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Abstract. In 2009, Dinur and Shamir proposed the cube attack, an algebraic

cryptanalysis technique that only requires black box access to a target cipher.
Since then, this attack has received both many criticisms and endorsements

from crypto community; this work aims at revising and collecting the many

attacks that have been proposed starting from it. We categorise all of these
attacks in five classes; for each class, we provide a brief summary description

along with the state-of-the-art references and the most recent cryptanalysis

results. Furthermore, we extend and refine the new notation we proposed in
2021 and we use it to provide a consistent definition for each attack family.

Finally, in the appendix, we provide an in-depth description of the kite attack

framework, a cipher independent tool we firstly proposed in 2018 that imple-
ments the kite attack on GPUs. To prove its effectiveness, we use Mickey2.0

as a use case, showing how to embed it in the framework.

1. Introduction

Modern cryptographic algorithms are usually based on problems whose difficulty
is provable. A golden problem, extensively used in many cryptographic applications,
consists in solving large systems of multivariate polynomial equations.

The problem is in fact NP-complete also under basic assumptions, like quadratic
equations in F2 only.

On the other hand, it is also true that any algorithm may be seen, extensionally,
as a black-box computing a boolean function. This is a-fortiori true for crypto-
graphic algorithms where outputs can be sketched as the bits generated by inputs
evaluation regardless of the intrinsic structure of algorithm itself. Moreover, under
coercion of domain and codomain having the algebraic structure of finite field, such
a representation of the algorithm can be built from the evaluation of enough points
in the domain. This analysis paves the way for a wide variety of cryptanalysis
techniques based on the reformulation of a crypto-system as a polynomial function
over F2.

Such a cardinal problem in cryptography has seen the development of many
different techniques in recent years that aimed to solve it efficiently. We annoverate
Gröbner bases (see [34]) and linearisation techniques (see XL in [19] and XSL in
[20]) as some of the most promising techniques actually fading after the same fate:
Gröbner bases, in particular, despite being a very general and versatile solution,
are unfeasible in many practical cases due to its computational cost.

Such failures led to the objective of finding useful algebraic relations between
cryptographic schemes’ input and output as a research topic meagre in results for
a number of years.
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In 2009, however, everything changed as a novel approach introduced by Dinur
and Shamir at Eurocrypt’09 brought nourishment to algebraic cryptanalysis re-
search branch. In [27], the first paper of a long run, authors introduced, in fact, the
Cube Attack, a fresh technique that in a few years became a big family of attacks,
consisting of many variants including property testers [6] and differential trails [94]
amongst the others.

The newly born family was characterized by the just introduced concept of
analysing a cypher as a black-box tweakable polynomial, a polynomial where some
variables could be set at will during the attack. We feel comfortable to admit that
the valuable original idea here exploited is not the effort from the sole Dinur and
Shamir. They surely have the merit of clearly pointing out crucial steps and mak-
ing organised this technique in all its aspects; higher-order differential cryptanalysis
mentioned by Lai [51] and Knudsen [50] in the 1990s probably contributed to its
successful development, as well as Vielhaber’s AIDA (algebraic IV differential at-
tacks) [86].

The scope of this paper is to give a wide view on the complex and entangled
development of the cube attack family, by unravelling the various contributions and
presenting them in a more cohesive view. The work is organised as a survey of the
many concepts developed around the cube attack. Nevertheless, we work all the
examples of application of the cube attack, to uniform to a common notation we
introduced in [65].

In Section 2, we revise and extend our novel notation, already introduced in
[65], and we revise the original cube attack applied on the binary field F2. Then
we extend it to a general finite field Fq.

Section 3 provides a summary of various techniques that fall in the macro-family
of cube attacks.

In Section 4, we revise the few attempts of implementing cube attack techniques,
while we corredate it with Section 5, where we provide a list of the best known
attacks on real-world ciphers due to the various families techniques.

Finally, we conclude this work with some considerations in Section 6 and we
provide in Appendix A a spot “dive–in” into one of the most recent frameworks for
cube attacks, implementing the kite attack.

2. The Cube Attack

2.1. Notation. Any field of research has its own nomenclature and cryptography
makes no exception. However, cube attacks in particular never saw a common
agreement in how to refer to its various key concepts. For this reason, each research
line developed its own language and notation, often incoherent with the others. Do
mind, as a simple example, that the name “Conditional Cube Attacks” is overloaded
in literature: usually, it refers to an extension of “Cube Testers”, however it is used
also in relation to cube attacks where conditions are imposed a priori.

Diversity in notations makes it difficult to agree upon the specific novel contribu-
tions brought by each research; it is not unusual that concepts are claimed as novel
and revolutionary, while simply being reformulations of already known results.

We found this as a valid motivation to propose in [65] a novel nomenclature that
encloses the various approach of this field. In the following, we revise such notation
while enriching it to make it even more inclusive.

Usually, a cipher is a function f defined over Fq as:

(1)
f : Fnq × Fmq → Fq

(x, v) 7→ c
.



TEN YEARS OF CUBE ATTACKS 3

where x = (x1, . . . , xn) ∈ Fnq represents a private key, v = (v1, . . . , vm) ∈ Fmq
represents a public vector and c is the output value. It is possible to have vectors
or stream of values as well (e.g., a keystream); in such cases we consider a function
f per output component.

In a natural way we are able to reformulate the function f as its Algebraic Normal
Form (ANF) representation: a polynomial p defined in the equivalence classes of
the polynomial ring with variables in x1, . . . , xn, v1, . . . , vm and coefficients in Fq:

Fq[x1, . . . , xn, v1, . . . , vm] modulo xq1 − x1, . . . , xqn − xn, v
q
1 − v1, . . . , vqm − vm .

We omit the modulus for the sake of readability by considering exponents of varia-
bles yeii in integers 0 ≤ ei ≤ q − 1. We cast p ∈ Fq[x, v] when it is important to
distinguish between private and public part, and p ∈ Fq[y], when it is not (with
y = (y1, . . . , yN ), N = n+m).

In the following, we use capitalised I and J to identify sets of variable indices
in {1, . . . , n}, {1, . . . ,m}, or {1, . . . , N} (as it is clear from the context). Such sets
are particularly useful when referring to monomials. This is particularly straight-
forward in the binary setting q = 2 (see later in Section 2.3 for the same notation
in fields of higher-order q = pk > 2); in fact, monomials m ∈ F2[y] are in bijec-
tive correspondence with subsets I ⊂ {1, . . . , N}, |I| = d so that any index set I
corresponds to a monomial:

(2) mI :=
∏
i∈I

yi ∈ F2[y] ,

where d := deg(mI) = |I|.
We then introduce the following notations:

Zero vector (0): is a generic-length 0 vector, meaning that

y = 0 represents y = (0, . . . , 0)

Unit vector (i): is a unitary basis vector, meaning that

y = i represents y = (0, . . . , 0, 1, 0, . . . , 0) ,

where the i-th variable only is set to 1.
Unit vector set (I): is the set of unit vectors obtained from the indices
i ∈ I; namely, the underlined notation is mapped through I, i.e.

I := {i|i ∈ I} .

Explicit concat (::): is the concatenation notation (omitted when it is not
necessary), meaning that:

(1, 1, 0) :: (1, 0, 1) = (1, 1, 0, 1, 0, 1) .

Vector copy (yl): is the notation to l-times repeat y, meaning that

y3 = y :: y :: y .

Do also note that x = 0 is equivalent to x = 0n.
Addition (+): is the component wise sum meaning that

(1, 1, 0) + (1, 0, 1) = (2, 1, 1) .

The sum behaviour depends on the underlying finite field; e.g. in F2, it
operates as the xor, meaning that

1 1 0 + 1 0 1 = 0 1 1 ,

where we write binary vectors as bit sequences.
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Do also note that the following equality always holds:

x :: v = x :: 0m + 0n :: v

Polynomial mapping p(S): is a compact notation for applying a polyno-
mial or a function through a set, as it occurs to unit vector sets, meaning
that

(3) p(S) = {p(s) | s ∈ S} .

Partial assignment (y[I → a]): is a compact notation to perform the as-
signment of specific variables, meaning that

(4) y[I → a] represents yi = ai , i ∈ I .

The partial assignment is particularly useful when it is combined with (3)
to perform partial polynomial evaluations1:

p(y[I → a]) = p(α1, . . . , αN ) , where αi =

{
aji if i ∈ I
yi otherwise

.

The same notation also applies when considering public and private varia-
bles separately; consider the following polynomial:

p(x1, x2, x3, v1, v2, v3) = x1x2 + v1v2 + x1v3 + x2v2 ∈ Fq[x, v] ,

then, given two index sets J = {1} and I = {1, 3}, and two vectors a = (1)
and b = (1, 0) we have that p(x[J → a] :: v[I → b]) evaluates to:

p(x[{1} → (1)] :: v[{1, 3} → (1, 0)]) = x2 + v2 + x2v2 .

