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Abstract
Payment channel networks (PCNs) provide a faster and
cheaper alternative to transactions recorded on the blockchain.
Clients can trustlessly establish payment channels with re-
lays by locking coins and then send signed payments that
shift coin balances over the network’s channels. Although
payments are never published, anyone can track a client’s
payment by monitoring changes in coin balances over the
network’s channels [22, 30]. We present Twilight, the first
PCN that provides a rigorous differential privacy guarantee to
its users. Relays in Twilight run a noisy payment processing
mechanism that hides the payments they carry. This mecha-
nism increases the relay’s cost, so Twilight combats selfish
relays that wish to avoid it using a trusted execution environ-
ment (TEE) that ensures they follow its protocol. The TEE
does not store the channel’s state, which minimizes the trusted
computing base. Crucially, Twilight ensures that even if a re-
lay breaks the TEE’s security, it cannot break the integrity of
the PCN. We analyze Twilight in terms of privacy and cost
and study the trade-off between them. We implement Twilight
using Intel’s SGX framework and evaluate its performance
using relays deployed on two continents. We show that a route
consisting of 4 relays handles 820 payments/sec.

1 Introduction

Blockchain systems such as Bitcoin create a public ordered
log of transactions without relying on a trusted party. Instead,
these systems distribute trust among potentially many partici-
pants that connect in a peer-to-peer network. They allow for
fair trading protocols [4] and can reduce friction in financial
markets [16]. Users expect meaningful privacy guarantees
from financial systems, but most blockchains only provide
so-called “pseudo-anonymity”, where actions are associated
with pseudonym addresses rather than the users’ identities.
Several works show that often anyone can link users to their
addresses by analyzing the public information posted on the
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blockchain [35,37]. To counter such analysis, researchers pro-
posed systems like ZCash [3], which rely on zero-knowledge
proofs to provide excellent privacy. However, these systems
bear significant performance costs due to their reliance on a
system-wide consensus regarding the transactions’ log.

A promising direction for achieving high-throughput and
low-latency transactions with a meaningful privacy guaran-
tee is connecting users through a payment channel network
(PCN). In a PCN, users create payment channels with relays
by locking coins in joint on-blockchain accounts and use the
blockchain again only to commit the coin distribution when
a channel closes. The relays are interconnected through pay-
ment channels as well. Alice pays an indirectly-connected
Bob by finding a route of channels through the network’s
relays to him and then creating a payment that would move
coins to the first relay, conditioned on a secret that only Bob
knows. Each relay creates a similar payment for the next
hop until Alice’s payment reaches Bob, who reveals the se-
cret. Intuitively, since users neither broadcast payments they
make nor create payment channels with the users they trans-
act, PCNs seem promising for simultaneously addressing the
blockchain’s sclability bottleneck and privacy challenge.

In practice, however, PCNs offer very little privacy [17, 23,
25, 30], much less than users would expect from traditional
payment systems (e.g., governed by banks). Any user can test
whether the liquidity (number of coins available to transact)
on any channel is below a threshold that they choose – merely
by asking to relay a payment on that channel for the threshold
amount. As a result, anyone can learn about changes in each
channel’s liquidity, which leaks all the information about the
network’s payments and creates a privacy risk in practice [22].

We present Twilight, a PCN that hides a user’s payment
history from other users. Twilight provides a strong privacy
guarantee supported by a differential privacy analysis. It mod-
els payments over a channel as queries, and the responses con-
vey whether or not they can go through the channel (i.e., the
channel has sufficient liquidity). Twilight provides payment-
privacy by noising these responses. Instead of carrying a
payment whenever sufficient liquidity exists, the relay rejects



payments if they would not leave enough liquidity to cover
a randomized “noise” payment. Through this noisy payment
processing mechanism, Twilight ensures that only a small
amount of statistical information about the payments it car-
ries may leak to other users. The key to designing Twilight
is structuring the noise such that the privacy guarantee holds
even if the attacker uses many clients to send queries at a
high rate and observes the responses over a long time. Since
queries are cheap to execute, this property is crucial to pro-
viding a meaningful privacy guarantee. At the same time, it is
important to avoid throttling the rate of queries, which hurts
honest users and lowers the system’s throughput even when
there is no attack. To achieve this, Twilight leverages tech-
niques from the differential privacy literature to reuse noise
values when hiding the same set of payments [10,34]. This al-
lows Twilight to group payments into subsets and mask them
with noise, ensuring that new information about old payments
does not leak to the attacker with every query.

Twilight’s differential privacy approach comes at a cost: it
might block some payments due to the noise that a vanilla
PCN would carry. Relays in Twilight mitigate this issue by
locking extra coins. Of course, a relay can always tear down
the channel and get these coins back but locking coins still
incurs an operational expense. We analyze this trade-off be-
tween privacy and cost, and evaluate a model where users
cover the relay’s expense with payment fees. We quantify
the financial impairment from locking coins and estimate the
payment volume a relay would need to process to cover this
cost by charging fees for its privacy service. For example, a
relay handling a payment volume of 79-coins/day and charges
a 1% fee covers the cost of operating a noisy channel that
hides 1-coin payments (for privacy level ε = 0.15,δ = 10−7,
in differential privacy terms [11]).

Selfish relays may claim to their users that they do noisy
payment processing but attempt to avoid it in practice to save
costs. Twilight addresses this problem by running the noising
logic in a trusted execution environment (TEE), which allows
clients to verify the payment processing logic. We architect
the code operating inside the TEE to avoid keeping the chan-
nels’ state. In particular, it does not keep track of the channel’s
liquidity or payments already processed. Instead, the relay
provides this state every time it calls the TEE to process a
payment. Designing Twilight in this manner minimizes the
trusted computing base inside the TEE but requires handling
two key challenges. First, a relay might inform the TEE that
it has very high liquidity, enough to cover any noise it might
choose. Second, a relay might attempt to eliminate the ef-
fect of noising payments by repeatedly calling the TEE with
the same payment until the TEE adds sufficiently-low noise
to approve it. Twilight handles these challenges by noising
payments on the relay’s incoming channel and encrypting pay-
ments between TEEs until they reach the recipient. A relay
cheating its TEE about the incoming channel’s liquidity only
risks losing coins by accepting payments that the previous

hop cannot cover. Each TEE outputs its noisy payment pro-
cessing result encrypted for the next TEE on the route, so all
of a TEE’s outputs are indistinguishable, and the relay cannot
choose the response it likes. Only when a payment reaches
the recipient, all relays en-route can decrypt the TEE outputs
and update the channel liquidity. Importantly, Twilight does
not rely on TEEs to secure funds. Even if a relay exploits a
vulnerability in the TEE or Twilight’s code that it executes
to learn the TEE’s secrets, all payments Twilight carries are
valid, and the relay cannot steal coins from others.

We implement Twilight and test its performance using ma-
chines in America and Europe with the SGX TEE [9] in Azure.
A route of 4 relays supports 820 payments/sec, and at this
peak rate, the payment latency is 550ms above the network
latency (which is about 510ms in our experiments).

In summary, our contributions are the following:

• A rigorous definition for privacy in PCNs based on dif-
ferential privacy, and the design of Twilight, a PCN that
meets this goal.

• The combination of noising payments inside a TEE to
combat selfish relays.

• An analysis of Twilight’s integrity, privacy and cost.

• An implementation and performance evaluation.

2 A Primer on PCNs

We overview the key concepts and mechanisms that comprise
PCNs as background for describing Twilight.

Payment channels. Two participants establish a bidirec-
tional payment channel by “locking” coins in a joint on-chain
account that requires both parties to approve every spend.
The amount that each participant locks is the channel’s ini-
tial liquidity in the direction of their peer. The locked coins
ensure that payments carried over the channel can always
be redeemed. Alice pays Bob by signing a transaction that
adjusts the split of their account balance (giving more coins
to Bob than he deposited). Bob can counter-sign this trans-
action at any time and redeem his funds by posting it on the
blockchain, which would also close the payment channel. In-
stead, Bob holds the transaction from Alice. He keeps the
channel open to allow them to continue updating the balance
split. A short appeal period begins when either user posts a
transaction that closes the channel. During this time, posting a
transaction with information that proves that the channel was
closed with an obsolete state corrects the account split. In this
manner, the appeal period protects users if their counterpart
closed the channel using an outdated transaction.

Routing payments. A PCN comprises clients that issue
payments and relays that carry these payments between clients
for a fee. Relays and clients connect through payment chan-
nels, allowing Alice to pay Bob even if they are not directly
connected. When two relays establish a channel, they start



announcing the channel through a peer-to-peer network. Al-
ice’s client finds a route to Bob and onion-encrypts it with the
relays’ public keys. Namely, it encrypts Bob’s identity using
the last relay’s key, concatenates to the ciphertext that relay’s
identity, and encrypts again with the previous relay’s key. It
continues in this fashion for every hop. When a relay receives
a payment, it subtracts a fee from the amount and decrypts
the top layer to find the next hop.

Hash-time-locked contracts (HTLCs). Hash-time-locked
contracts are a mechanism for ensuring that every relay along
a payment’s route that sends coins to the next hop can recover
the funds from the previous hop. Before Alice can pay Bob,
his client chooses a random secret s and gives Alice’s client
h(s), the cryptographic hash of s. Alice’s payment moves
coins to the first relay conditioned on the relay providing s
before a deadline; this condition is called an HTLC. Each
relay creates a similar payment conditioned on the preimage
of h(s), which it sends to the next hop in the route. As soon
as Bob receives the payment, he can potentially post s on the
blockchain and redeem the payment; this would also reveal
s to all the other relays, allowing them to redeem their pay-
ments as well. Typically, however, Bob avoids the on-chain
transaction: his client reveals s to the last relay and asks the
relay to sign a transaction that updates the split in the channel
between them – this time, without conditioning on s. That
relay can then do the same, show s to the previous hop, and
update the previous channel’s split. This way, s propagates
back through the route, updating all channel balances and
eventually reflecting that Alice paid Bob.

3 Overview

Figure 1 shows a PCN connecting three users. The users con-
nect to the PCN via private channels (illustrated by the dashed
links in Figure 1). Their clients reject payments from unau-
thorized origins [36] which mitigates exposing information
about the liquidity on these channels to other users. In this
figure, Alice sends a payment to Bob via two inter-relay chan-
nels. In contrast to the user’s private channels, relay-to-relay
channels are public and any client can route payments over
them. This allows an attacker to probe for changes in channel
liquidity by asking the relay to route payments between his
clients and observe whether the relay rejects his payments
for exceeding the available liquidity. By probing for changes
in liquidity across inter-relay channels, an attacker can track
payments between users in the network [15, 17, 30]. Twilight
is a PCN that hides its users’ payments from attackers probing
inter-relay channels by introducing noise to a relay’s payment
processing logic. It ensures users that relays add this noise by
leveraging a trusted execution environment (TEE). We next
formalize the threat model and Twilight’s goals against it.

Alice

Bob

Charlie

Figure 1: Users connect to relays through private channels
(dashed black line), while inter-relay channels are public
(solid black lines). An attacker sends payment requests be-
tween his clients (in red) to monitor changes in liquidity and
infer about payments between users (in blue).

