. 𝖯𝗋
[︁
𝐄
[︁
{𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

]︁
= 1 in 𝖧2.(𝜆.1)

]︁
≤ 𝜆

2𝜆
.

Proof. In 𝖧2.(𝜆.1), {𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1} is information-theoretically hidden from 𝑃 *(𝑥). Thus, for any
given 𝑖 ∈ [𝜆], the probability that 𝛼𝑖,0 ⊕ 𝛼𝑖,1 is committed by 𝑃 * in bullet 5 of Π is 1

2𝜆
. By union

bound, the proof of the claim follows.

From Corollary 4.2 and Claim 2, 𝜀 is a negligible function in 𝜆.

From Lemma 4.1 and Equation 1, it follows that 𝖯𝗋 [𝖠𝖼𝖼𝖾𝗉𝗍← ⟨𝑃 *(𝑥), 𝑉 (𝑥)⟩] ≤ 𝗇𝖾𝗀𝗅(𝜆).
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4.2 Proof of Quantum Zero-Knowledge

Proposition 2. Let 𝑀 = 𝑂(log 𝜆) and 𝑓(𝑀) = 2𝑀 . The protocol described in Figure 4 is (𝑀,𝑓)-
space bounded QZK.

Proof. Suppose 𝑉 * be a malicious QPT (non-uniform) verifier with 𝑀 -qubit quantum space. We
describe a QPT simulator 𝖲𝗂𝗆 such that the output distribution of 𝖲𝗂𝗆 is computationally indistin-
guishable from the output distribution of the real world.

Description of Simulator. Let 𝐑 and 𝐗 be two 𝑀 -qubit registers. The register 𝐗 is 𝑉 *’s
private register whereas 𝐑 is an auxiliary register maintained by the simulator. The verifier 𝑉 *’s
advice state is stored in the register 𝐗. We describe the simulator 𝖲𝗂𝗆 in Figure 5.

We need to show that 𝖲𝗂𝗆 indeed runs in expected QPT. We also need to demonstrate that the
output distribution of 𝖲𝗂𝗆 is computationally indistinguishable from the real world.

We first prove a simple claim. Define Λ be a POVM that on input 𝜎, defined on 𝐗, implements
steps 3 and 4 of Π in Figure 4 and outputs 1 if and only if 𝑉 * does not abort. We assume that
the classical state is hardcoded in the description of Λ. Define another POVM Γ that on input 𝜎,
defined on 𝐑, implements 2.2 of Figure 5 and outputs 1 if and only if 𝑉 * did not abort and ∃𝑖 ∈ [𝜆]
such that 𝐛𝑖 ̸= 𝐛′𝑖.

Claim 3. Suppose 𝑝 = Tr(Λ(𝜌𝗋𝖾𝗌)), where 𝜌𝗋𝖾𝗌 is as defined in Figure 5. Then, Tr(Γ( 𝐼
2𝑀

)) ≥
𝑝

2𝑀
·
(︀
1− 2−𝜆

)︀
.

Proof. Firstly, note that Tr(Λ(𝜎)) ·
(︀
1− 2−𝜆

)︀
= Tr(Γ(𝜎)), for every density matrix 𝜎. This follows

from the fact that the probability that ∃𝑖 ∈ [𝜆] such that 𝐛𝑖 ̸= 𝐛′𝑖 is precisely (1− 2−𝜆).
Now, we estimate Tr(Λ( 𝐼

2𝑀
)). We have:

Tr

(︂
Λ

(︂
𝐼

2𝑀

)︂)︂
=

1

2𝑀
Tr (Λ (𝐼))

=
1

2𝑀
Tr (Λ (𝜌𝗋𝖾𝗌 + 𝐼 − 𝜌𝗋𝖾𝗌))

≥ 1

2𝑀
Tr (Λ (𝜌𝗋𝖾𝗌)) (∵ 𝐼 − 𝜌𝗋𝖾𝗌 ⪰ 0)

=
𝑝

2𝑀

Thus, Tr
(︀
Γ( 𝐼

2𝑀
)
)︀
= Tr

(︀
Λ( 𝐼

2𝑀
)
)︀
·
(︀
1− 2−𝜆

)︀
≥ 𝑝

2𝑀
· (1− 2−𝜆).

Runtime Analysis. Let 𝑞(𝜆) be an upper bound on the runtime of all the steps (1 through 6)
in Figure 5. Let 𝜌 be the auxiliary state of 𝑉 *. We use the notation Λ and Γ as defined earlier. Let
𝑝 = Tr(Λ(𝜌𝑟𝑒𝑠)) and 𝑝′ = Tr(Γ( 𝐼

2𝑀
)). From 3, 𝑝′ ≥ 𝑝

2𝑀
(1− 2−𝜆). There are three cases.

Case 1: 𝑝 = 0. In this case, 𝖲𝗂𝗆 aborts after step 1 of Figure 5. Thus, 𝖲𝗂𝗆 runs in polynomial time.

Case 2: 𝑝′ = 1. In this case, either 𝖲𝗂𝗆 aborts in step 1 or it runs the loop in step 2 only once. In
either of the two cases, 𝖲𝗂𝗆 runs in polynomial time.
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1. By taking the role of the honest prover, run the first four steps in Figure 4. That is, until
the simulator receives {(𝛼𝑖,𝐛𝑖

, 𝑟𝑖,𝐛𝑖
)}𝑖∈[𝜆]. Abort if 𝑉 * aborts at any point. We emphasize

that 𝑉 * is executed on input the register 𝐗. Denote 𝜌𝗋𝖾𝗌 to be the quantum residual state
after this step. Denote the classical state to be 𝗌𝗍.

1.1. 𝖲𝗂𝗆 and 𝑉 * engage in an execution of the commitment protocol, where 𝖲𝗂𝗆 commits
to 𝐫*, which is sampled as 𝐫*

$←− {0, 1}𝜆. Denote the commitment to be 𝐜*.

1.2. 𝖲𝗂𝗆 and 𝑉 * run 2𝜆 number of executions of the commitment protocol. Denote the
commitments in all the 2𝜆 executions by ({𝐜′𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}).

1.3. 𝖲𝗂𝗆 sends 𝐛1, . . . ,𝐛𝜆, where 𝐛𝑖
$←− {0, 1}𝜆, to 𝑉 *.

1.4. 𝖲𝗂𝗆 receives the openings of all the commitments ({𝐜𝑖,𝐛𝑖
}𝑖∈[𝜆]). Denote the opening of

the (𝑖,𝐛𝑖)
𝑡𝑕 commitment to be 𝑜𝑖,𝐛𝑖

= 𝖮𝗉𝖾𝗇(𝐜𝑖,𝐛𝑖
). If any of the openings are invalid,

reject. Otherwise, parse 𝑜𝑖,𝐛𝑖
as (𝛼𝑖,𝐛𝑖

, 𝑟𝑖,𝐛𝑖
).

2. Repeat the following forever:

2.1. Initialize the register 𝐑 with the maximally mixed state 𝐼
2𝑀

.

2.2. Run the third and fourth steps of Figure 4, where 𝑉 * is executed on the register
𝐑. That is, send 𝐛′1, . . . ,𝐛

′
𝜆

$←− {0, 1}𝜆. Receive the openings from 𝑉 *, denoted by
{(𝛼𝑖,𝐛′

𝑖
, 𝑟𝑖,𝐛′

𝑖
)}𝑖∈[𝜆]. Abort the loop if 𝑉 * did not abort and ∃𝑖 ∈ [𝜆] such that 𝐛𝑖 ̸= 𝐛′𝑖.