Cube notation (y[I → A]): defines a set of copies of the vector y where
components specified by I are assigned to every possible value in a given
set A, meaning that:

y[I → A] = {y[I → a], for all a ∈ A} .

The size d = |I| is called dimension of the cube and each vector in A has
exactly d components. Usually, the set A is built as a cartesian product of
binary assignments per each variable:

A = A1 ×A2 × · · · ×Ad , Ai = {0, ai}, ai ∈ Fq .

In particular, since it is a common case, if A = Fd2 = {0, 1}d, we omit the
A, and we write:

(5) y[I] := y[I → Fd2] = {y[I → a], for all a ∈ {0, 1}d} .

To further clarify this cardinal notion, we provide the following two exam-
ples:

y[{2, 4, 5}] = {y1 :: z2 :: y3 :: z4 ::z5 :: y6 :: · · · :: yN ,
for all z = {z2, z4, z5} ∈ {0, 1}3} .

and

y[{2, 4} → ({0, 1} × {0, 3})] = {y1 :: z2 :: y3 ::z4 :: y5 :: · · · :: yN ,
for all z2 ∈ {0, 1}, z4 ∈ {0, 3}} .

1We should say αi = aji if i ∈ I, where ji is the index of the element of a which corresponds

to the element i in I. However, we trust in readers’ adaptability.
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Sum reduce (
∑
S): is a compact notation for the sum of all the elements

within a set S, namely ∑
S =

∑
s∈S

s .

The notation fits particularly well with cubes notation:∑
y[I] =

∑
z∈y[I]

z =
∑

a∈{0,1}d
y[I → a].

Shorten summation notation can be used to derive the characteristic vector
of an index set too, meaning that

y =
∑

I represents y = (y1, . . . , yN ) yi =

{
1 if i ∈ I
0 otherwise

.

Cube & partial assignment (y[J → a, I]): is a compact notation to per-
form both partial assignment and cube evaluation I ∩ J = ∅, namely:

y[J → a, I] represents y[J → a, I → Fd2] .

Do mind that, as we certify at the end of this section, it is common to
have the variables with indices in Ic = {1, . . . , N}\I set to zero. In such a
case, do note that the following equality holds:

(6) y[Ic → 0N−d, I] = 0[I] .

Cube & partial assignment in F2 (y[I0, I1, I]): is an even more compact
notation applicable in F2 to perform both partial assignment and cube
evaluation. In F2, in fact, each variable can only be set to either 0 or 1,
therefore it makes sense to distinguish three sets: the set (I0) of indices of
variables substituted by 0, the set (I1) of indices variables substituted by 1
and the set of indices I of cube variables. We can then shorten the previous
notation as follows:

y[I0, I1, I] = y[I0 → 0|I0|, I1 → 1|I1|, I] .

In general, I0 ∪ I1 ∪ I 6= {1, . . . , N} therefore the result can still depend of
some variables. If it is not the case, however, we remove the set I0 from
the list, since it can be derived from the context, therefore writing:

y[I1, I] = y[(I1 ∪ I)c → 0, I1 → 1|I1|, I] = 0[I1 → 1|I1|, I] .

Finally, if I1 = ∅ (I0 = {1, . . . , N}\I = Ic), we adopt the strategy of (6):

y[Ic, ∅, I] = y[∅, I] = 0[I]

Monomial generation (ys): is a notation to generate a monomial from a
characteristic vector s = (s1, . . . , sN ), si ∈ {0, 1}, in other words:

ys =
∏

i∈{1,...,N}

ysii .

Note that (2) can be written this way as well:

mI = y
∑
I .

Monomial set generation (yS): is the natural mapping of the previous no-

tation to a set S of vectors in ZN , in other words:

yS = {ys | s ∈ S} .

Note that yI by monomial set generation is the set of variables yi such that
i ∈ I. This notation is particularly useful in the Division Property setting
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since, fusing the notation with (5), we get the set of all monomials which
divide the monomial mI :

y0[I] = {ys | s = (s1, . . . , sN ) where si ∈ {0, 1} if i ∈ I and si = 0 if i 6∈ I}.

Monomials assignments (m[◦]): all the assignment notations given for sets
of variables are still valid also for monomials, like the partial assignment
m[I → a], the cube operator m[I → A] and their combinations.

2.2. Cube attack forefather. Shamir and Dinur introduced in [27] the cube at-
tack by considering any encryption function represented as a polynomial p on the
binary field F2. This is a very convenient setting since z2 = z and z+ z = 0 for any
z ∈ F2 and, as in (2), each monomial can be represented by the set of indices of its
variables. The attack splits into a key-independent (offline) phase and a key-specific
(online) phase.

During the offline phase, the attacker has access to an oracle ciphering machine
for p and can set x and v at will; the goal of this phase is to find appropriate
values of v to get at least n independent linear equations on the x unknowns. The
online phase takes place when the defender sets a specific key vector x. Once again,
we suppose the attacker as able to set the public vector v at will: this assumption
requires either a chosen plaintext setting (as it could be for Message Authentication
Code generation) or enough spoofing time on randomly generated v (as it could be
for authentication challenges, e.g., in Wi-Fi handshaking). The goal of this phase
is to reconstruct the n equations found during the off-line phase and solve the
corresponding linear system to retrieve (a portion of) x.

We now describe the two phases in detail:

Offline phase. Let mI be the monomial generated by a set of variable indices I ⊆
{1, . . . , N}, |I| = d. In actual applications, I should address public variables only
(I ⊆ {1, . . . ,m}); however, since the methodology we are now describing is general,
we prefer (also for ease of notation) to consider I as referring to both private and
public variables.

Given the cipher p and the monomial mI , according the Division Algorithm there
exist qI and rI such that:

(7) p(y) = mI · qI(y) + rI(y) ,

where none of the monomials in the reminder rI is divisible by mI (all of them
miss at least a variable from yI) and none of the variables yI can be found in the
quotient qI (since all of the variables in p are of degree 1).

We call qI the superpoly of I in p and, if qI is linear, we refer to mI as a d-degree
maxterm of p.

In particular, applying p to the cube y[I] exterminates the reminder rI while

keeping (when y[I → 1d]) a single instance of the superpoly qI . We then claim:

Proposition 1 (cfr.[27]). The superpoly qI , defined in (7), can be retrieved as:

(8) qI(y) =
∑

p(y[I]) .

Surprisingly, provided that mI is a maxterm, (8) gives us a method to numerically
determine the ANF of qI , even when p is given as a black-box. In fact, since qI is
linear it does not contain any of the variables yI and its ANF is given by:

(9) qI = a0 +
∑
j 6∈I

ajyj , aj ∈ {0, 1} .

We then claim:
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Proposition 2 (cfr.[27]). Let qI be the superpoly defined in (7). Its coefficients,
as defined in (9) are given by

(10) a0 =
∑

p(0[I]) and aj =
∑

p(j[I])− a0 .

As stated above, the linear relations we are building are exploited later in the on-
line phase, where the attacker’s aim is to retrieve the private key x. For this reason,
cube variables I are in general chosen amongst the public ones (I ⊂ {1, . . . ,m}),
while the remaining ones (Ic = {1, . . . ,m}\I) are usually tweaked to zero or to any
other value s to lower the complexity of the resulting system [30]. In this case, the
ANF of p assumes the following form:

p(x :: v[Ic → s]) = mI · qI,s(x) + rI,s(x :: v[Ic → s]) ,

and, therefore, the superpoly only depends on the private key vector x:

qI,s(x) =
∑

p(x :: v[Ic → s, I]) .

where (10) assume the following form:

(11) a0 =
∑

p(0 :: v[Ic → s, I]) and aj =
∑

p(j :: v[Ic → s, I])− a0 .

In particular, when s = 0, we omit to report the subscript s, obtaining:

qI(x) =
∑

p(x :: 0[I]) , a0 =
∑

p(0 :: 0[I]) , aj =
∑

p(j :: 0[I])− a0 .

Online phase. In online phase we suppose the unknown key x = k to be set and
secret while the public vector v to be settable at will. Online phase is made of
two parts: (i) for each maxterm mI found in the offline phase, let us obtain an
evaluation of the superpoly qI via

bI,s = qI,s(k) =
∑

p(k :: v[Ic → s, I])

and (ii) solving the corresponding linear equations system with x as unknown varia-
bles, yielded by

a0 +
∑

ai · ki = bI,s .

The complexity of the first part depends on the size and the number of the
cubes, as well as on the practical difficulty to set v. The second part can be tackled
by means of basic linear algebra algorithms in order to retrieve the full key or a
portion of it (depending on the number of independent equations found); gaussian
elimination algorithm requires e.g., O(n3) steps.

