
LaBRADOR: Compact Proofs for R1CS from
Module-SIS?

Ward Beullens and Gregor Seiler

IBM Research Europe

Abstract. The most compact quantum-safe proof systems for large cir-
cuits are PCP-type systems such as Ligero, Aurora, and Shockwave, that
only use weak cryptographic assumptions, namely hash functions mod-
eled as random oracles. One would expect that by allowing for stronger
assumptions, such as the hardness of Module-SIS, it should be possible
to design more compact proof systems. But alas, despite considerable
progress in lattice-based proofs, no such proof system was known so
far. We rectify this situation by introducing a Lattice-Based Recursively
Amortized Demonstration Of R1CS (LaBRADOR), with more compact
proof sizes than known hash-based proof systems, both asymptotically
and concretely for all relevant circuit sizes. LaBRADOR proves knowl-
edge of a solution for an R1CS mod 264 + 1 with 220 constraints, with
a proof size of only 58 KB, an order of magnitude more compact than
previous quantum-safe proofs.

1 Introduction

A (publicly-verifiable) system for proving arbitrary binary or arithmetic cir-
cuits is a very versatile cryptographic tool that is useful for the construction of
many advanced protocols, e.g. in the areas of privacy-preserving cryptography,
blockchain systems, and outsourced computation. The presentation of circuit
satisfaction problems as rank-one constraint systems (R1CS) provides a conve-
nient abstraction that simplifies proof systems and their comparison. The proof
size is often of central importance because the proof needs to be transmitted
over a network or stored on a blockchain.

Since many classical cryptographic algorithms will become insecure when large
fault-tolerant quantum computers are built, it is important to develop efficient
quantum-safe alternatives. Lattice-based cryptography has been very success-
ful at providing quantum-safe basic primitives such as encryption and signature
schemes. Lattice-based primitives offer practical output sizes and execution run-
times that are often faster than their classical counterparts, which makes them
suitable as drop-in replacements for the classical algorithms. The same can not
yet be said for more advanced protocols, and in particular lattice-based proof sys-
tems. The (plausibly) quantum-safe proof systems with the most compact proof

? This work is supported by the EU H2020 ERC Project 101002845 PLAZA. Ward
Beullens holds Junior Post-Doctoral fellowship 1S95620N from the Research Foun-
dation Flanders (FWO).

sizes for moderate to large statements are hash-based PCP-type systems such as
Ligero [AHIV17], Aurora [BCR+19], and Brakedown [GLS+21]. Their proof sizes
scale sublinearly or even poly-logarithmically with the witness size. There are
several lattice-based sublinear-size proof systems [BBC+18, BLNS20, ACL+22]
but, even though they rely on much stronger cryptographic assumptions, they
are only somewhat practical at best, and can still not compete with the con-
cretely small proof size of the poly-logarithmic PCP-type systems.

Nevertheless, there has been steady progress in practical lattice-based zero-
knowledge proof systems, e.g. [ESLL19, ALS20, ENS20, LNP22]. The proof
sizes of these systems scale linearly with the witness size, so even though they
are efficient for proving small statements, they become inefficient for proving
larger statements. The concrete proof size for proving a representative reference
statement has been reduced from 3.8 MB in 2017 to 14 KB in 2022 [LNP22].
This has been achieved with a combination of (1) adapting techniques from
non-lattice systems to the lattice setting; (2) finding ways around the unique
lattice complications surrounding the requirement that certain vectors have to
be short both in the honest execution as well as in the extraction from a prover
algorithm; (3) developing new ways to exploit the algebraic structure of (cy-
clotomic) polynomial rings; and (4) optimizing the techniques and parameters
in the resulting huge design space. The somewhat practical sublinear-size proof
system from [NS22] leverages and improves the insights and techniques devel-
oped for linear-size systems, in combination with new techniques that allowed
for sublinear scaling.

Contributions. This work introduces a Lattice-Based Recursively Amortized
Demonstration Of R1CS (LaBRADOR). LaBRADOR is the first lattice-based
proof system that closes the proof-size gap with PCP-type systems and, in fact,
improves upon them by a large margin. LaBRADOR builds upon and improves
the set of techniques for practical lattice-based proof systems, and uses recursion
to achieve very compact proof sizes. For the range of R1CS sizes that is relevant
in practice, the proof size is dominated by the cost of the last step of the re-
cursion, which is independent of the size of the R1CS instance. This means the
proof size is almost constant in this range. Asymptotically, for R1CS with n con-
straints, LaBRADOR achieves a proof size of O(log n), which is still a quadratic
improvement over the best hash-based PCP-systems such as Aurora, whose proof
size is Θ(log2 n). The LaBRADOR prover and verifier runtime is dominated by
O(n) modular multiplications with a modulus q of size O(log n) (since q must
be bigger than the witness norm; in practice we use a single-precision q ≈ 232

for all our examples).

Concrete sizes. The concrete proof sizes for our protocol are very compact.
To prove knowledge of a solution for an R1CS modulo 264 + 1 with a number
of constraints ranging from 210 to 220, our proof size varies from 47 KB to 58
KB, which is much better than existing post-quantum approaches, especially
at the high end of this range. Figure 1 compares our proof sizes with those of
Aurora [BCR+19] and Ligero [AHIV17], obtained by running the open source

2

libiop implementation, for a field with 64 bits, zero-knowledge disabled, and
a soundness error of 2−125, configured to provide provable security. We also
compare to Brakedown and Shockwave, using the numbers in [GLS+21], for
a field size of 256 bits and 2−128 soundness error. We remark that one can
run Aurora with certain heuristics to significantly improve the proof size at
the expense of provable security. Our proof sizes are still smaller than those
of optimistic versions of Aurora. Our proof sizes are more than two and three
orders of magnitude more compact than those of [NS22] and k-R-ISIS [ACL+22]
respectively. But unlike our work, the proofs from k-R-ISIS have the advantage
that the verification time is sublinear in n.

210 211 212 213 214 215 216 217 218 219 220
Number of constraints

102

103

104

Pr
oo

f s
ize

 (K
B)

Bra edo)n
Aurora
Ligero
Shoc)a(e
LaBRADOR

Fig. 1. Proof sizes of LaBRADOR compared to other SNARKs, for R1CS with a
number of constraints varying from 210 to 220. The data can be found in Table 1.

Zero-Knowledge Property. The zero-knowledge property is not crucial for
sublinear-size proof systems and there are interesting applications for proof sys-
tems without zero-knowledge when the proof size is concretely smaller than the
witness size. Moreover, achieving zero-knowledge can simply be done by design-
ing a simple linear-sized shim protocol that masks the input witness. The shim
can then be composed with our non-zero-knowledge proof system such that the
composition is still zero-knowledge and the proof size not much larger than from
our system alone. For these reasons we disregard the zero-knowledge property
in this work. In all our comparisons to other proof systems we always use the
variants that are also not zero-knowledge.

3

1.1 Technical overview.

Dot product constraints. Our main result is a compact proof of knowledge
of a short solution ~s = ~s1, . . . ,~sr ∈ Rn×rq for a system of arbitrarily many dot
product constraints, i.e. constraints of the form

f(~s) =
∑

1≤i,j≤r

aij〈~si,~sj〉+

r∑
i=1

〈~ϕi,~si〉+ b = 0 ,

where aij ,b ∈ Rq = Zq[X]/(Xd + 1) and ~ϕi ∈ Rnq . We also allow for dot
product constraints where we only require that the constant term of f(~s) is
zero. In Section 6 we show that these dot product constraint systems are at
least as powerful as R1CSs because proving knowledge of a solution for an R1CS
reduces efficiently to proving knowledge of a short solution to a related dot
product constraint system.

Recursive composition. Inspired by bulletproof-style arguments [BCC+16,
BBB+18], we want to design a proof of knowledge of a short solution ~s(0) for a
dot product constraint system F (0), such that the proof consists of a short part
π(1), and a potentially larger part ~s(1), where the proof is valid if ~s(1) is itself a
short solution to a new dot product constraint system F (1), which can be deduced
from F (0) and π(1). We also want that ~s(1) is more compact than the original
solution ~s(0). If we have such a proof system we can recursively apply it to get
very compact proofs: we iteratively use the proof system on input (F (i),~s(i)) to
produce the next proof (π(i+1),~s(i+1)), where ~s(i+1) is a short solution for some
system F (i+1). We do this until we reach some ~sI that is short enough so that
it can be sent to the verifier, along with all the short proof pieces π(1), . . . , π(I).
The verifier then recomputes F (I) from F (0) and π(1), . . . , π(I), and only verifies
that ~s(i+1) is a short solution to FI . We prove (with some generality) that this
kind of composition preserves soundness.

Amortization. Much like the work of Nguyen and Seiler [NS22], we achieve a
sublinear proof size by splitting up the witness in multiple parts ~s = ~s1, . . . ,~sr
(potentially splitting into more parts than in the dot product constraint system
we are trying to prove), sending commitments ~ti = A~si for each of the parts and
doing an amortized proof of knowledge of openings. To do the amortized proof,
the verifier chooses some challenges ci, and the prover sends ~z =

∑
ci~si. The

verifier checks that ~z has small `2-norm, and that and that A~z =
∑
i ci
~ti. At

the cost of sending O(r2) so-called garbage terms and doing some checks, we can
augment the proof to also prove that the openings to the ~ti commitments satisfy
the dot-product relations. Since the r parts of ~s(i) are folded into ~z, the witness
gets shorter by a factor r′, although the size of the coefficients goes up by a factor√
rτ , where τ is the `2-norm of challenges {ci}i∈[r]. To prevent the coefficients

from growing indefinitely, we decompose ~z = ~z0 + b~z1 and set ~s(i+1) = ~z0||~z1
instead.

Proving smallness. The amortized proof proves knowledge of an opening of
the commitment that satisfies the dot product constraint system, but it does not

4

yet prove that the solution has small `2-norm. To do this, we use an improved
version of the modular Johnson-Lindenstrauss lemma of [GHL21]. This lemma
essentially says that random linear projections preserve the `2-norm quite well
(up to some scaling factor). This means that instead of checking the `2-norm of
~s directly, we can let the verifier choose a random projection Π : Zdnq → Z256

q ,
drawn from a certain distribution D. The prover then sends p = Π~s mod q to
the verifier and proves that p was computed correctly. With our distribution the
`2-norm of Π~s mod q is larger than

√
30 ‖~s‖2 with overwhelming probability,

and smaller than
√

128 ‖~s‖2 with probability close to 1/2. So if ‖p‖2 is small,
then ‖~s‖2 must have been small as well. The gap between the `2-norm that is

proven, and the `2-norm of the real witness is only a factor
√

128/30 ≈ 2.07.
Proving that p was computed correctly comes for free because p = Π~s mod q
is just 256 additional (constant terms of) dot product constraints, which we can
simply add to the list of constraints.

