
Improved Differential and Linear Trail Bounds for
ASCON

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen

Radboud University, Nijmegen, The Netherlands
solane.elhirch@ru.nl,silvia.mella@ru.nl,alireza.mehrdad@ru.nl,joan@cs.ru.nl

Abstract. Ascon is a family of cryptographic primitives for authenticated encryption
and hashing introduced in 2015. It is selected as one of the ten finalists in the
NIST Lightweight Cryptography competition. Since its introduction, Ascon has
been extensively cryptanalyzed, and the results of these analyses can indicate the
good resistance of this family of cryptographic primitives against known attacks, like
differential and linear cryptanalysis.
Proving upper bounds for the differential probability of differential trails and for the
squared correlation of linear trails is a standard requirement to evaluate the security
of cryptographic primitives. It can be done analytically for some primitives like AES.
For other primitives, computer assistance is required to prove strong upper bounds for
differential and linear trails. Computer-aided tools can be classified into two categories:
tools based on general-purpose solvers and dedicated tools. General-purpose solvers
such as SAT and MILP are widely used to prove these bounds, however they seem to
have lower capabilities and thus yield less powerful bounds compared to dedicated
tools.
In this work, we present a dedicated tool for trail search in Ascon. We arrange
2-round trails in a tree and traverse this tree in an efficient way using a number of
new techniques we introduce. Then we extend these trails to more rounds, where we
also use the tree traversal technique to do it efficiently. This allows us to scan much
larger spaces of trails faster than the previous methods using general-purpose solvers.
As a result, we prove tight bounds for 3-rounds linear trails, and for both differential
and linear trails, we improve the existing upper bounds for other number of rounds.
In particular, for the first time, we prove bounds beyond 2−128 for 6 rounds and
beyond 2−256 for 12 rounds of both differential and linear trails.
Keywords: Differential Trail Search · Linear Trail Search · Trail Weight Bounds ·
ASCON

1 Introduction
Ascon is a family of cryptographic algorithms for authenticated encryption (AE) and
hashing [DEMS21a]. It is currently one of the ten finalists in the NIST lightweight
cryptography (LWC) competition for lightweight AE [TMC+21] and was selected in the
final portfolio of the CAESAR competition [com14] as primary choice for lightweight
AE [DEMS16]. The AE schemes are based on the duplex construction [BDPV11a], while
the hashing functions are based on the sponge construction [BDPV07,BDPV08]. All family
members are based on the Ascon permutation, which is also used in Isap [DEM+20],
another finalist in the NIST LWC competition.

The Ascon permutation has been extensively cryptanalyzed since its introduction,
giving confidence on the security of the schemes based on it. However a thorough effort
to prove bounds on the differential probability (DP) and squared correlation (C2) of its

mailto:solane.elhirch@ru.nl, silvia.mella@ru.nl, alireza.mehrdad@ru.nl,joan@cs.ru.nl

2 Improved Differential and Linear Trail Bounds for ASCON

trails was conducted only recently [GPT21, EME22,MR22]. Before that, only bounds
for 3-round trails were proved in [DEMS15] and for more rounds, the authors performed
heuristic searches showing small DP and small C2.

Proving bounds for trails is an important task in the evaluation of the security of a
permutation. The cost of a differential attack based on a given trail is inversely proportional
to its DP. Similarly, the cost of a linear attack is inversely proportional to the C2. Therefore,
the smaller the DP or C2 is, the higher the cost of the attack is. Bounds on the DP or
C2 of trails are usually proven by bounding the number of active S-boxes of the trails
or its weight. Roughly speaking, the weight w of a differential trail relates to its DP as
DP ≈ 2−w. Similarly, the weight of a linear trail relates to its C2 as C2 ≈ 2−w. Therefore,
the higher the number of active S-boxes or the higher the weight is, the more costly the
attack is.

For some primitives, bounds can be proved analytically. An example is the AES with
its simple proof that a 4-round differential trail has weight at least 150 [DR20]. For other
primitives they are obtained by computer-aided proofs. In this case, a program scans the
space of all r-round trails satisfying a given requirement. The requirement is usually that
the number of active S-boxes in the trail is below a given threshold, or that the weight of
the trail is below a given threshold. Large state size and weak alignment contribute in
making the search space very large and thus the cost of scanning it very costly. It follows
that the bounds that one can prove are limited by the capability of the tool for scanning
such spaces.

Automated tools that are often used to prove bounds on the number of active S-boxes
are based on general-purpose solvers like Boolean satisfiability (SAT) [MP13,EME22],
(mixed) integer linear programming ((M)ILP) [SHW+14, BPP+17, BJK+16,WH19] or
Satisfiability Modulo Theories (SMT) [DEMS15]. Dedicated tools were used to prove
lower bounds on the weight of trails in Noekeon [DPAR00], Keccak-p [DV12,MDV17],
Xoodoo [DHVV18b], and Subterranean [MMGD22]. Such dedicated programs allow
to better exploit the structural properties of the primitive and usually allow to scan
larger spaces, leading to better results than tools based on general-purpose solvers. Before
2022, the best result obtained with tools based on general-purpose solvers that we are
aware of is the work of Mouha and Preneel, who used a SAT-based method to scan
the space of all 3-round characteristics up to weight 26 in the ARX primitive Salsa20,
which implies a weight per round below 9 [MP13]. The dedicated search for Noekeon
in [DPAR00] and Keccak-f [1600] in [DV12] both reached a weight per round of 12, while
the improvements of [MDV17] allowed to reach a weight per round of 15. The dedicated
search on Subterranean reached a weight per round beyond 14 [MMGD22]. In the last
months, better results have been achieved with both solvers-based tools and dedicated
tools. In [EME22] Erlacher et al. reached a weight per round of 17 with their SAT-based
method to scan the space of trails in Ascon. While the most recent improvements to the
dedicated tool for Xoodoo allowed to reach a weight of 21 per round [DMA22].

Inspired by the previous works on dedicated tools and their results compared to
automated tools based on general-purpose solvers, in this work we introduce a dedicated
tool for Ascon. We present a number of techniques that deeply exploit the properties of
the linear and non-linear layer of Ascon to generate trails very efficiently. Such techniques
allow us to scan larger spaces of trails at a smaller computational cost compared to previous
work, that results in improved bounds. In particular, we reach a weight per round of 21.

Related work. Exact values for the DP and C2 of trails over 1 and 2 rounds of Ascon
can be derived by the fact that the S-box has maximum DP of 2−2 and maximum C2 of
2−2, and that the linear layer has branch number B = 4. For more rounds, lower bounds
were proven in [DEMS15] and [EME22]. Both works are based on SAT solvers and prove
bounds on the number of active S-boxes. Directly bounding the probability would require

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 3

a more expensive model for the SAT solver compared to bounding the number of active
S-boxes, which already requires a major computational effort.

In [DEMS15], Dobraunig et al. presented an SMT model and used it to prove that a
3-round differential trail has a minimum of 15 active S-boxes and a 3-round linear trail
has a minimum of 13 active S-boxes. These bounds automatically give bounds of 2−30

and 2−26 for the DP and the C2 of 3-round trails, respectively. Bounds for more rounds
were proven later in [EME22], where Erlacher et al. presented a SAT model and used it to
prove bounds on the number of active S-boxes for 4 and 6 rounds, from which they derived
bounds for 8 and 12 rounds. In addition, by using these results and the bound on 1 round,
we can derive bounds for 5, 7, 9, 10, and 11 rounds. We summarize such bounds in the
second column of Table 1.

To overcome the computational limitation of SAT solvers, the authors of [EME22] aim
at reducing the search space as much as possible and split it in sub-spaces that can be
scanned in parallel. To this end, they introduced a number of techniques similar to those
usually used in dedicated tools, like starting from shorter trails with minimum number of
active S-boxes, building long trails from short trails in an incremental way, and taking
advantage of the translation symmetry of the primitive [DV12].

A significant effort has been also performed to find trails with the highest DP or C2.
Such searches are based on heuristic tools and provide upper bounds. In [DEMS15], the
authors used a dedicated guess-and-determine tool (nldtool) to find differential trails up
to 5 rounds, while a heuristic tool (lineartrails) to find linear trails for 4 and 5 rounds
was introduced in [DEM15]. In [GPT21], the authors used constrained programming (CP)
to find best differential trails for 5 and 6 rounds. The authors in [MR22] presented an
MILP-based approach that allowed them to find a new 5-round linear trail with best
known C2 and proved tight bound for differential trails over 3 rounds. We report the best
known trails found by these tools in the first column of Table 1.

In dedicated tools, bounds on the weight of trails are derived, instead of evaluating
the number of active S-boxes. The first dedicated tool for trail search was introduced
as early as 2000 for Noekeon [DPAR00]. It was later improved and refined in [DV12]
and [MDV17] for Keccak-p and then adapted to Xoodoo in [DHVV18b] and Sub-
terranean in [MMGD22]. In each of these works, the authors presented a number of
techniques specific for the permutation under analysis that deeply exploit the structure
of its linear and non-linear layers. However, the approach underlying these works is the
same and is generic, so it can in principle be applied to other ciphers. In a few words,
the goal of such approach is to reduce as much as possible the search space and define
methods to scan it efficiently. To this end, trails are split into classes where the weight
of trails in the same class can be easily bounded by generating only one representative
trail per class, called trail core. By exploiting the symmetry properties of the permutation,
trail cores can be further split into classes where each trail core in a class is the translated
version of another trail in the class and trail cores in the same class have the same weight.
Therefore, only one representative is generated, that is called canonical (or necklace to use
the terminology of [EME22]). Trail cores over multiple rounds are built by first generating
the shortest possible trail cores, that are those over 2 rounds, and by extending them one
round at the time each time checking if the weight is below the expected limit. In [MDV17]
a generic method is introduced to generate such 2-round trail cores efficiently as a tree
search.

Our contribution. In this work we present a dedicated tool for trail search in Ascon,
based on the tree-based approach introduced in [MDV17]. To obtain an efficient instantia-
tion of the tree-based approach, we introduce a number of techniques that deeply exploit
the structure of the linear and non-linear layers in Ascon. We also introduce methods
to efficiently extend trails over multiple rounds. We implemented such techniques in a

4 Improved Differential and Linear Trail Bounds for ASCON

Table 1: Previous and new bounds for the differential probability (DP) of differential trails
and squared correlation (C2) of linear trails in Ascon. R denotes the number of rounds;
min #S denotes the minimum number of active S-boxes.

(a) Differential trails

R best known probability previous lower bound new bound
DP method reference DP method reference DP

1 2−2 DDT 2−2 DDT
2 2−8 DDT+B 2−8 DDT+B
3 2−40 nldtool [DEMS15] 2−40 MILP [MR22]
4 2−107 nldtool [DEMS15] ≤ 2−72 SAT+min #S [EME22] ≤ 2−86

5 2−190 CP [DEMS15,GPT21] ≤ 2−74 combine 1R+4R ≤ 2−100

6 2−305 CP [GPT21] ≤ 2−108 SAT+min #S [EME22] ≤ 2−129

7 ≤ 2−110 combine 1R+6R ≤ 2−131

8 ≤ 2−144 SAT+min #S [EME22] ≤ 2−172

9 ≤ 2−146 combine 1R+8R ≤ 2−186

10 ≤ 2−180 combine 4R+6R ≤ 2−215

11 ≤ 2−182 combine 1R+10R ≤ 2−229

12 ≤ 2−216 SAT+min #S [EME22] ≤ 2−258

(b) Linear trails

R best known squared correlation previous lower bound new bound
C2 method reference C2 method reference C2

1 2−2 LAT 2−2 DDT
2 2−8 LAT+B 2−8 DDT+B
3 2−28 lineartrails [DEM15] ≤ 2−26 SMT+min #S [DEMS15] 2−28

4 2−98 lineartrails [DEM15] ≤ 2−72 SAT+min #S [EME22] ≤ 2−88

5 2−184 MILP [MR22] ≤ 2−74 combine 1R+4R ≤ 2−96

6 ≤ 2−108 SAT+min #S [EME22] ≤ 2−132

7 ≤ 2−110 combine 1R+6R ≤ 2−134

8 ≤ 2−144 SAT+min #S [EME22] ≤ 2−176

9 ≤ 2−146 combine 1R+8R ≤ 2−184

10 ≤ 2−180 combine 4R+6R ≤ 2−220

11 ≤ 2−182 combine 1R+10R ≤ 2−228

12 ≤ 2−216 SAT+min #S [EME22] ≤ 2−264

dedicated tool, called AsconTrailTool, that we used to prove bounds for differential and
linear trails for different number of rounds. Though a comparison of the computational
costs of our method and the method of [EME22] is not straightforward, due to the different
machines employed in the two works, our techniques allowed us to scan a larger space at a
lower cost. The most direct consequence is that we can improve over known bounds. We
report our improved bounds in the third column of Table 1. Notably, for linear trails, we
prove tight bound for 3 rounds, closing the gap between the lower bound and the best
known trail. For 4 rounds, we can prove the bound of 2−86 for differential trails in 13
CPU days, and of 2−88 for linear trails in 110 CPU days. Our method is more efficient in
comparison to the previous methods where the cost estimation for proving the bound of
2−80 is 6688 CPU days in [EME22] and 3898 CPU days in [MR22].