Both parts of the online phase, despite being computationally intense, are com-
putationally bounded by the complexity of the offline one. Therefore, being able
to carry out the offline phase actually breaks (or weakens) a specific cipher in all
of its instances.

2.3. Cube attack in higher order fields. As we highlight in the previous section,
the standard cube attack works when polynomials are given over the binary field
F2. This restriction is required to prove (8) which is crucial to the cube attack
and derives from fundamental equations in the binary field, namely y2 = y and
y + y = 0.

When we place the encryption function in the finite field Fq those equations
assume a different form that depends on the order q and on the characteristic p
i.e., if q = pk, then yq = y and p · y = 0. Consequently, monomials are no longer
one-to-one with the indices sets since each variable can have exponent up to q − 1.
A monomial is therefore defined by a vector s = (s1, . . . , sN ) of exponents where
si ∈ Zq, obtaining the following equation equivalent to (2):

(12) ms = ys ,
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where the set of variables involved are, as always, denoted by I, namely

I = {i ∈ {1, . . . , N} | si 6= 0} .

Given a cipher p and a monomial ms, we can derive via Division Algorithm an
equation analogous to (7), namely

(13) p(y) = ms · qs(y) + rs(y) + rI(y) ,

where none of the monomials in the reminder is divisible by ms. Though, such

monomials can contain some of the variables yI , therefore, in order to resemble an
analogy with F2, it makes sense to divide the reminder into two parts: monomials
that do contain all the variables from I (rs) and monomials that do not (rI).

Dinur and Shamir claimed in [27] the possibility of extending the attack to a
generic field, however, the first proof of this approach can be found in [3] due to
Agnesse and Pedicini. Their main contribution consists in reworking Proposition 1
to extend it by considering the relation given by (13):

Proposition 3 (cfr.[3]). Given a set s of exponents working on the variables defined
by I, the superpoly defined in (7) can be retrieved as:

(14) qI(y) = qs(y[I → 1d]) + rIs(y[I → 1d]) =
∑

p(y[I]0)−
∑

p(y[I]1) ,

where the set y[I] is partitioned as y[I] = y[I]0 ∪ y[I]1 and y[I]0 contains those

vectors with the same parity as y[I → 1d].

The parity of y[I → 1d] is a symbolic parity since it depends on the values
assigned to Ic variables, namely:

y[I]0 = {a ∈ y[I] | a[Ic → 0] = d mod 2} .

This key concept is resumed in 2012 Vargiu Master Thesis [85] and later expanded
in [64] where Onofri presented many proofs and computational bounds when ms is
chosen as in standard cube attack, i.e. si = 1, i ∈ I. If this condition holds, in fact,
the cube attack straightforward extends from F2 to Fq up to a factor −1 (which
depends on the parity of the specific element within the cube evaluation); in fact
rI = 0, then (14) shortens to

(15) qI(y) = qs(y) =
∑

p(y[I]0)−
∑

p(y[I]1)

and, in particular, we can state, analogously to Proposition 2, that

Proposition 4 (cfr.[64]). For any polynomial p in Fq[x] and cube I yielding a
maxterm mI , the superpoly has ANF

qI(y) = a0 +
∑
j 6∈I

ajyj , aj ∈ Fq .

Coefficients can be numerically evaluated by

a0 =
∑

p(0[I]0)−
∑

p(0[I]1) and aj =
∑

p(j[I]0)−
∑

p(j[I]1)− a0 .

An analogous approach to [3] to extend cube attack in higher order fields can
be found in [69], where authors fuse standard cube attack with higher order diffe-
rentiation technique introduced by Lai in [51]. The key concepts are, to the best of
our knowledge, totally comparable; however, the processing is performed under the
point of view of differentiation techniques. Here, the main contribution is given by
the following observation:
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Proposition 5 (cfr.[69]).

(16) qI = ∆
(
∑
m)

m×I p

where we are denoting with m × I the multiset of single-variable single-step diffe-
rentiation:

(17) m× I = {i taken mi times}i∈I

and the ∆(k) notation is the standard definition of multi-differentiation:

(18) ∆(k)
a1,...,ak

p = ∆a1 . . .∆akp

and the standard differentiation is given by

(19) ∆ap(y) = p(y + a)− p(y).

2.4. Searching for cubes. A cardinal point of the cube attack is to efficiently
determine if (9) holds, or, in other words, whether the superpoly qI is linear or not.
Two main approaches are used in this context: (i) retrieve the maximum degree δ
of p and then consider cubes of dimension d = δ − 1 or (ii) employ stochastic tests
to guess the linearity of qI .

The first approach was firstly introduced and used in [26], where Dinur et al.
applied it to attack Keccak sponge functions; however, it has limited applications
since correctly determining the degree is hard when the p is complex. As we see
later in the next section, this approach is often reversed instead, employing the
cube attack itself to probabilistically determine δ (see [6]).

The latter approach is the widely used instead. In the original paper [27],
Dinur and Shamir employed the Bloom-Luby-Rubinfeld Test from [13], a linea-
rity test originally developed as a Self-Testing/Correcting with Applications algo-
rithm. Later, a novel test optimised by reusing computations is proposed in [30]. In
this sense, however, a notable contribution is by Winter, Salagean, and Phan who
proposed in [93] an improved linearity test based on higher order differentiation,
enhanced by Moebius transform. Srinivasan et al. propose instead a three step al-
gorithm in [73], where filters are applied one after the other to “prove” the linearity
of a given black box polynomial at a computational cost of O(2d+1(n2 + n)).

Testing the linearity of randomly chosen superpolies qI proves however, to be
inefficient. For this reason, in [27], variables with indices in I were originally picked
accordingly to a random walk on the monomial lattice. “Moving” aleatory, however,
does not guarantee a success, therefore efforts were devoted to find a pattern to
efficiently select monomials mI while looking for the maxterms. Aumasson et al.
proposed in [5] an evolutionary algorithm to search for cubes that maximise the
number of rounds after which the superpoly is still unbalanced. Also Wang et al. in
[92] propose a new methodology to find more linear equations from the same cube
set. Following this trend, Cianfriglia et al. developed in [16] a CUDA framework to
parallel control all the cubes within a specific kite shaped region of the lattice (see
Appendix A).

However, sophisticated algorithms were also developed to avoid manipulating
such large cubes directly. Stankowski in [74], for example, introduced a greedy bit
set algorithm with O(2n+c) complexity, later expanded in [45].

By talking about heuristics, cryptographers also tried to reduce the density of
the ANFs empirically: two examples can be found in [35] and [59].

Following a different research path, more recently, Ye and Tian developed in
[100] a novel algebraic criterion to recover the exact superpoly of useful cubes.
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Figure 1. Cube Attacks family branchings.

3. Cube attacks family

The cube attack is a powerful but expensive approach to break ciphers. The
idea behind is, however, very solid and flexible and can be combined with many
different other approaches to enhance their efficiency. Figure 1 presents various
branches traversed by cube attacks.

3.1. Dynamic cube attack and cube testers. The first approach in this sense
can be found in [6] where cube building is mixed with efficient property-testers
in order to detect non-randomness in cryptographic primitives (or either mount
cipher distinguishers). The cube framework can, in fact, be exploited in order
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to test global properties of a black-box polynomial without retrieving the formal
expression of the polynomial.

Such strategy is under the name of Cube Testers and combines a property tester
on the superpoly (for some property P) with a statistical decision rule that proba-
bilistically recognises whenever the superpoly is δ-far from P. Namely, the linearity
test exploited in the canonical cube attack is itself a cube tester; other examples of
properties realisable as cube testers are polynomial randomness (i.e. the superpoly
coefficients are balanced) and the test of presence of neutral variables (i.e. the
superpoly does not depend of such a variable).

Cube testers are the basis to create flexible distinguishers as can be seen in [8]
first and in [70] later, where authors develop, relying on [74], distinguishers for
Trivium based ciphers; however, cube testers main contribution to cryptanalysis
can be found in [29] where they are exploited to create Dynamic Cube Attacks.
The main observation here is that the resistance of many ciphers to cube testers
depends on a few number of non-linear operations that usually take place in the
latest stages of the encryption process; this is especially true if inputs variables are
not mixed enough during the encryption process. Such a behaviour reflects in a
very few high order monomials in the ANF of p that, if identified at early stages
of the encryption process, can be efficiently killed by vanishing specific input bits –
often called Dynamic variables. Such dynamic variables, forming a disjoint set from
cube variables, usually belong both to public and private ones: the public ones can
be set at will during online phases; private ones must instead be guessed and, in
particular, these guesses can be confirmed or refuted by cube testers themselves.
This, therefore, allows the cryptographer to eventually retrieve key bits without
solving any algebraic system at the cost of a more complex offline phase.