Outer commitments. So far, the i-th iteration of the base protocol reduces
the size of the witness by roughly a factor r(i)/2, but it requires communicating
a proof π(i) that consists of the r(i) Ajtai commitments ~ti and O(r′2) garbage
terms, so a priori we cannot use large r(i) without blowing up the proof size. An
important optimization is that instead of sending the commitments ~ti and the
garbage terms, the prover just sends a short commitment ~u1 to the ~ti and a sub-
set of the garbage terms, and later in the protocol a second short commitment
~u2 to the remaining garbage terms. Then we just include ~ti and the garbage
terms in ~s(i+1). We call the ~ui the outer commitment, and the ~ti the inner com-
mitments. This optimization allows us to move material from π(i+1) to ~s(i+1),
which is very beneficial for the proof size of the overall protocol because all the
material in ~s(i+1) will be shrunk in the subsequent iterations. This optimization
allows us to pick a much larger r′(i). Asymptotically, r′(i) = O(|~s(i)|1/3) is opti-
mal, which means that the size of the witness goes from |~s(i)| to O(|~s(i)|2/3) with
each iteration of the protocol. Therefore, we need only O(log log n) iterations of
the base protocol. In practice, using 6 or 7 iterations gives the best results.

2 Preliminaries

Notation. Let q be a modulus, and let Zq be the ring of integers mod q. We
denote by ~a ∈ Zmq a vector of length m, and by ai ∈ Zq the i-th entry of ~a. We
denote matrices A ∈ Zm×nq by capital letters. Let d be a power of two, and let

R and Rq be the rings Z[X]/(Xd + 1) and Zq[X]/(Xd + 1) respectively, where
q, d are such that Xd + 1 splits in two irreducible factors mod q. We denote
elements of R and Rq by boldface letters such as f , and vectors of ring elements
by ~a. If f = a0 + a1X + · · · + an−1X

n−1 ∈ Rn, then we denote by ct (f) the
constant term of f , i.e., ct (f) = a0. If ~a ∈ Rnq is a vector of ring elements then

we denote the i-th entry of ~a by ai ∈ R, and we denote by ~s ∈ Zdnq (lowercase)
the vector obtained by concatenating the coefficients of all the entries of ~s. We
denote matrices A ∈ Rm×nq by boldface capital letters. If ~a ∈ Rna

q and ~b ∈ Rnb
q

5

are vectors, we denote by ~a||~b ∈ Rna+nb
q the vector obtained by concatenating

~a and ~b. We denote the set of integers {1, . . . , k} by [k].

For an interactive protocol Π = (P,V) between two algorithms P and V we
write 〈P(a),V(b)〉 to denote the random variable describing the output of V
after jointly running P and V where P is given a as input and V is given b as
input.

Challenge Space. Throughout the paper we let C ⊂ R be a challenge space,
such that c1 − c2 is invertible for any pair of distinct c1, c2 in C, and such that
‖c‖2 ≤ τ and ‖c‖op ≤ T for all c ∈ C, for some constants τ, T ∈ R, where

‖c‖op = sup
r∈R

‖cr‖2
‖r‖2

,

is the operator norm of c.

In our concrete instantiations we use the ring R = Zq[X]/(X64 + 1), and as
challenges we use ring elements with 23 zero coefficients, 31 coefficient that are
±1, and 10 coefficients that are ±2. There are more than 2128 such elements.
All these polynomials have l2-norm 71 and we use rejection sampling to restrict
to challenges with operator norm at most 15. (On average we need to sample
roughly 6 elements before we sample an element c with operator ‖c‖op < 15.)
Differences of distinct challenges are invertible according to [LS18, Corollary 1.2].

Weak Commitment Openings. In the analysis of our protocols, we need the
notion of a weak commitment opening stemming from [ALS20, Section 4]. Given
an Ajtai commitment ~t = A~s ∈ Rκq , a weak opening of norm β is a vector ~s∗

together with a challenge difference c̄ ∈ C−C such that ~t = A~s∗ and ‖c̄~s∗‖ ≤ β.
The commitment ~t is binding for weak openings of norm β if Module-SIS is
hard for rank κ and norm 4Tβ. If Module-SIS is hard for norm 2β, then the
commitment is binding for weak openings with the same challenge difference c̄.

The Conjugation Automorphism σ−1. For proving dot products 〈~a,~b〉 be-

tween coefficient vectors ~a,~b ∈ Zndq corresponding to polynomial vectors ~a,~b ∈
Rnq , we use the observation that 〈~a,~b〉 = ct

(
〈σ−1(~a),~b〉

)
for the automor-

phism σ−1 ∈ Aut(Rq) defined by σ−1(X) = X−1 that corresponds to −1 under
Aut(Rq) ∼= Z×2d. This was introduced in [LNP22], and the constant coefficient as
a handle on dot products in [ENS20].

3 Composing proofs of knowledge

In this section, we define proofs-of-knowledge and proof-of-knowledge reductions,
and we prove that composing proof-of-knowledge reductions preserves soundness.

6

Definition 3.1 (multi-round public-coin interactive proofs). A public-
coin interactive proof Π = (P,V) is a protocol between a prover P and a
verifier V, where the prover takes as input (x,w), and the verifier gets x as
input. The prover and verifier take turns sending messages, and the prover
sends the last message. Finally the verifier outputs V (x, c1, . . . , ck, z1, . . . , zk′) ∈
{accept, reject}, where V is a verification predicate, z1, . . . , zk′ are the messages
sent by the prover, and c1, . . . , ck are the messages sent by the verifier. Moreover,
the verifier chooses its i-th message ci uniformly at random from some challenge
set Ci for all i ∈ [k].

Definition 3.2 (completeness). We say that an interactive protocol Π =
(P,V) is a complete proof of knowledge for relation R with failure probability
ε if for all (x,w) ∈ R, we have

Pr[〈P(x,w),V(x)〉 = accept] ≥ 1− ε .

Definition 3.3 (knowledge soundness). We say that an interactive proto-
col Π = (P,V) is a knowledge-sound proof of knowledge for a relation R with
soundness error κ if there exists an oracle algorithm E (called the extractor), that
runs in expected polynomial time such that for all (x,w) ∈ R, and all provers
P∗ we have

Pr[(x,w′) ∈ R | w′ ← EP
∗
(x)] ≥ ε(P∗, x)− κ ,

where ε(P∗, x) is the success probability of the prover P∗ for the statement x,
which is defined as

ε(P∗, x) = Pr[〈P∗(),V(x)〉 = accept] .

Remark 3.4. Note that it makes sense for a proof system to be complete with
regards to a relation R, and knowledge-sound for a different relation R′ (usually
R ⊂ R′). This is often the case for efficient lattice-based proofs.

An alternative definition for knowledge soundness says that there is an extrac-
tor which outputs a witness with probability 1, but which is allowed to run in
expected time O(poly(|x|)/(ε(P∗, x) − κ)). Bellare and Goldreich showed that
both definitions are equivalent for NP relations [BG92], so we will use both def-
initions interchangeably. It is well known (see, e.g., [AF21] for a proof) that to
prove knowledge soundness it suffices to construct an extractor for deterministic
provers.

Definition 3.5 (proof-of-knowledge reduction). We say a proof of knowl-
edge Π = (P,V) for a relation R1 is a reduction from R1 to R2 if the verification
predicate of V “factors through R2”, by which we mean that :

– The last message sent by P is a tuple (z′k, w2), and

7

– there exists an efficient algorithm Ṽ such that

V accepts the transcript (x1, c1, . . . , ck, z1, . . . , zk′ , w2)

⇐⇒
(Ṽ(x1, c1, . . . , ck, z1, . . . , zk′), w2) ∈ R2

Definition 3.6 (Composition of reductions). Let Π12 = (P12,V12) be a
proof-of-knowledge reduction from R1 to R2 and let Π2 = (P2,V2) be a proof
of knowledge for R2. We define the composition Π2 ◦ Π12 as the interactive
protocol (P,V), where P(x1, w1) and V(x1) run P12(x1, w1) and V12(x1), except
that instead of sending w2 and letting the verifier check that (x2, w2) ∈ R2 for
the new statement x2 ← Ṽ(x1, c1, . . . , ck, z1, . . . , zk′), P and V run P2(x2, w2)
and V2(x2). The composed verifier V(x1) accepts if and only if V2(x2) accepts.

Lemma 3.7 (Composition preserves knowledge soundness). Let Π12

and Π2 be proof systems as in Definition 3.6. If Π12 and Π2 are knowledge sound
with soundness error κ12 and κ2 respectively, then their composition Π2 ◦Π12 is
a knowledge-sound proof of R1 with soundness error κ12 + κ2.

Proof. Let E12 and E2 be extractors for Π12 and Π2 respectively. The idea of the
proof is that we first use E2 to construct a prover P∗12 for the reduction Π12, and
then we extract a witness from P∗12 using E12.

Let P∗1 be a prover for Π2 ◦Π12. We define a prover P∗12 for Π12, that makes use
of rewindable oracle access to P∗1 , as follows. First, P∗12 runs P∗1 , outputs what P
outputs, and forwards the challenges from V12 to P∗1 , until P∗1 outputs zk′ . Now
P∗12 will try to use E2 to come up with a witness w2 such that (x2, w2) ∈ R2,
where x2 = Ṽ(x1, c1, . . . , ck, z1, . . . , zk′). But first, P∗12 continues running P∗13
by simulating an honest verifier V2(x2). If the simulated verifier outputs reject,
then P∗12 aborts. (This step is to control the running time of Π12) Otherwise,
if the simulated verifier outputs accept, then P∗12 repeatedly rewinds P∗1 to the
point after it sent zk′ , and runs the extractor E2(x2) with access to P∗1 , which
acts as a Π23-prover. If the extractor E2 succeeds and outputs a valid w2 such
that (x2, w2) ∈ R2, then P∗12 outputs this w2 and V1(x1) will accept. After each
failed extraction attempt P∗12 aborts with probability κ2, otherwise it continues
rewinding P∗13 and running E23.

We now argue that this prover P∗12 has an expected polynomial running time.
Fix some randomness r = (r1, r2) ∈ {0, 1}N×{0, 1}N, we denote by ε the success
probability of P13 when P1’s randomness is fixed to r1 and when V12’s random-
ness is fixed to r2. Similarly, we define s as the success probability of E12 of
extracting from P1 conditional on r1 and r2 being used. If E12 is an extractor
with soundness error κ2 then we have s ≥ ε−κ2. Conditional on the randomness
r, if the prover succeeds on the first attempt (which happens with probability
ε), then P∗12 starts running E2, otherwise it does not run E2 at all. Therefore, the
expected number of extraction attempts is ε times the inverse of the probability

8

that the process stops, which is

ε

s+ (1− s)κ2
.

Suppose ε ≤ 2κ2, then
ε

s+ (1− s)κ2
≤ ε

κ2
≤ 2 .

Otherwise, if ε ≥ 2κ2, then we have

ε

s+ (1− s)κ2
≤ ε

s
≤ ε

ε− κ2
≤ 2κ2

2κ2 − κ2
= 2.

For any fixed choice of randomness r and challenges c, the expected number of
extraction attempts is bounded by 2, which means that the expected number of
extraction attempts over all r and c must also be bounded by 2, so P∗12 runs in
expected polynomial time.

