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Abstract. PlonK is a prominent universal and updatable zk-SNARK for general circuit satis�ability.
We present aPlonK, a variant of PlonK that reduces the proof size and veri�cation time when multiple
statements are proven in a batch. Both the aggregated proof size and the veri�cation complexity of
aPlonK are logarithmic in the number of aggregated statements. Our main building block, inspired
by the techniques developed in SnarkPack (Gailly, Maller, Nitulescu, FC 2022), is a multi-polynomial
commitment scheme, a new primitive that generalizes polynomial commitment schemes. Our techniques
also include a mechanism for involving committed data into PlonK statements very e�ciently, which
can be of independent interest.
We also implement an open-source industrial-grade library for zero-knowledge PlonK proofs with sup-
port for aPlonK. Our experimental results show that our techniques are suitable for real-world appli-
cations (such as blockchain rollups), achieving signi�cant performance improvements in proof size and
veri�cation time.

1 Introduction

In 1985 [GMR85], Goldwasser, Micali and Racko� introduced the notion of zero-knowledge arguments. They
allow a prover to convince a veri�er of the validity of a certain statement without revealing any other
information, e.g. why the statement is true. A few years later, Blum, Feldman and Micali [BFM88], extended
this notion and considered non-interactive zero-knowledge arguments (NIZK), where the communication
between the two parties is unilateral: the prover produces a �certi�cate� that can be veri�ed by everyone.

Existing generic protocols that implement zero-knowledge argument systems [BFM88, DMP90, FLS90]
for any NP relation have been perceived as mainly theoretical results for many years: they used to involve
expensive NP reductions and repetitions of the same routine in order to achieve reasonable soundness.
Only special purpose protocols for speci�c NP languages [Sch91, Cra97, CDS94, GS08] were considered
e�cient enough for practical deployment, and they have been widely used for building digital signatures and
anonymous credentials.

Recently, the research community has witnessed signi�cant improvements on the design of e�cient
general-purpose zero-knowledge proof systems which o�er various degrees of practicality [Gro16, BCG+17,
BBB+18, MBKM19, LMR19]. Such improvements have been driven by the increasing development of block-
chain systems that make use of zero-knowledge arguments to achieve privacy and scalability [BCG+14,
DFKP13]. In these systems, communication complexity is one of the most important performance factors,
which has led to an increasing interest and remarkable progress in so-called succinct non-interactive argu-
ments of knowledge (SNARKs) [GGPR13, BCG+13, PHGR13, Gro16], a class of non-interactive arguments
of knowledge with sublinear (if not constant) communication and veri�cation complexity. This comes at the
cost of a signi�cantly slower prover, compared to other zero-knowledge proof systems with higher communi-
cation complexity [JKO13, GMO16, CGM16].

PlonK, which stands for Permutations over Lagrange-bases for Oecumenical Non-interactive arguments of
Knowledge, is a universal and updatable zero-knowledge SNARK for general circuit satis�ability. Given its
signi�cant improvements with respect to its predecessor Sonic [MBKM19], especially on prover e�ciency,
PlonK has become very popular and has been adopted by several state-of-the-art blockchain projects such
as Zcash [HBHW], Mina [BMRS20], the Dusk Network [MKF21] or Anoma [GYB21].



In this work we present aPlonK, a new a�uent of the PlonK family which focuses on reducing the proof
size and veri�cation time when multiple statements are proven in a batch. The aggregated proof size and
the veri�cation complexity of aPlonK are logarithmic in the number of aggregated statements, making it
an appealing building block for many blockchain applications, where having low veri�cation complexity is
paramount.

Remark 1. aPlonK is the main proving system of the Epoxy library, developed by the Cryptography Team
at Nomadic Labs [Nom22]. Epoxy is a validity rollup over the Tezos blockchain [Goo14].

1.1 Blockchain applications of SNARKs

Blockchain developers were among the �rst to deploy large-scale real-life applications of general purpose zero-
knowledge proof systems, starting di�erent lines of research in this area. We can cite Virgo [ZXZS20] and
its successors, used for Overeality [Ove22]; STARK [BBHR19], used by Starkware [Sta21]; Halo [BGH19a],
used by Zcash [HBHW]; or PlonK [GWC19], created by Aztec [Wil18].

Privacy. Blockchains revolve around the property of public veri�ability, since anyone must be able to verify
the transition between successive blockchain states. As such, all the information on a blockchain must be
public, which makes it di�cult to support privacy-friendly applications.

Using zk-SNARKs is a natural approach to keep public veri�ability while maintaining privacy. This was
�rst illustrated theoretically [MGGR13, DFKP13, BCG+14] but also in practice [HBHW]. These systems
leverage zero-knowledge proofs to allow users to generate private transactions that hide the sender, the
recipient, and (potentially) the transferred amount. Although zero-knowledge proofs are practical, they
incur a considerable overhead on both the prover (the user) and the veri�er (the blockchain). Note that a
SNARK proof veri�cation typically involves heavier computations than a simple signature veri�cation.

Scalability and validity rollups. Scalability is a an inherent issue in blockchain systems. The blockchain
throughput cannot be simply increased with additional computing power, since every node should be able to
validate state transitions. SNARKs can be of help here when they are used to certify expensive computations
(e.g., the validity of multiple transactions), since the SNARK veri�cation can become cheaper than the direct
validation of the statement being proven. This idea has been explored in so-called validity rollups. (Note
that in this context, zero-knowledge is not necessarily relevant.)

A validity rollup is an alternative chain that runs in parallel to the main chain, but stores a small
amount of data on the main chain, e.g., a commitment to the rollup state. Transactions can be sent to a
rollup operator, who knows the exhaustive rollup state and can update it accordingly. Periodically, the rollup
operator will communicate to the main chain a commitment to the most updated version of the rollup state
together with a proof that ensures its validity (ergo the name).1 The commitment to the new rollup state
and such proof are published on the main blockchain and the nodes only need to check this single proof
(instead of validating all the operations performed between rollup states).2 The blockchain (layer 1) becomes
more scalable at the cost of having to produce such proof, which is generated by an independent operator
(in layer 2). Unlike in layer 1, the operator can make use of extra computing power and parallelization to
speedup the process of creating proofs, thus reducing the rollup latency.

Despite such promising properties and even if the rollup operator can use large computing power, pro-
ducing proofs is a major bottleneck. A possible idea to reduce the proving cost (and thus the rollup latency)
is to split the statement into smaller ones. For example, instead of proving the validity of 10,000 rollup trans-
actions with one proof, one could produce 100 proofs of 100 transactions each. Dealing with smaller proofs
can signi�cantly simplify the prover cost, whose complexity is linearithmic in the circuit size. Unfortunately,
this would require that the blockchain nodes receive and verify 100 proofs instead of 1.

1A proof that the new committed state has been achieved by applying legitimate operations to the previous
committed state.

2Remarkably, the blockchain nodes do not even need access to the rollup operations that were involved.
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Our techniques in this work are particularly suitable for the above scenario. They allow the prover to
combine the batch proofs, producing an aggregated proof that can be veri�ed very e�ciently by the blockchain
nodes. An alternative solution would be to use incrementally veri�able computation (IVC) [Val08]. We discuss
the di�erences between these two approaches in Section 1.3.

Privacy-preserving rollups. To make rollups privacy-friendly, we can leverage the zero-knowledge property
of SNARKs. For example, by having users create zero-knowledge proofs which are then aggregated by the
rollup operator, their private information could remain hidden. Our techniques are also applicable to this
scenario but require some coordination between users. We need the users to synchronize a few times during
the proving process to achieve correctness, as all parties must use the same Fiat-Shamir randomness (see
Section 4.1). On the other hand, our distributed version of aPlonK can be adapted to prevent DoS attacks:
if a user aborts the execution of their proof, or misbehaves, the aggregation of the rest of proofs can still
be completed. Again, recursion and IVC are an alternative for implementing privacy-preserving rollups (see
Section 1.3).

1.2 Our contributions

We pursue the study of the PlonK proving system and establish several general techniques that reduce the
proof size and veri�cation time when multiple statements are proven in a batch.

aPlonK. Our main contribution is a multi-statement proving system coined aggregated PlonK or aPlonK
for short, which allows one to combine k proofs into a single aggregated proof of O(log k) size that can
be veri�ed in O(log k) time. The aggregated proofs must be created coordinately, but their computation is
highly parallelizable. aPlonK is the result of extending the techniques of Gailly, Maller and Nitulescu (Snark-
Pack) [GMN20], designed over Groth16 [Gro16], to the framework of PlonK. This work and SnarkPack both
use the generalized inner product argument presented in [BMV19].

Multi-polynomial commitments. We introduce the notion of multi-polynomial commitment schemes, a gen-
eralization of polynomial commitment schemes designed to commit to several polynomials at the same time,
while achieving sublinear commitment and proof sizes and sublinear veri�cation complexity in the number
of committed polynomials.

We then present a generic construction of a multi-polynomial commitment scheme from any homomorphic
polynomial commitment scheme whose commitment space is one of the source groups of a set of bilinear
groups. Our construction is inspired by the techniques of SnarkPack for building an inner-product argument
with logarithmic veri�cation time by combining a modi�ed version of the inner-product argument [BBB+18,
BGH19b, BCL+21, DRZ20] with a KZG-like [KZG10] commitment scheme whose commitment space is the
target group of a set of bilinear groups.

Our new notion of multi-polynomial commitments captures the essence of SnarkPack, hardcoded in their
ad hoc construction for aggregating Groth16 proofs. We consider this an important contribution as it provides
clarity, intuition and continues the modularity of PlonK-based systems.

Improvements over SnarkPack. While the veri�cation of SnarkPack is presented as sublinear3, their veri�er
needs to perform a linear number of scalar operations for dealing with public inputs. (This is inherent for
veri�able computations.) We observe that for many applications (e.g. a validity rollup) most public inputs
can be hidden from the veri�er as long as some relation on them is ensured (e.g., they form a chain). Our
system can exploit this fact, to achieve actual sublinear veri�cation time, when the use case allows for it.

Furthermore, we double the e�ciency of the main subroutine of SnarkPack by observing that their pair
group commitments [GMN20, Section 3.2] do not need to be binding in order to achieve the desired security
properties, if the underlying polynomial commitment scheme is inner-product binding and inner-product
extractable (see Section 3). Note that [BMM+21, Section 5.3] propose an alternative solution to achieve a

3It is in terms of elliptic curve operations.
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binding committing function without doubling the commitment size. They use a di�erent SRS without odd
powers in one of the source groups. This requires a dedicated trusted setup, something which SnarkPack and
this work want to avoid in order to reuse the SRS from existing ceremonies.

Commitments in PlonK relations. En route, we present a mechanism that allows a PlonK statement to refer
to the data inside a public commitment. Such link does not require a high number of constraints to model
the commitment opening, as it is performed outside of the PlonK circuit. This building block, necessary to
instantiate aPlonK e�ciently, can be of independent interest, as it can be used for building hybrid proving
systems or for proving statements modeled with non-deterministic circuits (see Section 4.2).

Implementation and evaluation. We implement a general library for (zero-knowledge) PlonK proofs with
support for aPlonK. Our library is implemented over the BLS12-381 elliptic curve [Bow17] and uses bindings
to the blst library [Sup21]. Our experiments show that the techniques described in this work are suitable
for real-world applications, providing signi�cant performance improvements in proof size and veri�cation
time, while introducing a light overhead on prover complexity. Our code is publicly available as open-
source [Nom22].

1.3 Related work

In this section, we compare our techniques with other approaches for combining zero-knowledge proofs and
present the main advantages of aPlonK.

IVC and recursion. Incrementally veri�able computation (IVC) [Val08], conceived by Valiant, is a frame-
work that provides proof composability: with IVC one can conjunctively combine two proofs of size k into a
proof of size k as well. This is a powerful technique that can be used to implement recursion. In the context
of SNARKS, recursion allows one to prove statements like the following (parametrized by a state):

�I know a previous state from which the current state can be reached and I also have a proof of this very
statement for such previous state.�

This can be achieved by expressing a SNARK veri�er in a SNARK circuit. One real-world application of this
technique is the Mina blockchain [BMRS20], which provides its user with a constant-size proof of validity
of its most updated state. In particular, the proof ensures that one transition of the blockchain has been
performed correctly and that there exists another proof for the preceding state. This allows the blockchain
state to be constant.

Incidentally, recursion can also be used to aggregate proofs together by proving that one has seen valid
proofs. This allows for natural parallelization by splitting a complex computation into smaller ones that are
then aggregated.

However, the strength of recursive SNARKs comes with high costs. Expressing a SNARK veri�er in a
SNARK circuit is very expensive. The current known techniques are (i) using cycles of pairing friendly elliptic
curves [CCW19] which require very big group elements, (ii) or implementing non-native operations such as
modular arithmetic over a modulus (e.g. the SNARK's base �eld order) that does not coincide with the
SNARK's scalar �eld order. This typically leads to a decrease in performance of several orders of magnitude.

This performance issue has led to new lines of research exploring alternatives techniques for achieving
weaker versions of IVC. We can cite, Halo [BGH19a], and its successor Halo2 (which uses PlonK instead
of Sonic [MBKM19]), Fractal [COS19], Bünz et al. work [BCMS20], or Nova [KST21], a novel construction
based on folding schemes. These works explore the idea of performing a weaker version of recursion by not
modeling some expesive parts of the SNARK veri�cation in the circuit. These excluded veri�cation steps
can be accumulated and carried out for future veri�cation. These techniques achieve IVC by using a cycle
of (not necessarily pairing-friendly) elliptic curves, leading to better performance.

