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Abstract—While being decentralized, secure, and reliable, Bitcoin and many other blockchain-based cryptocurrencies suffer from
scalability issues. One of the promising proposals to address this problem is off-chain payment channels. Since, not all nodes are
connected directly to each other, they can use a payment network to route their payments. Each node allocates a balance that is frozen
during the channel’s lifespan. Spending and receiving transactions will shift the balance to one side of the channel. A channel becomes
unbalanced when there is not sufficient balance in one direction. In this case, we say the effective lifespan of the channel has ended.
In this paper, we develop a mathematical model to predict the expected effective lifespan of a channel based on the network’s topology.
We investigate the impact of channel unbalancing on the payment network and individual channels. We also discuss the effect of
certain characteristics of payment channels on their lifespan. Our case study on a snapshot of the Lightning Network shows how the
effective lifespan is distributed, and how it is correlated with other network characteristics. Our results show that central unbalanced
channels have a drastic effect on the network performance.
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1 INTRODUCTION

B ITCOIN is the first decentralized cryptocurrency, in-
troduced in 2008 which provides security, anonymity,

transparency, and democracy without any trusted third
party [1]. Most of these properties are achieved by using
a blockchain as a distributed ledger. An inherent problem
with using a blockchain over a network is that it sacrifices
scalability [2], [3]. The reason is that all nodes, potentially
tens of thousands, must exchange, store, and verify each
and every transaction in the system [4]. Furthermore, each
block has a limited size and blocks get generated at regular
intervals (approximately every 10 minutes). This means that
with the current blocksize of 1 MB the throughput of Bitcoin
is about 4.6 transactions per second, which is much slower
than centralized systems like Visa, WeChatPay, and PayPal
[5]; making the use of Bitcoin in everyday transactions
impractical.

Another trade-off the Bitcoin consensus makes is that it
ensures security by waiting for other miners to confirm a
transaction by extending the block holding that transaction,
which reduces the throughput. This way it makes sure that
the double spending attack is highly improbable. Currently,
the standard waiting time for a block to be confirmed is 6
blocks, which is almost one hour [6].

Bitcoin’s capacity limitations are being felt by users in
the form of increased transaction fees and latency. With
an increasing demand for making transactions, users need
to pay more transaction fees in order to make sure that
their transaction is more profitable for the miners; hence
have a higher chance of making it into a block. Queuing of
transactions and network bandwidth will lead to a longer
delay time for a transaction to appear in the blockchain.

There are many different proposals to solve the scala-
bility problem. Most of the proposals fall into three cate-
gories: Layer0, Layer1, and Layer2 solutions [7]. Layer0

solutions try to enhance the infrastructure, like the network
that connects the nodes. Layer1 solutions try to enhance
the blockchain’s shortcomings by changing the consensus
mechanism and protocols [8], [9]. Layer2 solutions propose
ways to move away from the blockchain, and for this reason,
they are also called off-chain solutions [10].

In 2016 the idea of Lightning Network (LN) was pro-
posed to move the transactions to the second layer (off-
chain) [4]. The Lightning Network consists of payment
channels in a P2P fashion. Payment channels allow two
parties to exchange payments with negligible time and cost,
but both parties must freeze an initial fund in the channel
so no one can spend more money than they own and no
double spending occurs. It is important to note that the sum
of funds in each channel remains constant throughout the
channel’s lifespan and only the channel’s balance changes.
When two parties that do not have a direct channel want to
exchange payments they can use other parties to route their
payments. So a network of nodes is constructed and all the
connected nodes can send each other payments.

This system moves the cost of submitting a transaction
off the blockchain. Only the final states between two nodes
will eventually make it into the blockchain, which signifi-
cantly increases throughput. Furthermore, no time is needed
for the transaction to be confirmed and all transactions in a
channel happen almost instantly.

After several transactions through a channel, the channel
starts to get unbalanced; meaning all of its funds have gone
to one of the parties and the other node cannot route any
more payments through the channel. In this case, it is best
to close the unbalanced channel or open a new one.

In this paper, we investigate the expected effective lifes-
pan of a channel in a payment network. Our contributions
can be summarized as follows:
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• We provide simulation evidence of how channel
unbalancing impacts its throughput. Moreover, we
show how the performance of the payment network
can be affected if a number of channels become
unbalanced.