Otherwise, continue.

3. Discard the register 𝐑. From here on, continue (from Step 1) the execution of 𝑉 * on the
register 𝐗. Specifically, run 𝑉 * on (𝜌𝗋𝖾𝗌, 𝗌𝗍).

4. The simulator commits to (𝑖*, 𝛼𝑖*,0 ⊕ 𝛼𝑖*,1), where 𝑖* ∈ [𝜆] is such that 𝐛𝑖* ̸= 𝐛′𝑖* . Denote
the commitment to be 𝐜** and let 𝐫* be the randomness used in 𝐜**.

5. It runs the last step of the trapdoor phase by emulating the execution of the honest prover.

6. Finally, 𝖲𝗂𝗆 runs the WI phase with 𝑉 *. Let the instance be 𝐱𝗐𝗂 =(︁
𝑥, 𝐜*, 𝐜**, {𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

)︁
, where 𝐜* be the commitment sent by 𝖲𝗂𝗆 in the beginning

of the protocol. 𝖲𝗂𝗆 emulates the honest prover except the witness used is (⊥, 𝐫*, 𝑟, 𝑖*),
where 𝑟 is the randomness used in the commitment of 𝐜*.

Figure 5: (Expected) QPT Simulator 𝖲𝗂𝗆.

Case 3: 𝑝 > 0 and 𝑝′ < 1.

27



Expected Runtime = 𝑞(𝜆)

(︃
(1− 𝑝) · 1 + 𝑝

∞∑︁
𝑖=1

𝑖 · (1− 𝑝′)𝑖−1 · 𝑝′
)︃

+ 4𝑞(𝜆)

= 𝑞(𝜆)

(︃
(1− 𝑝) · 1 + 𝑝 · 𝑝′

(1− 𝑝′)

∞∑︁
𝑖=1

𝑖 · (1− 𝑝′)𝑖
)︃

+ 4𝑞(𝜆)

= 𝑞(𝜆)

(︂
(1− 𝑝) · 1 + 𝑝 · 𝑝′

(1− 𝑝′)
· (1− 𝑝

′)

(𝑝′)2

)︂
+ 4𝑞(𝜆)

(︃
∵
∞∑︁
𝑖=1

𝑖 · 𝑐𝑖 = 𝑐

(1− 𝑐)2
for 𝑐 > 0

)︃

= 𝑞(𝜆)

(︂
(1− 𝑝) · 1 + 𝑝

𝑝′

)︂
+ 4𝑞(𝜆)

≤ 𝑞(𝜆)

(︃
(1− 𝑝) + 𝑝

𝑝(1−2−𝜆)
2𝑀

)︃
+ 4𝑞(𝜆)

≤ 𝑞(𝜆)
(︀
(1− 𝑝) + 2𝑀+1

)︀
+ 4𝑞(𝜆)

= poly(𝜆)

The last equality follows from the fact that 𝑀 is logarithmic in 𝜆.

Indistinguishability of Real and Ideal worlds. Let (𝑥,𝑤) ∈ ℛ(ℒ). Let 𝜌 be the auxiliary
state of 𝑉 *.

Lemma 4.3. {𝖵𝗂𝖾𝗐𝑉 * (⟨𝑃 (𝑥,𝑤), 𝑉 *(𝑥, 𝜌))} ≈𝒬 {𝖲𝗂𝗆(𝑥, 𝜌)}.

Proof. Consider the following hybrid argument.

𝖧0: The output distribution of this hybrid is 𝖵𝗂𝖾𝗐𝑉 * (⟨𝑃 (𝑥,𝑤), 𝑉 *(𝑥, 𝜌)).

𝖧1: We define a hybrid simulator that essentially behaves like an honest prover except it keeps
rewinding until it finds two accepting transcripts. We emphasize that, just like the honest prover,
the hybrid simulator still uses the witness 𝑤 in the WI phase. Formally, we consider a hybrid
simulator 𝖧1.𝖲𝗂𝗆(𝑥,𝑤) defined as follows:

1. Execute steps 1 through 3 of 𝖲𝗂𝗆 in Figure 5.

1.1. Run the following steps:

i. Engage in an execution of the commitment protocol with 𝑉 *, by committing to 𝐫*,
which is sampled as 𝐫*

$←− {0, 1}𝜆. Denote the commitment to be 𝐜*.
ii. Execute 2𝜆 number of executions of the commitment protocol with 𝑉 *, with 𝑉 *

playing the role of the committer. Denote the commitments in all the 2𝜆 executions
by ({𝐜′𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}).

iii. Send 𝐛1, . . . ,𝐛𝜆, where 𝐛𝑖
$←− {0, 1}𝜆, to 𝑉 *.

iv. Receive the openings of all the commitments ({𝐜𝑖,𝐛𝑖
}𝑖∈[𝜆]). Denote the opening of

the (𝑖,𝐛𝑖)
𝑡𝑕 commitment to be 𝑜𝑖,𝐛𝑖

= 𝖮𝗉𝖾𝗇(𝐜𝑖,𝐛𝑖
). If any of the openings are invalid,

reject. Otherwise, parse 𝑜𝑖,𝐛𝑖
as (𝛼𝑖,𝐛𝑖

, 𝑟𝑖,𝐛𝑖
).
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1.2. Repeat the following forever:
i. Initialize the register 𝐑 with the maximally mixed state 𝐼

2𝑀
.

ii. Run the third and fourth steps of Figure 4, where 𝑉 * is executed on the register
𝐑. That is, send 𝐛′1, . . . ,𝐛

′
𝜆

$←− {0, 1}𝜆. Receive the openings from 𝑉 *, denoted by
{(𝛼𝑖,𝐛′

𝑖
, 𝑟𝑖,𝐛′

𝑖
)}𝑖∈[𝜆]. Abort the loop if 𝑉 * did not abort and ∃𝑖 ∈ [𝜆] such that 𝐛𝑖 ̸= 𝐛′𝑖.

Otherwise, continue
1.3. Discard the register 𝐑. From here on, continue (from Step 1) the execution of 𝑉 * on the

register 𝐗.

2. Execute steps 5 and 6 of Π in Figure 4. Also, execute the WI phase.

2.1. Engage in another execution of the commitment protocol by committing to 0, using the
randomness 𝐫*. Denote the commitment to be 𝐜**.

2.2. 𝑉 * output the rest of the openings of
(︀
{𝐜𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

)︀
. That is, it sends {𝑜𝑖,1−𝐛𝑖

}𝑖∈[𝜆],
where 𝑜𝑖,𝐛𝑖

= 𝖮𝗉𝖾𝗇(𝐜𝑖,1−𝐛𝑖
). If any of the openings are invalid, 𝑃 rejects. Otherwise, 𝑃

parses 𝑜𝑖,1−𝐛𝑖
as (𝛼𝑖,1−𝐛𝑖

, 𝑟𝑖,1−𝐛𝑖
).