Now we argue that P∗12 has success probability at least ε(P∗1 , x1)−κ2. Again, we
fix randomness r. The prover P∗12 starts running the extractor with probability
ε, and if it starts then the probability that E23 eventually succeeds is exactly

s

s+ (1− s)κ2
.

Therefore the success probability of P∗12 conditioned on r being used is

εs

s+ (1− s)κ2
≥ εs

s+ κ2
= ε

(
1− κ2

s+ κ2

)
≥ ε

(
1− κ2

ε

)
= ε− κ2 ,

where we used that s ≥ ε−κ2. For any fixed choice of randomness r the success
probability of P∗12 is at least the success probability of P∗13 − κ2, so by taking
the average over all r we get ε(P∗12, x1) ≥ ε(P∗1 , x1)− κ2.

Now there is an extractor for Π2 ◦Π12 that just runs E12 on the prover P∗12. This
extractor runs in expected polynomial time, and outputs a witness for x1 ∈ R1

with probability ε(P∗12, x1)− κ12 ≥ ε(P∗1 , x1)− κ12 − κ2. ut

4 Modular Johnson-Lindenstrauss Lemma

In our proof system, we need to prove knowledge of a long vector ~w ∈ Zd with
small `2-norm. Revealing the entire vector so that the verifier can check that it
has small `2-norm would be very costly, so we rely on a version of the Johnson-
Lindenstrauss lemma to reduce the dimensionality. The intuition is that random
linear projections almost preserve the `2-norm. So, instead of revealing ~w we let
the verifier sample a random linear map Π : Zd → Z256, where the entries of
Π are independent and equal to −1, 0, or 1 with probabilities 1/4, 1/2, and 1/4
respectively. The prover then only reveals Π ~w, which is much more compact than
the long vector ~w. One can check that the average of ‖Π ~w‖2 is

√
128 ‖~w‖2, and

Gentry, Halevi, and Lyubashevsky argue that regardless of the vector ~w, with
overwhelming probability, the `2-norm cannot be much higher or lower [GHL21].

9

Lemma 4.1 (Corollary 3.2, [GHL21]). Let C be a distribution on {−1, 0, 1}
with Pr[C = 0] = 1/2, and Pr[C = 1] = Pr[C = −1] = 1/4, then for every vector
~w ∈ Zd we have

Pr
~π←Cd

[|〈~π, ~w〉| > 9.5 ‖~w‖2] . 2−141

Pr
Π←C256×d

[‖Π ~w‖2 <
√

30 ‖~w‖2] . 2−128

Pr
Π←C256×d

[‖Π ~w‖2 >
√

337 ‖~w‖2] . 2−128

Therefore, the prover can send Π ~w, and prove that it is computed correctly.
Then, if the verifier sees that ‖Π ~w‖2 ≤

√
30b for some bound b, then he is

convinced that ‖~w‖2 is at most b. One caveat is that the prover only proves that
Π ~w is correct mod q, which might mess up the soundness because ‖Π ~w mod q‖2
could be smaller than ‖Π ~w‖2. Gentry, Halevi, and Lyubashevsky prove that,
despite the potential reduction mod q, the proof strategy is still sound, on the
condition that b < q/45d. They use a 256-bit prime q, so this restriction is
not a problem for them. However, for efficiency reasons we want to use a small
modulus q (e.g. q ≈ 232), so we strengthen their result to only require b < q/125
instead. We believe this lemma could be useful for future works in lattice-based
proof systems. Its proof relies on the Berry-Esseen Theorem [Ber41, Ess42], and
is given in Appendix A.

Lemma 4.2 (strengthening of Corollary 3.3, [GHL21]). Let q ∈ N, and
let C be the distribution from lemma 4.1, then for every vector ~w ∈ [±q/2]d with
‖~w‖2 ≥ b for some bound b ≤ q/125, we have

Pr
Π←C256×d

[
‖Π ~w mod q‖2 <

√
30b
]
. 2−128 .

5 Protocol

5.1 Principal Relation

We define the principal relation R for our proof system. The relation is parame-
terized by a rank n ≥ 1, a multiplicity r ≥ 1, and a norm bound β > 0. It consists
of short solutions to dot product constraints over Rq that can be proven effi-
ciently with lattice techniques. Concretely, a statement consists of a family F =
(f (k) | k = 1, . . . ,K) of quadratic dot product functions f : Rnq ×· · ·×Rnq → Rq
(r times) of the form

f(~s1, . . . , ~sr) =

r∑
i,j=1

aij〈~si, ~sj〉+

r∑
i=1

〈~ϕi, ~si〉 − b ,

where ai,j , b ∈ Rq and ~ϕi ∈ Rnq . The matrix (aij) can be assumed to be sym-
metric without loss of generality, i.e. aij = aji. Sometimes we are only interested

10

in the constant polynomial coefficient of a function f . For such a function all the
higher coefficients of the polynomial b are irrelevant so we do not include them in
the statement. This saves space, especially when there are many such functions.
We collect these functions in a second family F ′ = (f ′(l) | l = 1, . . . , L) in a state-
ment for the relation R. Now, a witness consists of r vectors ~s1, . . . , ~sr ∈ Rnq
such that f(~s1, . . . , ~sr) = 0 for all f ∈ F , ct (f ′(~s1, . . . , ~sr)) = 0 for all f ′ ∈ F ′,
and

∑r
i=1 ‖~si‖

2
2 ≤ β2. In symbols,

R =

((F ,F ′, β), (~s1, . . . , ~sr))

∣∣∣∣∣∣∣∣∣∣
f(~s1, . . . , ~sr) = 0 ∀f ∈ F ,

ct (f ′(~s1, . . . , ~sr)) = 0 ∀f ′ ∈ F ′ ,
r∑
i=1

‖~si‖22 ≤ β
2

 .

We reduce R1CS to this relation R in Section 6. In this section, we construct
an interactive proof for R with very compact proof sizes. Our proof introduces
a small amount of slack, which means that it does not exactly prove knowledge
of a solution with norm bound β, but only a solution with a norm bound that is
slightly bigger, approximately by a factor of two. This does not pose a problem
for our reduction from R1CS.

5.2 Main Protocol

Our main protocol is an interactive proof for the principal relation R that works
by committing to the witness vectors, replacing the norm statement with a
Johnson-Lindenstrauss projection, aggregating the dot product functions, and
amortizing over the witness vectors.

Committing. In the first step of the protocol the prover commits to the vectors
~si by computing Ajtai commitments

~ti = A~si ∈ Rκq .

We have that ‖~si‖ ≤ β, but the commitments must tolerate some slack. Espe-
cially because they need to be binding with respect to weak openings extracted
from an amortized opening. We handle this in the security analysis of the pro-
tocol.

Sending all the ~ti would be costly. Therefore the prover again commits to them
in a single Ajtai commitment ~u1 and only sends ~u1. This allows to only send
the ~ti as part of the prover’s last message and thus push the ~ti to the target
relation of the protocol, which can be proven recursively with little cost. The ~ti
have coefficients that are arbitrary modulo q. So they need to be decomposed
into t1 ≥ 2 parts with respect to a small base b1 before committing. That is,

one writes ~ti = ~t
(0)
i + ~t

(1)
i b1 + · · · + ~t

(t1−1)
i bt1−11 where centered representatives

11

modulo b1 are used, i.e. ‖~t(k)i ‖∞ ≤ b1/2. Now let ~t ∈ Rrt1κq be a concatenation

of all the decomposition parts ~t
(k)
i . Then we get the Ajtai commitment

~u1 = B~t ∈ Rκ1
q , with ‖~t‖ ≤ γ1 . (1)

We say that ~u1 is an outer commitment, and ~ti, i = 1, . . . , r, are the inner
commitments. The decomposition parameters t1, b1 and the norm bound γ1 are
discussed in Subsection 5.4.

Projecting. Now, the norm statement in the relation R can be replaced by a
Johnson-Lindenstrauss projection. So the verifier sends random matrices Πi ∈
{−1, 0, 1}256×nd for i = 1, . . . , r. Then the prover sends the projection ~p =∑r
i=1Πi~si. The verifier checks that ‖~p‖ ≤

√
128β. This is true with probability

1/2, but the prover can request projection matrices until it is the case. Moreover,

it implies with overwhelming probability that
∑r
i=1 ‖~si‖

2 ≤ (128/30)β2. Here

the slack of a factor of
√

128/30 ≈ 2 is introduced. For proving correct projection,
we write ~p =

∑
iΠi~si as dot product constraints on the polynomial vectors ~si.

Let ~π
(j)
i be the jth row of Πi for j = 1, . . . , 256. Then for each j = 1, . . . , 256

define the dot product function

r∑
i=1

〈σ−1(~π
(j)
i), ~si〉 − pj .

These functions do not vanish in Rq but have zero constant coefficients. So they
are of the form of the functions in the family F ′.

Aggregating. In the first aggregation step, the above functions for proving the JL
projection and the functions in F ′ are aggregated to only d128/ log qe functions
with zero constant coefficients by linear combining all functions with uniformly
random challenges from Zq. This preserves the zero constant coefficients. So the

verifier sends ~ψ(k) $← (Zq)L and ~ω(k) ∈ (Zq)256 for k = 1, . . . , d128/ log qe, where
L = |F ′|. The prover computes

f ′′(k)(~s1, . . . , ~sr) =

L∑
l=1

ψ
(k)
l f ′(l)(~s1, . . . , ~sr) +

256∑
j=1

ω
(k)
j (〈σ−1(~π

(j)
i), ~si〉 − pj)

=

r∑
i,j=1

a′′(k)〈~si, ~sj〉+

r∑
i=1

〈~ϕ′′(k)i , ~si〉 − b′′(k)0 ,

where b
′′(k)
0 =

∑
l ψ

(k)
l b
′(l)
0 + 〈~ω(k), ~p〉. Then the prover extends these integers

to full polynomials b′′(k) so that the new functions f ′′(k) become completely
vanishing and of the same type as the functions in F . The prover sends the b′′(k)

and the verifier checks that their constant coefficients are correct.

In the second step, we aggregate all functions in F together with the new func-

tions. The verifier sends K+d128/ log qe random challenge polynomials ~α
$← RKq

12

and ~β
$← Rd128/ log qeq , where K = |F|. Then, define

F (~s1, . . . , ~sr) =

K∑
k=1

αkf
(k)(~s1, . . . , ~sr) +

d128/ log qe∑
k=1

βkf
′′(k)

=

r∑
i,j=1

aij〈~si, ~sj〉+

r∑
i=1

〈~ϕi, ~si〉 − b .