• We present a mathematical model of payment chan-
nels to predict the expected time for a channel to get
unbalanced considering the channel’s position in the
network and its initial balance. We call this time the
Effective Lifespan of the channel.

• We evaluate our model through simulation, and
observe how the Effective Lifespan of a channel is
affected if we change any of its characteristics.

• By analyzing a recent snapshot of the Lightning Net-
work, we find the distribution of real-world chan-
nel lifespans and its correlation with the network’s
topological parameters. We also investigate the rela-
tionship between the centrality of a channel in the
network and its effective lifespan.

2 RELATED WORK

While the LN white paper [4] does not discuss channel re-
balancing, there exists some research on channel balances
and their significance.

The importance of channel balances is mainly discussed
in four major areas; re-balancing, security, performance, and
financial.

Re-balancing: [11] proposes a method for re-balancing
payment channels. This work allows arbitrary sets of users
to securely re-balance their channels. However, this paper
does not discuss the application of re-balancing, and how
frequently it should be performed. [12] also proposes meth-
ods for rebalancing LN channels, but does not discuss the
frequency of rebalancing.

Performance: In [13] the authors discuss why it is in
the best interest of the network to have balanced channels.
They propose a method to re-balance some channels to
improve the network’s performance. [14] presents a method
in which a node can make its channels balanced through
circular subgraphs. It also develops a method for measuring
imbalance in a payment network.

Security: There has been some research on the security
aspects of channel unbalancing. In [14], [15], and [16] the
authors describe a method in which it is possible for an
adversary to uncover channel balances. Having unbalanced
channels poses the threat of griefing attacks. The incentive
for honest behavior in the LN channels is the penalty for
misbehavior. If a node cheats by publishing an old contract,
it will be penalized and all of the channel funds can be
claimed by the victim. When channels are unbalanced the
penalty is less so there is less incentive for honest behav-
ior. In [17] the authors discuss some countermeasures like
watchtowers to keep the misbehaving nodes from closing
the channel.

Financial: Routing payments through a channel can
make revenue for the owner. So payment channels can be
looked at as investments. In [18] the authors do an in-depth
financial analysis on how much should payment channels
charge for routing payments. One of the key factors in this
analysis is the lifespan of payment channels. In order to

analyze investing in a payment channel, nodes should be
able to have an estimate on how long the investment stays
profitable and what is the impact of channel unbalancing on
the profits of a channel. Branzei et al. [18] assume an equal
probability of having a payment from each side in a channel
and use the lifetime of channels for financial analyses. We
will show how the lifespan of a channel could be affected
by this probability.

In this paper we focus on the details of estimating chan-
nel lifespans; considering parameters such as the placement
of the channel in the topology and payment rates between
each pair and explain the importance of estimating channel
lifespans. This gives us a better and more realistic estimation
of the channel’s lifespan compared to existing work. More-
over, we measure the impact of imbalanced channels on the
network.

Despite the importance of payment channel’s lifespan, to
the best of our knowledge, the expected lifespan of channels
in the payment network has not been discussed in detail.

3 TECHNICAL BACKGROUND

In this section, we provide a technical background to under-
stand the remainder of this paper thoroughly.

Payment Channels
Payment channel is a financial contract between two parties
in a cryptocurrency like Bitcoin. The contract allocates a
balance of funds from both parties. The contract is estab-
lished by a 2-of-2 multisignature address which requires the
cooperation of both parties to spend the funds.

Payments are made off the blockchain by passing on
a new version of the contract with a different balance of
allocated funds on the spending transaction; which both
parties have to sign. The channel is closed when one of
the parties publishes the latest version of the contract to
the blockchain. We define the payment direction to be the
direction in which funds are moving during a transaction.

In this paper, we call the sum of locked funds in a
channel the channel’s capacity. When all of the funds of
a channel are allocated to one of the parties, the channel
becomes unbalanced. In this case payments can only be made
from one side of the channel. A channel’s effective lifespan is
the time from creation of a channel until the first imbalance
occurs. A channel’s success probability is defined as the
number of successful payments made through the channel
divided by the total number of payment attempts.