2.3. Engage in Π𝗐𝗂 with 𝑉 * on the following common input:

𝐱𝗐𝗂 =
(︁
𝑥, 𝐜*, 𝐜**, {𝛼𝑖,𝑏}𝑖∈[𝜆],𝑏∈{0,1}

)︁
Additionally, use the witness (𝑤,⊥,⊥,⊥) in Π𝗐𝗂.

The output of 𝖧1.𝖲𝗂𝗆(𝑥,𝑤) is the view of 𝑉 * in 𝖧1.
Consider the following claim.

Claim 4. The trace distance between 𝖧0 and 𝖧1.𝖲𝗂𝗆(𝑥,𝑤) is at most 𝗇𝖾𝗀𝗅(𝜆).

Proof. Note that if 𝖧1.𝖲𝗂𝗆(𝑥,𝑤) terminates then the density matrices output in 𝖧0 and 𝖧1.𝖲𝗂𝗆(𝑥,𝑤)
are identically distributed. It suffices to upper bound the probability that 𝖧1.𝖲𝗂𝗆(𝑥,𝑤) does not
terminate. Let 𝑝 = Tr(Λ(𝜌)), where 𝜌 is the advice state of 𝑉 *. Let 𝑝′ = Tr(Γ(𝜌)). From Claim 3,
𝑝′ ≥ 𝑝(1−2−𝜆)

2𝑀
. There are two cases:

• Case 1. 𝑝 = 0 or 𝑝′ = 1: As we argued in the proof of Claim 3, 𝖲𝗂𝗆 terminates in this case.

• Case 2. 𝑝 ̸= 0 and 𝑝′ ̸= 1: In this case, we claim that the simulator terminates within 𝜆 ·(𝑝′)−1
iterations with overwhelming probability. We show this below.

𝖯𝗋
[︀
𝖲𝗂𝗆 does not terminate within 𝜆 · (𝑝′)−1 iterations

]︀
≤ (1− 𝑝′)𝜆·(𝑝′)−1

= 𝑒−𝜆

𝖧2: We define another hybrid simulator 𝖧2.𝖲𝗂𝗆 which behaves like 𝖧1.𝖲𝗂𝗆, except in the following
steps:

1.1.i Engage in an execution of the commitment protocol with 𝑉 *, by committing to 0. Denote the
commitment to be 𝐜*.
Note: in bullet 2.1 of 𝖧1, 𝐜** is still a commitment computed using the randomness 𝐫*, where
𝐫*

$←− {0, 1}𝜆.
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The rest of the steps is the same as 𝖧1.𝖲𝗂𝗆. The output of 𝖧2.𝖲𝗂𝗆 is the view of 𝑉 * in 𝖧2.
The output distributions of 𝖧1.𝖲𝗂𝗆 and 𝖧2.𝖲𝗂𝗆 are computationally indistinguishable from the

quantum-concealing property of (𝖢𝗈𝗆𝗆,𝖮𝗉𝖾𝗇,𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝗋).

𝖧3: We define a hybrid simulator 𝖧3.𝖲𝗂𝗆 which behaves like 𝖧2.𝖲𝗂𝗆, except in the following steps:

2.1 Engage in an execution of the commitment protocol with 𝑉 * by committing to (𝑖*, 𝛼𝑖*,0⊕𝛼𝑖*,1),
where 𝑖* ∈ [𝜆] is such that 𝐛𝑖* ̸= 𝐛′𝑖* . Denote the commitment to be 𝐜**.

The rest of the steps is the same as 𝖧2.𝖲𝗂𝗆. The output of 𝖧3.𝖲𝗂𝗆 is the view of 𝑉 * in 𝖧3.
The output distributions of 𝖧2.𝖲𝗂𝗆 and 𝖧3.𝖲𝗂𝗆 are computationally indistinguishable from the

quantum-concealing property of (𝖢𝗈𝗆𝗆,𝖮𝗉𝖾𝗇,𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝗋).

𝖧4: We define a hybrid simulator 𝖧4.𝖲𝗂𝗆 which behaves like 𝖧3.𝖲𝗂𝗆, except in the following steps:

1.1.i Engage in an execution of the commitment protocol with 𝑉 *, by committing to 𝐫*, which is
sampled as 𝐫*

$←− {0, 1}𝜆. Denote the commitment to be 𝐜*.

The rest of the steps is the same as 𝖧3.𝖲𝗂𝗆. The output of 𝖧4.𝖲𝗂𝗆 is the view of 𝑉 * in 𝖧4.
The output distributions of 𝖧3.𝖲𝗂𝗆 and 𝖧4.𝖲𝗂𝗆 are computationally indistinguishable from the

quantum-concealing property of (𝖢𝗈𝗆𝗆,𝖮𝗉𝖾𝗇,𝖱𝖾𝖼𝖾𝗂𝗏𝖾𝗋).

𝖧5: The output of this hybrid is the output of 𝖲𝗂𝗆(𝑥, 𝜌).
The only difference between 𝖧4.𝖲𝗂𝗆 and 𝖲𝗂𝗆 is in the WI phase. The computational indistin-

guishability of 𝖧4 and 𝖧5 follows from the witness indistinguishability property of Π𝗐𝗂.

5 𝜔(log(𝜆))-Quantum Space Verifiers: Impossibility Result

In the previous section, we showed the existence of quantum zero-knowledge protocols secure against
logarithmic quantum space verifiers. We present a complementary result. We show that there does
not exist any quantum zero-knowledge protocol with fully black box simulation for languages outside
BQP against super-logarithmic quantum space verifiers.

Lemma 5.1. Let 𝑠(𝜆) = 𝜔(log(𝜆)) and 𝑓 be any function such that 𝑓(𝑥) > 2𝑥. Assume the
existence of post-quantum one-way functions. Suppose there exists a fully black-box (𝑠, 𝑓)-space
bounded quantum zero-knowledge protocol for a language ℒ. Then, ℒ is in BQP.

Proof. Consider a language ℒ. Suppose there exists a 𝑘-round fully black-box (𝑠, 𝑓)-space bounded
quantum zero-knowledge protocol ℒ for some 𝑠(𝜆) = 𝜔(log(𝜆)) and for some function 𝑓 .

We describe a malicious verifier 𝑉 ′ below. In addition to subspace states (Section 2.5), we use
the following additional tools:

• Symmetric-key encryption with post-quantum CPA (chosen plaintext attack) security, denoted
by (𝖲𝖾𝗍𝗎𝗉,𝖤𝗇𝖼,𝖣𝖾𝖼).

• Post-quantum secure digital signatures satisfying existential unforgeability property, denoted
by (𝖦𝖾𝗇, 𝖲𝗂𝗀𝗇,𝖵𝖾𝗋𝗂𝖿𝗒).

Both of these primitives can be built from post-quantum secure one-way functions [Gol01, NY89].
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Description of 𝑉 ′. Consider the following QPT verifier 𝑉 ′ such that the quantum memory of 𝑉 ′

is 𝑀 = 𝜔(𝜆) qubits. Hardwired in its code are 𝑘 random 𝑀
2 -dimensional subspaces 𝑆0,...,𝑆𝑘, where

𝑆𝑖 ⊆ 𝔽𝑀
2 , a secret-key 𝑠𝑘enc for a symmetric-key encryption scheme, sampled as 𝑠𝑘enc ← 𝖲𝖾𝗍𝗎𝗉(1𝜆),

and a secret-key and verification keys (𝑠𝑘sign, 𝑣𝑘sign) for a digital signature scheme, sampled as
(𝑠𝑘sign, 𝑣𝑘sign)← 𝖦𝖾𝗇(1𝜆). 𝑉 ′ receives as input 𝑀 -qubit subspace state |𝑆0⟩, which is initialized in
the register 𝐘.