3.1 Threat model
Before delving into defining Twilight’s threat model and goals,
we discuss different types of potential attackers.

Off-path clients. Today’s PCNs are vulnerable to attacks
by clients: anyone on the Internet can probe payment channels
and learn about others’ payments [22, 30]. This constitutes a
lower standard of privacy compared to traditional financial
systems. Such attacks are easy to launch and difficult to block
since the attacker may send probes via multiple clients and
disguise probes as legitimate payment requests.

On-path selfish relays. Users should know their payment
history is hidden from other clients. In particular, PCNs are
designed as distributed systems that include relays operated
by multiple autonomous organizations. A privacy solution
that involves costs that intermediate relays can shirk (at the
expense of users’ privacy) should ensure that relays follow
the protocol despite these costs.

On-path adversarial relays. Much like other PCNs, Twi-
light uses onion routing for payments (§2), which protects
against network adversaries and malicious relays that only
have one local visibility or presence in the route, so they can
only view the previous or next hop but not the entire route.
However, colluding relays located near the payer and payee
may still track the payment by correlating its time, payout
value, or locked contract’s secret. Such attacks are harder to
launch than those involving only off-path clients: as shown
in [42], the number of relays on the route is small, and since
the payer chooses which route to use, she can avoid relays
that she considers less trustworthy (e.g., operated by less re-
puted organizations). We architect Twilight to provide similar
usability to vanilla PCNs but with better privacy; it, therefore,
does not handle such correlation attacks, since that would
require delaying payments and somehow ensuring that Bob’s
balance changes regardless of Alice’s balance changes (to
break these correlations). Recent works allow decorrelating
the locked contract’s secret [30, 31]; we discuss it in related
work. We believe that techniques from the private communi-



cation literature, such as Poisson mixing [32], where every
relay delays payments using a randomized mechanism can
address the timing challenge, but hiding correlated changes
in balances remains a challenge. We leave this attacker model
out of Twilight’s scope.

Secrecy of closing balances. Payment channel teardown
involves posting a blockchain transaction stating its closing
balance split (§2). Since anyone watching the blockchain
can observe the channel-close transaction, the privacy that
Twilight can provide depends on the underlying blockchain.
Twilight gives the most privacy when the PCN deploys over a
blockchain that supports private transactions (e.g., using zero-
knowledge proofs [24]). However, the closing transaction
reveals only the aggregate sum of payments over the channel
through its lifetime. In practice, payment channels are open
for a long time [1], so we expect the closing balance to re-
veal very little about a user’s payments. We design Twilight
to be largely-independent of the blockchain choice (except
for requiring smart contract support), and it can deploy over
blockchains with or without support for private transactions.

3.1.1 Twilight’s attacker

Twilight hides a user’s payment history in the face of attackers
who can run any number of the PCN’s clients even if the user
routes her payments through selfish relays. The attacker can
route payments over any inter-relay channel to probe the
available liquidity. These probes are extremely cheap: the
attacker can abort the payments after seeing the response and
avoid the associated fee.

3.2 Goals
Integrity. Twilight should enable private off-chain pay-
ments as a viable and trustless substitute to on-chain payments.
Therefore, it must guarantee that the sequence of all payments
that a channel carries can be committed to the blockchain.
This property must hold even if all relays break the TEE secu-
rity guarantee (i.e., they attest different code than what they
execute and learn all the TEE’s secrets).

Privacy. There are several ways to capture privacy in PCNs.
For one, Twilight could target hiding just the payment amount.
However, in many cases exposing that Alice pays Bob is suffi-
cient to reveal sensitive information. For example, donating to
a political party, no matter what amount, tells Alice’s political
views. Twilight could also ensure that Alice has at least one
“cover story,” making paying Bob appear similar to paying at
least one other user. However, this approach might provide
users with a cover story that does not make sense in practice
(e.g., the alternative payee might be in another continent),
and users might not be aware of the cover story the system
then provides. Instead, Twilight sets an ambitious goal: en-
suring that the attacker’s view through the clients he operates
is likely to be the same regardless of whether Alice makes

Description
µ,σ > 0 mean and standard deviation for Gaussian noise

T number of time-slots (leaves in the tree)
Nt the minimal set of tree nodes covering [0, t−1]
N |Nt | upper bound, N = dlogb Te+b−2

b≥ 2 children per node in tree

Table 1: Symbols of the noisy payment processing mechanism

her payment. In particular, this approach makes Alice paying
Bob look similar to Alice paying any other user. (Since Alice
paying Bob looks similar to not making a payment, which
then looks similar to Alice paying any other user.)

More formally, consider the vector O of the attacker’s ob-
servations (from routing payments between malicious clients)
and two scenarios: one scenario where a user, call her Alice,
pays another user, call him Bob, and the other scenario where
Alice never makes this payment. Twilight’s goal is to provide
(ε,δ)-differential privacy [11] with respect to the two scenar-
ios above. It guarantees that the following inequalities hold
for a small ε≥ 0, except for a small error probability δ≥ 0:

e−εPr[O|X]≤ Pr[O|Alice→ Bob]≤ eεPr[O|X] (1)

The arrow denotes Alice paying Bob, and the X-mark de-
notes the case where she does not make this payment. The
probability is over the coin-tosses in the nosing mechanism.
Differential privacy quantifies the statistical information that
leaks to the attacker. It provides a strong formal guarantee for
the level of privacy users should expect. This privacy guar-
antee holds even for multi-hop payments (payments routed
through several payment channels between Alice and Bob);
we quantify impact of a payment’s path length on its privacy
in terms of ε and δ.

4 Noisy Payment Processing

Twilight protects users against attackers probing inter-relay
links (Figure 1). It provides a strong privacy guarantee, re-
gardless of the attacker’s probing rate, by adapting ideas for
continuous release of information from the differential pri-
vacy literature [10, 11, 27] to the PCN context. The system
splits time into short intervals, arranged in a tree, and models
the attacker’s probes as queries arriving in those intervals.
Twilight cannot distinguish between the attacker’s probes and
real payments so it must respond to both. It protects users’
privacy through noisy payment processing. Twilight noises
the decision whether to carry or drop a payment (the relay’s
response) in a structured way, depending on the interval the
query arrived in [34]. Table 1 summarizes the notations of the
noisy payment processing mechanism described below.
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Figure 2: A channel’s noise tree with T = 23 slots. For node i
in the tree, ni is the noise and τi the sum of payments in its
subtree. The response mechanism for query at time 7 uses the
nodes {0,10,110} ∈ N 7 (circled in red).

4.1 Response mechanism
Twilight divides the lifetime of a channel into T tiny time-
slots. In every slot, at most one request to carry a payment
may arrive. For example, dividing time into nanosecond
slots seems reasonable since payments are over 100B-long
(they include account addresses, a signature, etc.). Even with
100Gbps links, each request takes at least 7 time-slots to re-
ceive. Allocating 264 nanosecond slots supports a channel’s
operation for over 500 years.

Time slots are numbered and arranged in the leaves of
a tree; each node in the tree has a label. Consider a bi-
nary tree, for now. The root has the empty label, and every
node’s left/right child appends ‘0’/‘1’ to the parent’s label.
Figure 2 illustrates this tree structure. The relay assigns every
node i in the tree an independently drawn Gaussian noise,
ni ∈R Gauss(µ,σ2). In addition, node i stores τi, the sum of
all payment amounts over the channel (positive or negative,
depending on the direction) in the time-slots beneath it.

When a payment requesting to move m coins to the chan-
nel’s other endpoint arrives at the relay at time slot t, the relay
finds Nt , the minimal set of nodes in the tree that precisely
covers (i.e., includes the ancestors of) the time slots in the
interval [0, t − 1]. Appendix A provides the algorithm for
finding the minimal covering and proves its correctness. The
relay agrees to carry the payment if Equation 2 holds:

channel.Capacity− ∑
i∈Nt

(τi +ni)≥ m (2)

Figure 2 illustrates the response mechanism for a request at
time t = 7. In this example, N 7 = {0,10,110} is the minimal
covering set of nodes for the time slots preceding the query
(slots 0–6). Since Nt is the minimal set of tree-nodes that
covers the interval [0, t−1], ∑i∈Nt τi is the sum of all payment
amounts before time t, so channel.Capacity−∑i∈Nt τi is the
current liquidity. The response in Equation 2 obfuscates it by
subtracting noise, i.e., the aggregate of Gaussians ∑i∈Nt ni.

The tree structure from the differential privacy litera-

ture [10] ensures that for any user payment at time t ′ < t,
there is only one ancestor of the leaf node t ′ in the covering
Nt . Only that ancestor might leak information about user’s
payment (by contributing a different value to the response
mechanism if the user never makes this payment). Since there
are only logT ancestors for any slot, there are only a few tree
nodes that might leak information about a user’s payment
over time (even if the attacker probes often).

Intuitively, the more nodes in Nt , the more noise the pay-
ment processing mechanism subtracts from the channel’s
capacity in Equation 2, and the less accurate the response
becomes. Qardaji et al. [34] optimize privacy and accuracy
using a tree with a higher branching factor. When every node
in the tree branches to b children (Table 1), the size of the cov-
ering set |Nt | ≤ dlogb Te+b−2 (one node from each level in
the tree, except the last level where there may be up to b−1
leaves). We denote this upper bound by N (Table 1). With
T = 264 time slots, using b = 8 results in the minimal number
of nodes in the covering, N = 28 nodes (rather than 64).

If the covering set has less than the maximal N nodes, the
relay “pads” it with dummy nodes, i.e., nodes where τ = 0
and fresh noise is drawn. So, every time a relay responds it
uses the aggregate of N Gaussian random variables as noise.
The reason for padding is that the aggregate is much more
likely to be non-negative than the noise of a single node. We
later use this property to prove Twilight’s integrity (§6).

4.2 Stateless noising

Storing the tree illustrated in Figure 2 is impractical for a
large number of time-slots (e.g., 264). Every node i in the
tree contains two elements: the sum of payment amounts in
the time-slots of its subtree (τi) and an independently drawn
noise (ni). The response mechanism in Equation 2 only uses
the sum of all payment amounts before the request’s time
slot. A relay, therefore, only keeps track of this sum. It also
avoids storing the noise values and instead recomputes them
when they are needed. Specifically, the relay keeps one global
secret s, and for a payment-channel chanID, sets the secret
value of tree node i to be deterministically drawn from the
noise distribution seeded by the hash value h(s,chanID, i).

5 Countering Selfish Relays using TEEs

Users rely on Twilight’s relays for privacy, but how can a payer
trust that the relays she chooses for her payment’s route indeed
perform noisy payment processing (§4)? Moreover, she has
to be convinced that the relays continue to perform noisy
payment processing since the attacker’s future queries may
leak information about her payment. Providing users with this
guarantee is important since relays may try to circumvent the
noising mechanism to avoid rejecting payments they would
otherwise carry and losing the associated fees.
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Figure 3: Protocol messages and relay-to-TEE interface. We
abbreviate incoming/outgoing channel state by in/out state.