Proof aggregation without recursion. Proof aggregation can be achieved more e�ciently without re-
cursion and still be suitable for many applications such as validity rollups.
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Aztec. The company Aztec [Wil18], creator of PlonK, achieves a form of proof aggregation which can be
seen as a weak version of IVC. Thanks to this simpli�cation, they do not require cycles of elliptic curves.
However, they still need to model elliptic curves in a SNARK circuit, which involves simulating non-native
�eld operations. The expensive pairing checks are accumulated as in Halo, by using standard batching
techniques.

SnarkPack. Gailly, Maller and Nitulescu [GMN20] provide a framework for aggregating Groth16 proofs.
As we explained in Section 1.2, their techniques (based on [BMM+21]) are the starting point of this paper
and combine a homomorphic pair group commitment schemes with an inner-product argument to achieve
logarithmic-size proofs and logarithmic veri�cation complexity (in the number of aggregated proofs).

Our work achieves very e�cient proof aggregation without cycles of elliptic curves and without simulating
non-native operations. This is an improvement over Halo and Aztec, which brings us at the level of SnarkPack.
However, unlike SnarkPack, aPlonK is de�ned over a universal SNARK. An immediate consequence is that
we can aggregate di�erent circuits. Furthermore, we can perform proof aggregation that connects the proven
statements in an arbitrary fashion (e.g. Section 4.3).

1.4 Technical overview

In a nutshell, a PlonK proof consists of a set of commitments to secret polynomials together with evaluations
of such polynomials at a random point (sampled after the polynomials have been committed). A PlonK ver-
i�er simply checks that the evaluations are valid with respect to the corresponding polynomial commitments
and that they satisfy a series of equations.

In the multi-statement setting, in order to achieve sublinear veri�cation time in the number of aggregated
proofs, the veri�er will need to delegate some computations to the prover and independently verify that
they were performed honestly. As we will see, such veri�cation can be performed signi�cantly faster than the
delegated computation. In our construction, such delegation occurs twice: (i) a multi-polynomial commitment
scheme is used to achieve sublinear commitments size and sublinear veri�cation complexity on checking the
commitment evaluations; (ii) we use meta-veri�cation (which we describe below in more detail) to achieve
constant veri�cation complexity on checking the evaluation equations.

Multi-polynomial commitments. The main challenge of building a multi-polynomial commitment scheme
is achieving sublinear commitment size (and sublinear veri�cation) in the number of committed polynomi-
als. We follow the techniques of Gailly, Maller and Nitulescu [GMN20, BMM+21], and start from the KZG
polynomial commitment scheme [KZG10] de�ned over a set of bilinear groups (G1,G2,Gt) of prime order p
equipped with a pairing e. We use the implicit notation [x]i to denote xGi ∈ Gi for every i ∈ {1, 2, t}, where
Gi is the designated generator of Gi and x ∈ Zp. The KZG commitment scheme is de�ned as follows:

• The commitment key is ck := [s, . . . , sd−1]1 for a uniformly sampled s ∈ Zp.
• The veri�cation key is vk := [s]2.
• A polynomial f ∈ Z<dp [X] is committed as µ := [f(s)]1, using ck.
• A proof that f(z) = v is π := [h(s)]1, where h(X) := (f(X)− f(z))/(X − s).
• Veri�cation that f(z) = v is done by checking e(µ− [v]1, [1]2) = e(π, vk− [z]2).

Observe that such scheme is homomorphic in the sense that if µ1 and µ2 are commitments to polynomials
f1 and f2 respectively, then µ1 + µ2 is a commitment to polynomial f1 + f2.

The homomorphic property allows for the following optimization when verifying that several commitments
µ1, . . . , µk evaluate to claimed evaluations v1, . . . , vk on a common point z ∈ Zp. First, compute a random
linear combination of the commitments, µ̂ :=

∑
i r
iµi for a uniformly sampled r ∈ Zp. Then, verify that µ̂

opens to v̂ :=
∑
i r
ivi on z. This trick allows the veri�er to only check one pairing equation instead of k,

at the cost of a negligible statistical error. Indeed, it could occur that the aggregated commitment opens to
the aggregated evaluation, whereas some of the commitments µi do not open to the claimed vi on z, but the
probability of this event can be upper-bounded by k/p if r is chosen uniformly and independently.
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Delegating the computation of µ̂. In order to achieve sublinear commitment size, the prover will commit to the
commitments µ1, . . . , µk. A value r will be sampled after this meta-commitment, either by the veri�er (in an
interactive protocol) or through the Fiat-Shamir heuristic. The computation of the aggregated commitment
µ̂ will be delegated to the prover, who will include a proof ensuring that such computation is correct with
respect to the meta-commitment.

What would be a suitable scheme for committing to the commitments? The computation that we need
to assert on µ̂ can be seen as a polynomial evaluation on r of a polynomial whose �coe�cients� are µi.
Thus, a good candidate for our meta-commitment scheme is again a polynomial commitment scheme. This
is precisely what Gailly et al. suggest in [GMN20]. We can use a variant of the KZG commitment scheme
whose committing space is Gt, by committing to µ1, . . . , µk as M :=

∑
i e(µi, [τ

i]2), were τ is a new SRS
secret, independent of s.

A di�culty arises: how can we generalize the KZG proof of opening strategy in that case? If we de�ne
f(X) :=

∑
i dlog(µi)X

i, we could provide the veri�er with f(r) and π := [h(τ)]2, where h(X) is de�ned as
(f(X)− v)/(X − r). The veri�er would then check that M − [f(r)]t = e(π, [τ ]1 − [r]1) and that µ̂ = [f(r)]1,
which equals

∑
i r
iµi, as desired. Unfortunately, this method requires explicitly knowing the coe�cients of

polynomial f . Given that group elements µi are the result of committing to certain non-constant polynomial,
their discrete logarithm will not be known to the prover.

A possible solution [GMN20, BMM+21] is to implement the opening of commitmentM at r via an inner-
product argument [BBB+18]. In particular, a modi�ed version similar to those in [BGH19b, BCL+21], that
we describe in detail in Figure 3, adjusted to support relation PoK{µ : 〈µ, τ 〉 =M ∧ 〈r,µ〉 = µ̂}. However,
inner-product arguments are known to have linear veri�cation. More concretely, the veri�cation complexity
is logarithmic in k except for one �nal check that a certain M ′ ∈ Gt corresponds to the commitment of a
polynomial g(x) :=

∏κ
j=1(u

−1
j + uj X

2κ−j ), for some known coe�cients uj , where κ = dlog2(k)e. Polynomial
g, given its nice factored form, can be evaluated in logarithmic time. This opens the possibility of, instead of
performing the (expensive) linear check that M ′ is the commitment to g, verifying a proof of opening of M ′

at a random point ρ ∈ Zp, and checking that it opens to g(ρ). This can be done precisely as we described
in the previous paragraph. Intuitively, the inner-product argument has allowed us to replace the KZG-like
proof of opening of unknown polynomial f , by a KZG-like proof of opening of a known polynomial g (at the
cost of some other logarithmic complexity checks).

Remark 2. The meta-committing function µ 7→
∑
i e(µi, [τ

i]2) is not binding.4 This is because τ is also
available in G1, which is necessary for the KZG-like veri�cation. The authors of [GMN20] suggest to make
the commitment binding by computing it twice with respect to two independent structured reference string,
namely: µ 7→ (

∑
i e(µi, [τ

i]2),
∑
i e(µi, [τ̂

i]2)).
Interestingly, we show that such duplication is not strictly necessary if the underlying polynomial com-

mitment scheme satis�es two additional properties which we coin the inner-product binding property and
inner-product extractability (see Section 3.1). We then show that the KZG polynomial commitment scheme
satis�es both (Lemmas 2 and 3). This observation reduces the number of Gt elements and Gt operations
involved in the aggregated proofs and the inner-product argument by a factor of 2 compared to the protocol
from [GMN20].

Remark 3. The above committing function can be seen as an application of the bivariate polynomial commit-
ment scheme from [BMM+21, Section 6.1] if the second variable Y is evaluated at r, the batching randomness.
Our opening function is di�erent, as we explain in the next paragraph.

Achieving sublinear veri�cation complexity. The above techniques allowed us to delegate the computation of
µ̂. In order to get a complete multi-polynomial commitment scheme, we need to design a sublinear veri�cation
algorithm that takes as input a commitment to the evaluations instead of the evaluations themselves. This
can be achieved generically through a proof for relation PoK

{
v : Commit-Evals(v) = comv ∧

∑
i r
ivi = v̂

}
.

We refer to Section 3 for more details and we note that such relation will be proven with a PlonK circuit in
what we call meta-veri�cation (Section 4.1).

4For example, the commitments of vectors ([τ ]1, [0]1) and ([0]1, [1]1) are identical.
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Meta-veri�cation. Using a multi-polynomial commitment is not enough to achieve sublinear veri�cation.
There is a linear number of equations/identities in the number of aggregated proofs that need to be veri�ed.
We exploit the fact that these identities involve scalar operations over Zp, the native �eld of PlonK circuits.

This observation allows us to delegate the veri�cation of the identities to the prover, who will compute a
PlonK proof of the fact that the identities are satis�ed on the evaluations inside comv, the commitment to
the evaluations, whose validity has been ensured by the multi-polynomial commitment scheme (see Figure 5
for a precise description of the statement).

We then show that if function Commit-Evals, used for committing to the evaluations, is chosen adequately,
it can be linked very naturally to a PlonK proof, without having to model the commitment opening with
PlonK constraints, but outside of the circuit. This technique, necessary to have a small meta-veri�cation
circuit and thus maximize the number of proofs k that can be aggregated, can be of independent interest
(see Section 4.2).

2 Preliminaries

2.1 Notation

For a �nite set S, we write a ← S to denote that a is uniformly sampled from S. We denote the security
parameter by λ ∈ N. Given two functions f, g : N → [0, 1], we write f ≈ g if the di�erence |f(λ) − g(λ)|
is asymptotically smaller than the inverse of any polynomial. A function f is said to be negligible if f ≈ 0,
whereas it is said to be overwhelming when f ≈ 1. For integers m,n, such that m ≤ n, we denote by [m,n]
the range {m,m+1, . . . , n}. We denote by [n] the range [1, n]. Given d ∈ N and a ring R, we denote by
R<d[X] the set of univariate polynomials over X with coe�cients in R and degree strictly smaller than d.
For n ∈ N, we denote by v ∈ Rn a vector length n over R, and for every i ∈ [n], we denote by vi its i-th
component. Furthermore, for any k ≤ n, v[: k] denotes the vector formed by the �rst k components of v.

We consider a bilinear group generator G that on input 1λ, produces a set of bilinear groups (G1,G2,Gt)
of order p (a λ-bits prime), equipped with a non-degenerate bilinear pairing e : G1 × G2 → Gt, satisfying
e(aG, bH) = ab · e(G,H) for all G ∈ G1, H ∈ G2 and a, b ∈ Zp. We use additive notation for all three
groups.5 Unless speci�ed otherwise, we implicitly assume that all algorithms share the same common set of
bilinear groups, sampled from the appropriate security parameter. For n ∈ N, such that n |p−1, let Hn be the
subgroup generated by ωn ∈ Zp, a designated primitive n-th root of unity over Zp, and let ZHn(X) := Xn−1,
which vanishes over Hn. For every i ∈ [n], let Li,n be the Lagrange polynomial such that Li,n(ω

i
n) = 1 and

Li,n(h) = 0 for all h ∈ Hn \{ωin}. Throughout the paper, such n will denote the number of constraints in the
constraint system of interest. To speed up polynomial operations through the discrete (I)FFT algorithm, it
is convenient that n be a power of two.6

2.2 Succinct non-interactive arguments of knowledge

SNARKs are a class of arguments of knowledge that allow a prover to convince a veri�er of the validity
of a certain statement. They have the important property that proofs and veri�cation time must be poly-
logarithmic in the length of the statement and the witness.

De�nition 1 (SNARKs). A succinct non-interactive argument of knowledge (SNARK) for a binary rela-
tion R is a triple of PPT algorithms

• Setup(1λ,R)→ pp, on input the security parameter λ and relation R, outputs a set of public parameters
pp, also known as a common reference string.

5It is more common to express Gt in multiplicative notation, since its group operation is typically implemented
through a polynomial multiplication.

6Some elliptic-curves are designed so that a big power of 2 divides p−1, e.g., 232 divides the order of the multi-
plicative subgroup of BLS12-381 [Bow17] scalar �eld.
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• Prove(pp, x, w)→π, on input pp, statement x and witness w, outputs a proof.

• Verify(pp, x, π)→ 1/0, on input pp, statement x and proof π, outputs a bit.

Completeness. A SNARK is complete if for every λ ∈ N and every (x,w) ∈ R:

Pr
[
pp← Setup(1λ,R); π ← Prove(pp, x, w) : Verify(pp, x, π) = 1

]
= 1 .

Knowledge Soundness. A SNARK is knowledge sound if for every PPT algorithm A, there exists an
expected polynomial-time extractor E (with access to A's random tape) such that the following probability
is negligible in λ:

Pr
[
pp← Setup(1λ,R); (π, x)← A(pp) : w ← E(pp);Verify(pp, x, π) = 1 ∧ (x,w) /∈ R

]
.

Succinctness. A SNARK is succinct if |π| = poly(λ, log(|x|+ |w|), for every (x,w) ∈ R).
Zero-knowledge. A SNARK is zero-knowledge if there exists a PPT (stateful) simulator S such that for

every PPT (stateful) algorithm A, the following probabilities are negligibly close (in λ):

Pr
[
pp← Setup(1λ,R); (x,w)← A(pp); π ← Prove(pp, x, w) : (x,w) ∈ R ∧ A(π) = 1

]
,

Pr
[
pp← S(1λ); (x,w)← A(pp); π ← S(pp, x) : (x,w) ∈ R ∧ A(π) = 1

]
.