Several connected payment channels can form a pay-
ment network, in the case of Bitcoin, this network is called
the Lightning Network [4]. This network is used to route
payments through intermediate channels between nodes
who do not have a direct channel between them. We de-
fine a network’s success probability as the total number of
successful payments made on the network divided by the
total attempts to route payments through the network [19].

Random Walk
The random walk model has been used in a wide variety
of contexts to model the movement of objects in different
spaces. This paper uses one-dimensional random walk to
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Fig. 1. Relation of network success rate with percentage of unbalanced
channels in the network.

model the liquidity balance in a payment channel. Two
endpoints on the left and right sides of the random walk
are assumed to represent the channel imbalance condition.
In our model, each payment corresponds to one step of
the random walk model, and the direction of the payment
determines the direction of that step. Suppose we take prob-
abilities p and 1− p as the probability of payment direction
(i.e., step direction). We can find the expected number of
payments (steps) needed for the channel (the random walk
model)to get unbalanced (to reach one of the endpoints).

Betweenness Centrality

Betweenness centrality is a measure based on shortest paths
for the importance of the location of a node or an edge
in a graph. Betweenness centrality for an edge(a, b) in the
network is defined as follows:

∑
s,t∈V
s̸=t

σ(s,t|edge(a,b))
σ(s,t) , where

σ(s, t) is the total number of shortest paths between nodes
s and t and σ(s, t|edge(a, b)) is the total number of shortest
paths between s and t that pass through edge(a, b).

4 MOTIVATION

One of the important characteristics of a payment network
is reliability. Reliability can be defined as the probability of
payment success [19].

In this section, we analyze the payment routing failure
probability of a singular channel after unbalancing, and the
network’s success probability of routing a payment when
some channels are unbalanced.

4.1 Singular Channel

We ran a simulator of a single payment channel to see how
much the failure rate increases after the first time that the
channel becomes unbalanced. Fig. 2 shows the failure rate
after the first time a channel becomes unbalanced. During
the simulation, 5000 payments were being routed through
an initially balanced channel. Then the simulator calculates
the failure rate after the first time the channel becomes un-
balanced. As Fig. 2 suggests, the probability of the direction
of payments (p) is a key factor in determining how much
the probability of payment success degrades after the first

Fig. 2. Failure rate after unbalancing.

imbalance occurs. Channels capacity has little to no impact
on how well it performs after unbalancing.

These results show that the probability of payment di-
rection (p), which depends on the network topology and
the network’s transaction flow, is one of the most impor-
tant parameters in determining the channel’s lifespan; more
importantly, shows the impact of unbalancing on channel
success probability after the channel becomes unbalanced.

4.2 Network Performance

Using the CLoTH simulator [19] we simulate and measure
the performance of Lightning Network. In each iteration we
take channels from the given LN snapshot and make them
unbalanced, we then measure the success probability after
attempting 5000 payments. Choosing more central channels
as unbalanced channels is more reasonable, because they
route more payments and thus have a higher probability
of becoming unbalanced in the real world. We considered
two scenarios for selecting channels to unbalance: choos-
ing channels randomly and choosing channels that have
a higher betweenness centrality. As illustrated in Fig. 1,
as the percentage of unbalanced channels increases, the
routing success rate decreases dramatically for both channel
selection scenarios. In the random selection scenario, it is
noticeable that the first 10 percent of unbalanced channels
have less effect on the network performance than the last
10 percent of unbalanced channels. We see that unbalancing
channels with a higher betweenness centrality has a higher
impact on the network performance in contrast with the
random selection scenarios. Therefore, per any percentage of
unbalanced channels, selection with betweenness centrality
is more effective.

Seres et al. [20] suggest that in the Lightning Network,
the top 14% central channels will have the most significant
impact on the network. In a different experiment we made
15% of the network’s channels unbalanced, we first sort the
channels by betweenness centrality and take a window of
15% of the channels per experiment. We start with the 15%
most central channels and move all the way up to 15%
least central channels. It can be inferred from the results
in Fig. 3 that more central channels have more impact on
the network success rate when they become unbalanced. As
we can see in Fig. 3, the top 15% central channels have the
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Fig. 3. Per each data point the i-th to (i+4500)-th most central channels
are unbalanced and the success rate of the network is measured. The
total number of channels is 30457.

most significant effect on the success rate when they become
unbalanced. This confirms the result from Fig. 1.