Twilight addresses this concern using a trusted execution
environment (TEE) on its relays. TEEs ship with commodity
hardware (e.g., SGX is now standard in Intel’s i9 10th genera-
tion processors [18]); their remote attestation allows clients to
verify the payment processing logic, which relays run inside
an enclave [9]. Each channel is associated with a state that
includes the current balance split between peers, all current
pending payments, and a message serial number (for dispute
resolution). Our design does not require the TEE to keep
track of this state, which minimizes the trusted computing
base and simplifies Twilight’s implementation but introduces
challenges as we describe next. Crucially, Twilight ensures
that even if a rogue relay breaks its TEE and learns its secrets,
the PCN maintains integrity: all payments over the channel
are valid, and the relay cannot steal coins from others.

Challenges. Twilight must force a relay to involve the TEE
in processing payments to ensure it performs noisy payment
processing throughout the channel’s lifetime. Figure 3 illus-
trates how a relay interacts with its TEE. The enclave running
inside the TEE does not store the channel’s state but receives
it from the relay with every payment processing request to
decide whether to approve a payment. This leads to two key
challenges: First, the relay may provide the enclave with in-
correct or outdated states. Specifically, ones in which a high
amount of liquidity is available. Such manipulation can ensure
that the noisy liquidity check in Equation 2 always passes.
The relay may do this selectively, whenever it has sufficient
liquidity to forward the payment and wishes to pass the noisy
check with greater certainty. Second, the TEE cannot remem-
ber which payments it processed, so the relay may invoke the
TEE multiple times to process the same payment until it adds
sufficiently low noise to accept it.

Architecture. Twilight solves these challenges by hiding
payment amounts and the TEE’s responses from the relay,
encrypting them for the TEE at the next hop. The enclave
running inside the TEE performs noisy payment processing
on the incoming channel when the relay receives a new pay-

ment request. Namely, the enclave (noisily) checks that the
previous hop has enough liquidity on the channel to cover the
current payment. To do so, the enclave gets from the relay
the incoming channel’s state, which consists of the channel’s
liquidity and a list of “unresolved” payments (for which the
secret that completes the coin transfer has yet to be revealed,
see §2), and processes the payment as in §4. The reasoning
behind noising payments on the incoming channel (rather
than the outgoing channel) is to mitigate a relay’s incentive
to cheat. Suppose the relay informs its enclave of false high
liquidity on the incoming channel; this nullifies the check
that the previous hop has sufficient liquidity to cover the pay-
ment, so the relay risks moving coins to the next hop without
any return. There is no privacy risk if the relay reports false
liquidity: since the TEE outputs are hidden from the relay
(encrypted for the next hop), it cannot choose a response it
likes. Therefore, it cannot adjust the noise distribution to the
payment; instead, it has to submit the noisy response to the
next hop. Privacy holds even if the relay colludes with the
relay in the next hop, who also cannot access the informa-
tion, which is encrypted for its TEE. We next explain how
the TEEs establish public keys that facilitate this encryption
and how relays interact with their TEEs to process payments.
Appendix B provides a fully detailed version of the protocol.

5.1 Establishing public keys and channel IDs
The TEE creates a secret key, and the relay binds the corre-
sponding public key to its payment channel. When two parties
establish a new payment channel, they deposit coins to an ac-
count managed through a smart contract. Each party gives
one public key to govern this account; a relay uses the public
key corresponding to its TEE’s secret key. In Twilight, clients
contact the relays and check: (1) that the key was created in
the TEE, and using remote attestation, (2) that the logic inside
the TEE never exports the keys it creates and performs noisy
payment processing. By registering the TEE’s public key in
the smart contract, the relay ensures its users that the TEE
must be processing their payments on this channel. The smart
contract’s account address serves as the channel ID; signed
messages about the channel include this ID, so they cannot be
confused with other channels. The smart contract allows flex-
ibility in designing dispute resolution when a channel closes.
Specifically, Twilight uses the smart contract functionality
to allow an offended party to reveal an unsettled encrypted
payment (and correct the closing balance, if needed), as we
describe in §5.3. Appendix B.1 provides the smart contract’s
pseudo-code, which we implement in Solidity (§8).

5.2 Processing payments inside TEEs
In Twilight, relays receive and forward encrypted payments.
As a result, relays do not know the outcome of noisy payment
processing, so payment messages always reach the payee,



even if a TEE on some relay along the route rejects the pay-
ments. Twilight does not keep payments hidden forever. A
relay must be able to claim a resolved payment by posting a
transaction on the blockchain with the payee’s secret (which
conditions the coin transfer across the route) in case of dis-
pute with its partner. To support this functionality, the payee
chooses a fresh private/public encryption key-pair for the pay-
ment’s locked contract. The public key is unique to that pay-
ment’s locked contract and allows hiding its amount. Instead
of indicating “failure” when there is insufficient liquidity, the
relay outputs a locked contract for the next hop with a hid-
den amount of zero (indicating no payment). The relay can
decrypt the payment amount and redeem it when learning the
corresponding private key from the payee, which also allows
claiming the payment and is analogous to the HTLC secret
from vanilla PCNs (§2). We term these locked contracts “Pri-
vate Time-Locked Contracts” (PTLCs) rather than HTLCs
(hash time-locked contracts). PTLCs generalize HTLCs; sim-
ilarly to HTLCs, they specify an expiration time (e.g., by
block depth on the blockchain) and signed by the previous
hop (see §2). The main difference between them is that while
HTLC payouts are always legible (even if not redeemable
without the secret), the payment amounts in PTLCs cannot
be read without the secret. This allows providing the PTLC
contents specifically for a relay’s TEE when the payment
propagates to the payee, and preventing the relay from learn-
ing the result of its TEE’s noisy payment processing from the
PTLC it outputs for the next relay. Appendix B.2 gives the
details of implementing PTLCs.

Consider a payment from Alice to Bob and the private key
that Bob chooses for conditioning this payment. Bob informs
Alice of the corresponding public key, which she includes in
her payment’s PTLC. On the route between Alice and Bob, the
enclave running in each relay’s TEE must learn the payment
amount when it processes Alice’s payment, i.e., before Bob
confirms it and reveals the secret. To support this functionality,
Alice uses non-malleable encryption with a fresh ephemeral
symmetric key to hide the payment amount in the PTLC.
PTLCs include two ciphertexts of that key: (1) under the
next hop’s TEE public key, and (2) under the PTLC’s public
key that Bob chose. The TEE decrypts the amount encrypted
under its key and checks for consistency with the second
ciphertext by encrypting the ephemeral key it recovers with
the PTLC’s public key. The second encryption is deterministic
to allow this check; it is safe since the ephemeral symmetric
keys are never reused.

Alice submits her payment for Bob to the first relay in
the route she chooses. We next describe how relays process
payments and their interaction with their TEEs, following Fig-
ure 3. Our description refers to Appendix B.3 for more details
about protocol’s messages and processing logic.

TEE input. When a relay calls its TEE to process a pay-
ment inside an enclave, it provides the payment message from
the previous hop, the corresponding incoming channel ID and

its liquidity in the direction of the payment, and any PTLCs
for unresolved payments from the previous-hop (these are
payments that have not been completed yet, but represent
commitments from the previous hop).

TEE processing. The enclave decrypts the amount and per-
forms the consistency check for the two ciphertexts above.
It subtracts from this amount the relay’s fee. It then com-
putes “uncommitted liquidity”, which is the incoming liquid-
ity minus the coins in the relay’s unresolved PTLCs. Lastly, it
performs noisy payment processing (§4) and evaluates Equa-
tion 2 to determine whether to accept the payment.

The noise that a relay induces depends on the current
time (§4). However, it is unsafe for the relay to provide the
time directly to the enclave. Otherwise, a selfish relay could
identify some slot in the tree where the nodes in its covering-
set (Nt , see Table 1) sum to very little noise, and then replay
this slot’s timestamp for all payments to essentially circum-
vent the noising mechanism. Fortunately, TEEs allow enclaves
to read the number of cycles since boot, and guarantee its au-
thenticity, which serves as time [19]. The TEE also allows
detecting when a relay reboots and the time initializes to zero:
on boot, the TEE draws a random number which Twilight’s
enclave echos to the relay with every response. The relay
must provide this value to the TEE when asking to process a
payment. The enclave compares the given value by reading
the random number again; if they match, the relay has consis-
tent time since the last response (and recursively since boot)
and processes the payment as usual. Otherwise, the relay re-
fuses to process the payment. This ensures users that the relay
noises payments correctly throughout the channel’s lifetime.

When the relay reboots, the random number changes and
the TEE refuses to process more payments. The relay then
has to close the channel on-chain by posting the last closing
balance message from its partner. We expect relays to have
high up-time, to collect fees from all payments that need to
route through them; so the cost of the blockchain transaction
in such “forced” closures is amortized over a long time. A
relay may also use another computer with TEE as backup,
which keeps track of time and allows recovery in case of a
crash without closing the channel. We describe the details of
this extension in Appendix C.

TEE output. The TEE decrypts the top layer of the onion
route and creates a new PTLC for the next relay’s TEE with
the remaining amount (encrypted under a fresh symmetric
key for the next hop’s TEE and the PTLC public key from
Bob). The TEE then signs a message combining the channel
ID, its liquidity, all pre-existing unresolved PTLCs and the
new PTLC along with an incremented serial number. The
next hop checks the TEE’s signature on this combination
before it continues processing the payment (this signature
both ensures that the contents were created by the TEE and
hence noised, and that the next hop will be able to claim funds
on the blockchain). When the enclave rejects a payment, it



uses zero for the amount in the output PTLC. This ensures
that the following relays on the route also use zero amounts,
meaning that the payment will not eventually take place.

Payment confirmation and coin transfers. When Bob re-
ceives the final PTLC, his client checks that the amount from
Alice is sufficient. In this case, Bob reveals the PTLC secret
key to the previous relay, which serves as a receipt. It allows
the relay to decrypt the PTLC’s amount and post the PTLC,
if necessary, to the blockchain to ensure the relay gets paid.
Each hop then propagates the secret backward, which enables
coin transfers across the route (as described in §2).

5.2.1 Side channels

Several exploits in the past illustrate that TEEs can be vulnera-
ble to side channels (see survey on Intel’s SGX platform [12]).
We architect Twilight to maintain PCN integrity even if attack-
ers completely break the TEE’s security promises, but given
such a vulnerability, a relay may circumvent Twilight’s noisy
payment processing and jeopardize its users’ privacy. In par-
ticular, attackers with physical access to the TEE (the hosting
relay in Twilight’s case) may exploit channels such as tem-
perature and power consumption readings to learn sensitive
information like secret keys. However, TEE manufacturers is-
sued countermeasures in response to known attacks and, using
remote attestation, allowed users to learn whether the TEEs
they contact run these countermeasures. Users in Twilight,
thus, can avoid relays with known TEE vulnerabilities.

Another important type of side channel attack exploits
application-specific vulnerabilities within the enclave. Twi-
light’s code inside the enclave must be hardened against such
attacks. This is typically achieved by ensuring data-oblivious
computation [2, 43] that results in constant processing time,
low variance power consumption, etc.

