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Abstract. Learning with Errors (LWE) and its variants are widely used
in constructing lattice-based cryptographic schemes, including NIST stan-
dards Kyber and Dilithium, and a refined estimation of LWE’s hardness
is crucial for their security. Currently, primal attack is considered the
fastest algorithm for solving LWE problem in practice. It reduces LWE
to a unique Shortest Vector Problem (uSVP) and combines lattice reduc-
tion algorithms with SVP calls such as enumeration or sieving. However,
finding the most time-efficient combination strategy for these algorithms
remains a challenge. The designers of Kyber highlighted this issue as
open problem Q7: “A refined (progressive) lattice reduction strategy and
a precise analysis of the gains using reduction preprocessing plus a single
SVP call in large dimensions are still missing.”
In this paper, we address this problem by presenting a Strategy Search
algorithm named PSSearch for solving uSVP and LWE, using progressive
BKZ as the lattice reduction and sieving as the SVP call. Compared to
the heuristic strategy used in G6K (Albrechet et al., Eurocrypt 2019), the
strategy generated by our algorithm has the following advantages: (1) We
design a tree search algorithm with pruning named PSSearch to find the
minimal time-cost strategy in two-step mode and prove its correctness,
showing that the fastest approach in two-step mode for solving uSVP and
LWE can be achieved in a reasonable timeframe; (2) We propose the first
tight simulation for BKZ that can jump by J > 1 blocks, which allows
us to choose more flexible jump values to improve reduction efficiency.
(3) We propose a refined dimension estimation method for the SVP call.
We tested the accuracy of our new simulation algorithm and the effi-
ciency of our new strategy through experiments. Furthermore, we apply
the strategies generated by SSearch to solve the TU Darmstadt LWE
Challenges with (n, α) ∈{(80, 0.005), (40, 0.035), (90, 0.005), (50, 0.025),
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(55, 0.020), (40, 0.040)} using the G6K framework, achieving improve-
ments of 7.2 to 23.4 times over the heuristic strategy employed in G6K.
By combining the minimal time-cost strategy selection with the refined
two-step estimator for LWE (Xia et al., PKC 2024), we re-estimate the
hardness of NIST standards Kyber and Dilithium, and determine the
influence of the strategy. Specifically, the security levels of NIST stan-
dards decrease by 3.4 to 4.6 bits, rather than 2 to 8 bits indicated in the
Kyber documentation. It achieves a decrease of 1.1 to 1.3 bits compared
to the refined two-step estimation using trivial strategy.

Keywords: Lattice Cryptanalysis· Progressive Reduction Strategy·
G6K · PnJBKZ Simulator· Concrete Hardness Estimation.

1 Introduction

Learning with Errors (LWE) [1] plays an important role in lattice-based cryptog-
raphy, as the security of a large fraction of lattice-based cryptographic schemes
[2–5] relies on the hardness of LWE or its variants [1,6–8], including NIST post-
quantum standards Kyber and Dilithium [8, 9]. So to provide concrete security
levels of these schemes, a tight estimation on the hardness of LWE is necessary.
This means that we need to identify the most efficient algorithm for solving
LWE, along with its precise complexity.

Among the many different methods for solving LWE, primal attack [10] is
considered the most efficient in practice currently. Primal attack uses Kannan’s
embedding technique [11] to transform LWE into the unique Shortest Vector
Problem (uSVP) on a specific lattice, which contains an extraordinary short
vector, known as the unique shortest vector. If we assume that, after certain
level of reduction on the lattice, the projection of the unique shortest vector
becomes the shortest vector on a projected sub-lattice, we can recover it by first
finding the shortest vector on the sub-lattice using an SVP oracle and then using
Babai’s lifting [12] to lift it onto the full-dimensional lattice. This approach was
first suggested in [13], verified by [14], and has already been used in many LWE
estimators, such as [15].

The choice of lattice reduction and SVP solving algorithms is important in
LWE primal attack. In the literature, cryptanalysts often use BKZ [16] as the
lattice reduction algorithm, which has a tunable parameter β called blocksize to
balance between time cost and reduction effectiveness, and use either enumera-
tion or lattice sieving as the SVP oracle. Although the efficiency could be further
improved by finding better algorithms for lattice reduction or SVP solving, de-
signing these fundamental algorithms seems to be extremely hard. However, even
if we fix these fundamental algorithms, there is still room for improvement if we
choose a better solving strategy. Here, “strategies” refers to the different ways
of calling the fundamental algorithms with various parameters.

All LWE solving algorithms and LWE estimators use certain strategies, al-
though some of them are presented implicitly. In BKZ 2.0 [17] and ADPS16 [18],
BKZ with a fixed blocksize is called multiple times (referred to as tours) until
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a short vector is found, while the SVP call is not called outside BKZ. This is
later improved by a progressive strategy, where the blocksize is increased by each
BKZ tour. Aono et al. presented the Improved Progressive BKZ (ProBKZ) [19]
with an explicit strategy selection algorithm to output the sequence of blocksizes
for BKZ tours. They also added an individual SVP call after BKZ, but this SVP
call is made on the full-dimensional lattice basis by enumeration. All of these
algorithms use enumeration as the SVP call, which is later been outperformed
by lattice sieving in higher dimensions. In the LWE estimator designed by Al-
brecht et al. [15], sieving is used as the SVP call, and they presented two different
modes for estimating the complexity of LWE primal attack, one mode involves
progressive BKZ with blocksize added by 1 for each tour, while the other is a
two-step mode that combines progressive BKZ with a final sieving call, where
the dimension is chosen to balance the cost between the two steps. The con-
cept of “two-step” is illustrated in Fig. 1. In 2019, Albrecht et al. designed a
lattice solving framework called G6K [20], which implements various sieving al-
gorithms [18, 21–25] and uses individual techniques [26, 27] to accelerate lattice
sieving. They also implemented an LWE solving algorithm in G6K, where each
BKZ tour is followed by a conditional sieve and it will be triggered heuristically.
Besides, there is no guarantee that the sieving will yield a solution for LWE
because the dimension estimation method in ADPS16 [18] has a non-negligible
failure probability for solving LWE.

Fig. 1: Two-step Mode

We can see that all these strategies are heuristic, with no guarantees of op-
timality. In the Kyber document [8], the designers raised an open problem Q7:
“A refined (progressive) lattice reduction strategy and a precise analysis of the
gains using reduction preprocessing plus a single SVP call in large dimensions
are still missing.” The designers expect that, by optimizing the strategy for BKZ
blocksizes and final SVP dimension, the security estimation for Kyber might be
lowered by 2 to 8 bits.

In this paper, we solve this open problem by presenting an minimal time-cost
strategy for uSVP and LWE in primal attack. First, we note that, all possible
solving strategies form a strategy space with finite elements, thus the minimal
time-cost strategy can be found by searching over the strategy space. However,
there are three main issues to be solved: (1) Give a formal definition for the
strategy space, such that the strategy space contains all reasonable strategies
that succeed with high probability. (2) Since the strategy space is exponentially
large, we must find a way to reduce the complexity of the strategy searching
algorithm, so that the minimal time-cost strategy can be found in reasonable
time. (3) For the search algorithm to function effectively, we need to provide a
precise time cost estimation for each strategy in the strategy space.
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1.1 Our Contribution

We list our contribution in this work as follows:
1. We define the strategy space in the two-step mode, which contains all the

two-step strategy with a high success probability.
2. We design a tree search algorithm on the strategy space with pruning,

named Pruning Strategy Search (PSSearch). We prove that PSSearch can output
the minimal time-cost two-step strategy for solving LWE in the strategy space,
so the PSSearch can be used to accelerate LWE solver, as well as present tight
estimation for LWE-based cryptographic schemes.

3. We implement PSSearch using the most efficient lattice reduction and
SVP algorithm up to date, which are PnJBKZ and Pump in G6K. More con-
cretely, we design a simulator for PnJBKZ which can simulate the behavior for
jump>1, to support searching more flexible and efficient reduction strategy. We
also give a refined dimension estimation method for the SVP call considering
the distribution of the LWE noise vector.

Particularly, with the minimal time-cost two-step strategy for solving LWE
generated by PSSearch, we successfully cracked six previously unsolved TU
Damstadt LWE Challenges1, which is 23.4 times faster than the previously most
efficient LWE solver, G6K [28]. See Figs. 2, 5 and Table 4. In Reduction Step,
the time cost needed to achieve the same basis quality is faster than the trivial
reduction strategy, by a factor of 4 to 36.4 times. See Fig. 6. The executable
code of TwoStepSolver based on PSSearch is publicly available on GitHub2.

Fig. 2: LWE Challenges and the Algorithms to Solve it

Our new hardness estimation for NIST standards Kyber and Dilithium show
that when using the time cost minimal strategy, the security levels is decreased
by 3.4 to 4.6 bits rather than 2 to 8 bits indicated in the Kyber documenta-
tion, which confirms the Q7 in the document of Kyber. Compared to the trivial
1 https://www.latticechallenge.org/lwe_challenge/challenge.php
2 https://github.com/Summwer/pro-pnj-bkz
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strategy used in the “Refined Two-Step Mode LWE Estimator” [29], the security
levels decrease by 1.1 to 1.3 bits. See Table 5.

1.2 Related Works

Lattice Solving Algorithms. BKZ [16] is the most popular lattice reduction algo-
rithm typically used for solving LWE. BKZ combines the LLL [30] and an SVP
algorithm to balance the time cost and the success probability using blocksize β.
Many cryptanalysts improved the BKZ algorithm, e.g. the extreme pruning [31]
to speed up enumeration, BKZ 2.0 [17] based on [31], approximate enumeration
oracle [32], and progressive reduction parameters optimization in BKZ such as
Improved Progressive BKZ (ProBKZ) [19]. [14] showed that the unique short-
est vector is recovered by first finding its projection in a projected sublattice
then lifting it to the full lattice and verifying the BKZ successful condition of
solving LWE in [33]. In 2019, Albrecht et al. [20] designed the General Sieve
Kernel (G6K) and implemented the progressive sieve [27] named Pump, which
can selectively call the Gauss sieve [21, 22], NV sieve [34], k-list sieve [23, 24]
or BGJ1 sieve [25]. Progressive sieve and dimension-for-free (d4f) technique [26]
are used in Pump for acceleration, where Pump is a progressive sieve and in-
sertion algorithm that sieves on the projected sublattice and can insert more
than one vector into the lattice basis. Ducas et al. [28] improved G6K using
GPU (named G6K-GPU-Tensor) and implemented the fastest sieving algorithm
BDGL16 [18] in both G6K and G6K-GPU-Tensor. G6K provides an algorithm
to solve LWE, which will conditionally call Pump to find short vectors on the
projected sublattice and lift them into the full lattice basis after running several
tours of PnJBKZ. PnJBKZ uses Pump as its SVP oracle so that even if it calls
the SVP oracle with a jump value, it still can ensure the skipped basis vector
is reduced by Pump. It solves TU Darmstadt LWE Challenges 400 times faster
than the previous records.1

Lattice Reduction Simulators. The first BKZ simulator is proposed in [17],
which uses the Gaussian heuristic to predict BKZ-β, where we refer to the BKZ
2.0 simulator. In 2016, while proposing Progressive BKZ [19], Aono et al. intro-
duced a new BKZ simulator for predict a fully BKZ-β reduced basis. In 2017, Yu
and Ducas [35] conducted extensive experiments to evaluate the practical behav-
ior of BKZ. They provided a detailed study of the distribution of Gram-Schmidt
vector lengths for BKZ-reduced bases and more accurately quantified the “head
concavity” phenomenon based on their observations. In 2018, Bai, Stehle, and
Wen [36] proposed an even more accurate BKZ simulator by considering the
distribution of short vectors in random lattices. The simulator developed by Bai
et al. [36] can predict the “head concavity” phenomenon in the Gram-Schmidt
norm curves after BKZ-β reduction with high accuracy. However, since the sim-
ulator proposed by Bai et al. [36] accounts for the distribution of random lattice
vectors, it is a randomized algorithm, meaning its predictions are stochastic

1 https://github.com/WvanWoerden/G6K-GPU-Tensor/blob/main/lwe_challenge.py
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rather than deterministic. The prediction results will only converge after run-
ning BKZ-β with the same fixed blocksize β for a sufficiently large number of
reduction tours. In practice, to achieve higher reduction efficiency, it is often
impractical to run a large number of tours with the same blocksize β. In many
heuristic progressive reduction strategies [17,20,28,37], run only one tour of BKZ
reduction for each blocksize β. Additionally, the randomized simulator cannot
accurately estimate the concrete security strength of cryptographic schemes if
the evaluation strategy involves only one tour of BKZ reduction for each pro-
gressive blocksize β and the estimation results do not converge. Therefore, we
do not base our construction of the PnJBKZ simulator on the aforementioned
BKZ 2.0 simulator variants.

Roadmap. The paper is organized as Fig. 3. Sec. 2 presents the notations
and preliminaries. We first formalize the definitions of the strategy space for
solving LWE and give a Simplified Strategy Search (SSearch) method in Section
3, where the SSearch can be determined under a given reduction simulator named
ReductionSim for lattice reduction algorithmR, a dimension estimation method
named SVPDimEst of the SVP call C and a time cost model. Next, we give
a pruning version of SSearch (PSSearch) in Sec. 4 and prove its correctness
of outputting the minimal time cost strategy for solving LWE. In Sec. 5, we
propose a PnJBKZ simulator for instancing PSSearch with the lattice reduction
algorithm PnJBKZ. Finally, we give the experiments in Sec. 6 as follows, (1)
Give the accuracy verification of PnJBKZ simulator; (2) Compare the time cost
of the LWE solver implemented in G6K GPU version with our two-step LWE
solver using strategy generated by PSSearch and the practical time cost model
proposed in Sec. 2.6; (3) Present the optimized strategy for solving the LWE
Challenge; (4) Verify the simulation accuracy of MinTwoStepSolver; (5) Give
the detail about new LWE records; (6) Re-estimate NIST schemes Kyber and
Dilithium base on PSSearch and gate count model [38].

Fig. 3: Roadmap

2 Preliminaries

We denote vectors by lower-case bold letters, e.g. a,b, c, ..., and matrices by
upper-case bold letters, e.g. A,B,C, .... For a matrix B = (b0, · · · ,bd−1), we
write bi as its i+ 1-th column vector. The Euclidean norm of a vector v ∈ Rm

is denoted by ∥v∥. We write ⟨·, ·⟩ for inner products and · for matrix-vector
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products. By abuse of notation we consider vectors to be row resp. column
vectors depending on context, such that v ·A and A · v are both meaningful.
We write 0m×d as the m× d all zero matrix. If the dimensions are clear from
context, we may omit the subscripts. |B| is denoted as the absolute value of the
determinant of matrix B. A := [[a0, ..., an−1]] is denoted as an ordered list with
size ♯A = n and A[i] = ai, while [[a0, ..., an−1]] ∪ [[an]] = [[a0, ..., an−1, an]]. We
define [a, b] := {a, a+ 1, ..., b− 1} and [d] = [0, d].

2.1 Lattices

Let L be a d-dimensional lattice in Rm and its basis be B ∈ Rm×d, we denote
B[i,j] := (bi, · · · ,bj−1). We can also denote the lattice generated by basis B as
L(B). Let B∗ = (b∗

0, . . . ,b
∗
d−1) be the Gram-Schmidt orthogonalization of B,

in which b∗
i = bi −

∑i−1
j=0 µi,jb

∗
j , µi,j = ⟨bi,b

∗
j ⟩
/
∥b∗

j∥2, ∀i ∈ [d]. Denote by li
the logarithm of Gram-Schmidt norm, i.e. li = ln(∥b∗

i ∥), for i ∈ {0, · · · , d− 1}.
Let rr(B) = (l0, · · · , ld−1), abbreviate to rr, rr[i,j] = (li, · · · , lj−1). For i ∈ [d], we
denote by πi the orthogonal projection over (b0, ...,bi−1)

⊥. For 0 ≤ j ≤ k ≤ d−1,
we denote by Bπ[j,k] the local projected block (πj(bj), πj(bj+1), ..., πj(bk−1)),
and by Lπ[j,k] the lattice spanned by Bπ[j,k].

The volume of a lattice Vol(L) is defined as Vol(L)=|B|=
∏d−1

i=0 ∥b∗
i ∥. We

write λi(L) for Minkowski’s successive minima, the Gaussian Heuristic predicts
λ1(L) ≈ GH(B) =

√
d

2πe |B|
1/d.

2.2 Lattice Reduction

Definition 1 (Size-reduced). The Gram-Schmidt coefficients of a d-dimension
lattice basis B set as µi,j for any 1 ≤ j < i ≤ d. Then the basis B is size-reduced
if following holds: For 1 ≤ j < i ≤ d : |µi,j | ≤ 1/2.

Definition 2 (Hermite-Korkine-Zolotarev and Block-Korkine-Zolotarev
reductions [39]). The basis B of a d-dimensional lattice L is HKZ reduced if B
is size-reduced and ∥b∗

i ∥=λ1(Lπ[i,d]), for all i < d. A d-dimensional L is BKZ-β
reduced if B is size-reduced and ∥b∗

i ∥ =λ1(Lπ[i,min{i+β,d}]), for all i < d.

In this paper, when we refer to the property of HKZ reduction with respect to a
blocksize β, we mean that the HKZ reduced property holds for a β-sized block,
i.e. Bπ[j,j+β].

Definition 3 (Root Hermite Factor). For a basis B of d-dimensional lattice,
the root Hermite factor is defined as δ(B) =

(
∥b0∥/|B|1/d

)1/d. For larger block-
size of BKZ, it follows the asymptotic formula δ(β)2(β−1) = β

2πe (βπ)
1/β [40].

δ(B) can be used to measure current lattice basis quality of the lattice basis B.
A better lattice basis quality of B corresponds to a smaller δ(B).

Heuristic 1 (Geometric Series Assumption [20]) Let B be a lattice basis
after the lattice reduction, then ∥b∗

i ∥ ≈ α · ∥b∗
i−1∥, 0 < α < 1.
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Combine the GSA with root-Hermite factor (Definition 3) andVol(L) =
∏d−1

i=0 ∥b∗
i ∥,

it infers that α = δ−
2d

d−1 ≈ δ−2. Let s be the slope value of the logarithm of GS
norms li for ∀i ∈ {1, . . . , d}, s ≈ lnα and δ ≈ e−

s
2 .