In the first round of the protocol, 𝑉 ′ gets as input two registers 𝐗, 𝐘 and does the following:

1. Measure the register 𝐗 to obtain 𝛼1.

2. Check if the state held in 𝐘 is |𝑆0⟩⟨𝑆0|. That is, perform the projective measurement
{ |𝑆0⟩⟨𝑆0|⏟  ⏞  
outcome=0

, 𝐼 − |𝑆0⟩⟨𝑆0|⏟  ⏞  
outcome=1

} on the register 𝐘. This is possible since 𝑉 ′ has the description of 𝑆0

hardwired in its code.

3. If the measured outcome is 1, abort.

4. Run the first round of 𝑉 on 𝛼1 to obtain 𝛽1. Abort if 𝑉 aborts.

5. Re-initialize the register 𝐗 with |𝛽1⟩⟨𝛽1|.

6. Re-initialize the register 𝐘 with a new 𝑀 -qubit subspace state |𝑆1⟩⟨𝑆1| in the memory.

7. Using the hardcoded 𝑠𝑘enc, initialize the register 𝐙 with the 𝑐1 = 𝖤𝗇𝖼(𝑠𝑘enc, 𝛾1), where 𝛾1 is
the state of 𝑉 after the answer.

8. Using the hardcoded 𝑠𝑘sign, initialize 𝐓 with the signature of 𝑐1, i.e., 𝖲𝗂𝗀𝗇(𝑠𝑘sign, 𝑐1).

9. Output the registers 𝐗,𝐘,𝐙 and 𝐓.

In the 𝑖𝑡𝑕 round of the protocol, 𝑉 ′ gets as input four registers 𝐗, 𝐘, 𝐙 and 𝐓 and does the
following:

1. Measure the register 𝐗 to obtain 𝛼𝑖.

2. Check if the state held in 𝐘 is |𝑆𝑖−1⟩⟨𝑆𝑖−1|. That is, perform the projective measurement
{|𝑆𝑖−1⟩⟨𝑆𝑖−1|⏟  ⏞  

outcome=0

, 𝐼 − |𝑆𝑖−1⟩⟨𝑆𝑖−1|⏟  ⏞  
outcome=1

} on the register 𝐘. This is possible since 𝑉 ′ has the description

of 𝑆𝑖 hardwired in its code.

3. If the measured outcome is 1, abort.

4. Using the hardcoded 𝑣𝑘sign, check if 𝐓 contains the signature of the value in register 𝐙. If the
verification does not pass, abort.

5. Using the hardcoded 𝑠𝑘enc, decrypt 𝐙 leading to value 𝛾𝑖−1

6. Run the 𝑖𝑡𝑕 round of 𝑉 on 𝛼𝑖 with internal state 𝛾𝑖−1 a to obtain 𝛽𝑖. Abort if 𝑉 aborts.

7. Re-initialize register 𝐗 with |𝛽𝑖⟩⟨𝛽𝑖|.
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8. Re-initialize the register 𝐘 with a new 𝑀 -qubit subspace state |𝑆𝑖⟩⟨𝑆𝑖| in the memory.

9. Using the hardcoded 𝑠𝑘enc, re-initialize the register 𝐙 with the 𝑐𝑖 = 𝖤𝗇𝖼(𝑠𝑘enc, 𝛾𝑖), where 𝛾𝑖 is
the state of 𝑉 after the answer.

10. Using the hardcoded 𝑠𝑘sign, initialize 𝐓 with the signature of 𝑐𝑖, i.e., , 𝖲𝗂𝗀𝗇(𝑠𝑘sign, 𝑐𝑖).

11. Output the registers 𝐗,𝐘,𝐙 and 𝐓.

Note that the quantum memory of 𝑉 ′ takes 𝑀 qubits.
Let C (𝑉 ′) = (Φ1, · · · ,Φ𝑘) be the quantum channels corresponding to the operations of 𝑉 ′ as

defined in Section 3.1. Since Π satisfies fully black-box (𝑀,𝑓)-space bounded QZK, there exists a
QPT simulator 𝖲𝗂𝗆C (𝑉 ′), taking space at most 𝑝(𝑀) qubits, simulating the interaction of 𝑉 ′ with
the honest prover 𝑃 . In particular, 𝖲𝗂𝗆C (𝑉 ′) does not abort with probability 1− 𝗇𝖾𝗀𝗅(𝜆), in which
case it outputs |𝑆𝑘⟩.

Helpful definitions. We state some useful definitions below.

Definition 5.2 (State-successful queries). A query 𝜌𝐗⊗𝐘⊗𝐙⊗𝐓 made by 𝖲𝗂𝗆 to Φ𝑖, for some 𝑖 ∈ [𝑘],
is said to be state-successful if Φ𝑖(𝜌𝐗⊗𝐘⊗𝐙⊗𝐓) does not abort on step 3.

In particular, a state-successful query made by 𝖲𝗂𝗆 could lead to abort if the other registers 𝐗,𝐙
and 𝐓 are not of a specific form.

Definition 5.3 ((Non-)abort queries). A query 𝜌𝐗⊗𝐘⊗𝐙⊗𝐓 made by 𝖲𝗂𝗆 to Φ𝑖, for some 𝑖 ∈ [𝑘],
is said to be non-abort if Φ𝑖(𝜌𝐗⊗𝐘⊗𝐙⊗𝐓) does not abort. Similarly, we say that it is an abort query
if Φ𝑖(𝜌𝐗⊗𝐘⊗𝐙⊗𝐓) aborts.

Note that a non-abort query is also a state-successful query.

Definition 5.4 (Successful simulation). We say that 𝖲𝗂𝗆 is successful, if it does not abort.

Helpful Claim. We now state an important claim regarding the properties of queries made by
𝖲𝗂𝗆 to Φ1, ...,Φ𝑘.

Claim 5. Except with 𝗇𝖾𝗀𝗅(𝜆) probability, the following events do not occur:

1. for some 𝑖, 𝖲𝗂𝗆 has a state-successful query to Φ𝑖 without having a non-abort query to Φ𝑖−1;

2. for some 𝑖 ≤ 𝑗, 𝖲𝗂𝗆 has a state-successful query to Φ𝑖 after having a state-successful query to
Φ𝑗.

3. for some 𝑖, 𝖲𝗂𝗆 is successful without a non-abort query to Φ𝑖.

4. for some 𝑖, 𝖲𝗂𝗆 has a non-abort query to Φ𝑖 where the input value on register 𝐙 is different
from the output value on register 𝐙 of a non-abort query to Φ𝑖−1.
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Main Claim. We defer the proof of Claim 5 to Section 5.1 and we finish now the proof of
Lemma 5.1 by showing that ℒ is in BQP.

Claim 6. ℒ is in BQP.

Proof. We start by showing that there exists a prover 𝑃 that runs in expected polynomial time and
makes the verifier 𝑉 accept any instance in ℒ with probability 1− 𝗇𝖾𝗀𝗅(𝜆).