Amortizing. Finally, we amortize over the ~si. This means that instead of opening
the individual inner commitments ~ti by sending all the ~si, the prover opens a
random linear-combination ~z = c1~t1 + · · · + cr~tr with challenge polynomials
ci ∈ C ⊂ Rq chosen by the verifier. The verifier checks that

A~z =

r∑
i=1

ci~ti ∈ Rκq and ‖~z‖ ≤ γ . (2)

The aggregated dot product constraint F (~s1, . . . , ~sr) = 0 is proven probabilisti-
cally using the amortized opening ~z. This works by proving

〈~z, ~z〉 =

r∑
i,j=1

gijcicj ,

r∑
i=1

〈~ϕi, ~z〉ci =

r∑
i,j=1

hijcicj ,

r∑
i,j=1

aijgij +

r∑
i=1

hii − b = 0 ,

(3)

where ~ϕi ∈ Rnq are vectors independent of the challenges ci, and the gij , hij are
garbage polynomials that are also independent of the ci. If z = c1~s1+ · · ·+cr~sr,
then these equations together imply with low soundness error that

F (~s1, . . . , ~sr) =

r∑
i,j=1

aij〈~si, ~sj〉+

r∑
i=1

〈~ϕi, ~si〉 − b = 0 .

Moreover, the garbage matrices (gij) and (hij) can assumed to be symmetric.

This strategy is implemented in the protocol in the following way. The prover
computes the garbage polynomials

gij = 〈~si, ~sj〉 and hij =
1

2
(〈~ϕi, ~sj〉+ 〈~ϕj , ~si〉)

for i, j = 1, . . . , r. Then, similarly to the inner commitments ~ti, the prover does
not directly send the garbage polynomials but produces an outer commitment to
them. Here the hij are again arbitrary modulo q and hence will be decomposed
into t1 parts modulo b1. On the other hand, the remaining garbage polynomials
gij are short modulo q. Nevertheless, they are decomposed into t2 ≥ 2 parts

13

with respect to a base b2 to reduce their width further. Let ~g ∈ Rt2(r
2+r)/2

q

and ~h ∈ Rt1(r
2+r)/2

q be vectors containing all the decomposition parts of all the
garbage polynomials. Then the second outer commitment is given by

~u2 = C~g +D~h ∈ Rκ2
q with

√
‖~g‖2 + ‖~h‖2 ≤ γ2. (4)

We note that the garbage polynomials gij are independent of all challenges, not
just the ci. Therefore the prover can compute them already at the very beginning
of the protocol and include them in the first outer commitment ~u1. This change
allows for a slightly better security proof.

Finally, the verifier sends the r challenge polynomials c1, . . . , cr
$← C, and the

prover replies with the amortized opening ~z = c1~s1 + · · · + cr~sr and the outer
commitment openings ~t, ~g, ~h. The amortized opening is such that ‖~z‖ ≤ γ.

Verifying. The verifier checks that ~z is an amortized opening with challenges
ci for the inner commitments defined by ~t, and that ~t and ~g, ~h are openings
for the outer commitments. That is, he checks (1),(2),(4). Moreover, the verifier
checks the dot product equations (3) where the vectors ~ϕi, matrix (aij), and
polynomial b are those defining the aggregated function F .

5.3 Recursion and Decomposition

The target relation of our main protocol is almost another instance of the dot
product constraint relation R. Indeed, the witness as given by the last prover
message consists of four vectors ~z, ~t, ~g, ~h that must only fulfill equations of
dot product type and norm checks in (1),(2),(3),(4). The only difference is that
there are three separate norm checks instead of a single global one. But those
checks only serve to ensure that the outer and inner commitments are binding.
So, when we consolidate the three checks into

‖~z‖2 + ‖~t‖2 + ‖~g‖2 + ‖~h‖2 ≤ γ2 + γ21 + γ22 ,

we obtain a protocol that is sound for a suitable choice of the commitment
ranks κ, κ1 and κ2, and whose target relation is exactly another instance of
R. A different approach would be to generalize R by allowing several norm
checks, which could be handled in the protocol with several parallel Johnson-
Lindenstrauss projections.

It now follows that the protocol can be recursed to further reduce the proof
size. See Section 3 for details and specifically Lemma 3.7 for how this affects the
soundness error. The protocol relies on amortization to achieve small proof sizes,
so before directly recursing the protocol on the target relation we first decrease
the rank and increase the multiplicity by decomposing the witness vectors and
rewriting the target relation using the decomposed vectors. We also reduce the
width of the masked opening ~z and decompose it into two additive parts by
reducing modulo a base b.

14

We start by slightly simplifying the target relation. Notice that all Equations (1)-

(4) except the norm checks are linear in the witness vectors ~t, ~g, ~h. So we may
concatenate

~v = ~t ‖ ~g ‖ ~h ∈ Rmq .

Then we can write all equations as linear dot product equations in the single
vector ~v ∈ Rmq , where m = rt1κ + (t1 + t2)(r2 + r)/2. The global norm check

becomes ‖~z‖2 + ‖~v‖2 ≤ γ2 + γ21 + γ22 .

Decomposing the witness. If we would naively recurse our proof protocol and
repeatedly fold the witness, then the coefficients of ~z would quickly blow up.
Therefore, we decompose ~z into 2 additive parts by reducing the coefficients of
~z modulo a base b ≥ 2; that is, we write ~z = ~z(0) + b~z(1) with centered represen-
tatives modulo b. The quadratic dot product 〈~z, ~z〉 in Equation (3) transforms
to 〈~z(0), ~z(0)〉 + 2b〈~z(1), ~z(0)〉 + b2〈~z(1), ~z(1)〉. There is no need to decompose ~v
since its width is controlled in the preceding execution of the protocol. So the
reduction of ~z can be anticipated and the decomposition bases b1 and b2 chosen
such that b ≈ b1 ≈ b2. The final norm check we will use is

‖~z(0)‖2 + ‖~z(1)‖2 + ‖~v‖2 ≤ 2

b2
γ2 + γ21 + γ22 = (β′)2. (5)

This implies ‖~z‖ =
∥∥~z(0) + b~z(1)

∥∥ ≤ (1 + b)β′.

Next, to prepare for the next iteration of our protocol, we write the vectors

~z(0), ~z(1) ∈ Rnq as a concatenation of ν ≥ 1 vectors ~s′i ∈ R
dn/νe
q , i.e., ~z(0) = ~s′1 ‖

· · · ‖ ~s′ν , ~z(1) = ~s′ν+1 ‖ · · · ‖ ~s′2ν , and similarly we write ~v = ~s′2ν+1 ‖ · · · ‖ ~s′2ν+µ
as a concatenation of µ vectors ~s′i ∈ R

dm/µe
q . We then zero-pad all ~s′i to have

length n′ = max {dn/νe, dm/µe}. To avoid padding too much, we choose the
parameters such that n

ν ≈
m
µ . So, we now have r′ = 2ν+µ vectors ~s′i of rank n′.

Now, observe that the final verification equations are the norm check (5), and
κ + κ1 + κ2 + 3 dot product constraints, i.e., equations that can be written in
the form,

g(k)(~s1, . . . , ~sr′) =

r′∑
i,j=1

a
(k)
ij 〈~si, ~sj〉+

r′∑
i=1

〈~ϕ(k)
i , ~si〉 − b(k) = 0 (6)

for k = 1, . . . , κ + κ1 + κ2 + 3 = K ′. The matrices (a
(k)
ij) are symmetric and

tridiagonal, i.e. aij = aji, and aij = 0 for |i− j| > 1. Furthermore, a
(k)
ij = 0

unless i, j ≤ 2ν.

We let G = {g(k) | k = 1, . . . ,K ′} be the new family of dot product con-

straints. Then the verifier accepts if and only ‖~p‖ <
√

128β, b
′′(k)
0 is correct, and

((G, {}, β′), (~s′i)i∈[r′]) is in R with parameters n′, r′, β′, so we can indeed compose
the protocol with itself recursively.

15

We have now finished the description of our protocol. It is completely presented
in Figure 2, which includes the consolidated norm statement (5) from this sec-
tion.

5.4 Norm Bounds and Decomposition Parameters

We now study the norm bound β′ of the target relation that is derived from the
bounds γ, γ1, γ2 on ~z, ~t ‖ ~g and ~h, respectively. The bounds γ1 and γ2 are in turn
derived from the decomposition parameters. The goal of the analysis is to choose
bounds that are as small as possible while still being feasible in the honest execu-
tion of the protocol. Our analysis is heuristic, rather than worst-case, whenever
this is allowed by the security proof. Although we have observed experimentally
that our heuristics are highly accurate, it could happen that during an execution
of the protocol some quantities are larger than predicted by our analysis. This
does not affect the soundness of our proof and only potentially affects the proof
size or prover runtime. For security, we need that the commitments are binding
with respect to the lengths of the vectors that actually appear in an execution
of the protocol. If the vectors turn out longer than expected the prover needs
to either restart the protocol until the vectors are short enough, or increase the
commitment parameters dynamically to ensure the commitments are binding.

Assume that the Zq-coefficients of the vectors ~si have standard deviation s =

β/
√
rnd. Then each Zq-coefficient of ~z is the sum of rd coefficients from the

~si, each multiplied with a challenge coefficient. The sum of the coefficients of
a challenge polynomial has variance τ . So we can model the coefficients of ~z =∑
i ci~si as Gaussian with standard deviation s

√
rτ .

Before the next recursion level the vector ~z is usually decomposed into two parts
by reducing it modulo a base b. The coefficients of the low part are uniformly
random modulo b and hence have standard deviation essentially b/

√
12. The

coefficients of the high part are still Gaussian with standard deviation s
√
rτ/b.

If

b =

⌊√√
12rτs

⌉
,

then the low and high coefficients have about the same standard deviation
s′ = b/

√
12 ≈ s

√
rτ/b. This determines how the inner commitments and garbage

matrices are decomposed at the current level for producing the outer commit-
ments. Indeed, as already explained, the coefficients of ~t, ~g, ~h should all have
standard deviation similar to s′ since together with the parts of ~z they are going
to form the new ~si. Recall that in the uniformly random case of ~t and ~h, one
wants to decompose into t1 ≥ 2 parts. The minimal base for this is b1 = dq1/t1e.
We want b1 ≈ b, and therefore set

t1 =

⌊
log q

log b

⌉
.

In the Gaussian case of ~g we first need to analyze the standard deviation of
the garbage polynomials gij = 〈~si, ~sj〉. For i 6= j, each Zq-coefficient of gij is

16

Prover P Verifier V

~s1, . . . , ~sr ∈ Rnq ,
r∑
i=1

‖~si‖22 ≤ β
2 ~ϕ

(k)
i ,a

(k)
ij , b

(k)

b(k) =
r∑

i,j=1

a
(k)
ij 〈~si, ~sj〉+

r∑
i=1

〈~ϕ(k)
i , ~si〉, k ∈ [K] ~ϕ

′(l)
i ,a

′(l)
ij , b

′(l)
0

b′(l) =
r∑

i,j=1

a
′(l)
ij 〈~si, ~sj〉+

r∑
i=1

〈~ϕ′(l)i , ~si〉, l ∈ [L]

~ti = A~si = ~t
(0)
i + · · ·+ ~t

(t1−1)
i bt1−1

1

gij = 〈~si, ~sj〉 = g
(0)
ij + · · ·+ g(t2−1)

ij bt2−1
2

~u1 =
r∑
i=1

t1−1∑
k=0

Bik~t
(k)
i +

∑
i≤j

t2−1∑
k=0

Cijkg
(k)
ij

~u1 -

Πi = (~π
(j)
i)j

� Πi
$← χ256×nd

pj =
r∑
i=1

〈~π(j)
i , ~si〉

~p = (pj)
- ‖~p‖

?