5.3 Channel teardown
When a user leaves the PCN, or a relay needs to replenish liq-
uidity in a channel with another relay, they close their channels
(and open another one, in the relay-to-relay case). Closing
a channel involves an on-chain transaction to the smart con-
tract, splitting the locked coins between the channel endpoints.
Similar to vanilla PCNs, parties sign and exchange closing
balance messages after each payment (§2). A relay’s TEE
signs these messages, as the TEE’s secret key is authoritative
for the relay’s payment channels (§5.1). Each party stores
the latest message from their counterpart, so they can post it
on-chain to close the channel (even without interacting with
their TEE at close-time). These messages have a serial num-
ber, local to the channel, and reference unresolved PTLCs on
the channel by their hashed values (see Figure 3). The smart
contract managing the locked coins in the channel’s account
allows a short appeal period, where parties may post closure
messages with higher serial number, and then allows parties

to claim the PTLCs referenced by the last message posting
them along with their secrets.

To hide the channel’s closing balance split (§3.1), Twilight
can deploy over a blockchain that allows for private transac-
tions in its smart contracts. For example, Ethereum supports
a rich enough language that allows implementing “shielded
transactions” in its smart contracts using zero-knowledge
proofs (see [24] for implementation). Such a deployment al-
lows fast off-chain payments with a differential privacy guar-
antee and avoids exposing information on channel tear-downs.
We, therefore, believe this combination makes an attractive
privacy-performance trade-off.

6 Analysis

We analyze Twilight’s design against its goals from §3.

6.1 Integrity
All payments accepted by a relay must be valid, so that the
resulting balances when closing channels may be committed
to the blockchain. This property must hold even if all relays
break their TEEs’ security guarantees (§5), i.e., even in this
extreme case, no relay can steal coins from others.

To achieve integrity, it is sufficient to ensure that the re-
lay subtracts non-negative noise from its channel’s liquidity
(Equation 2). Thus, any payment that the relay accepts is of at
most the channel’s liquidity amount and does not overspend
(so it can be committed to the blockchain). The noise that the
relay subtracts is the sum of at most N Gaussian random vari-
ables (§4.1). Theorem 1 shows that setting µ >> σ√

N
ensures

that the chance for negative noise is extremely small.

Theorem 1. A relay accepts a payment that overspends the
channel’s liquidity with probability≤GaussCDF(µN,σ2N; 0).

Where GaussCDF is the noise cumulative distribution func-
tion (CDF) with mean µN and variance σ2N, evaluated at 0.
And µ,σ,N are the noise parameters, summarized in Table 1.

Proof. Let us compute the probability that the relay adds
negative noise for some time slot. Noisy payment pro-
cessing adds N random variables to the liquidity, each
distributing Gauss(µ,σ2). Thus, a relay’s noise distributes
Gauss(Nµ,Nσ2). (The sum of Gaussians is also a Gaussian.)
The chance for negative noise is GaussCDF(Nµ,Nσ2; 0).
Namely, the noise CDF evaluated at 0.

When Nµ >>
√

Nσ, i.e., the noise’s mean is much greater
than its standard deviation, the chance of obtaining negative

noise is extremely small. It decays proportionally to e−(
µ
√

N
σ

)2
.

For example, for µ = 10 σ√
N

the chance for negative noise

error is about 2−100. This property holds regardless of the



TEE’s security, i.e., even in case a new vulnerability allows
the relays to circumvent TEE protections; Appendix B.4
formally proves integrity under insecure TEEs.

6.2 Privacy
Before we delve into the analysis of Twilight’s differential
privacy guarantee, we argue that as long as a relay’s TEE is
secure, that relay performs noisy payment processing. Con-
sider a relay with a TEE that attests to running noisy payment
processing on a channel. Any client that routes a payment
through the channel ensures that the secret keys for the chan-
nel’s on-chain account are created in, and never exported from,
the TEE (§5.1). When a relay processes a payment’s PTLC, it
must sign the PTLC for the next hop using the TEE’s secret.
Hence, the relay must call the TEE, with the PTLC from the
previous hop, which executes noisy payment processing and
creates the next PTLC according to the result of Equation 2.

The privacy analysis for noisy payment processing pro-
ceeds as follows. We first analyze the differential privacy
guarantee when the attacker probes a channel just once (The-
orem 2). We then reason about hiding a payment under many
probes, traversing a route with several channels, and the pri-
vacy amplification from choosing one of several available
routes (Theorem 3). Lastly, we discuss differential privacy for
multiple payments.

Privacy against a single probe. Consider a payment chan-
nel’s noise tree (Figure 2) and Alice’s payment arriving at
the relay at time slot t. The only nodes in the tree affected
by her payment are the logb T ancestors of slot t (see param-
eters in Table 1). When the attacker issues a probe at time
t ′, only one of these ancestors affects the relay’s response
(Equation 2), call it node i. Thus, for a single probe, it is
sufficient to analyze the privacy loss from the information
in a single tree node. For example, the payment at slot 2 in
Figure 2 only affects the amounts (denoted by the τ’s) that
nodes 010,01,0,and the root record. Node i contributes to
the response the sum of its noise and transacted amounts
(i.e., ni + τi). Theorem 2 captures, in (ε,δ)-differential pri-
vacy terms, the difference in the chance that i contributes the
same value whether Alice makes a payment of m coins.

Theorem 2. Consider the time slot where Alice may make a
payment to Bob for m coins. Let i be a node in a channel’s
tree that is an ancestor of that time slot. Then, except with
probability δ, the following inequalities hold:

e−ε ≤ Pr[τi+ni|Alice→Bob]
Pr[τi+ni|X] ≤ eε

Where ε = mc
σ
,δ = 2 ·GaussCDF(µ,σ2; µ− cσ).

Informally, δ bounds the probability of drawing extreme
noise values (over c standard deviations below the mean). The
parameter c > 0 allows to trade a larger ε for a smaller δ.

Proof. Alice pays m coins to Bob. So, for any value η that
node i might contribute to the calculation of Equation 2 (i.e.,

the sum τi +ni), we need to bound the ratio:

Pr[τi +ni = η|Alice→ Bob]
Pr[τi +ni = η|X]

=
Pr[ni = η− τi−m]

Pr[ni = η− τi]

Namely, for node i to contribute the same value in both
scenarios (Alice pays m coins to Bob vs. Alice does not make
this payment), the noise in case Alice pays Bob should be m
less than the noise in the case she does not pay him. The noise
ni distributes Gauss(µ,σ2). For convenience, let us substitute
xi = η−τi, which is the noise value that the relay should draw
if there is no payment from Alice to Bob (s.t. i contributes η).
The Gauss distribution PDF gives that the above term equals:

=
e−

(xi−m)2−2xiµ+2mµ+µ2

2σ2

e−
x2
i −2xiµ+µ2

2σ2

=
e−

x2
i −2mxi+m2−2xiµ+2mµ+µ2

2σ2

e−
x2
i −2xiµ+µ2

2σ2

=

e−
−2mxi+m2+2mµ

2σ2 = e
2mxi−m2−2mµ

2σ2 (3)

The chance that the relay draws an “extreme” noise value
for xi is low. More precisely, except with probability δright =
1−GaussCDF(µ,σ2; µ+ cσ) = GaussCDF(µ,σ2; µ− cσ), it
holds that xi ≤ µ+ cσ. Substituting xi in Equation 3 with this
upper-bound, we get that except with probability δright:

≤ e
2m(µ+cσ)−m2−2mµ

2σ2 ≤ e
cm
σ = eε

The computation for the inequality in the other direction,
showing that e−ε ≤ Pr[τi+ni|Alice→Bob]

Pr[τi+ni|X] , is similar. (We derive ε

by substituting xi ≥ µ−cσ, which holds except with probabil-
ity δleft = GaussCDF(µ,σ2; µ−cσ).) Overall, using the union
bound, δ = δleft +δright = 2GaussCDF(µ,σ2; µ− cσ).

Privacy under many probes. Attackers may probe a chan-
nel many times; however, there are only logb T ancestors in
the tree for Alice’s payment time slot. Thus, only those nodes
might contribute different values to the relay’s response (and,
therefore, leak information about Alice’s payment). We com-
pose, in §6.2.2, the privacy guarantee from Theorem 2 over
logb T different observations that the attacker might get. This
gives the differential privacy guarantee that a single channel
provides (even if the adversary continuously probes it).

Privacy over a payment’s route. The attacker may probe
any inter-relay payment channel on Alice’s payment route.
Therefore, the level of privacy reduces with the number of
inter-relay payment channels that it traverses. Although min-
imizing the number of hops benefits privacy, the costs that
current PCN implementations opt to minimize might cause
clients to prefer longer routes. For instance, in Lightnings’
most common implementations, routing is not done by choos-
ing the shortest-length route. In the C-Lightning implementa-
tion, the route’s length is one of the parameters determining
which route a payer chooses but in LND and Eclair (the other
two most popular implementations), minimizing the route
length is not explicit.
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Figure 4: Shortest length channel disjoint routes between re-
lays in the Lightning network topology (from Nov. 7th, 2021).

Usually, however, these costs decrease with the number
of hops: having more hops typically results in less preferred
routes, e.g., requiring clients to lock coins for a potentially
longer time or increasing the total fee the sender would end
up paying the relays. Indeed, measurements show that for
all the implementations listed above, at least 80% of routes
chosen by the routing algorithm in the Lightning Network
(the largest PCN today) have no more than three inter-relay
channels [42].

6.2.1 Privacy amplification by random route selection

In practice, multiple channel-disjoint routes of the shortest
length often exist. For example, we connected a client to the
Lightning Network and retrieved its topology (the snapshot
was taken Nov. 7th, 2021). We found that there are usually
2 – 5 channel-disjoint routes of the shortest length between
two relays (nodes with more than one channel); see Figure 4.
Twilight leverages this insight about PCN topology to amplify
users’ privacy. Clients choose one of the shortest channel-
disjoint routes uniformly at random. Intuitively, randomized
route selection improves privacy since the attacker does not
know which of the channels he probes are on the payment
route. If Twilight is to be deployed on Lightning clients, it
would need to relax the clients’ path selection strategies (de-
scribed above) to consider paths that are “close enough” to the
minimal cost. This relaxation would accommodate their cur-
rent route selection strategies and allow the client to choose
from multiple routes to amplify privacy.

6.2.2 Payment privacy quantification

Theorem 3 captures the composition of the arguments made
in this subsection and quantifies them in differential privacy
terms. It shows that a random selection of 1-out-of-r possi-
ble routes of length l in Twilight improves the differential
privacy’s ε proportionally to

√
r, and that ε impairs propor-

tionally to
√

logb T and
√

l.

Theorem 3. Let r be the number of channel-disjoint routes
with l inter-relay channels between Alice and Bob. Alice’s
m-coin payment to Bob is (ε,δ) differentially-private where:

ε = ln(1+
mc
√

l logb T
σ
√

r +
l logb T m2

2σ2 ),

δ = 2 ·GaussCDF(µ̃, σ̃2; µ̃− cσ̃)

And, µ̃ = rl logb T µ, σ̃2 = rl logb T σ2

Proof. Given in Appendix D.

