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Abstract. Cryptography is increasingly deployed in applications running on open
devices in which the software is extremely vulnerable to attacks, since the attacker
has complete control over the execution platform and the software implementation
itself. This creates a challenge for cryptography: design implementations of cryp-
tographic algorithms that are secure, not only in the black-box model, but also in
this attack context that is referred to as the white-box adversary model. Moreover,
emerging applications such as mobile payment, mobile contract signing or blockchain-
based technologies have created a need for white-box implementations of public-key
cryptography, and especially of signature algorithms.
However, while many attempts were made to construct white-box implementations of
block-ciphers, almost no white-box implementations have been published for what
concerns asymmetric schemes. We present here a concrete white-box implementation
of the well-known HFE signature algorithm for a specific set of internal polynomials.
For a security level 280, the public key size is approximately 62.5 MB and the white-box
implementation of the signature algorithm has a size approximately 256 GB.
Keywords: White-box Cryptography · Public-Key Cryptography · Multivariate
Cryptography

1 Introduction
The security of cryptographic primitives is usually studied when an adversary is only given
black-box access to it. This means that the secrets involved in the primitive can only be
compromised through the input-output behavior of the primitive. The security notions
derived in that model assume that the algorithms are known and that the devices used to
compute the primitives can be trusted to protect secret information.

In practice, however, the black-box attack model fails to capture the inherent leakage
of information made during any computations on a hardware. These side-channel data
such as power consumption, execution time or electromagnetic emanations, can indeed be
used to recover secret information stored on a hardware device. This led cryptographers to
study the security of programs computing primitives on an untrusted hardware platform,
resulting in a new model of attack: the grey-box model.

A natural extension of the grey-box model is to consider the worst case adversarial
model, where an attacker has full access to the software and the hardware used to compute
a primitive: the white-box model. In this model, the attacker has full access to the code
computing the algorithm and can know the state of the memory and alter it at any time
during the execution of the algorithm. It is assumed that the exact functioning of the
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hardware is known to the attacker and no part of the memory is protected from this
attacker. In this model, the knowledge of the software and the initial state of the memory
entirely determinate the successive states of the memory. To protect an existing primitive,
a cryptographer has to design a ’compiler’ that transforms the usual implementation of
the primitive into an implementation that resist white-box attackers.

Since the seminal paper of Chow et al in 2002, the research has mainly been focused on
standard symmetric block-ciphers such as DES and AES. Many candidate implementations
have been proposed [CEJvO02, CEJv03, LN04, BCD06, XL09, Kar11] but all have later
been broken due to very powerful generic attacks or clever and specific attacks.

Regarding asymmetric candidates, very few solutions have been proposed: [Bar20b]
does not stand against generic attacks and [FHW+20] and [ZHH+20] focus only on key-
extraction, ignoring the incompressibility, while modifying the verifying algorithm in the
white-box version of the scheme. After almost two decades of research, it is safe to say
that getting a secure white-box implementation of an existing primitive is a hard open
problem. In this paper, we show that the richness of multivariate cryptography allows new
possibilities for asymmetric white-box cryptography, and we design and analyze an explicit
construction based on these new ideas.

Our Contribution In the present paper, we exhibit the first white-box implementation
of an asymmetric signature algorithm, in the following sense:

• The instances of the HFE scheme we use have security level 280 against all known
(black-box) attacks in the chosen-message model;

• The unbreakability property of our implementation of the signature algorithm in the
white-box model is proven under a reasonable assumption about the Isomorphism of
Polynomials (IP) problem: a key-recovery attack has complexity at least 280 (and
thus is not easier than in the black-box model);

• We also revisit the notion of incompressibility in the white-box model, giving a more
precise definition, and state a precise conjecture in the case of our implementation
of the signature algorithm: under this assumption, an attack aiming at obtaining a
smaller implementation has complexity at least 280 (and thus is not easier than in
the black-box model).

The parameters of our proposal are the following:

• The secret key size is approximately 220 bits ≃ 125 kB (alternatively, the secret key
can be obtained from a pseudo-random generator and a 80-bit secret seed);

• The public key size is approximately 230/2 bits ≃ 62.5 MB;

• The white-box implementation of the signature algorithm is approximately 241 bits
≃ 256 GB.

Remark 1: The size of our white-box implementation is huge and obviously makes it
difficult to be used in devices such as smart phones for instance. However, it should be noted
that our construction provides the first white-box implementation of a public key algorithm
together with a extensive security analysis. Moreover realistic applications can be envisaged
in the case of cloud-based applications. As an example, MasterCard Cloud-Based Payments
(MCBP) [Masa] is a secure and scalable software-based solution developed by to digitize
card credentials and enable both contactless and remote payment transactions. In this
context, MasterCard has specifically recommended the use of white-box implementation
for the secure storage of payment tokens [Masb].
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Remark 2: Our proposal can also easily be given in the form of a public-key encryption
algorithm, with a white-box implementation of the decryption algorithm and the same
security levels. In this paper we prefer to describe the signature scheme, since it matches
the real-world applications we describe below (see Section 2.1).

Technical Overview Technically, our proposal is heavily based on the use of multivariate
cryptography. The main idea is as follows. We consider the HFE (Hidden Field Equation)
cryptosystem; its design involves an internal polynomial transformation F defined on
the field extension K = F2n , such that all the monomials have an exponent of Hamming
weight ≤ 2. For our purpose, we intentionally choose F such that it has an affine multiple
A ∈ K[X, Y ] of low degree in Y . This means that:

• All the exponents of X involved in A(X, Y ) have a Hamming weight ≤ 1;

• Any solution of the equation F (a) = b is also a solution of A(a, b) = 0

In a nutshell, the white-box implementation of the signature algorithm is derived
from this affine multiple A(X, Y ) and the secret key, and its size can be kept moderate
since the degree of A in Y is low. Moreover, for an attacker who only knows the public
key, recovering the white-box implementation is not easier than breaking the scheme in
the black-box model. Lastly, from the white-box implementation, it is computationally
difficult for the legitimate user to recover the secret key, or even to compress the white-box
implementation.

Related Work In the present paper, we consider and target the traditional (white-box)
notions of unbreakability and incompressibility. In this context, we describe a white-
box implementation of an HFE-based primitive, which belongs to a family of algorithms
that has been extensively studied in the black-box model and belongs to state-of-the-art
cryptography.

The notion of unbreakability is a very intuitive security notion for white-box cryptogra-
phy and has been studied since the seminal paper of Chow et al in 2002 [CEJvO02]. Ever
since, cryptographers have tried to propose white-box implementations of usual crypto-
graphic algorithms, with mitigated success. Block-ciphers have been the most studied and
we refer to section 2.3 for some examples.

The notion of incompressibility is a stronger security notion, first formally defined
in [DLPR14] where the study of this notion is motivated as a software countermeasure
against code-lifting attacks. In the same paper, the authors also propose an incompressible
implementation of a special private-key RSA in the Ideal Group Model. Since then,
works like [BBK14] [BP15] or [FKKM16] have considered the incompressibility of specially
designed symmetric algorithms.

Organization of the paper
Section 2 provides all the necessary background on the motivations, the security notions
for white-box cryptography and multivariate cryptography, in particular for what concerns
the HFE family.
Section 3 describes the complete and detailed construction of our scheme, including the
choice of the parameters with respect to all the known attacks in the state of the art of
multivariate cryptography. We also assess the black-box security of our instance.
Section 4 analyses the security of our construction in the white-box model.
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2 Background
2.1 Motivations for public-key white-box constructions
From a technical point of view, the current lack of white-box implementations for asymmet-
ric cryptosystems comes from the difficulty of the problem, especially if we want to achieve
a provable construction, as is usually the case in the public-key model. Despite this state
of affairs, it appears that more and more real-life applications would clearly benefit from
such constructions and provide a strong motivation for white-box PK implementations.
We advocate for the interest of public-key cryptographic algorithms that are resistant in
the white-box model through three real-life applications illustrating their usefulness.