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 5

Given the aforementioned 4-round trails, proving bounds for 6 rounds required us 6
additional CPU days to prove the bound of 2−129 for differential trails and 21 additional
CPU days to prove the bound of 2−132 for linear trails. Our method performs better than
the one in [EME22] where the authors indicated that it required 2 additional CPU months
to prove the bound of 2−108. For 12 rounds, we can prove for the first time bounds beyond
2−256. We also prove better bounds for other numbers of rounds, which can be useful
information for designers when they have to choose the number of rounds to use in the
different phases of a given construction.

Organization of the paper. In Section 2 we first recall some concepts about trails and
trail cores, then we recall the strategy used in previous dedicated tools to prove trail
bounds and the generic tree-based method. Then, in Section 3 we present the specification
of Ascon round function and propagation properties through it. In Section 4, we introduce
the tree-based method applied to Ascon to generate 2-round trail cores and provide new
techniques to traverse the tree in a more efficient way. After that, we explain how we
efficiently perform trail core extension using the techniques introduced in Section 5. Finally,
we present our practical results and improved bounds in Section 6 and in Section 7 we
provide some final remarks.

2 Trails and trail search strategy
In this section we first recall some concepts related to differential and linear cryptanalysis.
Then we explain the general strategy for performing trail search using the tree-based
approach.

2.1 Trails and trail cores
We start by defining differential trails and trail cores over iterative cryptographic primitives.
Then, we do the same for linear trails and we introduce a unified notation for both cases.

2.1.1 Differentials and differential trails

Let x1 and x2 be two inputs to a transformation α over Fn
2 , and y1 = α(x1) and y2 = α(x2)

be their corresponding outputs. We say b = x1 ⊕ x2 is an input difference of α and
a = y1 ⊕ y2 is an output difference and we call the pair (b, a) a differential over α. The
difference probability (DP) of a differential (b, a) is defined as

DP(b, a) = |{x ∈ Fn
2 | α(x− b)− α(x) = a}|

2n
.

When DP(b, a) > 0, we say that a is compatible with b through α. The restriction weight
of a differential, denoted by wr, is defined as

wr(b, a) = − log2 DP(b, a) .

Let α be an iterative mapping, that consists of the repetition of a number of rounds pi:
α = pr ◦ · · · ◦ p2 ◦ p1. A differential over pi is called a round differential. An r-round
differential trail over α is a sequence of r round differentials.

Let the round function be defined as the composition of a linear layer pL and a non-
linear layer pS . We use a redundant representation of trails where we specify the difference
after each layer:

Q = a0 pL−−→ b0 pS−→ a1 pL−−→ b1 pS−→ a2 pL−−→ · · · pS−→ ar .

6 Improved Differential and Linear Trail Bounds for ASCON

The restriction weight of a trail is the sum of the weight of its round differentials: wr(Q) =∑r
i=1 wr(ai−1 pi−→ ai). Since pL is linear, the weight of a trail only depends on the weight

over the non-linear layers: wr(Q) =
∑r

i=1 wr(bi−1 pS−→ ai). If the non-linear layer pS has
algebraic degree 2 (as in Ascon), the weight of a differential over pS only depends on its
input difference b [Dae95]. Hence, the weight of the trail is given by wr(Q) =

∑r
i=1 wr(bi−1).

Since the weight of an r-round trail Q is independent of the first and last differences
of the trail, the sequence of differences (b0, a1, . . . , ar−1, br−1) – which is Q with the first
and last differences removed – defines a set of r-round trails with the same weight wr(Q).
On the other hand, for a given a1 there exist several differences b0 that are compatible
with a1 through p−1

S . The minimum weight over all these compatible states b0 is called
the minimum reverse weight of a1 and it is denoted by wrev(a1) [DV12]. It follows that
the sequence Q̃ = (a1, . . . , ar−1, br−1) defines a set of r-round trails with weight at least
wrev(a1) +

∑r
i=2 wr(bi−1). Q̃ is called r-round differential trail core [DV12].

2.1.2 Correlation and linear trails

Let α be a transformation over Fn
2 . A linear approximation over α consists of a pair (a, b) of

selection vectors over Fn
2 , called input mask and output mask, respectively. The correlation

C of a linear approximation (a, b) is the correlation between the Boolean functions aT · x
and bT · α(x):

C(a, b) = |{x ∈ Fn
2 | aTx+ bTα(x) = 0|

2n−1 − 1 .

The correlation weight is denoted by wc(a, b) and is defined as

wc(a, b) = − log2 C2(a, b) .

Similar to a differential trail, an r-round linear trail is defined as a sequence of linear
masks. As in [BDPV11b,DHVV18b] we study linear propagation from the output to the
input. To this end, we rephase the round function so that the trail first encounters pL and
then pS of each round (as in the differential case). Notice that such rephasing does not
affect the trail analysis.

A linear trail is represented as

Q = a0 pL
T

−−→ b0 p−1
S−−→ a1 pL

T

−−→ b1 p−1
S−−→ a2 pL

T

−−→ · · ·
p−1

S−−→ ar .

where a0 is the output mask (after the last round) and ar is the input mask (before the
first round). A mask ai at the output of pL maps to a mask bi = pL

T(ai) before pL. If
the linear mapping pL is seen as the multiplication by a matrix M , then pL

T denotes the
linear mapping obtained by the multiplication by MT. To denote the propagation from
the output of pS to its input, we use p−1

S .
The correlation weight of a linear trail is the sum of the correlation weights of the

round linear approximations composing the trail. Given that pL
T is linear and that, when

pS has algebraic degree 2, the correlation weight depends only on the value of the output
mask [Dae95], the weight of a linear trail is given by wc(Q) =

∑r
i=1 wc(bi−1)

Similar to the differential case, an r-round linear trail core [DHVV18b] is a sequence
Q̃ = (a1, . . . , ar−1, br−1) that defines a set of r-round linear trails with weight at least
wrev(a1) +

∑r
i=2 wr(bi−1).

2.1.3 Unified representation of trail cores

As done in [BDPV11b] with Keccak-p and in [DHVV18b] with Xoodoo, we use a unified
representation of trails and trail cores. In fact, also in the case of Ascon, there are strong

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 7

similarities in the study of propagation of differential and linear trails. For differential
trails we consider the propagation of differences from input to output and for linear trails
we consider the propagation of masks from output to input. A trail core is specified by:

Q̃ = a1 p∗
L−−→ b1 p∗

S−→ a2 p∗
L−−→ b2 p∗

S−→ a3 p∗
L−−→ · · · p∗

S−→ br−1 .

where

• p∗L = pL, and p∗S = pS for differential trails, and

• p∗L = pL
T, and p∗S = p−1

S for linear trails.

We refer to differences and masks as state patterns, or only states or patterns, when we
generally talk about trails. A pattern ai represents a difference at the output of pS in a
differential trail and a mask at the input of pS in a linear trail. A pattern bi represents
a difference at the input of pS in a differential trail and a mask at the output of pS in a
linear trail. We use the term weight, denoted by w, when we generically refer to wr and
wc.

2.2 Strategy of the trail search
In our trail search, we aim to scan the space of all r-round trails with weight below a certain
threshold Tr, where r is usually a small number like 3,4, or 6. A naive way to generate them
would be to generate all 1-round trails (i.e. round differentials and linear approximations)
with weight below bTr/rc and then extend them to r rounds. The value of Tr that can be
achieved is limited by the quantity of such 1-round trails, which grows exponentially with
the weight, and the cost of extending them. The number of 1-round trails can be reduced
when symmetry properties are taken into account. For instance, in Xoodoo it can be
reduced roughly by a factor 128 thanks to the fact that both the linear and non-linear
layers are invariant with respect to translations parallel to the planes [DHVV18b]. While
in Keccak-f [1600] it can be reduced by a factor 64 thanks to the translation invariance
along the lanes [MDV17]. Even with such reductions, it is shown that this number still
grows exponentially with the weight [MDV17,DHVV18b].

However, as demonstrated in [MDV17,DHVV18b], the number of trails with a given
weight per round decreases with the number of rounds. That is, the number of 2-round
trails with weight below b2Tr/rc is smaller than the number of 1-round trails with weight
below bTr/rc. Therefore, a more convenient approach for Keccak-p like primitives consists
in starting from 2-round trails and extend them. This allows to achieve much higher values
of Tr for the same number of rounds r.

Actually, to prove bounds, it is not necessary to generate all r-round trails. We can
limit ourselves to r-round trail cores, since the weight of a trail core lower bounds the
weight of all trails in it. Therefore, we can start from 2-round trail cores and extend them.

This strategy was used for Keccak [DV12, MDV17], Xoodoo [DHVV18b], and
Subterranean [MMGD22] and we will use it also in this work. In fact, also in the case
of Ascon, starting from 2-round trail cores instead of 1-round trails significantly reduces
the number of patterns to extend. The symmetry properties of Ascon allows us to reduce
the number of 1-round trails and the number of 2-round trail cores with weight per round
(w/#r). In particular, the linear and non-linear layers of Ascon are invariant with respect
to translation along the horizontal axis and it allows to reduce them by a factor 64. In
Fig. 1, we depict these reduced numbers with weight per round (w/#r).

2.2.1 Generating 2-round trail cores as a tree search

A method to generate all 2-round trail cores with weight below a given threshold T2
was introduced in [DPAR00], applied to Keccak-p in [DV12], and improved and refined

8 Improved Differential and Linear Trail Bounds for ASCON

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1

102
104
106
108

1010
1012
1014
1016
1018
1020

w/#r

#
1-
ro
un

d
tr
ai
ls

an
d

#
2-
ro
un

d
tr
ai
lc

or
es

round differentials
2-round diff. trail cores
linear approximations
2-round lin. trail cores

Figure 1: Number of 1-round trails and 2-round trail cores with weight per round (w/#r),
divided by 64.

in [MDV17]. Later, similar method was applied to Xoodoo in [DHVV18b] and also
Subterranean in [MMGD22].

We now recall the main idea at the basis of the refined method of [MDV17], which
consists in seeing all 2-round trail cores as nodes of a tree that is properly traversed to get
only those nodes with weight below T2. In Section 4, we will explain how to instantiate it
for Ascon to perform an efficient search.

A 2-round trail core is a pair (a, b) with weight wrev(a) + w(b). To build them we
have two choices: either we build a and then compute b = p∗L(a) or we build b and we
compute a = p∗

−1

L . Each node of the tree is encoded as an ordered list of units, called
unit-list. A unit is a set of active bits at a (if we are building a) or at b (if we are building
b), where a bit is called active if it equals one, otherwise it is called passive. For instance,
in Keccak-p and Xoodoo a type of unit is the orbital, which is a pair of active bits in
the same column at a [MDV17,DHVV18b], while in Subterranean a unit is a single
active bit at a [MMGD22].

The choice of building first a or b, the definition of units and their order relation
influence the efficiency of the 2-round trail core generation. Therefore, it requires a
good understanding of the linear and non-linear layers of the round function and their
propagation properties.

Traversing the tree. The tree traversal is performed in a depth-first fashion, where a
program iteratively calls the function next() (Algorithm 1) to generate the next valid
node, as in [MMGD22]. The traversal starts by calling next() on an empty unit-list, and
ends when it results again in the empty unit list.