5 THE MODEL

As we discussed in Section 4 channel balances have a sig-
nificant effect on both channel, and network performance.
In this section, we introduce a mathematical model to deter-
mine the expected time for a channel to get unbalanced;
we call this the channel’s expected lifespan. We model
the dynamics of a payment channel with a random walk
problem. Each payment passing through the channel will
represent a step the random walker takes. We will first
discuss our assumptions and describe the model in detail.
We then discuss how to find the model parameters. We
proceed by doing an analysis on how the expected lifespan
is affected by changing channel’s characteristics.

5.1 Random Walk Model

Take a payment channel between two nodes A and B, and
take their initial balance allocated for the channel to be FA

and FB , respectively. The goal is to determine the expected
time it will take for this payment channel to become unbal-
anced for the first time. We make the following assumptions:

• All the payments have the same amount denoted
with ω (PaymentSize).

• The payments from each node come with a Poisson
distribution.

Since the number of nodes is large and the probability
of sending a transaction for a given time is small, we can
assume that transaction arrival for each channel is a Poisson
process for moderate time windows [21]. Although the
dynamics of the network will change over time, we make
the assumption of having a fixed topology.

We model the dynamics of a payment channel with a
random walk problem. Each payment is simulated by a step
the random walk takes. To simulate a payment channel, take
the liquidity of node A as the distance of the random walk
from the endpoint on the right hand side and the liquidity
of node B as the distance from the endpoint on the left hand
side.

Fig. 4. Distribution of expected lifespan with 10000 random walk simula-
tions with p = 1

2
and a = b = 1.2Msat.

The payment direction determines the direction of that
step. So the payment direction probability is the probability
of going to the right or left for the random walk in each step.

Let the random walk start at the origin of the number
line. The two endpoints a and −b are ⌊FA

ω ⌋ and ⌊FB

ω ⌋,
respectively.

Since we assume that the payments from each side are
made independently with a Poisson process, and the sum
of two independent Poisson processes is itself a Poisson
process, we can say that payments come to the channel with
a Poisson distribution having:

λpayment = λA,B + λB,A, (1)

thus the relation between expected time and expected num-
ber of random walk steps is:

Etime =
Esteps

λpayment
, (2)

where Etime is the expected time until unbalancing and
Esteps is the expected number of steps until unbalancing
occurs.

The expected number of payments until unbalancing
occurs, can be a better metric depending on the application;
when multiplied by average fee per payment, it gives the
expected routing income, and when divided by λ it gives
the expected lifespan.

The objective is to determine the time it takes for a
channel to become unbalanced. We first try to find the
expected number of steps needed for the random walker
to reach +a or −b for the first time.

Lemma 1. The expected number of steps to reach +a or −b
for the first time starting from zero considering the probability p
for the positive direction and q = 1− p for the negative direction
is:

Esteps =

{
apa(pb−qb)+bqb(qa−pa)

(p−q)(pa+b−qa+b)
p ̸= 1/2

ab p = 1/2
(3)

.
We provide the proof of Lemma 1 in Appendix A.
We simulated a Random Walk which starts from point

zero with the same probability of going to each side (p = 1
2 ).

The simulation ran 10000 times to find the distribution of the
number of steps needed to reach +a or −b. Fig. 4 illustrates
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the result of the simulation. We can observe that most of
the times the random walk reaches one of the bounds in
less than 400 steps, but there are not many situations where
it takes a huge number of steps to reach these bounds.
However, the average number of steps needed to reach these
bounds is 400.5 confirming 11.

5.2 Finding p
In Section 5.1 we modeled the payment channel dynamics
with a random walk and a parametric formula was con-
structed according to Lemma 1.

A payment network can be formally expressed by an
unweighted directed graph. V represents the set of all
nodes, and the set of edges is denoted by E. Each channel
is represented using two edges from E each for one of the
directions.

We define MRates to be the matrix of payment rates
between each two nodes. The rate of payments (i.e., number
of payments per day) from node i to node j is denoted by
MRatesij .