To get a fair degree of privacy, σ >> m (the variance in
the noise hides a payment that Alice might make). In this

case, ε is very close to
mc
√

l logb T
σ
√

r (i.e., Theorem 3 generalizes
Theorem 2; it gives a similar result when T,r, l = 1).

6.2.3 Multiple payments

Until now, we analyzed differential privacy for one payment.
However, if Alice makes multiple sensitive payments, the at-
tacker may try to learn about any of them. This scenario is
known as composition in the differential privacy literature.
Fundamentally, differential privacy deteriorates with the num-
ber of payments Alice wishes to hide, but the composed result
remains differentially private. Maintaining the rigorous differ-
ential privacy guarantee, albeit with higher ε,δ, can be crucial.
For example, a court that should be convinced “beyond a
reasonable doubt” requires a very high degree of certainty,
making even relatively high ε,δ guarantee valuable.

The literature also provides theorems for computing the
ε,δ guarantee of such composition. This quantification is
important. It allows users to avoid sensitive payments when
exceeding a “privacy budget” (i.e., when ε,δ reflect a risk they
deem too high). The most general result states that compos-
ing k invocations of an (εi,δi)-differentially private mecha-
nism results in (∑k

i=1 εi,∑
k
i=1 δi)-differential privacy [11, Thm.

3.16]. Another, more powerful, composition theorem [21]
holds when the noise in the composed invocations is indepen-
dent, this result states that ε grows with

√
k. In our case, when

multiple payments traverse the same route, different invoca-
tions of the noisy payment processing mechanism within the
same channel are not independent (due Twilight’s use of the
tree), and thus only guarantee linear growth of ε. However,
when payments traverse disjoint routes, the more advanced
composition theorem holds, and ε degrades slower. This im-
plies that Alice can increase her privacy level under multiple
payments by opening channels to more relays. Intuitively,
these channels allow Alice to use more disjoint paths, which
helps her in two ways: First, randomizing over more paths
provides better ε,δ to begin with (see §7.1 for example ε,δ
values for different route lengths and number of available
disjoint routes). Second, when paths are disjoint, the stronger
composition results hold. Appendix D.1 analyzes this sce-
nario.

7 The Cost of Privacy

The noise that a relay induces artificially reduces its chan-
nel’s effective capacity: the relay might deny payments that
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spend amounts close to the channel’s liquidity and lose the
associated fees. In this section, we study this cost. We present
a metric for a channel’s ability to process a sequence of pay-
ments, illustrate the trade-off between privacy and efficiency,
and quantify the cost of operating a Twilight relay.

Definition 1. A noisy payment channel C is ∆-inefficient
compared to a noiseless channel C ′ if any payment accepted
through channel C ′, is rejected in C with probability at most ∆.

We use the inefficiency metric to measure the cost of noisy
channels. Theorem 4 quantifies the extra coins that a relay
should lock to make the noisy channel ∆-inefficient compared
to the noiseless alternative. Let Gauss(µ,σ2) be the noise dis-
tribution for nodes in a relay’s noise tree, and N the maximal
number of nodes in the covering set for any time slot (Table 1).

Theorem 4. If the noisy channel C is initialized with ω more
coins in both directions than the noiseless channel C ′, then it
is ∆-inefficient compared to C ′, where:
ω = µN + t, and ∆ = GaussCDF(µN,σ2N; µN− t).

The knob value t allows trading a higher ω for a lower ∆.

Proof. Given in Appendix E.

The Gauss distribution CDF at µN− t falls very quickly
with t (proportionally to e−t2

). For example, achieving ∆ =
0.1% (with δ = 10−7,ε = 0.15 privacy) requires ω = 95608;
see Figure 5. Achieving ∆ = 10−10 requires locking only 15%
more coins (for the same privacy level, ω = 11000).

Multi-payment sequences and multi-hop routes. The in-
efficiency metric composes for a sequence of n payments
routed over l channels: Consider two sequences of l noisy
and noiseless channels, where noisy channel i is ∆i-inefficient
compared to the ith channel in the noiseless sequence. Using
the union bound, we find that a sequence of payments that is
accepted via the noiseless route might be rejected from the
noisy route with a probability of at most n∑

l
i=1 ∆i.

7.1 Privacy-efficiency trade-off

Comparing Theorem 3 and Theorem 4, which summarize
Twilight’s privacy and efficiency properties, allows reason-
ing about the number of coins that a relay should lock in the
channel’s smart contract to support a certain level of privacy.
Figure 5 illustrates the privacy-efficiency trade-off for one
channel, trading higher ω for lower ε. Figure 6 then focuses on
a particular privacy setting (ε = 0.15,δ = 10−7) and explores
the trade-off for scenarios where clients have multiple options
for disjoint routes, and these routes are of multiple hops. Since
clients boost privacy by uniformly selecting routes (§6.2.1),
a network that offers many disjoint routes improves the ef-
ficiency (requires locking fewer coins for the same privacy
level). Appendix E illustrates the trade-off for other δ values.

Payment success ratio. Our analysis thus far refers to the
chance that any payment fails. However, in practice, a chan-
nel may process payments back and forth. Some payments
may even fail for over-spending on a noiseless channel, while
they would succeed on the noisy channel due to the extra
liquidity (ω in Theorem 4) and sufficiently low noise. We use
simulation to compare the failure rate on a long sequence of
payments. Our simulation, in Figure 7, focuses on a single
channel, where we send 1-coin payments left or right with a
uniform distribution. We run this simulation for three levels
of privacy (values of ε, fixing δ = 10−7). Each data point
is the failure rate on a sequence of 108 payments. In this
simulation, payments route over a single payment channel
without concurrency. We observe that as the channel’s capac-
ity grows, the noised channel’s success ratio converges to that
of the noiseless channel. We also see that the extra locked
coins needed for achieving ∆ = 10−3 on the noisy channel
with ε = 0.15 and δ = 10−7 is around 7k over the noiseless
channel (see dashed horizontal line in Figure 7). This is an im-
provement over the theoretical bound from Theorem 4 (which
is illustrated in Figure 5).



7.2 Quantifying the relay’s cost and incentives

Twilight requires relays to run code in TEEs and induce noise
when processing payments. Modern commodity processors
ship with TEEs (e.g., see Intel’s i9 processor spec [18]). Thus,
we believe that deploying a TEE should not incur a high cost
on the relay’s operator and focus on the cost of operating noisy
payment processing, which increases a relay’s locked coins.

Although Twilight’s relays need to lock more coins than the
noiseless alternative (say, 9.5k additional coins per Figure 5),
these coins return to the relays when the channel closes, so
relay operators only lose any potential interest that they could
have gotten for these extra coins. Moreover, the financial
impairment rate from locking coins is fixed, and amortizes
over all payments carried during the channel’s lifetime. Given
these observations, we can compute the increase in relay fee
that would cover the cost of operating a Twilight channel de-
pending on the number of payments it carries. For example,
consider the privacy-efficiency trade-off point highlighted in
Figure 5 (ε = 0.15,δ = 10−7,∆ = 10−3); we find that given a
yearly interest rate of 3%,a relay that handles 79 payments per
day can cover its operational cost by charging 1% fee from
each payment (see analysis in Appendix E) . Previous works
on differential privacy (in other contexts) statistically modeled
users’ actions, treating them as noise (e.g., [6]). This approach
reduces the number of coins a relay should lock, thus reduc-
ing Twilight’s operational cost. However, it requires strong
additional assumptions about users that Twilight avoids: that
many users are honest and submit payments according to a
known distribution.

8 Implementation

There are three components to our prototype of Twilight.
The first is the smart contract for managing on-chain chan-
nel accounts between two parties, which we implement for
Ethereum in Solidty [13] (68 lines of code). A limitation
of our smart contract implementation is that it does not use
shielded on-chain transactions (e.g., implemented using Solid-
ity in [24]). It, therefore, exposes a channel’s closing balance
split (i.e., the aggregate amount of payments on the channel
through its lifetime). We argue in §3.1 that for long-lived
channels this is typically safe in practice. The second compo-
nent is the enclave running in Intel’s SGX [9] as a TEE. We
implement the noisy payment processing logic inside the en-
clave in C++17 (965 lines of code). The last component is the
relay, which calls the enclave and implements the networking
logic for carrying payments across the route. We implement
the relay in Python3.8 (886 lines of code). The clients use the
same networking logic as the relays (but do not run noisy pay-
ment processing). Our implementation uses ChaCha20 [26]
for symmetric encryption, elliptic curve secp256r1 [39] for
public key operations, and SHA3-Keccak [5] as hash function.

Inside the enclave, we generate the TEE’s secret key using

sgx_ecc256_create_key_pair and run the randomized re-
sponse mechanism (§4.1). Running this mechanism requires
the enclave to read the current time; we call rdtsc to get the
number of CPU cycles since boot [19] which serves as a high-
resolution clock. We detect reboots by reading the nonce that
sgx_get_trusted_time returns, which is initialized at boot
time (as discussed in §5.2). The channel’s noise tree (Figure 2)
has T = 264 time slots to support long-lived channels.

9 Evaluation
We use Twilight’s prototype to evaluate the throughput and
latency, and to measure the cost of resolving disputes on-
chain (§9.1). We use simulations to evaluate the privacy bene-
fits of noisy payment processing under partial adoption (§9.2).

9.1 Performance and cost
Setup. We deploy Twilight’s implementation over a
Standard_DC1s_v2 machine type in Azure [8], which has
one CPU and 4 GB RAM. This machine has a single Intel
SGX-1 TEE. We deploy Twilight on machines in two Azure
regions, across two continents, eastus and northeurope. To
ensure our tests experiment real Internet latencies, the routes
for the payments we evaluate alternate between relays in both
regions. We measure the average round-trip latency between
machines in the two regions to be 84.89ms (with 0.58 stan-
dard deviation). In the following experiment results, each data
point is an average of 40 repetitions. We use error bars to
show the standard deviation from the mean.

Throughput. In Figure 8 we measure the rate of completed
payments as a function of the rate of issued payments for
different route lengths. The throughput continues to grow
until around 820 resolved payments/sec, which is over twice
of a relay’s throughput in the Lightning PCN [20] (about
358 payments/sec with one relay). We attribute this perfor-
mance improvement to batch-processing payments (cf., in
Lightning, each payment requires expensive invocations of
an underlying Bitcoin client). When the payment issuance
rate exceeds 800 payments/sec, the relays’ backlog grows
and eventually causes the throughput to start decreasing. We,
therefore, cap the relay’s backlog at 3000 payments to al-
low handling bursty payments and avoid congestion collapse.
Since PCNs are horizontally scalable, the more relays join
Twilight, the more disjoint routes are available (proportionally
growing Twilight’s throughput).

Latency across a route. Figure 9 evaluates payment la-
tency in Twilight by sending payments across paths of differ-
ent lengths and using different payment issuance rates. After
a minute, when the system is in steady-state, we measure the
latency for completing payments. Before backlogs start form-
ing in the relays, the latency is under 1.1s even with 4 relays
(e.g., when 800/sec payments are issued). We attribute about
half of this latency to the network RTT time (510ms from
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Figure 10: Privacy gain under partial
noisy payment processing adoption.