Even if GSA does not strictly hold, we can still apply least squares fitting on
ln∥b∗

i ∥ to estimate the slope s. In earlier works such as [20], s is a measurement
for basis quality: the basis quality becomes better when s is closer to 0.

Heuristic 2 (Sandpile Model Assumption (SMA) [41]) For any HKZ re-
duced basis (bi)i≤β, li = 1

2 ln γβ−i+1 + 1
β−i+1

∑β
j=i lj for all i ≤ β with (li =

log ∥b∗
i ∥)i≤β. Here γi is the i-dimension Hermite’s constant which equals to

λ1(L)/(detL)
1/dim(L). We use

√
dim(L)
2πe to approximate this γdim(L).

2.3 Sieving Algorithms and Progressive Sieve

The first practical NV sieving algorithm uses a database of N0 = O(20.2075d)
vectors and runs in time N2

0 = O(20.415d) by repeatedly checking all pairs v±w
[34]. To find the shortest vector, N0 is the minimal number of vectors to ensure
saturating the ball of radius GH(L)

√
4/3 by short vector. In a line of works

[18, 25, 42, 43] the time complexity was gradually decreased to O(20.292d) by
nearest neighbor searching techniques. The progressive sieve [27] can save the
cost of the classical sieve, which was later implemented in [20,28] through a right-
to-left operation. A progressive sieve first calls a sieve on a small dimensional
projected lattice, then uses Babai’s nearest plane algorithm [12] to lift the vectors
to a higher dimensional projected lattice. It repeats such a step until the short
vectors are lifted onto the full dimensional lattice.

2.4 Technologies in G6K

G6K [20] is an abstract machine for running sieve and reduction algorithms,
which is built on generalizing and extending the previous sieve algorithms. G6K-
GPU-Tensor [28] as a state-of-art SVP solver improves the efficiency of G6K by
GPU implementations and holds many records in TU Darmstadt SVP Chal-
lenges which is at least 400 times faster than the previous records.
Dimension for Free (d4f) Technique. D4f technology [26] can bring sub-
exponential time speedup and memory decrease for sieving algorithms. [26] has
given two theoretical d4f estimations for solving β-dimension SVP as d4f(β) =
β ln(4/3)/ ln(β/2π) and d4f(β) = β ln(4/3)/ ln(β/2πe), while in the implemen-
tation of G6K [20], it gives a more relaxed value and we called it “optimistic d4f”:
β<40, d4fop(β) = 0; 40 ≤ β ≤ 75, d4fop(β) = ⌊β − 40/2⌋; β>75, d4fop(β) =
⌊11.5 + 0.075β⌋. However, the d4f estimations in G6K are only related to β,
which are sometimes inaccurate. [44] proposed a refined d4f value estimation
function based on the quality of current lattice basis, and proved its correctness
under GSA, which illustrates that d4fδ = lnδ

√
4/3 ≈ ln (4/3)

/
(−slope). Here

the slope is the slope value of the logarithm of Gram-Schmidt norms. More detail
about d4fslope (s) can see the Eq. (5) in [44].
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Pump in G6K. Albrecht et al. proposed a sieving style algorithm Pump in
[20], which combines Progressive Sieve [27] with d4f technique [26] and a novel
insertion trick. There are four input parameters for Pump algorithm: lattice basis
B, left insertion bound κ, insertion upper bound dsvp and d4f value d4f(dsvp).
Here κ+dsvp=d and the upper bound of sieve dimension is dsvp − d4f(dsvp).
It’s worth emphasizing that the Pump will insert up to dsvp − d4f(dsvp) short
vectors into the basis index from κ to d by the short vector that has the shortest
norm in the short vector set obtained by each sieve on the projected sublattice
Lπ[d−dsvp+i,d] for i from κ to d. Thus, it performs a partial HKZ reduction and
outputs a nearly HKZ-reduced context as the paper of G6K [20] mentioned.
PnJBKZ in G6K. PnJBKZ (Pump and Jump BKZ) is a BKZ-type reduction
algorithm that uses Pump as its SVP call. By calling Pump instead of earlier
SVP oracles, PnJBKZ can insert more than one vector into the lattice basis
when processing each block, thus PnJBKZ can perform lattice reduction with
an adjustable jump no less than 1. Specifically, running a PnJBKZ with blocksize
β and jump=J means that after executing SVP call on a certain B[i,i+β], the
next SVP call will be executed on the B[i+J,i+β+J] rather than B[i+1,i+β+1].

2.5 Primal Attack and SVP Dimension Estimation in Search Step

In the search step of the two-step method for solving LWE, an individual SVP
oracle is called after lattice reduction to find the target solution for LWE. Mean-
while, given a lattice basis B that has been reduced by using lattice reduction
algorithm, one can estimate the dimension of the SVP needed to be solved in
the search step to ultimately solve LWE.

For a standard LWE instance (A,b) ∈ Zm×n
q × Zm

q which error vector e
has standard deviation σ, we suppose that each element in e follows a discrete
Gaussian Distribution D0,σ and m > n. The primal attack [45] transforms LWE
into a uSVP by constructing a special embedding lattice basis B using Kannan’s
embedding technique [11], where B =

(
Ā b
0 1

)
. Here Ā is a basis for the q-ary

lattice spanned by the columns of A. Then t = (e,±1) is an unique shortest
vector in B and is also the target vector of uSVP. By considering the norm of
target vector t of LWE by its expected value, one can find minimum dsvp ∈ [1, d]
s.t σ

√
dsvp < GH

(
Bπ[d−dsvp,d]

)
. According to the success conditions for solving

LWE [18], as verified by [10], the minimum dimension of SVP that needs to be
solved in search step to solve LWE is dsvp. Most efficient LWE solvers [20, 28]
use this estimation in their implements.

In this paper, we will demonstrate that this estimation is not accurate and
will provide a more precise estimation in Section 4.3. We use SVPDimEst(rr, σ)
to denote the dimension estimation method for estimating the dimension of SVP
needed to be solved in search step to solve LWE by inputting the Gram-Schmidt
norms rr of its lattice basis B generated by the primal attack.
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2.6 SVP Time Cost Model and Reduction Time Cost Model

Accurate time cost models for sieving and enumeration algorithms are crucial
in our strategy search algorithm. If we use enumeration as the SVP solving
algorithm and sub-algorithm in lattice reduction algorithm, we can apply the
enumeration time cost model proposed in [46, 47]. However, if we use sieving as
the SVP solving algorithm and sub-algorithm in the lattice reduction process,
the time cost model becomes more complicated. In this paper, we mainly focus
on the time cost of the progressive sieve algorithm Pump, as it is the most
efficient in practice for solving SVP at current.

Let TPump(β) be the time cost of a β-dimensional progressive sieve Pump
(with pump-down active), we can add the costs of all sieving subroutine to get
the theoretical time cost TPump(β) = 2

∑β
j=β0

Tsieve(j) ≤ 2c·(β+1)+o(β−β0+1)/(1−
2c) ≈ 2c·β+c1 , where β0 is the dimension of the initial sieving in Pump (β0 set
as 30 in G6K, 50 in G6K-GPU-Tensor), Tsieve(j) is the cost of a j-dimensional
sieve, c and c1 are the coefficients of time cost related to the sieve algorithm.

For pratical time cost, we noticed that Pump in G6K (or G6K-GPU-Tensor)
implementation requires extra time cost as O(β) times of memory cost to gen-
erate the SimHash value, which is used to find the nearest neighbor of each
vector. Thus, Pump with theoretical O(2cβ)-time cost and O(2c2β)-space cost
actually requires O(2cβ + β · 2c2β) time. Set c = 0.367 and c2 = 0.2075 ac-
cording to Fig. 7 in [28], we can construct a practical Pump time cost model
as TPump(β) = a1 · 2cβ+c1 + a2 · 2c2β+c3 and obtain its coefficients (as Fig. 26
shown) through the curve fitting method. More details for our practical Pump
cost model are shown in the Appendix G.

The time complexity model for lattice basis reduction algorithms like BKZ is
represented as TBKZ(β) = (d−β)TSVP(β); thus, the time complexity for PnJBKZ
can be expressed as TBKZ(β, J) = (d − β)/J · TPump(β). However, experiments
have shown that this differs significantly from the actual time complexity model
(in practice, the time cost of the Pump increases with the index). Consequently,
we provide a practical PnJBKZ time complexity model in Appendix G.

3 Strategy Space and the Strategy Search Algorithm

3.1 Strategy Space

Before introducing the strategy space, we should first clarify the definition of
the lattice reduction algorithm. Almost all the lattice reduction algorithms are
designed as the combinations of several SVP calls and aim to improve the basis
quality by replacing each lattice vector bi with a shorter vector, for i ∈ [d]. Thus,
we give a general definition of the lattice reduction algorithm as follows,

Definition 4 (Generic Reduction (R(B, ξ) or R-ξ)). Reduce the lattice basis
B with a blocksize list ξ = [[(κ0, β0), · · · , (κn−1, βn−1)]], where κi, n ∈ [d−1], and
βi ∈ [1, d− κi + 1]. For i ∈ [n], let β′ = min{βi, d− κi}, then iteratively call the
following two operations:

10



1. Find the shortest vector v by running an β′-dimensional SVP call on the
projected sublattice basis B[κi,κi+β′

i]
.

2. Insert v into the position κi of the lattice B by calling an LLL reduction on
(v,bκi , · · · ,bκi+β′

i−1) and removing the zero vector after the LLL.

We list the initialization R-ξ by most commonly used lattice reduction algo-
rithms in practice in Table 1. Each specific reduction algorithm corresponds to
specific parameters and can be described by defining the form of ξ.

Table 1: The form of ξ in Generic Reduction initialization

Reduction
Algorithm

Reduction
Parameter Each κi and βi in ξ = [[(κ0, β0), · · · , (κn−1, βn−1)]]

BKZ [16] β n = d− 2, κi = i, βi = min{β, d− i}, i ∈ [d− 1]

PnJBKZ [20] (β, J) n = d− 2, κi = i, βi = min{β − (i mod J), d− i}, i ∈ [d− 1]

HKZ [11,48] - n = d− 2, κi = i, βi = d− i, i ∈ [d− 1]

Lattice Basis Quality. There are many different ways to describe the quality
of a lattice basis. In the context of BKZ reduction, as GSA is satisfied, one may
use the slope of ln(∥b∗

0∥), ..., ln(∥b∗
d−1∥) to define the quality of a BKZ reduced

basis. However, if we consider the lattice basis quality after a tour of PnJBKZ
or other reduction algorithms, we can no longer assume GSA. Here we give a
definition of a more generic version of lattice basis quality, which can cover the
generic reduction in definition 4.

Definition 5 (Generic Basis Quality). For a lattice basis B, let (|B[0,1]| =
∥b∗

0∥, |B[0,2]|=∥b∗
0∥ · ∥b∗

1∥, ..., |B[0,d]|=
∏d−1

i=0 b∗
i ) be the lattice basis quality of B.

Moreover, for two different bases C and D of a same lattice, we say D has
the same or better lattice basis quality than C, if |C[0,k+1]| ≥ |D[0,k+1]| for all
k ∈ [d], written as D ≥Q C or rr(D) ≥Q rr(C).

If we limit n = d − 2 and κi = i for ξ in the generic reduction R-ξ, then
the Gram-Schmidt norms of the lattice basis after a lattice reduction R-ξ can
be simulated by Gaussian Heuristic, and then it has the following property:

Property 1 (Property of the Generic Reduction) Assume Gaussian Heuris-
tic holds. For a generic reduction tour R-ξ, where ξ = [[(0, β0), · · · , (d−2, βd−2)]],
then the following 2 properties hold:

1. Let B′ = R-ξ(B) be the reduced basis after a tour of R-ξ, B′ ≥Q B.
2. Given two lattice bases C and D, and C′ (resp. D′) is the lattice basis after

a tour reduction of R-ξ on C (resp. D ). If D ≥Q C, then D′ ≥Q C′ .

Now we prove that Property 1 is preserved when we call the same generic re-
duction R-ξ on two different lattice bases C and D.
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Proof. Item 1. (Proof by induction.) Suppose the Gram-Schmidt norms of B
(resp. B′) are (l0, · · · , ld−1) (resp. (l′0, · · · , l′d−1)). For each i, the Gram-Schmidt
norm after R-ξ can be simulated as GH(B[i,i+β′]), where β′ = min{βi, d− i}.

If k=0, |B′
π[0,1]|=l′0 ≈ min{GH(Bπ[0,β0]), l0} ≤ l0 obviously. Assume |B′

π[0,n]| ≤
|Bπ[0,n]| holds while k = n. When k = n + 1, under the SMA we have, l′n =

min{ln,
√

β′

2πe ·
(

|Bπ[0,n+β′]|
|B′

π[0,n]
|

)1/β′

}. We depart it into two case: (1) l′n = ln, then

|B′
π[0,n+1]| = |B

′
π[0,n]| · ln ≤ |Bπ[0,n+1]|; (2) l′n =

√
β′

2πe ·
(

|Bπ[0,n+β′]|
|B′

π[0,n]
|

)1/β′

≤ ln,
then

|B′
π[0,n+1]| =|B′

π[0,n]| ·
√

β′

2πe
·

(
|Bπ[0,n+β′]|
|B′

π[0,n]|

)1/β′

= |B′
π[0,n]|(β

′−1)/β′
·
√

β′

2πe
|Bπ[0,n+β′]|1/β

′

≤|Bπ[0,n]|(β
′−1)/β′

·
√

β′

2πe
|Bπ[0,n+β′]|1/β

′
= |Bπ[0,n]| ·

√
β′

2πe
·
(
|Bπ[0,n+β′]|
|Bπ[0,n]|

)1/β′

=|Bπ[0,n]| ·
√

β′

2πe
· |Bπ[n,n+β′]|1/β

′
≤ |Bπ[0,n+1]|,

(1)
where β′ = min{βn, d− n}. Thus, B′ ≥Q B.

Item 2. (Proof by induction.) Suppose the Gram-Schmidt norms of C and D
are x = (x0, · · · , xd−1) and y = (y0, · · · , yd−1). |Cπ[0,k+1]| ≥ |Dπ[0,k+1]| yields∏k

i=0 xi ≥
∏k

i=0 yi, for all k ∈ [d]. Suppose the output Gram-Schmidt norms of
lattice basis C and D after a tour of Reduction R-ξ are x′ = (x′

0, · · · , x′
d−1) and

y′ = (y′0, · · · , y′d−1). If k = 0,

|C′
π[0,1]| = x′

0 =

√
β0

2πe

(
β0−1∏
i=0

xi

) 1
β0

≥
√

β0

2πe

(
β0−1∏
i=0

yi

) 1
β0

= y′
0 = |D′

π[0,1]|

Assume |C′
π[0,n]| ≥ |D

′
π[0,n]| holds while k=n. When k=n+ 1, under the SMA,

|C′
π[0,n+1]| =|C′

π[0,n]| · x′
n = |C′

π[0,n]| ·
√

β′

2πe

(
|Cπ[0,n+β′]|
|C′

π[0,n]|

)1/β′

=|C′
π[0,n]|(β

′−1)/β′
√

β′

2πe
|Cπ[0,n+β′]|1/β

′
≥ |D′

π[0,n]|(β
′−1)/β′

√
β′

2πe
|Dπ[0,n+β′]|1/β

′

=|D′
π[0,n]| ·

√
β′

2πe

(
|Dπ[0,n+β′]|
|D′

π[0,n]|

)1/β′

= |D′
π[0,n+1]|,

(2)
where β′ = min{βn, d− n}. Thus, D′ ≥Q C′. ⊓⊔
Then, we formally define the strategy space in two-step mode for solving LWE.

Definition 6 (Strategy Space). Given a lattice basis B of an uSVP instance.
Suppose we have a lattice reduction algorithm R with an adjustable parameter
ξ, an SVP Oracle C, then let S(R, C) be the corresponding Strategy Space, each
two-step strategy (S = [[ξ0, · · · , ξi, · · · ]], dsvp) ∈ S can find the unique shortest
vector of the lattice L(B) by running the following two steps:
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1. Reduction Step: Iteratively call the reduction method R with parameter ξi on
lattice basis B using the reduction strategy S, where each R-ξ can improve
the basis quality. Output a lattice basis B′ after running all the reductions
with parameter ξ ∈ S.

2. Searching Step: Find the unique shortest vector by running a dsvp-dimensional
SVP call on B′

[d−dsvp,d]
to find the projection of target vector and lift it to

the full dimensional lattice.

BKZ is the most common lattice reduction algorithm and PnJBKZ (Sec. 2.4) is
the most efficient lattice reduction algorithm used in practice at current. We can
choose BKZ or PnJBKZ as the reduction algorithm R, and lattice enumeration
or (progressive) lattice sieve as the SVP Oracle used in the searching step.

Progressive Reduction. In 2020, Li and Nguyen [49] presented the first rigor-
ous dynamic analysis of BKZ and in 2024, Wang [50] presented the first dynamic
analysis of PnJBKZ. According to the conclusions of [49–51], the lattice basis
reduced by the lattice reduction algorithms like BKZ [16], Slide reduction [37]
and PnJBKZ [20] with a fixed reduction parameter, will converge to a specific re-
duced lattice basis after a polynomial number of reduction iterations. Therefore,
for a well-reduced lattice basis, using BKZ or PnJBKZ as the lattice reduction
algorithm R, further improving the basis quality by continuing to apply the lat-
tice reduction algorithmR with the same or even weaker reduction parameters is
futile, and we do not consider this a useful strategy. To achieve better reduction
quality, it is necessary to use different reduction parameters that offer a stronger
reduction effect, which is usually called a progressive reduction strategy.

A valid reduction strategy to improve the lattice basis quality is finite, making
strategy space S finite, as shown in Theorem 1 and proven in Appendix C.1.

Theorem 1. If a lattice basis B reduced by repeatedly calling fixed R-ξ converges
to a fully-reduced basis after a finite number of calls, then S is a finite set.

3.2 Strategy Search Algorithm

Before introducing the strategy search algorithm, we should introduce the time
cost model for each strategy in solving LWE, as our goal is to find the strategy
with the smallest time cost. Given a time cost model T = (TR, TC), denote the
time cost of entire reduction step as TRs(S) =

∑
ξ∈S TR(ξ) and the time cost of

search step as TC(dsvp). Then the total time cost of strategy (S, dsvp) for solving
LWE is Ttotal(S, dsvp) = TR(S) + TC(dsvp).