Mobile payment. In the recent years, the payment industry has vested great interests in
the extension of the EMV specifications [EMV08] to mobile transactions via Near Field
Communication (NFC). In that scenario, the usual contactless smart card is emulated
by an NFC-compliant mobile phone or wearable device such as a smart watch. This is
referred to as Host Card Emulation (HCE). Unfortunately however, mobile platforms
do not provide access to a secure element to third-party applications: the SIM card
belongs to the telecommunication operator and handset manufacturers keep any form of
trusted hardware for their own needs. These emerging applications are therefore facing
the challenge of being as secure as a tamper-resistant hardware although being totally
based on software. White-box cryptography is currently the only approach to secure these
applications and compensate the security risks inherent to common embedded operating
systems such as Android. By hard-coding the EMV keys into the application code itself,
white-box cryptography tries to achieve a notion of tamper-resistant software. Improving
white-box cryptography, in particular for signature algorithms, is therefore a powerful
means to promote the rise of mobile payments. Note that the currently used signature
algorithm is RSA, and EMVCo plans to publish a new specification in 2021 to enable
Elliptic Curve Cryptography (ECC) on EMV contact chip payment cards.

Mobile contract signing. The eIDAS regulation (EU Reg. N◦910/2014) came into force
on July 1st 2016 in the 28 member states of the EU, and introduced the end of the
smart card dogma, in the sense that the signing capability can now be implemented by
purely software means as long as they fulfill specific requirements through a qualification
procedure. Electronic signatures also become legal evidence that cannot be denied by
sovereign authorities or in court. By relaxing constraints on the signing utility, the eIDAS
regulation opens the way to software-only solutions for digital signatures. As a result, a
rapid emergence of mobile contract signing is anticipated in the near future. The user
experience is straightforward: a contract (or any form of document in that respect) is
downloaded on the mobile device, reviewed by the human user, digitally signed locally
and the legally binding signature is returned to a back-end server in the cloud where it is
validated and archived. Now, the need for the signing application to be eIDAS-qualified
imposes (depending on the qualification level) to resist security threats pertaining to
mobile platforms and most particularly logical attacks where some form of external control
is exerted through malware, typically in an attempt to steal the signing key(s) stored
on the device. White-box cryptography is the only approach that effectively puts the
signing key(s) out of reach of logical attacks on the operating system. Combined with
countermeasures against code lifting, white-box cryptography is expected to take a major
role in the adoption and deployment of eIDAS-based services in the EU.

Cryptocurrencies and blockchain technologies. Most solutions to store cryptocurrencies
and perform transactions on the blockchain are today based on a hardware token (USB
stick, smart card) or on a mobile application. While the former provide adequate security,
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it is inconvenient for the wider usage. For the latter case on the other hand, the security
often relies on the operating system of the mobile device and the principle of application
sandboxing. Given the wide variety mobile OS versions on the field, strictly relying on
the operating system to protect critical assets (such as money) is very hazardous and
should always be avoided. This raises a strong need for the design of security solutions for
pure-software cryptocurrency wallet against all kind of threats such as stealing malwares.
In order to protect the cryptographic keys intrinsically involved in cryptocurrencies and
blockchain technologies, white-box cryptography is essential. As concerns digital signatures,
ECDSA is currently the most used algorithm (for instance Bitcoin and Ethereum do),
but alternatives are considered, either for other cryptocurrencies, or to prepare the post-
quantum era.

2.2 Security notions for white-box cryptography
Security Notions. The basic security requirement for a white-box implementation is
to resist key extraction. But one should expect more from white-box cryptography and
consider various security properties for the white-box implementations. Some attempts
have been made to provide formal definitions and security notions for white-box cryptog-
raphy. In particular some concrete white-box security notions for symmetric encryption
schemes were proposed in [DLPR14]: the proposed notions –unbreakability, one-wayness,
incompressibility, traceability– are derived from folklore intuitions behind white-box cryp-
tography. Note that one-wayness is not relevant in the asymmetric setting, the decryption
being the only primitive that needs to be protected. We precisely define unbreakability
and incompressibility in section 4.

Primitives designed in the white-box model. Another line of works has focused on
the issue of designing new cryptographic primitives with security properties inspired by
the white-box context. A traceable block cipher relying on multivariate cryptography
has been proposed in [BG03] but it was soon shown that the traceability could actually
be bypassed [FP06]. Further “white-box” ciphers have been designed from multivariate
cryptography [BBK14] and have also later been broken [MDFK15]. One should note that
unbreakability alone is often trivial to achieve for a designer: one could get a twisted white-
box AES by just hashing the master key, and pretending the new design is composed of the
hash and a regular AES implementation. Recently, incompressible encryption primitives
have been particularly investigated [BI15, BIT16, FKKM16, BKR16]. Although these
works put forward interesting approaches to design new cryptographic primitives (with
specific security properties), they do not address the prime goal of white-box cryptography
which is to provide secure implementations for a given (standard) cryptographic algorithm
such as AES.

Links between iO and white-box cryptography. Recently, interesting links have being
established between iO and white-box cryptography using hardware modules ([ABF+20]).
However this requires, by construction, the presence of such a hardware component.
Moreover, the resulting constructions are really far from being implementable. Even
estimating the size of an iO construction is kwown to be a challenge, and there is no
generic proof that iO would satistfy properties such as incompressibility. That is why
these hardware-and-iO based constructions cannot reasonably be used today to build
purely software white-box solutions. It is important to note that the security model used
in [ABF+20] is weaker than the full white-box model we use. In the present paper, the
behavior of the whole algorithm is fully determined by the code and the initial state of the
memory (this is not true any longer when one allows the use of a hardware that depends
on secret data).
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2.3 White-Box for Private-Key Cryptography
Many attempts have been made to construct white-box implementations for standard
block-ciphers, but all published constructions are currently broken. The first white-box
implementations proposed in 2002 by Chow et al. for the DES and AES ciphers [CEJvO02,
CEJv03] were broken a couple of years after their publication [JBF02, BGEC04, GMQ07,
WMGP07]. Further construction attempts followed [LN04, BCD06, XL09, Kar11] but they
were also shown insecure sooner or later [DWP10, DRP13a, LRD+14, DRP13b, LR13].

Note that [DLPR14] explains how an RSA-like algorithm could have a white-box
implementation that is incrompressible. The fundamental idea is the following: if the
encryption function is built upon x 7→ y = xe mod n, the decryption function is based on
y 7→ x = yd mod n (where d is the inverse of e modulo φ(n)) and can be implemented
as y 7→ x = yd′ mod n, where d′ is an arbitrary large integer such that d′ ≡ d mod φ(n).
However, for this construction to make sense, we have to assume that e is also a secret
exponent (if not, a well-known argument can be used to deduce the factorization of n from
d′), so that we in fact have a symmetric algorithm, and not a public-key scheme.

2.4 White-Box for Public-Key Cryptography
While many candidates have been publicly proposed to construct white-box implemen-
tations of block-ciphers, almost no white-box implementations for public-key algorithms
have been published up to now, in spite of numerous research efforts.

The work of [FHW+20] and [ZHH+20] achieves unbreakability but modifies the verifica-
tion algorithm and doesn’t address incompressibility. As discussed in section 2.2, designing
primitives for white-box cryptography for unbreakability is easier.