The function next() traverses the tree with three possible moves: toFirstChild(),
toSibling() and toParent(). If the node is an empty unit-list, then it adds the smallest
possible unit. The function toFirstChild() returns false if adding a new unit is not
possible. Otherwise it returns true. Then additional conditions are checked to see if we can
prune the tree. If the toFirstChild() function returns false or the additional conditions
are not satisfied, the routine will look for the next valid node in the tree by generating a
sibling for the current node using the function toSibling(). The function toSibling()
iterates the value of the last unit of the unit-list. If a sibling is found then the additional
conditions are checked. If there are no valid siblings, the algorithm calls the function
toParent() to remove the last unit from the unit-list and look for a valid sibling of the
parent node in a recursive way.

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 9

Algorithm 1 next() function [MMGD22]
if (toFirstChild() == true) then

if (additional conditions are satisfied) then
return true;

do
while (toSibling() == true) do

if (additional conditions are satisfied) then
return true;

while (toParent() == true)
return false;

Pruning the tree. To efficiently traverse the tree, at each move we check whether the
node satisfies some additional conditions or not. To this end, we make use of two tools:
canonicity and score, whose definition fully depends on the specification of the linear and
non-linear layers.

• Canonicity: Without considering round constant and key addition, the round
function of many cryptographic primitives exhibits translation symmetry. This
symmetry allows to divide the state space into equivalence classes where all patterns
in a class have the same properties and weight. Therefore, we aim to generate only
one pattern per equivalence class, that is called canonical.

• Score: The score of a node is defined as a lower bound on the weight of a node and
all its descendants. This tool allows us to prune entire sub-trees as soon as we reach
a node whose score is higher than T2. It should be tight enough to allow efficient
pruning, but also efficiently computable.

2.2.2 Trail core extension

After generating all 2-round trail cores with weight below T2, we need to extend them to
generate trail cores over more rounds. Extension is done incrementally one round at the
time. Namely, we first extend the 2-round trail cores by one round to generate 3-round
trail cores with weight below a given T3. Then we extend the obtained 3-round trail cores
by one round to generate 4-round trail cores with weight below a given T4 and so on.

Given an r-round trail core Q̃ = (a1, b1, . . . , br−1), one can extend it to (r + 1) rounds
in both forward and backward directions. In the term forward extension, forward means
through p∗S , so through pS for differential trails and through p−1

S for linear trails. Backward
means through p∗−1

S , so through p−1
S for differential trails and through pS for linear trails.

In forward extension, we generate all patterns ar that are compatible with br−1 through
p∗S , compute br = p∗L(ar) and finally append (ar, br) to the end of Q̃. The weight of the
obtained cores is w(Q̃) + w(br).

In backward extension, we generate all patterns b0 compatible with a1 through p∗−1

S ,
then compute the corresponding a0 = p∗

−1

L (b0), and prepend them to Q̃. The weight of these
3-round trail cores is obtained by subtracting wrev(a1) and then adding wrev(a0) + w(b0).

By repeating the aforementioned process, one can extend a trail core over multiple
rounds in any direction.

3 The Ascon permutation
Ascon family includes the authenticated encryption schemes Ascon-128 and Ascon-
128a [DEMS21b], the hash functions Ascon-Hash and Ascon-Hasha and the extendable

10 Improved Differential and Linear Trail Bounds for ASCON

x0
x1
x2
x3
x4

⊕⊕⊕⊕⊕⊕⊕⊕ ⊕⊕⊕⊕⊕⊕⊕⊕

(a) Adding round constant pC .
x0
x1
x2
x3
x4

(b) Non-linear layer pS .
x0
x1
x2
x3
x4

(c) Linear layer pL.

Figure 2: Ascon’s round function p.

output functions (XOF) Ascon-Xof and Ascon-Xofa. The AE schemes are based on
the duplex construction [BDPV11a], while the hashing and XOF functions are based on
the sponge construction [BDPV07,BDPV08]. All family members are based on the Ascon
permutation, which is also used in Isap [DEM+20], another finalist of the NIST LWC
competition.

3.1 Ascon round specification

The Ascon permutation operates on a state of 320 bits arranged in five 64-bit rows
x0, . . . , x4. The number of rounds is a tunable parameter. It is 12 in the initialization and
finalization phase of all Ascon schemes, while it changes for the data processing phase.
It is 6 for Ascon-128, 8 for Ascon-128a, Ascon-Hasha, and Ascon-Xofa, and 12 for
Ascon-Hash and Ascon-Xof.

The round function of Ascon is denoted by p and consists of three steps: p = pL◦pS◦pC .
The function pC , that can be seen in Fig. 2a, adds a round constant to row x2 of the state.
The non-linear layer pS applies 64 parallel 5-bit S-boxes, denoted S, to the columns of the
state, as in Fig. 2b. The non-linear part of the S-box S is based on the χ shift-invariant
mapping [Dae95]. We denote χ applied to an n-bit circle of bits as χn, so the S-box in
Keccak-p is χ5 [BDPV11b]. We hence can describe S as χ5 preceded and followed by
two linear mappings, each consisting of 3 bitwise additions. We depict it in Fig. 3.

Finally, pL applies a linear function to each row independently as in Fig. 2c and is
defined as follows:

x0 ← x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)
x1 ← x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)
x2 ← x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)
x3 ← x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)
x4 ← x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

(1)

Clearly, in pL there is no inter-row mixing and this is compensated by the linear
mappings in pS .

3.2 Propagation properties through the round

Since the S-box S is based on the χ5 mapping also used in Keccak-p, it inherits some
interesting properties from it that were discussed in [Dae95] and that we summarize here.

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 11

x0

x1

x2

x3

x4

1

1

1

1

1

1

x0

x1

x2

x3

x4

Figure 3: Ascon’s S-box S.

Difference propagation properties. Since pS has algebraic degree 2, given a difference
b at the input of pS , the space of compatible differences a at the output of pS form a
linear affine space A(b) with 2wr(b) elements [Dae95]. We can compute offset and basis
for such space starting from offset and basis over χ5, that are reported in [BDPV11b]. In
particular, for a given difference b at the input of S, we map it at the input of χ5 through
the first linear layer of bitwise additions, we take the offset and basis that determine the
affine space at the output of χ5, and finally we map them through the second linear layer.
We provide offset and basis vectors for all possible 31 non-zero differences at the input of
S in Table 7. Among the 31 non-zero differences, 5 have weight 2, 15 have weight 3, and
11 have weight 4. Therefore, the weight of b is at least twice the number of active columns
in b.

Difference propagating through the inverse of pS is different. For a given difference a
at the output of pS , the set of compatible differences b at the input of pS is not an affine
space, but we can exhaustively list them. The list of the differences b compatible with a is
needed to compute wrev(a) which is required for our trail search. Among the 31 non-zero
differences, 10 have 9 compatible differences, 10 have 10 compatible differences, 6 have 11
compatible differences, and 5 have 12 compatible differences. Moreover, 20 have minimum
reverse weight 2, and 11 have minimum reverse weight 3.

Mask propagation properties. For a given output mask b, the space of input mask a
with a non-zero correlation with b is a linear affine space with 2wc(b) elements [Dae95].
Again, to build a representation of such space, we rely on the specification of offset and
basis over χ5 [BDPV11b]. We provide offset and basis vectors for all possible 31 non-zero
masks at the output of S in Table 8. Among the 31 non-zero masks, 10 have weight 2,
and 21 have weight 4.

Given a mask a at the input of pS , we can list the compatible masks b at the output
of pS , which do not form an affine space. Among the 31 non-zero masks, 10 have 10
compatible masks, and 20 have 13 compatible masks, and 1 has 16 compatible masks.
Moreover, 30 have minimum reverse weight 2, and 1 has minimum reverse weight 4.

Notice that a linear trail has always even weight.
As explained in Section 2.1.2, the propagation of masks through the linear layer pL

is deterministic: an output mask b fully determines the corresponding input mask a by
b = pL

T(b). The transpose pL
T has the same shape as pL itself, the only difference is that

the right shifts become left shifts.

4 Generating 2-round trail cores in Ascon as tree-search
In this section, we explain how we generate all 2-round trail cores in Ascon, with weight
below a given target T2, using the tree-based approach of Section 2.2.1. To this end, we
first define units and their order relation. Then we give a description of the techniques

12 Improved Differential and Linear Trail Bounds for ASCON

a

pL

b

(a) Propagation from a to b

a

p−1
L

b

(b) Propagation from b to a

Figure 4: Propagation through pL

used to traverse the tree and, to do it in an efficient way, we define the score function and
discuss canonicity. After identifying the techniques used in the tree-search in Section 4.1,
we give a more detailed description on the two-level tree search in Section 4.2, and in
Section 4.3 we give a description of an alternative representation of p∗L.

4.1 Concepts and techniques
Active bits as units. For the tree-based approach we have to define units and their
ordering and the most important criteria for this choice are the ability to define an efficient
score function and deal with canonicity efficiently. The linear mapping p∗L does not have
a particular structure like the column parity mixers in Xoodoo or Keccak-p, and the
obvious choice for units would be (coordinates of) active bits. We can choose to have the
units be active bits in a or in b. In other words, we either build the state at a and we
compute b = p∗L(a), or we build the state at b and we compute a = p∗

−1

L (b).

Active bits in a as units. If the units are defined as active bits in a, adding a unit affects
3 bits in b. If some of these bits are active in the parent, this addition cancels them. We
call the effect of active bits in a parent that are not present in the child cancellation. The
inverse of the row mapping p∗L is dense: it maps a row with a single active bit to a row
with many active bits. If the units are defined as active bits in b, adding a unit affects
many active bits in a, risking the cancellation of many more active bits. We illustrate this
asymmetry for the mapping pL on row 0 in Fig. 4. It works similarly for pL

T. So with
units defined at a an efficient score is more likely to be easy as there is less opportunity
for cancellation. So we define our units as active bits in a. Note that cancellation only
takes place in b and an active bit in a will be present in all its children.

Score function based on number of active columns. The non-linear layer pS operates
in parallel on 5-bit columns. This is similar to Xoodoo where the non-linear layer is the
parallel operation of χ3 on 3-bit columns and Keccak-p, where it is the parallel operation
of χ5 on 5-bit rows. χ3 and χ5 are instantiations of χ that has the property that adding
an active bit to an input difference does not decrease the weight, and that adding an active
bit at the output does not decrease the minimum reverse weight. This also holds for linear
masks. In pS this is not the case due to the presence of additional linear mappings in
the S-box. So, adding an active bit to a column in a may decrease its minimum reverse
weight and adding an active bit to a column in b may decrease its weight. Still, each active
column in a contributes at least 2 to its minimum reverse weight and each active column
in b contributes at least 2 to its weight. Moreover, adding active bits to a column in a
or b cannot make it passive. So we can base the score function on the number of active
columns.

Row-index-first lexicographic ordering. In a all the active columns can be accounted
for in the score, in b only those that cannot become passive due to cancellation when
adding units. This is where the ordering comes in. Units are defined by their coordinates

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 13

(i, j) and there are two natural orderings, both lexicographic: i-first or j-first. In i-first
the active bits in row i = 0 come before those in row 1 etc., in j-first those in column
j = 0 come before those in column 1, etc. The i-first ordering works well with p∗L. This is
because this mapping is the parallel application of 5 linear mappings that operate on the
rows separately. In the i-first ordering units are added row by row, where units are always
added in the row of the last unit or after it. Let us call the i-coordinate of the last unit i′.
Then rows in a with i < i′ will be the same for all descendants of a state. As p∗L operates
on rows separately, this will also be the case for the rows in b with i < i′. That means
that we can take as score function two times the number of active columns in a plus the
number of columns in b that are active in the rows with i < i′.

Two-level tree: active rows and active bits. When we look at the children of a node
we see two kinds. Children where a unit is added to a row that already contains active
bits on the one hand and children where a unit is added to a row that does not on the
other. In the former case the last active row of b cannot be taken into account for the
score and in the latter case it can. We address this distinction by defining the units in a
two-level structure. At the top level the units are active rows, where an active row groups
all active bits in the same row. We will call the top level the row tree and its unit-lists
row-lists. This means that the children of a node in the row tree have the first active rows
in common with their parent, but have one more active row. The consequence is that when
navigating in the row tree, for the score function we can count all active rows at a and at
b. We call this score function the Score-state() function. An active row is a unit list
too, where the units are active bits (within a specific row) listed in a so called bit-list. The
consequence is that the children of a node in the row tree are also arranged according to a
tree, that we will call a bit tree. More exactly, the children of a node in the row tree with
last active row at i′ are 4− i′ bit trees. For example if i′ = 2, the children are grouped in
two bit trees: one that groups the states with last row at row index i = 3 and one that
groups the ones with last row index i = 4. The two-level tree search is detailed more in
Section 4.2.