Effective usage of this approach can be found, for example, in [67] where authors
attack a reduced version of Simon lightweight cipher by using deterministic distin-
guishers based on cube testers, or in [9] where the author proposes a bi-dimensional
dynamic cube attack against 105 round Grain v1 that retrieves nine secret-key-bits
of the cipher.

A similar approach is also developed in [41] on Keccak sponge functions, where
authors combine cube testers with bit-tracing method (see [91]) to create Condi-
tional Cube Testers. Here authors impose a further classification of cube variables,
dividing those that mix together after the second encryption round (conditional
cube variables) from those that are not multiplied with each other after the first
round and are not multiplied with any conditional cube variable after the second
round (ordinary cube variables).

The same approach is further improved firstly in [53], where the limitation that
no mutual multiplication between cube variables occur in the first round is removed,
and then in [57], where more constraints on the number of conditions involving the
secret bits are added.

Conditional cube testers were also fused with Mixed Integer Linear Programming
by Li et al. in [52] and [12], by Song et al. in [71] and [72] and, more recently, by
Zhao et al. in [106] where ciphers of the Keccak family were attacked.

Many efforts focussed recently on novel methods for finding cube testers. A
possible strategy is to esteem the probability for the superpoly in selected rounds,
as in [23]. Another interesting approach can be found in [96] where Liu et al.
extended its numeric mapping method for estimating the algebraic degree of NFSR-
based cryptosystems (presented in [58]) with the works [74] and [45] by Stankowsky
et al.
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Liu’s numeric mapping method was also employed in a more recent work by
Kesarwani et al. where, in [46], the authors propose a new algorithm for cube
generation following the research branch of [70].

3.2. Exploiting of non linear equations. As we pointed out in the previous
section, linearity is not the only property we can require on the degree of the
superpoly. In particular, we can consider maxterms up to a certain small degree
and still recover a polynomial system whose resolution is feasible.

As an example, Mroczkowski and Szmidt propose in [63] an improvement to
the cube attack concerning both linear and quadratic equations. They employed a
Quadracity Test to retain discarded non-linear equations and use key bits obtained
via linear equations to solve “by hand” the quadratic ones. This solution highly
enhances the number of key bits the attacker can recover while still limiting the
cube search phase: in their application to Trivium-709, for example, they claim no
brute-force is needed to recover the whole key.

Combining the ideas of [63] with their previous work [92], Wang et al. proposed in
[24] a new methodology which makes use of those common variables in two different
dimensional cubes to induce maxterms of higher-order from those of lower-order,
thus recovering more key bits and reducing the search complexity.

It is also worth of mention the work by Ye and Tian [98], where an experimental
approach is employed against Trivium-like ciphers. The authors focus on improving
nonlinear superpolys recovery by means of linearisation techniques. Under this set-
ting, several linear and quadratic superpolys are claimed for the 802-round Trivium
as well as the possibility of finding a quadratic superpoly for Kreyvium is shown.
Relying on specific features discovered on Trivium also an enhanced method to at-
tack Trivium-like ciphers is presented, claiming a generic method of choosing useful
nonlinear key expressions.

Clearly, the higher degree equation found this way can be used in many different
ways; two more interesting approaches on this side are given by Sun and Guan in [77]
where cube attacks are exploited to find new linear relations for linear cryptanalysis
purposes and by Eskandari and Ghaemi Bafghi in [32] where non-linear equations
are treated as linear equations with noise to attack KATAN lightweight cipher.

3.3. Cube attacks on side channel attacks. The original version of cube attack
has no free quarters for uncertainty or measurements errors. However, cube attacks
have a natural error correction mechanism (see [28]): by considering a cube K large
enough during the offline phase and by evaluating all of its sub-cubes I ⊂ K yielding
linear relations it is in fact possible to gather redundant linear equations. In the
online phase, assuming a per-round leakage with uncertainty (as it happens when
Hamming weight only is available), the summation of all the leaked bits from a
specific sub-cube assignment yields a new linear equation in the x with a known
term depending on the assignment of the known leaked bits. These new relations
can be equated to the corresponding linear combination of key variables k pre-
evaluated during the offline phase, obtaining a linear system of equations in the x
and k variables that the attacker can exploit.

This approach was applied on many block ciphers by exploiting their specific
structure starting from [28], where many linear relations were found for Serpent
and AES. Later the same year also Yang et al. used this approach to analyse
Present Lightweight cipher in [97].

The same approach led Abdul-Latip et al. to produce two works: in [2] they
halved the complexity of NOEKEON block cipher by considering a single bit infor-
mation leakage from the internal state after the second round; in [1], the authors
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modified the cube attack used in [97] by employing some low-degree non-linear
equation (e.g. quadratic equations) to exploit leakages on PRESENT.

The theory from the previous section was also combined with side channel cube
attacks by Fan and Gong in [33] where the security of the Hummingbird-2 cipher
(an ultra-lightweight cryptographic algorithm) is discussed. In particular, they
describe an efficient term-by-term quadraticity test for extracting simple quadratic
equations besides linear ones to be exploited along with the bit-leakage model in a
fast GPU model.

Concurrently, also Zhao et al. produced an attack to PRESENT in [105] relying
on [97] where a two-layer “divide and conquer” strategy is used concurrently with
a sliding window approach and an iterated version of the attack is proposed. Their
iterative method was further refined in [104] where the authors also propose a model
based on non-linear equations.

During the same year, the full version of LBlock was also attacked by means of
these techniques in [42].

Li et al. also approached side channel cube attacks on PRESENT the same year
in [54] after their preliminary work on LBlock of the year before [56]. However,
their work focussed on data refinement employing the maximum likelihood decoding
algorithm in order to correct the side channel outputs by considering it as a linear
code transmitted through a binary symmetric channel with crossover probability
depending on the accuracy of the measurements. A 50% success rate is achieved in
[55] even when data are more than 40% dirty.

3.4. Meet in the middle techniques. One more interesting approach to cube
attack is the possibility to fuse it with meet-in-the-middle techniques. Firstly sug-
gested in the original paper [27], the first implementation of this approach is to
the iconic 120-bit Courtois Toy cipher (CTC) due to Mroczkowski and Szmidt in
[61]. Here the offline phase is performed against four rounds of encryption, by re-
covering many linear equations as usual (here more than 600 linear equations were
found). On the online phase, however, the defender encrypts the messages with a
five-round encryption. The explicit inversion is therefore performed by obtaining
the ciphertext bits after four rounds of encryption by means of equations in the key
bits as unknowns and ciphertext bits as known variables. Due to the simplicity of
the encryption round rule, these equations are linear in the key bits so, by equating
these polynomials to the one gathered in the offline phase, the result is still a linear
system that can be solved as in usual cube attack approaches.

Later on, just mimicking what they did earlier in [61], the authors extended the
technique to 255-bit Courtois Toy cipher 2 in [62].

A different approach about dynamic cube attack on stream ciphers that is some-
how related to MitM techniques can also be found in [4]. Here Ahmadian et al.
proceed in the opposite direction to usual MitM, by explicitly splitting the cipher
into three sections computed independently: an upper extension part, an interme-
diate section where cube variables are chosen, and a lower extension part.

3.5. Cube attacks based on division property. Finally, one of the most recent
and promising extensions of cube attack family consists in fusing it with the division
property, a tool originally introduced by Todo in [80] (later formalised in [81]) as
an improvement over Integral Cryptanalysis (see [49]). A multiset A with elements
in FN2 is said to have the division property DNk , with 0 ≤ k ≤ N , if:

deg(ys) =
∑

s < k implies
∑

ys[{1, . . . , N} → A] = 0 ,

at the varying of s ∈ ZN2 .
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Before pairing it with cube attacks, the concept was firstly extended at FSE
2016, where Todo and Morii in [84] applied it to SIMONs family, introducing the
conventional bit-based division property (CBDP) and the bit-based division property
using three subsets (BDPT) and exploiting for the first time the zero-sum property:
this solution was more robust than the classical division property, even though it
was not efficient enough to carry out a feasible attack.

In order to overcome the efficiency issue, Xiang et al. introduced in [94] the
division trails i.e. the propagation of the division property through the rounds
of the cipher, along with an approach to evaluate them through MILP (Mixed
Integer Linear Programming) models, hence enabling faster computations. More
formally, given R rounds of a cipher, an input y generates, for each round r, an

internal state y(r). Analogously, a set A with elements in FN2 , generates R sets

(A(0) = A,A(1), . . . , A(R−1)), where A(r) = {y(r) | y ∈ A}. A division trail for
the set A is a vector k = (k0, . . . , kR−1), with 0 ≤ kr ≤ N , such that the division
property DNkr holds for the set A(r), for all 0 ≤ r < R. Analysing the round function
of the cipher, we can build relations between elements of a trail (i.e., study the
propagation of the division property): by writing such relations in a MILP way
(relying on the three basic operations of and, xor and copy) we obtain a system of
linear inequalities which solutions correspond to valid trails.