To the best of our knowledge, the only candidate that doesn’t change the underly-
ing scheme is due to Lucas Barthélémy [Bar20b], who recently proposed a white-box
implementation of a scheme suggested by Aguilar-Melchior, Barrier, Guelton, Guinet,
Kollijian and Lepoint [ABG+16], whose (black-box) security is based on the computational
difficulty of the RLWE (Ring Learning with Errors) problem over the cyclotomic ring
Rq = Z/qZ[X]/(Xn + 1). Lucas Barthélémy’s implementation of the decryption algorithm
makes use of the NTT transformation and RNS representations to reduce the computation
to small look-up tables, which can in turn be transformed using ideas dating back to
[CEJv03], together with additive of multiplicative masking based on homomorphic proper-
ties of the cryptographic scheme. However, a fatal flaw was found (and acknowledged by
Lucas Barthélémy in [Bar20a]): the core part of the white-box implementation consists in
trying to prevent the key extraction for a function of the form α2 − α1 · sk, where (α1, α2)
is the ciphertext we want to decrypt, and sk is the secret key. This function is linear in α1
and α2, and this linear dependence on the elements coming from the ciphertext remains
true, even after applying the NTT transformations and using the representations RNS.
This can be clearly observed on the equations of section 4.2 in [Bar20b]. It is therefore
very easy for an attacker to find the coefficients of these linear transformations (which
depend on sk), then sk itself.

One could explain the lack of solution to the asymmetric problem by looking at
the methods used in the symmetric case: small look-up tables or masking for instance.
These methods rely on circuit representation or on the possibility of breaking up the
implementation into smaller pieces. Algorithms like RSA or ECDSA appear to be not
suited to this strategy if we want to get the desired levels of security. This state of affairs
illustrates how challenging the task is to find a public-key scheme allowing a white-box
implementation. The goal of this paper is to provide such a construction for a signature
algorithm, for which all the parameters are carefully chosen to provide security (both in
the black-box and the white-box models) against the best known attacks. Our proposal is
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heavily based on the use of multivariate cryptography, which allows us to introduce new
ideas – and new problems – in white-box cryptography.

2.5 Multivariate Cryptography
Public-Key Multivariate Cryptography is a part of public-key cryptography in which the
public key is given as a set of m polynomials (P1, . . . , Pm) in n variables, of small degree d
over a small finite field F.

Most of the time, d equals 2 and 20 ≤ n ≤ 300.
The user must solve (in encryption) or find at least one solution (in signature or

authentication) in (x1, . . . , xn) the system

(A)


P1(x1, . . . , xn) = y1

· · ·
Pm(x1, . . . , xn) = ym

for a given m-tuple (y1, . . . , ym).
For a signature scheme, (y1, . . . , ym) can generally be viewed as the Hash of the message

to be signed, and (x1, . . . , xn) as the signature of this message.
For a challenge-response authentication scheme, (y1, . . . , ym) can be viewed as the

challenge, and (x1, . . . , xn) as the response.
For an encryption scheme, (y1, . . . , ym) can be viewed as the ciphertext, and (x1, . . . , xn)

as the corresponding cleartext.
Any user can easily check whether given (x1, . . . , xn) and (y1, . . . , ym) satisfy or not

the system (A) and can easily compute (y1, . . . , ym) from any given (x1, . . . , xn).
However, without the knowledge of a secret key, it should be infeasible to decrypt a

message or to forge a signature or to successfully pass an authentication. In other terms,
finding at least one solution (x1, . . . , xn) of the system A should be difficult for most
(y1, . . . , ym) without the knowledge of a secret key, and become easy with the knowledge
of a secret key.

Most of the time, a multivariate scheme is built from an easy-to-solve system B, which
is then “hidden” by two secret random linear (or affine) transformations s and t to obtain
a new system (A), by composing them (on the left and on the right) with B.

More precisely, if (B) is given by m polynomials (Q1, . . . , Qm) in (a1, . . . , an), the new
system (A) is given by m polynomials (P1, . . . , Pm) in (x1, . . . , xn) given by:

(P1, . . . , Pm)(x1, . . . , xn) = t(Q1(s(x1, . . . , xn)), . . . , Qm(s(x1, . . . , xn)))

where s and t are secret random linear (or affine) bijective changes of variables.
The obtained system (A) is also quadratic and finding a solution of

(A)


P1(x1, . . . , xn) = y1

· · ·
Pm(x1, . . . , xn) = ym

for a given m-uple (y1, . . . , ym) is expected to be difficult without the knowledge of
s and t. Finding the secrets s and t given (A) and (B) has been abstracted as the
Isomorphism of Polynomial (IP) problem in [Pat96]. It started a line of work such as
[PGC98, Per05, BFFP11, MPG13] to better understand the security of general multivariate
schemes.

There exist several families of multivariate schemes, corresponding to several choices
for the system B, like C∗, HFE, Rainbow or UOV. Among them, some schemes proposed
in the past have been broken. For others, no efficient attacks are known. In general,
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solving a set of quadratic equations over a finite field (this is called the MQ problem) is an
NP-hard problem for any finite field. However, it is difficult to obtain a proof of security
for multivariate schemes: since the system (B) has to be easy to solve, it is never random,
and neither is (A) (since (A) is obtained by linear changes of variables from (B)).

2.6 HFE
We now describe HFE in more details and review the most powerful attacks known against
it: the message recovery attack and the Kipnis-Shamir attacks especially are the attacks
that are considered in the black-box model to test whether an HFE instance can be used
to build secure primitives. We also describe the affine multiple attack as it is the starting
point of our construction.

2.6.1 Description of HFE and its variants

First described by Patarin in [Pat96], the HFE scheme is a direct descendant of C∗

[MIHM83, MI88]. This time, instead of an internal monomial, the internal polynomial can
be any polynomial that is of degree 2 over Fq. We only describe it over F2, as it is the
setting of this paper. Formally, for any prime q and any positive integers n and D ∈ N let
F ∈ F2n [X] be defined by:

F (X) =
∑

0≤i<j<n

2i+2j≤D

ai,jX2i+2j

+
∑

0≤i<n

qi≤D

biX
2i

+ c

where the ai,j , the bi and c are elements of F2n . As the integer D bounds the actual degree
of any such F , we call D the degree of the HFE instance. As the quantity ⌈log2(D)⌉ will
be important in the description of attacks, we set d = ⌈log2(D)⌉

The secret key is the list of such polynomial F and a couple of affine transformations
(S, T ) ∈ Affn(F2). We note it (S, F, T ). We remark that F is efficiently invertible on its
image due to the Berlekamp algorithm if D is not too big and that S and T are trivially
invertible as long as 2n is not too big.

To compute the public key, let us fix a basis (e1, ..., en) ∈ (F2n)n of F2n over F2. It
induces an isomorphism π from (F2)n to F2n such that π(x1, ..., xn) =

∑n
i=1 xiei . The

public key P is the map from Fn
2 to Fn

2 is then defined by:

P = T ◦ π−1 ◦ F ◦ π ◦ S

The public key is represented by the n coordinates of P : for each 0 ≤ i < n we note its
i-th coordinate Pi ∈ F2[x1, ..., xn].

2.6.2 Affine Multiple Attacks

One of the first attacks considered in the seminal paper [Pat96] of Patarin is a generalization
of the attack he made on C∗, called the affine multiple attack. The central idea of this attack
is that for any polynomial F ∈ F2n [X] there always exists a polynomial A(x, y) ∈ F2n [X, Y ]
that is F2-linear in x and a multiple of the polynomial P (x) + y. This means that if
y = F (x), then A(x, y) = 0. The goal of this attack is to recover A.

Definition 1. Let F ∈ F2n [X]. The polynomial A(x, y) ∈ F2n [X, Y ] is said to be a affine
multiple of F if A(x, y) = 0 mod F (x) + y and A is F2-linear in x.
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Let us define daff to be the maximum Hamming weight of the monomials in y in the
polynomial A(x, y). We then remark that the composition by that affine transformation
S and T leads to a new affine multiple that has the same daff value. Now, to start the
attack, just notice that A(x, y) is composed of about n× σ(n, daff) unknown coefficients
over F2, where σ(n, daff) is the number of monomials in at most n variables in degree d.
We will go through this in more details in Section 3. This means that with enough queries
(x, P (x)), the unknown coefficients are the solution of a linear system of n equations with
n× σ(n, daff) unknowns that we can obtain with a Gaussian reduction. This gives us an
attack, if F is known, in space n2 × σ(n, daff) and in time (n× σ(n, daff))ω. This attack is
quite inefficient in general as the degree daff is usually quite high.