2.3 Polynomial commitment schemes

A polynomial commitment scheme (PCS) [KZG10] is a commitment scheme where the objects being com-
mitted are univariate polynomials (of bounded degree). These systems are also equipped with a mechanism
for proving (not necessarily in zero-knowledge) that the polynomial �inside� a certain commitment evaluates
to a claimed value at a given evaluation point.

De�nition 2 (Polynomial Commitment). A polynomial commitment scheme over a ring R consists of
four PPT algorithms:

• Setup(1λ, d)→ (ck, vk), on input the security parameter λ and a degree bound d ∈ N, outputs a commit-
ment key ck and a veri�cation key vk.

• Commit(ck, f)→ com, given ck and a polynomial f ∈ R<d[X], outputs a commitment com.

• Open(ck, com, z, f) → π, given a commitment key, a commitment com, an evaluation point z ∈ R a
polynomial f (that was committed in com), outputs a proof π.

• Check(vk, com, z, v, π) → 1/0, given a veri�cation key vk, a commitment com, an evaluation point z, a
claimed evaluation v and a proof π, outputs a bit (1 representing acceptance, 0 representing rejection).

For the sake of simplicity in the next de�nitions, we require that all algorithms except Setup be deter-
ministic. Note that most instantiations from the literature are deterministic [KZG10, BGH19b, BDFG20].
We also require a polynomial commitment scheme to satisfy the following properties.

Completeness. A polynomial commitment scheme is complete if for every λ, d and every (ck, vk) ←
Setup(1λ, d), any f ∈ R<d[X], z ∈ R, it holds:

Check(vk, com, z, f(z),Open(ck, com, z, f)) = 1 ,

where com := Commit(ck, f).

Binding Property. A polynomial commitment scheme is binding if for every polynomial d ∈ N and every
PPT adversary A, the following probability is negligible in λ:

Pr

[
(ck, vk)← Setup(1λ, d)
(f, f ′)← A(ck) : Commit(ck, f) = Commit(ck, f ′) ∧ f 6= f ′

]
.
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Knowledge Soundness. A polynomial commitment scheme is knowledge sound if for every polynomial
d ∈ N and every PPT adversary A, there exists an (expected polynomial time) extractor E such that the
following probability is negligible in λ:

Pr

 (ck, vk)← Setup(1λ, d)
(com, z, v, π)← A(ck)

f ← E(ck)
:

Check(vk, com, z, v, π) = 1
∧
(
com 6= Commit(ck, f) ∨ (f(z) 6= v)

) .

2.4 Constraint systems

A constraint system is a list of polynomial equations over Zp[X1, . . . , Xm], of restricted form. For simplicity
in our exposition, in this work we consider polynomials of the form

qLXi + qRXj + qOXk + qMXiXj + qC ,

for certain scalar coe�cients qL, qR, qO, qM, qC ∈ Zp. This corresponds to the classical identity considered in
the original PlonK paper [GWC19]. All our results extend to other versions of PlonK, that involve additional
identities such as [GW19, PFM+22] and even to implementations that use a di�erent number of wires per
gate (instead of 3).

De�nition 3 (Constraint System). A constraint system on m variables is a list of tuples (a, b, c, qL, qR,
qO, qM, qC) with a, b, c ∈ [m], qL, qR, qO, qM, qC ∈ Zp. We say a vector x ∈ Zmp satis�es constraint system
C = {(ai, bi, ci, qLi, qRi, qOi, qMi, qCi)}i∈[n] if for every i ∈ [n]:

qLixai + qRixbi + qOixci + qMixaixbi + qCi = 0 .

The PlonK proving system is a zk-SNARK for the following relation, de�ned over so-called public inputs
x ∈ Z`p and witness w ∈ Zm−`p :

PoK
{
w ∈ Zm−`p : (x,w) ∈ Zmp satis�es C

}
. (1)

The statement being proved is thus parametrized by both C and x.

2.5 The PlonK proving system

Let C = {(ai, bi, ci, qLi, qRi, qOi, qMi, qCi)}i∈[n] be a constraint system on m variables. PlonK requires that
the system be preprocessed by de�ning univariate polynomials qL(X), qR(X), qO(X), qM(X), qC(X) in Zp[X]
satisfying:

qL(ω
i
n) = qLi qR(ω

i
n) = qRi qO(ω

i
n) = qOi qM(ωin) = qMi qC(ω

i
n) = qCi ,

for every i ∈ [n]. We recall that ωn is a designated n-th primitive root of unity. Furthermore the relations
between indices {ai, bi, ci}i∈[n] are captured through a permutation σ : [3n] → [3n], which decomposes in
exactly m cycles: the j-th cycle involving all positions where the j-th variable is used. Such permutation
is then transformed into a list of 3 polynomials Sσ1, Sσ2, Sσ3, which are involved in the de�nition of the
so-called permutation identities, parametrized by two scalars β, γ ∈ Zp:

perm-idsσβ,γ(A(X),B(X),C(X),Z(X)) ,

de�ning two polynomials which must vanish over the whole subgroup Hn. We describe in detail this identity,
how it depends on polynomials Sσi, and how these polynomials are created in Appendix A.1. Here, we just
assume there exists an e�cient mechanism to compute a polynomial Z (of degree at most n) that satis�es
the perm-idsσ, from β, γ, if polynomials A, B, C were honestly generated from a satisfying assignment to the
constraint system C.

Let Ψ be a polynomial commitment scheme, and let (ck, vk) ← Ψ.Setup(1λ, n). PlonK's preprocessing
phase concludes by committing to the above polynomials using Ψ . That is, µqL

← Ψ.Commit(ck, qL), and
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similarly for µqR
, µqO

, µqM
, µqC

and µSσ1
, µSσ2

, µSσ3
. These polynomial commitments, together with (ck, vk)

form PlonK's public parameters pp.
We describe PlonK's prover and veri�er in Figure 1. In a nutshell, the prover commits to certain poly-

nomials A, B, C, that represent a valid trace witness. The prover then argues that such polynomials satisfy
the identities over the whole subgroup Hn by showing that the identities, instantiated with the witness poly-
nomials, lead to polynomials which are divisible by ZHn . This is done by committing to the quotient T of
such division and evaluating all (committed) polynomials on a uniformly sampled point ξ. The veri�er then
checks that ZHn(ξ)T(ξ) equals the evaluation of the identities on ξ, which ensures that the previous division
(over polynomials) was exact thanks to the knowledge soundness of Ψ and the Schwartz-Zippel Lemma.

If instantiated with a secure polynomial commitment Ψ which has logarithmic veri�cation on the degree
bound of polynomials7, the protocol from Figure 1 constitutes a SNARK for relation (1) by virtue of [GWC19,
Theorem 7.1 & Corollary 7.2].

3 Multi-polynomial commitment schemes

We introduce the notion of multi-polynomial commitment schemes, a generalization of polynomial commit-
ment schemes designed to commit to several polynomials at the same time. We require the commitment
size be sublinear in the number of committed polynomials. Furthermore, we require that veri�cation can
be performed from a succinct (standard) commitment to the polynomial evaluations. That way, the veri�er
does not need to obtain the actual evaluations, which allows its running time to be sublinear in the number
of polynomials involved.

De�nition 4 (Multi-polynomial commitment). A multi-polynomial commitment scheme over a ring R
consists of �ve polynomial-time algorithms:

• Setup(1λ, d,K)→ (ck, vk), on input the security parameter λ, a degree bound d ∈ N, and a vector length
bound K ∈ N, outputs a commitment key ck and a veri�cation key vk.8

• Commit-Polys(ck,f) → comf , given a commitment key ck and a vector of k polynomials f ∈ R<d[X]k,
with k ≤ K, outputs a commitment comf . We require that the size of comf be sublinear in k.

• Commit-Evals(v)→ comv, given a vector v ∈ Rk, with k ≤ K, outputs a commitment comv. We require
that the size of comv be sublinear in k.

• Open(ck, comf , z,f)→ π, given a commitment key, a commitment comf , an evaluation point z ∈ R and
a vector of k polynomials in R<d[X] (that were committed in comf ) with k ≤ K, outputs a proof π.

• Check(vk, comf , z, comv, π) → 1/0, given a veri�cation key vk, a commitment to polynomials comf , an
evaluation point z, a commitment to evaluations comv, and a proof π, outputs a bit. We require that the
veri�cation complexity be sublinear in K.

For the sake of simplicity, we require that all algorithms except Setup be deterministic. Our de�nitions
could be adjusted to support non-determinism, but this is not necessary for our use case. (Commitments do
not need to be hiding, as zero-knowledge can be enforced by other mechanisms.)

Completeness. A multi-polynomial commitment scheme is complete if for every λ, d,K and all (ck, vk)←
Setup(1λ, d,K), for any k ≤ K, any vector f ∈ R<d[X]k, and any z ∈ R, it holds:

Check(vk, comf , z, comv,Open(ck, comf , z,f)) = 1 ,

where comf := Commit-Polys(ck,f) and comv := Commit-Evals(f(z)).

7The authors propose to instantiate Ψ with the KZG polynomial commitment scheme [KZG10], which leads to a
SNARK whose knowledge soundness holds in the algebraic group model.

8We assume both keys implicitly contain d, K and that ck implicitly contains vk.
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PlonK.Prove(C, pp,x,w):

Inputs: constraint system C on m variables, preprocessed parameters pp for C, instance x, witness trace w

Output: PoK
{
w ∈ Zm−`p : (x,w) ∈ Zmp satis�es C

}
1: w̃ := (x,w); A(X):=

∑n
i=1 w̃aiLi(X); B(X):=

∑n
i=1 w̃biLi(X); C(X):=

∑n
i=1 w̃ciLi(X) a

2: [A] := Ψ.Commit(ck,A); [B] := Ψ.Commit(ck,B); [C] := Ψ.Commit(ck,C)

3: β ← Hash([A], [B], [C]); γ ← Hash(β)

4: compute polynomial Z(X), satisfying perm-idsσβ,γ(A,B,C,Z) on Hn . See Appendix A.1

5: [Z]← Ψ.Commit(ck,Z)

6: F (X) = (qLA+ qRB+ qOC+ qMAB+ qC)(X)

7: ids(X) = {F (X)} ∪ perm-idsσβ,γ(A,B,C,Z); α← Hash(γ, [Z])

8: T(X) :=
(∑

i∈[|ids|] α
iidsi(X)

)
/ZHn(X)

9: [T]← Ψ.Commit(ck,T)

10: ξ ← Hash(α, [T])

11: return ([A], [B], [C], [Z], [T]) together with evaluations on ξ and proofs of their correctness, of these commit-
ments as well as all polynomials commitments in pp; evaluate Z also on ξω . Using Ψ.Open

PlonK.Verify(C, pp,x, π):

Inputs: constraint system C on m variables, preprocessed parameters pp for C, instance x, proof π

Output: bool (true if the proof is accepted, false otherwise)

1: parse π as ([A], [B], [C], [Z], [T], πevals)

2: assert that the claimed evaluations in πevals are correct . Using Ψ.Check

3: β ← Hash([A], [B], [C]); γ ← Hash(β); α← Hash(γ, [Z]); ξ ← Hash(α, [T])

4: evaluate {ids}i on ξ, leveraging the claimed evaluations, obtaining {ids}i . ids depend on β, γ

5: return
∑
i∈[|ids|] α

iidsi = ZHn(ξ)t . t is the claimed evaluation of T on ξ

Fig. 1. The PlonK proving system for C := {(ai, bi, ci, qLi, qRi, qOi, qMi, qCi)}i∈[n], with preprocessed parameters
pp that include commitment keys (ck, vk) of a polynomial commitment scheme Ψ and polynomial commitments
[qL], [qR], [qO], [qM], [qC] and [Sσ,1], [Sσ,2], [Sσ,3].

aAdditional multiples of polynomial ZHn may be optionally added to each A, B, C, to achieve zero-knowledge.

Binding Property. A multi-polynomial commitment scheme is binding if for every polynomial d,K ∈ N
and every PPT adversary A, the following probabilities are negligible in λ:

Pr

[
(ck, vk)← Setup(1λ, d,K); (f ,f ′)← A(ck) : f 6= f

′ ∧ f ∈ R<d[X]k,f ′ ∈ R<d[X]k
′
, k, k′ ≤ K

Commit-Polys(ck,f) = Commit-Polys(ck,f ′)

]
,

Pr

[
(ck, vk)← Setup(1λ, d,K); (v,v′)← A(ck) : v 6= v

′ ∧ v ∈ Rk,v′ ∈ Rk′, k, k′ ≤ K
Commit-Evals(v) = Commit-Evals(v′)

]
.

11



Knowledge Soundness. A multi-polynomial commitment scheme is knowledge sound if for every polyno-
mial d,K ∈ N and every PPT adversary A, there exists an (expected polynomial time) extractor E such
that the following probability is negligible in λ:

Pr

 (ck, vk)← Setup(1λ, d,K)
(comf , z, comv, π)← A(ck)

f ← E(ck)
:

Check(vk, comf , z, comv, π) = 1

∧
(

comf 6= Commit-Polys(ck,f)
∨ comv 6= Commit-Evals(f(z))

) .