Intuitively, 𝑃 will execute 𝖲𝗂𝗆 and simulate the queries to 𝑉 ′ by exchanging messages with 𝑉 .
Henceforth, we will assume that the registers 𝐗,𝐙 and 𝐓 are measured in the computational basis
just before making queries to Φ𝑖: this does not affect the analysis since they are anyway measured
in the channel Φ𝑖.

In more detail, 𝑃 proceeds as follows: 𝑃 chooses random subspaces 𝑆𝑖 for 0 ≤ 𝑖 ≤ 𝑘, samples
a secret-key 𝑠𝑘enc corresponding to a symmetric-key encryption scheme and samples a secret-key-
verification key pair (𝑠𝑘sign, 𝑣𝑘sign) corresponding to a digital signature scheme.

𝑃 then runs 𝖲𝗂𝗆 on input |𝑆0⟩. For every query of 𝖲𝗂𝗆 to Φ𝑖, 𝑖 > 1, 𝑃 answers the query
with abort. For a query made to Φ1, on input |𝛼1⟩⟨𝛼1|𝐗 ⊗ 𝜌1𝐘, 𝑃 first checks if 𝜌1 corresponds
to |𝑆0⟩ by measuring 𝜌1 with respect to {|𝑆0⟩⟨𝑆0| , 𝐼 − |𝑆0⟩⟨𝑆0|}. If the check fails, 𝑃 responds to
the query with an abort and continues the execution of 𝑃 with the same oracle responses as before.
Otherwise, 𝑃 will do the following:

1. Send the message 𝛼1 to the verifier,

2. Receive the message 𝛽1 from the verifier,

3. Compute 𝑐1 = 𝖤𝗇𝖼(𝑠𝑘enc, 0) and 𝑡1 = 𝖲𝗂𝗀𝗇(𝑠𝑘sign, 𝑐1)

4. Answer the query from 𝖲𝗂𝗆 with |𝛽1⟩⟨𝛽1|𝐗 ⊗ |𝑆1⟩⟨𝑆1|𝐘 ⊗ |𝑐1⟩⟨𝑐1|𝐙 ⊗ |𝑡1⟩⟨𝑡1|𝐓,

5. Set 𝑟 = 2 and continues executing 𝖲𝗂𝗆, simulating the queries to Φ1, ...,Φ𝑘 as described below.

For every query of 𝖲𝗂𝗆 to Φ𝑖, for 𝑖 ̸= 𝑟, 𝑃 answers the query with abort. For a query made to
Φ𝑟, on input |𝛼𝑟⟩⟨𝛼𝑟|𝐗 ⊗ 𝜌𝑟𝐘 ⊗ |𝑐′𝑟⟩⟨𝑐′𝑟|𝐙 ⊗ |𝑡′𝑟⟩⟨𝑡′𝑟|𝐓, 𝑃 first checks if 𝜌𝑟 corresponds to |𝑆𝑟−1⟩ by
measuring 𝜌𝑟 with respect to {|𝑆𝑟−1⟩⟨𝑆𝑟−1| , 𝐼−|𝑆𝑟−1⟩⟨𝑆𝑟−1|}. We now consider the following three
cases: First, if the check fails, 𝑃 answers the query with abort and continues the execution of 𝖲𝗂𝗆.
Secondly, if the check succeeds and 𝑐𝑟−1 ̸= 𝑐′𝑟 then 𝑃 aborts. Finally, if the check succeeds and the
signature 𝑡′𝑟 is a correct signature for 𝑐′𝑟 then 𝑃 will do the following:

1. Send the message 𝛼𝑟 to the verifier,

2. Receive the message 𝛽𝑟 from the verifier,

3. Compute 𝑐𝑟 = 𝖤𝗇𝖼(𝑠𝑘enc, 0) and 𝑡𝑟 = 𝖲𝗂𝗀𝗇(𝑠𝑘sign, 𝑐𝑟) (using fresh randomness),

4. Answer the query from 𝖲𝗂𝗆 with |𝛽𝑟⟩⟨𝛽𝑟|𝐗 ⊗ |𝑆𝑟⟩⟨𝑆𝑟|𝐘 ⊗ |𝑐𝑟⟩⟨𝑐𝑟|𝐙 ⊗ |𝑡𝑟⟩⟨𝑡𝑟|𝐓,

5. Increment 𝑟 by 1, i.e., set 𝑟 = 𝑟 + 1, and continue executing 𝖲𝗂𝗆 by answering the queries
with the updated value of 𝑟.
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We now prove that 𝑃 makes 𝑉 accept any instance 𝑥 ∈ ℒ with 1− 𝗇𝖾𝗀𝗅(𝜆) probability. For that we
consider the following hybrids:

𝖧0: The execution of 𝖲𝗂𝗆 with access to Φ1, ...,Φ𝑘 that come from 𝑉 ′ defined above.

𝖧1: The execution of a simulator 𝖲𝗂𝗆′ which has the same behaviour as 𝖲𝗂𝗆, except 𝖲𝗂𝗆′ aborts if
any of the events of the items of Claim 5 happen.

From Claim 5, the events happen with probability at most 𝗇𝖾𝗀𝗅(𝜆) and therefore the output of
𝖧0 and 𝖧1 are statistically close.

𝖧2: In this hybrid, we consider the interaction of 𝖲𝗂𝗆′ with access to Φ′1, ...,Φ
′
𝑘, which are controlled

by a stateful party 𝑃 ′. At the beginning, for all 𝑗 > 1, 𝑃 ′ answers Φ′𝑗 with an abort. On the query
to Φ′1, 𝑃 ′ will store the value of the output registers 𝐙 and 𝐓, which we denote by 𝑐1 and 𝑡1, and
replace them by 𝑑1 = 𝖤𝗇𝖼(𝑠𝑘enc, 0) and its signature 𝖲𝗂𝗀𝗇(𝑠𝑘sign, 𝑑1). 𝑃 ′ will set 𝑟 = 2 and starts
answering the queries as below.

On a query to Φ𝑗 , for 𝑗 ̸= 𝑟, 𝑃 ′ answers with an abort. On a query to Φ𝑟, 𝑃 ′ works as follows.
𝑃 ′ will check if the content of input register 𝐙 is equal to 𝑑𝑟−1. If it is not, 𝑃 ′ answers with abort.
Otherwise, 𝑃 ′ re-initializes the contents of the input registers 𝐙 and 𝐓 with 𝑐𝑟−1 and 𝑡𝑟−1. Then 𝑃 ′

execute the original channel of Φ𝑟. 𝑃 ′ will store the value of the output registers 𝐙 and 𝐓, which
we denote by 𝑐𝑟 and 𝑡𝑟, and replace them by 𝑑𝑟 = 𝖤𝗇𝖼(𝑠𝑘enc, 0) and its signature 𝖲𝗂𝗀𝗇(𝑠𝑘sign, 𝑑𝑟).
𝑃 ′ increments 𝑟 and answers the queries as described above with the updated value of 𝑟

Given the IND-CPA security of the encryption scheme, the output of 𝖧1 and 𝖧2 are computa-
tionally close.

𝖧3: We consider the interaction of 𝖲𝗂𝗆′ with the prover 𝑃 of the protocol.

The output of the simulator in 𝖧2 and 𝖧3 are the same, since 𝖲𝗂𝗆′ does not have access to any
value that depends on the internal state of 𝑉 in 𝖧2, and 𝑃 simulates all operations of 𝑉 ′.