According to Theorem 1, the Strategy Space S for solving an uSVP in-
stance is finite. There exits a strategy (Smin, d

(min)
svp ) s.t. Ttotal(Smin, d

(min)
svp ) =

min{Ttotal(S, dsvp) : (S, dsvp) ∈ S}. Then, we formalize the Q7 in Kyber [8] as a
combinatorial optimization problem:

Definition 7 (The Problem of Searching a Refined Progressive BKZ
Reduction Strategy for Solving LWE). Given an LWE instance (A,b),
transform it into a uSVP instance using a primal attack. Consider an arbitrary
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lattice reduction algorithm R, an SVP call C, and their corresponding time cost
model T . The objective is to identify a refined two-step strategy (S, dsvp) ∈
S(R, C) that minimizes the total time cost for solving the LWE instance.

Let TwoStepSolver (Alg. 1) be a two-step strategy algorithm for solving LWE,
which employs lattice reduction algorithm R and the SVP call C to solve LWE
according to the inputting two-step strategy (S, dsvp). This approach involves
first applying a series of reductions, and at a good timing utilizing the SVP call
to search for the target vector.

In this paper, we propose an algorithm named Strategy Search(SSearch) to
identify a strategy (Smin, d

(min)
svp ) ∈ S that minimizes time cost for solving an

arbitrary LWE instance under the given reduction algorithm R and SVP call C.
However, since the time cost of the reduction algorithm is exponential with

respect to reduction parameter ξ, it is impractical to find the optimized reduction
strategy by actually running all possible strategies. To accurately simulate the re-
duction effort of each strategy, we introduce the concept of the polynomial-time
simulator of R and a dimension estimation method for the SVP calls, denoted
as ReductionSim and SVPDimEst. ReductionSim can be initialized as one of
the simulators: the BKZ simulator [17] or the PnJBKZ simulator proposed in
Sec.5, depending on the reduction algorithm R used, such as BKZ or PnJBKZ.
PnJBKZ simulator in Sec.5 is the first polynomial-time simulator for PnJBKZ.
Given Gram-Schmidt norms rr0 and a reduction strategy S, ReductionSim(rr0, S)
predicts how the Gram-Schmidt norms changes after iteratively calling R-ξ re-
duction for ξ ∈ S with input rr0. If S contains a single reduction strategy ξ, we
can also re-write ReductionSim(rr0, S) as ReductionSim(rr0, ξ).

input : LWE instance (A,b) ∈ Zm×n
q × Zm

q , a lattice reduction algorithm R,
an SVP call C, a two-step strategy (S, dsvp) ∈ S(R, C);

output: The unique shortest vector t;
1 Function TwoStepSolver((A,b), R, C, (S, dsvp)):
2 Construct lattice basis B using primal attack to solve LWE instance

(A,b);
3 B = LLL(B);
4 for ξ ∈ S do
5 B← R(B, ξ);
6 πd−dsvp(t) ← run an SVP call C on Bπ[d−dsvp:d];
7 t ∈ L ← Lift πd−dsvp(t) by Babai’s Nearest Plane Algorithm [12];
8 return t;

Algorithm 1: Two-step Solver

Condition 1 Given a lattice reduction algorithm R and a SVP call C, we have

1. A reduction simulator named ReductionSim can predict the reduction effort
of R accurately in polynomial time cost;

2. A dimension estimation method denoted as SVPDimEst (e.g. Sec. 2.5) can
estimate the dimension for the SVP call C in the search step;

3. The time cost model T for R and C;
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If Condition 1 is satisfied, SSearch can find the minimal time cost strategy (Smin,

d
(min)
svp ) s.t. Ttotal(Smin, d

(min)
svp ) = min{Ttotal(S, dsvp) : (S, dsvp) ∈ S}.

Then, we give a simplified version of SSearch as Alg. 2. It aims to (1) enu-
merate all the possible lattice reduction strategy and estimate the dimension of
the SVP call; (2) Compute the total time cost of each LWE solving strategy and
output the the lowest time cost solving strategy (Smin, d

(min)
svp ).

Since S is finite according to Theorem 1, and the time cost of each strategy
with (S, dsvp) is a determined pair, if we enumerate all the possible reduction
strategy S, we can find a strategy with minimal time cost.

Corollary 1. If Condition 1 is satisfied, Simplified SSearch outputs a strategy
with minimal time cost for solving a given LWE instance.

input : LWE instance (A,b, σ) ∈ Zm×n
q × Zm

q × R+, a simulator
ReductionSim for R, an SVP dimension estimation method
SVPDimEst for C, a time cost model T ;

output: (Smin, d
(min)
svp );

1 Function SimplifiedSSearch((A,b, σ), ReductionSim, SVPDimEst, T ):
2 rr0 ← The Gram-Schmidt norms of a lattice basis B from LWE instance

(A,b) by primal attack;
3 (TR, TC)← T ; dsvp ← SVPDimEst(rr0, σ);
4 Tmin ← TC(dsvp); (Smin, d

(min)
svp )← ([[ ]], dsvp);

5 for each possible non-empty reduction strategy S do
6 rr←ReductionSim(rr0,S); dsvp ← SVPDimEst(rr, σ);
7 Ttotal(S, dsvp)← TRs(S) + TC(dsvp);
8 if Ttotal < Tmin then
9 (Smin, d

(min)
svp )← (S, dsvp); Tmin ← Ttotal;

10 return (Smin, d
(min)
svp );
Algorithm 2: Simplied SSearch

When TwoStepSolver employs the minimal time-cost two-step strategy (Smin,

d
(min)
svp ) determined by an SSearch algorithm, then we name this algorithm MinT-

woStepSolver, we demonstrate its high efficiency in solving LWE in Sec.6.

4 Pruning SSearch

Although the Simplified SSearch algorithm can output the minimal time-cost
strategy, the strategy space is vast, making it challenging to find the mini-
mal time-cost strategy quickly. To solve this problem, we propose the Pruning
SSearch method (PSSearch, Alg. 3) to decrease the complexity of searching en-
tire strategy space by pruning strategies that will not be or develop into the
final solution during the search. In Sec. 4.2, we will give a formal proof for the
correctness of our algorithm.
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4.1 Main Algorithm

In PSSearch, we search for the strategy with the minimal time cost by traversing
the strategy tree in a breadth-first manner. The strategy tree is defined as follows,
Definition 8 (Strategy Tree W). A Strategy Tree W consists of

1. The root node ofW is root = ([[ ]], d
(0)
svp), where d

(0)
svp is calculated by SVPDimEst.

2. The i-th level node is in the form (Si = [[ξ1, ..., ξi]], d
(i)
svp), which consists of a

reduction strategy with length i and d
(i)
svp = SVPDimEst(ReductionSim(rr0, Si), σ).

3. For any i-th level strategy (Si, dsvp), its child node is (Si+1 = Si∪[[ξi+1]], d
(i+1)
svp ),

where ξi+1 is any reduction parameter that can further improve the basis
quality.

At the beginning, we have an empty strategy list BS, denote ♯BS as the size of BS.
Each element in BS is a pair (S, dsvp). Let rr0 be the sequence of Gram-Schmidt
norms of an lattice basisB. We first add a strategy (S0 = [[ ]], d

(0)
svp) with no reduc-

tion, namely the root node of W, denote as root. d(0)svp = SVPDimEst(rr0, σ). We
calculate the time cost of this strategy. Ttotal(S0, d

(0)
svp) = TRs(S0) + TC(d

(0)
svp) =

0 + TC(d
(0)
svp) = TC(d

(0)
svp).

Then, we will repeatedly visit the strategies in BS and determine whether
to add the child strategy node into BS according to a specific pruning rule until
there are no child nodes left for searching. For instance, we will firstly consider
all the possible sub-strategies of length 1, which are the child nodes of root,
specifically ([[ξ]], dsvp) for different ξ. After searching all the child nodes of the
nodes in BS, output the minimal time-cost strategy in BS.

Notably, the strategies in the list BS are organized such that the time cost of
Reduction step TRs(S) increases while the time cost of Searching step TC(dsvp)
decreases. The pruning strategy is not related to the total time cost, as there
may exists a descendant node with smaller total time cost. Instead, we compare
both the time cost and the basis quality after the reduction step between nodes.
If a node has higher time cost and worse basis quality then another, it cannot
be grown into a strategy with lowest total time cost, thus it can be discarded.
In other words, for each new strategy (S′, d′svp) waiting to be added, we will
compare it with each current strategy in (S, dsvp) ∈ BS and apply the following
rules to either save it or delete it.

Rule 1 (Pruning strategies in W) Pruning strategies in W consists of

1. If it exists a (S, dsvp) ∈ BS that has both lower reduction time cost and
better basis quality than which of (S′, d′svp), i.e. TRs(S) < TRs(S

′) and
ReductionSim(rr0, S) ≥Q ReductionSim(rr0, S′), then we will not add (S′, d′svp).

2. Otherwise, we will add (S′, d′svp) and remove all strategies in BS that have
both higher reduction time cost and worse basis quality than (S′, d′svp).
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4.2 Correctness Proof of Pruning SSearch
To ensure that PSSearch (Alg. 3) can still find the strategy with the shortest
time cost in the pruned state, we provide Theorem 2 to prove its correctness.
Before giving the proof of Theorem 2, we will introduce a necessary lemma to
support it. For a given SVPDimEst as description of Sec. 2.5, we can use Property
1 to prove that each lattice basis maintains the property of TC , i.e. Lemma 1.
Theorem 2. Given the strategy space S as Def. 6 and SVPDimEst as described
in Sec. 2.5, if Condition 1 is satisfied, the TC(x) is a monotonically increasing
function regarding x and the Gram-Schmidt norms after a reduction R can be
predicted by Gaussian Heuristic, then the algorithm 3, PSSearch returns the
reduction strategy in S with minimum time cost to solve a given LWE instance.

input : LWE instance (A,b, σ) ∈ Zm×n
q × Zm

q × R+, a simulator
ReductionSim for R, an SVP dimension estimation method for C, a
time cost model T ;

output: (Smin, d
(min)
svp );

1 Function PSSearch((A,b, σ), ReductionSim, SVPDimEst, T ):
2 rr0 ← The Gram-Schmidt norms of a lattice basis B from LWE instance

(A,b) by primal attack;
3 (TR, TC)← T ; k ← 0; dsvp ← SVPDimEst(rr0, σ); BS ← [[([[ ]], dsvp)]];
4 while k < ♯BS do
5 (S, dsvp)← BS[k]; ξ ← the last element of S;
6 for ∀ξ′ s.t. ReductionSim(rr0, S ∪ [[ξ′]]) ≥Q ReductionSim(rr0, S) do
7 S′ ← S ∪ [[ξ′]]; rr′ ← ReductionSim(rr0, S′);
8 d′svp ← SVPDimEst(rr′, σ);
9 if ∃ (S, dsvp) ∈ BS s.t. TRs(S′) ≥ TRs(S) and

ReductionSim(rr0, S′) ≤Q ReductionSim(rr0, S) then
10 continue;
11 else
12 BS← BS ∪ [[(S′, d′svp)]];
13 for ∀(S, dsvp) ∈ BS s.t.TRs(S′) ≤

TRs(S) and ReductionSim(rr0, S′) ≥Q ReductionSim(rr0, S)
do

14 Remove (S, dsvp) from BS;

15 k ← k + 1;

16 Find the strategy (Smin, d
(min)
svp ) ∈ BS s.t.

Ttotal(Smin, d
(min)
svp ) = min

(Smin,d
(min)
svp )∈BS Ttotal(S, dsvp);

17 return (Smin, d
(min)
svp ) ;
Algorithm 3: Pruning SSearch

Lemma 1. Suppose GH and SMA holds. Given an SVPDimEst described as Sec.
2.5 and two arbitrary basis D ̸= C for the same d-dimensional lattice generated
from an LWE instance with standard deviation σ by primal attack. Assume D ≥Q
C. Let C′ (resp. D′) be the Gram-Schmidt norms of lattice basis after calling a
tour of R-ξ on C (resp. D ), then SVPDimEst(rr(C′), σ) ≥ SVPDimEst(rr(D′), σ).
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The proof of Lemma 1 is similar to those in proving Property 1, so we omit
them. For details, see the Appendix C.

Then we can give the proof of Theorem 2 as follows,
Proof. (Proof of Theorem 2.) Let rr0 be the input Gram-Schmidt norms of a
random lattice basis, Suppose that the strategy in S with minimum time cost is
(S = [[ξ0, ..., ξz−1]], dsvp). We write the sub-strategy [[ξ0, ..., ξi]] of S as Si and let
d
(i)
svp := SVPDimEst( ReductionSim(rr0, Si), σ) for 0 ≤ i ≤ z.
TC(d

(i−1)
svp ) > TC(d

(i)
svp) for all i ≤ z. Otherwise, removing ξi from Si can get a

strategy solving an LWE instance in less time.
From the description of PSSearch, either (1) S is inside the final strategy set

BS, or (2) there is a sub-strategy Si of S having been removed from BS ( then
S won’t appear in BS anymore). Since S has a minimum time cost among all
strategies in BS, S must be the final output strategy and meets the first case.
Now we show that the second case cannot occur.

If (Si, d(i)svp) is removed from BS, then there must be another strategy (S′, d′svp)
such that ReductionSim(rr0, S′) ≥Q ReductionSim(rr0, Si), and the reduction
time cost TRs(Si)≥ TRs(S

′). Considering a new strategy S∗ := S′∪[[ξi+1, ..., ξz−1]],
it infers that TRs(S)≥ TRs(S

∗). Let d∗svp=SVPDimEst(ReductionSim(rr0, S∗), , σ),
from Lemma 1 and the increasing property of TC , we can get that TC(dsvp)
≥ TC(d

∗
svp). Since TRs(Si) ≥ TRs(S

∗), it contradicts the expectation that S is
the reduction strategy of minimum time-cost strategy. ⊓⊔

4.3 A Novel Dimension Estimation Method for the SVP Call

We introduce the classical SVPDimEst method in Sec. 2.5. However, estimating
the projected norm of target vector as ∥πd−dsvp

(t)∥=σ
√
dsvp has a failure proba-

bility in solving LWE in last SVP call, as t follows a certain distribution (usually
discrete Gaussian), so there is a possibility that ∥πd−dsvp

(t)∥ > GH(Bπ[d−dsvp]) ≥
σ
√

dsvp. To solve this problem, we propose SVPDimEst (Alg. 5) for estimating
the sieving dimension to solve general LWE with arbitrary target vector distri-
butions. It aims to predict the dimension of last SVP call more accurately and
improve the solving success probability. Its detailed description is in Appendix
B and it remains the same property stated in Lemma 1 as Lemma 2.
5 The Design of PnJBKZ Simulator

Before we use PSSearch to actually solve an LWE instance, we should first
instantialize it with a practical lattice reduction algorithm. PnJBKZ [20] is the
most efficient lattice reduction algorithm in practice. However, before we can
generate reduction strategies for PnJBKZ using PSSearch, we must first give an
accurate simulator for PnJBKZ, especially when jump > 1.

The rigorous dynamic analysis proposed in [49, 50] analyzes the reduction
effect, which converges only after running numerous tours of a fixed block-
size BKZ-β or PnJBKZ-(β, J) reduction. However, in practice, we require a
polynomial-time PnJBKZ-(β, J) simulator to predict the practical reduction ef-
fects of PnJBKZ-(β, J) with a more flexible number of tours. This is because the

18



number of tours in a fixed blocksize BKZ-β reduction is often relatively small
during most progressive reduction processes [17,19,20,37].

Meanwhile, the classical BKZ simulator cannot be used to predict PnJBKZ
when jump>1 is employed. Fig. 4 shows that a PnJBKZ reduction strategy
with jump>1 can significantly improve the reduction efficiency. Specifically, the
jump=9 progressive reduction strategy is four times faster than the jump=1
strategy in achieving a same slope of −0.019. To generate optimized strategies
for PnJBKZ, choosing the appropriate PnJBKZ reduction parameters (β, J) is
crucial. Therefore, developing a polynomial-time accurate PnJBKZ simulator
that can reliably predict the reduction effort of PnJBKZ is necessary.

Fig. 4: Efficiency Speedup in Reduction Step by Jump strategy.Test on a 252-dimensional
lattice basis. The walltime and slope are averaged over 5 instances for each test. Each instance ran
on machine C with 2 GPUs, and 32 threads. The points are labeled by β.

5.1 The PnJBKZ Simulator Construction.

Before presenting the detailed construction of the PnJBKZ simulator, we first
briefly review the main idea of the BKZ 2.0 simulator proposed in [17], which
uses the Gaussian heuristic to predict BKZ-β.

Let l
′

i = ln(∥b∗′

i ∥) and l
′′

i = ln(∥b∗′′

i ∥) denote the Gram-Schmidt vectors
reduced by one tour of BKZ-β and PnJBKZ(β, J), respectively, for i ∈ [d].
Denote the BKZ simulator proposed in [17] as BKZSim. Our PnJBKZ simulator
will be referred to as PnJBKZSim, which simulates the change in lattice basis
B after calling a PnJBKZ algorithm to reduction.