2.6.3 Message recovery attacks

The idea of a direct message recovery attack is to invert the polynomial system defined by
the public key for a fixed value y. To that extent Gröbner bases are the best tools available
to date. The computation of these bases have greatly been improved since Buchberger
original discovery with new algorithms to compute them such as J.-C. Faugère F4 and F5
algorithms [Fau02].

To solve a polynomial system of n equations with n unknowns with F5, the complexity
is proved to be [BFS15]:

O
((

n + dreg

dreg

)ω)
where 2 ≤ ω ≤ 3 is the linear algebra constant, and dreg is the degree of regularity of
the polynomial system. Roughly, the degree of regularity is the maximum degree that is
reached during the Gröbner basis computation. As the complexity is exponential in dreg,
it is really important to know how to compute it for practical HFE instances.

For HFE instances, the degree of regularity is not well understood theoretically, but
it has been well studied experimentally. Due to the structure of the equations over F2n ,
it has been shown in [FJ03] that dreg behaves as logq(D), whatever value is chosen for n.
This is highly different from what has been theoretically investigated for random systems,
where dreg is supposed to be close to n ([BFS15]).

2.6.4 Kipnis-Shamir Key Recovery attack

To perform a key-recovery on HFE and its variants, the most efficient attacks to date are
the Kipnis-Shamir attacks. In their paper [KS99], A. Kipnis and A. Shamir show that
finding equivalent keys to an HFE instance can be done by solving a particular instance of
the MinRank problem [BFS97].

Since then, variations of the attack have been thoroughly studied. Especially, variations
with minor modeling and support minor have been the most successful. A recent paper
of Ding et al [Din20] provides a key-recovery attack that completely, breaking any small
HFE instances such as RedGeMSS128 [CFM+20]. In their paper, the authors show that a
key-recovery for HFE can be made with minor modeling in:

O
((

n + d + 1
d + 1

)ω)
using Gröbner bases algorithms like F4, and experimentally with support minor modeling
and Gröbner bases in:

O

((
n2
(

2d + 2
d

)
+ n

(
2d + 2

d

)2
)ω)

.
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This means that key-recovery is exponential in d = ⌈log2(D)⌉, but polynomial in n.

2.6.5 Differential Attacks

The differential attacks were introduced in [DFSS06] to attack the scheme of Matsumoto
and Imai. They exploit the simple structure of the differential of the monomial used in
the scheme, as well as a commutation with some multiplication operation.

Even if they were really efficient against C∗, no adaptation to HFE was ever found
and the authors of [CGSV16, DS14] showed that HFE polynomials usually used do not
have any exploitable differential structure.

3 A Public-Key Scheme with WB Implementation
In this section, we go through the rationale of our construction and detail the instantiation
of our white-box compiler for the desired level of security.

3.1 Rationale of the construction
The starting point of our construction is to use the affine multiple relation over F2 as an
alternative way to inverse an HFE instance P : the affine multiple will be our white-box
implementation. Indeed, if we take y = F (x) in the image of F , computing x knowing
an affine multiple A(x, y) boils down to plugging y onto the expression and then solving
linear system of the size of x. If the affine multiple is of a reasonable size, computing x is
as easy as computing the affine multiple.

The most important point at this stage is that it is way simpler to find an affine
multiple with the knowledge of the secret key (S, F, T ) than it is with the knowledge of the
public key. Indeed, we have a gap ω between the size of the affine multiple relation over F2
and the computation time that is needed to recover it knowing the public key performing
an affine multiple attack. As computing the affine multiple is not always possible for each
instances, we then have to tweak the parameters to get an HFE instance that achieves
black-box security, while its affine multiple is not too big.

To get a concrete white-box HFE signature instantiation, we fix λ = 80 to be our
expected security level against all the usual HFE attacks. We then fix parameters F and n
to get the smallest affine multiple possible and argue is section 4 that the construction is
secure in the white-box model against known attacks. To do so, we propose a short study
of the degree of affine multiple depending on F , and choose a polynomial that produces
a white-box implementation of 256GB while having a level of security up to 280 against
black-box attacks and attacks against the public-key.

We do not claim the asymptotic scalability of our scheme, as it is hard to claim it for
HFE in general regarding the efficient key-recovery of [Din20]. However, even if we focus
on λ = 80, it is possible to change some parameters to get a higher level of security, but
with a bigger implementation.

Regarding the white-box security, we rely on the fact that to the best of our knowledge,
giving access to the multiple affine relation does not give more information than a black-box
access to F −1. This claim is defended in the white-box security part.

3.2 Construction
3.2.1 Notations

In the rest of the paper, following [DLPR14], we consider a program in the language-
theoretic sense, interpreted in the explicit context of a programming model and an execution
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model, the details of which will be kept as abstracted away as possible. Computation times
are also to be considered in this execution model. Programs differ from remote oracles in
the sense that their code can be executed locally, read, copied and modified at will. It is
consistent with the white-box paradigm: execution can be interrupted at any moment and
all the internal variables identified by the instructions of the program can be read and
modified arbitrarily by the party that executes the program.

For any program or mathematical object P , we define Size(P ) to be the size in bits of
its representation.

(M , S, KV ×KS ,V,S) is an asymmetric signature scheme where:

• M is the message space

• S is the signature space

• KV ×KS is the key space

• S is the signature algorithm

• V is the verification algorithm

For any keyed signature algorithm S with key k we note CS the compiler specified to
S and CS(k) the white box implementation of S with the private-key k.

For two programs A and B we note A ≈ B when A and B are functionally equivalent.

Regarding polynomials, we note σ(n, d) to be the number of monomials in at most n
variables of at most degree d and M(n, d) is the cost of multiplying polynomials of degree
d with coefficients of size n. The rest of the notations are usual.

For HFE, we will note the public key P = T ◦ π−1 ◦ F ◦ π ◦ S with respect to all the
notations from the introduction part: S and T the affine secrets and F the internal HFE
map.

3.2.2 Computing the affine multiple

We now detail the existence of affine multiples and expose an algorithm to efficiently
compute them if possible.

To prove the existence of affine multiple, let us assume that D = deg(F ) is such that
D < n and let us consider the vector space F2(y)[x]/(P (x)+y) of dimension D = deg(F )
over F2(y). Now, the (D + 1) F2-linear polynomials (1, x20

, x21
, ..., x2D−1) are linearly

dependent:

∃ a, ao, ..., aD−1 ∈ F2(y) , a +
D−1∑
i=0

aix
2i

= 0 mod (P (x) + y)

To compute the coefficients ak, we can use the reductions of the monomials x2i modulo
F (x) + y:

∃ bi,0, ..., , bi,D−1 ∈ F2(y) , x2i

=
D−1∑
j=0

bi,jxj mod (P (x) + y)

We then reinject into the previous equation:

a +
D−1∑
i=0

ai

D−1∑
j=0

bi,jxj = 0
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This clearly translates into the linear system:
1 b0,0 · · · bD−1,0
0 b0,1 · · · bD−1,1
...

...
. . .

...
0 b0,D−1 · · · bD−1,D−1

×


a
a0
...

aD−1

 =


0
0
...
0


We can then solve this system with Gaussian reduction in F2(y). Multiplying this

relation by the GCD of the a′
ks denominators leads to an affine multiple polynomial A(x, y).

We now note ak ∈ F2[y] the polynomials in y obtained that way. This proves the existence
an affine multiple, and gives us at the same time an algorithm to compute it.