We show now that the successful output of the simulator in 𝖧3 implies that 𝑉 accepts in the
protocol. The key observation is that, as described above, if the simulator does not abort, any state-
successful query to Φ𝑘 is also non-abort. But by construction, this is only possible if 𝑉 accepts in
the protocol. Therefore, since 𝖲𝗂𝗆 does not abort with probability at least 1 − 𝗇𝖾𝗀𝗅(𝜆), 𝑉 accepts
with the same probability when interacting with 𝑃 on a yes-instance.

We also notice that for any no-instance 𝑥, by the soundness of the protocol, we have that such
a 𝑃 makes 𝑉 accept with probability at most 𝗇𝖾𝗀𝗅(𝜆).

Finally, we need to discuss the runtime of 𝑃 . So far, we have that there is a polynomial 𝑞 such
that the expected runtime of 𝑃 if 𝑞(𝜆). However, we can consider a prover 𝑃 ′ that terminates the
execution of 𝑃 after 𝑞(𝜆)2 steps and in this case, the probability that 𝑃 ′ convinces the honest verifier
is still a constant.. In this case, both 𝑃 ′ and 𝑉 runs in polynomial-time, which can be simulated by
a BQP algorithm, which finishes the proof.
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5.1 Proof of Claim 5

We prove each item of Claim 5 in a separate lemma below.

Lemma 5.5. Except with 𝗇𝖾𝗀𝗅(𝜆) probability, for no 𝑖, 𝖲𝗂𝗆 has a state-successful query to Φ𝑖 without
having a non-abort query to Φ𝑖−1;

Proof. We start by proving this claim assuming that 𝖲𝗂𝗆 runs in strict polynomial time, and then
we generalize to the case where 𝖲𝗂𝗆 runs in expected polynomial time.

Let 𝐽 be the event where 𝖲𝗂𝗆 has a state-successful query to Φ𝑖, for some 𝑖, without having a
non-abort query to Φ𝑖−1.8

Let us define 𝐽𝑖 the event where 𝖲𝗂𝗆 has a successful query to Φ𝑖 without having a non-abort
query to Φ𝑖−1. Notice that, 𝐽 =

⋁︀
0≤𝑖≤𝑘 𝐽𝑖, and by union bound

Pr[𝐽 ] ≤
∑︁

0≤𝑖≤𝑘
Pr[𝐽𝑖], (2)

and we follow by showing that for any 𝑖

Pr[𝐽𝑖] = 𝗇𝖾𝗀𝗅(𝜆), (3)

which implies Equation (2) and the proofs this lemma.
We prove Equation (3) by contradiction, so let us assume that there exists some polynomial 𝑝

such that Pr[𝐽𝑖] > 1/𝑝(𝜆). We show that we can construct an adversary 𝒜𝑖 that is able to clone a
random subspace state |𝐴⟩ with polynomially many queries to the verification oracle, contradicting
Lemma 2.8.
𝒜𝑖 works as follows: 𝒜𝑖 receives some state |𝐴⟩ and oracle access to 𝑈𝐴 (as described in Sec-

tion 2.5). 𝒜𝑖 keeps |𝐴⟩ aside and simulates 𝖲𝗂𝗆 with oracle access to the channels Φ′1, ...,Φ
′
𝑘 that

we define now. For 𝑗 ̸∈ {𝑖− 1, 𝑖}, we have Φ′𝑗 = Φ𝑗 . Whenever 𝖲𝗂𝗆 queries Φ′𝑖−1, 𝒜𝑖 runs Φ𝑖−1 and
if the answer is non-abort, then 𝒜𝑖 aborts. For Φ′𝑖, 𝒜𝑖 uses the oracle 𝑈𝐴 to verify the subspace
state and if it passes, then 𝒜𝑖 outputs the result of the query and the original state |𝐴⟩. Otherwise
𝒜𝑖 answers the query to 𝖲𝗂𝗆 with an abort. If 𝖲𝗂𝗆 terminates before a state-successful query to Φ′𝑖,
𝒜𝑖 aborts.

We argue now that Pr[𝐽𝑖] > 1/𝑝(𝜆) implies that 𝒜𝑖 is able to output two copies of |𝐴⟩ with
probability at least 1/𝑝(𝜆) with polynomially-many oracle calls to 𝑈𝐴. Notice that whenever 𝒜𝑖

does not abort, it outputs |𝐴⟩⊗2 as desired: one of the copies is guaranteed to be |𝐴⟩ since it was
received by the challenger in the quantum money scheme whereas the second copy passed verification
test using 𝑈𝐴, and thus by Lemma 2.7 it must be on state |𝐴⟩. In this case, we need to prove the
probability that 𝒜𝑖 does not abort.

Let us define the following two events:

𝐸1 : 𝖲𝗂𝗆 terminates before a successful query to Φ𝑖;

𝐸2 : 𝖲𝗂𝗆 queries Φ𝑖−1 with non-abort answer before querying Φ𝑖

Let also 𝐸 be the event on which 𝒜𝑖 aborts. By construction we have that 𝐸 = 𝐸1 ∨ 𝐸2.
Moreover, we have that 𝐸𝑗 ⊆ 𝐽𝑖 for 𝑗 ∈ {1, 2}, and therefore

Pr[𝐸] ≤ Pr[𝐽𝑖] = 1− Pr[𝐽𝑖] ≤ 1− 1/𝑝(𝜆).

8As defined in the proof of Lemma 5.1, a query is state-successful if it passes the subspace state check of Φ𝑖.
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It follows then that the probability that 𝒜𝑖 does not abort (and outputs |𝐴⟩⊗2) is at least 1/𝑝(𝜆)
with polynomially-many queries to 𝑈𝐴, which is a contradiction to Lemma 2.8 and this finishes the
proof of Equation (3).

Finally, to finish the proof, we need to consider the case the expected runtime of 𝖲𝗂𝗆 𝑞(𝜆),
for some polynomial 𝑞. Let us suppose that there exists some non-zero polynomial 𝑝 such that
Pr[𝐽𝑖] ≥ 1/𝑝(𝜆).

In this case, we can consider a simulator 𝖲𝗂𝗆′ that executes 𝖲𝗂𝗆 but aborts if the runtime of
𝖲𝗂𝗆 is greater than 𝑞(𝜆)𝑝(𝜆). Notice that 𝖲𝗂𝗆′ aborts with probability at most 1

𝑞(𝜆)𝑝(𝜆) and we
have that Pr[𝐽𝑖] > 1/𝑝(𝜆) holds for 𝖲𝗂𝗆′, such that Pr[𝐽𝑖] ≥ 1/𝑝(𝜆) − 1

𝑞(𝜆)𝑝(𝜆) = 1
poly(𝜆) , which is a

contradiction.

Lemma 5.6. Except with 𝗇𝖾𝗀𝗅(𝜆) probability, for no 𝑖 ≤ 𝑗, 𝖲𝗂𝗆 has a state-successful query to Φ𝑖

after having a state-successful query to Φ𝑗.

Proof. As in Lemma 5.5, we prove the lemma for strict polynomial-time 𝖲𝗂𝗆 and the extension to
expected polynomial-time 𝖲𝗂𝗆 follows as before.