3.1 A multi-polynomial commitment scheme from KZG and IPA

We present a generic construction of multi-polynomial commitments from:

(i) a polynomial commitment scheme which is homomorphic over G1, inner-product binding and inner-
product extractable (as de�ned below);

(ii) a sublinear-veri�er argument system for the following relation, parametrized by G ∈ Gk2 , C ∈ Gt,
P ∈ G1 and r ∈ Zp, where r = (1, r, . . . , rk−1):

PoK{µ ∈ Gk1 : 〈µ,G〉 = C ∧ 〈r,µ〉 = P } , (2)

The �rst building block can be instantiated with the celebrated KZG commitment scheme [KZG10]
(described in Appendix B). For the second building block, we propose a modi�ed version of the inner-product
argument [BBB+18], inspired by [GMN20] (see Figure 3).

Homomorphic Property. A polynomial commitment scheme over group G of prime order p is homomor-
phic if for every λ, d ∈ N, (ck, vk)← Setup(1λ, d) and all f, g ∈ Z<dp [X], it holds:

Commit(ck, f) +G Commit(ck, g) = Commit(ck, f + g) ,

Inner-Product Binding Property. A homomorphic polynomial commitment scheme (over G1) is inner-
product binding if for every polynomial d,K ∈ N and every PPT (stateful) algorithm A, the following
probability is negligible in λ:

Pr

 (ck, vk)← Setup(1λ, d)
τ ← Zp

f ,f ′ ← A(ck, [τ ]1, [τ ]2)
:

f 6= f ′,f ,f ′ ∈ Z<dp [X]k, with k ≤ K
〈Commit(ck,f), τ [:k]〉 = 〈Commit(ck,f ′), τ [:k]〉

 ,
where Commit(ck,f) is a shorthand for (Commit(ck, f1), . . . ,Commit(ck, fk)) and τ := (1, τ, . . . , τK−1).

Proposition 1. The KZG PCS (Figure 7) is inner-product binding.

We refer to Appendix B for a proof.

Inner-Product Extractability. A homomorphic polynomial commitment scheme (overG1) is inner-product
extractable if for every polynomial d,K ∈ N and every PPT (stateful) algorithm A, there exists an (ex-
pected polynomial time) extractor E such that the following probability is negligible in λ:

Pr


(ck, vk)← Setup(1λ, d)

τ, r ← Zp
G, z,v ← A(ck, [τ ]1, [τ ]2)
(µ, π)← A(r)

f ← E(ck, [τ ]1, [τ ]2, r)

:

G ∈ Gt, z ∈ Zp,v ∈ Zkp,µ ∈ Gk1 , with k ≤ K
〈µ, τ [:k]〉 = G

Check(vk, 〈µ, r〉, z, 〈v, r〉, π) = 1(
f(z) 6= v ∨ 〈Commit(ck,f), τ [:k]〉 6= G

)
 ,

where Commit(ck,f) is a shorthand for (Commit(ck, f1), . . . ,Commit(ck, fk)), τ := (1, τ, . . . , τK−1) and
r := (1, r, . . . , rk−1).
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Setup(1λ, d,K):

1: (ckΨ , vkΨ )← Ψ.Setup(1λ, d)

2: τ ← Zp; ckτ := [1, τ, τ2, ..., τK−1]2

3: return (ck := (ckΨ , ckτ ), vk := (vkΨ , [τ ]1))

Commit-Polys(ck := (ckΨ , ckτ ),f):

1: µi ← Ψ.Commit(ckΨ , fi) ∀i ∈ [k] (k := |f | ≤ K)

2: return comf := (k,
∑k
i=1e(µi, ckτ i))

Commit-Evals(v):

Any function that is (sublinearly) shrinking, binding and admits a succinct and e�cient proof for relation:

PoK
{
v : Commit-Evals(v) = comv ∧

∑k
i=1 r

i−1vi = v̂
}

(3)

Open(ck := (ckΨ , ckτ ), comf := (k,G), z,f):

1: v = f(z); comv := Commit-Evals(v); k = |f |; κ := dlog2(k)e

2: µi ← Ψ.Commit(ckΨ , fi) ∀i ∈ [k] . Not necessary if µi were stored on Commit-Polys

3: r := Hash(comf , z, comv); r := (1, r, . . . , rn−1); f̂ := 〈f , r〉; µ̂ := 〈µ, r〉; v̂ := 〈v, r〉

4: πΨ ← Ψ.Open(ckΨ , µ̂, z, f̂ , v̂)

5: produce a proof πv of relation (3) w.r.t comv, v̂ and r

6: πIPA ← IPA.Prove(k, ckτ , (G, r, µ̂),µ) (let {uj}κj=1 be the sampled random challenges)

7: g(X) :=
∏κ
j=1(u

−1
j + uj X

2κ−j ); ρ := Hash(πIPA) and vρ := g(ρ)

8: h(X) := (g(X)− vρ)/(X − ρ); πτ := [h(τ)]2 . πτ is comptued using ckτ

9: return (µ̂, v̂, πΨ , πv, πIPA, πτ )

Check(vk := (vkΨ , [τ ]1), comf := (k,G), z, comv, π := (µ̂, v̂, πΨ , πv, πIPA, πτ )):

1: r := Hash(comf , z, comv)

2: bΨ ← Ψ.Check(vkΨ , µ̂, z, v̂, πΨ )

3: let bv be the result of verifying that πv is a valid proof of relation (3) w.r.t comv, v̂ and r

4: bIPA ← IPA.Verify′(k, [τ ]1, (G, r, µ̂), πIPA) . Skip steps 6-7 of Figure 3

5: ρ := Hash(πIPA); vρ :=
∏κ
j=1(u

−1
j + uj ρ

2κ−j ) . uj are the challenges computed during IPA.Verify′

6: bτ := e([τ ]1 − [ρ]1, πτ )
?
= e([1]1, G0 − [vρ]2) . G0 ∈ G2 is the last element of πIPA

7: return bΨ ∧ bv ∧ bIPA ∧ bτ

Fig. 2. Multi-polynomial commitment scheme based on an inner-product binding and inner-product extractable
polynomial commitment scheme Ψ (over G1) and inner-product argument IPA from Figure 3.
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Proposition 2. The KZG PCS (Figure 7) is inner-product extractable.

We refer to Appendix B for a proof.

Theorem 1. If Hash : {0, 1}∗ → Zp is a random oracle, and polynomial commitment scheme Ψ is com-
plete, binding, knowledge sound, homomorphic, inner-product binding and inner-product extractable, then the
scheme from Figure 2 is a complete, binding and knowledge sound multi-polynomial commitment scheme.

We refer to Appendix C.1 for a proof.

Remark 4. Our scheme from Figure 2 could also be instantiated with a homomorphic commitment scheme
Ψ that is not inner-product binding nor inner-product extractable. In that case, the multi-polynomial com-
mitment scheme would need to be modi�ed by adding a second Gt element

∑k
i=1 e(µi, [τ̃

i]2) to comf for
a new τ̃ independent of τ .9 This modi�cation would make the committing function binding, which would
allow us to prove security without relying on the inner-product binding and inner-product extractability
properties of Ψ (see Appendix C.1). Note that proofs of opening would need to include an extra element
πτ̃ , computed as [h(τ̃)]2, analogously to πτ in step 8 of the Open algorithm, which would be veri�ed with a
second pairing equation in step 6 of the Check algorithm. Furthermore, the IPA protocol would need to be
adapted, as described in Figure 3 through extra colored terms.

4 PlonK proof aggregation from multi-polynomial commitments

We study the problem of designing a multi-statement proving system, that can handle several PlonK proofs
more e�ciently than the simple parallel execution on every statement of the traditional PlonK system. For
the sake of simplicity in our exposition, we assume that all statements are parametrized by the same PlonK
constraint system (although each statement has its own public inputs). However, most of our techniques
apply to the case with di�erent systems.

4.1 aPlonK

A simple but e�ective �rst optimization is to share the random challenges sampled with Fiat-Shamir across
all proofs. This can be bene�cial for several reasons. For example, having a common evaluation point ξ for
all proofs means that all polynomial commitments are opened at the same point, which can typically lead to
signi�cant optimizations by the underlying polynomial commitment scheme. Note that sharing such random
challenges across proofs does not harm security as long as the challenges are computed from the partial
transcripts of all proofs. In that case, from an extractor for the aggregated proving system one could build
an extractor for any of the individual statements by �xing all other statements. On the other hand, this
trick, which is the basis of many of our optimizations, requires that the provers of every di�erent statement
run coordinately or at least synchronize at every point where random challenges are sampled. This limitation
prevents us from strictly achieving IVC [Val08], but does not limit the distribution of the prover computation.
Thus, our system is perfectly applicable to creating a validity rollup (see Section 1.1).

Another rather simple optimization is to have a common polynomial T for all proofs, computed from
a linear combination of all the identities. In the rest of this section, we describe our more sophisticated
optimization techniques. The resulting proving system, that we call aPlonK, is described in Figure 4.

Theorem 2. If multi-polynomial commitment scheme Ψ is complete, binding and knowledge sound, and
Hash : {0, 1}∗ → Zp is a random oracle, the protocol described in Figure 4 constitutes a SNARK for relation:

PoK
{
{wi ∈ Zm−`p }i∈[k] : (xi,wi) ∈ Zmp satis�es C ∀i ∈ [k]

}
.

We refer to Appendix C.2 for a proof.

9Such τ̃ could be the same secret used during the setup of Ψ , if Ψ is such that its structured reference string is
formed by the powers of a secret scalar over G1 and G2. KZG (Figure 7) is an example of such scheme.
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IPA.Prove(k,G,H, (CG, CH , r, P ),µ):

Inputs: k := 2κ, vectors G,H ∈ Gk2 , instance (CG, CH , r, P ) ∈ G2
t × Zp ×G1, witness µ ∈ Gk1

Output: PoK{ µ ∈ Gk1 : 〈µ,G〉 = CG ∧ 〈µ,H〉 = CH ∧ 〈r,µ〉 = P }, where r = (1, r, r2, r3, . . . , rk−1)

1: set µ(κ) := µ, r(κ) := (1, r, r2, r3, . . . , r2
κ−1), G(κ) := G, H(κ) :=H, and ts := (CG, CH , r, P )

2: for every j from κ down to 1 do

3: set L
(j)
G := 〈µ(j)

L ,G
(j)
R 〉, L

(j)
H := 〈µ(j)

L ,H
(j)
R 〉 and L

(j)
r := 〈µ(j)

L , r
(j)
R 〉

4: set R
(j)
G := 〈µ(j)

R ,G
(j)
L 〉, R

(j)
H := 〈µ(j)

R ,H
(j)
L 〉 and R

(j)
r := 〈µ(j)

R , r
(j)
L 〉,

5: set uj ← Hash(L
(j)
G , R

(j)
G , L

(j)
H , R

(j)
H , L

(j)
r , R

(j)
r , ts) ∈ Zp and ts := uj

6: set µ(j−1) := uj µ
(j)
L + u−1

j µ
(j)
R

7: set G(j−1) := u−1
j G

(j)
L +ujG

(j)
R . uj multiplies the left half of µ

(j), but the right half of G(j), H(j), r(j)

8: set H(j−1) := u−1
j H

(j)
L + ujH

(j)
R

9: set r(j−1) := u−1
j r

(j)
L + uj r

(j)
R

10: return π := ({L(j)
G , R

(j)
G , L

(j)
H , R

(j)
H , L

(j)
r , R

(j)
r }j∈[κ],µ(0),G(0),H(0)) ∈ (G4

t ×G2
1)
κ ×G1 ×G2

2

IPA.Verify(k,G,H, (CG, CH , r, P ), π):

Inputs: k := 2κ, vectors G,H ∈ Gk2 , instance (CG, CH , r, P ) ∈ G2
t × Zp ×G1, proof π

Output: bool (true if the proof is accepted, false otherwise)

1: parse π as ({L(j)
G , R

(j)
G , L

(j)
H , R

(j)
H , L

(j)
r , R

(j)
r }j∈[κ], µ0, G0, H0) ∈ (G4

t ×G2
1)
κ ×G1 ×G2

2 or fail

2: for every j from κ down to 1 do

3: set uj ← Hash(L
(j)
G , R

(j)
G , L

(j)
H , R

(j)
H , L

(j)
r , R

(j)
r , ts) ∈ Zp and set ts := uj

4: de�ne g(X) :=
∏κ
j=1(u

−1
j + uj X

2κ−j ) . g is a polynomial of degree 2κ−1

5: set r0 := g(r) . O(κ) if g(r) is computed as
∏κ
j=1(u

−1
j + uj r

2κ−j )

6: let g = (g0, g1, . . . , g2κ−1) be the coe�cients of g in increasing order of degree

7: assert 〈g,G〉 = G0, and 〈g,H〉 = H0 . O(2κ)

8: return true i� r0 · µ0 = P +
∑κ
j=1(u

2
jL

(j)
r + u−2

j R
(j)
r ) and the following hold:

e(µ0, G0) = CG +
∑κ
j=1(u

2
jL

(j)
G + u−2

j R
(j)
G ) ∧ e(µ0, H0) = CH +

∑κ
j=1(u

2
jL

(j)
H + u−2

j R
(j)
H )

Fig. 3. Inner-product argument (IPA) for relation PoK{µ ∈ G2κ

1 : 〈µ,G〉 = CG ∧ 〈µ,H〉 = CH ∧ 〈r,µ〉 = P }.
The �gure describes two schemes obtained by including or discarding the colored terms.

Shared permutation argument. Permutation arguments [BG12, BCC+16, MBKM19] can be used for
arguing correctness of a shu�e σ. PlonK's permutation argument [GWC19] is used for enforcing that the
wires which are supposed to be equal have indeed been instantiated with the same value. This is done by
committing to a polynomial Z (see step 4 of the PlonK.Prove routine from Figure 1), which satis�es the
permutation identities (see Appendix A.1) with respect to the wire polynomials A,B,C.