≤
√

128β

~ψ(k) $← (Zq)L

a
′′(k)
ij =

L∑
l=1

ψ
(k)
l a

′(l)
ij

~ψ(k), ~ω(k)

� ~ω(k) $← (Zq)256

~ϕ
′′(k)
i =

L∑
l=1

ψ
(k)
l ~ϕ

′(l)
i +

256∑
j=1

ω
(k)
j σ−1(~π

(j)
i)

b′′(k) =
r∑

i,j=1

a
′′(k)
ij 〈~si, ~sj〉+

r∑
i=1

〈~ϕ′′(k)i , ~si〉 b′′(k) - b
′′(k)
0

?
= 〈~ω(k), ~p〉

+
L∑
l=1

ψ
(k)
l b
′(l)
0

~α
$← RKq

~ϕi =
K∑
k=1

αk ~ϕ
(k)
i +

d128/ log qe∑
k=1

βk ~ϕ
′′(k)
i

~α, ~β
� ~β

$←Rd128/ log qe
q

hij =
1

2
(〈~ϕi, ~sj〉+ 〈~ϕj , ~si〉)

= h
(0)
ij + · · ·+ h(t1−1)

ij bt1−1
1

~u2 =
∑
i≤j

t1−1∑
k=0

Dijkh
(k)
ij

~u2 -

ci� ci
$← C

~z = c1~s1 + · · ·+ cr~sr
~z, ~ti, gij ,hij

- VERIFY(st, tr)

Fig. 2. Our main Protocol. The common reference string consists of the commitment
matrices A ∈ Rκ×nq , Bik ∈ Rκ1×κ

q for 1 ≤ i ≤ r, 0 ≤ k ≤ t1 − 1, Cijk ∈ Rκ2×1
q for

1 ≤ i ≤ j ≤ r, 0 ≤ k ≤ t2 − 1, and Dijk ∈ Rκ2×1
q for 1 ≤ i ≤ j ≤ r, 0 ≤ k ≤ t1 − 1.

17

VERIFY(st, tr)

01 st = (~ϕ
(k)
i ,a

(k)
ij , b

(k), ~ϕ
′(l)
i ,a

′(l)
ij , b

′(l)
0)

02 tr = (~u1, ~π
(j)
i , ~p, ~ψ(k), ~ω(k), b′′(k), ~α, ~β, ~u2, ci, ~z, ~ti, gij ,hij)

03 a
′′(k)
ij =

∑L
l=1 ψ

(k)
l a

′(l)
ij

04 ~ϕ
′′(k)
i =

∑L
l=1 ψ

(k)
l ~ϕ

′(l)
i +

∑256
j=1 ω

(k)
j σ−1(~π

(j)
i)

05 aij =
∑K
k=1αka

(k)
ij +

∑d128/ log qe
k=1 βka

′′(k)
ij

06 ~ϕi =
∑K
k=1αk ~ϕ

(k)
i +

∑d128/ log qe
k=1 βk ~ϕ

′′(k)
i

07 b =
∑K
k=1αkb

(k) +
∑d128/ log qe
k=1 βkb

′′(k)

08 gij
?
= gji

09 hij
?
= hji

10 ~z = ~z(0) + ~z(1)b, ‖~z(0)‖∞ ≤ b
2

11 ~ti = ~t
(0)
i + · · ·+ ~t

(t1−1)
i bt1−1

1 , ‖~t(k)i ‖∞ ≤
b1
2

, k ≤ t1 − 2

12 gij = g
(0)
ij + · · ·+ g(t2−1)

ij bt2−1
2 , ‖g(k)ij ‖∞ ≤

b2
2

, k = 0 ≤ t2 − 2

13 hij = h
(0)
ij + · · ·+ h(t1−1)

ij bt1−1
1 , ‖h(k)

ij ‖∞ ≤
b1
2

, k ≤ t1 − 2

14
∑1
i=0

∥∥∥~z(i)
∥∥∥2+

∑r
i=1

∑t1−1
k=0

∥∥∥~t(k)i

∥∥∥2+
∑r
i,j=1

∑t2−1
k=0

∥∥∥g(k)ij

∥∥∥2+
∑r
i,j=1

∑t1−1
k=0

∥∥∥h(k)
ij

∥∥∥2
?

≤ (β′)2

15 A~z
?
= c1~t1 + · · ·+ cr~tr

16 〈~z, ~z〉 ?
=
∑r
i,j=1 gijcicj

17
∑r
i=1〈~ϕi, ~z〉ci

?
=
∑r
i,j=1 hijcicj

18
∑r
i,j=1 aijgij +

∑r
i=1 hii − b

?
= 0

19 ~u1
?
=
∑r
i=1

∑t1−1
k=0 Bik~t

(k)
i +

∑
1≤i≤j≤r

∑t2−1
k=0 Cijkg

(k)
ij

20 ~u2
?
=
∑

1≤i≤j≤r
∑t1−1
k=0 Dijkh

(k)
ij

Fig. 3. Verification algorithm for Figure 2. The algorithm checks that the last prover
message is a witness for the target relation, which is an instance of the principal relation
from Subsection 5.1. In particular, the algorithm uses the consolidated norm check in
Line 14 as discussed in Subsection 5.3. The other checks in Lines 15–20 are of dot
product type.

18

the sum of nd products of two coefficients with standard deviation s. Therefore,
we model the coefficients of ~gij as Gaussian with standard deviation

√
nds2.

On the other hand, for i = j, each coefficient is essentially twice the sum of
nd/2 products of two coefficients with standard deviation s. Hence, in this case,
we model the coefficients as Gaussian with standard deviation

√
2nds2. If they

are decomposed into t2 parts modulo b2, then the t2 − 1 low parts are uniform
with standard deviation b2/

√
12 and the high part is Gaussian with standard

deviation
√

2nds2/bt2−12 . So we want b2 =
⌊
(
√

24nds2)1/t2
⌉
. We also want b2 ≈ b

and thus

t2 =

⌊
log(
√

24nds2)

log b

⌉
.

Now we turn to the norms. The coefficients of ~z are not independent but we
found experimentally that the `2-norm is nonetheless around s

√
rτnd = β

√
τ .

The same holds for the other vectors ~t and ~g ‖ ~h. We therefore use the following
norm bounds

γ = β
√
τ ,

γ1 =

√
b21t1
12

rκd+
b22t2
12

r2 + r

2
d,

γ2 =

√
b21t1
12

r2 + r

2
d,

β′ =

√
2

b2
γ2 + γ21 + γ22 .

5.5 Security Analysis

For the completeness of the protocol in Figure 2, one can observe as usual that
the verification equations defining the target relation are fulfilled in an honest ex-
ecution of the protocol. The norm check is also satisfied according to our heuristic
analysis from Subsection 5.4. The more interesting part is proving the knowl-
edge soundness of our protocol, under the assumed hardness of Module-SIS. Our
result is given in Theorem 5.1, and the proof can be found in Appendix B.

Theorem 5.1. Let C be the challenge space C ⊂ Rq from Section 2 consist-
ing of polynomials with `2-norm τ and operator norm T . Suppose that Module-
SIS is hard for rank κ1 = κ2 and norm 2β′, and also hard for rank κ and
norm max(8T (b + 1)β′, 2(b + 1)β′ + 4T

√
128/30β). Further suppose that β ≤√

30/128q/125. Then the protocol in Figure 2 is a knowledge-sound proof for re-

lation R with soundness error ε0 = 2−125 and norm slack
√

128/30 ≈ 2, i.e. the

extractor is only guaranteed to output a witness with norm at most
√

128/30β.

Remark 5.2. The norm bounds for the hardness of Module-SIS in the Theorem
are relative to the norm bound β′ in the target relation, i.e. a bound on the

19

vectors revealed by the prover in his last message. If the protocol is recursed so
that the verifier can not directly check the norm, but instead only gets a proof
for it with slack

√
128/30, then the bounds for the Module-SIS hardness must

also be increased by this factor.

5.6 No Outer Commitments and Fewer Garbage Polynomials

In the last level of the recursion, there is no point in producing the outer com-
mitments as their openings are going to be sent at the end of the protocol.
Moreover, not committing to the garbage polynomials allows us to use interac-
tion as in [NS22] to reduce the number of garbage polynomials. We now explain
this modification for the garbage polynomials hij in the verification equation∑
i〈~ϕi, ~z〉ci =

∑
i,j hijcicj . The r challenges ci are spread out over 2r rounds

where the prover and verifier alternate between sending garbage polynomials
and challenges. In this way the garbage polynomials in the (2i− 1)th round can
depend on the challenges c1, . . . , ci−1. This in turn allows us to combine many
of the previous garbage polynomials in a single polynomial if it is not necessary
to separate between them. In round 2i− 1, i ≥ 1, the prover sends

h2i−1 =
∑

1≤j<i

(〈~ϕj , ~si〉+ 〈~ϕi, ~sj〉) cj ,

h2i = 〈~ϕi, ~si〉.
The verifier sends the ith challenge ci in round 2i. The verification equation
becomes

r∑
i=1

〈~ϕi, ~z〉ci =

r∑
i=1

(
h2i−1ci + h2ic

2
i

)
.

So there are merely 2r − 1 (non-zero) garbage polynomials instead of (r2 +
r)/2 before. This still proves h2i = 〈~ϕi, ~ϕi〉 with soundness error 2r/2128. The
verifier is only interested in these diagonal terms as only those are needed for
the verification equation

∑
i,j aijgij +

∑
i h2i = b. The prover can not use later

garbage terms to correct any error since in the verification equation the garbage
terms are being multiplied by random challenges not known when he needs
to send the the garbage terms. Any potential correction gets distorted by the
random challenges. See [NS22, Lemma 2] for a formal treatment. The same
technique can be applied to the other challenge polynomials gij . In the last
iteration of the main protocol the target relation of the previous iteration of the
main protocol is proven. The corresponding instance of the principal relation R
has multiplicity r = ν + µ because we choose not to decompose ~z before the
last round of the protocol. Therefore, the only nonzero aij in all dot product
functions have i = j ≤ ν. Indeed, the only quadratic function is for proving
〈~z, ~z〉 =

∑
i,j gijcicj from the previous iteration of the main protocol. Hence, the

verifier is only interested in the gii for i = 1, . . . , ν. By reordering the challenges
in the protocol we can now use the verification equation

〈~z, ~z〉 = g0 +

ν∑
i=1

(g2i−1ci + g2ic
2
i)

20

with only 2ν + 1 garbage terms.