Alice to Bob via the 4 relays). The rest is due to Twilight’s
processing costs inside the TEE. From this, we conclude that
Twilight does not substantially increase the latency over a
vanilla PCN (that routes payments via a similar number of
hops). Even when payments are issued at a relatively high
rate (e.g., 800 payments/sec) Twilight’s processing does not
dominate the latency over the network RTT.

Smart contract gas cost. We use Ganache [14] to evaluate
the gas price of running the smart contract managing the chan-
nel’s account on Ethereum. We gather the gas prices using
“Web3.estimateGas” (an Ethereum API). The total gas cost for
handling each disputed PTLC is less than 2.4k gas. The major
pieces comprising this cost are: (1) 700 gas to validity check
of the dispute, (2) 800 gas to decrypt the disputed PTLC, and
(3) 900 gas to parse the plaintext and update the balance.

Each PTLC is encoded into 28B, which users can post to
the smart contract to dispute the channel’s closing balance
split (along with the partner’s signature over that PTLC and
a matching secret key). This encoding comprises 8B for the
amount, 4B for the PTLC’s timeout (in blocks), and 16B for
the authentication code that ensures the secret key is correct.
Storing the PTLC on the blockchain costs 15k gas and domi-
nates its processing cost.

9.2 Partial noisy processing adoption

Performing noisy payment processing involves costs for the
relay (§7). We consider the effect of weakening Twilight’s
requirements through a compatibility mode where relays can
participate in the network without noising payments in TEEs.
Clients can tell which relays do noisy payment processing
in TEEs using remote attestation and prefer routes where
all relays do so. We evaluate the fraction of payer-payee
pairs of nodes with a fully adopting path. As an example
network, we use the Lightning network topology (snapshot
from Nov. 7th, 2021), the largest PCN today. We that assume
the payer and payee run Twilight’s client, and evaluate three
scenarios regarding Twilight’s adoption (in its full form) in the
network: (1) relays adopt by descending order in the number

of channels they have, (2) organizations (companies operating
relays) adopt across all their relays by descending order in the
number of channels they have (we use relay lists from [7,29]),
and (3) uniform random adoption across the network.

Figure 10 shows that if the largest 5 organizations in the
network adopt noisy payment processing, then 47% of pairs
of nodes in the network will have a connecting route with
full adoption. The largest organization, “LN-BIG” [29] alone
connects around 19% of the pairs. More generally, we see that
adoption on a small number of relays or organizations at the
core of the network can protect routes between a large portion
of the network’s nodes, giving a tangible path to significant
privacy improvement. Uniform adoption is less effective, and
several hundreds of relays should adopt before the benefit
becomes significant.

10 Related Work
Several works point out that today’s PCNs do not offer much
privacy [15, 17, 30], and Kappos et al. evaluate such attacks
in practice [22]. Bolt [15] gives a strong privacy guarantee by
establishing payment channels over ZCash, but its architecture
is restricted to just one relay. Namely, a hub that connects
everyone in the network, which limits the scalability of the
design and risks availability in the case that hub goes offline.

Malavolta et al. [30, 31] propose a privacy-preserving
HTLC for PCNs. Instead of using the same HTLC secret
for every hop, secrets across the route are cryptographi-
cally linked but appear random. Thus, malicious relays along
the route cannot link payments through their HTLC secrets.
This construction is compatible with Twilight’s PTLCs and
allows avoiding such “secret-correlation” attacks. Speedy-
Murmurs [38] modifies the client’s routing algorithm to split
payments across several paths. In this manner, an attacker that
does not control a relay on all routes cannot learn the exact
payment amount or uniquely identify the payer and payee,
but he can learn information about the users’ “direction.” As
discussed in [31], these solutions [30, 31, 38] are only partial
to the privacy problem in PCNs. In particular, since channels
cannot transfer more funds than their liquidity, the attacker can



measure channels’ liquidity on inter-relay links by request-
ing relays to carry payments. He can then correlate liquidity
changes across channels to track the users’ payments [22],
the problem that Twilight tackles. Quantifying and bound-
ing statistical information leakage to an active adversary that
probes channels to deduce payment routes is challenging,
which Twilight achieves through differential privacy.

Joancomarti et al. [17] show how malicious clients can
monitor changes in channel liquidity. Tang et al. consider a
PCN that continuously advertises channel liquidity with fresh
noise [40]. They do not specify a noise mechanism or means
to enforce it but show that the adversary can quickly learn the
liquidity on every channel. Twilight addresses this problem by
utilizing ideas from the differential privacy literature; it can
avoid continuously publishing channel-liquidity with fresh
noise since it is safe to reuse noise values when hiding the
same payments set. This allows Twilight to provide a rigorous
differential privacy guarantee for its users.

TEEchain uses TEEs to build a high-throughput PCN [28]
and relies on the security of its relays’ TEEs for integrity. In
particular, there are no disputes since TEEs are trusted to close
channels at the correct balance. Moreover, TEEchain does
not protect against attacks on its users’ privacy. In contrast,
Twilight is focused on privacy and uses TEEs only to ensure
relays perform randomized response to hide users’ payments.

11 Conclusion

We presented Twilight, a new PCN that is focused on pri-
vacy. Twilight hides a user’s payments from other users in
the network using differential privacy. Relays convince users
that they will hide their payments by leveraging TEEs. Our
analysis shows that Twilight provides rigorous privacy and
incurs moderate costs. We implemented Twilight and tested
its performance across a route of relays in two continents and
evaluated it under partial adoption using simulations. Our eval-
uation shows that it provides solid performance compared to
Lightning, today’s most popular PCN (providing no privacy),
and gives a tangible path to payment privacy in PCNs.

Availability

Our code is available online along with instructions for repro-
ducing the evaluation results, see link in [41].
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Algorithm 1: Time-slot covering. The algorithm finds
the minimal set of nodes in the noise tree that cover
the time-slots preceding time t.

Result: Nt , the minimal covering of [0, t−1]
Input: A channel’s noise tree and t.
Nt ← /0

/* traverse the tree and find the smallest
set of nodes covering [0,t-1] */

for level ∈ [0, tree.depth] do
if allOnes(t [level : tree.depth]) then

/* cover all subtree slots */
Nt .add(channel.Tree[t[0 : level]])
return Nt

else if t [level] = “1” then
/* cover left child subtree */
leftChildLabel← t[0 : level]+ “0”
Nt .add(channel.Tree[leftChildLabel])

end
return Nt

A Minimal Time Slot Covering

A.1 Proof of correctness for algorithm 1.
We need to show that for each 0≤ t ≤ T the algorithm finds
the minimal covering of time-slots [0, t−1]. Let 0 ≤ t ≤ T ,
and let bt be the binary representation of t.

We first show that it outputs a correct covering of [0, t−1].
Let CAlg be the covering returned by algorithm 1. We prove
that CAlg is correct by induction on T . Let 0≤ t ≤ T . If T = 0,
then the algorithm returns the empty covering which is correct.
Assume by hypothesis that the algorithm is correct for every
0 ≤ T ′ < T . If t < T

2 , the algorithm turns to handle the left
subtree in the first step (since the most significant bit in t is 0.
From now on, the run of the algorithm on the last log(T )−1
digits of t is correct by the induction hypothesis. So CAlg is a
correct covering of [0, t−1]. Else, T

2 ≤ t < T so the algorithm
adds the root of the left subtree to the covering and turns to
handle the right subtree (since the most significant of t is 1),
this covers the interval [0, T

2 − 1]. The run of the algorithm
now proceeds to the rest of bt , i.e., excluding the first bit in the
binary representation; denote this number t ′. bt ′ is of length
log(T )−1, and the subtree is of size T

2 . From the induction
hypothesis we have that the algorithm finds a correct covering
of [0, t ′] in the left subtree, which translates to a covering of
[T

2 , t − 1] in the whole tree. This is added to the first node
in CAlg, which covers the first half of the interval. Therefore,
algorithm 1 is a correct covering of [0, t−1].

We now show that CAlg is minimal. Assume toward a con-
tradiction that there exists some covering of [0, t−1] which
contains strictly less nodes than CAlg, denote it Copt . Since
CAlg is non optimal, there are two intervals that can be re-
placed with one. This translates to two node trees that can be

replaced with a mutual ancestor. Therefore, at some iteration
of the loop the algorithm turned to handle the right subtree
without adding the left sibling to the covering. Instead it added
the two descendants of that sibling. This is a contradiction to
the operation of algorithm 1.

B Payment Protocol Details

This appendix provides a more detailed view of the protocol
including precise definition of the channel’s state, the payment
protocol’s messages, and the smart contract API. Finally we
include a proof of payment security and show that all parties
receive pay even if relays break their TEEs.

B.1 The Smart Contract

We now describe the smart contract that is used when opening
and closing channels. The contract we use is largely similar
to vanilla PCNs, with the main difference being that PTLC
values are encrypted, and are thus handled a bit differently.
The smart contract’s pseudo-code is provided in algorithm 2.

As in regular PCNs, a relay Ri may choose to unilaterally
close one of its channels by publishing the channel state to the
blockchain (e.g., in case his counterpart no longer responds).
His counterpart in the channel has a time window of τ blocks
during which it can submit a newer signed state to the smart
contract. The smart contract compares serial numbers and
checks the TEEs’ signatures to ensure that a rogue relay
cannot use an old state.

Claiming a PTLC Once a channel closes successfully,
each party may claim incoming PTLCs by revealing the ap-
propriate secret s. The secret allows the smart contract to
decrypt the amount hidden in the PTLC, and to transfer these
amounts to the relay.

Claiming the rest of the funds After all PTLCs are
claimed or expire, the remaining liquidity Li,i+1,Li+1,i can
be claimed. This liquidity cannot be claimed prior to expira-
tion because some unknown amount of it is supposed to be
locked in the s.

B.2 The Channel’s State and PTLCs

Throughout this section we denote relay i by Ri and its TEE
by Ei. The relay stores the channel’s state. At any given time,
the state of the channel between two relays is defined by the
current liquidities on both sides of the channel, the unresolved
PTLCs in the channel, a serial number and a timeout param-
eter (for resolving on-chain disputes). Formally, given two
parties, R1,R2 we denote the state of the channel between
them as:

S = (sn,L1,2,L2,1,((PT LCk)
m
k=1))



Algorithm 2: A channel’s smart contract.

def open_channel(pk1, pk2):
/* pk1,pk2 are the channel peers’

public keys. */
state← /0, serial_num←−∞, timeout← ∞

owner1← pk1, owner2← pk2
liq1← 0, liq2← 0, ptlcs = /0

def add_funds(owner, added_funds):
/* added_funds is an amount of money

attached to the transaction */
if owner = owner1 then

liq1← liq1 +added_ f unds
else if owner = owner2 then

liq2← liq2 +added_ f unds

def close_channel(S, Sig1, Sig2):
/* S is the channel state, Sig1,Sig2 are

the signatures of the two peers. */
(sn,L1,2,L2,1,(PT LCk)

n
k=1) = S

require check_sig((S, channel_ID), Sig1, owner1)
require check_sig((S, channel_ID), Sig2, owner2)
require sn > serial_num
require block_height()≤ timeout
state← S, serial_num← sn,
timeout← block_height()+ τ,
liq1← L1,2, liq2← L2,1, ptlcs← (PT LCk)

n
k=1

def claim_ptlc(ind, secret):
/* ind is the PTLC index and secret is

the secret associated with it */
(enc,veri f y, t,direction) = ptlcs[ind]
if timeout≤ block_height()≤ timeout+ t then

require veri f y = Hash(secret)
x = decrypt(enc,secret)
del ptlcs[ind]
liqdirection← liqdirection + x
liq¬direction← liq¬direction− x

def claim_remaining_liquidity(owner, owner_sig):
/* owner is the public key of the

endpoint claiming funds, owner_sig
is its signature */

require check_sig(tx, owner_sig, owner)
foreach (enc,h, t,d) ∈ ptlcs do

require block_height() > timeout + t
end
if owner = owner1 then

send_amount = liq1, liq1← 0
else if owner = owner2 then

send_amount = liq2, liq2← 0
else raise Exception;
send_funds (send_amount,owner)

Where L1,2 is the liquidity of the channel between relay R1
and relay R2 that currently belongs to R1 (before the PTLCs
are applied), m is the number of unresolved PTLCs in the
channel, sn is the serial number.