λa,b represents the rate of payments transmitted over
the edge(a, b). λa,b consists of the sum of portions of the
payment rate between each pair of nodes that pass through
edge(a, b). So we have:

λa,b =
∑
s,t∈V

s̸=t

σ(s, t|edge(a, b))
σ(s, t)

MRatesst, (4)

where σ(s, t) is the number of shortest paths from node s
to node t and σ(s, t|edge(a, b)) is the number of shortest
paths from node s to node t passing through edge(a, b) in
the directed graph G.
Lemma 2. p

q = λ(a,b)
λ(b,a) .

According to Lemma 2:

p =
λ(a, b)

λ(a, b) + λ(b, a)
(5)

Therefore we can find p based on the network topology.

Lemma 3. If ∀s, t ∈ V : MRatesst = MRatests then
p = 0.5.

We provide the proofs of Lemmas 2 and 3 in Appendix A. If
we assume that MRates is a symmetric matrix, according
to Lemma 3, p is independent of MRates matrix and the
network topology.

5.3 Model Analysis
In this section we analyze the effect of channel parameters
on the channel’s expected lifespan and perform a financial
analysis for channel lifespan.

For more realistic parameter values we used a recent
snapshot of the Lightning Network taken on Feb2019 as
a reference point. The average payment size is considered
to be 60000 sat1 [22] and the average channel capacity is
considered 2.4Msat2 according to the snapshot.

For simplicity we use ”lifespan” and ”expected number
of payments until channel is unbalanced”, interchangeably.

1. satoshi
2. million satoshi

Fig. 5. Effect of payment direction probability on balanced channels,
according to different channel capacities.

Fig. 6. The effect of payment direction probability on expected number
of payments, according to different initial balance ratios. The channel
capacity is considered 2.4 Msat.

We first answer the question of how sensitive is a
channel’s lifespan to the changes in p. As demonstrated in
Fig. 5; if the channel is initially balanced, the maximum
lifespan happens on p = 1

2 . Also, lifespan is more sensitive
to changes in p when the capacity is higher. From this
result we can infer that it is an important consideration
for a node to make sure the channel is placed in a way
that p is close to 1

2 , otherwise the channel’s lifespan is
affected dramatically. A reasonable proposal for nodes who
want to keep their channels active as long as possible is to
charge routing fees in a way that encourages other nodes to
route their payments through the node in order to achieve
p = 0.5. Fig. 6 shows that if a channel is initially unbalanced,
its maximum possible lifespan takes a hit. Although the
maximum lifespan does not occur at exact p = 1

2 , it occurs at
a point close to this value. So even if a channel is somewhat
unbalanced, the nodes must try to keep p as close as possible
to 50%.

We now answer the question of how the lifespan is
affected by the channel capacity. As Fig. 7 suggests, the
channel lifespan increases with increasing its capacity. It is
noteworthy that the slope of this graph is increasing. So if
a node doubles its channel capacity, the channel’s lifespan
will be more than doubled. Moreover, Fig. 7 shows the effect
of a channel’s initial imbalance on its lifespan.

Usually when a node wants to create a new channel



6

Fig. 7. Effect of channel capacity on the expected number of payments,
according to initial balance ratios

Fig. 8. For a fixed a = 1.2 Msat, the effect of channel b’s capacity on the
maximum possible lifespan in any p.

with another node in the network, the only parameter it has
control over is the amount of funds it wants to put in the
channel, not the funds its partner puts in the channel. This
brings up the question: how will the channel’s lifespan be
affected with the amount the other node wants to put in the
channel if our fund stays at a fixed value. Figures (8) and (9)
illustrate this effect. Fig. 8 shows the maximum achievable
lifespan considering any p value and how it is affected by
the fund that the other node commits to the channel. The
maximum lifespan grows with the initial fund of the other
edge in a linear fashion. Fig. 9 illustrates the effect of our
edge capacity if the peer node’s capacity is fixed. Figure
(9) shows that if p is in favor of payments in the direction
of our edge (p ≥ 1

2 ), the lifespan increases almost linearly;
otherwise (p < 1

2 ), the other edge becomes the bottleneck
and the fund we put towards the channel will have little
to no effect on the expected lifespan of the channel. If the
funds we put towards the channel do not have an effect on
the channel’s lifespan, we have wasted cost opportunities.