Remark: We do not claim the uniqueness of the affine multiple. It is indeed clear that
considering D other F2-linear monomials leads to a similar relation, but it is not clear how
it affects the coefficients ak obtained.

3.2.3 The white-box construction

We now detail the construction of the signature scheme, our white-box compiler and how
to use it in practice.

To sign with HFE, we will use the simplest scheme possible, already explained in
the seminal paper on HFE [Pat96]: hash and sign. If we set h : {0, 1}∗ → {0, 1}n

to be a cryptographic hash function, one can simply sign a message m by computing
s = P −1(h(m)). Then, the verification is made by computing P (s) = h(m). We denote by
SHF E this signature scheme.

Algorithm 1: HFE Signature algorithm SHF E

input : A message M ∈ {0, 1}∗

output : The signature σ = (SHF E(M), r)

r ← 0 ;
y ← ϕ−1(T −1(h(M ||r))) ;
while y /∈ Im(F ) do

r ← r + 1 ;
y ← ϕ−1(T −1(h(M ||r))) ;

return s = (S−1(ϕ(y)), r) ;

Remark: Usually, a Feistel structure is used with P −1 as round function, in order to
reduce the probability of collisions. The simple scheme (Algorithm 1) has obvious attacks
with birthday paradox attacks in 2n/2, but we will see later that this is not a problem for
us due to the chosen value n.

Note that the scheme can be easily turned into a provably secure scheme against
chosen-message attacks, as shown in [SSH11], by changing the way the salt is generated.
Moreover, as we will see, the security of the scheme in the white-box model remains
equivalent to the unbreakability and incompressibility properties of the implementation of
P −1. That is why we focus on a white-box implementation of P −1.

Now, to start the white-box transformation from an HFE secret-key (S, F, T ) over n
bits - with affine transformation S and T and the public transformation π - the compiler
computes first the affine multiple A(x, y) of F over F2n following the algorithm described
in the previous section.
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From the polynomial A(x, y), the compiler can now compute the coordinates
Ai(x1, ..., xn, y1, ..., yn) (for i ∈ J1, nK) of A through the isomorphism π, and its composition
with the secrets maps S and T :

Ãi(x1, ..., xn, y1, ..., yn) = Ai(S(x1, ..., xn), T −1(y1, ..., yn))

Now, to compute P −1(y), one can plug the coordinates y1, ..., yn of y into the poly-
nomials Ãi to get a linear system of n equations in x1, ..., xn that can be solved through
Gaussian inversion for instance. However, one should worry that (F (x) = y) only implies
(A(x, y) = 0), and not the reciprocate. Indeed, when we plug y in, we might get a solution
x such that (A(x, y) = 0 and F (x) ̸= y). To avoid such cases, we have to verify that for
the chosen y, the signature is valid (i.e. F (x) = y). As the verification is made with the
public key, the time needed to perform this check is negligible.

We define the collection of the n polynomials Ãi, the code for evaluation, the code for
inversion and the hash function h to be the white-box implementation of the computation
of P −1. We note this compiler WBHFE . This leads to the following compiling algorithm:

Algorithm 2: White-box compiler WBHFE
input : A HFE secret key (S, F, T ) with affine S and T
output : WBHFESHFE (S , F , T ) the white-box implementation of SHF E with key

(S, F, T )

• Compute the affine multiple A(x, y) of F with algorithm of section 3.2

• Compute the composition with secrets S and T and projection maps to get the
coordinates of Ãi:

Ãi(x1, ..., xn, y1, ..., yn) = Ai(S(x1, ..., xn), T −1(y1, ..., yn))

• Produce a code that hashes a message of size n.

• Produce a code that partially evaluate the Ãi over the y1, ..., yn

• Produce a code of the function INV that compute a preimage of the vector 0
through linear application given by the partial evaluations of the Ãi, and output
"NONE" if not solution can be found.

• Produce a code that check if the message to be signed is in the image of P and
increments the salts otherwise.

• Concatenate the produced codes to get the whole white-box implementation
WBHFESHFE (S , F , T ).
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The produced implementation WBHFESHFE (S , F , T ) can be described by Algorithm 3.

Algorithm 3: WBHFE Signature algorithm WBHFESHFE (S , F , T )
input : A message M ∈ {0, 1}∗

output : The signature σ = (SHF E(M), r)

r ← 0 ;
y ← h(M ||r) ;
Substitute the values y = (y1, ..., yn) in Ãi(x1, ..., xn, y1, ..., yn) ;
x← INV (Ãi(x1 , ..., xn, y1 , ..., yn)) ;
while x = "NONE" OR x /∈ Im(P ) do

r ← r + 1 ;
y ← h(M ||r) ;
Substitute the values y = (y1, ..., yn) in Ãi(x1, ..., xn, y1, ..., yn) ;
x← INV (Ãi(x1 , ..., xn, y1 , ..., yn)) ;

return s = (x, r) ;

Remark : Note that the verifying algorithm for signature in algorithm 1 is the same
as algorithm 3. A description of it can be found in section 2.5 or in [Pat96] and [SSH11].

3.3 Size analysis of the construction

The study of size of our solution boils down to two points: the computation of the
multiple A over F2n and the size of its coordinates Ãi over (F2)n. Indeed, the code size
needed to perform evaluations of polynomials and Gaussian inversion is negligible. For
the representation of polynomials, we use the so-called “sparse” representation to get
the smaller size possible. The size analysis is of course to be linked with the white-box
incompressibility which is detailed later on.

3.3.1 Cost of computing an Affine Multiple.

To compute the coefficients bi,j , we have to go through the reduction of the monomials x2i

modulo F (x) + y, with 0 ≤ i < D. We can deduce that the size of the polynomials bi,j

depends on the degree D. Due to the reduction modulo F (x) + y, the degree of bi,j can be
as big as 2D. Then the bi,j can have up to 2D monomials. The last part of the algorithm
only solves a D ×D system, leading to a worst case complexity if the polynomials bi,j are
dense:

O(M(n, 2D)Dω)
where M(n, 2D) is the cost of multiplying polynomials of degree 2D with coefficients of
size n. This means that with D = O(n), computing this relation is usually impossible.
However, we will use it with smaller polynomials than in usual HFE, i.e. D = O(1).

3.3.2 Size of the WBHFE implementation.

For the rest of the construction, let us introduce the affine degree of F . The affine degree
daff is the greatest Hamming weight that appears in the description of the affine multiple
A over F2.
Definition 2. Let A(x, y) = a +

∑D−1
i=0 aix

2i with a, ao, ..., aD−1 ∈ F2(y) , if Mon(ak) is
the set of the monomials of ak we define daff the affine degree of A by :

daff := max
k

(
max

m∈Mon(ak)
HW (degy(m))

)
.
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Over F2, daff + 1 is the highest degree of the monomials encountered in the expression
of A(x, y). Indeed, A(x, y) is linear in the xi but of degree daff in the yi.

If we note σ(n, daff) to be the number of monomials in at most n variables of degree
at most daff, this means that we have about n× σ(n, daff) coefficients over F2 needed to
compute a coordinate Ai of A(x, y). When we compose by S and T to get Ã, the overall
degree does not change since S and T are affine transformations. This means that each
coordinate Ãi is composed of at most n× σ(n, daff) monomials.

As we are computing n coordinates, a lot of monomials will be shared in the expressions
of the Ãi and it is more efficient to compute all the monomials that appears in these
expressions, and then sum them. Since we want to only evaluate these polynomials in yi

to get a linear system in xi, to them inverse it, we will represent the n polynomials Ãi as
a matrix of polynomials over the yi. This transformed expression is of the same size size
but will be more suited to our goals. To do so, we define the polynomials Ãi,j(y1, ..., yn)
by the expression:

Ãi(x1, ..., xn, y1, ..., yn) =
n∑

j=0
Ãi,j(y1, ..., yn)× xj

Key elements of WBHFE: We can now precisely state the size of our construction.
Since we will need to use great values of n, we will say in our size study that code size
are ’negligible’ if they are small compared to a GB - that is few kB. Our construction is
composed of :

• A code that hashes a message m = (m1, ..., mn). Since any secure hash function can
be used, this code size is negligible.