We observe that it is possible to share the permutation argument across all proofs for the same circuit,
since the permutation σ is common to all of them. To do so, we linearly batch the wire polynomials Aj ,Bj ,Cj
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aPlonK.Setup(1λ, C := {ai, bi, ci, qLi, qRi, qOi, qMi, qCi}i∈[n], k):

1: qL(X) :=
∑n
i=1 qLiLi,n(X); de�ne qR, qO, qM, qC analogously

2: σ : [3n]→ [3n] be Cσ; pp.polys := (qL, qR, qO, qM, qC, Sσ1, Sσ2,Sσ3)

3: (ck, vk)← Ψ.Setup(1λ, n, k); µpp ← Ψ.Commit-Polys(ck, pp.polys)

4: return pp := (n, σ, ck, vk, µpp, pp.polys)

aPlonK.Prove(pp := (n, σ, ck, , µpp, pp.polys), {xj}j∈[k], {wj}j∈[k]):

1: w̃j := (xj ,wj) for all j ∈ [k]

2: Aj(X) :=
∑n
i=1 w̃j aiLi,n(X); Bj(X) :=

∑n
i=1 w̃j biLi,n(X); Cj(X) :=

∑n
i=1 w̃j ciLi,n(X) for all j ∈ [k]

3: W := (A1,B1,C1, . . . ,Ak,Bk,Ck); µw := Ψ.Commit-Polys(ck,W)

4: β ← Hash(µw); γ ← Hash(β); δ ← Hash(γ)

5: Â(X) :=
∑k
j=1 δ

jAj(X); B̂(X) :=
∑k
j=1 δ

jBj(X); Ĉ(X) :=
∑k
j=1 δ

jCj(X)

6: compute polynomial Z(X), satisfying perm-idsσβ,γ(Â, B̂, Ĉ,Z) on Hn . See Appendix A.1

7: µz ← Ψ.Commit-Polys(ck,Z)

8: Fj(X) := (qLAj + qRBj + qOCj + qMAjBj + qC + PIxj )(X) for all j ∈ [k]

9: ids(X) :=
⋃
j∈[k] Fj(X) ∪ perm-idsσβ,γ(Â, B̂, Ĉ,Z)

10: α← Hash(δ, µz)

11: T(X) :=
(∑

i∈[|ids|] α
iidsi(X)

)
/ZHn(X) . This division is exact if the identities hold over Hn

12: µt ← Ψ.Commit-Polys(ck,T)

13: ξ ← Hash(α, µt)

14: ev(com,f , x) := (Ψ.Open(ck, com, x,f), Ψ.Commit-Evals(ck,f(x)))

15: (πw, νw)← ev(µw,W, ξ) (πz, νz)← ev(µz,Z, ξ) (πz, νz̄)← ev(µz,Z, ωξ) (πt, νt)← ev(µt,T, ξ)

16: (πpp, νpp)← ev(µpp, pp.polys, ξ)

17: compute πmeta, a PoK
{
wmeta : Rn,k((α, β, γ, δ, ξ, νw, νz, νz̄, νt, νpp, {xj}j∈[k]),wmeta) = 1

}
. See Section 4.1

18: return π := (µw, µz, µt, νw, νz, νz̄, νt, νpp, πw, πz, πz, πt, πpp, πmeta)

aPlonK.Verify(pp := (n, , , vk, µpp, ), {xj}j∈[k], π := (µw, µz, µt, νw, νz, νz̄, νt, νpp, πw, πz, πz, πt, πpp, πmeta)):

1: β ← Hash(µw); γ ← Hash(β); δ ← Hash(γ); α← Hash(δ, µz); ξ ← Hash(α, µt)

2: v(com,v, x, π) := Ψ.Check(vk, com, x,v, π)

3: bµ := v(µw, νw, ξ, πw) ∧ v(µz, νz, ξ, πz) ∧ v(µz, νz, ωξ, πz) ∧ v(µt, νt, ξ, πt) ∧ v(µpp, νpp, ξ, πpp)

4: let bmeta be the result of verifying πmeta w.r.t. relation Rn,k((α, β, γ, δ, ξ, νw, νz, νz̄, νt, νpp, {xj}j∈[k]), · )

5: return bµ ∧ bmeta

Fig. 4. The aPlonK proving system, based on multi-polynomial commitment scheme Ψ .

for every proof j ∈ [k], with some uniformly sampled coe�cient δ ∈ Zp as follows:

Â :=
∑k
j=1 δ

jAj B̂ :=
∑k
j=1 δ

jBj Ĉ :=
∑k
i=1 δ

jCj .
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Rn,k((α, β, γ, δ, ξ, νw, νz, νz̄, νt, νpp, {xj}j∈[k]), ({aj , bj , cj}j∈[k], z, z, t, eqL , eqR , eqO , eqM , eqC , es1 , es2 , es3)) :=

idj := eqLaj + eqRbj + eqOcj + eqMajbj + eqC + PIxj (ξ) ∀j ∈ [k]

â :=
∑k
j=1 δ

jaj ; b̂ :=
∑k
j=1 δ

jbj ; ĉ :=
∑k
j=1 δ

jcj

perm-id1 := (â+ βξ + γ)(b̂+ βηξ + γ)(ĉ+ βη′ξ + γ)z− (â+ βes1 + γ)(b̂+ βes2 + γ)(ĉ+ βes3 + γ)z

perm-id2 := (z− 1)L1,n(ξ)

bids :=
(
ZHn(ξ) · t = (

∑k
j=1 α

j−1idj) + αkperm-id1 + αk+1perm-id2
)

w := (a1, b1, c1, . . . , ak, bk, ck) and epp := (eqL , eqR , eqO , eqM , eqC , es1 , es2 , es3)

return bids ∧ νw =Commit-Evals(w) ∧ νz =Commit-Evals(z) ∧ νz̄ =Commit-Evals(z)

∧ νt =Commit-Evals(t) ∧ νpp =Commit-Evals(epp) .

Fig. 5. Meta-veri�cation relation for aggregating k proofs of n-constraints circuits. η2 and η3 are non-quadratic
residues over Zp, see Section A.1.

If each of the polynomial triples (Aj ,Bj ,Cj) satis�es the copy-constraints induced by permutation σ, so

will the batched triple (Â, B̂, Ĉ), which guarantees correctness. The converse is also true with overwhelming
probability over the choice of δ, which assures soundness (this intuition can be formalized via a forking
argument). Thus, the permutation argument for k proofs can be achieved with just one Z polynomial instead
of k of them (see steps 5 and 6 of the aPlonK.Prove routine from Figure 4). The number of permutation
identities is consequently reduced from 2k to just 2.

Using a multi-polynomial commitment. Replacing the polynomial commitment scheme used by PlonK
by a multi-polynomial commitment scheme can lead to major improvements in proof size and veri�cation
time. It allows us to commit to all wire polynomials together in one single multi-polynomial commitment with
sublinear size in the number of aggregated proofs k. With our multi-polynomial commitment scheme from
Figure 2, the commitment size would be constant (1 Gt element) instead of linear in k, and the commitment
veri�cation complexity would be O(log k) instead of O(k).

This technique achieves sublinear complexity (in k) on commitment veri�cation operations. However,
the veri�er still needs to check all the identities, which involves a O(k) number of scalar operations. For
that, the veri�er needs to receive all the evaluations of the committed polynomials (whose validity can be
asserted through the already veri�ed evaluation commitment) and use them to verify the identities. Our next
technique addresses this issue.

Meta-veri�cation. The veri�cation of identities only involves scalar operations over Zp, but this is the
native �eld of PlonK circuits. This opens the possibility of, instead of verifying the identities directly,
verifying a PlonK proof that the identities are correct. Such proof would need to ensure that:

• the prover knows evaluations satisfying all the identities,
• such evaluations coincide with the evaluations veri�ed during the multi-polynomial commitment check.

We formally describe the meta-veri�cation equation in Figure 5. It is parametrized by the number of con-
straints in the circuit n, and the number of aggregated proofs k. The public inputs to the meta-veri�cation cir-
cuit are (α, β, γ, δ, ξ, νw, νz, νz̄, νt, νpp, {xj}j∈[k]), where α, β, γ, δ, ξ are Fiat-Shamir sampled scalars; νw, νz, νt,
νpp are evaluation commitments of (respectively) the wire polynomials, Z polynomial, T polynomial and setup
polynomials at ξ; νz̄ is (a commitment to) the evaluation of polynomial Z at ωξ; and for every j ∈ [k], xj is
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the vector of public inputs to the j-th statement. On the other hand, the secret inputs to the meta-veri�cation
relation are the actual polynomial evaluations at ξ and ωξ of the committed polynomials.

By just verifying a single PlonK proof, the veri�er can assert the correctness of all identities without
performing a O(k) number of scalar operations. On the other hand, we make three observations that deserve
attention:

(i) The Commit-Evals algorithm needs to be modeled in a PlonK circuit. There is �exibility for the choice of
such algorithm, but modeling any commitment scheme that is binding will require a signi�cant number
of constraints.

(ii) The veri�er complexity is still O(k) on scalar operations, given the public inputs {xj}j∈[k] to the
meta-veri�cation circuit.

(iii) This technique imposes a bound on k, the number of aggregated proofs, since the meta-veri�cation
circuit size is linear in k and there is an inherent upper-bound on the size of PlonK circuits.

The �rst issue can be partially solved by instantiating Commit-Evals with a SNARK-friendly hash function
like Poseidon [GKR+21] or Anemoi [BBC+22], which can be implemented with a moderate number of
constraints. Alternatively, in Section 4.2, we show how to build a commitment scheme that can be involved
very e�ciently in a PlonK statement. This can be of independent interest.

We refer to Section 4.3 for details on how the second issue can be addressed, depending on the circuit
being proved.

Finally, if the �rst issue is satisfactorily solved, the upper-bound on k could be su�cient for most ap-
plications. Even if it is not, one could consider proving the meta-veri�cation relation with several PlonK
proofs, what can lead to a second layer of aggregation and iterate this process if necessary.

4.2 Commitments in PlonK statements

We present a mechanism that allows the data committed in a public commitment to be involved in a PlonK
statement. More concretely, let Com be a commitment scheme for vectors over Zp. We enhance the PlonK
proving system to support the following relation:

PoK
{
(w,w′) ∈ Zmp × Zm

′

p : (x,w,w′) ∈ Z`+m+m′

p satis�es C ∧ Com(w) = com
}

. (4)

The statement being proved is thus parametrized by C, x and com.
For that, we de�ne Com of a vector w ∈ Zmp as the Kate commitment [KZG10] to any polynomial f

that evaluates to wi on ω
i−1 for all i ∈ [m].10 Similarly to how public inputs are treated in PlonK, we will

dedicate a section of m constraints to the link between Com and the circuit wires. Say, constraints i∗ to
i∗+m−1 for some i∗. For that, we de�ne a selector qcom such that qcom(ω

i) = −1 if i ∈ [i∗, i∗+m−1] or 0
otherwise. Furthermore, we deactivate (set to zero) all other selectors in this range of constraints except qL,
which evaluates to 1 in it, allowing us to �fetch� the values inside com into a-wires, which will be then used
across the circuit. The PlonK identity will consequently get added the new term qcom(X) · com(ω−i

∗
X).

Observe that by setting i∗ = 0, one can avoid having a new evaluation point ω−i
∗
ξ. This can be achieved by

shifting away the constraints dedicated to public inputs, which in the original PlonK were de�ned to be the
�rst `. Note that if we do not want to open the whole vector w, we can activate qcom on a smaller range;
then the veri�er can dynamically adapt by querying com(ω−j

∗
X) for a chosen j. This can prove useful if we

want to use this technique in the context of vector commitments.

Hybrid statements. Proving statements about committed data is a powerful tool that can be used for con-
structing hybrid proving systems [CGM16, AGM18, CFtQ19]. Such commitments can be the meeting point
between a SNARK proof and other systems, e.g., a sigma protocol asserting the validity of the committed

10Note that f can be randomly chosen among the set of all polynomials bound to v on 1, ω, . . . , ωm−1, this results
in a potentially perfectly hiding commitment.
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data with respect to some algebraic statement. The binding property of the commitment ensures that both
proofs �talk about the same data�.

In particular, we can choose the Commit-Evals algorithm from our multi-polynomial commitment scheme
(Figure 2) to be the above Com. This provides a satisfying solution to issue (i) from the previous section. In
that case, the meta-veri�cation circuit (Figure 5) could be extended to also handle the PoK from relation (3),
see Figure 2.

Randomized circuits. Another remarkable application of involving commitments in the statement is
being able to express randomized circuits. Randomness can be used to simplify the veri�cation of certain
computations: given a Boolean circuit C, it is often possible to �nd a (smaller) circuit Ĉ, taking an extra
input r, which is equivalent to C in the sense that, for every x:

Pr
r←Zp

[
C(x) = 1⇒ Ĉ(x; r) = 1

]
= 1 and Pr

r←Zp

[
Ĉ(x; r) = 1⇒ C(x) = 1

]
≈ 1 .

Verifying the more e�cient Ĉ(x; r) = 1 for a uniformly sampled r is an overwhelming evidence that
C(x) = 1. However, it is important to choose r uniformly and independently of x. When proving a randomized
circuit in PlonK, r will be treated as an additional public input. We must guarantee that r cannot be biased
by the prover and that the prover cannot change its secret input based on r. On the other hand, the circuit
trace that the prover commits to depends on r, this is natural, since r is involved in the constraint system. The
solution is to have the prover commit to the witness seed11 using Com, then derive r from such commitment
through the Fiat-Shamir heuristic and �nally, completing the rest of the trace (which now depends on r).