We first prove it for 𝑖 = 𝑗 and we then generalize it for 𝑖 ≤ 𝑗. Let 𝐵𝑖 be the event where 𝖲𝗂𝗆
has two state-successful queries to Φ𝑖. Our goal now is to show that for every polynomial 𝑝,

Pr[𝐵𝑖] < 𝑖 · 1

𝑝(𝜆)
, (4)

which implies Lemma 5.6 by a union bound on Pr
[︁⋁︀

1≤𝑖≤𝑘 𝐵𝑖

]︁
. We prove now Equation (4) by

induction on 𝑖.
Let us start with the base case of Equation (4), where 𝑖 = 1. Our proof follows by contradiction.

Therefore, let us suppose that there exists some polynomial 𝑝 such that Pr[𝐵1] ≥ 1/𝑝(𝜆). We show
then that we can construct an adversary 𝒜1 that is able to clone a random subspace state |𝐴⟩ with
polynomially many queries to the verification oracle, contradicting Lemma 2.8.
𝒜1 receives some state |𝐴⟩ and oracle access to 𝑈𝐴, and it proceeds as follows: 𝒜1 sets 𝑞 = 0 and

simulates 𝖲𝗂𝗆 with side information |𝐴⟩ and oracle access to Φ′1, ...,Φ
′
𝑘, where Φ′𝑗 = Φ𝑗 for 𝑗 > 1.

For Φ′1, 𝒜1 uses the oracle 𝑈𝐴 to verify the quantum state. If the test does not pass, 𝒜1 answers
the query with abort. If the test passes and 𝑞 = 0, 𝒜1 stores the output of 𝑈𝐴 on some register 𝐌,
sets 𝑞 = 1 and continues the simulation of 𝖲𝗂𝗆. If the test passes and 𝑞 = 1, 𝒜1 outputs the state
returned from the second query to 𝑈𝐴, along with the state stored in register 𝐌. If 𝖲𝗂𝗆 terminates,
then 𝒜1 aborts.

We argue now that if Pr[𝐵1] ≥ 1/𝑝(𝜆), then𝒜𝑖 is able to output two copies of |𝐴⟩ with probability
at least 1/𝑝(𝜆) with polynomially many queries to 𝑈𝐴. Notice that whenever 𝒜𝑖 does not abort,
it outputs |𝐴⟩⊗2 as desired, since both both of the states passed the verification test using 𝑈𝐴 (by
Lemma 2.7). In this case, we need to bound the probability that 𝒜𝑖 does not abort.

Let 𝐹 be the event when𝒜1 aborts, which happens if 𝖲𝗂𝗆 terminates without two state-successful
queries to Φ′𝑖.

Notice that 𝐹 ⊆ 𝐵1, and therefore

Pr[𝐹 ] ≤ Pr[𝐵1] = 1− Pr[𝐵1] ≤ 1− 1/𝑝(𝜆).

It follows then that the probability that 𝒜1 does not abort (and outputs |𝐴⟩⊗2) is at least 1/𝑝(𝜆),
which contradicts Lemma 2.8 and therefore we have Equation (4) for 𝑖 = 1.

36



We assume now that Equation (4) works for 𝑖− 1, and we prove it for 𝑖. The proof is similar to
the base case, but we present here for completeness. We prove it again by contradiction. Therefore,
let us suppose that Pr[𝐵𝑖] ≥ 𝑖 · 𝑝(𝜆), for some polynomial 𝑝. Notice that

𝑖 · 𝑝(𝜆) ≤ Pr[𝐵𝑖]

= Pr[𝐵𝑖 ∧𝐵𝑖−1] + Pr[𝐵𝑖|𝐵𝑖−1] Pr[𝐵𝑖−1]

< Pr[𝐵𝑖 ∧𝐵𝑖−1] + (𝑖− 1) · 𝑝(𝜆),

where the inequality holds by the induction hypothesis. Therefore, our assumption implies that

Pr[𝐵𝑖 ∧𝐵𝑖−1] ≥ 𝑝(𝜆). (5)

We show then that if Equation (5) holds, then we can construct an adversary 𝒜𝑖 that is able
to clone a random subspace state |𝐴⟩ with polynomially many queries to the verification oracle,
contradicting Lemma 2.8.
𝒜𝑖 receives the state |𝐴⟩ and oracle access to 𝑈𝐴, and it proceeds as follows: 𝒜𝑖 sets 𝑞𝑖−1 = 𝑞𝑖 = 0,

keeps |𝐴⟩ on a register 𝐍 aside and simulates 𝖲𝗂𝗆 on Φ′1, ...,Φ
′
𝑘, where Φ′𝑗 = Φ𝑗 for 𝑗 ̸∈ {𝑖 − 1, 𝑖}.

For Φ′𝑖−1, if 𝑞𝑖−1 = 1, 𝒜𝑖 aborts. Otherwise, 𝒜𝑖 simulates Φ𝑖−1, and if it does not abort, 𝒜𝑖 sets
𝑞𝑖−1 = 1 and stores the quantum state |𝑆𝑖−1⟩ returned by Φ𝑖−1 and replaces it by the given copy of
|𝐴⟩. For Φ′𝑖, 𝒜𝑖 uses the oracle to verify the quantum state. If it does not pass the test, 𝒜𝑖 answers
the query to Φ′𝑖 with abort. If the test passes, 𝒜𝑖 has a different behaviour depending on the value
of 𝑞𝑖

• If the test passes and 𝑞𝑖 = 0, then 𝒜𝑖 puts the state returned by the oracle 𝑈𝐴 on a register
𝐌, replaces it by |𝑆𝑖−1⟩, simulates Φ𝑖 and sets 𝑞𝑖 = 1.

• If the test passes and 𝑞𝑖 = 1, 𝒜𝑖 outputs the state returned by the oracle 𝑈𝐴 along with the
state in register 𝐌.

If 𝖲𝗂𝗆 terminates, then 𝒜𝑖 aborts.
We argue now that Equation (5) implies that 𝒜𝑖 is able to output two copies of |𝐴⟩ with

probability at least 1/𝑝(𝜆) with polynomially many queries. Notice that whenever 𝒜𝑖 does not
abort, it outputs |𝐴⟩⊗2 as desired, since both of the states passed the verification test using 𝑈𝐴 (by
Lemma 2.7). In this case, we need to bound the probability that 𝒜𝑖 does not abort.

Let us define the following events:

𝐹1 : 𝖲𝗂𝗆 aborts due to two non-abort queries to Φ′𝑖−1;

𝐹2 : 𝖲𝗂𝗆 terminates without two queries to Φ′𝑖 that pass the verification of the subset state;

Let also 𝐹 be the event on which 𝒜𝑖 aborts. By construction we have that 𝐹 = 𝐹1 ∨𝐹2. Notice
that 𝐹1 ⊆ 𝐵𝑖−1 and that 𝐹2 ⊆ 𝐵𝑖. It follows from Equation (5) that

Pr[𝐹 ] ≤ Pr[𝐵𝑖−1 ∨𝐵𝑖] = 1− Pr[𝐵𝑖−1 ∧𝐵𝑖] ≤ 1− 𝑝(𝜆).

Therefore, the probability 𝒜𝑖 does not abort (and outputs |𝐴⟩⊗2) is at least 𝑝(𝜆), which contra-
dicts Lemma 2.8 and we have Equation (4).