Let L(B(i)) represent the lattice basis after the first i blocks’ reduction and
let L(B(0)) denote the initial lattice basis. For ∀i ∈ [d], define li = ln ∥b∗

i ∥ and
l
′

i be the logarithm of ∥b∗
i ∥ after one tour of reduction using BKZ-β. The BKZ

simulator proposed in [17] first will calculate Sim(l
′

0) = ln
(
GH(L(B(0)

π[0,β])
)
≈

1
2 ln (β/2πe) + 1

β ln
(
Vol(L(B(0)

π[0,β]))
)
under GH. It then calculates Sim(l

′

1) :=

ln
(
GH(L(B(1)

π[1,β+1]))
)
≈ 1

2
ln (β/2πe) +

1

β

(
ln Vol(L(B(0)

π[0,β+1]))− Sim(l
′

0)
)
,
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using GH and the information of Sim(l
′

0). Since the insertion of new b0 alters the
lengths of the Gram-Schmidt (GS) vectors, i.e. for ∀i ∈ {1, ..., d− 1}, li changes
to some unknown values. In particular, Vol(L(B(1)

π[0,β]))=Vol(L(B(0)

π[0,β])), but l0

changes to l
′

0 after the insert of new b0. So when Vol(L(B(0)

π[1,β+1])) =
∏β

i=1∥b
∗
i ∥,

after the insert of new b0 it will change to Vol(L(B(1)

π[1,β+1])) =
(∏β

i=0∥b
∗
i ∥
) /
∥b∗′

0 ∥.
Here Sim(l

′

0) is a simulated approximate value of l′0 by GH. Iteratively calculating
all remaining unknown Sim(l

′
i) by Sim(l

′
i) = ln

(
GH(L(B(i)

π[i,i+β]))
)
≈ 1

2
ln (β/2πe)+

1
β

(
ln Vol(L(B(0)

π[0,i+β]))−
∑i−1

j=0 Sim(l
′
j)
)
, for ∀i ∈ [d−β]. For ∀i ∈ {d−β, ..., d−1},

Sim(l
′

i), it gradually decrease the blocksize to 2. Then such a simulator can
predict the value of each l

′

i in B∗′ which is reduced by one tour of BKZ-β.
However, the BKZ 2.0 simulator [17] and its variants cannot be used directly

to simulate the behavior of PnJBKZ if jump>1. Set jump=J . Let L(B(i)) repre-
sent the lattice basis after the first i-th vector was inserted in i-th position of GS
vectors and L(B(0)) be the initial lattice basis. We observe that when J>1, each
time a new vector b∗

i is inserted into the first position of the block B
(i)
π[i,k], the

norms of the J−1 GS vectors b∗
i+1, ...,b

∗
i+J−1 will change and remain unknown.

These unknown norms prevent the BKZ 2.0 simulator from accurately predict-
ing the norm of the first GS vector in the next block. This ultimately results in
the norms of subsequent vectors being impossible to predict through iterative
calculations. Our approach leverages the properties of HKZ-reduced lattice bases
to estimate these unknown norms between adjacent blocks when J>1.

To solve this problem, we first present an ideal version the Pump algorithm—
—denoted Pump′, which satisfies the property that a projected sublattice ba-
sis Bπ[i,i+β] after the reduction of Pump′(Bπ[i,i+β], i, β, f) strictly satisfies the
property of an HKZ-reduced basis, for all i ∈ [d− β], dimension of entire lattice
basis B is d. Then we can construct a PnJBKZ simulator for PnJBKZ which
uses Pump′. Let l′′i represent the logarithm of each Gram-Schmidt norm after
the reduction of one tour of PnJBKZ(β, J). Under GH, we can simulate each
l′′i and the simulation values denoted as Sim(l′′i ) = ln

(
GH

(
L(B(i)

π[i,k])
))

. Here
i ∈ [d− β] and k = min{i− (i mod J) + β, d}.

The key is how to calculate the volume of L(B(i)
π[i,k]). Similar to BKZ, during

the PnJBKZ reduction process only the lattice basis matrix of the projected
sub-lattice has undergone a unimodular transformation, and the volume of the
projection sub-lattice has not changed. Specifically, the volume of L(B(i)

π[0,k])

equals that of L(B(0)
π[0,k]). Suppose we already know Sim(l′′j ), for ∀j ∈ [i]; then

we calculate ln
(
L(B(i)

π[i,k])
)
:= ln

(
Vol

(
L(B(0)

π[0,k])
))
− ln

(
Vol

(
L(B(i)

π[0,i])
))

=∑k−1
j=0 lj −

∑i−1
j=0 Sim(l′′j ). Here i ∈ [d], k = min{i − (i mod J) + β, d}. Under

Gaussian Heuristic, for i ∈ [d], we can iteratively calculate Sim(l′′i ) :=

1

2
ln

(
k − i

2πe

)
+

1

k − i

(
k−1∑
j=0

lj −
i−1∑
j=0

Sim(l′′j )

)
, k =

{
i − (i mod J) + β, i ∈ [d − β]

d, i ∈ [d] \ [d − β]
(3)
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In other words, we only need to input the initial Gram-Schmidt norms li =
ln (∥b∗

i ∥), where i ∈ [d] of the lattice basis. Without performing the PnJBKZ
reduction, we can simulate l′′i using Eq. (3), which describes the change in lattice
basis after each tour of the PnJBKZ(β, J) reduction. Here l′′i are these actual
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GS vector norms of lattice base after reducing by one tour of PnJBKZ(β, J).
We provide a detailed description of the PnJBKZ simulator as Alg. 45.

input : rr, blocksize β ∈ {45, · · · , d}, jump J and number of tours t.
output: A prediction for the logarithms of the Gram-Schmidt norms

l′′i = ln (∥b′′∗
i ∥) after t tours PnJBKZ-β reduction with jump is J .

1 Function PnJBKZSim(rr, β, J , t):
2 for i← 0 to 44 do
3 ri ← average ln (∥b∗

i ∥) of a HKZ reduced random unit-volume
45-dimensional lattice;

4 for i← 45 to β do
5 ci ← ln

(
Vi (1)

−1/i
)
= ln

(
Γ (i/2+1)1/i

π1/2

)
;

6 for j ← 0 to t− 1 do
7 flag ← true; //flag to store whether L[k,d] has changed
8 for k ← 0 to d− β − 1 do
9 β′ ← min (β, d− k); //Dimension of local block

10 h← min (k − (k mod J) + β − 1, d− 1);
11 ln (V)←

∑h
i=0 li −

∑k−1
i=0 l′′i ; //Let

∑−1
i=0 l

′′
i = 0

12 if flag = True then
13 if ln (V) / (β′ − (k mod J)) + cβ′−(k mod J) < lk then
14 l′′k ← ln (V) / (β′ − (k mod J)) + cβ′−(k mod J);
15 flag← False;
16 else
17 l′′k ← ln (V) / (β′ − (k mod J)) + cβ′−(k mod J);

18 for k ← d− β to d− 46 do
19 β′ ← d− k; h← d− 1; ln (V)←

∑h
i=0 li −

∑k−1
i=0 l′′i ;

20 if flag = True then
21 if ln (V) /β′ + cβ′ < lk then
22 l′′k ← ln (V) /β′ + cβ′ ; flag← false;
23 else
24 l′′k ← ln (V) /β′ + cβ′ ;

25 ln (V)←
∑h

i=0 li −
∑k−1

i=0 l′′i ;
26 for k ← d− 45 to d− 1 do
27 l′′k ←

ln(V)
45

+ rk+45−d;
28 for k ← 0 to d− 1 do
29 lk ← l′′k ;

30 return (l0, · · · , ld−1);
Algorithm 4: PnJBKZ Simulator

5 Besides, we need to remind that in simulating the norm of GS vectors, when i ≡ 1(mod J), the in-
dex i of GH

(
L
(
B

(i)

π[i,i+β−(i modJ)]

))
in our simulator is the same as that of GH

(
L
(
B

(i)

π[i,i+β]

))
in the BKZ-2.0 simulator, the calculation form looks same in two simulators. However,
the simulated volumes of projected sublattice are different in the two simulators. Because
in BKZ 2.0 simulator [17] Vol(L′

(
B

(i)

π[i,i+β]

)
)=

∏i+β−1
j=0 ∥b∗

j ∥
/∏i−1

j=0∥b
∗′
j ∥ and it calculates

∥b∗′
j ∥ by ∥b∗′

j ∥:=GH
(
L′

(
B

(i)

π[j,j+β]

))
, while in PnJBKZ simulator Vol(L′′

(
B

(i)

π[i,i+β]

)
)=∏i+β−1

j=0 ∥b∗
j ∥

/∏i−1
j=0∥b

∗′′
j ∥ and ∥b∗′′

j ∥ obtained from Eq. (3). So when i ≡ 1(mod J) the cal-
culation of GH

(
L
(
B

(i)

π[i,i+β]

))
is different in different simulators.
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5.2 Upper bound of Jump in PnJBKZ simulator

In this section, we show that it is reasonable for us to use Pump′ to simulate the
actual Pump if the Jump value in PnJBKZ is below a specific upper bound.

At first, for predicting the reduction effort of PnJBKZ which uses Pump′ as
its SVP Oracle, we set the upper bound of jump value J to be β. More specifically,
the lattice basis B[i,i+β] reduced by a β-dimensional Pump′ is a HKZ reduced
lattice basis, i.e. ∥b∗

i ∥ = λ1

(
Lπ[i,k]

)
, i < d, k = min{i + β − (i mod J), d}.

When J ≤ β, PnJBKZ simulator use Sim(l′′i ) = ln
(
GH

(
L(B(i)

π[i,k])
))

to predict
λ1

(
Lπ[i,k]

)
and GH ensures PnJBKZ simulator is accurate.

On the other hand, for J > β, there will always be J − β > 0 vectors at the
beginning of each block whose norms remain unknown, making PnJBKZ simula-
tor unusable in such circumstances. Furthermore, the verification experimental
results presented in Appendix D.1 demonstrate the accuracy of the PnJBKZ
simulator for predicting the reduction effect of the PnJBKZ, which uses the
ideal version of Pump′. The verification of this ideal situation tests that the
basic theory behind our construction of the PnJBKZ simulator is correct.

However, in practice, the D4f technique [26] typically used to accelerate siev-
ing in each Pump used in PnJBKZ. A Pump will only perform (β − d4f(β))-
dimensional progressive sieving during the Pump-up stage, and can thus perform
at most (β − d4f(β)) embeddings during the Pump-down stage. Consequently,
the output basis of each β-dimensional Pump will inevitably include d4f(β)-
dimensional GS vectors that do not meet the HKZ-reduced basis properties.
Thus the upper bound of Jump value should be smaller than β − d4f(β).

Finally when predicting the reduction effort of PnJBKZ used in practice,
which uses Heuristic optimistic d4f value d4fop(β) in each Pump, we set the up-
per bound of jump J to be d4fslope(s) = ln(4/3)/(−s). Since in Appendix D.2,
we will demonstrate that the actual d4f is relate to the current basis quality,
rather than relying on a fixed Heuristic optimistic d4f value used in the imple-
mentation of G6K. More discussions and numerous experiments to verify the
accuracy of PnJBKZ simulator in predicting PnJBKZ uses optimistic d4f can
be found in Appendix D.2, D.3 and D.4.

6 Experiments and Application to LWE

Since PnJBKZ (resp. Pump) is recognized as the most efficient lattice reduction
algorithm (resp. SVP call) currently available, we utilize PnJBKZ (resp. Pump)
for TwoStepSolver. This section is dedicated to demonstrating the efficiency of
the MinTwoStepSolver in solving LWE instances in practice. We also show its
efficiency in solving SVP in Appendix F. Here

MinTwoStepSolver = TwoStepSolver + PSSearch + T

is an algorithm that utilizes TwoStepSolver in conjunction with a strategy gen-
erated by PSSearch, all under a specific time cost model T , to effectively solve
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LWE instances. Sec. 6.1 presents verification experiments for the PnJBKZ sim-
ulator, which serves as a fundamental component of PSSearch. In Sec. 6.2, we
apply the MinTwoStepSolver to solve LWE instances and compare it with G6K-
GPU-Tensor. Sec. 6.3 introduces the optimized solving strategies generated by
PSSearch which are utilized in Sec. 6.2 for solving the TU Darmstadt LWE
Challenges. Additionally, we provide a simulation accuracy test in Sec. 6.4. Fur-
thermore, Sec. 6.5 highlights new records achieved in solving the TU Darmstadt
LWE Challenges. Finally, Sec. 6.6 offers a refined security estimation of LWE in
NIST schemes based on PSSearch.

6.1 Verification experiments of PnJBKZ Simulator

Reduction Prediction for Practical PnJBKZ. To ensure that the PnJBKZ
simulator can accurately predict the reduction effort of the PnJBKZ when using
the optimistic d4f values, we employ a more refined d4f value estimation proposed
in [44] to adjust the optimistic d4f settings during the simulation of PnJBKZ
reduction. For more details, see Appendix D.2.

The experimental results in Appendix D.3 show that, for various reduction
parameters such as blocksize, jump, and tours, most ratios li

′′/Sim(li
′′) fall

within the range [0.95, 1.05]. Ratios outside this range are still within [0.90,
1.10]. See Fig. 10,11. In comparison, when CN11 simulator simulating classic
BKZ, most ratios also fall within [0.95, 1.05], though some ratios at the ex-
tremes exceed this range, with the largest ratio reaching 1.15 and the smallest
falling below 0.85. This indicates that the prediction accuracy of our PnJBKZ
simulator for PnJBKZ reductions using d4f technology is at least as good as
that of the classic BKZ simulator [17] for predicting BKZ reductions. For more
details on predicting PnJBKZ with d4f technology, see Appendix D.2 and D.3.

More importantly, the main purpose of constructing the polynomial-time
PnJBKZ simulator is to find a more efficient reduction strategy for solving LWE
in practice. The key feature is that, given a reduction strategy that uses Jump,
the PnJBKZ simulator can accurately predict the basis quality during reduction.
Our experiments, detailed in Table 3 and Appendix K, demonstrate that for the
LWE challenge lattice basis with various reduction parameters (e.g. different
blocksizes and jump sizes), the predicted slope values from PnJBKZ simulator
closely match those obtained from actual reductions. Therefore, the PnJBKZ
simulator we have constructed is sufficiently effective for its intended purpose.
More results of verification experiments with different reduction parameters on
various lattice bases can be found in Appendix D.3 and D.4 and link 3.

6.2 Efficiency of MinTwoStepSolver for solving LWE

From the result of Fig. 5 and Table 4, we can see that using the strategy selected
by PSSearch (BSSA) significantly decreased the walltime cost by about 7.2∼23.4
3 https://github.com/Summwer/pro-pnj-bkz/tree/merge-enumbs-and-practical-

cost-model/simulator-test
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(5.2∼10.2) times compared to that of the default LWE solving strategy in G6K
when all LWE solvers use the same float type “dd” to calculate. One can refer to
the log files of Fig. 5 in the folders lwechal-test and lwe-instance-test. It
can also be reproduced by running the test code implement_lwechal_forall.sh
and implement_lwe_instance_forall.sh in source code2. Besides Fig. 6 indi-
cates that in the reduction step, to achieve the same or better lattice basis
quality, the optimized reduction strategy found by using the PSSearch can be 4
to 36.7 times faster than the trivial progressive reduction strategy.

(a) LWE Challenges: Time. (b) LWE Challenges: Memory.

(c) LWE (α = 0.010): Time. (d) LWE (α = 0.010): Memory.

§ The experiment used “dd” float type and pump/down=True, under identical benchmark (machine
C). “default G6K” refers to lwe_challenge.py implemented in g6k. TwoStepSolver + PSSearch(·)
(resp. TwoStepSolver + BSSA(·)) represents the cost of running TwoStepSolver with strategies
from PSSearch (resp. BSSA). Jmax denotes the maximum jump value in the strategy. “Set J=1
in S” means generating a strategy S and setting the jump=1.

Fig. 5: Comparison of Different LWE-solving Algorithms under same benchmark. §
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Fig. 6: Speedup in Reduction Step.Test on LWE challenge (n=60,α = 0.010) 222-dimensional
lattice basis. The points are labeled by (β,J,tours).

All experimental results, except those in Table 4, were obtained using 32
threads and 2 GPUs on a workstation with an Intel Xeon 5128 (16 cores, 32
threads)@2.3 GHz, 1.48 TB of RAM, and two NVIDIA RTX 3090 GPUs, re-
ferred to as machine C. More details about LWE solving efficiency comparison
experiments, see Appendix E.1 and Appendix H for more details about BSSA.

6.3 Optimized strategy generated by MinTwoStepSolver

Table 2: Blocksize and Jump strategy generated by PSSearch (threads = 10).

(n, α) Strategy (β, jump) SSearchGen/s
(40,0.025) [(77, 8), (81, 10), (102, 11), (102, 11)] 17.544
(40,0.030) [(56, 8), (80, 10), (81, 10), (102, 11), (114, 11), (119, 11)] 72.042
(45,0.020) [(70, 8), (80, 10), (102, 11), (102, 11) (103, 11)] 32.604
(50,0.015) [(56, 8), (66, 9), (80, 10), (81, 10), (102, 11), (102, 11)] 52.558

We use PSSearch (Alg. 3) with the practical cost model mentioned in Ap-
pendix G and tested on machine C to select the blocksize and jump strategy
for solving some instances of TU Darmstadt LWE Challenges, we list the se-
lected strategies in Table 2. Besides, Table 2 shows that the time cost of gen-
erating the reduction strategy by PSSearch is acceptable. Also, we upload the
open source code for blocksize and jump strategy generation on any LWE in-
stances in folder “strategy_gen” from source code2. We solved the TU Darm-
stadt LWE Challenge instances with (n, α) ∈ {(40, 0.035), (40, 0.040), (50, 0.025),
(55, 0.020), (90, 0.005)} successfully by the selected strategies in Appendix J.

6.4 Simulated Accuracy of MinTwoStepSolver for LWE

To show the accuracy of reduction estimation and time cost model, we compare
the predicted quality of lattice basis and walltime with that of actual experiments
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in each middle node in the reduction step. Table 3 and Appendix K illustrate
that both the quality of the actual lattice basis and the actual walltime of each
tour of PnJBKZ(β, J) are close to our prediction.5

(β, J)
Simulation Practical

Slope log2(T) Slope log2(T)
(56, 8) −0.0285 6.0 −0.0277 6.2
(80, 10) −0.0250 6.3 −0.0245 6.5
(81, 10) −0.0232 6.3 −0.0231 6.6
(102, 11) −0.0210 7.5 −0.0212 7.8
(114, 11) −0.0196 9.1 −0.0198 9.2
(119, 11) −0.0190 10.0 −0.0191 10.1

Table 3: Quality and log2(T) during re-
duction of LWE (n, α) = (40, 0.030).

(n,α) Machine CPU
threads

T
(h)

RAM
(GB)

(80,0.005) C 32 2.78 7.3
(40,0.035) C 32 50.4 326
(40,0.035)a C 32 1180 283
(50,0.025) A 128 592 184
(55,0.020) A 128 611 890
(90,0.005) B 64 370 332
(40,0.040) A 128 683 1120

Table 4: Actual running time, RAM cost.

a Use G6K-GPU [28].