We additionally associate with each channel a constant
timeout for appeals, denoted τ, which is the amount of time
(measured in block creation events) that the channel closure
transaction can be appealed (this is agreed upon in advance by
the two parties that are creating the channel, and not changed).
Once the channel’s smart contract is deployed, its address
on the blockchain serves as a unique channel ID that we
concatenate to channel related messages prior to signing them
(to prevent message replay attacks across different channels).

Each PTLC in the channel state consists of the following:

PT LC j = (EncEd ,Hash(s j) (x j),Hash(s j) , t,d)

where,

• EncEd ,Hash(s j) (x j) is an encryption of the payment
amount to the public keys of the next enclave and the
public key derived from the payment secret s j. This en-
cryption is achieved via a non-malleable encryption with
a fresh ephemeral symmetric key to hide the payment
amount, to which we add two ciphertexts of that key: (1)
under the next hop’s TEE public key, and (2) under the
PTLC’s public key (derived from the secret).

• d ∈ {R1,R2} denotes the direction of the PTLC (towards
relay 1 or 2)

• t denotes the expiration of the PTLC (measured in
blocks) after the transaction to close the channel is posted
to the blockchain. After this timeout elapses, the funds
revert back to their sender and can no longer be claimed
in exchange for the secret.

As in the standard lightning protocol, timeouts should de-
crease along the route for the protocol to remain secure and
trustless [33]. In order to be considered valid by the smart
contract, the state must be signed by both parties.

There are two state transitions use by the protocol, each of
which increments the serial number by one and changes the
state:

• Adding a PTLC: Incorporating a new PT LCn+1 (after
receiving one from a previous hop):

(sn,L1,2,L2,1,(PT LCk)
m
k=1)→

(sn+1,L1,2,L2,1,(PT LCk)
m+1
k=1 ) (4)

• Resolving a PTLC: Once the secret s j for PT LC j prop-
agates back along the path, we move the amount x j from
R1 to R2:

(sn,L1,2,L2,1,(PT LCk)
m
k=1)→

(sn+1,L1,2− x j,L2,1 + x j,(PT LCi)
m
i=1,i 6= j) (5)



A similar (symmetric) state transition for s in the other
direction adds liquidity in the opposite direction.

Each relay maintains the latest view of the channel state, along
with a signature on this state by its counterpart’s TEE, and its
own TEE, which is exactly the information that allows it to
close the channel unilaterally.

B.3 Payments in the TEE Protocol
A payment in the TEE protocol consists of two main stages -
(1) route establishment, in which PTLCs propagate forward
towards the recipient (2) payment completion in which the
PTLC’s secret propagates back and the PTLC is removed
from each channel along the path. The details of each of these
parts is listed below.

We assume two clients Alice and Bob wish to transact via
relays in the system. Alice picks a route

Alice→ R1→ . . .→ Rk→ Bob.

We assume Alice is aware of the public keys of TEEs on
this path (Ei is the public key of Ri’s TEE). She informs Bob
of the amount of money x she wishes to send. Bob picks a
secret s and sends Hash(s) to Alice. Next, Alice begins the
route establishment process by sending a message to the first
relay in the route. This message is similar to the one that later
propagates between relays along the route.

B.3.1 Route establishment

We now describe the route establishment process from the
perspective of a single relay Ri along the path. Prior to re-
ceiving a message from the previous relay, we assume Ri’s
incoming channel has state

Sin = (sn,Li−1,i,Li,i−1,(PT LCk)
m
k=1)

and its outgoing channel has state

Sout = (sn′,Li,i+1,Li+1,i,(PT LCk)
m′
k=1)

The following sequence of events takes place at Ri:

1. Ri is notified of a new PTLC in the channel when it
receives a message from Ri−1. The message includes
The new payment PT LCm+1, given this PTLC, the new
incoming channel state S′in can be deduced (by applying
state transition 4 on Sin essentially adding PT LCm+1 and
incrementing the serial number).

The message additionally includes a signature of Ei−1
on the new channel state S′in together with the channel
ID, as well as an Onion encrypted payload that denotes
the next hop (by noting the public key of the next hop’s
TEE Ei+1) and onion encrypts the rest of the route to
Bob.

2. Ri passes to its TEE the new (proposed) channel state S′in,
the signature of the previous TEE on this state, the cur-
rent outgoing channel state Sout and the onion encrypted
payload that identifies the next hop.

3. The TEE verifies the signatures of the preceding TEE
on on the incoming channel state (and that it was cre-
ated by a TEE). It then decrypts the payment amount x,
and verifies that it is consistently encrypted to the new
PTLC’s public key Hash(s). If one of these checks fails,
the TEE aborts.

4. The TEE then draws noise according to the noise ad-
dition protocol in algorithm 1, and performs a liquidity
check with this extra noise with the balance of the in-
coming channel’s liquidity (here the TEE provides the
algorithm with time from its internal clock, and a seed
for a pseudo-random number generation that determines
the noise at each node of the tree within the algorithm).
If the liquidity check passes, it sets the amount x as it
was. Otherwise, it sets x to be 0 and proceeds.

5. The TEE decrypts the onion routing message and dis-
covers the public key of the next hop’s TEE Ei+1

6. The TEE encrypts the payment amount x again (this time
for the next hop’s key Ei+1, and for Hash(s) using the
scheme discussed above). Using this encrypted value, it
forms the new PTLC of the outgoing channel and derives
from it the new outgoing channel state S′out .

7. The TEE signs both states together with the correstpond-
ing channel ID: (S′in, IDin), and (S′out , IDout).

8. Finally, the TEE outputs: the identity of the next hop, the
signature the states, and the new PTLC for the outgoing
channel.

9. Relay Ri then forwards to the next hop Ri+1 the following
data items in a message (similar to the one it received
from its predecessor): the new PTLC on the channel
between Ri and Ri+1, the signature of Ei on the new
channel state and its ID, and the onion encrypted route.

We note that since Alice does not herself own a TEE, the
first relay’s onion encrypted message also contains a bit no-
tifying it that it is the first relay, and that it does not need to
ensure that the incoming PTLC is signed by another TEE, but
rather by a client’s public key.

The last public key in the route is simply Bob’s public key,
and he can thus decrypt the hidden amount himself (Twilight
does not assume that Alice or Bob have TEEs).

B.3.2 Payment completion

Upon the last PT LC reaching Bob, he checks the amount is as
promised by Alice, and validates the signature of the previous



relay’s TEE. If these are valid he proceeds to send the secret
s to the previous relay.

We describe the steps taken by relay Ri upon receiving the
secret s pertaining to some PT LC:

1. Relay Ri decrypts the amount in the PTLC. If decryp-
tion was unsuccesful, it aborts. Otherwise it proceeds as
follows.

2. Ri forwards the secret s to the previous relay Ri−1 in the
corresponding route.

3. Ri then applies state transition 5 to its outgoing channel
to remove the PTLC. This also adjusts the channel liquid-
ity. The new state needs to be signed by Ri’s TEE. The
TEE generates this signature only if it is provided with
the old state, the secret, and its own signature on the old
state (to ensure that the relay is requesting a signature
on some arbitrary state).

4. Ri sends a message to Ri+1 notifying it that it accepted
the secret and provides the signature on the new state of
the channel (without the PTLC, and with the adjusted
liquidity).

5. Ri expects to receive a message from Ri−1 removing the
PTLC from the channel. If no such message is sent after
some sufficient timeout elapsed, the channel should be
unilaterally closed.

Once the secret reaches Alice, the payment is complete,
and s acts as proof of payment.

B.4 PCN Integrity Despite Broken TEEs
Theorem 5. Consider a payment from Alice to Bob via Twi-
light’s relays. Twilight provides the following guarantee to
each participant, even if all other participants collude against
them and all relays break their TEEs:

• If Bob provides a receipt, it gets Alice’s pay.

• If Alice pays the first relay, then she has Bob’s receipt.

• An honest relay that pays on its outgoing channel, re-
ceives at least as much pay on its incoming channel.

• Any party can unilaterally close their channels and claim
their funds on-chain at any time.

Proof. If Alice pays money, either she has agreed to teardown
the PTLC (which she only does upon receiving the secret s)
or the first relay closed the channel and submitted the current
state to the smart contract (if an old state was used Alice
would appeal and win with a newer state). This state includes
the PTLC that was not resolved. To claim these funds, the
relay submits the secret s to the blockchain which means that
Alice learns the secret from the blockchain.

Bob only releases the secret s upon receiving a PTLC from
the last relay which is included in a state signed by the relay’s
TEE. Bob also checks that the amount encrypted in this PTLC
matches the amount that Alice was supposed to send. This
means that one of two options can happen: (1) either the last
relay tears down the PT LC and finalizes the payment, or if the
PTLC is about to expire, (2) Bob submits the updated state
containing the PTLC and the secret s to the blockchain, and
is awarded the funds.

Now any relay along the path can always obtain any funds
it loses on an outgoing link because it only sends and signs
an PTLC on the outgoing link once it receives a valid one
on the incoming link. If a relay is honest, then it uses the
same payment public-key in the outgoing PTLC, the same
encrypted transfer amount (or lower if it failed the liquidity
check). Thus, the outgoing PTLC is valid only if the incoming
one is valid, and is always of an amount that is sufficient to
cover the outgoing payment.

Then, the relay only agrees to complete the payment on its
outgoing edge upon receiving the secret s which allows it to
claim the funds. Either by getting the previous relay on the
path to update the state of the channel (upon receiving s) or
by closing the channel and directly submitting s to the smart
contract.

C Extension for Recovering TEE’s Time

Twilight supports a simple protocol that allows convincing
one “source” TEE that another “replica” TEE kept its time in
case of a reboot. First, the two TEEs exchange public keys,
these keys are authenticated using remote attestation. Next,
the replica sends a challenge to the source and measures
the time until it receives a response which contains a signed
timestamp from the source with the replica’s challenge. If
more than α/2 time elapses, it rejects the response. Otherwise,
the replica starts counting time since it receives the source’s
timestamp.