The introduction of MILP models allowed Todo et Al. in [82] to efficiently apply
Division Property along with cube attack, exploiting the CBDP: the non-blackbox
representation of the cipher allowed, jointly with the efficient MILP interpretation of
the division trail, to obtain unexpected results, hence enabling the authors to break
832-round Trivium. Further results were obtained the following year at Crypto’18,
where Wang et al. in [87] improved the attack up to 839 rounds of the same cipher.

In [39] Wang et al. introduced a new algorithm to find better cubes: to do so,
they used a particular MILP model to find division trails based on SAT (see [75])
and on the flag technique (see [88]).

Always thanks to MILP, also BDPT become exploitable in feasible time, as it
is shown more recently in [38] where up to 841-round of Trivium were successfully
broken.

Later, Wang et al. introduced in [90] a novel algebraic version of the division
property under the name of monomial prediction, also showing its strict similarities

with BDPT itself: here, the state variables y(r) = (y
(r)
0 , y

(r)
1 , . . . ) of round r are

considered as polynomial components y
(r)
i = pr,i(y

(r−1)) representing the update
function of the i-th component of the state at round r depending on state com-
ponents at round r − 1 (hence, p can be obtained iterating composition of pr,i,
round-by-round); these formal relations are then exploited to determine whether

specific input state variables y
(0)
i (or, possibly monomials s in the y(0) variables)

do or do not propagate to the upcoming rounds. This task can be achieved by

analysing round-by-round whether pr,i does contain first-degree monomials y
(r−1)
j

for some j or does not, that is, considering the set Pr,i of the monomials pr,i is

made of (namely, such that pr,i =
∑
Pr,i), we say that y

(r−1)
j is monomial predicted

at round r if:

(20) y
(r−1)
j ∈ Pr,i for some j, component index of the state at round r − 1 .

A set of variables (y
(0)
i0
, y

(1)
i1
, . . . , y

(R−1)
iR−1

) such that (20) pairwise holds (i.e., y
(r−1)
ir−1

is monomial predicted in y
(r)
ir

) is said a monomial trail. We then claim:

Proposition 6 (cfr.[90]). A given first-round state variable y
(0)
i0

can be found in
pr,ir if and only if the number of monomial trails connecting them is odd.
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The same proposition holds if considering monomials s(0) in y(0) variables too.
Given a cube I, Proposition 6 gives us a method to evaluate the superpoly qI of

the cube attack by exploiting the monomial trails and, hence, by adopting efficient
MILP models. In fact, if we consider the set P of all monomials p is made of
(namely, p =

∑
P ), we can then reformulate (7) as follows:

qI =
∑

M, M = (y0[I→1d,Ic] ∩ P )/mI = {m ∈ y0[I
c] | m ·mI ∈ P} .

The speed-up obtained via MILP modelling, allowed the authors to break Trivium
reduced up to 842-rounds [90].

Division property is also linked with other kinds of cube attacks, such as dynamic
cube attacks: in [37], Hao et al. introduced on one hand a heuristic algorithm using
flag technique division property that permits to find superpolies with low bias, on
the other hand, a new MILP model method for division property using nullification
strategies. With this approach, it was possible to define a new dynamic cube
attack on Grain-128 with a success probability of 99.83% and to use the new MILP
modelling to attack 892 rounds of Kreyvium.

4. Frameworks & implementations

Since from its very first introduction, cube attack was presented not only as a
theoretical attack, but also as a practical methodology to break real-world ciphers.

For this reason, Aumasson et al. built in [5] a first cube tester framework on
field-programmable gate array (FPGA) capable of attack 237 rounds in Grain-128
(out of 256) in 254 cipher runs. The idea behind this implementation is hereafter
to split the computation in an input generator, an output collector and a controller
unit that employs an evolutionary algorithm for the cube searching.

Later FPGA implementation of dynamic cube attacks can also be found in [25]
(later revised in [36]) where RIVYERA computing system is adopted.

The main contribution of the previous approaches was however given by the
possibility of simultaneously evaluate multiple instances of the cipher in order to
fraction the execution times. Following this trend, GPUs were for example employed
to test SHA-3 candidates against unbalances, as reported in [44].

Cipher evaluations occurring in cube construction are highly related one to the
other and often repeated. In [15], [16], and [14] the Cranic Computing group2

worked out a complete refactoring of the computation on GPUs in view of repur-
posing of values already computed. Main contributions are in the organisation of
the cube attack as a Time Memory Data Trade-off algorithm, named kite attack,
to optimise the computation in accord with the structure of GPU memory layers.
The development of a CUDA framework for the cube attack resulted in an open
source framework enabling the finding of an 800-rounds superpoly in Trivium [17].

As highlighted by Zhu et al. in [107], the framework development is a key point
not only to check attacks feasibility, but also to show the correctness of many
unfitting assumptions cryptographers may claim. In particular, their contribution is
under a python-based web application (unfortunately no longer accessible by now)
to test cube attacks-like (in particular linearity of given superpoly) on different
ciphers (Trivium only was implemented, however, simple extension could be made
to integrate other ciphers).

Other notable cube attacks implementations are introduced in [4] as we discuss
earlier in Section 3.4 and in [42] where Islam et al. develop a GUI toolkit which can
load stream or block cipher and can check its resistance against the cube attack.

2https://www.cranic.it

https://www.cranic.it
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Attack Family Attack Type
Rounds Maxterms/

Time
Bibliography

out of 1152 Key bits term

cube attack Key Recovery 735 53 M 230 [27]

cube attack Key Recovery 767 35 M 245 [27]

cube tester Distinguisher 790 – 230 [6]

cube tester Non-randomness 885 – 227 [6]

cube tester Distinguisher 806 – 244 [74]

cube tester Non-randomness 1078 – 254 [74]
cube tester Distinguisher 806 – – [48]

non-linear eqs. Key Recovery 709 full – [63]

non-linear eqs. Key Recovery 799 full 239 [35]
linear extension Direct Key Rec. 576 26 M – [24]

cube like Distinguisher 839 – 237 [59]
cube like Key Recovery 576 69 M – [73]
cube like Key Recovery 703 – – [93]

bias cube tester Distinguisher 823 – 242.74 [8],[70]

cube attack Key Recovery 576 69K 212.63 [43]

Kite Attack Key Recovery 799 15 M 245.3 [15]

Kite Attack Key Recovery 800 1 M 246.3 [16]
MILP CBDP cube Key Recover 832 – – [82]

non-linear eqs. Key Recovery 802 7 M – [98]
Division property Distinguisher 838 – – [83]
MILP CBDP cube Key Recovery 839 – – [87]

Div. prop. framework Key Recovery 805 full 241.4 [101]

Algebraic recovery Key Recovery 838 5 M 237 [100]
cube tester Distinguisher 850 – – [46]

MILP BDPT cube Key Recovery 839 full 278.6 [40]
MILP BDPT cube Key Revovery 841 – – [38]

MILP BDPT cube Key Recovery 978 1 K 228.5 [102]

MILP BDPT cube Non-randomness 1108 – 228.5 [102]
MILP monomial pred. Key Recovery 842 – – [90]

MILP monomial pred. Key Recovery 843 2 M 279 [78]

Table 1. Results on Trivium cipher.

Grain-128

Attack Family Attack Type
Rounds Maxterms/

Time
Bibliography

out of 256 Key bits term

FPGA tester Distinguisher 237 – 254 [5]

cube tester Distinguisher 246 – 242 [74]
cube tester Non-randomness full – – [74]

dynamic cube Key Recovery 207 80 K 231 [29]

dynamic cube Key Recovery 250 theo 2101 [29]

dynamic cube Key Recovery full theo 2113 [29]

dynamic cube Key Recovery full full 290 [25],[36]
Kite Attack Key Recovery 160 70000 M – [17]

DP dynamic cube Key Recovery full 3 297.86 [37]

cube tester Distinguisher 191 – 233.86 [23]

Grain-v1

Attack Family Attack Type
Rounds Maxterms/

Time
Bibliography

out of 160 Key bits term

cube tester Distinguisher 90 – 239 [74]

cube tester Non-randomness 96 – 27 [74]
cube attack Key Recovery 75 19 M – [92]

dynamic cube Key Recovery 105 9 K 234 [9]

dynamic cube Key Recovery 100 full 247 [68]

Table 2. Results on Grain-128 and Grain-v1 ciphers.