6 IMPLEMENTATION AND EVALUATION

We provided a simulation proof of concept on a constructed
Lightning Network to show the accuracy of the model
discussed in Section 5. In this section we describe our
methodology for creating data and calculating accuracy of

Fig. 9. Having a fixed initial balance from peer node (b) analyzing the
effect of our initial balance fund (a), according to different payment
direction probabilities (p).

our model. We later analyze the results to see under which
conditions the model performs better.

6.1 Methodology

The testing pipeline shown in Fig. 10 uses the following
modules:

6.1.1 Network Generator

For each test, a random network was generated using Net-
workX’s [23] gnp random graph with the number of nodes
being 50 and the channel existence probability being 20%
(245 edges on average).

6.1.2 Mrates Generator

As discussed in previous sections the Mrates matrix holds
the rates in which each two nodes send payments to one
another. The Mrates generator takes two main parameters:
SC and SK. SC determines the sparseness of the Mrates
matrix and SK determines the matrix skewness in relation to
its main diagonal. Per each test, a new matrix is generated.
In table (1) the sparse coefficient and the skew were changed
to test how the model will perform in each scenario.

6.1.3 Lifespan Predictor

The lifespan predictor takes the network and the Mrates
matrix and using the model discussed in 5 gives the ex-
pected time for each channel to become unbalanced.

6.1.4 Payment Generator

Payment generator creates random payments in CLoTH
simulator’s input format [19]. These payments follow the
Mrates generator values on average.

6.1.5 Simulator

We used a modified version of the CLoTH simulator [19].
We modified CLoTH such that the simulator logs the un-
balancing of channels and chooses paths randomly in cases
where more than one shortest path exists.

The payment generator and simulator run 100 iterations
per test.
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Fig. 10. Model evaluation pipeline.

TABLE 1
error of prediction and real lifetime

SK
1 4 6 10

0.9 0.15 0.10 0.09 0.10
SC 0.5 0.11 0.10 0.08 0.07

0.3 0.09 0.07 0.05 0.06
0 0.11 0.07 0.07 0.07

6.1.6 Lifespan Calculator
This module aggregates the results of 100 iterations of the
previous step and calculates the average lifespan and its
error. This data will be used to determine the accuracy of
the model.

6.1.7 Model Evaluation
The error of each channel is calculated as |real−prediction|

real .
Because some channels are positioned in a way that almost
no payments pass through them, only after a long while that
most channels are unbalanced, some payments pass through
them, we count these channels as abnormalities and do not
consider them in the error calculations. These are usually
the channels that are estimated to have a very long lifespan.

The means of calculated errors are given in Table (1)
considering different SC and SK values.

As we see, better results are obtained with smaller SCs
(meaning a busier Lightning Network). It is also notable that
SK value has little to no effect on the model performance.
This means that the model performs well in either case that
p is close to 0.5 and p is far from 0.5.

7 LIGHTNING NETWORK ANALYSIS

In this section we will provide an analysis on channel
lifespans of a recent snapshot of the Lightning Network.
The simulation is constituted by nodes and channels taken
from a snapshot of the Lightning Network Mainnet [24] on
Feb 2019.

In Section 5, we proposed a model for a payment channel
using a random walk and we derived a formula to predict
expected channel lifespans. Moreover, the expected lifespan
of a payment channel can be found if the rate of payments
are known by using 2. Lemma 3 shows that if we have the

same rate for every pair of nodes, the probability of going
to each side is equal to 0.5.

Because payment rates and channel balances usually are
not public in the Lightning Network, we have to make
assumptions on the distribution, the amount of payments,
and channel balances. We assume that all payment rates
have the same value r, which means that the rates matrix
(MRates) is symmetric. Thus according to Lemma 3, p = 1

2
for every channel in the network. According to 11 the
expected number of payments is equal to a × b, where
a = ⌊FA

ω ⌋ and b = ⌊FB

ω ⌋ for a bidirectional channel between
A and B. We assume that all channels are initially balanced,
meaning a = b = C

2ω , where C is the channel’s capacity.
According to previous results in Section 5 (equations (1)

and (4)) we have:

λpayment = (
∑

s,t∈V

s ̸=t

σ(s, t|edge(a, b))
σ(s, t)

+
σ(s, t|edge(b, a))

σ(s, t)
)r (6)

We also know that
∑

s,t∈V
s̸=t

σ(s,t|edge(a,b))
σ(s,t) is equal to the

edge betweenness centrality of edge(a, b) (EBC(a, b)) in
directed graph G [25].