6.5 New LWE Records

Based MinTwoStepSolver, we have solved six LWE instances in TU Darmstadt
LWE Challenge website1. See Fig. 2 and Appendix E.2 for more details.
6.6 Security Estimation for NIST schemes

We re-estimate the hardness of LWE-based NIST schemes [52] to estimate the
influence of optimized solving strategy found by PSSearch. Under the RAM
model, the estimated security bit of LWE in NIST schemes [52] is reduced by
3.4∼4.6 bit compared to the estimation generated by Leaky-LWE-Estimator6 in
[53] under gate-count model which adopts the improved list-decoding technique
proposed in [38]. See Table 5. Our new concrete hardness estimation of LWE7

answers Q7 in Section 5.3 of Kyber [8] and narrows the security estimation error
interval. For more details, please refer to Appendix E.3 and [29].

6.7 The Acceleration Effect of the Optimized Strategy

In practice, leveraging the advantages of multi-threading, c of the practical sieve
time cost model with β ≤ 124 is lower than the theoretical value. Since r =

TPnJBKZ(β,1)
TPnJBKZ(β+∆β,J) = J

1− ∆β
d−β ·2c·∆β

> 1 will become larger if c becomes smaller,
the strategy generated from PSSearch accelerates the efficiency in solving LWE
Challenge significantly. See Figs. 5, 6 and Table 4. In Fig. 7, (1) The black and
blue lines show when the LWE hardness parameters (dimension n, error rate α)
become sufficiently large, the acceleration effect of multi-threading will gradually
5 The data in Table 3 is extracted from a test in Fig. 5 for comparing the quality and walltime

between our simulations and actual experiments. For more results please see Appendix K.
6 https://github.com/lducas/leaky-LWE-Estimator
7 https://github.com/Summwer/lwe-estimator-with-PnJBKZ.git
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diminish; (2) The blue lines also indicates that as α increases, the LWE instance
approaches an SVP instance, the acceleration effect of the optimized solving
strategy decreases, since most of the time cost is concentrated in sieving of Search
Step. Thus, the acceleration effect of the optimized strategy in practice looks
weaker while the LWE parameters increase. However, even if the advantages of
multi-threading disappear, the optimized strategy still provides acceleration in
solving LWE. In an asymptotic sense (theoretical time cost model), there is still
an improvement of 3.4 to 4.6 bits for the NIST standard schemes and there are
three groups of security parameters (highlighted in Table 5) do not meet the
design standards set by NIST. Compared to the trivial two-step solving strategy
proposed [29], the security levels decreased by 1.1 to 1.3 bits. See Table 5.

Table 5: Refined Security Estimation results for NIST schemes.♮

log2 G/log2(gates) log2 B/log2(bit)
∆ log2 G

NIST Required [54] Previous Two-step Previous Two-step
S0 Sop S0 Sop S0 Sop

Kyber512 143 146 142.6 141.4 94.0 99.1 98.1 3.4 4.6
Kyber768 207 208.9 205.5 204.3 138.7 144.0 143.2 3.4 4.6
Kyber1024 272 281.1 277.7 276.5 189.8 195.4 194.3 3.3 4.4

Dilithium-II 146 152.9 150.8 149.5 98.0 104.3 103.3 2.1 3.4
Dilithium-III 207 210.2 207.9 206.7 138.8 145.3 144.3 2.3 3.5
Dilithium-V 272 279.2 277.0 275.7 187.52 194.1 193.0 2.2 3.5

♮ “Previous” is the security estimation in the statement of Kyber and Dilithium. “S0 = {(βi =

i+ 2, Ji = 1) | i = 1, ..., β}” is a trivial progressive BKZ+Pump in Two-step mode to estimate
security as [29] stated. “Sop” is a progressive PnJBKZ+Pump with the optimized strategy
selected by PSSearch in Two-step mode to estimate security. ∆ log2 G is the difference between
“Previous” and “Two-step” under the RAM model in strategy S0 and Sop in the logarithm of
gate count with base 2. The gate count of all estimations in this Table uses the same improved
list-decoding technique proposed by MATZOV [38].

Fig. 7: Acceleration effect of the optimized strategy.LWE challenge lattice basis (n,α).
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A Basic Definitions

Definition 9 (The Gaussian Distribution [55]). Let σ, µ ∈ R be the stan-
dard deviation and the mean value respectively, a continuous Gaussian Distribu-
tion denoted as N(µ, σ2). Its probabilistic density function ρN(µ,σ2) = e−

(x−u)2

2σ2
/
σ
√
2π.

Definition 10 (The discrete Gaussian Distribution [56]). Let σ, µ ∈ R
be the standard deviation and the mean value respectively, a discrete Gaussian
Distribution denoted as Dµ,σ. If µ = 0, then denote Dσ = D0,σ. Its proba-
bility mass function is fD(µ,σ) : Z → [0, 1], x → fN(µ,σ)(x)/fN(µ,σ2(Z), where
fN(µ,σ)(Z) =

∑
x∈Z fN(µ,σ)(x).

Definition 11 (Chi-Squared Distribution [55]). Given n random variables
Xi ∼ N(0, 1), the random variables X2

0 + · · ·+X2
n−1 follows a chi-squared distri-

bution χ2
n over R∗ of mean n and variance 2n with probabilistic density function

ρχ2
n
(x) = x

n
2 −1e−

x
2 /2

n
2 Γ (n/2). Given n random variables Yi ∼ N(0, σ2), the

random variables Y 2
0 + · · ·+Y 2

n−1 follows a scaled chi-squared distribution σ2 ·χ2
n

over R∗ of mean nσ2 and variance 2nσ2.

A.1 Lattice Hard Problems

Definition 12 (unique Shortest Vector Problem(uSVPγ) [57]). Given an
arbitrary basis B on lattice L = L(B), L satisfies the condition γλ1(B) < λ2(B)
(γ > 1, λ2(B) is norm of the second shortest vector which is linearly independent
to the shortest vector), find the shortest non-zero vector v s.t. ∥v∥ = λ1(B).

Definition 13. (LWEm,n,q,Dσ
Distribution [58–60]) Given some samples m ∈

Z, a secret vector dimension n ∈ Z, a modulo q ∈ Z , a probability distribution
Dσ. Uniformly sample a matrix A ∈ Zm×n

q and sample a secret vector s ∈ Zn
q

from a specific distribution, randomly sample a relatively small noise vector
e ∈ Zm

q from Gaussian distribution Dσ whose standard deviation is σ. The
Learning with Errors (LWE) distribution Ψ is constructed by the pair (A,b =
As+ e) ∈ (Zm×n

q ,Zm
q ) sampled as above.

Definition 14 (Search LWEm,n,q,Dσ
problem [58–60]). Given a pair (A,b)

sampled from LWEm,n,q,Dσ distribution Ψ compute the pair (s, e).

B Detailed Description of our Novel SVPDimEst

The noise vector e ∈ Zm
q of LWE follow a discrete Gaussian distribution D0,σ

with standard deviation σ. Then, the probability distribution of squared norm
of target vector in β-dimensional sub-lattice can be described as σ2 · χ2

β .
The idea, which considers the norm of the projected target vector on the

sub-lattice as a random variable rather than an expected value, was first pro-
posed in [53] for estimating the blocksize of each BKZ. We modify it to SVP
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call dimension by replacing the simulating Gram-Schmidt norms of BKZ with
Gaussian Heuristic value of the projected sub-lattice.

input : rr, σ;
output: dsvp;

1 Function SVPDimEst(rr,σ):
2 for dsvp ← dstart to d do
3 Psuc(dsvp) ← Pr

[
x← σ2 · χ2

dsvp : x ≤
(
GH(rr[d−dsvp:d])

)2];
4 if Psuc(dsvp) ≥ 0.999 then
5 return dsvp;

Algorithm 5: Dimension Estimation for the SVP call on solving LWE.
In Alg. 5, set TC(dsvp) as the estimated expected cost of the final SVP call.

Considering the progressive SVP call, we calculate failure and success probabil-
ities. The success probability of a β-dimensional progressive SVP call denoted
as Psuc(β) computed by line 3 in Alg. 5. The event Eβ means finding the tar-
get vector precisely at β-dimensional during a progressive SVP call with success
probability Pr(Eβ)=Psuc(β) − Psuc(β − 1) and let Pr(Eβ0−1)=0. The expected
time cost of Eβ is

∑β
i=β0

TSVP(i) · Pr(Eβ). Iterating β from β0 to dsvp, then

TC(dsvp) =

dsvp∑
β=β0

[

β∑
i=β0

TSVP(i) · (Psuc(β)− Psuc(β − 1))] =

dsvp∑
β=β0

TSVP(β) · Psuc(β),

(4)
where Psuc(dsvp) ≥0.999.

Fig. 8 shows that even if σ
√
dsvp ≤ GH(Bπ[d−dsvp]), ∥πd−dsvp

(t)∥ is pos-
sibly larger than GH(Bπ[d−dsvp]), i.e. estimating the upper bound of Pump
by the expected value is over-optimistic. The red line shows that the norm
of projected vector of our estimated dimension value satisfies the condition
∥πd−dsvp (t)∥ ≤ GH(Bπ[d−dsvp]) by testing 100 trials of LWE instances. Because
∥e∥2 is a randomly positive variable following chi-squared distribution rather
than a fixed value. It is more reasonable to consider a high success probability
(≥0.999) for recovering the target vector with a new estimated dimension in Alg.
5 to solve LWE problem.

Lemma 2 illustrates that considering the chi-squared distribution to estimate
the dimension of SVP (SVPDimEst) needed for recovering the target vector of
LWE, a better lattice basis quality allows for recovering the target vector of
LWE by solving a smaller dimension for the SVP call.

Lemma 2. Suppose GH and SMA holds. Given an SVPDimEst described as Alg.
5 and two arbitrary basis C ̸= D for the same d-dimensional lattice generated
from an LWE instance with standard deviation σ by primal attack. Assume
D ≥Q C and TSVP(dsvp) is a monotonically increasing function regarding dsvp.
Let C′ (resp. D′) be the lattice basis after calling a tour of R-ξ on C (resp. D
), then TC(SVPDimEst(rr(C′), σ)) ≥ TC(SVPDimEst(rr(D′), σ)).
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(a) α = 0.010 (b) α = 0.015

Fig. 8: The failure probability of the estimated dimension for last SVP call. For each
(n, α), 100 randomly LWE instances are generated. The black line shows SVPDimEst introduced in
Sec. 2.5 has a non-negligible probability s.t. ∥πd−dsvp (t)∥>GH(Bπ[d−dsvp,d]) ≥ σ

√
dsvp. The red

line shows that using the estimated dimension computed by Alg. 5 in our work, the condition
∥πd−dsvp (t)∥ ≤ GH(Bπ[d−dsvp,d]) can always be satisfied.

Proof. From Property 1 and the condition |Cπ[0,k]| ≥ |Dπ[0,k]|, it infers that
|C′

π[0,k]| ≥ |D
′
π[0,k]|, ∀k ∈ [1, d]. Since |C| = |D|, it yields that GH(C′

π[k,d]) ≤
GH(D′

π[k,d]), ∀k ∈ [d].
Considering that the norm of the LWE target vector projection follows a β-

dimensional chi-squared distribution with deviation σ as Alg. 5 shown and from
the definition of chi-squared distribution, P (Y ) := Pr

[
x← σ2 · χ2

dsvp
: x ≤ Y

]
is

an increasing function relying on Y . So it infers that ∀β ∈ [1, d], P
(
GH

(
C′

[d−β,d]

)2
)

≤ P

(
GH

(
D′

[d−β,d]

)2
)

and there is a minimum dsvp s.t. P

(
GH

(
C′

[d−dsvp,d]

)2
)

≤

0.999 ≤ P

(
GH

(
D′

[d−dsvp,d]

)2
)

. Since TSVP(dsvp) is monotonically increasing regard-
ing dsvp and from Eq. (4), TC(SVPDimEst (rr(C), σ)) ≥ TC(SVPDimEst (rr(D), σ)).

⊓⊔

We can still prove the correctness of PPSearch by an adaptive Theorem 2
(denoted as Theorem 3) by replacing the SVPDimEst method in Sec. 2.5 with
Alg. 5 and prove the Theorem 3 by replacing the Lemma 1 with Lemma 2.

Theorem 3. Given the strategy space S as Def. 6 defined and SVPDimEst as
Alg. 5, if Condition 1 is satisfied and TSVP(dsvp) is a monotonically increasing
function regarding dsvp, then Alg. 3, PSSearch returns the reduction strategy in
S with minimum time cost to solve LWE instance.
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C Proofs of Theorems and Lemmas

C.1 Finite Strategy Space

Theorem 1. If a lattice basis B reduced by repeatedly calling R with a fixed
parameter ξ converges to a fully-reduced basis after a finite number of calls, then
S is a finite set.

Proof. Repeatedly calling the same reduction R with parameter ξ on a lattice
basis B yields a converge after a finite number of calls. We call such converged
lattice basis ξ-reduced basis. If the ξ-reduced basis can output the target vector
v, then dsvp = 0; Otherwise, it exists a minimum value dsvp with dsvp ∈ [1, d+1]
such that the target vector v can be found under the ξ-reduced basis. Because
if dsvp = d, then v must be found through a d-dimensional SVP call. Since the
selection range of each ξ is finite, then each S is finite. Thus, S is finite. ⊓⊔

C.2 Order Preservation for SVPDimEst

Lemma 1. Suppose Gaussian Heuristic and Sandpile Model Assumption holds.
Given an SVPDimEst described as Sec. 2.5 and two arbitrary basis D ̸= C for
the same d-dimensional lattice generated from an LWE instance with standard
deviation σ by primal attack. Assume D ≥Q C. Let C′ (resp. D′) be the Gram-
Schmidt norms of lattice basis after calling a tour of R-ξ on C (resp. D ), then
SVPDimEst(rr(C′), σ) ≥ SVPDimEst(rr(D′), σ).

Proof. From Property 1 and the condition D ≥Q C, it infers that D′ ≥Q C′.
Since |C| = |D|, it yields that GH(C′

π[k,d]) ≤ GH(D′
π[k,d]), ∀k ∈ [d]. From

the description of SVPDimEst in Sec. 2.5, dsvp := SVPDimEst(D) is the mini-
mal value s.t. σ

√
dsvp ≤ GH(Dπ[d−dsvp,d]) . Then there are only the following

two case occurring, (1) GH(C′
π[d−dsvp,d]

) < σ
√

dsvp ≤ GH(D′
π[d−dsvp,d]

), we have
SVPDimEst(rr(C′), σ) > SVPDimEst(rr(D′), σ); (2) σ

√
dsvp ≤ GH(C′

π[d−dsvp,d]
) ≤

GH(D′
π[d−dsvp,d]

), we have SVPDimEst(rr(C′), σ) = SVPDimEst(rr(D′), σ). Thus
we get SVPDimEst(rr(C′), σ) ≥ SVPDimEst(rr(D′), σ). ⊓⊔

D PnJBKZ Simulator Accuracy Verification Experiments

D.1 Ideal version PnJBKZ simulation

In an ideal scenario for PnJBKZ, each Pump invoked by the simulator is capable
of outputting an HKZ-reduced basis. Verifying this ideal case tests whether the
fundamental theory behind our construction of the PnJBKZ simulator is cor-
rect. Specifically, we demonstrate that when the jump parameter J of PnJBKZ
is smaller than the blocksize β, the PnJBKZ simulator, constructed using the
properties of HKZ-reduced bases and Gaussian heuristics, is reasonable and can
accurately predict the actual reduction effects of PnJBKZ.
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To practically ensure that each Pump outputs an HKZ-reduced basis, it is
necessary to forego the d4f technique. Without this adjustment, a Pump will
only perform β − d4f(β) dimensional progressive sieving during the Pump-up
stage, and can thus perform at most β − d4f(β) embeddings during the Pump-
down stage. Consequently, the output basis of each β-dimensional Pump will
inevitably include d4f(β)-dimensional GS vectors that do not meet the HKZ-
reduced basis properties. Thus, in this subsection D.1, each β-dimensional Pump
used by PnJBKZ performs complete β-dimensional progressive sieving during the
Pump-up stage and activates sieving during the Pump-down stage. Specifically,
it executes full sievings on the corresponding projection sublattices and embeds
the shortest vectors found through re-sieving during the Pump-down stage.

We calculate Sim(li
′′) based strictly on the properties of the HKZ-reduced

basis. Similarly to classical BKZ simulators [17, 36], which assess the accuracy
of BKZ simulators, we use the ratio li

′′/Sim(li
′′) for i ∈ [0, d− 1] in each tour of

the PnJBKZ reduction as a criterion for measuring the accuracy of the PnJBKZ
simulator. See Fig. 9, which shows the prediction accuracy of the PnJBKZ sim-
ulator under different jump values. Here, li′′ represents the average logarithm of
the Gram-Schmidt vector lengths obtained from 20 independent reduction ex-
periments with the same parameters (β, J, tours), and Sim(li

′′) is the simulated
logarithm of these Gram-Schmidt vector lengths, calculated using Eq. (3).

When using the classic Chen-Nguyen simulator to predict the actual reduc-
tion effect of BKZ, which employs pruned enumeration as the SVP oracle, most
ratios fall within the range [0.95, 1.05]. Our simulation results are similar to
those of the classic Chen-Nguyen simulator, with the remaining ratios falling
within the range of [0.85, 1.15]. For details, compare Fig. 1 in Section 4.3 of
the BKZ 2.0 paper [17] with Fig. 9 in our paper. Therefore, the error in pre-
dicting the reduction effect of the ideal PnJBKZ using our PnJBKZ simulator
is not larger than that of the classic Chen-Nguyen simulator [17]. The overall
prediction results of the PnJBKZ simulator are also shown in Fig. 9.
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(a) β=80, jump=20 (b) β=80, jump=40

(c) β=80, jump=20 (d) β=80, jump=40

(e) β = 80, jump=80 (f) β=80, jump=1

(g) β=80, jump=80 (h) β=80, jump=1

Fig. 9: Ratio l′′i /Sim(l′′i ) and corresponding overall prediction effect of PnJBKZ sim-
ulator. Run PnJBKZ(β, J) reduction on a 222-dimension LWE lattice basis (n=60,α=0.010) and
record the ratio values. We test 20 times for each reduction parameter.
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D.2 Predicating PnJBKZ using d4f technology

The ideal PnJBKZ simulation discussed in Section 5.1 did not consider the influ-
ence of using dimension for free (d4f) technology. In practice, the implementation
of PnJBKZ used in [20] and [28] default use d4f technology to reduce the running
time and memory requirements of sieving. Additionally, the PnJBKZ algorithm
is often accelerated by heuristically increasing the d4f value. For example, in the
G6K implementation [20], the authors use a more optimistic d4f value compared
to the theoretical one. Specifically, in [26] has given two theoretical d4f estima-
tions for solving β-dimension SVP as d4f(β) = β ln(4/3)/ ln(β/2π) and d4f(β) =
β ln(4/3)/ ln(β/2πe), while in the implementation of G6K [20], it gives a more re-
laxed value and we called it “optimistic d4f”: d4f(β) : when β < 40, d4f(β) = 0;
when 40 ≤ β ≤ 75, d4f(β) = ⌊β−40/2⌋; when β > 75, d4f(β) = ⌊11.5+0.075β⌋.