Score in the bit tree: the case of index 2. Each bit tree contains 264 − 1 nodes so it
would be good to also prune these trees using a score function. Clearly, all active columns
of a and the active columns at b due to all active rows but the last can be counted in
this score. However, this does not help in states with a single active row and also not
when these rows have sparse bit-lists. We will now explain that we can also include active
bits from the last active row in b. Let us take a look at row i = 2. Adding a unit at
position j affects three bits in b, in positions j, j − 1 and j − 6, so it affects bits in b
only in the interval [j − 6 mod 64, j]. Here we adopt the following convention for intervals
where we take into account the circular structure of the rows of the state: [x, y] with
y ≥ x is the set of indexes {x, x+ 1, x+ 2, . . . y} and [x, y] with y < x is the set of indexes
{x, x+ 1, . . . , 63, 0, 1 . . . y}. Assume we have an active row (bit-list) where the j-coordinate
of the last active bit is j′. The range of j for the last active bit in its children is [j′+ 1, 63],
so if j′ > 5 the range of corresponding affected bits in b is [j′ − 5 mod 64, 63]. In other
words, any bit in b in the interval [0, j′ − 5] will be there for all children in the bit tree and
therefore the corresponding active columns can be counted in the score. This becomes
interesting as soon as j′ > 5.

Score in the bit tree: general case. The efficiency of this technique depends on the
(circular) distance between the affected bits in b: the smaller the better. In j = 2 this
distance is only 6 but for the other rows, these distances are much larger. For example
for j = 0, the bit positions are 0, 19, 28 and the shortest interval that encloses all three
is [0, 28]. We will call the length of this interval the span. For j = 1, the bit positions

14 Improved Differential and Linear Trail Bounds for ASCON

c
1
1
0
0
0

wr = 4

1
1
1
0
0

wr = 3

1
1
0
1
0

wr = 4

1
1
0
0
1

wr = 3

1
1
1
1
0

wr = 4

1
1
0
1
1

wr = 4

1
1
1
1
1

wr = 3

Figure 5: The score of a column difference with the first two stable bits set to (1, 1) is 3.

0, 39, 61 can be enclosed in an interval of length 25: [39, 0]. We can address this problem by
adopting an alternative representation of the row that is used to compute the score in the
so called Score-row() function. A more detailed explanation on the new representation is
given in Section 4.3.

Refining the score of b. Computing the score based on twice the number of active
columns in b is sub-optimal. In fact, while we are working on row i, all active bits at rows
i′ with i′ < i are stable and thus we can consider their contribution to the weight. In
particular, for a given active column, only bits in rows i′ with i′ ≥ i can be added and this
may potentially decrease the weight (though not below 2), but it may not. We define a
lower bound on the weight of each active column, that we call score of the column, as the
minimum among the weight of the column and the weight of all possible columns that can
be obtained by adding bits in i′ ≥ i. Then, the score of a state is the sum over the score
of all columns.

We illustrate an example in Fig. 5, with column differences and restriction weight. Let
the first two bits of column c in Fig. 5 be set to (1, 1). These bits are stable and we denote
them in black, while we denote in red the three bits that can become 1 later in the search.
On the right of c we list the six possible column values that we can obtain by adding bits
to c in row 2, 3 or 4. The restriction weight of each column is reported below the column
and we can see that the minimum weight among them is 3. So, we can define the score of
c to be 3. If there are several active columns whose score is higher than 2, then the score
of b will grow more quickly and pruning comes earlier.

Pruning the tree using canonicity. Clearly, both pL and pS are shift-invariant with
respect to horizontal shifts (along the j-axis). A state that is the smallest in its class of
states that are equivalent modulo horizontal shift is called canonical. The natural order
to determine which state is smallest is a lexicographical ordering on the row-list: state
X is smaller than state Y if the first row in its row-list is smaller than the first row in
the row-list of Y . If they have equal first rows, we compare the 2nd row and so on. The
order of rows is similarly defined using lexicographic ordering of their bit-lists, where we
compare j-coordinates of active bits starting from the first one.

It was proven in [MDV17] that with such an order relation, the children of a non-
canonical node are not canonical. This implies that whenever a non-canonical node is
encountered, the full subtree can be pruned. For an active row we can define its period:

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 15

x0 is canonical with period 64

≫ 1

non-canonical state

x0 is canonical with period 32

≫ 32

canonical state

Figure 6: The row x0 in the left states is canonical with different period. In the top figure,
since the period of x0 equals the row length, translation results in a non-canonical state.
In the bottom figure since the period of x0 is smaller than the row length, translation can
result in a canonical state.

it is the smallest offset such that a shift of the row over that offset leaves it invariant.
The period must be a divisor of 64 (the row length) and the vast majority of row values
has period 64. If the first active row of a canonical state has period 64, all its children
are canonical. This means that in that case we do not have to check for canonicity in
subsequent active rows. Otherwise, we have to check canonicity by shifting any newly
added active row over all multiples of the period and comparing. Examples are given in
Fig. 6.

In general, only if the partial state consisting of the stable rows has period smaller
than the row length, these checks must be done when adding an active bit.

4.2 Two-level tree
We represent a 2-round trail core (a, b) by the positions of its active bits in a. An active
bit is determined by its coordinates (i, j) in the state with i the row coordinate and j the
column coordinate and 0 ≤ i < 5 and 0 ≤ j < 64.

The bit-list of an active row is of the following form

ai = [(i, j1), (i, j2), . . . , (i, j`)], (2)

with jk < jk+1∀k ∈ {1, . . . , `− 1}. We have that ai,jk
= 1 if and only if k ∈ {1, . . . , `}.

At state-level, the row-list of a state a is a list of the form

a = [ai1 , ai2 , . . . , air−1 , air
] (3)

with is < is+1 ∀s ∈ {1, . . . , r− 1}. We have that ai,j = 1 if and only if (i, j) ∈
⋃

s ais
. The

smallest value that an active row ai can assume is [(i, 0)].
We use two sets of functions to walk through the tree. One is the set of functions that

operate on the bit-list of the last active row. The other is the set of functions that operate
on the row-list.

We start by describing the former, where we assume the bit-list of the last active row
is as in Eq. (2).

toFirstChildRow() If 1 + j` < 64, it adds (i, 1 + j`) to the bit-list and returns true. It
returns false otherwise.

toSiblingRow() If 1 + j` < 64, it iterates the last bit in the list, i.e. (i, j`) becomes
(i, 1 + j`) and returns true. It returns false otherwise.

toParentRow() It removes the last bit of the list, resulting in ai = [(i, j1), (i, j2), . . . , (i, j`−1)].
If it leaves the bit-list empty, it returns false and true otherwise.

The following functions operate on the row-list, where the row-list of the current node
is as in Eq. (3).

16 Improved Differential and Linear Trail Bounds for ASCON

toFirstChildState() If 1+ ir < 5, it adds a1+ir
= [(1+ ir, 0)] to the row-list and returns

true. It returns false otherwise.

ToSiblingState() It calls nextRow() on the last active row and if that returns true, it
returns true. Otherwise, it checks whether the last active row is the bottom row,
i.e., ir = 4. If so, it returns false. If not, it moves the last active row one row index
down, i.e. ir = 1 + ir, and there takes the smallest active row value air

= [(ir, 0)]
and returns true.

toParentState() It first removes the last active row from the list, resulting in a =
[ai1 , ai2 , . . . , air−1]. If this leaves the row-list empty it returns false and the search is
over. Otherwise, it returns true.

The complete search works as follows. The tree traversal starts by calling nextState()
on a state with a single active row set with a single active bit at position 0 and ends when
nextState() returns false, that is when the row-list is empty. Its behavior is similar to
that of the function next(). To prune the row tree the procedure calls Score-state() on
the current canonical state.

The function nextRow() in Algorithm 3 is called by ToSiblingState() to iterate
the last active row through a bit tree. It starts by checking Score-row() and if it is
below the budget then it calls toFirstChildRow(). Here, a canonicity check is done on
the whole state to only return canonical states. If there is no valid child either because
Score-row() is above the budget or a canonical child has not been found, the procedure
will look for a sibling by calling the function toSiblingRow(). Here again, a canonicity
check is performed and if a canonical sibling has been found then the procedure returns
true, otherwise the function toParentRow() is called.

4.3 The alternative row representation
The active bits in a row are indexed by j, and we index them by an alternative coordinate
k that has a relation with j as k = j × q mod 64, with q odd. Then, the row component
function of pL can be reformulated in terms of the new representation and this gives a
mapping that only differs in the shift offsets. For a good choice of q we obtain a mapping
with minimum span that we call alternative representation. Minimizing the span requires
a specific factor q per row so, we have alternative representation for each row of Ascon.
For aj = a′jq and bj = b′jq, the alternative representation is defined as follows:

pL : bj ← aj ⊕ aj+s ⊕ aj+t

b′jq ← a′jq ⊕ a′(j+s)q ⊕ a
′
(j+t)q

b′jq ← a′jq ⊕ a′jq+sq ⊕ a′jq+tq

p′L : b′k ← a′k ⊕ a′k+sq ⊕ a′k+tq

Since the alternative representation has the minimum span, more active bits in b are
guaranteed to stay active after adding a unit. The active bits in b that remain active after
adding new units to a are called stable bits. In the alternative representation, the bits in b
become stable sooner than in the original representation and more active columns can be
accounted in Score-row(). For instance, pL acts on the first row as bj ← aj⊕aj+19⊕aj+28.
After multiplying the shift offsets by all odd numbers, we found that q = 7 results in the
minimum span. So, the alternative representation of the linear diffusion layer for the first
row is defined as b′k ← a′k ⊕ (a′k ≫ 5)⊕ (a′k ≫ 4). Fig. 7 provides a comparison between
the original and alternative representation of pL over row 0 where the number of stable
bits, that are depicted by blue cells, is higher in the case of alternative representation.

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 17

Algorithm 2 Functions to navigate through a row tree
function nextState()

if (toFirstChildState() == true) then
if (Score-state() < T2) then

return true;
do

while (ToSiblingState() == true) do
if (Score-state() < T2) then

return true;
while (toParentState() == true)
return false;

end function

function toFirstChildState()
if (il = 4) then . Last active row index has reached the bottom row

return false;
a← a ∪ [(1 + il, 0)]; . Set the last active row to the smallest active row value
return true

end function

function ToSiblingState()
if (nextRow() == true) then

return true;
if (il = 4) then

return false;
il ← 1 + il; . The last active row is moved one row index down
ail

= [(il, 0)] . Set the last active row to the smallest active row value
return true

end function

Algorithm 3 Function to navigate through a bit tree
function nextRow()

if (Score-row() < T2) then
if ((toFirstChildRow()) && (is canonical)) then

return true;
do

while ((toSiblingRow()) && (is canonical)) do
return true;

while (toParentRow() == true)
return false;

end function

We denote by p′L the alternative linear mapping of pL for each row such that

pL = πq−1 ◦ p′L ◦ πq

where πq(j) = q × j mod 64. Fig. 8 illustrates how p′L in the new representation works for
row 0. The list of parameters for the different rows of the alternative representation of
pL with the minimum span are listed in Table 2. The alternative representation of pL

T

corresponds to the mapping obtained with −q.

18 Improved Differential and Linear Trail Bounds for ASCON

a0
j

b0

j j − 28

a′0

k

b′0

k k − 5

Figure 7: The grey cells at b and b′ represent the span in the original and alternative
representation of row x0, respectively. The original representation (left figure) results in a
lower number of stable bits at b (blue cells) compared to its alternative representation on
the right.

63 . . . 28 . . . 19 . . . 5 4 3 2 1 0a0

π7

63 . . . 28 . . . 19 . . . 5 4 3 2 1 0a′0

⊕ p′L

63 . . . 28 . . . 19 . . . 5 4 3 2 1 0b′0

π55

63 . . . 28 . . . 19 . . . 5 4 3 2 1 0b0

Figure 8: The linear mapping pL for row 0 can be seen as its alternative representation p′L
surrounded by two multiplication layers, illustrated for bit b0.