• A code that evaluates, on an input m of size n, all the monomials of at most degree
2 in the mi. As we compute all the monomials, a generic code can be made. This
means that this part is negligible in code size. However, this code will produce
σ(n, daff) bits during its execution. We will also suppose - without loss of generality
- that these monomials are computed in an ordered way, with a label from 1 to
σ(n, daff).

• The n2 files Filei,j i,j < n for which the k-th bit of the file Filei,j is 1 if the k-th
monomial computed by the precedent code is in the expression of the polynomial
Ãi,j . These files are the heaviest part of our implementation : their size is σ(n, daff).
As we need each of the coordinates, the whole size is n2 × σ(n, daff). We divide the
n2 polynomials into n2 files so we can load them one at a time during evaluation.

• A code that computes the evaluation of Ãi,j(m1, ..., mn) given the evaluations of
the monomials of degree 2 in mi and the file Filei,j . To do so, one just has to go
through the file Filei,j and sum the corresponding monomials as they go. This code
is negligible and can load one file Filei,j at a time.

• A code that computes the n by n binary matrix MatÃ such that (MatÃ)i,j =
Ãi,j(m1, ..., mn). This code is also negligible.

• A code that compute a solution to the linear system MatÃX = 0, X = (x1, ..., xn)T .
This can be done by Gaussian elimination. Hence, it is negligible.

• A code that checks if m was in the image of P , i.e. if P (x) = m. This can be done
with the public key, whose size is n2. The rest of the code is negligible.

• A code that salts m if the previous check failed. This code is obviously negligible.
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This means that the code is composed of the n2 Filei,j for n2 × σ(n, daff) bits, the
matrix MatÃ of n2 bits, the public key of n2 bits, and some neglibible code. The full size
is then :

n2 × σ(n, daff) + 2n2 + negl ≈ n2 × σ(n, daff)

3.3.3 Discussion on the affine degree.

As seen in the previous section, the size our construction is exponential in the affine degree
daff, so it is important for us to understand its variations depending on F .

As a consequence of the algorithm we used to prove the existence of a multiple affine,
we know that the degrees involved in the computation of the multiple are upper bounded
by 2D where D is the degree of F . The affine degree is then bounded by D but this bound
is clearly an overestimate.

To get better estimations, we performed experiments with Sage for D < 17 for quadratic
forms over F2. The affine degree observed are below the bound D and seem to depend
heavily on the rank. For instance, for skew-symmetric forms of at most degree 12 and
rank 4, the affine degree varies between 4 and 6. However for skew-symmetric forms of at
most degree 12 and rank 3, the affine degree varies between 1 and 5. This encourages us
to consider the affine degree on a case by case basis depending on the rank.

Experiments were also made over bigger field F2n , and it seems that considering the
same rank and degree for our polynomials with coefficients over F2n leads to a small
increase of the affine degree. To our understanding, it is just a consequence of the algebraic
simplifications that used to happen over F2 and are not present over F2n .

Besides our experiments on low degree polynomials, there are some examples that are
really far from any expected bound. For instance, the Dobbertin polynomial x2m+1+1+x3+x
(see [Dob99]) has a multiple affine of affine degree 3 over F22m+1 for every value m ([Pat96]),
which is really different from the observed values.

3.4 Choice of parameters: Size and Black-Box security
We now detail the instantiation chosen to reach λ = 80 as a security level. The parameters
to be chosen for the HFE instance are n and F . We focus here on the security regarding
the public-key and discuss the white-box security in the following section.

First, let us recall the complexity of the best known attacks against HFE: key-recovery
and inversion. If we set dreg to be the degree of a fixed HFE instance, D its degree
and d = ⌈log2(D)⌉, the best inversion attack is made in O

((n+dreg
dreg

)ω
)

and the best

key-recovery in O
((

n2(2d+2
d

)
+ n

(2d+2
d

)2)ω)
. As recalled in the introduction on HFE,

resisting these attacks is enough to get a secure black box HFE instance.

3.4.1 Finding Ideal Parameters

We need to choose F with the smallest daff possible, while the degree dreg and the rank of
the associated HFE instance are maximal. However, there are obstacles to the growth of
these parameters. Following the study we made on the affine degree, polynomials F with
high degree D and low daff are rare – or nonexistent – and the known examples are of low
rank (which makes the MinRank problem easier to solve), and with coefficients over F2
(which leads to efficient key-recoveries [BFJT09]). This is why our strategy here is to get
daff, dreg and d as close as possible. It also allows us to stay close to our rationale, that is,
to keep a gap ω between the size of the construction and the best known attacks.
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Following the study from [FJ03] on the degree of regularity of HFE instances, we know
that for any integer n, an HFE instance with a polynomial F of degree 4 ≤ D < 17 has a
degree of regularity equal to 3. This means that if we fix such a polynomial, the inversion
attack has complexity O

((
n+3

3
)ω
)

and is polynomial in n of degree 3ω. For the same
F , the maximum d is 4, so we want the rank of F to be as close as possible to 4 while
having the smallest possible affine degree: the MinRank key-recovery attack is the most
restraining, and the affine multiple attack is one of the weakest.

Exhaustive search of quadratic forms of rank 4 with D = 16 and coefficients over F2
shows that all the affine multiples have at least daff = 4. As our discussion on the affine
degree shows, this degree seems to be a generic lower bound if we take coefficients in F2n .
This means that to reach λ = 80 against key-recovery, we need log(n) ≈ 9.5. The size of
our white-box construction with daff = 4 is then 257, which is a bit too prohibitive.

Among the quadratic forms of lower rank, we use the fact that for any a, b ∈ F2n , the
polynomial

F (x) = x6 + ax5 + bx3

has an affine multiple of the form:

(y3(a13 + a10b + a7b2 + a4b3) + y2(a10b3 + a4b5 + ab6) + a4b7y)× x20

+ ((a12 + a9b)× y3 + (a12b2 + b6)× y2)× x21

+ (a4y4 + y3(a4b2 + ab3) + y2(a13b + a4b4 + ab5) + y(a10b4 + ab7) + a4b8)× x22

+ (y4 + y2(a9b + a6b2 + a3b3 + b4) + y(a12b2 + a9b3 + a6b4) + a12b4 + b8)× x23

+ ((a4b2 + ab3)× y + a16 + a4b4)× x24

+ x25
= 0

(1)

The polynomial F is of rank 3 as a quadratic form for any a, b ̸= 0 and has an affine
multiple of degree 2 if and only if all the coefficients in y3x2k are not 0. As the coefficient
of y3x21 is a12 + a9b, we see that if b ̸= a3, our affine multiple is of affine degree 2. This
choice of the coefficients gives us a polynomial F with daff = 2 and d = 3.

3.4.2 Size and Black-Box Security

To reach λ = 80 for F = x6 + ax5 + bx3 against key-recovery, following from the study of
[Din20]: we need log(n) ≈ 10.5. Then the HFE instance is secure as well against the best
known attacks and our security benchmark is met.

We can now proceed to size analysis with log(n) ≈ 10.5 and the polynomial F (x) =
x6 + ax5 + bx3, plugging the values into the formula of the previous part:

Size(WBHFESHF E
(S, F, T ))) = 241 bits

This means that we achieve the desired level of security for about 256GB of memory.
Regarding greater values of λ, one can increase the value of n to increase security, but
the implementation would of course be bigger: this is a common feature of white-box
implementations. However, it is clear that the gap between the implementation size and
the security level will shrink if F is fixed and n increases.