Because all channels are bidirectional: ∀edge(j, i) −→
∃edge(i, j), thus ∀s, t ∈ V :

σ(s, t|edge(a, b))
σ(s, t)

=
σ(t, s|edge(b, a))

σ(t, s)
. (7)

Assuming G
′

as an undirected graph that is derived
from G we have:

EBCG(a, b) = EBCG′ (a, b), (8)

thus
λpayment = 2× EBCG′ (a, b)× r. (9)

If we put all results in (2), we have:

Etime =
(Cω )

2

4× 2× EBCG′ (a, b)× r
(10)

In what follows, we first calculate all payment channels’
lifespans in the LN snapshot using equation (10). Then we
focus on the relation between edge betweenness centrality
and lifespan of the channels.

7.1 Distribution of Channels Effective Lifespan
Equation (10) shows that the lifespan of a channel can be
calculated based on its edge betweenness centrality and
initial fund. We assume that r = 0.0022 transactions per day
[26] and ω = 60000 sat [22]. The distribution of channels
lifespans in our snapshot is shown in Fig. 11. Much like the
distribution of channel capacities that resemble the Power
Law distribution, Fig. 11 shows that there are a lot of
channels with a low lifespan and very few channels with
a very high lifespan.

According to Seres et.al. [20] the most effective channels
are the channels with the highest betweenness centrality.
This paper suggests that the top 14% of the channels have
the most significant effect on the network’s performance.

Table (2) gives average, standard deviation, and median,
for all channels in the network and the top 14% central
channels.



8

Fig. 11. Histogram of expected lifespan for the LN snapshot in Feb 2019.

TABLE 2
Lifespan statistics of the LN snapshot (day).

All Channels Central Channels
average 1833.2 172.3
STD 7086.9 587.2
median 27.0 1.6

7.2 Betweenness-Lifespan Correlation

As Seres et.al. [20] suggests, the most central channels have
the most impact on the network. As Fig. 12 shows, more
central channels have a shorter lifespan because they route
more payments per unit of time. In Fig. 12 we took batches
of the most central edges and calculated the average cen-
trality and the average lifespan per batch. The result shows
that in general the more central a channel is, the sooner it
will get unbalanced. We see an exception to this statement
in the middle of the plot, where betweenness has a positive
correlation with the average lifespan. This is due to the fact
that some very central edges have a large capacity so they
can route more payment considering that lifespan increases
with capacity quadratically.

In Section 7 A we showed that channels with larger
edge betweenness centrality values have a higher impact
on the performance of the network. In this section, we have
shown these central channels will have shorter lifespans.
Therefore, the network success rate will decrease quickly

Fig. 12. The relation between expected lifespan and betweenness cen-
trality of channels in the LN snapshot.

due to unbalancing.

8 CONCLUSION

In this paper we modeled payment channel liquidity with
a random walk to estimate how long it takes for a channel
to become unbalanced and the effect of being unbalanced
on a channel’s probability of successful routing. We also
analyzed how unbalanced channels degrade the network’s
performance, and the relation between a channel’s centrality
and its lifespan. We showed that the network’s success
probability is sensitive to the channels’ unbalancing.

We also introduced a method to estimate the lifespan
of a channel in a payment network which can be used for
determining a good placement in the network. We provided
a proof of concept for our model and showed the results are
95% accurate.

This work shows that just allocating more funds towards
a channel does not lead to having a more successful channel.
The results show the channel’s success in the network
depends greatly on the network topology, transaction flow,
and the amount of funds the peer node puts in the channel.

We suggested the amount a node should invest in a
channel to get the longest channel lifespan and maximize its
return on investment. These results show that a misplaced
channel can have a very short lifespan and lose up to 40%
of its efficiency, so nodes could potentially create a market
based on these criteria to sell each other good connections
in the network.