When the source reboots, and wishes to recover it runs a
similar protocol in the reverse direction. It asks the replica
for its time along with a challenge, and if it receives a signed
response from the replica’s TEE within less than α/2 time, it
sets its clock according to the response and then waits α time
before accepting more requests to process payments from the
hosting relay. The reason for waiting α time is to ensure that
the relay cannot shift time backward by stalling messages for
α/2 in each direction. We envision α be on the order of a few
seconds to a minute.

D Privacy Analysis

We provide the proof for the Theorem 3 reasoning about Twi-
light’s privacy guarantees given in §4. Our proof uses a proba-
bilistic bound, which hold except when drawing extreme val-



ues for noise. We quantify these probabilities with δleft,δright,
which mark the probabilities of obtaining extremely low or
high values, so the differential privacy δ = δle f t +δright .

Proof of Theorem 3. For each l-channels route ri of the r
available routes, consider the attacker’s observations, oi, on
the route’s channels over the lifetime of Twilight’s operation.
The attacker observes all channels along all routes, that is, he
sees the vector o1, . . . ,or. We are interested in bounding the
following ratio:

Pr[o1, . . . ,or|A→ B]
Pr[o1, . . . ,or|X]

(6)

Alice’s client selects one route at random, hence:

=
1
r ∑

i

Pr[o1, . . . ,or|A→ B via i]
Pr[o1, . . . ,or|X]

Since all routes are disjoint and induce i.i.d. noise,

=
1
r ∑

i

∏ j Pr[o j|A→ B via i]

∏ j Pr[o j|X]

=
1
r ∑

i

Pr[oi|A→ B via i]∏ j 6=i Pr[o j|X]
∏ j Pr[o j|X]

Denote by xi,k,t the noise value that relay k in route i draws
for ancestor t in the noise tree of Alice’s transaction time
slot. xi,k,t distributes Gauss(µ,σ2). Let m be Alice’s payment
amount. Using the calculation from Equation 3 (logb T is the
number of ancestors of a payment slot in the tree):

=
1
r

r

∑
i=1

e
∑

l
k=1 ∑

logb T
t=1 2mxi,k,t−m2−2mµ

2σ2 Pr[oi|X]∏ j 6=i Pr[o j|X]
∏ j Pr[o j|X]

=
1
r

r

∑
i=1

e
∑

l
k=1 ∑

logb T
t=1 2mxi,k,t−m2−2mµ

2σ2
∏ j Pr[o j|X]

∏ j Pr[o j|X]

=
1
r

r

∑
i=1

e
∑

l
k=1 ∑

logb T
t=1 2mxi,k,t−m2−2mµ

2σ2 (7)

For any α, eα ≥ 1+α, therefore:

≥ 1
r

r

∑
i=1

1+
∑

l
k=1 ∑

logb T
t=1 2mxi,k,t −m2−2mµ

2σ2

= 1+
−rl logb T m2−2mrl logb T µ+2m∑

r
i=1 ∑

l
k=1 ∑

logb T
t=1 xi,k,t

2rσ2

Similarly to the probabilistic bounds for Theorem 2, we
upper bound ∑

r
i=1 ∑

l
k=1 ∑

logb T
t=1 xi,k,t which distributes

Gauss(rl logb T µ,rl logb T µσ2) with

∑
r
i=1 ∑

l
k=1 ∑

logb T
t=1 xi,k,t ≤ rl logb T µ+ c

√
rl logb T σ from be-

low, which holds except with probability

δ = GaussCDF(rl logb T µ,rl logb T µσ2; rl logb T µ −
c
√

r logb T σ) and get:

≥ 1+
−rl logb T m2−2mrl logb T µ+2mrl logb T µ− c

√
2mrl logb T σ

2rσ2

= 1− (
mc

√
l logb T

σ
√

r
+

l logb T m2

2σ2 ) = e−ε

To obtain the upper bound on eε we use a related inequality,
for α < 1.79, eα ≤ 1+α+α2 and apply it to Equation 7. In

our case, αi =
∑

l
k=1 ∑

logb T
t=1 2mxi,k,t−m2−2mµ

2σ2 Notice that αi is a lin-
ear combination of normally distributed random variables and
therefore, it is also a normally distributed variable. We upper
bound ∑i αi using the Gauss CDF as we have shown before.
The sum ∑

r
i=1 α2

i is a sum of i.i.d normally distributed random
variables and therefore follows the chi-squared distribution
with r degrees of freedom. We probabilistically upper bound
∑

r
i=1 α2

i using the chi-squared distribution CDF. The result is
smaller than the upper bound on ∑i 1+αi.1

To get an intuition about the behaviour of ε, for small values

it holds that ε≈ mc
√

l logb T
σ
√

r +
l logb T m2

2σ2 .

D.1 Privacy Analysis of Multiple Payment

We next analyze the intuitive arguments from section 6.2.3,
that is, that taking advantage of more disjoint routes not only
gives a better ε for one payment (Theorem 2), it also gives
benefits in composition of multiple payments. Assume that
there are r disjoint routes of length l between Alice and Bob
and that Alice routes k payments to Bob. Denote by s the
maximal number of payments routed through any one path
and by ε′,δ′ the privacy for a single payment that arises from
Theorem 3. Next, we statistically bound s as follows: for
each payment, Alice’s client chooses the route uniformly at
random so it chooses each route with probability 1/r. The
chance that it chooses the ith route for more than s times over
the k payments is 1−BinomialCDF(k, 1

r ; s) which quickly
goes to 0 as s grows above k

s (the average number of payments
in one route). Across all routes, the chance that any single
route has more than s payments is thus bounded by δ̂ = r(1−
BinomialCDF(k, 1

r ; s)).
This means that for each route, the privacy composition

is linear, achieving sε′,sδ′ + δ̂ differential privacy for all
s payments. Since all r paths are disjoint, we can utilize
the advanced composition theorem from [21] across the r
differentially-private sequences of s payments.

1The exponent α must be less than 1.79 to use the eα ≤ 1+α+α2

inequality. Since the Gauss distribution is additive, α distributes Gauss with

a negative mean (−l logb T m2

2σ2 ) and low variance ( lN
4σ2 ). We add the probability

that it does not hold, 1−GaussCDF( lN
2σ2 ,

lN
4σ2 ; 1.79), to the differential

privacy delta. (For reasonable parameters such as σ = 100, logb T ≤ 64, l ≤ 5
it is extremely small, less than 10−14.)



E Efficiency Analysis

We next prove Theorem 4 and analyze the cost for operating
a Twilight channel.

E.1 Proof of Theorem 4
We begin by proving a lemma that aids in the proof.

Lemma 1. Let c1,c2 be two bi-directional noiseless channels
with capacities C1,C2 respectively. Assume that in c1,c2 the
liquidity from left to right is L1,L2, and from right to left is
R1,R2 respectively. So C1 = R1 +L1,C2 = R2 +L2. Assume
further that R2 ≥ R1 and L2 ≥ L1 and that C2 = C1 +ω for
some ω > 0 (this means that at least one of the inequalities
is strong). Let P = p1, . . . , pn be a sequence of payments that
are approved in c1. Then p1, . . . , pn are approved in c2.

Proof. Let p+ = {pi ∈ P|pi > 0} and let p− = {pi ∈ P|pi <
0} (p+ are all payments moving money left to right, and
p− right to left). Assume towards a contradiction that there
is some payment pi ∈ P that is rejected in c2. Now, since
pi was rejected by c2 if pi ∈ p+ then L2−∑

i−1
j=1 p j ≥ 0 but

L2−∑
i
j=1 p j < 0. However, since pi was approved in c1 it

holds that L1−∑
i
j=1 p j ≥ 0. But it also holds that L2 > L1

which is a contradiction. The proof for the case pi ∈ p− is
identical.

Therefore, it holds that for all j ∈ [n] ∑
j
i=1 p j =

∑i≤ j,pi∈p+ pi −∑i≤ j,pi∈p− pi < C1 < C2. So p1, . . . , pn will
be approved in C2.

From now on we will assume that all channels are bidirec-
tional, and that if C2 =C1 +ω for two channels c1,c2 then it
means that in the initialization of the channel, it holds that
L2 ≥ L1 and R2 ≥ R1. Since generalizing the unidirectional
proofs to the bidirectional case is always done as in Lemma 1,
we will forgo this and prove the unidirectional case.

Proof of Theorem 4. From Lemma 1 we know that if we add
capacity ω = µN + t to a channel, and if the total amount of
added noise by the noise mechanism is no more than ω, then
any payment that would have been approved without noising
will also be approved after noising with the added capacity.
The probability that the mechanism adds more than ω noise is
1−GaussCDF(µN,σ2N;ω) = 1−GaussCDF(µN,σ2N;µN+
t) = GaussCDF(µN,σ2N;µN−t). This probability, therefore,
bounds the chance that the noisy channel rejects a payment
that the noiseless channel approves.

E.2 Efficiency Analysis Illustrated
Extending the analysis in Section 7.1, we present figure 12
which illustrate the trade-off between efficiency to privacy for
additional values of δ, as well as figure 11 which presents the
effect of the number of disjoint routes and the route length
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Figure 11: The number of extra coins locked needed to achieve
a privacy level of ε = 0.15 and ∆ = 10−3 as a function of the
number of disjoint routes. Extending the results from Figure 6
to more values of delta.

on the overhead of escrow needed to achieve a privacy level
of ε = 0.15, for more values of δ. The figures show the same
trends as illustrated in figures 5 and 6 in the main body of this
paper.

E.3 Quantifying and covering operation costs

The trade-off between privacy and efficiency (§7.1) quantifies
the extra coins a Twilight relay’s operator locks for a given
level of privacy (ε,δ) and payment failure probability (∆). In
financial terms, since the relay’s operator receives back the
locked coins, their deposit loses value at the inflation rate.
Since the deposit amount is independent of the number of
payments over a channel, a relay may cover this cost through
fees. Next, we evaluate the payment volume that would cover
Twilight’s operational costs.

Denote the average daily payment volume on the relay’s
channel by v coins. Let f ∈ [0,1] be the payment fee, which is
a portion of the payment amount that is split evenly across the
route. Let i ∈ [0,1] be the daily inflation rate and assume that
a relay locks M+ the amount of coins m in the payments it
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Figure 12: Privacy-efficiency trade-off, extending results from
Figure 5 to more values of δ.

aims to hide. The daily cost for operating a Twilight channel
is (Mm)i

365 coins. Comparing the network’s income and expense
in the two equations above, we get that a channel profits it
charges fees of at least:

v f >
(Mm)i

365
⇒ f >

(Mm)i
365v

(8)

Consider the privacy-efficiency trade-off point highlighted
in Figure 5 (ε = 0.15,δ = 10−7,∆ = 10−3). Here, a relay
hiding a m-coin payment needs to add to the escrow around
9560×m coins. With a typical inflation rate of i= 3%, we get:
f > 0.79

v m. Thus, a payment channel that, on average, carries
at least v = 79×m every day (i.e., 79× the payment amount
it wishes to hide), covers the cost of operating Twilight in this
privacy configuration by charging 1% payment fee.
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