5 Extension in Ascon
In this section, we explain how we perform trail core extension in Ascon. We partially
rely on previous works on Keccak-p [DV12,MDV17] and Xoodoo [DHVV18b,DHP+20],
given that extension deals with the non-linear layer of Ascon pS which is based on χ5.

Given a trail core Q̃ = (a1, . . . , br−1), we recall that forward extension by one round
consists in building all patterns ar that are compatible with br−1 over p∗S and compute
br = p∗L(ar). While backward extension consists in building all patterns b0 that are
compatible with a1 over p∗S and compute a0 = p∗

−1

L (b0).
The non-linear layer of Ascon can be seen as the parallel application of 64 5-bit S-boxes,

acting on each column independently. Therefore, we can treat extension at column level.
If b0 and a1 are compatible over p∗S , then the j-th column of b0 is compatible with the
j-th column of a1 over S, for any column index 0 ≤ j < 64. To build all states b0 that

Table 2: List of parameters for the original and alternative representation of the linear
diffusion layer of Ascon.

original representation alternative representation
row offset1 offset2 span q offset1 offset2 span

0 19 28 28 7 4 5 5
1 61 39 25 41 5 63 6
2 1 6 6 1 1 6 6
3 10 17 17 19 3 62 5
4 7 41 30 47 7 9 9

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 19

are compatible with a1, we first need to identify the active columns in a1, namely, the
non-zero columns. Then, for each active column, we build all compatible column values at
b0 through S. By combining them, we can finally build all compatible states b0.

Similarly, we can build all compatible state patterns ar given br−1.

5.1 Extension as a tree search
Extension can be performed as a tree search [MDV17,DHVV18b], where we incrementally
build b0 or ar. To this end we need to define units, their order relation, and a score function.
In this case we don’t have to deal with canonicity since canonical 2-round trail cores yields
canonical r-round trail cores. A trail core is a sequence of state patterns. Translating each
pattern of the sequence by a fixed offset results in an equivalent trail core with the same
weight. We can define a canonical trail core as the smallest among its translated versions.
We can say that a core (a1, b1, . . . , br−1) is smaller than a core (ā1, b̄1, . . . , b̄r−1) if a1 is
smaller than ā1, or if a1 = ā1 and b1 is smaller than b̄1, etc. However, we can choose any
intermediate pattern in the sequence instead of a1 to start the comparison. It is then
natural to start from the (r− 1)-round trail core from which the r-round core is generated.
We say that an r-round trail core is canonical if the (r − 1)-round trail core from which it
is generated is canonical. It follows that the generation of only canonical 2-round trail
cores, yields to canonical r-round trail cores naturally.

Differently from the tree search for the generation of 2-round trail cores where a unit
was an active bit, here units are determined by the compatible column values. At each
move in the tree, we fix the value of an active column of the state. To efficiently traverse
the tree we need a score function that lower bounds the weight of the (r + 1)-round trail
cores obtained.

In forward extension this translates into lower bounding w(br) while we are building
ar. The addition of a unit at ar can cancel some bits at br because of the action of p∗L. To
define a good score function, we consider the stable bits at br, that are active bits that
cannot be cancelled with the addition of any new unit. We represent stable bits by a
stability maskM, that is a state where a bit is 1 to indicate that the bit in that position
is stable and 0 otherwise. Then br ∧M gives the stable bits of br, and also the column of
br that will be active in all its descendants. We can define the score as twice the number
of active columns in br ∧M.

In backward extension we have to lower bound wrev(a0) + w(b0) while we are building
b0. While the addition of a unit at b0 cannot turn active bits into passive, adding a
unit at b0 can potentially cancel many bits at a0, since the inverse of p∗L is dense. In
Keccak-p [DV12,MDV17], this problem was overcome by not considering the contribution
of a0 and by bounding wrev(a0) + w(b0) with a bound on w(b0) only. However, this is
sub-optimal. In this work, we use stability masks to determine the stable bits of a0 and
thus consider also its contribution.

In general, the goal is to make the number of stable bits in the stability masks grow
as quickly as possible while traversing the tree, so that more columns are counted in the
score and pruning happens as early as possible. To this end, the order relation among the
units must be carefully defined.

5.2 Forward Extension
For forward extension, we follow the approach used in [DHVV18b] for Xoodoo, that is
the following. All patterns ar that are compatible with br−1 over p∗S form an affine space
A(br−1) with 2w(br−1) elements. We represent such space through an offset and a basis.
Each column at br−1 defines an offset and basis for the space of compatible columns over
S, according to Table 7 and Table 8. The state offset, that we denote by o, is built by
gathering together all the column offsets. It will be zero in all column positions that are

20 Improved Differential and Linear Trail Bounds for ASCON

passive in br−1. For each column vector u specified by each active column j, we build a
state vector v that is all zero except column j that has value u. The basis has w = w(br−1)
elements that we denote by {v1, v2, . . . , vw}. Therefore, A(br−1) = o + 〈v1, v2, . . . , vw〉.

Of course, brute-force scanning the whole affine space becomes unaffordable when
w(br−1) is large. However, we only need to construct those states ar such that the weight
of br is below a given threshold. For this reason, it is practical to directly consider the
affine space mapped through p∗L, namely before the next p∗S . We denote such space by
B(br−1) = p∗L(A(br−1)) = o∗ + 〈v∗1, v∗2, . . . , v∗w〉, with o∗ = p∗L(o) and v∗k = p∗L(vk).

We scan the space B(br−1) through a tree-based search as follows. The root of the
tree is the offset o∗. The units are the indexes of the basis vectors, ordered by the natural
number ordering. A unit-list K = {k1, . . . , km} encodes the element of the affine space
given by o∗ + v∗k1

+ · · ·+ v∗km
.The children of K are all nodes of the form K ∪ km+1 with

km+1 ∈ {km + 1, . . . , kw}.
We need to define stability masks so that the number of stable bits increases quickly

with k. A technique to do it consists in triangularizing the basis V∗ = {v∗1, v∗2, . . . , v∗w}. We
perform triangularization in Ascon as follows. We start with an empty basis T . We loop
on all possible bit positions considering the lexicographic order relation on coordinates
(i, j). If a basis vector is found with an active bit in position (i, j), then such basis vector is
added to T and removed from V∗. The same vector is also added to all remaining vectors
in V∗ that have bit (i, j) active, to make it passive. After triangularization, we obtain
a new representation of B(br−1) as o∗ + 〈t1, t2, . . . , tw〉. If the first active bit in tk is in
position (ik, jk), then, by construction, all bits in position (i, j) ≤ (ik, jk) are passive in
all vectors tk+1, . . . , tw. We call (ik, jk) the pivot position of vector tk. For each k, we
define the stability maskMk as a state that is 1 in the pivot position and in all positions
smaller than the pivot (i.e. in all (i, j) ≤ (ik, jk)) and 0 otherwise. In addition we consider
the position of the stable bits in the offset as O =

∧w
i=1 ti. We add them to each stability

mask: Mk =Mk ∨ O.
If the last unit in the list of a node br is k, then all bits in br ∧Mk will be active

in all descendants of br. Therefore, all active columns of br ∧Mk will be active in all
descendants of br and each will contribute at least 2 to the weight. We define the score as
twice the number of active columns of br ∧Mk.

5.3 Backward Extension
Given a1, the patterns b0 that are compatible with a1 over p∗S do not form an affine space,
so we shall use a different approach than the one for forward extension.

We present two methods to perform backward extension. In the first one, presented
in Section 5.3.1, we follow the method used in [DV12] for Keccak-p, that builds on the
compatible column values, and we introduce some optimizations. Notice that [MDV17]
presents some optimizations for backward extension in Keccak-p, that exploit the structure
of the linear step θ, which is a column parity mixer. Such techniques do not apply to
Ascon since its linear layer has a different structure. In the second method, presented
in Section 5.3.2, we build an envelope space that contains the set of compatible patterns,
with the aim of growing the number of active columns in a0 more quickly. The former
method is more effective when the number of active columns in a1 is small enough, say
less than 12. The second method is more effective when there are many active columns in
a1. In our code we use both of them, considering the number of active columns at hand.

5.3.1 Extension using compatible patterns

For each active column position j in a1, let Bj = {vj,1, . . . , vj,n(j)} denote the set of
compatible column patterns at the input of p∗S . The number of compatible patterns b0

is given by
∏

j |Bj |. Since n(j) ranges between 9 and 12 for compatible differences and

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 21

is 10, 13 or 16 for compatible masks, the number of patterns b0 grows very quickly with
the number of active columns in a1 and it can be unaffordable to generate all of them.
However, we need to generate only those such that wrev(a0) + w(b0) is smaller than a given
threshold T . We can do it using a tree-based approach where the nodes of the tree are the
patterns b0 and units and score function are defined as follows.

The root of the tree is the fully passive state. The units are the indexes of the elements
of the sets Bj ordered by the lexicographic order over (j, k). A unit-list can contain at
most one element per set of column patterns for a given index j. At height h in the tree,
all the first h active columns are set. Only the leaves of the tree give compatible patterns.

The score function shall bound the quantity wrev(a0) + w(b0) for a node and all its
descendants. It is defined as scorea + scoreb with scorea that bounds wrev(a0) and scoreb

that bounds w(b0).
We start with the explanation of scoreb that we compute as in [DV12,MDV17]. We

order the elements of each Bj by increasing weight so that w(vj,k) ≤ w(vj,k+1) for all k.
We denote by wj the minimum of such weights, that is wj = w(vj,1). For a node at height
h, the first h active columns are set and their value cannot change by the addition of a
new unit. Each of the remaining active column will contribute to the weight by at least
wj . Therefore, for a node b0 we define scoreb(b0) = w(b0) +

∑
h<j wj .

For Keccak-p [DV12,MDV17], scorea = 2 since a non-passive state has weight at least
2. This is sub-optimal because it does not take into account the contribution of the active
bits at a0. In this work, we define scorea based on the stable bits of a0 in the following way.
We map each set Bj before p∗L obtaining Aj = {v∗j,1, . . . , v

∗
j,n(j)}, where v∗j,k = p∗

−1

L (vj,k).
At height h, one element of each Aj with j ≤ h has been added to a0 and any element of
Aj can potentially be added for all j > h. The OR of the elements that can still be added
gives the set of bits that can be potentially cancelled at a0. Its negation gives the stable
bits. Therefore, for each h, we define the stability mask

Mh =
∨
h<j

(∨
k

v∗j,k

)
=
∧
h<j

(∧
k

v∗j,k

)
.

For a node a0 at height h, all bits of a0 ∧Mh will be active in all descendants of a0.
Therefore, all active columns of a0 ∧Mh will be active in all descendants of a0 and each
will contribute at least 2 to the weight. We define scorea as twice the number of active
columns of the state a0 ∧Mh.

The ordering of the elements in each Bj by increasing weight implies that the right-
siblings of a node have weight (resp. score) greater than or equal to the weight (resp.
score) of that node. It follows that when a node is encountered whose score is greater than
the given threshold all its descendants and also all its siblings can be pruned.

As an additional optimization, we observe that during the backward extension of a
trail core Q̃r = (a1, . . . , br−1), wrev(a1) is replaced by w(b0) which can be larger than
wrev(a1). If w(Q̃r) < Tr for a given Tr, most of the times we want w(Q̃r)−wrev(a1)+w(b0)
to be still smaller than Tr. So, during the search we perform the additional check
scoreb < Tr − (w(Q̃r)− wrev(a1)).

5.3.2 Extension using the envelope space

This method aims at prioritizing the growth of the number of active columns in a0, so
that wrev(a0) grows as quickly as possible.

First, we build a space that contains the set of compatible states b0’s, that we call
envelope space and denote by E . To do this, for each active column at a1 we define the
envelope space of its compatible column patterns as 0 + 〈e0, e1, e2, e3, e4〉, where ei ∈ F5

2
has a single active bit in position i. The envelope space E is the union of all these envelope
spaces and its dimension is five times the number of active columns in a1.

22 Improved Differential and Linear Trail Bounds for ASCON

We scan E in a tree-based fashion as done in Section 5.2, where the root of the tree is
the offset (in this case the all zero state) and we iteratively add basis vectors. Since the
envelope space is much larger than the actual space of compatible states, we must define a
score function that is very efficient and allows to prune the tree as soon as possible. To
this end, we try to make the number of stable bits in a0 to grow as quickly as possible. A
way to do it is to consider the envelope space before p∗L and triangularize its basis.