4.3 Hiding public inputs

Our techniques allowed us to signi�cantly reduce the veri�er complexity, for the most part now being loga-
rithmic in the number of aggregated proofs k. However, as in SnarkPack [GMN20], our veri�er complexity
is still linear in k, due to the ` public inputs per proof to process. This seems an inherent limitation.

However, depending on the application, such limitation could be relaxed. For example, the veri�er may
have access to a commitment to the relevant public inputs and may be interested in simply checking that
veri�cation passes with respect to some opening of the commitment. In other scenarios, the circuit public
inputs themselves could be irrelevant to the veri�er, who only wants to assert some relation between them.
For example, in some incremental computations like a transactional rollup of a blockchain: where each of the
k proofs takes 2 public inputs, an initial rollup state and a �nal (modi�ed) state, and the veri�er is simply
interested in asserting that the �nal state of a given proof matches the initial state of the next proof, but
not on the actual value of such intermediate states. This rollup-like con�guration is used for our benchmarks
(Section 5).

In those cases, our techniques can be very naturally extended to achieve actual sublinear veri�cation
complexity by performing the relevant checks on public inputs in the meta-veri�cation circuit. This can be
seen as new mechanism to implement a weak form of IVC.

5 Implementation and evaluation

We have implement the algorithms described in this work and evaluated their performance in a series of
benchmarks presented in Section 5.2. Our source code is written in OCaml with bindings to C implemen-
tations of the heaviest cryptographic functions. We use the BLS12-381 elliptic curve [Bow17] for pairings
through bindings to the blst library [Sup21]. Our implementation is publicly available as open-source [Nom22].

11In PlonK, the term �witness� usually refers the whole trace of the circuit being veri�ed. Such trace is typically
derivable from a succinct witness that we call the witness seed: a value that determines (and from which one can
e�ciently compute) the rest of the trace.

19



Table 1. Proof size comparison. k is the number of aggregated proofs (formulas valid for k ≥ 3).

Zp G1 G2 Gt

PlonK 3k + 12 3k + 4 0 0

aPlonK 19 2dlog2 3ke+ 10 2 2dlog2 3ke+ 3

Our comparisons are performed between PlonK and aPlonK for aggregating a batch of k di�erent proofs
of a constraint system of n constraints. In the case of PlonK, we use the KZG polynomial commitment
and implement a simple proof aggregation, but which uses our shared permutation argument and the batch
veri�cation optimizations applicable to KZG [GWC19]. In the case of aPlonK, we implement the scheme
described in Figure 4 instantiated with a multi-polynomial commitment scheme constructed from the KZG
polynomial commitment scheme (Figure 7) and the IPA argument from Figure 3. Our experimental results
from Section 5.2 show that the performance and proof size improvements of aPlonK are signi�cant even
against the optimized version of PlonK that we compare it with, which in turn is a lot more performant
than the naïve parallel execution of standard PlonK.

Remark 5. We leverage the homomorphic properties of the IPA statement, see relation (2), to perform only
one IPA instead of four: for the evaluation of the commitments to (i) public parameter polynomials, (ii) wire
polynomials, (iii) the permutation polynomial and (iv) the T polynomial. This is possible if all inner-product
arguments use the same r, since in that case:

〈µ,G〉 = C ∧ 〈r,µ〉 = P ∧ 〈µ′,G〉 = C ′ ∧ 〈r,µ′〉 = P ′

if and only if, with overwhelming probability over the choice of ζ:

〈µ+ ζµ′,G〉 = C + ζC ′ ∧ 〈r,µ+ ζµ′〉 = P + ζP ′ .

5.1 Theoretical results

We present a detailed comparison between PlonK and aPlonK on their proof size, veri�er complexity
and prover complexity in terms of scalar �eld and group elements/operations. In the rest of this section
k represents the number of aggregated statements, n is the common circuit size measured in number of
constraints and ` is the number of public inputs for each atomic statement.

Proof size (Table 1). Observe that the aggregated proof sizes of both PlonK and aPlonK are independent
on the circuit size n and only depend on the number of aggregated statements k. With PlonK, the proof
size is linear in k, whereas with aPlonK, it is logarithmic.

Veri�er complexity (Table 2). The veri�er complexity of PlonK is O(k log n + k`), whereas the veri�er
complexity of aPlonK is O(log k + `′), where `′ = O(k`) is the number of public inputs to the meta-
veri�cation circuit. Note that, when applicable (e.g. for a rollup), our technique for hiding public inputs can
lead to a constant `′. In that case, the veri�er complexity of aPlonK would be O(log k). This is an important
di�erence with respect to SnarkPack [GMN20], where the veri�cation of aggregated proofs is linear in the
number of public inputs.

Prover complexity (Table 3). The prover complexity of PlonK is O(kn log n). The aPlonK prover requires
more operations but stays in the same order of complexity with respect to operations in Zp and G1. It
additional requires O(log k) hashes, pairings, and operations in G2, Gt. However, as evidenced by our ex-
perimental results from Section 5.2, the overhead of these additional computations is not very signi�cant
compared to the complexity of the rest of computations.
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Table 2. Veri�er complexity comparison. k is the number of aggregated proofs, n is the circuit size, ` is the number
of public inputs per proof, n′ = O(k + `) is the meta-veri�cation circuit size (see Table 4), `′(≤ n′) is the number of
public inputs to it (in our implementation, it is set to 15), and κ = dlog2(3k)e.

Operation PlonK aPlonK

Zp
inv k`+ 2k κ+ `′ + 2
mul k log2(n) + 2k`+ 11k + 20 5κ+ log2(n

′) + 2`′ + 35
add 2k`+ 11k + 14 κ+ 2`′ + 28

G1
mul 3k + 15 2κ+ 13
add 3k + 16 2κ+ 17

Gt
mul 0 2κ
add 0 2κ+ 3

Pairing 2 4

Hash 9 κ+ 10

Table 3. Prover complexity comparison. k is the number of aggregated proofs, n is the circuit size, n′ = O(k + `) is
the meta-veri�cation circuit size (see Table 4), and K is the �rst power of two over 3k.

Operation PlonK aPlonK

Zp
inv n+ 3k + 3 PlonK+ log2(K) + 2n′ + 6
mul 15

2
kn log2(n) + 45kn+ 7n log2(n) + 105n+ 3k + 9 PlonK+3K +3 log2(K)+ 29

2
n′ log2(n

′)+ 155n′+16
add 15kn log2(n) + 42kn+ 14n log2(n) + 95n+ 3k + 11 PlonK+ 2K + log2(K) + 29n′ log2(n

′) + 140n′ + 13

G1
mul 3kn+ 6n+ 3k + 12 PlonK+ 9n′ + 8
add 3kn+ 6n+ 3k + 12 PlonK+ 9n′ + 9k + 27

G2
mul 0 3K − 2
add 0 2K − 1

Gt add 0 2K + k − 2

Pairing 0 2K + 3k + 2

Hash 9 log2(K) + 10

Table 4. Meta-veri�cation circuit size (measured in number of constraints). For circuits that aggregate k proofs and
for two di�erent alternatives implementations of Commit-Evals and two di�erent schedules of public inputs.

Without public inputs Rollup-like public inputs

Base cost (ignoring Commit-Evals) 25k + 344 28k + 339

Extra cost if Commit-Evals = Poseidon 200k + 1061 210k + 1061

Extra cost if Commit-Evals = (KZG.Commit ◦ IFFT) 3k + 12 3k + 12

Meta-veri�cation circuit size (Table 4). We present the size measured in number of constraints of the
meta-veri�cation circuit which models Rn,k (described in Figure 5). Such numbers are helpful to interpret
the veri�er and prover complexities given in Tables 2 and 3 respectively. Table 4 describes the base cost
of implementing relation Rn,k when ignoring the logic related to Commit-Evals. We consider two di�erent
schedules of public inputs: (i) a circuit without public inputs, which serves as a lower-bound on the size of
the meta-veri�cation circuit; (ii) a rollup-like public input schedule, where each circuit being proved has two
public inputs and the meta-veri�cation circuit checks that they are linked in a chain (i.e., that the second
public input of one circuit coincides with the �rst public input of the next). We also present the additional
cost of modeling Commit-Evals through the Poseidon (implemented following the results of [ASTW22]) and
the cost of modeling it with a Kate commitment as described in Section 4.2. Note how, even though Poseidon
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Fig. 6. Times and proof sizes for di�erent numbers of proofs. The circuit has 216 constraints with 2 public inputs
per proof. In aPlonK, public inputs are hidden to the veri�er (except the �rst of the �rst proof and the last
of the last proof); the �rst public input of each proof is checked to be equal to the second public input of the
previous proof.

is a SNARK-friendly hash function, implementing Commit-Evals with it would be very costly and the main
factor on the meta-veri�cation circuit size. This would introduce a relatively small limit on the number
of proofs that can be aggregated with this technique. On the other hand, when modeling Commit-Evals as
described in Section 4.2, the overhead is minimal compared to the rest of the veri�cation circuit, improving
by an order of magnitude the number of proofs that can be aggregated.

5.2 Experimental results

We present our experimental results in Figure 6, which includes a comparison of the setup, proving and
veri�cation times, as well as proof sizes of PlonK and aPlonK, for di�erent aggregation sizes. All experiments
were performed on a 2.9GHz Intel Xeon Platinum 8375C vCPU with 1 TB of RAM and 128 processors.

We use a circuit of n=216 constraints. Our circuit performs a computation which involves several addi-
tions and multiplications across various inputs, two of which are considered public. That way we guarantee
that all selectors qL, qR, qO, qM, qC are non-trivial. Nevertheless, note that the complexity of all algorithms is
independent of the actual architecture of the circuit and their performance only depends on the number of
constraints n. We choose a rollup-like schedule of public inputs, joined in a chain as described in the previous
section.

The logic associated to Commit-Evals in the meta-veri�cation circuit should be implemented through our
method for involving commitments outside of PlonK (Section 4.2). While we counted these extra constraints
in Table 4, such method has not been implemented for simplicity. We expect the overhead of having this logic
into account to be negligible given that it only increases the meta-veri�cation circuit by 3k+12 constraints.

Setup. The setup of PlonK is constant since the circuit of interest always has n=216 constraints. However,
in aPlonK, it is linear in k. This is because the size of the meta-veri�cation circuit grows linearly with
the number of aggregated proofs. Fortunately, the impact of aPlonK's setup is in the order of seconds
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for aggregating thousands or proofs. Furthermore, note that the setup performance is not critical, as it is
precomputed only once.

Proving. All experiments have used parallelization over all the 128 available cores. When k ≤ 128 a core
is assigned for each proof. After that threshold we can expect a linear growth since each core will need to
produce more than one proof. One CPU was also in charge of orchestrating the distribution and computing
the meta-veri�cation proof, a step which was performed sequentially. The di�erence between PlonK and
aPlonK proving times comes from the proving time of the meta-veri�cation circuit. We can see a overhead
of approximately 20% (45 seconds) for aPlonK proving time for 212 aggregated proofs. This represents 1%
of the total machine time. Furthermore, such overhead would be even less important if circuits were larger,
as the complexity of our aggregation routines is independent of n.

Veri�cation and proof sizes. Our experimental results on veri�cation corroborate the fact that PlonK is
linear while aPlonK is logarithmic in the number of aggregated proofs. aPlonK becomes more e�cient after
a threshold of about k = 300 proofs. On the other hand, the proof size of aPlonK becomes smaller starting
from k = 64 proofs.
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A Additional de�nitions

A.1 PlonK permutation identities

Given a permutation σ : [3n] → [3n], η1 = 1 ∈ Zp, η2, η3 ∈ Zp two quadratic non-residues (declared during
the preprocessing phase of PlonK) such that η3 /∈ η2Hn, the permutation polynomials Sσ1, Sσ2, Sσ3 are
de�ned as

Sσk :=
∑n
i=1 ηqkiω

rkiLi(X), ∀k ∈ [3] .

with qkin+ rki = σ(kn+ i) such that 0 ≤ rki < n.
The permutation identities are parametrized by two scalars β, γ ∈ Zp and is formed by the following

polynomials:

perm-idsσσ,β,γ(A(X),B(X),C(X),Z(X)) :={
P(X, η2X, η3X,X)− P(Sσ1(X),Sσ2(X),Sσ3(X), ωX), (Z(X)−1)L1(X)

}
,

where P(Y1, Y2, Y3, Y4) is de�ned as (A(X) + βY1 + γ)(B(X) + βY2 + γ)(C(X) + βY3 + γ)Z(Y4)

An honest prover, who has built polynomials A, B and C from a trace witness w̃ that respects the
permutation constraints induced by σ, can construct a polynomial Z that satis�es the permutation identities
as follows (de�ne W = (A,B,C)).

Z := L1 +
n∑
i=2

Li

i−1∏
j=1

2∏
k=0

(Wk(ω
j) + βηkω

j + γ)

(Wk(ωj) + βSσk(ωj) + γ)
.

A.2 Assumptions

De�nition 5 (q-DLOG Assumption). For q ∈ N, the q-discrete logarithm assumption (relative to bilinear
group generator G) states that for any PPT algorithm A, the following probability is negligible in λ:

Pr
[
(G1,G2,Gt, e)← G(1λ); x := (1, . . . , xq); y ← A([x]1, [x]2) : y = x

]
.