5.7 Proof Size

The size of the non-interactive variant (via Fiat-Shamir) of the main protocol is
given by the size of the outer commitments ~u1, ~u2, the Johnson-Lindenstrauss
projection ~p, and the d128/ log qe polynomials b′′(k) for proving the partial func-
tions F ′ and the JL projection. For computing the size of ~p we model the vector
as Gaussian distributed with standard deviation β

√
1/2. Then using standard

tail bounds we assume that each coefficient can be encoded using log(12β/
√

2)
bits. Alternatively, one can directly compute the entropy of the Gaussian co-
efficients. The last prover message only needs to be counted once for the last
iteration of the protocol. The challenges can all be expanded from short 128-bit
seeds. So, this yields the following proof size in bits:

(κ1 + κ2)d log q︸ ︷︷ ︸
Outer commitments

+ 256 log(12β/
√

2)︸ ︷︷ ︸
JL projection

+

⌈
128

log q

⌉
d log q︸ ︷︷ ︸

JL proof

+ 4 · 128︸ ︷︷ ︸
Challenges

.

The last prover message consisting of masked opening ~z, inner commitments ~ti,
and garbage polynomials gij , hij has size

nd log
(

12β
√
τ/nd

)
︸ ︷︷ ︸

~z

+ rκd log q︸ ︷︷ ︸
~ti

+
r2 + r

2
d log

(
12
√

2/(r2nd)β2
)

︸ ︷︷ ︸
gij

+
r2 + r

2
d log q︸ ︷︷ ︸

hij

.

Optimizing the Recursion Strategy. As explained, for small proof sizes we want
to recurse the protocol several times. Essentially until the size of the last prover
message is not anymore bigger than an optimal proof for it. The central goal
of the recursion is to reduce the witness rank n. This is achieved in each re-
cursion level by the decomposition of the masked opening ~z into ν parts in the
construction of the target relation for the next level, c.f. Subsection 5.3. Here
it is important to find a good trade-off between a small ν that does not reduce
the rank by much and hence results in more recursion levels, and a large ν that
results in a large number of garbage polynomials in the next level. Recall that
there are r2 + r garbage polynomials in the next level for r = 2ν + µ. The
garbage polynomials (and inner commitments) are expanded so that they be-
come approximately as wide as the (reduced) masked opening. So the vectors

~z(0) ‖ ~z(1) and ~v = ~t ‖ ~g ‖ ~h of rank 2n and m, respectively, are similarly wide.
Then the amortization at the next level is as effective as possible. But there is
only one global norm check for the two vectors so we also want their norm to be
similar; that is, 2n ≈ m. We choose ν at each level such that this is the case.

6 Proving R1CS.

In this section, we show how to reduce rank-1 constraint systems to our dot
product constraint systems.

21

Definition 6.1 (rank-1 constraint system (R1CS).). A rank-1 constraint
system of k constraints in n variables consists of three matrices A,B, C ∈ Zk×nN

modulo an integer N . We say a vector ~w ∈ ZnN satisfies the system if A~w◦B ~w =

C ~w, where ◦ denotes the component-wise product, i.e. (~a◦~b)i = aibi. This defines
the R1CS relation mod N as follows

RR1CS =

((A,B, C), (~w))

∣∣∣∣∣∣
A,B, C ∈ Zk×nN

~w ∈ ZnN
A~w ◦ B ~w = C ~w

 .

Binary R1CS.

We first give an efficient reduction from RR1CS to R, for binary R1CS (i.e.,
N = 2). We can compose this reduction with our proof system from section 5 to
efficiently prove binary R1CS. Padding with zeros if necessary, we can assume
that the number of constraints and the number of variables are multiples of d, the
dimension of R. The reduction works as follows. The prover sends a commitment
~t = A(~a||~b||~c||~w), where ~w is the R1CS witness, and ~a = A~w,~b = B ~w,~c = C ~w.

Then we prove knowledge of an opening (~a, ~b,~c, ~w) to the commitment ~t, such

that indeed ~a = A~w mod 2,~b = B ~w mod 2,~c = C ~w mod 2, such that the
coefficients of ~a, ~b,~c, ~w are binary, and such that ~a ◦~b = ~c. These are proven as
follows:

– To prove that the coefficients of ~a are binary, the prover proves knowledge of
~̃a such that ~̃a = σ−1(~a), and such that the constant term of 〈~a, ~̃a−1〉 is zero.
This constant term is equal to

∑
i ~ai(~ai− 1) mod q. The prover also proves

that ‖~a||~̃a||~b||~̃b||~c||~̃c||~w|| ~̃w‖2 <
√
q, which implies that

∑
i ~ai(~ai− 1) is zero

over the integers, meaning that ~a indeed has binary coefficients. This follows
from

∑
i ai(ai−1) ≤ 2 ‖~a‖22 = ‖~a||~̃a‖22 < q. If n+3k < 15q/128 the l2-norm of

~a||~̃a||~b||~̃b||~c||~̃c||~w|| ~̃w is smaller than
√
q by at least the slack factor

√
128/30,

so we can prove this with the main protocol of Section 5. The main protocol
also supports supports Zq-linear equations such as ~̃a = σ−1(~a), constant

terms of inner-product relations over Rq such as 〈~a, ~̃a−a〉. Proving that the

coefficients of ~b,~c, and ~w are binary is handled in the same way.

– To prove that ~a◦~b = ~c, we use the observation that for integers a, b, c ∈ {0, 1}
we have ab = c if and only if a + b− 2c ∈ {0, 1}. A similar observation was

used in [GOS12]. So the prover just has to prove that ~a+~b− 2~c has binary

coefficients, which he does by proving that the constant term of 〈~a + ~b −
2~c, ~̃a + ~̃b− 2~̃c− 1〉 is zero mod q, which implies it is zero over the integers,
because

∑
i(ai + bi − 2ci)(ai + bi − 2ci − 1) ≤ 6k < q.

– Rather than proving the 3k linear relations ~a′ = A~w′,~b′ = B ~w′,~c′ = C ~w′
modulo 2 separately, we use the usual technique of first combining them into
fewer relations. To do this, the verifier chooses, l F2-linear combinations of

22

the equations at random, and then the prover proves that only these l equa-
tions are satisfied. This results in a soundness error of 2−l. Concretely, the
verifier sends {~αi, ~βi, ~γi}i∈[l], the binary coefficients of the l linear combina-
tions. The prover and the verifier both compute

~δi = Lift(αiAT + βiBT + γiCT mod 2) ∈ Zdnq
such that

〈αi, ~a−A~w〉+ 〈βi, ~b− B~w〉+ 〈γi,~c− C ~w〉

= 〈αi, ~a〉+ 〈βi, ~b〉+ 〈γi,~c〉 − 〈δi, ~w〉 mod 2

The prover responds with gi = 〈αi, ~a〉+〈βi, ~b〉+〈γi,~c〉−〈δi, ~w〉 ∈ Zq for all i
in [l]. Note that there cannot be an overflow mod q, if we assume n+3k < q,

and we prove that ~a,~b,~c, ~w have binary coefficients. The verifier checks that
the gi are indeed 0 mod 2. Then it is proven that the gi are computed
correctly mod q, which can be delegated to the protocol of Section 5 because
these are a small number of Zq-linear equations on the coefficient vectors of
the witness.

The full protocol is given in Figure 4, where with some abuse of notation we
define two sets of inner product functions over Rq. (where Zq-linear functions f
should be interpreted as the unique Rq-linear function f ′ such that ct (f ′) = f .)

F1 ={A(~a||~b||~c||~w)−~t}

F2 ={~̃a = σ−1(~a), ~̃b = σ−1(~b), ~̃c = σ−1(~c), ~̃w = σ−1(~w),

〈~a, ~̃a− 1k/d〉, 〈b̃, ˜̃
b− 1k/d〉,

〈~c, ~̃c− 1k/d〉, 〈w̃, ˜̃w − 1n/d〉,

〈~a + ~b− 2~c, ~̃a + ~̃b− 2~̃c− 1〉}

∪ {〈αi,~a〉+ 〈βi,~b〉+ 〈γi,~c〉 − 〈δi, ~w〉 − gi}i∈[λ] .

Theorem 6.2. If n+ 3k < q and 6k < q, then the proof of knowledge reduction
of Figure 4 is computationally knowledge-sound with soundness error 2−l, under
the assumption that MSISm,2n+6k is hard with an l∞-norm bound of 1. Moreover,
if n + 3k < 15q/128, then there is enough slack to compose the reduction with
the main protocol of Section 5.

R1CS modulo 2d + 1.

We now give a way to prove knowledge of a witness for an R1CS instance modulo
2d + 1. We use the ring morphism of evaluating at X = 2

ϕ : R → Z2d+1 :

d−1∑
i=0

aiX
i 7→

d−1∑
i=0

ai2
i mod 2d + 1 .

23

Prover P Verifier V
Inputs:

~w ∈ {0, 1}n A,B, C ∈ {0, 1}k×n ⊂ Zk×nq

A ∈ Rm/d×(3k+n)/d
q

~a← Lift(A~w mod 2) ∈ {0, 1}k

~b← Lift(B ~w mod 2) ∈ {0, 1}k

~c← Lift(C ~w mod 2) ∈ {0, 1}k

~t = A(~a||~b||~c||~w) mod q

~t -

{~αi, ~βi, ~γi}i∈[λ]
� ~αi, ~βi, ~γi

$← {0, 1}k

∀i ∈ [λ] :

~δi ← Lift(αiAT + βiBT + γiCT mod 2)

gi ← 〈~αi,~a〉+ 〈~βi,~b〉+ 〈~γi,~c〉 − 〈~δi, ~w〉
{gi}i∈[λ]

- V rejects if gi

is odd for some i

~̃a, ~̃b← σ−1(~a), σ−1(~b)

~̃c, ~̃w← σ−1(~c), σ−1(~w)

~r = (~a, ~b,~c, ~w, ~̃a, ~̃b, ~̃c, ~̃w)
~r - V accepts if and only if:

((F1,F2,
√
q),~r) ∈ R

Fig. 4. Proof of knowledge reduction from binary R1CS to R.

24

Using the non-adjacent form [Rei60], we can encode each element a ∈ Z2d+1 as
an element Enc(a) ∈ Rq with coefficients in {−1, 0, 1} and with l2-norm at most√
d/2, such that ϕ(Lift(Enc(a))) = a. We then have ϕ(Lift(Enc(a)Enc(b))) =

ab mod 2d + 1, as long as no overflow mod q happens in the multiplication of
the encodings.

In our proof system for R1CS mod 2d+1, the prover commits to small encodings
of A~w,B ~w, C ~w, and ~w in Rq, and proves knowledge of an opening with l2-norm
< β (where β is small enough to ensure the commitment is binding under MSIS)

that encodes ~a,~b,~c, ~w ∈ Z2d+1 that is well-formed (meaning that ~a = A~w, etc.),

and which additionally satisfies the quadratic constraints ~a◦~b = ~c. The strategy
to prove the quadratic constraints is to let the verifier send l challenge vectors
ϕi ∈ Zkd2+1, and let the prover prove that 〈ϕi,~a ◦ ~b − ~c〉 = 0 for all i ∈ [l].