After using d4f to accelerate PnJBKZ, each Pump in the algorithm will
perform only (β − d4f)-dimensional progressive sieving during the Pump-up
stage and can thus perform at most (β − d4f) embeddings during the Pump-
down stage. Consequently, the output basis of each β-dimensional Pump will
inevitably include d4f -dimensional GS vectors that do not satisfy the HKZ-
reduced basis properties.

However, the PnJBKZ(β, J) with the optimistic d4f setting is quite efficient
in practice. To ensure that the PnJBKZ simulator accurately predicts the Gram-
Schmidt (GS) values of a PnJBKZ-reduced lattice basis when utilizing d4f tech-
nology, including optimistic d4f values, we employ a refined d4f value estimation
proposed in [44]. Additionally, we adjust our simulation strategy to enhance the
accuracy of the simulator in predicting the behavior of PnJBKZ reductions that
employ d4f technology and optimistic d4f settings. In this Appendix D.2 and
following verification experiments parts: Appendix D.3, and D.4, all PnJBKZ
reduction experiments use the “optimistic d4f” settings applied in the G6K im-
plementation [20].

Wang et al. in [44] proposed an more refined d4f value estimation function
based the quality of current lattice basis. Specifically, firstly, we revisit the es-
timation of the upper bound of the d4f value under the pessimistic condition
in [26]:

GH(L) ≤ GH
(
L[f,d]

)√
4/3 (5)

The above inequality can be rewritten as f · ln (δ) ≤ ln (4/3)+ ln(1−f/d) using
GSA. Based on ln (δ) = Θ ((lnβ) /β) = Θ ((lnd) /d), [26] gives an asymptotic
value of d4f under pessimistic condition as:

f ≈ dln (4/3)

ln (d/2π)
(6)

The optimistic condition in [26]:

GH(L)

√
d− f

d
≤ GH

(
L[f,d]

)√4

3
. (7)
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Using the GSA and optimistic asymptotic value of d4f can be rewritten as:

f ≈ dln (4/3)

ln (d/2πe)
(8)

The theoretical derivations above are based on the assumption that the cur-
rent d-dimensional lattice basis is fully-BKZ-d/2 reduced. However, during the
process of actual lattice reduction, the reduction quality of the lattice basis is
gradually improved rather than remaining fixed at a specific level of reduction
quality, especially in the initial stage, when it is far away from being fully-BKZ-
d/2 reduced. The effect of lattice reduction quality improvement on d4f is not
considered by Eq.(7) and Eq.(8).

So these two different maximum values of d4f analyzed in [26] only depends on
the dimension of the lattice and they are not accurate estimations but asymptotic
upper bounds. We try to give a refined estimation of the max value of d4f based
on the GSA coefficient.

Since under the GH λ1

(
L[f+1,d]

)
= GH

(
L[f+1,d]

)
≈

√
d−f
2πe ·

(∏d
i=f+1 ∥b∗i ∥

) 1
d−f ,

by using GSA, we have:

λ1

(
L[f+1,d]

)
=

√
d− f

2πe

|det (L)|
1

d−f · δ
f(f−1)
d−f

∥b∗
1∥

f
d−f

.

Since ∥b∗
1∥ can also be represented by δd · |det(L)|

1
d , we have

λ1

(
L[f+1,d]

)
=

√
d− f

2πe

|det (L)|
1
d

δf
(9)

Based on the pessimistic condition in [26]: GH
(
L[f+1,d]

)√
4/3 ≥ GH(L) and

Eq. (9), we can get a conservative d4f estimation based on GSA:

f ≤ logδ

√
4 (d− f)

3d
(10)

Based on the optimistic condition in [26]: GH
(
L[f+1,d]

)√
4/3 ≥ πf (GH (L))

and Eq. (9), we can get an optimistic d4f estimation based on GSA:

f ≤ logδ

√
4

3
(11)

It illustrates that under current reduction quality of lattice basis the max
d4f value should be d4fδ = lnδ

√
4/3 ≈ ln (4/3)

/
(−slope). Here the slope is the

slope value of the logarithm of Gram-Schmidt norms li for ∀i ∈ {1, ..., d}.
This leads to a problem: the actual d4f value that can be obtained under

a certain reduction quality of lattice basis should theoretically be d4fδ. If the
Jump size is not limited, there is a situation where d4fδ < Jump < the optimistic
heuristic d4f value. Because at this time, the first (Jump−d4fδ) GS values of each
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Pump can no longer be guaranteed to be the shortest vector on the corresponding
projection sub-lattice, and finally the prediction of the first (Jump − d4fδ) GS
values of each Pump based on the HKZ property is no longer accurate.

To ensure PnJBKZ simulator still can accurate predict the GS values of Pn-
JBKZ reduced lattice basis when using optimistic d4f value during PnJBKZ
reduction. We need bound the maximum Jump value during reduction. We con-
clude this result in Heuristic 3. Later our experiments will show that in practice,
when using optimistic d4f value during PnJBKZ reduction Heuristic 3 indeed
holds under the appropriate reduction parameter.

Heuristic 3 (Pump outputs HKZ reduced basis) Given a d-dimensional
lattice basis B with reduction quality that slope equals s. Under reduction pa-
rameter J ≤ d4fslope (s) ≪ β ≤ d. For κ < d − 1, Bπ[κ,min{κ+β,d}] reduced
by a Pump(Bπ[κ,min{κ+β,d}], κ, β, f ≤ d4fslope (s)), the first J vectors in block
Bπ[κ,min{κ+β,d}] have the same Gram–Schmidt norms follow the length profile as
a HKZ reduced block, i.e. under Gaussian Heuristic, for i ∈ [κ, κ + J − 1], the
expected norms of ∥b∗

i ∥ ≈ GH(L(Bπ[i,min{κ+β,d}])).

Here d4fslope (s) is an upper bound of the d4f value estimation function based on
the quality of the current lattice basis proposed in [44]. d4fslope (s) := lnδ

√
4/3 ≈

ln (4/3)/(−s).
As we mentioned above the default d4f function used in the implementation of

PnJBKZ (both [20] and [28]) is an optimistic heuristic setting. Such an optimistic
d4f setting in the implementation of G6K leads to the actual reduction effort of a
PnJBKZ(β, J) with the optimistic d4f setting is more closed to a PnJBKZ(β′, J)
with the theory d4f estimation value rather than a PnJBKZ(β, J) with the theory
d4f estimation value. Here β′ ≤ β.

Therefore, to more accurately predict the behavior of the PnJBKZ which uses
the optimistic d4f function, we give the following simulation strategy. Specifi-
cally, using the information of the quality of the current lattice basis, like the
slope value s, [44] calculates the refined d4f value estimation by d4fslope (s) =
ln (4/3)

/
(−s). In this case J ≤ d4fslope (s), we calculate d4fgap(β, s) :=

d4foptimistic(β, s)−d4fslope (s). If β < 40, d4fgap(β, s) = 0; d4fgap(β, s) = ⌊β−
40/2−d4fslope (s)⌋, if 40 ≤ β ≤ 75; d4fgap(β, s) = ⌊11.5+0.075β−d4fslope (s)⌋,
if β > 75. Then, we calculate βsim = β−d4fgap(β, s) and replace each blocksize
β by βsim as the input of Alg. 4, when using PnJBKZ simulator.

The function d4fgap(β, s) aims to calculate the gap between the optimistic
d4f setting in the implementation of G6K and the real d4f value under current
lattice reduction quality (slope s value). Such a simulation strategy is based on
the current lattice reduction quality information (slope value) give a more refined
d4f estimation to adjust the over-optimistic d4f used in the default implement
of PnJBKZ [20].

Finally, in Appendix D.3 and D.4, we show the verification experiments of
Heuristic 3 and the PnJBKZ simulator for predicting PnJBKZ reduction with
optimistic d4f settings.
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Besides, the verification experiments comparison of PnJBKZ estimations un-
der different d4f estimations can be seen in Section 3.2 of [44]. The comparison
results indicate that using the simulation strategy we mention above, can be
more accurate in predicting the behavior of PnJBKZ which uses the optimistic
d4f function. In this paper, we default use the above simulation strategies to pre-
dict the practical reduction effect of the PnJBKZ(β, J) which uses the optimistic
d4f setting in practice.

D.3 Verification Experiments of Heuristic 3 and the PnJBKZ
Simulator for Predicting PnJBKZ Reduction with Optimistic
d4f Settings

In this part, we show that Heuristic 3 is held when the jump parameter J of
PnJBKZ is below a specific upper bound. Therefore it is reasonable to use the
properties of the HKZ reduction basis to simulate the actual reduction effect of
PnJBKZ.

In this part, our experiments tested on the TU Darmstadt LWE Challenge
lattice basis with parameter (n=60, α=0.010), and before running the PnJBKZ
simulator we did small block reduction to remove the influence of q-ary vectors
in the LWE Challenge lattice basis. After our pre-processing, we obtain a 222-
dimension lattice basis which has a few q-ary vectors in the front of the lattice
basis with a slope value equal to −0.0248 (the walltime of such a pre-processing
within a few minutes). Then we calculate the ratio li

′′/Sim(li
′′) for i ∈ [0, d− 1]

in each tour of PnJBKZ’s reduction, see Fig. 10. Here li
′′ is the average log-

arithms of these Gram-Schmidt vector lengths obtained from 20 independent
reduction experiments that use the same reduction parameter (β, J, tours) do
20 times PnJBKZ reduction respectively, and Sim(li

′′) is the simulated logarithm
of lengths of Gram-Schmidt vector which are calculated by Eq. (3).

We calculate the Sim(li
′′) strictly according to the property of the HKZ

reduction basis and Gaussian Heuristic. Therefore, in addition to being one of
the criteria for measuring the accuracy of the PnJBKZ simulator, this ratio
li
′′/Sim(li

′′) can also be used as a criterion for judging whether Heuristic 3 is
held. In particular, it can be seen from Fig. 10 that for β from 85 increasing to 100
and jump from 1 increasing to 12, which is the minimum theoretical upper bound
value under the current quality of lattice basis: d4fslope(s = −0.0248) ≈ 11.6 ≤
12. When jump ≤ ⌈d4fslope(s = −0.0248)⌉ = 12, even the tours increase to 12,
all most of the ratios li

′′/Sim(li
′′) are within range: [0.95,1.05] (the rest ratios

are also within range [0.90,1.10]). Fig. 10 indicates that based on the refined d4f
estimation, our PnJBKZ simulator is accurate in predicting the reduction effort
of PnJBKZ and Heuristic 3 is held when J ≤ d4fslope(s).

In comparison, when simulating classic BKZ, most ratios also fall within
[0.95, 1.05], though some ratios at the extremes exceed this range, with the
largest ratio reaching 1.15 and the smallest falling below 0.85. This indicates
that the prediction accuracy of the PnJBKZ simulator for PnJBKZ reductions
using d4f technology is at least as good as that of the classic BKZ simulator [17]
for predicting BKZ reductions.
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(a) β=85, jump=1 (b) β=85, jump=12

(c) β=100, jump=1 (d) β=100, jump=12

(e) β=80, jump=12 (f) β=71, jump=12

(g) β=80, jump=12 (h) β=71, jump=12

Fig. 10: Ratio l′′i /Sim(l′′i ). Run PnJBKZ(β, J) reduction on a 222-dimension LWE lattice basis
(n=60,α=0.010) and record the ratio values. We test 20 times for each reduction parameter.
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Moreover, this also is verified by (e) and (f) in Fig. 11 when the tours increase
to 13. Meanwhile, the PnJBKZ simulator using Eq. (3) as the approximate
estimate of the actual value li′′ can already reflect how the average of the norms
of Gram-Schmidt vectors change during each tour’s reduction of PnJBKZ(β, J)
which uses the optimistic d4f setting in practice.

(a) β = 85, jump = 12, ♯tours = 13 (b) β = 100, jump = 12, ♯tours = 13

(c) β = 85, jump = 12, ♯tours = 13 (d) β = 100, jump = 12, ♯tours = 13

Fig. 11: Overall Prediction effect of PnJBKZ simulator. Ratio l′′i /Sim(l′′i ). We perform
the experiments on a reduced lattice basis of LWE Challenge (n=60,α=0.010) with slope value
s=−0.0248 when jump increasing to the minimum theoretical upper bound ⌈d4fslope(s)⌉=12. We
test also 20 times for each reduction parameter and show the average value of the experiments.

We set SimError(♯tours) =
∑d−1

i=0

(
∥b∗

i ∥(♯tours) − Sim(∥b∗
i ∥)(♯tours)

)2, where
♯tours represents the number of current tours and Sim(∥b∗

i ∥)(♯tours) are the
lengths of Gram-Schmidt vectors predicted by PnJBKZ simulator with ♯tours.
Then we give Fig. 11 which shows that the overall prediction error of the Pn-
JBKZ simulator with different jumps is similar to that of jump=1.
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More verification experiment results with different reduction parameters on
different lattice bases can be seen in Appendix D.4.

In addition, our experiments, detailed in Table 3 and Appendix K, demon-
strate that for the LWE challenge lattice basis with various reduction parameters
(e.g. different blocksizes and jump sizes), the predicted slope values from our
PnJBKZ simulator closely match those obtained from actual reductions. These
results also show that, based on refined d4f estimation, the PnJBKZ simulator
accurately predicts the average reduction effect of PnJBKZ using d4f. There-
fore, the PnJBKZ simulator we have constructed is sufficiently effective for its
intended purpose.

D.4 More experimental details about PnJBKZ simulator for
predicting PnJBKZ with optimistic d4f

In this section, we present additional verification experiments of our PnJBKZ
simulator for predicting the reduction effort of the PnJBKZ algorithm, which
uses optimistic d4f setting, including optimistic d4f settings, on various LWE
challenge lattice bases with different reduction parameters. Specifically, we varied
the blocksize β from 55 to 100, the jump value from 1 to 12, and the number
of tours from 1 to 13. For each set of reduction parameters, we conducted 20
independent experiments to calculate the practical average length of the Gram-
Schmidt vectors after applying the PnJBKZ reduction.

First of all, to remove the influence of q-ary vectors in LWE challenge initial
lattice basis, we do pre-processing for all LWE challenge lattice basis by using
small blocksize reduction which can be done within a few minutes wall time. For
example (n = 70, α = 0.005) and (n = 75, α = 0.005), after pre-processing we
can get LWE challenge lattice basis (n = 70, α = 0.005) with a slope equal to
−0.04921/2 and LWE challenge lattice basis (n = 75, α = 0.005) with a slope
equals to −0.04339/2. Then corresponding d4fslope(s) between 11.7 to 13.7. As
we need the maximum jump value J ≤ d4fslope(s) to ensure the accuracy of the
PnJBKZ simulator (see section 5 for details), we set the maximum jump value
J ≤ 12 in our test experiments.

Then we give the results of verification experiments on four different lattice
bases with β ∈ [50, 70] and jump within J ∈ [1, 12]: (n = 70, α = 0.005),
(n = 75, α = 0.005), (n = 60, α = 0.010) and (n = 50, α = 0.015). See Figure
14 ∼ 22 respectively. Verification experiments results indicate that our PnJBKZ
simulator performs well in predicting the behavior of PnJBKZ which blocksize
within β ∈ [75, 100] and jump within J ∈ [1, 12] ≤ d4fslope(s) on LWE challenge
lattice basis on 4 different LWE challenge lattice bases.

Figures 12 ∼ 22 show that on different lattice basis with different reduction
parameters, as long as the jump ≤ d4fslope(s), even the tours increase to 13,
overall, the simulation values are closed to the actual values and most of ratios

l
′′
i

Sim(l
′′
i )

are within [0.95, 1.05]. Meanwhile, the progressive reduction strategy will
not run the same reduction parameter (β, J) for more than 10 tours, while our
simulator is still accurate even if the tours increase to 13. The above results

45



indicate that when J ≤ d4fslope(s) we can ensure Heuristic 3 is held and the Pn-
JBKZ simulator calculates the estimation value of the actual value ∥b′′∗

i ∥ by Eq.
(3) can already reflect how the average of the norms of Gram-Schmidt vectors
change during each tour’s reduction of PnJBKZ(β, J). Therefore our PnJBKZ
simulator fits well with the actual PnJBKZ reduction result. In addition, Ta-
ble 3 and Appendix K show that the practical slope of lattice Gram-Schmidt
basis after each tour of the reduction of PnJBKZ with different blocksizes and
different jump values is very close to that of our simulation, which also verified
the accuracy of our PnJBKZ simulator. For selecting the optimized reduction
strategy, our PnJBKZ simulator is accurate enough.

LWE challenge lattice basis (n = 75, α = 0.005). Figure 12 ∼ Figure 13.
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(a) β=75, jump=1 (b) β=80, jump=3

(c) β=80, jump=6 (d) β=85, jump=3

(e) β=100, jump=6 (f) β=85, jump=9

(g) β=95, jump=12 (h) β=95, jump=9

Fig. 12: Ratio l′′i /Sim(l′′i ). Run 12 tours of PnJBKZ(β, J) reduction on a 252-dimension
LWE lattice basis (n = 75, α = 0.005), and record the ratio values. We test 20 times
for each reduction parameters.
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(a) β = 75, jump = 1, ♯tours = 13 (b) β = 95, jump = 9, ♯tours = 12

(c) β = 85, jump = 3, ♯tours = 13 (d) β = 100, jump = 6, ♯tours = 13

(e) β = 85, jump = 3, ♯tours = 13 (f) β = 100, jump = 6, ♯tours = 13

Fig. 13: Overall Prediction effect of PnJBKZ simulator. Ratio l′′i /Sim(l′′i ). We perform
the experiments by reducing the lattice basis of LWE Challenge (n = 75, α = 0.005).
We test also 20 times for each reduction parameters.
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LWE challenge lattice basis (n = 70, α = 0.005). Figure 14 ∼ Figure 16.