To finish the proof, we have to prove the lemma for 𝑖 < 𝑗. Let 𝐶𝑖,𝑗 be the event where 𝖲𝗂𝗆 has
a state-successful query to Φ𝑖 after having a state-successful query to Φ𝑗 . By defining 𝐽 to be the
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event where 𝖲𝗂𝗆 has a state-successful query to Φ𝑖, for some 𝑖, without having a non-abort query
to Φ𝑖−1, we have that

Pr[𝐶𝑖,𝑗 ] = Pr[𝐶𝑖,𝑗 |𝐽 ] Pr[𝐽 ] + Pr[𝐶𝑖,𝑗 ∧ 𝐽 ] ≤ 𝗇𝖾𝗀𝗅(𝜆) + Pr[𝐵𝑗 ] = 𝗇𝖾𝗀𝗅(𝜆),

where the first inequality follows from Lemma 5.5 and 𝐵𝑗 ⊆ 𝐶𝑖,𝑗∧𝐽 , since 𝐽 implies state-successful
query to Φ𝑗 before a state-successful query to Φ𝑖 and 𝐶𝑖,𝑗 implies a state-successful query to Φ𝑗

after a state-successful query Φ𝑖.

Lemma 5.7. Except with 𝗇𝖾𝗀𝗅(𝜆) probability, for no 𝑖, 𝖲𝗂𝗆 is successful without a non-abort query
to Φ𝑖.

Proof. As in Lemma 5.5, we prove the lemma for strict polynomial-time 𝖲𝗂𝗆 and the extension to
expected polynomial-time 𝖲𝗂𝗆 follows as before. Notice that we need prove it for 𝑖 = 𝑘, since it will
imply, along with Lemma 5.5, the statement for every 1 ≤ 𝑖 < 𝑘.

Let 𝐸 be the event where 𝖲𝗂𝗆 is successful and does not have a non-abort query to Φ𝑘. We
show that if there exists a polynomial 𝑝 such that

Pr[𝐸] >
1

𝑝(𝜆)
, (6)

then we can construct an adversary 𝒜 that is able to clone a random subspace state |𝐴⟩ with
polynomially-many queries to the verification oracle 𝑈𝐴, contradicting Lemma 2.8.

For that, we will use the zero-knowledge property of the protocol that implies that for every
distinguisher, the output of 𝖲𝗂𝗆C (𝑉 ′) is indistinguishable from the output of 𝑉 ′ while interacting
with the honest prover. In particular, we will consider 𝑉 ′ where 𝑆𝑖+1 = 𝐴 and distinguisher 𝒟,
using an oracle to 𝑈𝐴, checks if the output register 𝐘 of 𝖲𝗂𝗆 is indeed |𝐴⟩ (which is always the case
for 𝑉 ′).
𝒜 receives some state |𝐴⟩, and it proceeds as follows: 𝒜 puts |𝐴⟩ on register 𝐌 aside, and

simulates 𝖲𝗂𝗆 with oracle access to the channels Φ′1, ...,Φ
′
𝑘, where Φ′𝑗 = Φ𝑗 for 𝑗 ̸= 𝑘. Whenever

𝖲𝗂𝗆 queries Φ′𝑘, 𝒜 uses the oracle simulates Φ𝑘 up to step 6 (where 𝑉 ′ runs the original verifier 𝑉 ).
If Φ𝑘 did not abort up to this point, then 𝒜 aborts. Otherwise, 𝒜 answer this query with abort
and continues the execution of 𝖲𝗂𝗆. If 𝖲𝗂𝗆 aborts, then 𝒜 also aborts. Finally, if 𝖲𝗂𝗆 terminates
successfully, 𝒜 outputs the register 𝖸 of 𝖲𝗂𝗆’s output, along with the state |𝐴⟩ stored in 𝐌.

Let 𝐹 be the event where the output register 𝐘 of 𝖲𝗂𝗆 projects into |𝐴⟩. In order to 𝒜 to output
two copies of |𝐴⟩ we need that 𝐸 ∧ 𝐹 hold.

By the zero-knowledge property, we have that Pr[𝐹 ] > 1 − 𝗇𝖾𝗀𝗅(𝜆). This fact, along with
Equation (6), gives us that

Pr[𝐸 ∧ 𝐹 ] ≥ Pr[𝐸] + Pr[𝐹 ]− 1 ≥ 1

𝑝(𝜆)
− 𝗇𝖾𝗀𝗅(𝜆) =

1

poly(𝜆)
.

Such 𝒜 contradicts Lemma 2.8, and therefore Equation (6) is false.

Lemma 5.8. Except with 𝗇𝖾𝗀𝗅(𝜆) probability, for no 𝑖, for some 𝑖, 𝖲𝗂𝗆 has a non-abort query to
Φ𝑖 where the input value on register 𝐙 is different to the output value on register 𝐙 of a non-abort
query to Φ𝑖−1.
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Proof. As in Lemma 5.5, we prove the lemma for strict polynomial-time 𝖲𝗂𝗆 and the extension to
expected polynomial-time 𝖲𝗂𝗆 follows as before.

Let 𝐷 be the event where there exists some 𝑖 such that 𝖲𝗂𝗆 has a non-abort query to Φ𝑖 where
the input value on register 𝐙 is different to the output value on register 𝐙 of a non-abort query to
Φ𝑖−1.

We show that if there is a polynomial 𝑝 such that

𝑃𝑟[𝐷] >
1

𝑝(𝜆)
(7)

then we can construct an adversary 𝒜 that breaks the digital signature scheme.
𝒜 receives a verification key 𝑣𝑘 and has oracle access to the 𝖲𝗂𝗀𝗇𝑠𝑘. 𝒜 initializes an empty list

𝐿 and proceeds as follows: 𝒜 simulates 𝖲𝗂𝗆 on Φ′1, ...,Φ
′
𝑘, where the query to Φ′𝑖 behaves as follows.

If 𝑖 = 1, 𝒜 simulates the behaviour of Φ1. Let 𝑐 be the content of the output register 𝐙. 𝒜 adds 𝑐
to 𝐿 and reinitialize the register 𝐓 with 𝖲𝗂𝗀𝗇𝑠𝑘(𝑐).

On query to Φ′𝑖 for 𝑖 > 1, let 𝑚 be the content of the input register 𝐙 and 𝑠 be the content of
the input register 𝐓. 𝒜 checks if 𝑠 is a valid signature of 𝑚 and if 𝑚 does not appear in 𝐿. If the
check passes, then 𝒜 outputs (𝑚, 𝑠). Otherwise, 𝒜 continues the simulation of Φ𝑖. Let 𝑐 be the
content of the output register 𝐙. 𝒜 adds 𝑐 to 𝐿 and reinitialize the register 𝐓 with 𝖲𝗂𝗀𝗇𝑠𝑘(𝑐).

If 𝖲𝗂𝗆 terminates, then 𝒜 aborts.
We notice that whenever 𝒜 does not abort, it outputs a pair of message and signature (𝑚, 𝑠)

such that 𝑚 was not and input to a signing query, and therefore 𝒜 is able to forge a signature for
𝑚.

To finish the proof, we need to bound the abort probability of 𝒜. We notice that 𝐷 is exactly the
case when 𝒜 does not abort, and by Equation (7), this happens with probability at least 1

𝑝(𝑛) .
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