Finally, Ye and Tian introduced in [101] a framework for Trivium efficient key-
recovery where Stankovski’s Greedy bit set algorithm fuses with division property
and Improved Moebius Transformation to construct potentially good cubes.

5. Applications

The cube attack family focussed since its beginning on stream ciphers like Tri-
vium (Kreyvium, Quavium, . . . ) and Grain (Grain-v1, Grain-128, . . . ). We report
the respective main results in Table 1 and Table 2.

Also PRESENT cipher is entitled of an honourable mention, as many develop-
ments in side-channel cube attacks were performed on this cipher. Table 3 reports
the principal contributions.
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Attack Family
Leakage Leaked Error Key Time Data Biblio.
round data toll. bits bound required term

PRESENT-80

cube attack 3rd 0,1,2,3 0% 48 232 215 [97]

non-linear eqs. after 1 Hamming 0% 64 216 213 [1]

cube attack 3rd 4,8,12 0% 48 – 211.92 [105]

iterated cube 4rd 0 0% 72 – 215.154 [105]

non-linear iterated after 3 Hamming 0% 72 – 28.95 [104]†

max likelihood after 1 LSB 0.6% 64 221.6 218.9 [54]

max likelihood after 2 2nd LSB 0.4% 64 220.6 223.1 [54]

max likelihood after 1 LSB 19.4% 64 221.6 210.2 [54]

max likelihood after 1 LSB 23.2% 64 231.6 210.1 [55]

max likelihood after 1 LSB 29.5% 64 227.6 216.2 [55]

max likelihood after 1 LSB 40.5% 64 227.6 221.2 [55]

PRESENT-128

non-linear eqs. after 1 Hamming 0% 64 264 213 [1]

iterated cube 4rd 0 0% 85 – 215.156 [105]

non-linear iterated after 3 Hamming 0% 121 – 29.78 [104]†

LSB states the Least significant bit in the hamming weight of the internal state bytes.
Error tolerant methods all have success probability above 50%.

†: tested on real devices with SC countermeasures like random delay and masking.

Table 3. Key recovery results via side channel attack on
PRESENT cipher with key length of 80 and 128 bit.

Attack Family Attack Type
Rounds

Time Memory
Bibliography

out of 24 term

Keccak-MAC-128

Cube like Key Recovery 6 266 232 [26]

Conditional Cube Key Recovery 6 240 – [41]

Divide-and-Conquer Key Recovery 6 245 213 [98]

MILP-aided Cube-like Key Recovery 6 242 29 [12]

Cube-like Key Recovery 7 297 232 [26]

Conditional Cube Key Recovery 7 272 – [41]

Divide-and-Conquer Key Recovery 7 284 264 [98]

MILP-aided Cube-like Key Recovery 7 280 215 [12]

Cube-like Forgery 7 265 – [26]
Keccak-MAC-256

Cube-like Forgery 8 2129 – [26]
Keccak-MAC-512

Conditional Cube Key Recovery 6 258.3 – [52]

Conditional Cube Key Recovery 6 240 – [72]

Conditional Cube Key Recovery 7 2111 – [71]

Conditional Cube Key Recovery 7 2112.6 247 [12]

Conditional Cube Key Recovery 7 272 – [53]

MILP-aided Cube-like Key Recovery 7 2108 2108 [106]

Table 4. Results on Keccak sponge function.

Even if cube attacks work on ciphers by considering them as black-box polyno-
mial and therefore are suitable to attack nearly any cryptosystem, they can also
exploit specific cipher vulnerabilities. It is the case, for example, of the work per-
formed by Dinur and Shamir first, and by many other cryptographers later, on
Keccak family (Ketje, Keyak, . . . ). We report in Table 4 the principal results
obtained against Keccak sponge function.

Many other cipher has been attacked via cube family. It is the case of lightweight
and ultra-lightweight ciphers like SIMONs ([84], [67], . . . ), Simeck ([103]) KATAN
([48], [90], . . . ), Subterranean 2.0 ([57]), Hitag2 ([76]), LBlock ([95], [42], . . . ),
Hummingbird-2 ([33]), TinyJAMBU ([79]), Ascon ([31]), MORUS ([39]) and many
others.

6. Conclusions

In this paper, we revise and improve a novel notation for cube attacks family. We
employ this notation to analyse and provide a cohesive review of the state-of-the-art
for this wide family of cryptanalysis techniques.
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We discuss the original Dinur and Shamir’s attack in F2 and we extend it in
a generic finite field Fq, also providing a description of recent methodologies em-
ployed to find cubes. We summarise the family of attacks in five principal research
branches: (i) Cube Testers and its extensions (Dynamic and Conditional Cube
Attacks), (ii) Cube Attacks with non linear equations, (iii) Cube Attacks with in-
formation leakages, (iv) Meet in the Middle cube attacks, and (v) Cube Attacks
based on the Division Property and its extensions (based on Division Trails and
Monomial Prediction). For what concerns the latter, we also focus on formalising
the contributions with the introduced notation, lightening the wordiness of the
original one. Later we provide an overview of the few frameworks and implemen-
tations currently available. We devote a single appendix to describe in detail our
framework implementation of the Kite Attack, where we also present Mickey2.0
as a test case. Finally, we resume in convenient tables all of (to the best of our
knowledge) the most significant results obtained through the various approaches
applied to the principal attacked ciphers, namely: Trivium, Grain, Present, and
Keccak. We believe that cube attacks, in particular combined with DPs, still have
a long road to run across.
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Appendix A. Unboxing the kite attack

Here we describe the Kite-Attack framework focusing on its source code and
how to extend it. The framework has been designed to be cipher independent; as
shown in [15] the cost of the attack differs only by a constant factor when different
ciphers are used. This appendix aims at providing a detailed guideline on how to
extend the framework support to new ciphers; we believe this work can be useful
to the crypto-community as the framework provides an easy way to test/analyse
ciphers strength w.r.t. the cube attack. A brief description of the structure of the
code framework appeared in [18], however here we provide a more detailed version
along with all the steps to add a new cipher. We organise the appendix as follows.
We start with a brief introduction to Nvidia GPUs and CUDA jargon3. Then we
describe in detail the framework and its code structure, we define and describe all
the steps needed to add a new cipher and, finally, we show how to add it, Mickey2.0,
to the framework by crossing these steps.

A.1. CUDA and GPU. For a better understanding of our work, we report a
few, basic, information about the micro-architecture of NVIDIA GPUs as exposed
through the CUDA software framework, since this is the solution used in our study.
From a hardware standpoint, an NVIDIA GPU is an array of Streaming Multipro-
cessors (SMs); each SM contains a certain number of CUDA cores. From a software
perspective, a CUDA program is a sequence of computing grids; in turn, each grid
is split into blocks, and each block comprises a certain number of threads. Each
function executed on the GPU on behalf of the CPU is called kernel. To attain a
significant fraction of the theoretical peak performance, occupancy (i.e., the frac-
tion of active computing elements at a given time) must be consistently kept high,
in such a way that thousands of threads must be ready to be scheduled at any time.
Threads are executed by an SM in groups of 32 units called warps, and performance
improves significantly when threads in the same warp execute the same code with
no divergence and access memory according to patterns that privilege threads local-
ity, i.e., if threads belonging to the same warp access consecutive memory locations
(memory coalescing in CUDA jargon). Any thread may access data from multiple
memory spaces: (private) registers, (private) local memory, shared memory, global
memory, and constant, texture memories that are read-only. Global memory is the
biggest but slowest memory available and it is persistent across kernel launches by
the same application; it can be accessed by all the threads. Shared memory is visible
to all threads of a block and it has the same lifetime as the block. It is roughly 100×

3Readers familiar with the subject may safely skip Section A.1
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faster than global memory and it can be used for caching or to facilitate memory
coalescing in cases where it is not possible otherwise [21]. Local memory is actually
part of the global memory and it is used to provide threads private memory when-
ever registers are not enough. Registers are the fastest memory and they are also
used for the warp-level operations called shuffle that allow threads belonging to the
same warp to exchange data using registers without passing through higher-latency
components of the memory hierarchy.

A.2. (α, β)-Kite attack . The (α, β)-kite attack, introduced in [17], is based on the
choice of a set Imax of α public variables and a proper subset Imin of β variables,
with α > β. These two sets represent a maximal and a minimal cube, respectively
x[Imax] and x[Imin]. The name kite comes from the observation that the choice of
Imin and Imax defines a diamond-shaped subspace of all possible monomials, with
the bottom vertex of the diamond being mImin

and the top vertex being mImax
. This

subspace, schematically depicted in Fig. 2, is made of all monomials mI ’s such that
Imin ⊆ I ⊆ Imax and it is exhaustively explored by our attack.

mImax

α = |Imax|

mImin
β = |Imin|

degree n = |x|
m1n

degree 0
1

The large diamond is the space of all possible
monomials, with the bottom vertex being the
constant monomial 1 of degree 0, and the top
vertex m1n being the product m1n =

∏n
i=1 xi

of all the public variables; the smaller blue
diamond is the subspace defined by Imin and
Imax, whose bottom vertex is mImin of degree
|Imin| = β and whose top vertex is mImax of
degree |Imax| = α, which contains all and only
the monomials which are divisible by mI and
divide mImax

.