(a) β = 70, jump = 3 (b) β = 60, jump = 6

(c) β = 65, jump = 6 (d) β = 70, jump = 6

(e) β = 60, jump = 9 (f) β = 65, jump = 9

(g) β = 70, jump = 9 (h) β = 90, jump = 12

Fig. 14: Ratio l′′i /Sim(l′′i ). Run 12 tours of PnJBKZ(β, J) reduction on a 235-dimension
LWE lattice basis (n = 70, α = 0.005), and record the ratio values. We test 20 times
for each reduction parameter.
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(a) β = 65, jump = 6, ♯tours = 12 (b) β = 70, jump = 6, ♯tours = 12

(c) β = 65, jump = 6 (d) β = 70, jump = 6

Fig. 15: Ratio l′′i /Sim(l′′i ). Run 13 tours of PnJBKZ(β, J) reduction on a 235-dimension
LWE lattice basis (n = 70, α = 0.005), different β with J = 6, and record the ratio
values. We test 20 times for each reduction parameter.
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(a) β = 60, jump = 9, ♯tours = 12 (b) β = 65, jump = 9, ♯tours = 12

(c) β = 65, jump = 9 (d) β = 70, jump = 9

Fig. 16: ratio l′′i /Sim(l′′i ). Run 13 tours of PnJBKZ(β, J) reduction on a 235-dimension
LWE lattice basis (n = 70, α = 0.005), different β with J = 9, and record the ratio
values. We test 20 times for each reduction parameter.
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LWE challenge lattice basis (n = 60, α = 0.010). Figure 17 ∼ Figure 19.

(a) β = 55, jump = 1 (b) β = 55, jump = 3

(c) β = 55, jump = 6 (d) β = 60, jump = 6

(e) β = 60, jump = 9 (f) β = 65, jump = 9

(g) β = 75, jump = 9 (h) β = 85, jump = 12

Fig. 17: Ratio l′′i /Sim(l′′i ). Run 12 tours of PnJBKZ(β, J) reduction on a 222-dimension
LWE lattice basis (n = 60, α = 0.010), and record the ratio values. We test 20 times
for each reduction parameter.
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(a) β = 55, jump = 6, ♯tours = 12 (b) β = 60, jump = 6, ♯tours = 12

(c) β = 55, jump = 6 (d) β = 60, jump = 6

Fig. 18: Ratio l′′i /Sim(l′′i ). Run 13 tours of PnJBKZ(β, J) reduction on a 222-dimension
LWE lattice basis (n = 60, α = 0.010), different β with J = 6, and record the ratio
values. We test 20 times for each reduction parameter.
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(a) β = 60, jump = 9, ♯tours = 12 (b) β = 65, jump = 9, ♯tours = 12

(c) β = 60, jump = 9 (d) β = 65, jump = 9

Fig. 19: Ratio l′′i /Sim(l′′i ). Run 13 tours of PnJBKZ(β, J) reduction on a 222-dimension
LWE lattice basis (n = 60, α = 0.010), different β with J = 9, and record the ratio
values. We test 20 times for each reduction parameter.
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LWE challenge lattice basis (n = 50, α = 0.015). Figure 20 ∼ Figure 22.

(a) β = 50, jump = 1 (b) β = 60, jump = 1

(c) β = 60, jump = 3 (d) β = 60, jump = 6

(e) β = 65, jump = 6 (f) β = 75, jump = 6

(g) β = 75, jump = 9 (h) β = 80, jump = 9

Fig. 20: Ratio l′′i /Sim(l′′i ). Run 12 tours of PnJBKZ(β, J) reduction on a 194-dimension
LWE lattice basis (n = 50, α = 0.015), and record the ratio values. We test 20 times
for each reduction parameter.
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(a) β = 60, jump = 6, ♯tours = 12 (b) β = 65, jump = 6, ♯tours = 12

(c) β = 60, jump = 6 (d) β = 65, jump = 6

Fig. 21: Ratio l′′i /Sim(l′′i ). Run 13 tours of PnJBKZ(β, J) reduction on a 194-dimension
LWE lattice basis (n = 50, α = 0.015), different β with J = 6, and record the ratio
values. We test 20 times for each reduction parameter.
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(a) β = 60, jump = 3, ♯tours = 12 (b) β = 75, jump = 6, ♯tours = 12

(c) β = 60, jump = 3 (d) β = 75, jump = 6

Fig. 22: Ratio l′′i /Sim(l′′i ). Run 13 tours of PnJBKZ(β, J) reduction on a 194-dimension
LWE lattice basis (n = 50, α = 0.015), different β and J , and record the ratio values.
We test 20 times for each reduction parameter.

E Experiments and Application to LWE

E.1 Efficiency of MinTwoStepSolver for solving LWE

The default LWE solving algorithm in G6K is the script lwe_challenge.py in
the implementation of G6K-GPU-Tensor [28]. Besides, for more detail about the
default LWE solving algorithm in G6K-GPU-Tensor4. Fig. 23 gives the exper-
imental result of different LWE-solving algorithms. We use the practical cost
model proposed in Appendix G as T .
4 https://github.com/WvanWoerden/G6K-GPU-Tensor/blob/main/lwe_challenge.py
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The blue lines and scatter points in Fig. 23 represent the experimental time
or memory cost of the default strategy in G6K. The remaining lines and scatter
points in Fig. 23 indicate the experimental time or memory cost of MinTwoStep-
Solver using the strategy generated by PSSearch(Alg. 3) (BSSA(Alg. 6)). We
modify the progressive blocksize selection strategy from ProBKZ [19] to adapt
it for PnJBKZ by constructing the PnJBKZ simulator. We refer to this new
strategy selection algorithm as the blocksize and jump strategy selection algo-
rithm based on ProBKZ (BSSA). See Appendix H for more details about BSSA.
The advantage of BSSA is that it runs in polynomial time; however, it cannot
provide the time-minimal LWE solving strategy like PSSearch.
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(a) LWE Challenges: Time. (b) LWE Challenges: Memory.

(c) LWE Instances (α = 0.010): Time. (d) LWE Instances (α = 0.010): Memory.

§ The experiment used “dd” float type and pump/down=True, under identical benchmark condi-
tions on a machine C (Sec. 6.5) with threads=32 and GPUs=2. “default G6K” refers to the
method in g6k implemented in lwe_challenge.py. TwoStepSolver + PSSearch(·) (resp. TwoStep-
Solver + BSSA(·)) represents the cost of running TwoStepSolver with strategies from PSSearch
(resp. BSSA). Jmax denotes the maximum jump value in the strategy. “Set J=1 in S” means
generating a strategy S and then setting the jump value as 1.

Fig. 23: Comparison of Different LWE-solving Algorithms under same benchmark. §

From the result of Fig. 23, we can see that using the strategy selected by
PSSearch (BSSA) significantly decreased the walltime cost by about 7.2∼17.0
(5.2∼10.2) times compared to that of the default LWE solving strategy in G6K
when all LWE solvers use the same float type “dd” to calculate. One can refer to
the log files of Fig. 23 in the folders lwechal-test and lwe-instance-test. It
can also be reproduced by running the test code implement_lwechal_forall.sh
and implement_lwe_instance_forall.sh in source code2.
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As detailed in Fig. 2, our approach significantly improves the speed of solv-
ing LWE and effectively addresses practical challenges. All experimental results,
except those in Table 4, were obtained using 32 threads and 2 GPUs on a work-
station with an Intel Xeon 5128 (16 cores, 32 threads)@2.3 GHz, 1.48 TB of
RAM, and two NVIDIA RTX 3090 GPUs, referred to as machine C.

Fig. 23(a) and Fig. 23(c) also show that TwoStepSolver using the strat-
egy generated by PSSearch (abbreviated as MinTwoStepSolver) is faster than
TwoStepSolver using the strategy generated by BSSA (abbreviated as TwoStep-
Solver + BSSA). Specifically, in Fig. 23(c), MinTwoStepSolver is 3.71 to 9.81
times faster than the default G6K, while TwoStepSolver + BSSA is 2.43 to
8.63 times faster than the default G6K when testing the given LWE instances
(n, α) ∈ {(n, 0.010) | n = 55, · · · , 61}. This indicates that the progressive re-
duction strategy generated by ProBKZ [19] is not minimal in time cost. This is
particularly evident for large n, with an acceptable memory cost, as shown in
Fig. 23(d).

Additionally, experiments shown in Fig. 23 indicate that the flexible use of the
jump>1 solving strategy can solve LWE 4.88 to 7.85 times faster than the Jmax=1
solving strategy. Specifically, in Fig. 23(c), we set S1 as the strategy generated by
PSSearch with Jmax=d4fslope(s) and S2 as the strategy generated by PSSearch
with Jmax=1. The walltime cost of using strategy S1 is 2.02 to 2.91 times faster
than that of S2 and 4.88 to 7.85 times faster than the scenario where J is set
to 1 in S1. Here, the s in d4fslope(s) denotes the simulated slope of the lattice
basis during the reduction process. It demonstrates a substantial improvement
in reduction efficiency when the maximum jump exceeds 1, potentially by skip
some sufficiently reduced lattice bases, since each Pump turing on sieving at
Pump-down stage, and there is a large intersection between each Pump.

Furthermore, one can also limit the maximum memory usage of solving LWE
by changing parameter “--max_RAM” to generate the solving strategy. We also
designed an LWE sample optimized selection algorithm (Alg. 7) to optimize the
number of chosen LWE samples in Appendix I, although its efficiency improve-
ment is not significant (at most 2.2% in our test).

E.2 New LWE Records

TU Darmstadt LWE Challenge website presents Challenges for testing the effi-
ciency of solving LWE which helps to estimate the hardness of LWE in practice.

By our new algorithm, i.e. MinTwoStepSolver, we have solved the LWE in-
stances (n, α) ∈ {(80,0.005),(40,0.035),(90,0.005),(50,0.025),(55,0.020),(40,0.040)}
in TU Darmstadt LWE Challenge website1. See Fig. 2 for more details. Specifi-
cally we denoted a service with AMD EPYCTM 7002 Series 128@2.6GHz, NVIDIA
3090 * 8, 1.5T RAM as Machine A, and denoted a service with AMD EPYCTM

7002 Series 64@2.6GHz, a100 * 4, 512 GB RAM as Machine B. A workstation
with Intel Xeon 5128 16c 32@2.3GHz, 1.48T RAM and NVIDIA RTX 3090 * 2,
denoted as machine C. Then we listed the walltime and RAM cost in solving the
above LWE Challenges in Table 4. The units of T in Tables 3 and 4 are seconds
and hours, respectively. In Table 4, we can see that the cost of solving the LWE
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Challenge with parameters (n, α) = (40, 0.0035) using the G6K-GPU [28] is 23.4
times longer than that of our method.

E.3 Security Estimation for NIST schemes

We re-estimate the security bit of LWE-based NIST schemes [52] under consid-
eration of the influence of optimized solving strategy. Our new concrete hardness
estimation of LWE6 answers Question 7 in Section 5.3 of [8] and narrows the
security estimation error interval. For more details about the construction of our
new concrete hardness estimator of the Two-step mode of solving LWE, please
refer to the citation [29]. Our evaluation code is available at Github6.

Table 6: Refined Security Estimation results for NIST schemes.♮

log2 G/log2(gates) log2 B/log2(bit)
∆ log2 G

Previous Two-step Previous Two-step
S0 Sop S0 Sop S0 Sop

Kyber512 146 142.6 141.4 94.0 99.1 98.1 3.4 4.6
Kyber768 208.9 205.5 204.3 138.7 144.0 143.2 3.4 4.6
Kyber1024 281.1 277.7 276.5 189.8 195.4 194.3 3.4 4.4

Dilithium-II 152.9 150.8 149.5 98.0 104.3 103.3 2.1 3.4
Dilithium-III 210.2 207.9 206.7 138.8 145.3 144.3 2.3 3.5
Dilithium-V 279.2 277.0 275.7 187.52 194.1 193.0 2.2 3.5

♮ “Previous” is the security estimation in the statement of Kyber and Dilithium. “S0 = {(βi =

i+ 2, Ji = 1) | i = 1, ..., β}” is a trivial progressive BKZ+Pump in Two-step mode to estimate
security as [29] stated. “Sop” is a progressive PnJBKZ+Pump with the optimized strategy
selected by PSSearch in Two-step mode to estimate security. ∆ log2 G is the difference between
“Previous” and “Two-step” under the RAM model in strategy S0 and Sop in the logarithm of
gate count with base 2. The gate count of all estimations in this Table uses the same improved
list-decoding technique proposed by MATZOV [38].

Under the RAM model, the estimated security bit of LWE in NIST schemes
[52] can be reduced by 3.4∼4.6 bit compared to the estimation generated by
Leaky-LWE-Estimator7 in [53] under gate-count model which adopts the im-
proved list-decoding technique proposed in [38]. It fixed the estimate done in [61]
of the list-decoding technique proposed in [18]. See Table 6 for details. Here G
and B in Table 6 respectively represent the total number of logic circuits and the
maximum memory needed for solving these LWE instances in NIST schemes [52]
being solved, that both are calculated under same gate-count model.

6 https://github.com/Summwer/lwe-estimator-with-PnJBKZ.git
7 https://github.com/lducas/leaky-LWE-Estimator
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F Application to SVP

The optimization of the solving strategy can be applied not only to solving LWE
but also to solving SVP. The only difference is replacing the success condition
for solving u-SVP from Section B with the success condition for solving SVP
proposed in [26]. This section is dedicated to demonstrating the efficiency of the
MinTwoStepSolver in solving SVP instances in practice. Here

MinTwoStepSolver = TwoStepSolver + PSSearch + T

is an algorithm that utilizes TwoStepSolver in conjunction with a strategy gen-
erated by PSSearch, all under a specific time cost model T , to effectively solve
SVP instances. Sec. 6.1 presents verification experiments for the PnJBKZ sim-
ulator, which serves as a fundamental component of PSSearch. The executable
code of TwoStepSolver for solving SVP based on PSSearch is publicly available
on GitHub3.

G Practical time cost model of Pump and PnJBKZ

To find the progressive blocksize and jump size selection strategy with minimal
expected time cost for solving TU Darmstadt LWE challenges, it is necessary to
construct PnJBKZ and Pump time cost models. However, the asymptotic com-
plexity of the sieving does not match the actual cost well in the low-dimensional
case6 ( dimension ≤ 128). The multi-threading technology used in Pump will
balance part of the time cost increases when the dimension of sieving increases.
Therefore, we construct a practical time cost model by using the experimental
method to test the running time of the Pump in Appendix G.1 on a differ-
ent lattice basis for finding the optimized reduction parameters of solving TU
Darmstadt LWE challenges in shorter time cost.

Although the time-cost model based on the results of experiments can well
fit the actual cost of running PnJBKZ, using testing machines with different
configurations will inevitably lead to changes in the time-cost model in low-
dimensional cases. Therefore, we only use this experimentally constructed time-
cost model when looking for the optimized progressive blocksize and jump size
selection strategy for solving LWE challenges in shorter time cost.

3 https://github.com/Summwer/lwe-estimator-with-pnjbkz
6 While dimension exceeds 128, the time cost for Pump fits the theoretical value well,

we can directly use the time cost model of triple_gpu sieve declared in [28].
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(a) PnJBKZ(85,1) (b) PnJBKZ(85,5)

(c) PnJBKZ(95,1) (d) PnJBKZ(95,5)

Fig. 24: Cost for each Pump under different index in a PnJBKZ tour by testing
SVP Challenge with different dimension d using Machine C with threads = 32
and GPUs = 2.

Besides, when we construct the actual time cost model by testing the time
cost of PnJBKZ on the specific machine, we find that each Pump in PnJBKZ
takes a different time cost as Fig. 24 shown. Especially, the time cost of the first
Pump is higher than subsequent Pumps and it increases under the incremental
index from 2nd to (d− β + f + 1)th and decreases after d− β + f + 1 indices. It
infers that for a fixed blocksize β, the average Pump cost in PnJBKZ will increase
with the growth of dimension d. It means that the simplified model of treating
each SVP oracle inside BKZ as having the same time cost no longer applies in
the context of PnJBKZ. Therefore, in Appendix G.2, we propose a new time
cost model for PnJBKZ to more accurately reflect its time cost performance in
practical applications.
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G.1 Practical Cost Model of Pump

We can regard TPump as a computational cost model of the dsvp-dimensional
progressive sieve. TPump in [20] is considered as

TPump(dsvp) =

dsvp∑
j=β0

Tsieve(j) =

dsvp∑
j=β0

2c·j+o(j) = 2cβ0

(
1 + 2c + · · ·+ 2c(dsvp−β0)

)

≤ 2cβ0 · 2
c(dsvp+1)+o(dsvp+1)

1− 2c
= O

(
2cdsvp

)
≈ 2cdsvp+c1 ,

(12)

where β0 is the dimension of initial sieving in Pump (In G6K β0 is set to 30,
and in G6K-GPU, it is set to 50), c and c1 are the coefficients of the full sieve
cost related to sieve dimension, Tsieve(j) is the sieve cost with dimension j.

However, we find that the asymptotic complexity of the sieving does not
match the actual cost well in the low-dimensional case. While the dimension
is low, the number of threads used in the Pump increases with the dimension,
which balances out part of the time cost increase. So in low dimension, c might
be much lower than the theoretical result.

To accurately predict the unknown coefficients c and c1 in the computa-
tional cost model, we use the experimental method to test the running time
of Pump with different sieving dimensions on the projected lattice bases of an
180-dimensional SVP Challenge8 and with different blocksizes βs. The experi-
mental results show that our computational cost model above can fit well with
the actual cost of Pump.