APPENDIX A
PROOFS

A.1 Lemma 1. The expected number of steps to reach
+a or −b for the first time starting from zero is

Esteps =

{
apa(pb−qb)+bqb(qa−pa)

(p−q)(pa+b−qa+b)
p ̸= 1/2

ab p = 1/2
(11)

Consider Sx as the expected number of steps to reach +a or
−b for the first time starting from x. Let p be the probability
of going to the positive direction and q the probability of
going in the negative direction (p+ q = 1). Then we can say
that if the Random Walk starts from x, he will go to x + 1
with probability of p and x− 1 with probability of q. so we
can infer this recurrence equation: sx = 1 + qsx−1 + psx+1

where sx is the expected number of steps until reaching the
end point starting from point x. For the boundary conditions
we have: sa = s−b = 0 implying that the expected number
of steps needed to reach +a or −b starting from +a or −b is
zero.

so:

sx =
1

p
sx−1 −

q

p
sx−2 −

1

p
(12)

The characteristic equation of (12) is:

(z2 − 1

p
z +

q

p
)(z − 1) = 0 (13)
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if p = q = 1/2 we have ∆ = 0 therefore z1 = z2 = z3 =
1 so the expected number of steps needed to reach +a or −b
starting from x is:

sx = (a− x)(b− x) (14)

if p ̸= 1/2 we have
√
∆ = | 1−2p

p | therefore z1 = z2 =
1, z3 = q

p and for the number of steps we have:

sx =
apa+b + bqa+b

(2p− 1)(pa+b − qa+b)
+

1

1− 2p
x+

(a+ b)paqb

(2p− 1)(qa+b − pa+b)
(
q

p
)x

(15)
we take x = 0 as this gives the expected number of steps to
reach +a or −b starting from zero. so we have:

S0 =

{
apa(pb−qb)+bqb(qa−pa)

(p−q)(pa+b−qa+b)
p ̸= 1/2

ab p = 1/2
(16)

A.2 Lemma 2. p
q = λ(A,B)

λ(B,A)

In assumptions of Section 5 it is assumed that each node
sends its payments to other nodes with a Poisson distri-
bution. The parameter of the distribution for edge(a, b) is
λ(a, b), which is the payment rate between nodes a and b.
Assume the random variable of payments from a to b as X
and the random variable of payments from b to a as Y .Thus
we have:

P (X = n) =
e−λ(A,B)(λ(A,B))n

n!
(17)

The total payment rate in each channel is the sum of rates of
its two edges. It is known that the distribution of a random
variable which is the sum of two random variables with a
Poisson process is a Poisson process; the rate of this process
equals the sum of rates.

When we have a payment from two Poisson distribu-
tions sending payments to the same channel; The probabil-
ity for the payment to be a payment from node a to node b
(p) is:

p = P (X = 1|X + Y = 1) =
e−λx (λx)

1

1! × e−λy (λy)
0

0!

e−(λx+λy)(λx+λy)1

1!

(18)

Thus:
p =

λx

λx + λy
=

λ(a, b)

λ(a, b) + λ(b, a)
(19)

A.3 Lemma 3. If ∀s, t ∈ V : MRatesst = MRatests then
p = 0.5.

We know from lemma 2 that: p
q = λ(a,b)

λ(b,a) so we have:

p

q
=

∑ σ(s,t|edge(a,b))
σ(s,t) MRatesst∑ σ(t,s|edge(b,a))
σ(t,s) MRatests

(20)

Because all channels are bidirectional(∀edge(a, b) :
∃edge(b, a)) we have ∀s, t ∈ V :

σ(s, t|edge(a, b))
σ(s, t)

=
σ(t, s|edge(b, a))

σ(t, s)
(21)

In the other hand if we have ∀s, t ∈ V : MRatesst =
MRatests, we can say:

σ(s, t|edge(a, b))
σ(s, t)

×MRatesst =
σ(T, S|edge(b, a))

σ(t, s)
×MRatests (22)

then finally we have:

λ(a, b) = λ(b, a) (23)

so

p =
1

2
(24)
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