Let E = 〈v1, . . . , v5n〉, where n denotes the number of active columns in a1. Since p∗L
is linear, we can transpose the envelope space E before p∗L and get E∗ = 〈v∗1, . . . , v∗5n〉 with
v∗k = p∗

−1

L (vk). We triangularize the basis of E∗ based on the lexicographic order relation
on coordinates (i, j) and we modify the representation of E accordingly. That is, when we
add a vector v∗k to a vector v∗` in E∗, we add vk to v` in E . We obtain a new representation
of E∗ as 〈t∗1, . . . , t∗5n〉. By construction, the triangularized basis contains first all basis
vectors with active bits in row 0, then those with active bits in row 1, etc.

For each k, we define the stability maskMk as a state that is 1 in all positions smaller
or equal than the pivot position of t∗k, and 0 otherwise. We define scorea as twice the
number of active columns of a0 ∧Mk. Finally, we define scoreb as twice the number of
active columns in a1. In fact, the number of active columns in b0 is the same of a1 and
each contributes at least 2 to the weight. On the other hand, since we are scanning the
envelope space and not only the space of compatible states, we cannot use the weight of
b0, because in this case the addition of a new unit can potentially decrease it.

6 Practical results and improved bounds for Ascon
In this section, we report on our practical results. The improved bounds are reported in
Table 1. To scan the different spaces of trail cores, we follow the different strategies presented
in [DV12,MDV17,DHP+20,DMA22]. We used parts of KeccakTools [DHVV13] and
XooTools [DHVV18a] for some routines for trail extension. All our tests are run on a
server equipped with an AMD EPYC 7552 48-Core Processor @2.20GHz. We exploited
the multicore architecture to run some of our tests in parallel, but execution times are
reported as single core costs in the following. We round up the execution time to the
closest integer.

In some cases, we compare our execution time to that reported in [EME22], which
uses machines equipped with Intel Xeon E5-2669 and E5-4669 v4 @2.20GHz. Even if the
machines are different, and thus execution times are not perfectly comparable, we can
observe that our methods allow us to scan larger spaces than what was possible with the
solvers-based method of [EME22].

In the following, we denote by DT
r the space of all r-round differential trail cores with

weight < T , i.e. at most T − 1. Similarly, we denote by LT
r the space of all r-round

differential trail cores with weight < T .

6.1 Results on 3 rounds: tight bound and all low-weight trails
Since the best known 3-round differential and linear trails have weight 40 [DEMS15] and
28 [DEM15] respectively, we scanned the spaces D41

3 and L30
3 to check whether they are

the lightest trails1. Our experimental results confirmed the results for differential trails
in [EME22,MR22] and proved that 28 is the tight bound for linear trails. In fact, we found
2 differential trail cores of weight 40, 1 linear trail core of weight 28, and no trail cores
with lower weight. The search took less than 3 minutes for differential trails and less than
4 seconds for linear trails.

1Notice that to prove that they are the lightest trails, it is sufficient to scan the spaces D40
3 and L28

3
and prove that they are empty. To check how many differential trail cores of weight 40 and linear trail
cores of weight 28 there exist, we chose to scan larger spaces.

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 23

Table 3: Details on the generation of canonical 3-round differential and linear trail cores
below target weight 41 and 30, respectively.

search # cores time search details
space step # cores time

D41
3 2 3m

2wrev(a1) + w(b1) < 40 284,561 2m
forward extension 2 4s
w(b1) + 2w(b2) ≤ 40 15,252 28s
backward extension 0 2s

L30
3 1 4s

2wrev(a1) + w(b1) < 28 1,935 1s
forward extension 1 1s
w(b1) + 2w(b2) ≤ 28 972 1s
backward extension 0 1s

To scan the above spaces, we followed the approach used in [DHVV18b], which is the
following. A 3-round trail core has weight wrev(a1) + w(b1) + w(b2). We split all trail cores
in D41

3 (resp. L30
3) into two sets based on whether wrev(a1) < w(b2) or wrev(a1) ≥ w(b2).

• The former case implies that 2wrev(a1) + w(b1) < 40 (resp. < 28). Such trail cores
can be obtained by generating all 2-round trail cores (a1, b1) satisfying this inequality
and extending them in the forward direction by one round up to 40 (resp. 28).

• The latter case implies that w(b1) + 2w(b2) ≤ 40 (resp. ≤ 28). Such trails can be
obtained by generating all 2-round trail cores (a2, b2) satisfying this inequality and
then extending them in the backward direction by one round up to 40 (resp. 28).

Detailed execution times are given in Table 3 together with the number of trail cores found
in each step of the search.

Beyond proving bounds for 3-round trails, we are also interested in the distribution of
low-weight 3-round trails in Ascon. To this end, we also scanned the space D51

3 (resp.
L52

3), and counted all 3-round trails contained in such cores with weight below 51 (resp.
52). To count trails, we used the code for backward extension to build all patterns b0

compatible with a1 that satisfy w(b0) + w(b1) + w(b2) < 51 (resp. < 52) and we count
each of them w(b2) times. Results are depicted in Fig. 9. We can notice that, per given
(even) weight ≥ 40, the ratio between the number of linear trails and differential trails
ranges between 9.7 (for weight 46) and 66.5 (for weight 44). This is due to the fact that
the LAT of the Ascon S-box is more dense than its DDT.

6.2 Results on 4 rounds: improved (non-tight) bounds
The best known 4-round differential and linear trails in Ascon have weight 107 and
98 respectively [DEMS15,DEM15], while the previously proved lower bound is 72 for
both [EME22].

With our techniques, we scanned the spaces D86
4 and L88

4 . We found that both spaces
are empty, which implies that any 4-round differential trail has weight at least 86 and any
4-round linear trail has weight at least 88. This improves over known results, even if the
new bounds are still not tight.

Our search took around 13 days for differential trails and around 110 days for linear
trails. While in [EME22] the authors report a cost of 600 days each for differential and
linear trails to prove a bound of 72. Moreover, the authors in [EME22] estimate a cost of

24 Improved Differential and Linear Trail Bounds for ASCON

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

101

106

1011

1016

8.
59

·
10

9

3.
44

·
10

10

3.
44

·
10

10

1.
34

·
10

8

7.
82

·
10

10

7.
43

·
10

11

3.
16

·
10

12

6.
99

·
10

12

9.
66

·
10

12

1.
92

·
10

13

5.
82

·
10

13

1.
05

·
10

6

1.
26

·
10

7

3.
36

·
10

7

6.
71

·
10

8

4.
83

·
10

9

2.
58

·
10

10

1.
93

·
10

11

9.
71

·
10

11

5.
2

·
10

12

3.
08

·
10

13

1.
08

·
10

14

7.
3

·
10

14

weight

#
tr
ai
lc

or
es

differential
linear

Figure 9: Number of all canonical 3-round trails per weight.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

101

104

107

1010

2 3

8

3

11

17
2

10

52

44
9 1,

14
7

31
4 1,

05
8

3,
74

7

13
,0

57

4,
85

5

14
,1

41

53
,0

96

1.
09

·
10

5

76
,7

63

2
·

10
5

5.
28

·
10

5

1.
07

·
10

6

1.
02

·
10

6

2.
41

·
10

6

5.
81

·
10

6

1.
02

·
10

7

1.
3

·
10

7

2.
86

·
10

7

5.
99

·
10

7

1.
03

·
10

8

1.
56

·
10

8

3.
22

·
10

8

5

22 23

86
1

34
8

7,
27

1

10
,2

88 1.
24

·
10

5

1.
63

·
10

5

1.
37

·
10

6

2.
83

·
10

6

1.
8

·
10

7

4.
18

·
10

7

2.
17

·
10

8

6.
04

·
10

8

2.
71

·
10

9

8.
27

·
10

9

weight

#
tr
ai
lc

or
es

differential
linear

Figure 10: Number of all canonical 2-round trail cores per weight.

6688 days to prove a bound of 80 whereas in [MR22], they estimate 3898 days to prove
this bound. Therefore, with our method we could reach higher bounds with significantly
less computational cost.

To scan the above spaces, we followed [DHVV18b]. Any 4-round differential (resp.
linear) trail core with weight wrev(a1) + w(b1) + w(b2) + w(b3) < 86 (resp. < 88) has
wrev(a1) + w(b1) < 43 (resp. < 44) or w(b2) + w(b3) < 43 (resp. < 44). Otherwise, their
sum would be at least 86 (resp. 88). We could thus generate all trail cores in D86

4 (resp.
L88

4) by generating all 2-round trail cores in D43
2 (resp. L44

2) and extending them to 4
rounds below 86 (resp. 88). To perform extension to 4 rounds, we first extended to 3
rounds below 84 (resp. 86), since we know that the remaining round has weight at least 2.

Details on the number of trail cores found in each step of the search and the execution
times are reported in Table 4. In Fig. 10, we report the number of all 2-round trail cores
per given weight. Again, we can observe that (for even weights) the number of 2-round
linear trail cores found is significantly higher than the number of 2-round differential trail
cores. This difference of course reflects on the costs for extension.

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 25

Table 4: Details on the generation of canonical 4-round differential and linear trail cores
with weight lower than 86 and 88, respectively. Timings are rounded to the closest integer.

search # cores time search details
space step # cores time

D86
4 0 310h

generation of D43
2 704,744,005 100h

forw.ext. to 3 rounds with w < 84 2,421,335 140h
forw.ext. to 4 rounds with w < 86 0 1m
back.ext. to 3 rounds with w < 84 2,424 66h
back.ext. to 4 rounds with w < 86 0 3h

L88
4 0 2641h

generation of L44
2 11,866,934,404 397h

forw.ext. to 3 rounds with w < 86 44,850,380 1411h
forw.ext. to 4 rounds with w < 88 0 25m
back.ext. to 3 rounds with w < 86 40,013 671h
back.ext. to 4 rounds with w < 88 0 161h

6.3 Results on 5 rounds: new (non-tight) bounds
The best known differential trail over 5 rounds has weight 190 [DEMS15,GPT21], while
the best known linear trail has weight 184 [MR22]. As far as we know, there are no proved
lower bounds for 5-round trails, before this work. We can prove non-tight bounds of 100
for differential trails and 96 for linear trails. To this end, we scanned the spaces D100

5 and
L96

5 , which resulted to be both empty. Our search took around 158 days for differential
trails and around 127 days for linear trails.

To perform our search, we followed the approach of [DHP+20], to re-use the 2-round trail
cores already built. We split the space D100

5 (resp. L96
5) into two sets. The first contains

all 5-round trail cores with wrev(a1) + w(b1) < 43 (resp. < 44). To cover it, we extend all
2-round trail cores in D43

2 (resp. L44
2), that we already have, by 3 rounds in the forward

direction below weight 100 (resp. 96). The second set contains all 5-round trail cores with
wrev(a1) + w(b1) ≥ 43 (resp. ≥ 44). This implies that w(b2) + w(b3) + w(b4) < 57 (resp.
< 52). Therefore, we generated all 3-round trail cores in D57

3 (resp. L52
3) and extended

them backwards below weight 100 (resp. 96).
Details on the different steps of our search are reported in Table 5. As we didn’t need

to regenerate the 2-round trail cores in D43
2 and L44

2 (because we already generated them
for the search over 4 rounds), we report the corresponding time between parentheses and
we don’t consider it in the total cost of this search.

6.4 Results on 6 rounds: improved bounds beyond 2−128

The previously proved lower bound on the weight of 6-round trails is 108, for both linear
and differential trails [EME22]. With our techniques we can prove that the spaces D129

6
and D132

6 are both empty. It follows that any 6-round differential trail has weight at least
129 and any 6-round linear trail has weight at least 132. Even if our new bounds are
still not tight, we are able to prove for the first time that 6-round trails in Ascon have
differential probability or squared correlation lower than 2−128.

Our search took around 6 days for differential trails and around 21 days for linear trails.
While in [EME22], the authors report a cost of 2 months each for differential and linear
trails. Both in this work and in [EME22], results for 6 rounds are built on top of results on
3 and 4 rounds, whose cost is not included in the figures for 6 rounds. Even if we include

26 Improved Differential and Linear Trail Bounds for ASCON

Table 5: Results on the generation of canonical 5-round differential and linear trail cores
with weight lower than 100 and 96, respectively. Timings between parentheses mean that
we can reuse previous results and they are not counted in the total amount of time.

search # cores time search details
space step # cores time

D100
5 0 3795h

generation of D43
2 704,744,005 (100h)

forw.ext. by 3 rounds with w < 100 0 3683h
generation of D57

3 437 112h
back.ext. by 2 rounds with w < 100 0 3s

L96
5 0 3045h

generation of L44
2 11,866,934,404 (397h)

forw.ext. by 3 rounds with w < 96 3037h
generation of L52

3 309 8h
back.ext. by 2 rounds with w < 96 0 1s

such costs in the total computational cost for 6 rounds, our technique still requires less
time compared to [EME22] to reach better bounds.