Figure 2. A schematic representation of the kite attack.

This definition of the kite naturally leads us to a Time Memory Data Trade-Off
algorithm where first

(1) for the given minimal index set Imin and an initial vector v, we compute many
variants of the cube on the index set Imin: one for each possible combination I
of the indices in Imax \ Imin, we evaluate the encryption function in each cube
x :: v[I, Imin] for all possible increments of index set I ⊂ {Imax\Imin} and for
any value of x ∈ {0, 1, . . . , n}; values are stored in memory to be accessed in a
successive moment,

(2) we iteratively combine previously computed results to evaluate coefficients of
the superpoly and test its linearity on larger cubes, namely if we want to step
from I = {i1, . . . , id} to I ′ = I ∪ {id+1}, by keeping the setting of remaining
variables as specified by the index set I1 of variables assigned to 1, we apply
the following differentiation formula:∑

p(x :: v[I−1 , I
′]) =

∑
p(x :: v[I+1 , I]) +

∑
p(x :: v[I−1 , I])

where I−1 := I1\{id+1} and I+1 := I1∪{id+1} and the increment variable id+1 ∈
Imax\I in such a way that I ′ always falls in the kite-area (Imin ⊆ I ′ ⊆ Imax).

The implementation following this idea leads to two distinct CUDA kernels: Kernel1
which is responsible for running (1) and Kernel2 which runs (2).

A schematic representation of the two kernels, in the case of a minimal example
with Imin = {2} and Imax = {1, 2, 3} is reported in Figure 3 and in Figure 4.
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Figure 3. A schematic representation of the Kernel1. For a
given index set Imin computes all the cubes x :: v[I, Imin]) for all
possible increment of index set I ⊂ {Imax \ Imin}. In the picture
|Imin| = 1 therefore any cube on Imin contains just two elements
and corresponds to blue dashed edges of the three-dimensional
cube.

A.3. Framework code overview. The framework is composed of three source
files (cubaCUDA.cu, twiddle.c and auxiliary functions.c) along with their cor-
responding header files. There are two header files: def.h which contains all the
definitions, macros and includes needed by all the sources, and key table.h must
contain two arrays describing how the keys are combined in the linearity tests. Fur-
thermore, each cipher requires the source code for the CUDA implementation and
another source file containing auxiliary functions specific to the cipher; for instance,
the setBit function described below.

The file called cubeCUDA.cu includes the two CUDA kernels, the main function
and other high level functions useful in managing the attack and several steps of
computation concerning superpolys. The file called auxiliary functions.c con-
sists of all the auxiliary functions and wrappers used in the framework. twiddle.c
contains the functions to generate all combinations of M elements drawn without
replacement from a set of N . This code has been written by M. Belmonte and the
original version can be downloaded from [10].
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Figure 4. A schematic representation of the Kernel2. Starting
from evaluation results of the first kernel in cubes on Imin stored in
memory, it combines the results to obtain values on larger cubes.
To obtain evaluation of a face we sum results of evaluations on
edges: for instance to obtain evaluations on the face labelled as ?
which is x :: v[{3}, Imin ∪{1}]: we have to combine results coming
from the two edges x :: v[{3, 1}, Imin] and x :: v[{3}, Imin]. For
each cube it also performs the linearity test by exploiting evalua-
tions of the selected cube with different assignments to x.

A GPU run is the sequential call of the runAttack function and then of the
computeSuperpoly one. The first one is in charge of the real attack, it launches
the CUDA kernels to compute partial sums over x :: v[Imin] and combines them to
test linearity. It also dumps on a binary file all the candidate maxterms found and
returns the number of them. The latter function is responsible for reading the bi-
nary file containing candidate maxterms, computing the corresponding superpolys,
and printing them in human readable format.

Before running the attack, the framework parses the configuration file which
contains the following information: the target cipher, the number of initialisation
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rounds, the indices belonging to Imin and those belonging to Imax \ Imin, and an ID
string to identify the run.

The framework provides some scripts to interactively generate configuration files.
After the setup is complete, it verifies the selected CUDA device is able to run the
attack and, if so, it generates all the data needed for the attack and copy them on
device memory. For instance, it initialises (i) the vector containing the set of keys
used in the attack, (ii) the mask representing Imin which is composed by setting
the β bits with indexes in Imin, and (iii) the 2α−β masks that represent all the
possible monomials which are divisible by mImin and divide mImax (see Figure 2).
Keys and initial vectors (IV ) are mapped on contiguous unsigned integer (u32); in
particular, dkeysize/32e and dIVsize/32e unsigned integers are respectively used for
each key and IV. Moreover it allocates the memory to store the output of linearity
tests or, in the case of the second kernel, to store coefficients of the superpoly.

Every cipher implementation may adopt its own layout to map keys and IV bit
indexes. For instance, assuming we have a cipher with IVsize of u32; the bit iv0
could be mapped to the most significant bit (msb) of the most significant byte
(MSB), to the less significant bit (lsb) of MSB or to the lsb of the less significant
byte (LSB), and so on. As the framework cannot predict which layout will be
used by the cipher, an auxiliary function for each cipher enables the framework to
correctly manage any layout. This function basically takes three input parameters:
the index of the key/IV to set, the value to set and the pointer to the first unsigned
integer that represents the key/IV. We are used to name these auxiliary functions
setBit<cipher name>. For each supported cipher, the following information has
to be provided to the framework through the def.h file:

• KEY SIZE and IV SIZE: define the number of bits representing respectively
the key and the IV;
• KEY ELEM and IV ELEM: represent the number of u32 needed to contain

respectively one key and one IV;
• CIPHER NAME: is a quoted string containing the cipher name;
• CIPHER: is an unquoted string containing the cipher name. This is used to

automatically select the setBit corresponding to the cipher.
• KEYS COEFFICIENT: is equal to KEY SIZE + 1. It is used for superpolys

computations.
• TOTAL KEYS: represents the smallest multiple of 32 greater than
KEYS COEFFICIENT

• RESIDUAL KEYS: contains the value TOTAL KEYS− KEYS COEFFICIENT.

We define some preprocessing macros that automatically select the appropriate
setBit function once the cipher specific properties are specified in the file def.h;
of course, the file containing the function implementation should be added to the
Makefile.

The framework is ready to work with ciphers that support key and IV of length
up to 256 bits. We use other preprocessor macros to setup the framework and
kernel functions accordingly to the key and IV sizes. We adopt this method as it
lets us provide optimised code for any size while, at the same time, it keeps the
code simple and easy to read. We use the preprocessor macros also to define which
cipher function has to be called by the kernels for the above reason.

A.4. Porting the cipher. We now describe the hardest step, adapting the cipher
function to CUDA. Given a target cipher E, the first essential step is the definition
of the CUDA device function that implements E. This kernel function should
require the key and the IV as input parameters and should return the corresponding
keystream. If the key cannot be stored in just one u32 word (i.e. ≥32 bit) it should
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be provided as multiple u32 variables4 rather than an array of u32 (i.e. it is better
key1, key2, . . . , keyN than key[N]). In this way, elements of the key are placed
in registers (if available) otherwise, data are stored on the global memory which
has higher latency access time. Of course, IV should be treated in the same way.

The function implementing the cipher is called by hundreds of threads simulta-
neously on different inputs; for this reason, this function must be self-contained,
i.e. it should use only (thread) local variables to store partial computations and it
should not do anything that can interfere with other computations. In other words,
our goal is to implement the target cipher E efficiently in CUDA such that it can
be executed concurrently by thousands of threads. The implementation should be
efficient as the cipher function is called 2α × 2β times5 by each thread involved in
the computation; so any effort on optimising it will not be vain.

To maximise the attack throughput the cipher function should return 32 bits
of keystream, so to fully exploit framework’s capability to test the linearity of 32
polynomials simultaneously; however, this is usually trivial to do.

Finally, as mentioned in Section A.3, the throughput is maximum when all the
threads in the same warp execute the same code with no divergence. For this reason,
any if/else statement should be avoided unless you are sure that the result of the
condition is the same at warp level, i.e. all the threads in the warp obtain the
same result when tests the condition. In the case this cannot be guaranteed, the
if/else block of code should be carefully analysed, and, if possible, redesigned
with an equivalent block of code that does not contain the branch. An example is
reported in Section A.6.