Take β as the independent variable, log2(TPump) can be obtained from the
experimental test as the dependent variable, and we use the least squares fitting
to find c and c1. We use R2 to denote the coefficient of determination (R squared)
value above the linear regression model. The coefficient of determination (R2 or
R squared) is a statistical measure in a regression model that determines the
proportion of variance in the dependent variable that can be explained by the
independent variable. Generally, the range of R2 is [0, 1] and when R2 closer is
to 1, the better the model fits the data.

From Figure 25, we can see that R2 is close to 1. It means that the fitting
effect is good. Figure 25 also shows that the logarithm of the computational
cost of Pump is linearly correlated to dsvp under both float type “dd” and “qd”.
Since the “qd” float type is more precise than “dd”, it is slower than “dd”. So
we suggest setting “dd” float type.

Consider Cost of SimHash Generation. Moreover, given sieve dimension
β, the G6K (or its GPU version) implementation requires O(β) memory and
O(β) computational cost to generate the SimHash value, which is used to find
the nearest neighbor of each vector. Thus, an O(2cβ)-time and O(2c2β)-space
algorithm actually requires O(2cβ + β ∗ 2c2β). Set c = 0.367 and c2 = 0.2075

8 https://www.latticechallenge.org/svp-challenge
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Fig. 25: Pump Cost Figure while d = 180, Sieve used in Pump is gpu_sieve, and it’s
running on Machine C with 2 GPUs and 32 threads: Relation between log2(TPump)
and sieve dimension n.

Fig. 26: Pump cost model considers the cost to generate the hash value: The vertical
axis represents TPump and the horizontal axis represents the sieve dimension n.
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according to Fig. 7 in [28] and construct the practical Pump model as

TPump(β) = a1 · 2cβ+c1 + a2 · 2c2β+c3 ,

then we can obtain the practical Pump cost model (as Fig. 26 shown) through
the curve fitting method.

G.2 Practical Cost Model of PnJBKZ

PnJBKZ consists of a series of Pumps. If we regard PnJBKZ as a combination
of Pumps with equal cost, the computational cost of PnJBKZ can be calculated
by the sum cost of d+2f−β

J progressive sieves on the (β−f)-dimension projected
sublattice with jump J . However, as Fig. 24 shows, each Pump in PnJBKZ
has a different cost. Especially, the Pump cost increases from the 2nd to the
(d − β + f + 1)th index and decreases afterward. Here, in Figure 24, we can
observe that the growth rate in the range of [0, f + fextra] differs from that of
[f+fextra, d−β+f+1], where fextra represents the extra dimension-for-free value
set in G6K to enhance the efficiency of PnJBKZ and it is 12 in the default setting.
So we depart the PnJBKZ cost into 4 parts: first index of Pump, preceding
indices in range of [0, f+fextra), middle indices in range of [f+fextra, d−β+f+1)
and later indices in range of [d−β+f+1, d). Let the cost of each range be Tfirst,
Tpre, Tmid and Tformer. Let Tf+fextra and Td−β+f+1 be the Pump cost at the index
f + fextra and Td−β+f+1. We have tested Tfirst, Tpre, Tlater and the coefficients
A and B in Tmid(d, β, J, f, fextra) =

Tf+fextra+Td−β+f+1

2 · (d − β − fextra + 1) =
(A·(f+fextra)+B)+(A·(d−β+f)+B)

2 · (d− β − fextra + 1) in dimension d = 180, jump
J = 1 and “dd” float type, then we obtain the simulated cost model as Fig. 27.
Then, we can get that

TPnJBKZ(d, β, J, f, fextra) = Tfirst + Tpre ·
⌈ f+fextra

J ⌉ − 1

f + fextra − 1

+ Tmid(d, β, J, f, fextra) ·
⌈ f+fextra

J )⌉
f + fextra

+ Tlater ·
⌈d−β−fextra

J ⌉+ 1

d− β − fextra + 1
,

(13)

where f is the dimension for free value of β.
We’ve also used the Eq. 13 to simulate the PnJBKZ cost of other dimensions

(such as d = 160, 170) with blocksize from 51 to 119 and jump J ≥ 1, and find
it fits well in simulation as Figure 28.
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(a) Tfirst (b) Tpre

(c) A of Tmid (d) B of Tmid

(e) Tlater

Fig. 27: Simulate Tfirst, Tpre, coefficients A and B, and Tlater using the lattice basis
generated from SVP Challenge with dimension d = 180. We test PnJBKZ with different
β and setting J = 1, using f and fextra setting in the G6K GPU version. We test the
cost data on machine C with GPUs = 2 and threads = 32. The x-axis represents the
index i of each Pump in a PnJBKZ tour, while the y-axis represents the time cost (in
seconds) of PnJBKZ.
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(a) (d, J) = (160, 1) (b) (d, J) = (160, 9)

(c) (d, J) = (170, 1) (d) (d, J) = (170, 9)

Fig. 28: Simulate each PnJBKZ Cost using Eq. (27 in (d, J) ∈
{(160, 1), (160, 9), (170, 1), (170, 9)}. The actual PnJBKZ cost is tested in ma-
chine C with GPUs = 2 and threads = 32. The test lattice basis is generated from
the SVP Challenge with different dimensions d. We test PnJBKZ with different β
and J , using f and fextra settings in the G6K GPU version. The x-axis represents
the blocksize β for PnJBKZ, while the y-axis represents the time cost (in seconds) of
PnJBKZ.

H Blocksize and Jump Strategy Selection based on
ProBKZ

The blocksize and jump strategy selection algorithm based on ProBKZ (BSSA,
Fig. 29) applies the Shortest Path Algorithm to strategy selection.

BSSA initiates with a fully BKZ-βstart reduced lattice basis. It try to find
the shortest path from BKZ-βstart to BKZ-βgoal reduced lattice basis by setting
several middle nodes (such as βsstart = βi, for βstart < βi < βgoal) from βstart to
βgoal as a measure of basis quality. For edges between nodes βi and βj , BSSA de-
termines the tuple (βalg, Jalg, t) that minimizes the simulated time cost TPnJBKZ

to reduce a BKZ-βi basis to a BKZ-βj basis, where βi < βalg ≤ d.
For each node, we define a blocksize and jump strategy dictionary BS[βgoal],

in which the key is each middle node βi and the value is a tuple of bs = (rr, S,
TPnJBKZs,PSC), where rr is the length of Gram-Schmidt vector which is fully
BKZ-βgoal reduced, S means the blocksize and jump selection strategy which
will improve the quality of lattice basis from fully BKZ-βstart reduced to fully
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Fig. 29: BSSA Process.

BKZ-βgoal reduced, which is the combination of (βalg, Jalg, t, TPnJBKZ) stored
on each edge in the shortest path from node βstart to βgoal with respect to
the sum of simulated BKZ cost TPnJBKZs =

∑
βalg,Jalg,t TPnJBKZ(β

alg, Jalg, t),
while the shortest path can be found using Dijkstra algorithm. PSC is one of
the output from the Pump dimension estimation method (Alg. 5), which means
the estimated time cost for uSVPγ to be solved by processing Pump on the
BKZ-βgoal reduced basis.

By setting different final βgoal, we can get different reduction strategy BS
that improves the quality of lattice basis from βstart to βgoal and different sieving
dimension of the last Pump corresponding to the different quality of the lattice
that is fully βgoal reduced. Then we set multiple different final βgoal to choose
the Two-step solving strategy whose total time cost is minimum. Here, the total
time cost includes the time cost of improving the quality of lattice by a series of
PnJBKZ(β, J) ∈ S and the time cost of final Pump. See Alg. 6 for more details
about BSSA.

I Choosing the number of LWE Samples

BKZ-only mode is the mainstream method for estimating the security of an
LWE-based cryptosystem at the current. It uses Kannan’s Embedding technique
to reduce the LWE problem to the uSVPγ problem and uses the GSA assumption
to simulate the change after a BKZ-β reduction. Its evaluation method was firstly
proposed by Erdem Alkim et al. in [33] and has been proved the correctness
in [62], which has both given a lower bound of LWE samples and a blocksize
β. We renamed it “2016 Estimation from GSA for LWE” (referred to as 2016
Estimate).

To solve the LWE problem, the first thing we need to do is to determine the
number of LWE instances to construct the lattice basis described in the primal
attack. The strategy to select the number of LWE instances in the 2016 Estimate
is to find the number of LWE instances m so that the following inequality holds
and the value of β is minimal. Let d = m + 1, n be the dimension of LWE
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instance, then

min
β∈N

{
TBKZ(β) : σ

√
β ≤ δ (β)

2β−d−1 · q
d−n−1

d

}
. (14)

The strategy in the 2016 Estimate is to find m so that the LWE problem can be
solved with the least time cost when using a fixed blocksize of BKZ-β algorithm
to solve it.

input : rr0, F (⋆,D), βstart ← 50, Jmax(⋆)← d4f(⋆)/2;
output: Tmin, Smin;

1 Function BSSA(rr0, F (⋆,D), βstart ← 50):
2 d← len(rr0); PSC(0) ← ProSieveDimEst(rr0, F (⋆,D));

BS[βstart] = (rr0, [ ], 0,PSC(0));
3 for β ← βstart to d do
4 T

(min)
PnJBKZs ← +∞;

5 for βsstart ← βstart to β − 1 do
6 bssstart ← BS [βsstart]; bs← (∅, ∅,+∞,+∞);
7 Update bs∗ under strategy

bssstart.S ∪ [(β, 1, ♯tours(bssstart.rr,BKZ-β)];
8 for βalg ← β + 1 to d do
9 for j ← Jmax(β

alg) to 1 do
10 T ′ ← +∞;
11 for t ← 1 to ♯tours(bssstart.rr,PnJBKZ-(βalg, j)) do
12 Update bs′ under strategy bssstart.S ∪ [(βalg, j, t)];
13 if bs′.PSC < bs∗.PSC then
14 T ′ ← bs′.TPnJBKZs;
15 break;

16 if bs.TPnJBKZs > T ′ then
17 bs← bs′;

18 if T
(min)
PnJBKZs > bs.TPnJBKZs then

19 T
(min)
PnJBKZs ← bs.TPnJBKZs; BS [β] ← bs;

20 bsmin ← min
bs.TPnJBKZs+bs.PSC

BS;

21 return Tmin ← bs.TPnJBKZs + bs.PSC, Smin ← bsmin.S;
Algorithm 6: BSSA

In G6K, its estimation method simulates a two-stage strategy. Their main
difference from ours is that its two-stage strategy contains two tours of PnJBKZ
with a fixed blocksize β simulated from GSA assumption and a progressive sieve
algorithm in dimension dsvp. It simulates the above scenario and tries to find
the minimal cost of (β, dsvp) from

min
β,dsvp∈N

{
2 · TBKZ(β) + PSC(dsvp) : ∥πd−dsvp(v)∥ ≤ GH(Lπ[d−dsvp])

}
, (15)

where c = 0.349 in G6K CPU version and c = 0.292 in G6K GPU version.
However, we have explained in Sec. 4.3 that the 2016 Estimate still has a

probability of failing to find the target vector through its estimation. Thus, our
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strategy for solving the LWE problem considers simulating a two-stage strat-
egy using our PnjBKZ simulator and new Pump sieve dimension and PSC
estimation scheme (as described in Alg. 5) In the first stage, it will call the
PnJBKZ simulator to simulate the basis after a series of PnJBKZ. In the sec-
ond stage, it tries to find the unique shortest vector by Pump. Based on the
estimation scheme in the default G6K described above, we modify the time
cost of two PnJBKZs and a progressive sieve to the time cost of serial Pn-
JBKZs following the blocksize strategy and a progressive sieve. Besides, we use
the new Pump estimation scheme to simulate the norm of the target vector.
Let P (dsvp) = Pr

[
y ← σ2χ2

dsvp

∣∣∣∣y ≤ (
GH

(
Lπ[d−dsvp:d]

))2]. Thus, the formula
becomes

min
β,dsvp∈N

{TPnJBKZs (B) + PSC (dsvp) : P (dsvp) ≥ Psuccess} , (16)

where δ is the basis quality after PnJBKZs. TPnJBKZs (B) will respectively call
BSSA or EnumBS to calculate the corresponding computational cost. To min-
imize the number of attempts, we narrow the range of m to [m0 − τ,m0 + τ ],
where m0 is the number of samples chosen in the estimation of default G6K
and set a maximum search field range τ ∈ Z∗. We use dichotomization to find
an m with minimum β and dsvp satisfying the inequality (16). Furthermore, the
concrete process is as the Algorithm 7.

input: n, q, α, mall, βbound, d(svp)bound, τ , Amall×n , bmall×1;
output: Smin, Tmin, m;

1 σ, Tmin,mRange← αq,+∞,{};
2 m0 ← LWE samples estimation in G6K as formula (15);
3 mmin ← min {m satisfies equation (16)}; Smin, Tmin ← None, None;
4 while τ > 0 do
5 Construct B by

(
Am0×n,bm0×1, q

)
;

6 m1 ← m0;
7 for m ∈ {max{mmin,m0 − τ},m0,min{mall,m0 + τ}} do
8 d← m+ 1, M ← σ2m+ 1;
9 Construct B by

(
Am×n,bm×1, q

)
;

10 Ttotal, S ← EnumBS(rr(B), σ2χ2
⋆);

11 if Tmin is None or Tmin < Ttotal then
12 Smin, Tmin, m1 ← S, Ttotal, m;

13 if m1 = m0 then
14 τ ← ⌊ τ

2
⌋;

15 m0 ← m1;
16 return Smin, Tmin, m0;

Algorithm 7: Our LWE Samples Number Selection Algorithm
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Using the optimization strategy for LWE instance number selection, we can
solve challenges faster than the G6K default strategy, although its efficiency
improvement is not significant (at most 2.2% in the test). See the Table 7.

Table 7: LWE samples improvement simulated result generated by EnumBS with
no RAM limit and τ = 10.

(n,α) G6K’s m Our m Estimated Tnew (sec) Estimated Told (sec) Tnew/Told

(50,0.025) 219 221 4336037.42 4320454.232 99.6%
(55,0.020) 230 234 3937458.799 3870765.534 98.3%
(45,0.035) 210 220 74367286.54 73838336.19 99.3%
(45,0.030) 201 205 1420793.45 1404095.127 98.8%
(90,0.005) 306 316 1772710.1 1733158.312 97.8%

J The Optimized Strategy for the LWE Challenge

In Table 8, we give the optimized blocksize and jump strategy generated by
EnumBS for solving TU Darmstadt LWE Challenge with

(n, α) ∈ {(40, 0.035), (40, 0.040), (50, 0.025), (55, 0.020), (90, 0.005)}

successfully by running “implement_unsolved_lwechal.sh” in source code 2.

K Comparison between simulated slope (cost) and real
slope (cost) during reduction

In this part, we give the slope and cost comparison of two LWE Challenges
under qd float type in Table 9, Table 10 and Table 11, which show the simulated
slope and cost are close to the real slope and cost. They also indicate that our
PnJBKZ simulator can already reflect how the average of the norms of Gram-
Schmidt vectors change during the reduction of PnJBKZ(β, J) on different LWE
lattice basis.

From Table 4, Table 9, Table 10 and Table 11 all show that although, at the
first round of reduction, the gap between the slope value of simulated GS norms
and the slope of real reduced GS norms is slightly bigger due to the influence of
the q-ary vector in the initial LWE lattice basis, as the reduction proceeds, in
the rounds of reduction before finally entering the Pump, the gap between the
slope value calculated by simulation and the slope obtained by real reduction has
been sufficiently small. For selecting the optimized blocksize and jump strategy,
our PnJBKZ simulator is accurate enough.
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Table 8: Blocksize and Jump strategy generated by EnumBS(threads = 10) using
the practical cost model generated on Machine C with threads = 32 and GPUs
= 2.

(n, α) RAM limit Strategy (β, jump) EnumBSGen/s

(40,0.035) 1.5TB [(72,9),(81,10),(102,11),(106,11),
(117,12),(125,13),(133,12),(136,1)] 269.15

(40,0.040) 1.5TB
[(81, 10),(81, 10), (105, 11), (110, 12),
(118, 11), (133, 12), (141, 10), (141, 1),
(148, 1)]

289.17

(50,0.025) 1.5TB
[(77, 9), (81, 10), (102, 11), (102, 11),
(105, 11),(115, 12), (119, 12), (127, 12),
(132, 13), (140, 1), (148, 1)]

686.47

(55,0.020) 1.5TB
[(68, 9), (81, 10), (102, 11),(102, 11),
(102, 11), (114, 12), (119, 12), (119, 9),
(131, 13), (137, 12),(140, 1), (147, 1)]

831.98

(90,0.005) 512GB

[(68, 9), (81, 10), (81, 10), (81, 10), (102, 11),
(102, 11), (102, 11), (102, 11), (104, 11),
(114, 12), (119, 12),(119, 12), (119, 9),
(127, 13), (129, 12), (133, 12), (133, 12),
(141, 1),(141, 1)]

2592.26

(β, J)
Simulation Practical

Slope log(T) Slope log(T)
(70,8) -0.0288 6.4 -0.0278 6.6
(80,10) -0.0256 6.4 -0.0249 6.6
(102,11) -0.0221 7.7 -0.0218 8.0
(102,11) -0.0207 7.7 -0.0208 8.0
(103,11) -0.0202 7.8 -0.0205 8.1

Table 9: Quality and wall time (T in sec-
onds) during reduction of LWE Challenge
(n, α) = (45, 0.020).

(β, J)
Simulation Practical

Slope log(T) Slope log(T)
(56,8) -0.0307 6.2 -0.0297 6.4
(66,9) -0.0279 6.2 -0.0273 6.4
(80,10) -0.0254 6.5 -0.0250 6.8
(81,10) -0.0238 6.6 -0.0237 6.9
(102,11) -0.0215 7.8 -0.0216 8.1

(102,11,2) -0.0205 7.8 -0.0208 8.1

Table 10: Quality and log(walltime)
(log(T) in seconds) during reduction of
LWE Challenge (n, α) = (50, 0.015).

Table 11: Quality and log(walltime) (log(T) in seconds) during reduction of LWE
Challenge (n, α) = (40, 0.025).

(β, J)
Simulation Practical

Slope log(T) Slope log(T)
(77,8) -0.0281 6.5 -0.0265 6.6
(81,10) -0.0249 6.2 -0.0241 6.6
(102,11) -0.0217 7.5 -0.0215 7.8
(102,11) -0.0205 7.5 -0.0207 7.8
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