This has soundness error p−l, where p is the smallest prime factor of 2d + 1. For
example, the smallest prime factor of 264 + 1 is 18 bits long, so we can choose
l = d128/18e = 8 to get a negligible soundness error 1. To prove 〈ϕi,~a◦~b−~c〉 = 0

mod 2d + 1, the prover computes ~di = ϕi ◦~a for all i ∈ [l] and commits to small
encoding of these in Rq. Then the prover proves knowledge of a short opening

that encodes ~di such that ϕi ◦ ~a = ~di, and 〈~di,B ~w〉 = 〈ϕi, C ~w〉.

The relationsA~w−~a = 0,B ~w−~b = 0, C ~w−~c = 0, ϕi◦~a−~di = 0, 〈~di,~b〉−〈ϕi,~c〉 = 0
mod X−2 are all linear relations or dot product relations. We let the verifier send
l sets of challenges in Z2d+1 to aggregate the equations into l linear combinations.
This aggregation step also has a soundness error of p−l, where p is the largest
prime factor of 2d + 1. Concretely, the verifier sends a challenge vectors c(i) =

(α(i), β(i), γ(i), δ
(i)
1 , . . . , δ

(i)
l) ∈ Zk×l+3

2d+1
, which defines the l linear combinations

fi(~a,~b,~c, ~w, {~di}) :=〈α(i),A~w − ~a〉+ 〈β(i),B ~w −~b〉+ 〈γ(i), C ~w − ~c〉

+ 〈~di,~b〉 − 〈ϕi,~c〉+

l∑
j=1

〈δ(i)j , ϕi ◦ ~a− ~di〉 .

Let ~a, ~b,~c, ~w and the ~di be the short encodings of ~a,~b,~c, ~w and the ~di respec-
tively, and let f̃i(~a, ~b,~c, ~w, {~di}) be the dot product function over Rq obtained

by replacing all the coefficients of fi(~a,~b,~c, {~di}) by short encodings in Rq. The

prover computes gi = f̃i(~a, ~b,~c, ~w, {~di}) for all i ∈ [l] over the ring Rq (where

we are guaranteed no overflows mod q occur if
√

(n+ (3 + l)k)dβ + β2/2 < q),
sends the gi to the verifier, and proves that they are computed correctly using
our main protocol. The verifier checks that the main proof was valid and that
the gi are indeed zero mod X − 2. The protocol is displayed in Figure 5.

Theorem 6.3. Let β ∈ R such that
√

(n+ (3 + l)k)d/2β + β2/2 < q, then
the protocol from Figure 5 is a computationally sound proof of knowledge with

1 In 1855, Thomas Clausens mentioned in a letter to Gauss that he managed to fac-
torize 264 + 1 into its prime factors 274177 and 67280421310721, adding that the
latter was probably the largest prime number known at the moment [Bie64].

25

soundness error 2p−l, where p is the smallest prime factor of 2d + 1, under the
assumption that MSISm,n+3k and MSISmd,lk are hard with an l2-norm bound of

β. If (n+(3+ l)k)d < 0.3q, then we can put β =
√

128/30
√

(n+ (3 + l)k)d/2 to
have enough slack to compose the proof with the main protocol from Section 5.

Prover P Verifier V
Inputs:

~w ∈ Z2d+1 A,B, C ∈ Zk×n
2d+1

A ∈ Rm×(3k+n)
q

B ∈ Rmd×(lk)
q

~a← Enc(A~w)

~b← Enc(B ~w)

~c← Enc(C ~w)

~w← Enc(~w)

~t = A(~a||~b||~c||~w) mod q
~t -

{~ϕi}i∈[l]
� ∀i ∈ [l] : ~ϕi

$← Zk2d+1

∀i ∈ [l] : ~di ← Enc(ϕi ◦ A~w)

~td = B(~d1|| . . . ||~dl)
~td -

{c(i)}i∈[l]
� ∀i ∈ [l] : c(i) ← Zk(l+3)+l

2d+1

∀j ∈ [l] :

gj ← f̃j(~a, ~b,~c, ~w, {~di})
{gj}j∈[l]

- V rejects if gj is not

divisible by X − 2

for some j ∈ [l]

~r = (~a, ~b,~c, ~w, {~di}i∈[l])
~r - V accepts if and only if:

(({f̃j}j∈[l], {}, β),~r) ∈ R

Fig. 5. Proof of knowledge reduction from R1CS mod 2d + 1 to R.

Mixing rank-1 constraints modulo 2 and modulo 2d + 1.

The binary R1CS is useful to prove ‘binary’ constraints, such as proving the cor-
rect computation of a cryptographic hash function, integer comparison, range
proofs, and table lookups in small tables. On the other hand, the R1CS mod

26

2d + 1 is more suitable for proving arithmetic constraints, such as integer addi-
tion and multiplication. Many applications require proving a mix of both kinds
of constraints. For example, proving knowledge of a valid Dilithium signature,
requires proving a lot of arithmetic modulo q = 8380417, which would be ex-
pensive to express as a binary circuit, but also `2-norm checks and hashing to a
set of fixed-weight challenges, which is more difficult to express as an arithmetic
circuit.

Luckily, it is possible to combine our proofs for binary R1CSs and R1CSs mod-
ulo 2d + 1. Let ~w ∈ {0, 1}dn be a binary witness that satisfies a binary R1CS
instance Abin,Bbin, Cbin ∈ {0, 1}k×dn, and that simultaneously encodes a witness
~w ∈ Zn2d+1 for an R1CS instance Aarith,Barith, Carith ∈ Zk×n

2d+1
. The prover then

sends an Ajtai commitment ~t to Abin ~w,Bbin ~w, Cbin ~w,Enc(Aarith~w), Enc(Barith~w),
Enc(Carith~w), and ~w and runs the two proofs in parallel. Both the proof of the
binary R1CS and the proof of the R1CS mod 2d+1 reduce to an instance of our
dot product constraint relation R. The prover then proves both instances with
a single execution of our main protocol for R.

6.1 Proof Sizes of Our Protocol for R1CS

We now compute proof sizes for R1CS using the protocol from Section 6 followed
by several recursive iterations of the main protocol from Section 5 where the
last execution uses the variant without outer commitments and fewer garbage
polynomials. The amortized opening ~z is always reduced in width (b ≥ 2) except
in the second to last execution. This minimizes the number of garbage terms
going to be sent in the very last execution. We use the ring Zq[X]/(Xd+1) with
degree d = 64 and modulus q ≈ 232 splitting into two prime ideals of degree
d/2, and the challenge space C ⊂ Rq from Section 2 consisting of challenges
with `2-norm τ and operator norm T . The commitment ranks κ, κ1 and κ2 are
computed in each level so that Module-SIS meets our desired security level of
128 bits for the norm bounds in Theorem 5.1. More precisely, we estimate the
hardness of Module-SIS using the Core-SVP methodology [ADPS16] with the
BDGL sieve [BDGL16]. The various other system parameters are computed as
described in Section 5. Table 1 contains the proof sizes of the comparison of our
proof of R1CS mod 264 + 1 with other SNARKs in the literature, as discussed
in the introduction and displayed in Figure 1. Table 2 contains the proof sizes
for binary R1CS with the number of constraints k varying between 220 and 225,
and n = k. Table 3 contains the (relation) parameters in each level of recursion
of the main protocol for the case of proving binary R1CS with 225 constraints.

References

ACL+22. Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and
Sri Aravinda Krishnan Thyagarajan. Lattice-based snarks: Publicly ver-
ifiable, preprocessing, and recursively composable. IACR Cryptol. ePrint
Arch., page 941, 2022.

27

Proof system 210 211 212 213 214 215 216 217 218 219 220

Brakedown 1279 1597 1974 2200 2710 3165 3926 4824 6122 7899 10230
Aurora 235 278 323 376 420 461 519 664 720 766 831
Ligero 135 180 299 364 615 721 1239 1415 2461 2797 4905

Shockwave 72 95 122 160 210 284 386 523 721 990 1384
LaBRADOR 47 47 49 51 52 52 54 54 57 57 58

Table 1. Proof sizes in kilobytes for R1CS with a varying number of constraints.

No. of constraints 220 221 222 223 224 225

Proof Size 49.02 49.37 51.47 51.6 52.7 53.84

Table 2. Proof sizes in kilobytes for binary R1CS with a varying number of constraints.

Level length multiplicity witness size output size
n r (KB) (KB)

R1CS 7→ R 4096.00 0.5
1 37450 112 32768.00 3.98
2 4780 33 5107.27 3.99
3 1231 15 712.99 3.52
4 616 8 196.10 3.37
5 326 7 85.49 3.34
6 326 5 55.84 4.22
7 163 4 41.20 30.91

Total 53.84

Table 3. Relation parameters and proof sizes for the recursive executions of the main
protocol in the proof of binary R1CS with k = 225 constraints.

28

ADPS16. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In USENIX Security Symposium,
pages 327–343. USENIX Association, 2016.

AF21. Thomas Attema and Serge Fehr. Parallel repetition of (k1, . . . , kµ)-special-
sound multi-round interactive proofs. Cryptology ePrint Archive, Paper
2021/1259, 2021. https://eprint.iacr.org/2021/1259.

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkita-
subramaniam. Ligero: Lightweight sublinear arguments without a trusted
setup. In CCS, pages 2087–2104. ACM, 2017.

ALS20. Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical product
proofs for lattice commitments. In CRYPTO (2), volume 12171 of Lecture
Notes in Computer Science, pages 470–499. Springer, 2020.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Gregory Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In IEEE Symposium on Security and Privacy, pages
315–334. IEEE Computer Society, 2018.

BBC+18. Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens
Groth, and Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge
arguments for arithmetic circuits. In CRYPTO (2), volume 10992 of Lecture
Notes in Computer Science, pages 669–699. Springer, 2018.

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. Efficient zero-knowledge arguments for arithmetic circuits
in the discrete log setting. In EUROCRYPT (2), volume 9666 of Lecture
Notes in Computer Science, pages 327–357. Springer, 2016.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct ar-
guments for R1CS. In EUROCRYPT (1), volume 11476 of Lecture Notes in
Computer Science, pages 103–128. Springer, 2019.

BDGL16. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New direc-
tions in nearest neighbor searching with applications to lattice sieving. In
SODA, pages 10–24. SIAM, 2016.

Ber41. Andrew C Berry. The accuracy of the gaussian approximation to the sum
of independent variates. Transactions of the american mathematical society,
49(1):122–136, 1941.

BG92. Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In
CRYPTO, volume 740 of Lecture Notes in Computer Science, pages 390–
420. Springer, 1992.

Bie64. Kurt-R. Biermann. Thomas clausen, mathematiker und astronom.
1964(216):159–198, 1964.

BLNS20. Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor
Seiler. A non-pcp approach to succinct quantum-safe zero-knowledge. In
CRYPTO (2), volume 12171 of Lecture Notes in Computer Science, pages
441–469. Springer, 2020.