Regarding time, as the Gaussian inversion is made over F2, it is negligible, the main
part is to perform the polynomials evaluation which can be made in 241 as well. This gives
an estimation of signature time of several minutes on a modern computer.
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4 Security analysis in the white-box model
4.1 White-Box Security Notions
The usual software white-box security notions that are discussed in the literature are
unbreakability, incompressibility, one-wayness and traceability. While we prove some
strong point for the first two, we do not consider traceability, and one-wayness does not
make sense for decryption or signature in asymmetric cryptography: the one-wayness
of decryption/signature would mean that encryption/signature is impossible, which is a
contradiction by definition. The goal of this section is to explain why the expected security
level is 280 in the white-box model.

4.1.1 Definitions

As we focus here on the white-box security of an asymmetric signing primitive based
on a decryption primitive, we describe unbreakability and incompressibility in the case
of asymmetric signature. These definitions are obviously really close to the symmetric
ones, with the main difference that one-wayness for an asymmetric signature scheme is
not relevant. The main difference with definitions found in [DLPR14] is that we do not
specialize the adversary to certain classes of attacks: it is the most generic possible.

Let us describe the game for unbreakability of a compiler CS :

• Draw at random a key k in private keyspace KS

• The adversary A gets the program CS(k) from the compiler

• The adversary A returns a key guess k̂ in time τ knowing CS(k)

• The adversary A succeeds if k = k̂

Definition 3. Let S be an asymmetric signature algorithm, CS a white-box compiler and
let A be any adversary. We define the probability of the adversary A to succeed in the
unbreakability game by:

SuccA,CS := P[k ← K;P = CS(k),A(P) = k̂; k = k̂]

We say that CS is (τ ,ϵ)-unbreakable if for any adversaryA running in time τ , SuccA,CS ≤
ϵ.

Remark: Here, we do not set A to be a polynomial adversary depending on a security
parameter λ and hope that ϵ is exponentially small in λ, as we are interested in concrete
security for our chosen parameters.

The definition of incompressibility we propose here is a slightly corrected version from
the usual one used in [DLPR14]. Indeed, this one is flawed and almost empty as it does
not constrain the running time of the program P. If the running time is not bounded we
can propose a compression of any white-box algorithm by using brute force: an attacker
can compute few couples plaintext-ciphertext, and code the brute force attack on the
primitives that is white-boxed, and then code the computation of the primitive with the
key found. This program can be made with few lines of code, is identically functionnal to
the white-box code, but has an unreasonable running time. That is why we add a new
time constraint: we want that the sum of the running time of the attacker and the program
produced is less than a constant τ representing the whole computation time allowed.

Remark: Note that the previous modification does not invalidate the proofs found in
the literature for incompressibility. Indeed, these proofs are made in the special models
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where the programs produced by the attacker are restrained by a model (Ideal Group
Model for instance), whereas the program we proposed does not fit into these models.
However, it does not change the fact that the general definition in [DLPR14] is incomplete.

We now describe, for any σ > 0 the game for incompressibility for a compiler CS :

• Draw at random a key k in private keyspace KS

• The adversary A gets the program CS(k) from the compiler

• The adversary A returns a program P knowing CS(k)

• The adversary A succeeds if P ≈ CS(k) and size(P) ≤ σ

Definition 4. Let S be an asymmetric signature algorithm, CS a white-box compiler and
let A be any adversary. We define the probability of the adversary A to succeed in the
σ-incompressibility game by:

SuccA,CS := P[k ← K;P = A(CS(k)) ;P ≈ CS(k); (size(P) ≤ σ)]

Moreover, we say that CS is (σ,τ ,ϵ)-incompressible if for any adversaryA, Time(A)+Time(P)
< τ implies SuccA,CS ≤ ϵ.

Remark: This definition can usually be found with a parameter δ that allows the
program P to agree with the targeted function with probability δ. As no known attack
exploit this fact, we did not include it for sake of clarity.

Remark: Note that if a compiler is not unbreakable, then it cannot be incompressible
for reasonable security levels: the key-recovery is indeed an extreme compression of a
white-box implementation.

4.2 First Links with the Cubic IP1S Problem
To analyse unbreakability and incompressibility, we rely on two properties of the polyno-
mials describing our white-box implementation. The first will be the key-recovery of the
underlying cubic IP1S (Isomorphism of polynomials with one secret) instance, a problem
that has been studied in papers such as [PGC98, Per05, BFFP11, MPG13] to explore
the security of multivariate cryptography in general. The second one is a variant of the
regular IP1S problem that we call “incompressibility of IP instances”. We detail these two
properties, how they are linked to our problem and how well studied they are.

4.2.1 Secret recovery on Cubic IP1S

Let us first recall that our white-box implementation is composed of the n polynomials Ãi

and a deterministic generic way to evaluate them (compute all the monomials then sum
them up). The polynomials Ãi are defined by a composition with two affine transformations
S and T such that:

Ãi(x1, ..., xn, y1, ..., yn) = Ai(S(x1, ..., xn), T −1(y1, ..., yn))

It is then obvious that Ãi is an instance of a cubic IP1S problem over 2n variables,
with Ai as the known polynomials and a block-affine transformation composed of S and
T . This problem has a structured secret, so it is not generic, but do not know any other
attack against it (as an IP problem) than the best generic ones. We now state our first
assumption:
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Assumption 1: Security of Cubic IP1S The cubic IP1S instance defined the familly
of polynomial Ai is secure to the level of security 280 against any secret-recovery attack.

Although our instance is not a generic one, we can rely on the state of the art against
cubic IP1S problem to back this assumption up. To the best of our knowledge, the best
generic attack on cubic IP1S with affine secrets is in complexity O(n6qn). This means
that the best attack known against this instance is exponential in n ≈ 210.5, which allows
us to be far above 280.

Remark: Even if it does not change the security for our set of parameters, we would
like to point out that the attack described in [BFFP11] is in O(n12qn) and not O(n6qn)
as it was claimed. The computation of the Gröbner basis used in the attack is made over
n2 variables (coordinates of a formal matrix), and the degree of regularity is reported to
be 2 for the system studied. This means that the overall complexity is O((n2)2×ω)qn),
which cannot be O(n6qn).

4.2.2 Incompressibility of IP1S instances

The main goal of this part is to highlight a specificity of multivariate cryptography in
general that will help us to prove the incompressibility of our white-box construction. To
do so, we formalize a new problem around IP instances, and analyse it on our instance
(Ãi)i∈J1,nK.

We define the (σ,τ)-incompressibility of an IP instance with known polynomials
(Pi)i∈J1,mK:

• Draw at random two secret affine transformation S, T in Affn(F2)

• The adversary A is given an IP instance (P̃i)i∈J1,mK composed of (Pi)i∈J1,mK, S and
T

• The adversary A returns a program P that allows to evaluate (P̃i)i∈J1,mK for every
element (F2)n

• The adversary A wins if size(P) ≤ σ

Definition 5. Let (P̃i)i∈J1,mK be an IP instance with polynomials in n variables over
F2, with known polynomials (Pi)i∈J1,mK and secrets S, T and let A an adversary. We
say that (P̃i)i∈J1,mK is (σ,τ)-incompressible if there is no adversary A that wins the
σ-incompressibility game with probability 1 and Time(A)+Time(P) < τ .

Remark: We could also consider, similarly to the incompressibility for white-box, that
A does not have to agree with (Pi)i∈J1,mK on all inputs or that it can be probabilistic.
However, known attacks do not use this flexibility.