B Building blocks for multi-polynomial commitments

The multi-polynomial commitment scheme from Figure 2 relies on two main building blocks: (i) a homo-
morphic polynomial commitment scheme whose commitment space is G1, and (ii) an argument system for
relation PoK{µ : 〈µ,G〉 = CG ∧ 〈r,µ〉 = P }. In this section we provide a description of candidate instan-
tiations for such building blocks. For the former, we choose the well-known KZG homomorphic polynomial
commitment scheme [KZG10]. For the latter, we propose the protocol from Section B.2, a modi�ed version
of the inner-product argument [BBB+18]. Similar modi�cations of the inner-product argument have been
proposed in the literature [BGH19b, BCL+21]. Here we present our own version, specialized for our use case,
and prove its security for completeness.

B.1 KZG polynomial commitment

We describe in Figure 7 the well-known KZG homomorphic polynomial commitment scheme [KZG10].

Lemma 1. The polynomial commitment scheme from Figure 7 is complete, homomorphic, binding and
knowledge sound in the algebraic group model under the q-DLOG assumption.

Proof. Completeness and the homomorphic property can be checked by inspection. Breaking the binding
property implies �nding two di�erent polynomials f , f ′ such that [f(s)]1 = [f ′(s)]1 which is equivalent to
�nding a non-trivial linear relation between the elements of ck, which is hard under the q-DLOG assumption.
We refer to [GWC19, Section 3] for a proof of knowledge soundness in the algebraic group model. ut
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KZG.Setup(1λ, d):

1: sample s← Zp, set ck := [1, s, . . . , sd−1]1 and vk := [s]2

2: return (ck, vk)

KZG.Commit(ck, f):

1: return com := [f(s)]1 . Computed using ck

KZG.Open(ck, com := , z, f):

1: compute h(X) := (f(X)− f(z))/(X − z)

2: return π := [h(s)]1 . Computed using ck

KZG.Check(vk, com, z, v, π):

1: return e(com− [v]1, [1]2)
?
= e(π, vk− [z]2)

Fig. 7. KZG homomorphic polynomial commitment scheme over G1.

Lemma 2. The polynomial commitment scheme from Figure 7 is inner-product binding (in the standard
model) under the q-DLOG assumption.

Proof. Let A be an adversary against the inner-product binding property of the scheme from Figure 7, for
some d,K ∈ N. We build an adversary B against the q-DLOG problem (for q = K−1). B is given [x]1 and
[x]2 for some x← Zp and x := (1, x, . . . , xK−1). B will now �ip a fair coin:

• If the coin results in heads, B will simulate ck := ([s]1, [s]2) by sampling s uniformly at random. B will
call A on (ck, [x]1, [x]2), receiving two distinct vectors of polynomials f ,f ′ ∈ Zp[X]k for some k ≤ K,

such that
∑k
i=1 x

i−1(fi − f ′i)(s) = 0. If (fi − f ′i)(s) 6= 0 for some i, then B can extract x by solving a
non-trivial polynomial equation over Zp. B will win the q-DLOG game in this branch with non-negligible
probability unless (fi − f ′i)(s) = 0 with overwhelming probability for all i ∈ [k].

• If the coin results in tails, B will simulate τ by sampling it uniformly at random. It will then instantiate ck
with ([x]1, [x]2) and call A on (ck, [τ ]1, [τ ]2), receiving two distinct vectors of polynomials f ,f ′ ∈ Zp[X]k

for some k ≤ K, such that
∑k
i=1 τ

i−1(fi − f ′i)(x) = 0. Assume B is almost never successful in the previous
branch, then (fi − f ′i)(x) = 0 with overwhelming probability for all i ∈ [k]. Since f 6= f ′ there must
exist an index i such that (fi− f ′i)(X) is not the zero polynomial. However, (fi− f ′i)(x) = 0, thus B can
extract x by solving a non-trivial polynomial equation over Zp.

Algorithm B must be successful in at least one of the branches with the same probability that A is, so the
total advantage of B solving the q-DLOG problem is at least half the advantage of A against the inner-
product binding property. ut

Lemma 3. The polynomial commitment scheme from Figure 7 is inner-product extractable in the algebraic
group model under the q-DLOG assumption.

Proof. We proceed in the symbolic model, which immediately implies generic security. As explained above,
symbolic security can be turned into a proof in the algebraic group model under the q-DLOG assumption.

Let A be a symbolic adversary against the inner-product extractability of the scheme from Figure 7, for
some d,K ∈ N. On its �rst message, A outputs polynomial G ∈ Zp[S, T ] and scalars z ∈ Zp, v ∈ Zkp, for
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some k ≤ K.12 After being given r ∈ Zp, A outputs polynomials µ ∈ Zp[S, T ]k and π ∈ Zp[S, T ].13 We de�ne

an extractor E that runs the �rst step of A, parses the resulting polynomial G(S, T ) as
∑2K−1
j=1 T j−1fj(S)

and outputs f := (f1, . . . , fk). We need to show that if the following equations hold with non-negligible
probability over the choice of r, and for T := (1, T, . . . , T k−1), r := (1, r, . . . , rk−1),

〈µ(S, T ), r〉 − 〈v, r〉 = π(S, T )(S − z) (5)

〈µ(S, T ),T 〉 = G(S, T ) , (6)

then the above extractor produces k polynomials f satisfying f(z) = v and 〈f ,T 〉 = G(S, T ).

First, given the structural conditions of footnote 13, polynomial µi, for every i ∈ [k], must be expressible
as µi := Pi(S) + Qi(T ) for some univariate polynomials Pi and Qi. We can thus express equation (6) as∑k
i=1 Pi(S)T

i−1 +
∑k
i=1Qi(T )T

i−1 = G(S, T ), which implies that fj(S) is constant for every j > k. Now,
by subtracting equations (6) and (5) and rearranging terms, we get:

G(S, T ) = 〈µ(S, T ),T − r〉+ π(S, T )(S − z) + 〈v, r〉 . (7)

Partially evaluating equation (7) on S = z leads to G(z, T ) = 〈µ(z, T ),T − r〉 + 〈v, r〉, a polynomial
equation on T , which evaluated on T = r gives G(z, r) = 〈v, r〉. Now, de�ne h(X) := G(z,X) − 〈v,X〉,
where X := (1, X, . . . ,Xk−1) and observe that polynomial h is determined by the �rst message of A, before
r is chosen. Furthermore, if the last equality holds with non-negligible probability over the choice of r, then
h(r) = 0 for a non-negligible amount of values of r over Zp. Since deg(h) < 2K, which is negligible, h must be

the zero polynomial. Given that h can be expressed as h(X) =
(∑2K−1

j=1 Xj−1fj(z)
)
−
∑k
j=1X

j−1vj , we can
deduce that fj(z) = vj for every j ∈ [k] and fj(z) = 0 for all j > k. Furthermore, fj is a constant polynomial
for every j > k, so fj(X) must be the zero polynomial for every j > k. Consequently, 〈f ,T 〉 = G(S, T ), as
desired. ut

B.2 Modi�ed inner-product argument

Lemma 4. The argument from Figure 3 has perfect completeness and computational witness-extended emu-
lation for either extracting a non-trivial linear relation between group elements in G,H or extracting a valid
witness for relation:

PoK{µ ∈ G2κ

1 : 〈µ,G〉 = CG ∧ 〈µ,H〉 = CH ∧ 〈r,µ〉 = P } .

Proof. We focus on the variant of Figure 3 which includes colored terms. A proof for the simpler version could
be easily derived from this one. Correctness can be checked by inspection. For witness-extended emulation,
we focus on the interactive version of the protocol from Figure 3 where every hash evaluation producing
uj is replaced by a round of interaction where the veri�er samples uj uniformly at random. We will see
that there exists an e�cient extractor E that produces a witness from 3κ di�erent valid transcripts. Since
n=2κ is polynomial-size and 3κ equals nlog23, the result then follows from the General Forking Lemma
from [BCC+16, BBB+18]. We proceed by induction on κ.

If κ = 0 the extractor from a transcript simply returns µ(0), which is a valid witness if the transcript is
valid (the transcript veri�cation equations are those of the NP-relation when κ = 0).

We now argue that if (for some κ > 0) we have an extractor Eκ−1 for the protocol of size κ−1, we can build
an extractor Eκ for the protocol of size κ. Eκ will run the prover until values (L

(κ)
G , L

(κ)
H , L

(κ)
r , R

(κ)
G , R

(κ)
H , R

(κ)
r )

have been �xed and sent to the veri�er. Observe that the protocol after this �rst step is equivalent to a

12Since the bilinear pairing is available, polynomial G may contain crossed monomials SiT j for every 0 ≤ i < d,
and 0 ≤ j < K or higher degree non-crossed monomials Si for 0 ≤ i < 2d−1, T j for 0 ≤ j < 2K−1.

13In this case, since these polynomials correspond to elements of G1, π and every µi cannot contain crossed
monomials that depend on both S and T .
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protocol of size κ−1 on a di�erent public input:

G′ := u−1κ G
(κ)
L + uκG

(κ)
R C ′G := CG + u2κL

(κ)
G + u−2κ R

(κ)
G r′ = r

H ′ := u−1κ H
(κ)
L + uκH

(κ)
R C ′H := CH + u2κL

(κ)
H + u−2κ R

(κ)
H P ′ = (P + u2κL

(κ)
r + u−2κ R(κ)

r )/(u−1κ + uκr
2κ−1

) .
(8)

This is possible because r(κ−1) := u−1κ r
(κ)
L +uκ r

(κ)
R can be expressed as (u−1κ +uκr

2κ−1

)(1, r, r2, . . . , r2
κ−1−1).

Thus, r(κ−1) is again a vector containing the powers of a single element (actually the same r), modulo mul-
tiplication by a constant. We got rid of the constant by dividing by it on the de�nition of P ′.

At this point, Eκ forks the execution of the prover three times, by providing three di�erent challenges
uκ, say uκ,1, uκ,2 and uκ,3. From this step, the protocol can be seen as an execution of the protocol of size
κ−1 on public inputs (2κ−1,G′i,H

′
i, (C

′
G,i, C

′
H,i, r, P

′
i )), for i = 1, 2, 3, de�ned as in equation (8) by using

the corresponding challenge uκ,i. We can leverage the extractor Eκ−1 to obtain, from 3 · 3κ−1 = 3κ valid

transcripts, witnesses µi ∈ G2κ−1

1 such that for all i ∈ {1, 2, 3}:

〈µi,G
′
i〉 = C ′G,i ∧ 〈µi,H

′
i〉 = C ′H,i ∧

∑2κ−1

j=0 µi,jr
j = P ′i .

Now, if uκ,i 6= uκ,j for i 6= j, which will occur with overwhelming probability, extractor Eκ can solve a
linear system of equations and �nd ν1, ν2, ν3 ∈ Zp such that∑3

i=1 u
−2
κ,iνi = 0

∑3
i=1 νi = 1

∑3
i=1 u

2
κ,iνi = 0 .

Extractor Eκ concludes by de�ning µ ∈ G2κ

1 as:

µ :=
∑3
i=1(νiu

−1
κ,iµi, νiuκ,iµi) .

Observe that this represents a valid witness for the relation of Lemma 4:

〈µ,G〉 =
∑3
i=1 νiu

−1
κ,i〈µi,GL〉+

∑3
i=1 νiuκ,i〈µi,GR〉 =

∑3
i=1 νi〈µi, u

−1
κ,iGL + uκ,iGR〉

=
∑3
i=1 νi〈µi,G

′
i〉 =

∑3
i=1 νiC

′
G,i =

∑3
i=1 νi

(
CG + u2κ,iL

(κ)
G + u−2κ,iR

(κ)
G

)
=
(∑3

i=1 νi
)
CG +

(∑3
i=1 νiu

2
κ,i

)
L
(κ)
G +

(∑3
i=1 νiu

−2
κ,i

)
R

(κ)
G

= CG .

Similarly, 〈µ,H〉 = CH . Finally,

〈r,µ〉 =
∑3
i=1 νiu

−1
κ,i〈rL,µi〉+

∑3
i=1 νiuκ,i〈rR,µi〉 =

∑3
i=1 νi〈u

−1
κ,irL + uκ,irR, µi〉

=
∑3
i=1 νi(u

−1
κ,i + r2

κ−1

uκ,i)〈rL, µi〉 =
∑3
i=1 νi(u

−1
κ,i + r2

κ−1

uκ,i)P
′
i

=
∑3
i=1 νi

(
P + u2κ,iL

(κ)
r + u−2κ,iR

(κ)
r

)
=
(∑3

i=1 νi
)
P +

(∑3
i=1 νiu

2
κ,i

)
L
(κ)
r +

(∑3
i=1 νiu

−2
κ,i

)
R

(κ)
r

= P .
ut

C Proofs of the main body

C.1 Proof of Theorem 1

Theorem 1 establishes that the scheme from Figure 2 is a complete, binding and knowledge sound multi-
polynomial commitment scheme. We �rst establish the following helper lemma, which we prove after the
proof of Theorem 1.
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Lemma 5. Let A be an algebraic (stateful) algorithm. If the q-DLOG assumption holds, then the following
probability is negligible in λ, for any K ∈ N and any polynomial g ∈ Zp[X] with deg(g) ≤ K:

Pr

 τ, ρ← Zp
G← A([τ ]1, [τ ]2)
π ← A(ρ)

: G 6= [g(τ)]t ∧ e([τ ]1 − [ρ]1, π) = G− g(ρ)

 ,

where τ := (1, τ, . . . , τK−1).