A.5. Mickey2.0: cipher definition. MICKEY (Mutual Irregular Clocking
KEYstream generator) belongs to eSTREAM portfolio. It is an hardware-efficient
stream cipher designed by S. Baggage and M. Dodd [7]. It takes two input para-
meters, an 80-bit secret key K and an IV with variable length between 0 and 80
bits. It is composed of two registers R and S of 100-bits each called respectively
the linear and non-linear registers. It defines two functions clock R and clock S

to update R and S respectively. Differently from other ciphers like Trivium and
Grain128, Mickey2.0 does not initialise the registers with key and IV; it relies on
one specific function instead, called clock kg, that updates both R and S by calling
clock R and clock S. In the initial steps, the IV and the key bits are used as input;
after these clocks, it runs for 100 more clocks with input 0. Interested readers may
find more details in [7].

A.6. Mickey2: porting to CUDA. We use as a reference for our porting the
faster version of Mickey, source code provided in [60]. This version has the advan-
tage that already works with u32 and efficiently updates register states.

For the other supported ciphers (Trivium and Grain128) we adopted the layout
that maps key and IV of index 0 to the msb of the MSB ; to avoid maintaining
multiple layouts, we adopt the same layout also for Mickey2.0 and we define the
masks representing the update sequences COMP0, COMP1, FB0 and FB1 and the
mask defining the RTAPS vector accordingly to the selected layout.

With respect to the original implementation, we do not use auxiliary functions
for clocking R and S or to initialise the cipher with key and IV; we implement
all the steps inside the cipher function to avoid the overhead of calling auxiliary
functions. Moreover, for the reasons explained in Section A.4, our function do not
use arrays for keys and IV but multiple u32 words; for instance three u32 for both

4The number of u32 words is equal to dkeysize/32e
52α cubes each of dimension 2β . The cipher function has to be computed for each vertex of

the cube.



28 M. CIANFRIGLIA, E. ONOFRI, S. ONOFRI, AND M. PEDICINI

a key or an IV. All these choices, however, induced us to split the load IV and load
key steps in three loops each. In this way, we duplicate the code but we do not need
extra computations to identify which u32 variable is used at every step. We also
define a loop that implements pre-clock and another one for keystream generator.
This choice allows us to perform optimisations as described below.

The functions CLOCK KG, CLOCK R and CLOCK S as defined in Mickey2.0 specifi-
cation, contain some if statements. In the follow, we analyse each of them:

• CLOCK KG: the value of the MIXING parameter determines how to compute
INPUT BIT R. However the result of this check is known a-priori as it is
always TRUE in the initialisation phase and FALSE in keystream generation
mode. As we managed the initialisation and keystream generation phases
in different loops, we can safely skip the check of MIXING parameter and
set the correct value of INPUT BIT R in the loops;
• CLOCK R: there are two if; the first one checks the RTAPS vector to deter-

mine which states have to be xored with the value of the FEEDBACK BIT.
The second one checks the value of CONTROL BIT R to determine if the new
states need to be bitwise-xored with the older ones. We apply the same ap-
proach used in [60] in both the checks; we perform a xor operation between
states and results of the multiplication of the masks representing RTAPS

and FEEDBACK BIT for the first check, and the result of the older states
multiplied by CONTROL BIT R;
• CLOCK S: here we have an if-then-else statement. This is a little bit

different w.r.t. the other examples mentioned above as we need to ma-
nage also the else case. The control statement checks the value of the
CONTROL BIT S variable; if it is 1, the states of the registers are updated by
computing the xor of ŝi with the result of the multiplication of FB1 and
the FEEDBACK BIT; if it is 0, the xor is computed between the state and the
result of the multiplication of FB0 and the FEEDBACK BIT. We rewrite this
check in the following way

S0 ^= ( (!contr s & 0x1) * (S MASK0 0 * feedback));

S0 ^= (contr s * (S MASK1 0 * feedback));

where
– S0 contains the states s0...s31,
– contr s is the CONTROL BIT S,
– feedback is the FEEDBACK BIT, and
– S MASK 0 0 S MASK 0 0 contain respectively FB00 . . .FB031 and FB10

. . .FB131 bits.
These operations are equivalent to the original if-then-else statement.

The above rewriting of each if statement grants that all the threads of a warp
execute the same instruction on different data at the same time. Please notice that
if we had left the original if statements we could not have the same assurance.
This is due to the fact that values in INPUT BIT R, INPUT BIT S, CONTROL BIT R

and CONTROL BIT S are determined from the states of the registers; as each thread
executes the cipher on a unique couple of key and IV, each thread may have differ-
ent values for the variables and consequently yields different results on statement
checks.

A.7. Framework installation and test case. Here we describe all the steps to
install the framework and run a test case. Please notice that you need a Linux com-
puter equipped with an Nvidia GPU of CUDA compute capability ≥ 3.5. Moreover,
you need gcc ≥ 4.5.0 and CUDA ≥ 7. To verify the CUDA compute capability
please refer to [22].
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Before starting please download the latest version of the framework from our
repository [47]. You can download it as a zip file or you can clone it from the git
repository.

A Makefile is provided to install the framework, it instructs the compiler to
generate optimised code for most of the compute capabilities. If you have one of
the latest GPUs or a Jetson Board, please check if the compute capability of your
device is listed on the Makefile; if not, please add it to CUDA FLAGS variable with
the -gencode arch=compute X, code=sm X, where X is your compute capability.
To install the kite-attack framework, simply run make install.

Once it is successfully installed, you may test it using one of the test configuration
files provided in the config directory or you may generate a new configuration file
for your customised attack.

An interactive BASH script, called genConfigFile.sh, is provided inside the
scripts directory. This script helps users to customise their attacks. It allows to
choose the target cipher, the number of initialisation rounds to attack, the Imax

and Imin indexes, the run identifier and the path-name of the file where the chosen
configuration is stored. An example of how to use the script is provided below.

To launch the attack, run the binary file corresponding to the selected target
cipher, provide the configuration file, the output directory, and the id of the CUDA
device you selected for the attack. If your system has only one device the value to
pass is 0, in the case your system has more than one CUDA device provide the id
of the chosen device. You may use nvidia-smi tool to obtain the list of all devices
of your system along with the id and some other details.

In the following, we provide a complete session as list of commands, including
instructions to get the framework, install it, generate a custom configuration file to
attack the Mickey2.0 cipher, and run the attack.

$ git clone https://github.com/iac-cranic/kite-attack

$ cd kite-attack

$ make install

The interactive script genConfigFile.sh asks the user some questions and ge-
nerates the configuration file accordingly to the answers. In the following we report
the list of questions and corresponding answers along with the generated configu-
ration file:

$ scripts/genConfigFile.sh

- [Q]: Where do you want to save the configuration?

(default newKiteAttack.conf):

- [A]: testMickey2.conf

- [Q]: Select the target cipher

- [A]: 3

- [Q]: Insert the number of initialization rounds

for the selected cipher: (default 100):

- [A]: 20

- [Q]: Insert run Identifier:

(automatically generated: KITE_xSI6UZjp8m):

- [A]: KITE_MICKEY_TEST_CASE

- [Q]: Insert the value of I_max :

- [A]: 5

- [Q]: Insert the value of I_min :

- [A]: 2

- [Q]: Insert the 0-th value that belongs to I_min

(please note that the indexes start from 0):

- [A]: 0

- [Q]: Insert the 1-th value that belongs to I_min

(please note that the indexes start from 0):

- [A]: 1

- [Q]: Insert the 0-th value that belongs to I_max
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but not to I_min (i.e. (I_max\ I_min))

(please note that the indexes start from 0):

- [A]: 2

- [Q]: Insert the 1-th value that belongs to I_max

but not to I_min (i.e. (I_max\ I_min))

(please note that the indexes start from 0):

- [A]: 3

- [Q]: Insert the 2-th value that belongs to I_max

but not to I_min (i.e. (I_max\ I_min))

(please note that the indexes start from 0):

- [A]: 4

The configuration file testMickey2.conf has been

successfully generated

=================================

TARGET_CIPHER=Mickey2

INIT_ROUNDS=20

RUN_IDENTIFIER=KITE_MICKEY_TEST_CASE

I_max=5

I_max_minus_I_min=3

I_min=2

I_MAX_SET={0,1,2,3,4}

I_MAX_minus_I_MIN_SET={2,3,4}

I_MIN_SET={0,1}

=================================

The last step is to run the attack, this can be done with the following command:
$ bin/kite_attack_mickey2 0 testMickey2.conf out_dir

In the config directory there are also configuration files to test Trivium and
Grain128; with these configuration files the framework finds several superpolys of
reduced rounds Trivium and Grain128.
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