It is well known that, for truly random polynomials, compressibility is not possible, in
the sense of Kolmogorov, even with an unbounded computation power. In contrast, in our
context, a compressed version of the Ãi polynomials is obviously given if we can recover
the secrets S and T . This problem of secret recovery on an IP instance corresponds to the
extreme case σ = size(S) + size(T ) in Definition 4, and boils down to the breakability
problem, for which the best known attacks require a computational effort way larger
than 280 (see paragraph about Secret recovery on Cubic IP1S). In the intermediate cases
size(S) < σ ≤ size(Pi), to the best of our knowledge, no attack has been found in the
literature, which leads us to the following assumption:
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Assumption 2: Incompressibility of IP1S The cubic IP1S instance defined the family
of polynomial Ai is (240,280)-incompressible.

Remark: As it is hard to give precise values for the sizes and times involved (due
to programming language and model of computation), we always underestimate our
parameters. For instance, the size of our construction is estimated to be 241 bits, but
we try to prove its (240, τ)-incompressibility, giving us a noticeable margin of error. The
practical security might be even closer to the implementation size.

Remark: Assumption 2 is two-edged. If we can provide for a functional white-box
implementation with σ < 240, few GB for instance, deploying our solution in a regular
devices would be easier. In that sense, some compression might be interesting. However,
if the reduction is too efficient with σ ≈ 220, the incompressibility criteria might not be
useful anymore: an attacker extracting the code from a device could remain unnoticed.

4.3 Reduction and Discussion on General Attacks
The goal of this section is to show the strength of multivariate cryptography methods for
white-box cryptography. Roughly, the idea is to show that the implementation we have
is has strong as the underlying IP instance, because the rest of the code is just made of
generic evaluations. The rest of the section proves the unbreakability using Assumption 1
and argues for the incompressibility under Assumption 2.

4.3.1 Important remark on the IP problem and Generic White-Box Attacks

Before we start to discuss the unbreakability and the incompressibility of our construction,
let us discuss the efficiency of generic white-box attacks against IP instances.

No mention of Fault Attacks (DFA), DCA or LDA can be found in the state-of-the-art
attacks against IP instances. This means that these methods are not known to be efficient
to solve the IP problem. One could also try to explain directly why these attacks do not
work. For instance, for DCA, if we cannot identify a computation that depend on few key
bits, the complexity grows exponentially fast. For IP problems, the only subcomputations
we can identify are evaluations or coefficients of the polynomials. However, it can be seen
that these results already depend on at least n key bits, so any attempt of DCA is not
realistic. For DFA, faults can be made to solve a regular IP instance, but any evaluation
of the polynomials is already allowed to solve IP. This is a huge difference compared to
the usual targets of these attacks: in the state-of-the-art it is usually a Sbox of an SPN,
and most often of the AES.

4.3.2 Unbreakability

Theorem 1. Let (Ãi)i∈J1,nK be the IP instance of with known polynomials (A)i∈J1,nK and
secrets S and T. Let SHF E be our HFE signature scheme. If (Ãi)i∈J1,nK is secure for secret
recovery for any adversary A running in at least time τ , the white-box implementation
WBHFESHF E

is (τ, 1)-unbreakable in the white box model.

Proof. Let us prove this result ad absurdum. To do so, we suppose that there exist an
attacker A running in time τ that can recover the secret key S and T from our white-box
implementation. Then we remark that the white-box code computing DHF E only performs
generic partial evaluation of the polynomials (Ãi)i∈J1,mK, and then performs Gaussian
inversion on the linear system of equation left after the values yi are plugged in. We
can now build an attacker B that uses A to break the overall IP problem: B asks for an
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IP1S instance of the (Ãi)i∈J1,mK form. She then programs the generic evaluation of these
polynomials, the linear inversion after evaluation to get a program P . She then gives P to
A who find S and T in time τ . As the programming part done by B is trivial, this leads
to an overall attack in time τ .

This proof means that there is no gap between the security the kind of IP problem
we are studying and the white-box security as long as the operations we perform are
generic. This also means that if usually powerful attacks like DCA or DFA could break
our construction, they would also be a powerful cryptanalysis for IP problems in general.

Remark 1: This theorem formalizes the remark made in the previous paragraph
regarding general white-box attacks (DCA, DFA or LDA). It means that these attacks are
not known to be successful against our construction. Otherwise, it would be a breakthrough
in the analysis of the IP problem.

Remark 2: This proof could be adapted to any primitive using multivariate cryptog-
raphy: as long as "generic" operations are made by the white box implementation, there is
no gap between the security of the overall instance and the white-box implementation.
With the help of Assumption 1, this easily leads to the following security result:

Corollary 1. If Assumption 1 holds, then for any secret key (S, F, T ), the white-box
compiler WBHFESHF E

is (280, 1)-unbreakable.

4.3.3 Incompressibility

The incompressibility of WBHFESHF E
can easily be deduced from Assumption 2 if the

following conjecture is true:

Conjecture: Any attacker that breaks the (240, 280, 1)-incompressibility of WBHFE
can break the (240, 280)-incompressibility of the IP instance defined by the polynomials
(Ai)i∈J1,nK

The main difficulty to prove such a statement lies in the fact that the polynomials Ãi

stored in the implementation allow not only the computation of x = P −1(y) (by plugging
an explicit value of y and then solving A(x, y) = 0 in x by Gaussian reduction), but
also the computation of Ãi(x, y) even if y ≠ P (x). However we conjecture that, from a
“compressed” implementation for P −1, we could derive a “compressed” implementation
allowing to compute (A(x, y) for any pair (x, y), where A is an affine multiple.

The incompressibility of the polynomials Ai (Assumption 2) thus appears to be crucial,
because – under the conjecture above – it implies the incompressibility of our white-box
implementation. As already mentioned, since the polynomials Ãi are given in their normal
form, it is very likely that they are not compressible and that the generic operations
needed to compute their output value do not allow the attacker to compress the whole
computation of P −1 (Note that if the Ãi where truly random, they would be impossible
to compress).

Of course, proving this conjecture still requires new insights, in particular to clarify
the deep algebraic links between the polynomial systems arising from A(x, y) on the one
hand, and from P −1 on the other hand. However, we believe this paves the way for a
better understanding of the incompressibility property, which up to now could be formally
verified only for white-box implementations of symmetric cryptosystems in very restricted
models (see the proof of incompressibility of an RSA-like symmetric encryption scheme in
[DLPR14], using an Ideal Group Model).
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5 Conclusion and opening remarks
While many attempts have been made to construct white-box implementations of block-
ciphers, almost no white-box implementations have been published for what concerns
asymmetric schemes. We have presented here a concrete construction of such a scheme,
together with a white-box implementation of the signature algorithm. For a security level
280, the public key size is approximately 62.5 MB and the white-box implementation of
the signature algorithm has a size approximately 256 GB. Even if we focus on a precise
security level, the overall security can be increased at the cost of a bigger implementation.

We propose a new approach to unbreakability and incompressibility in the general
white-box model through the use of multivariate polynomials in normal form and more
precise definitions for these concept. For unbreakability, we reduce it to breaking a
specific cubic IP instance. For incompressibility, we break the security argument into an
incompressibility problem on IP instances and a conjecture on the attacker’s ability. This
breaks from the usual techniques in literature that were relying on special models or the
use of truth table for instance, and motivates the usage of multivariate polynomials in
normal form in general white-box constructions.

A challenge for further research would be to find a way of evaluate the value of the affine
degree daff for all HFE instances. It has indeed being shown that the cost of computing
such a relation for high degree polynomials is prohibitive. For instance, one can wonder if
the value daff can be computed without its affine relation or if less costly methods can be
developped.

Also, examples like the Dobbertin polynomials show that there might exist polynomials
with high degree but low affine degree. Finding such family of polynomials with associated
HFE instances of high rank and reasonable degree of regularity could lead to improvements
regarding our scheme and would probably help to reach higher levels of security with a
smaller implementation.

One could remark that A(x, y) is not strictly equivalent to F −1. As it was used to
provide a solution here, it seems interesting to consider such structures for other white-box
implementations. Having access to a structure that is not equivalent to the primitive that
is to be white-boxed might give more freedom to designers.
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