To scan the space D129
6 (resp. L132

6), we followed the approach of [DMA22]. First, we
split the space in two subspaces that we denote S1 and S2. The set S1 contains all 6-round
trail cores with wrev(a1) + w(b1) + w(b2) < 57 (resp. < 52) or w(b3) + w(b4) + w(b5) < 57
(resp. < 52). The space S2 is the complement of S1, that is the space of all 6-round trail
cores with wrev(a1) + w(b1) + w(b2) ≥ 57 (resp. ≥ 52) and w(b3) + w(b4) + w(b5) ≥ 57
(resp. ≥ 52).

The details of our search are summarized here.

Scanning S1 starting from D57
3 (resp. L52

3). The space S1 can be scanned by extending
all 3-round trail cores in D57

3 (resp. L52
3) by 3 rounds below weight 129 (resp. 132). We

first extended all 3-round trails in the space by 3 rounds in the forward direction and then
by 3 rounds in the backward direction. To extend to 6 rounds, we first extended to 4
rounds below 121 (resp. 122) because we know that the two remaining rounds will weight
at least 8. Then we extended to 5 rounds below 127 (resp. 130) because we know that the
remaining round will weigh at least 2. For both differential and linear case, extension to
5 rounds resulted in an empty set. Therefore, we didn’t need to perform extension to 6
rounds.

Scanning S2 starting from D43
2 (resp. L44

2). The space S2 is further split into three
subsets. In fact, any 6-round trail core with weight below 129 (resp. 132) can be generated
by starting from a 2-round trail core of weight below 43 (resp. 44) placed at the beginning,
or in the middle, or at the end of the trail. In the first case, the 2-round trail core is
extended by four rounds in the forward direction. In the second case, it is extended by
two rounds in the forward direction and two rounds in the backward direction. In the last
case, it is extended by four rounds in the backward direction.

• Starting from the beginning. To extend 2-round trail cores to 6 rounds, we
performed extension by one round at the time each time limiting the weight up to
which we perform extension, considering the minimum contribution of the remaining
rounds.
First, we extended 2-round trail cores to 3 rounds below 129 − 57 = 72 (resp.
132− 52 = 80) because we are in the case where w(b3) + w(b4) + w(b5) ≥ 57 (resp.

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 27

Table 6: Results on the generation of canonical 6-round differential and linear trail cores
with weight lower than 129 and 132, respectively. Timings between parentheses mean that
we can reuse previous results and they are not counted in the total amount of time. -
means that the step was not performed, because we know it leads to an empty space.

search # cores time search details
space step # cores time

D129
6 0 135h

generation of D57
3 437 112h

forw.ext. by 3 rounds with w < 129 0 9h
backw.ext. by 3 rounds with w < 129 0 11h
generation of D43

2 704,744,005 (100h)
D43

2 at the beginning
- f.e. to 3 rounds with 57 ≤ w < 72 43,465 (140h)
- f.e. to 4 rounds with w < 121 0 3h

D44
2 in the middle 0 -
D44

2 at the end 0 -

L132
6 0 493h

generation of L52
3 309 (8h)

forw.ext. by 3 rounds with w < 132 0 7h
backw.ext. by 3 rounds with w < 132 0 450h
generation of L44

2 11,866,934,404 (397h)
L44

2 at the beginning
- f.e. to 3 rounds with 52 ≤ w < 80 5,171,116 (1411h)
- f.e. to 4 rounds with w < 124 14,082 36h
- f.e. to 5 rounds with w < 130 0 1s

L44
2 in the middle 0 -
L44

2 at the end 0 -

≥ 52). Among the obtained 3-round trail cores, we kept only those satisfying
wrev(a1) + w(b1) + w(b2) ≥ 57 (resp. ≥ 52) because otherwise they belong to S1.
Notice that the set of such trail cores is a subset of the set obtained during the search
over 4 rounds. In that case in fact, we extended all trail cores in D43

2 (resp. L44
2)

to 3 rounds below weight 84 (resp. 86). Therefore, we did not need to perform this
step but we just extracted the needed trail cores from such set.
Then, we extended the obtained 3-round trail cores to 4 rounds below 129− 8 = 121
(resp. 132− 8 = 124) because we know that w(b4) + w(b5) ≥ 8, since any 2-round
trail has weight at least 8.
The obtained 4-round trail cores were then extended to 5 rounds below 129− 2 = 127
(resp. 132− 2 = 130) because we know that w(b5) ≥ 2.
Finally, we extended the obtained 5-round trail cores to 6 rounds below 129 (resp.
132).
Notice that, for differential trails, extension to 4 rounds already resulted in an empty
set. Therefore, extension to 5 and 6 rounds was not performed. For linear trails, it
is extension to 5 rounds that gave an empty set. Therefore, we could skip extension
to 6 rounds.

• Starting from the middle. We can assume that wrev(a1) + w(b1) ≥ 43 (resp.

28 Improved Differential and Linear Trail Bounds for ASCON

≥ 44) because the other case is covered in the previous step. First, we need to
perform forward extension to 4 rounds below 129− 43 = 86 (resp. 132− 44 = 88)
because wrev(a1) + w(b1) ≥ 43 (resp. ≥ 44). Notice that we already performed this
search in Section 6.2. In fact, this was part of the search to build D86

4 (resp. L88
4),

which is empty. Therefore, we did not need to perform this step of the search.

• Starting from the end. We can assume that wrev(a1) + w(b1) ≥ 43 (resp. ≥ 44)
and w(b2) + w(b3) ≥ 43 (resp. ≥ 44), because the opposite is already covered in the
two previous steps. First, we need to perform backward extension to 4 rounds below
129 − 43 = 86 (resp. 132 − 44 = 88) because wrev(a1) + w(b1) ≥ 43 (resp. ≥ 44).
Again, we already performed this search in Section 6.2 to build D86

4 (resp. L88
4). As

we already know that this leads to an empty set, we can jump this step of the search.

Figures on the number of trail cores found in each step of the search and details on the
execution time of each step are given in Table 6. When we can reuse trail cores generated
in previous searches, we put the corresponding computational time between parentheses
and we don’t include it in the total cost. When a step is not performed because we know
that it leads to an empty space, we put a dash.

6.5 Results on 8 rounds: improved (non-tight) bounds
Since D86

4 and L88
4 are empty, we can claim that also D172

8 and L176
8 are empty. In fact, if

we split any 8-round differential (resp. linear) trail with weight < 172 (resp. < 176) in
two 4-round trails, at least one of the two must have weight < 86 (resp. < 88). Otherwise,
their sum would be ≥ 172 (resp. ≥ 176). Therefore, all 8-round differential (resp. linear)
trails with weight below 172 (resp. 176) can be obtained by the extension of all 4-round
trails with weight below 86 (resp. 88). But, we know that such 4-round trails do not exist.
Therefore, also such 8-round trails do not exist. It follows that 172 is a lower bound on
the weight of any 8-round differential trail and 176 is a lower bound on the weight of any
8-round linear trail. Such bounds improve over previous known bound, which was 144 for
both differential and linear trails. However, they are still non-tight.

6.6 Results on 12 rounds: improved bounds beyond 2−256

With a reasoning similar to the one used for 8 rounds, we can prove that the spaces D258
12

and L264
12 are empty, given that the spaces D129

6 and L132
6 are empty. It follows that any

12-round differential trail has weight at least 258 and any 12-round linear trail has weight
at least 264. Such bounds improve over previous known bound, which was 216 for both
differential and linear trails. Even if our new bounds are still non-tight, they allow us
to prove for the first time that 12-round trails in Ascon have differential probability or
squared correlation lower than 2−256.

6.7 Results on 7, 9, 10, and 11 rounds: improved (non-tight) bounds
Based on the results obtained for 4, 5, and 6 rounds, we can derive bounds on 7, 9, 10,
and 11 rounds. We explain how to do it for 10 rounds by combining the results for 4 and
6 rounds. Then we show how to obtain bounds for the other numbers of rounds similarly.

We can cover the space D215
10 (resp. L220

10) in the following way. We split the set in two
subsets. The first contains all 10-round trail cores with wrev(a1)+w(b1)+w(b2)+w(b3) < 86
(resp. 88), while the second set is its complement. We can cover the first set by extending all
4-round trail cores in D86

4 (resp. L88
4) by 6 rounds in the forward direction below 215 (resp.

220). The second set contains all 10-round trails with wrev(a1)+w(b1)+w(b2)+w(b3) ≥ 86
(resp. 88), which implies that the other 6 rounds have weight below 129 (resp. 132).
Therefore, we can cover it by extending all 6-round trail cores in D129

6 (resp. L132
6) by 4

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 29

rounds in the backward direction below 215 (resp. 220). Since both D86
4 and D129

6 (resp.
L88

4 and L132
6) are empty, then also D215

10 (resp. L220
10) is empty. Therefore, 215 and 220

are lower bounds on the weight of 10-round differential and linear trails, respectively.
For the other numbers of rounds, we consider the combination that yields the best

bounds. For 7 rounds, we can prove a bound of 131 for differential trails and 134 for linear
trails, considering the results on 6 rounds and that 1 round weights at least 2. For 9 rounds,
we combine the results for 4 and 5 rounds and obtain a bound of 186 for differential trails
and 184 for linear trails. Finally, for 11 rounds we obtain a bound of 229 for differential
trails and 228 for linear trails, by combining the results for 5 and 6 rounds.

For the sake of comparison, we can apply the same reasoning to the results presented
in [EME22]. We can derive bounds for r rounds from the bounds on r − 1 rounds,
considering that one round has minimum weight 2. For differential and linear trails, this
gives a bound of 74 for 5 rounds, of 110 for 7 rounds, of 146 for 9 rounds, and 182 for 11
rounds.

7 Conclusions
In this work, we presented a dedicated tool for trail search in Ascon, based on the 2-round
trail core generation methods given in [MDV17] and improved methods for extension based
on the works done in [DV12,DHVV18b]. Using these techniques, we proved tight bound
for 3-rounds linear trails and improved the existing bounds for other number of rounds.
In particular, we prove for the first time bounds beyond 2−128 for 6 rounds, and for 12
rounds bounds beyond 2−256. Our approach improves and proves bounds in a reasonable
amount of time and it confirms that dedicated tools can still outperform methods based
on general-purpose solvers.

As a takeaway from this and previous works on Keccak-p [MDV17], Xoodoo
[DHVV18b], and Subterranean [MMGD22] we highlight that:

• For the 2-round trail search stage, the linear layers of Ascon and Subterranean
allow a simpler definition of units compared to Keccak-p and Xoodoo where a
more complex linear layer is used.

• A non-linear layer based on the parallel application of small S-boxes (as in Keccak-p,
Xoodoo and Ascon) implies a simpler analysis of the propagation properties
compared to the non-linear layer of Subterranean. In the latter case, the backward
extension is more complex, and the definition of the minimum reverse weight requires
a thorough proof which makes it more complicated.

Acknowledgements
Solane El Hirch and Silvia Mella are supported by the Cryptography Research Center of
the Technology Innovation Institute (TII), Abu Dhabi (UAE), under the TII-Radboud
project with title Evaluation and Implementation of Lightweight Cryptographic Primitives
and Protocols.
Alireza Mehrdad and Joan Daemen are supported by the European Research Council under
the ERC advanced grant agreement under grant ERC-2017-ADG Nr. 788980 ESCADA.

References
[BDPV07] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sponge

functions. https://keccak.team/files/SpongeFunctions.pdf, 2007.

https://keccak.team/files/SpongeFunctions.pdf

30 Improved Differential and Linear Trail Bounds for ASCON

[BDPV08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
the indifferentiability of the sponge construction. In Nigel P. Smart, editor,
Advances in Cryptology - EUROCRYPT 2008, 27th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Istanbul, Turkey, April 13-17, 2008. Proceedings, volume 4965 of Lecture
Notes in Computer Science, pages 181–197. Springer, 2008.