Proof (of Theorem 1). Completeness can be checked by inspection.
For the binding property, note that Commit-Evals is binding by de�nition. We will prove that that

Commit-Polys is binding if Ψ is inner-product binding. For that, let A be an adversary against the bind-
ing property of the scheme from Figure 2 (for d,K ∈ N). We will build an adversary B against the inner-
product binding property of Ψ (for the same d,K), who succeeds with the same probability A does. On input
(ckΨ , [τ ]1, [τ ]2), B simulates the commitment key of the multi-polynomial commitment as ck := (ckΨ , [τ ]2)
and the veri�cation key as vk := (vkΨ , [τ ]1).

14 Adversary B sends ck to A, who will produce f ∈ Z<dp [X]k and

f ′ ∈ Z<dp [X]k
′
, with k, k′ < K, such that f 6= f ′ and Commit-Polys(ck,f) = Commit-Polys(ck,f ′). Adversary

B will simply output (f ,f ′), which must be a valid forgery to its own inner-product binding game, since:

(k, 〈Ψ.Commit(ckΨ ,f), τ 〉) = Commit-Polys(ck,f) = Commit-Polys(ck,f ′) = (k′, 〈Ψ.Commit(ckΨ ,f
′), τ 〉) ,

which implies that 〈Ψ.Commit(ckΨ ,f), τ 〉 = 〈Ψ.Commit(ckΨ ,f
′), τ 〉 and that |f | = |f ′|, as desired.

Finally, we show that the scheme is knowledge sound. Let A be an algorithm that on input ck produces
(comf , z, comv, π) s.t. Check(vk, comf , z, comv, π)=1 with non-negligible probability. We will de�ne an ex-
tractor E that runs in expected polynomial time and produces f such that comf = Commit-Polys(ck,f) and
comv = Commit-Evals(f(z)) with overwhelming probability conditioned on Check(vk, comf , z, comv, π) = 1.

For that, we will extend algorithm A (against knowledge soundness for some d,K ∈ N) into an algorithm
B against the inner-product extractability of Ψ (for the same d,K ∈ N). Given (ckΨ , [τ ]1, [τ ]2), B will prepare
the multi-polynomial commitment key ck as described above and run A on it, producing (comf , z, comv, π).
Parse comf as (k,G). B will then run the knowledge extractor of the proof of relation (3) contained in π
to obtain a vector v s.t. Commit-Evals(v) = comv. After that, B will output (G, z,v) as its �rst message of
the inner-product extractability game. On receiving r, B will rewind A and provide r as the output of Hash
on (comf , z, comv).

15 By the Forking Lemma [PS00, BN06], this second execution of A results in a tuple
(comf , z, comv, π̃) which also satis�es Check(vk, comf , z, comv, π̃) = 1 with non-negligible probability. Parse
π̃ as (µ̂, v̂, πΨ , πv, πIPA, πτ ). Now observe that by virtue of Lemma 5, steps 5-6 from the Check algorithm
from Figure 2 serve as a replacement for the skipped steps 6-7 from the inner-product argument from
Figure 3. Therefore, B can leverage the extractor of the inner-product argument to obtain µ ∈ Gk1 such that
〈µ, τ [:k]〉 = G and 〈r,µ〉 = µ̂, where r = (1, r, . . . , rk−1). Algorithm B will output (µ, πΨ ).

Observe that B is a successful algorithm against the inner-product extractability of Ψ in the sense that
G ∈ Gt, z ∈ Zp, v ∈ Zkp, µ ∈ Gk1 for some k ≤ K and with non-negligible probability 〈µ, τ [:k]〉 = G
and Ψ.Check(ckΨ , µ̂, z, v̂, πΨ ) = 1, where µ̂ = 〈µ, r〉 and v̂ = 〈v, r〉, as ensured by the proof of rela-
tion (3) contained in π̃ (and given the binding property of Commit-Evals). Therefore, given the inner-
product extractability of Ψ , there exists an extractor EB that produces k polynomials f s.t. f(z) = v
and comf = (k,G) = (k, 〈Ψ.Commit(ckΨ ,f), τ [: k]〉) which equals Commit-Polys(ck,f). Consequently, given
A, we can de�ne an extractor E for the knowledge soundness game that builds B from A and replays EB, as
desired. ut

Proof of Lemma 5

For simplicity, we describe a proof in the generic group model. As observed before, it can be lifted to a proof
in the algebraic group model under the q-DLOG assumption.

14Veri�cation keys are implicitly contained in commitment keys, thus we need to show how to simulate them.
15We can assume w.l.o.g. that A made such query since its winning probability would be negligible otherwise.
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Proof. Algorithm A, will output a polynomial G ∈ Zp[T ] of degree bounded by 2K. (Note that A can obtain
[τ i]t for every i ∈ [0, 2K − 2] by using the pairing, and no more relevant elements.) Then, after receiving
ρ ∈ Zp, A will output a second polynomial π ∈ Zp[T ] of degree bounded byK. A is successful i� G(T ) 6= g(T )
and (T − ρ)π(T ) = G(T ) − g(ρ). Once G is �xed, the probability that it evaluates to the same value as g
on a uniformly chosen ρ is negligible. (It can be upper-bounded by 2K/p, given that G and g are distinct
polynomials with degree bounded by 2K.) This means that, with overwhelming probability over the choice
of ρ, the right-hand side of the previous equality is a polynomial that does not evaluate to 0 on ρ. On the
other hand, the left-hand side is a polynomial that evaluates to 0 on ρ, independently of π(T ). We conclude
that both polynomials cannot be equal and thus, the adversary cannot succeed in the symbolic model, what
implies that the adversary's success probability in the generic group model is negligible. ut

Theorem 1 without the inner-product binding property or inner-product extractability

The scheme from Figure 2 could be instantiated with a polynomial commitment scheme Ψ that is not inner-
product binding nor inner-product extractable if it is modi�ed as described in Remark 4. This is because
function Com : Gk1 → G2

t de�ned as Com(µ) := (〈µ, τ [: k]〉, 〈µ, τ̃ [: k]〉) is binding, as long as τ and τ̃ are
sampled independently and only given as powers in G1 and G2.

The binding of the modi�ed multi-polynomial commitment scheme follows directly from the previous fact
and the (standard) binding property of Ψ , which together imply that Commit-Polys is binding. Also, note
that Commit-Evals is binding by de�nition.

The knowledge soundness of the multi-polynomial commitment scheme could be proven as follows. Let A
be an algorithm that on input ck produces (comf , z, comv, π) satisfying Check(vk, comf , z, comv, π) = 1 with
non-negligible probability δ. We de�ne an extractor E that runs in expected polynomial time and produces f
such that comf = Commit-Polys(ck,f) and comv = Commit-Evals(f(z)) with overwhelming probability. From
an analog version of Lemma 5 we could show that the steps 5-6 from the Check algorithm from Figure 2
(after the proper modi�cations) serve as a replacement for the skipped steps 6-7 from the inner-product
argument from Figure 3. Say A has performed q queries to the random oracle Hash and assume without loss
of generality that A has queried the random oracle on (comf , z, comv), obtaining r, the scalar involved in the
inner-product argument. Parse comf as (k,G,H). E can leverage the extractor of the inner-product argument
to obtain µ ∈ Gk1 such that 〈µ, τ [:k]〉 = G and 〈µ, τ̃ [:k]〉 = H, and 〈r,µ〉 = µ̂. Furthermore, E can run the

knowledge soundness extractor of Ψ to obtain a polynomial f̂ such that f̂(z) = v̂ and µ̂ = Ψ.Commit(ckΨ , f̂).
Additionally, E can run the knowledge extractor of the given proof of relation (3) to obtain a vector v such
that Commit-Evals(v) = comv and 〈ri,v〉 = v̂, for every i ∈ [k], where r = (1, r, . . . , rk−1). If the total
running time of the above extractors is t, by the generalized Forking Lemma [PS00, BN06], E can run the

above extraction k times, on k di�erent ri, obtaining k di�erent tuples (µi ∈ Gk1 , f̂i ∈ Zp[X],vi ∈ Zkp), such
that for every i ∈ [k]:

〈µi, τ 〉 = comf ∧ 〈ri,vi〉 = f̂i(z) ∧ Commit-Evals(vi) = comv ∧ 〈ri,µi〉 = Ψ.Commit(ckΨ , f̂i) .

The expected running time of such extraction is O(kqt/δ), which is polynomial since δ is non-negligible and
A runs in polynomial-time. Now, given that function Com is binding, it must be µi = µj for all i, j ∈ [k].
Similarly, since Commit-Evals is binding, we must have vi = vj for every i, j ∈ [k]. So E ended up with
vectors µ ∈ Gk1 and v ∈ Zkp such that for every i ∈ [k]:

〈ri,v〉 = f̂i(z) ∧ 〈ri,µ〉 = Ψ.Commit(ckΨ , f̂i) ,

for k di�erent ri. Let R be the Vandermonde matrix formed by vectors ri for every i ∈ [k], which is invertible

given that ri 6= rj for di�erent i, j. And let f̂ := (f̂1, . . . , f̂k). We have:

Rv = f̂(z) ∧ Rµ = Ψ.Commit(ckΨ , f̂) or equivalently v = R−1f̂(z) ∧ µ = R−1Ψ.Commit(ckΨ , f̂) ,

where Ψ.Commit(ckΨ , f̂) is a shorthand for the column vector (Ψ.Commit(ckΨ , f̂1), . . . , Ψ.Commit(ckΨ , f̂k)).
Extractor E will output f = R−1f̂ , which satis�es f(z) = v and, by the homomorphic property of Ψ ,
µ = Ψ.Commit(ckΨ ,f), where 〈µ, τ [:k]〉 = G and 〈r,µ〉 = µ̂, so Commit-Polys(ck,f) = comf as desired.
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C.2 Proof of Theorem 2

Theorem 2 establishes that the scheme described in Figure 4 constitutes a SNARK for relation:

PoK
{
{wi ∈ Zm−`p }i∈[k] : (xi,wi) ∈ Zmp satis�es C ∀i ∈ [k]

}
,

if Ψ is a complete, binding and knowledge sound multi-polynomial commitment scheme and Hash : {0, 1}∗ →
Zp is a random oracle.

We �rst establish the following helper lemma.

Lemma 6. Let E be a vector of m multi-variate linear polynomials on n variables over Zp. Let k ∈ N and
xi ∈ Znp for i ∈ [k]. If Pr[δ ← Zp : E(

∑
i∈[k] δ

i−1xi) = 0] is non-negligible, then E(xi) = 0 for all i ∈ [k].

Proof (by contrapositive). Assume there exist i∗ ∈ [k] and j∗ ∈ [m] such that Ej∗(xi∗) 6= 0. De�ne P (∆) :=
Ej∗(

∑
i∈[k]∆

i−1xi). By linearity, it holds that P (∆) =
∑
i∈[k]∆

i−1Ej∗(xi∗), so P is a non-zero polynomial

given that Ej∗(xi∗) is di�erent from 0. Thus, P will not vanish on a uniformly sampled δ except with
negligible probability. ut

Proof (of Theorem 2). Correctness can be checked by inspection. To show knowledge soundness we need to
build an extractor which can produce valid witnesses for all the atomic statements from the interaction with
a successful aPlonK prover. We rely on the knowledge soundness extractor of PlonK [GWC19]. Note that
the scheme from Figure 4 is essentially the original PlonK construction with the following modi�cations:

(1) The Fiat-Shamir random challenges α, β, γ, ξ are shared across all proofs.
(2) The T polynomial is common for all proofs.
(3) We use a shared permutation argument, thus there is a common polynomial Z for all proofs with respect

to the same PlonK constraint system.
(4) We use a multi-polynomial commitment scheme instead of a standard polynomial commitment scheme.
(5) The polynomial evaluations on ξ (and ωξ) are not included in the proof. Instead, we include a commitment

to them, together with a meta-veri�cation proof of the relation from Figure 5.

As explained in Section 4.1, the PlonK extractor can be easily modi�ed to support modi�cations (1)-(2),
by extracting a witness for each of the statements when �xing all others.

The shared permutation argument in modi�cation (3) guarantees that a random linear combination of
the wires of each proof (through powers of a uniformly sampled random value δ) meets the copy-satis�ability
constraints of permutation σ. If that is the case with overwhelming probability over the choice of δ, then
by virtue of Lemma 6, each of the wire evaluations of every individual statement being proved also meets
the copy-satis�ability constraints. Thus applying the standard PlonK on a proof that satis�es the shared
permutation argument will result in an extracted set of witnesses that meets the copy-satis�ability constraints
as desired.

Modi�cation (4) is minimal from the extractor point of view. Note that PlonK's extractor relies on the
de�nition of �knowledge soundness in the algebraic group model� from [GWC19, Section 3], a uni�ed security
notion that captures extractability and the binding property at the same time. Such de�nition is the basis of
PlonK's extractor (then formalized through so-called polynomial protocols). Note that our binding property
(on Commit-Polys) and knowledge soundness for multi-polynomial commitments (Section 3) together, imply
such de�nition, which guarantees that the same extractor can be used after modi�cation (4).

Finally, note that modi�cation (5) can be addressed as follows. We can use the extractor of the meta-
veri�cation proof for relation Rn,k((α, β, γ, δ, ξ, νw, νz, νz̄, νt, νpp, {xj}j∈[k]), · ) (see Figure 5) to obtain eval-
uations ({aj , bj , cj}j∈[k], z, z, t, eqL

, eqR
, eqO

, eqM
, eqC

, es1 , es2 , es3) that satisfy all identities and are the actual
evaluation of the corresponding committed polynomials at ξ (and ωξ in the case of z), as ensured by the
multi-polynomial commitment binding property (on Commit-Evals) and the knowledge soundness. Such ex-
tracted evaluations thus satisfy all the properties that are veri�ed in a standard PlonK proof and can
consequently be used by the standard PlonK extractor. ut
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