[BDPV11a] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-
ing the sponge: Single-pass authenticated encryption and other applications.
In Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryptography -
18th International Workshop, SAC 2011, Toronto, ON, Canada, August 11-12,
2011, Revised Selected Papers, volume 7118 of Lecture Notes in Computer
Science, pages 320–337. Springer, 2011.

[BDPV11b] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. The
keccak reference, January 2011.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS.
In Advances in Cryptology - CRYPTO 2016, volume 9815 of LNCS, pages
123–153. Springer, 2016.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A Small Present - Towards
Reaching the Limit of Lightweight Encryption. In Cryptographic Hardware
and Embedded Systems - CHES 2017, volume 10529 of LNCS, pages 321–345.
Springer, 2017.

[com14] CAESAR committee. CAESAR: Competition for authenticated encryption:
Security, applicability, and robustness, 2014.

[Dae95] Joan Daemen. Cipher and hash function design, strategies based on linear
and differential cryptanalysis, PhD Thesis. PhD thesis, K.U.Leuven, 1995.

[DEM15] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Heuristic tool for
linear cryptanalysis with applications to CAESAR candidates. In Tetsu Iwata
and Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 -
21st International Conference on the Theory and Application of Cryptology
and Information Security, Auckland, New Zealand, November 29 - December
3, 2015, Proceedings, Part II, volume 9453 of Lecture Notes in Computer
Science, pages 490–509. Springer, 2015.

[DEM+20] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
Bart Mennink, Robert Primas, and Thomas Unterluggauer. Isap v2.0. IACR
Trans. Symmetric Cryptol., 2020(S1):390–416, 2020.

[DEMS15] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Cryptanalysis of ascon. In Kaisa Nyberg, editor, Topics in Cryptology - CT-
RSA 2015, The Cryptographer’s Track at the RSA Conference 2015, San
Francisco, CA, USA, April 20-24, 2015. Proceedings, volume 9048 of Lecture
Notes in Computer Science, pages 371–387. Springer, 2015.

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2. submission to caesar competition. Technical report, 2016.

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 31

[DEMS21a] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight authenticated encryption and hashing. J. Cryptol.,
34(3):33, 2021.

[DEMS21b] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2. submission to nist. Technical report, 2021.

[DHP+20] Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and Ronny
Van Keer. Xoodyak, a lightweight cryptographic scheme. IACR Trans.
Symmetric Cryptol., 2020(S1):60–87, 2020.

[DHVV13] J. Daemen, S. Hoffert, G. Van Assche, and R. Van Keer. KeccakTools software.
https://github.com/KeccakTeam/KeccakTools, 2013.

[DHVV18a] J. Daemen, S. Hoffert, G. Van Assche, and R. Van Keer. XooTools software.
https://github.com/XoodooTeam/Xoodoo, 2018.

[DHVV18b] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. The
design of xoodoo and xoofff. IACR Trans. Symmetric Cryptol., 2018(4):1–38,
2018.

[DMA22] Joan Daemen, Silvia Mella, and Gilles Van Assche. Tighter trail bounds
for xoodoo. Cryptology ePrint Archive, Paper 2022/1088, 2022. https:
//eprint.iacr.org/2022/1088.

[DPAR00] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen.
Nessie proposal: the block cipher Noekeon. Nessie submission, 2000. http:
//gro.noekeon.org/.

[DR20] Joan Daemen and Vincent Rijmen. The Design of Rijndael - The Advanced
Encryption Standard (AES), Second Edition. Information Security and Cryp-
tography. Springer, 2020.

[DV12] Joan Daemen and Gilles Van Assche. Differential propagation analysis of kec-
cak. In Anne Canteaut, editor, Fast Software Encryption - 19th International
Workshop, FSE 2012, Washington, DC, USA, March 19-21, 2012. Revised
Selected Papers, volume 7549 of Lecture Notes in Computer Science, pages
422–441. Springer, 2012.

[EME22] Johannes Erlacher, Florian Mendel, and Maria Eichlseder. Bounds for the
security of ascon against differential and linear cryptanalysis. IACR Trans.
Symmetric Cryptol., 2022(1):64–87, 2022.

[GPT21] David Gérault, Thomas Peyrin, and Quan Quan Tan. Exploring differential-
based distinguishers and forgeries for ASCON. IACR Trans. Symmetric
Cryptol., 2021(3):102–136, 2021.

[MDV17] Silvia Mella, Joan Daemen, and Gilles Van Assche. New techniques for
trail bounds and application to differential trails in Keccak. IACR Trans.
Symmetric Cryptol., 2017(1):329–357, 2017.

[MMGD22] Alireza Mehrdad, Silvia Mella, Lorenzo Grassi, and Joan Daemen. Differential
trail search in cryptographic primitives with big-circle chi: Application to
subterranean. IACR Trans. Symmetric Cryptol., 2022(2):253–288, 2022.

[MP13] Nicky Mouha and Bart Preneel. Towards Finding Optimal Differential Charac-
teristics for ARX: Application to Salsa20. Cryptology ePrint Archive, Report
2013/328, 2013. https://ia.cr/2013/328.

https://github.com/KeccakTeam/KeccakTools
https://github.com/XoodooTeam/Xoodoo
https://eprint.iacr.org/2022/1088
https://eprint.iacr.org/2022/1088
http://gro.noekeon.org/
http://gro.noekeon.org/
https://ia.cr/2013/328

32 Improved Differential and Linear Trail Bounds for ASCON

[MR22] Rusydi H. Makarim and Raghvendra Rohit. Towards tight differential bounds
of ascon: A hybrid usage of smt and milp. IACR Transactions on Symmetric
Cryptology, 2022(3):303–340, 2022.

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
Automatic Security Evaluation and (Related-key) Differential Characteristic
Search: Application to SIMON, PRESENT, LBlock, DES(L) and Other
Bit-Oriented Block Ciphers. In Advances in Cryptology - ASIACRYPT 2014,
volume 8873 of LNCS, pages 158–178. Springer, 2014.

[TMC+21] Meltem Sonmez Turan, Kerry McKay, Donghoon Chang, Cagdas Calik,
Lawrence Bassham, Jinkeon Kang, and John Kelsey. Status report on the
second round of the nist lightweight cryptography standardization process,
2021.

[WH19] Hongjun Wu and Tao Huang. TinyJAMBU: A Family of LightweightAuthen-
ticated Encryption Algorithms, 2019.

A Representation of the affine spaces over S.
In Table 7, for each possible column difference, we provide a representation of the affine
space of compatible differences at the output of S, the restriction weight, and the minimum
reverse weight. In Table 8, for each possible column mask, we provide a representation of
the affine space of compatible masks at the input of S, the correlation weight, and the
minimum reverse weight.

Solane El Hirch, Silvia Mella, Alireza Mehrdad and Joan Daemen 33

Table 7: Space of compatible differences at the output of pS , restriction weight, and
minimum reverse weight for all possible column differences.

difference Affine space after S wr(·) wrev(·)

00000 00000 0 0
00001 01001 + 〈00010, 00100, 10001〉 3 2
00010 10001 + 〈00010, 00100, 01000〉 3 2
00011 00001 + 〈00100, 01000, 10001〉 3 3
00100 00110 + 〈01000, 10000〉 2 2
00101 10001 + 〈00010, 01001, 01100〉 3 3
00110 00001 + 〈00010, 00100, 01000, 10000〉 4 2
00111 00010 + 〈00001, 00100, 01000〉 3 3
01000 00110 + 〈00001, 01000, 10000〉 3 2
01001 00001 + 〈00010, 10001, 10100, 11000〉 4 2
01010 00001 + 〈00101, 00110, 01000, 10000〉 4 2
01011 00010 + 〈00001, 00100, 01000, 10000〉 4 2
01100 00001 + 〈10001, 11000〉 2 2
01101 00001 + 〈00010, 00100, 10001, 11000〉 4 3
01110 00001 + 〈00101, 00110, 10000〉 3 2
01111 01000 + 〈00001, 00100, 10000〉 3 3
10000 01001 + 〈00010, 10001〉 2 2
10001 10001 + 〈00010, 00100〉 2 2
10010 00001 + 〈00010, 00100, 01000, 10001〉 4 3
10011 00010 + 〈00110, 01000〉 2 2
10100 00100 + 〈00001, 00010, 01000〉 3 3
10101 00101 + 〈00010, 10100, 11000〉 3 2
10110 10000 + 〈00001, 00010, 00100, 01000〉 4 2
10111 00010 + 〈00110, 01000, 10000〉 3 2
11000 00100 + 〈00001, 00010, 01000, 10000〉 4 2
11001 01000 + 〈00101, 10110, 11000〉 3 2
11010 00001 + 〈00100, 01001, 01010, 10000〉 4 2
11011 00010 + 〈00001, 00110, 01000, 10000〉 4 3
11100 00001 + 〈00010, 10001, 11000〉 3 3
11101 01000 + 〈00110, 10101, 11000〉 3 3
11110 01000 + 〈00001, 00010, 00100, 10000〉 4 2
11111 00010 + 〈00001, 00110, 10000〉 3 3

34 Improved Differential and Linear Trail Bounds for ASCON

Table 8: Space of compatible masks at the input of pS , correlation weight, and minimum
reverse weight for all possible column masks.

mask Affine space before S wc(·) wrev(·)

00000 00000 0 0
00001 00011 + 〈01000, 10001〉 2 2
00010 01100 + 〈00011, 10000〉 2 2
00011 00100 + 〈00001, 00010, 01000, 10000〉 4 2
00100 01100 + 〈00001, 00010〉 2 2
00101 00100 + 〈00001, 00010, 01000, 10000〉 4 2
00110 00001 + 〈10001, 10010〉 2 2
00111 00010 + 〈10001, 11010〉 2 2
01000 10001 + 〈01010, 01100〉 2 2
01001 00001 + 〈00010, 00100, 01000, 10001〉 4 2
01010 00001 + 〈01001, 01010, 01100, 10000〉 4 2
01011 00010 + 〈00001, 00100, 10010, 11000〉 4 2
01100 10000 + 〈00001, 00010, 00100, 01000〉 4 2
01101 00001 + 〈00010, 00101, 01000, 10000〉 4 2
01110 00001 + 〈10001, 10010, 10100, 11000〉 4 2
01111 00010 + 〈00001, 01010, 01100, 10000〉 4 2
10000 00011 + 〈01000, 10101〉 2 2
10001 10001 + 〈00100, 01000〉 2 2
10010 00001 + 〈00101, 00110, 01000, 10000〉 4 2
10011 00001 + 〈00011, 00100, 01000, 10000〉 4 2
10100 00100 + 〈00001, 00010, 01000, 10100〉 4 4
10101 10000 + 〈00001, 00010, 00100, 01000〉 4 2
10110 00001 + 〈00100, 01000, 10001, 10010〉 4 2
10111 00001 + 〈00100, 01000, 10001, 10010〉 4 2
11000 00001 + 〈00010, 00100, 01000, 10001〉 4 2
11001 00100 + 〈00010, 01100〉 2 2
11010 00001 + 〈00010, 00100, 10001, 11000〉 4 2
11011 00100 + 〈00001, 00010, 01100, 10000〉 4 2
11100 00001 + 〈00010, 01000, 10001, 10100〉 4 2
11101 01000 + 〈00010, 01101〉 2 2
11110 00001 + 〈00010, 10001, 10100, 11000〉 4 2
11111 00100 + 〈00001, 00010, 01100, 10000〉 4 2

	Introduction
	Trails and trail search strategy
	Trails and trail cores
	Strategy of the trail search

	The Ascon permutation
	Ascon round specification
	Propagation properties through the round

	Generating 2-round trail cores in Ascon as tree-search
	Concepts and techniques
	Two-level tree
	The alternative row representation

	Extension in Ascon
	Extension as a tree search
	Forward Extension
	Backward Extension

	Practical results and improved bounds for Ascon
	Results on 3 rounds: tight bound and all low-weight trails
	Results on 4 rounds: improved (non-tight) bounds
	Results on 5 rounds: new (non-tight) bounds
	Results on 6 rounds: improved bounds beyond 2-128
	Results on 8 rounds: improved (non-tight) bounds
	Results on 12 rounds: improved bounds beyond 2-256
	Results on 7, 9, 10, and 11 rounds: improved (non-tight) bounds

	Conclusions
	Representation of the affine spaces over S.