ENS20. Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical
exact proofs from lattices: New techniques to exploit fully-splitting rings.
In ASIACRYPT (2), volume 12492 of Lecture Notes in Computer Science,
pages 259–288. Springer, 2020.

ESLL19. Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. Lattice-
based zero-knowledge proofs: New techniques for shorter and faster construc-
tions and applications. In CRYPTO (1), volume 11692 of Lecture Notes in
Computer Science, pages 115–146. Springer, 2019.

29

https://eprint.iacr.org/2021/1259

Ess42. Carl-Gustav Esseen. On the liapunoff limit of error in the theory of proba-
bility. Arkiv för Matematik, Astronomi och Fysik., 28:1–19, 1942.

GHL21. Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. Practical non-
interactive publicly verifiable secret sharing with thousands of parties. IACR
Cryptol. ePrint Arch., page 1397, 2021.

GLS+21. Alexander Golovnev, Jonathan Lee, Srinath T. V. Setty, Justin Thaler, and
Riad S. Wahby. Brakedown: Linear-time and post-quantum snarks for R1CS.
IACR Cryptol. ePrint Arch., page 1043, 2021.

GOS12. Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for nonin-
teractive zero-knowledge. Journal of the ACM (JACM), 59(3):1–35, 2012.

KS10. V Yu Korolev and Irina G Shevtsova. On the upper bound for the abso-
lute constant in the berry–esseen inequality. Theory of Probability & Its
Applications, 54(4):638–658, 2010.

LNP22. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Lattice-
based zero-knowledge proofs and applications: Shorter, simpler, and more
general. IACR Cryptol. ePrint Arch., page 284, 2022.

LS18. Vadim Lyubashevsky and Gregor Seiler. Short, invertible elements in
partially splitting cyclotomic rings and applications to lattice-based zero-
knowledge proofs. In EUROCRYPT (1), volume 10820 of Lecture Notes in
Computer Science, pages 204–224. Springer, 2018.

NS22. Ngoc Khanh Nguyen and Gregor Seiler. Practical sublinear proofs for R1CS
from lattices. IACR Cryptol. ePrint Arch., page 1048, 2022.

Rei60. George W. Reitwiesner. Binary arithmetic. Adv. Comput., 1:231–308, 1960.

A Proof of Lemma 4.2

Proof. We give a proof by cases:

Case 1: ‖~w‖2 < q/10. If ‖Π ~w mod q‖2 <
√

30b then either ‖Π ~w‖2 <
√

30b,
which happens with probability at most 2−128 by lemma 4.1, or there is a row
~πi of Π, such that 〈~πi, ~w〉 ∈ [kq −

√
30b, kq +

√
30b] for a non-zero integer k.

Since
√

30b <
√

30q/125 < 0.05q, this means that |〈~πi, ~w〉| > 0.95q. However, by
lemma 4.1, we have for each i that |〈~πi, ~w〉| > 0.95q with probability at most
2−141. So, by a union bound over all the 256 rows of Π we have

Pr
Π←C256×d

[
‖Π ~w mod q‖2 ≤

√
30b
]

≤ Pr
Π←C256×d

[
‖Π ~w‖2 <

√
30 ‖~w‖2

]
+ 28 · 2−141 . 2−128 .

Case 2: ‖~w‖∞ ≥ q/60. Let i be an index such that |wi| ≥ q/60, and let ~π be a
row of P . Fix all the entries of ~π except the i-th entry, if |〈~π, ~w〉| ≤ q/120, with
πi = 0, then |〈~π, ~w〉| > q/120 for πi = 1 and πi = −1, so |〈~π, ~w〉| ≤ q/120 with

probability at most 1/2. Since
∑29
i=0

(
256
i

)
< 2128, we have that the probability

that 29 or fewer entries of Π ~w are larger than q/120 is less than 2−128. Since√
30b <

√
29q/120, we have

Pr
Π←C256×d

[
Π ~w <

√
30b
]
< Pr
Π←C256×d

[
Π ~w <

√
29q/120

]
< 2−128 .

30

Case 3: ‖~w‖2 ≥ q/10 and ‖~w‖∞ < q/60. In this case, there exists a vector
~v ∈ [−q/2, q/2]d with q/11 ≤ ‖~v‖2 < q/10, and vi = wi or vi = 0 for all i ∈ [d].
Such a ~v can be constructed, starting from ~v = ~w, and repeatedly setting entries
of ~v to zero, until ‖~v‖2 < q/10. Setting a single entry to zero reduces ‖~v‖22 by at

most ‖~w‖2∞ < q2/602, so the final ~v satisfies

q/11 ≤
√
q2/102 − q2/602 ≤ ‖~v‖2 < q/10 .

We have that 〈~π, ~w〉 = 〈~π,~v〉+ 〈~π, ~w−~v〉, and 〈~π,~v〉 is independent of 〈~π, ~w−~v〉,
because ~v and ~w − ~v have disjoint support. Now we argue that |〈~π, ~w〉| >

√
30b,

with a fairly large probability. The intuition is that, since ‖~v‖∞ < 11/60 ‖~v‖2,
the l2-norm of ~v is not concentrated too much in a few entries, so intuitively
〈~p,~v〉 is the sum of many small independent variables, and its distribution should
therefore be close to a normal distribution. We can formalize this with the Berry-
Esseen Theorem (with the constant 0.52 from [KS10]), which says that if X =
X1 + · · · + Xk is a sum of independent variables with zero mean, variances
E[X2

i] = σ2
i > 0, and third moments E[|Xi|3] = ρi, and if Y is a random variable

following a normal distribution with zero mean and variance
∑
i σ

2
i then

sup
x
|Pr[X ≤ x]− Pr[Y ≤ x]| ≤ 0.52

maxki=1 ρi/σ
2
i√∑

i σ
2
i

.

We apply the Berry-Esseen Theorem to 〈~π,~v〉 =
∑d
i=1 πivi. The i-th summand

has variance v2i /2 and third moment |vi|3/2, so we have maxki=1 ρi/σ
2
i = ‖~v‖∞

and the sum of the variances is ‖~v‖22 /2. So we get

sup
x
|Pr[〈~π,~v〉 ≤ x]− Pr[Y ≤ x]| ≤ 0.52

√
2
‖~v‖∞
‖~v‖2

≤ 0.52
√

2
q

60

11

q
< 0.15 ,

where Y follows a normal distribution with standard deviation ‖~v‖2 /
√

2.

Fix any value a ∈ [−q/2, q/2]. We will upper bound the probability that |〈~π, ~w〉
mod q| <

√
30b, conditioned on 〈~π, ~w−~v〉 = a mod q. We can only have |〈~π, ~w〉

mod q| <
√

30b if either |〈~π,~v〉| > q/2 (which happens with probability at most
2−141 by lemma 4.1), or if 〈~π,~v〉 ∈ G, where

G = {x | |x+ a mod q| <
√

30b} ∩ [−q/2, q/2] .

This G has measure 2
√

30b < 2
√

30q/125, so since the width of Y is at least

q/11, the probability that Y falls in G is at most 11·2
√
30q√

2·3.14q125 < 0.39. Either G or

[−q/2, q/2] \ G is an interval, so it follows from the Berry-Esseen theorem that
|〈~π,~v〉| ∈ G with probability at most 0.39 + 2 · 0.15. Therefore

Pr
Π←C256×d

[
Π ~w <

√
30b
]
< (0.69 + 2−141)256 < 2−137 . ut

31

B Proof of Theorem 5.1

Proof. Let P∗ be a deterministic prover for the protocol with success probability
ε > ε0. First, notice that the prover always sends the same outer commitment ~u1

in its first message. So the inner commitments ~ti and garbage matrix (gij) from
the last message must be the same in all accepting transcripts since they are
an opening of norm at most β′ for the commitment ~u1, which is binding under
the assumed hardness of Module-SIS for rank κ1 and bound 2β′. Similarly, the
garbage matrix (hij) must be the same in all accepting transcripts that coincide

in the upper challenges Πi, ~ψ
(k), ~ω(k), ~α, ~β.

The extractor first runs P∗ repeatedly with freshly sampled challenges in each
run until it hits an accepting transcript. This takes expected time 1/ε. As a result
the inner commitments ~ti are known. Then weak openings ~s∗i of norms 2(b+1)β′

to the inner commitments are extracted in the usual way for amortized proofs
[NS22, Section 4]. For each i = 1, . . . , r, the extractor samples a first random
accepting transcript by running the prover repeatedly with all challenges freshly
sampled in each run. With probability 1/2 this first transcript is such that the
challenges cj for j 6= i define a heavy row for ci. So in this case, the prover’s
success probability is at least ε/2 > 2−128 when it is run with ci freshly sampled,
but cj for j 6= i fixed to the values in the first transcript. Then the extractor finds
a second accepting transcript that differs in ci but not in the cj in expected time
at most 1/(ε/2−2−128). From the two accepting transcripts with i-th challenges
ci and c′i, and amortized openings ~z and ~z′, the extractor can compute the weak
opening ~s∗i = (~z − ~z′)/c̄i for ~ti where c̄i = ci − c′i. We have ‖c̄i~s∗i ‖ ≤ 2(b+ 1)β′

so the weak opening is of norm 2(b+ 1)β′.

It remains to prove that the ~s∗i must fulfill the norm bound (with slack) and
the dot product functions in the statement. We start with the norm and derive
an upper bound on the success probability of P∗ under the assumption that the
norm is too big; that is, ‖~s∗1‖2 + · · ·+ ‖~s∗r‖2 > (128/30)β2.

In this situation, according to Lemma 4.2, the probability that a random tran-
script is accepting and the vector ~p is the correct projection of the ~s∗i is at most
2−128 since the verifier checks that ‖~p‖ ≤

√
128β. Otherwise, consider the event

where a transcript is accepting but ~p 6=
∑r
i=1Πi~s

∗
i , i.e. pj0 6=

∑
i〈~π

(j0)
i , ~s∗i 〉 for

some j0. The probability for this event and that all the polynomials b′′(k) are
honestly computed is at most q−d128/ log qe ≤ 2−128. By honestly computed we
mean

b′′(k) =

r∑
i,j=1

a
′′(k)
ij gij +

r∑
i=1

〈~ϕ′′(k)i , ~s∗i 〉

for all k = 1, . . . , d128/ log qe. The reason for the low probability is that the veri-
fier checks the constant coefficients of the b′′(k). More precisely, the corresponding
verification equations contain the additive and independently uniformly random

32

terms

ct

(
r∑
i=1

〈ω(k)
j0
σ−1(~π

(j0)
i), ~s∗i 〉

)
− ω(k)

j0
pj0 = ω

(k)
j0

(
r∑
i=1

〈~π(j0)
i , ~s∗i 〉 − pj0

)
.

Here we have used that the garbage polynomials gij are independent of the chal-

lenges ω
(k)
j0

. Indeed, as explained, the gij are the same in all accepting transcripts.

Next, consider accepting transcripts where the b′′(k) are maliciously computed,
say b′′(k0) is malicious for a k0. The probability for this in conjunction with the
equation

r∑
i,j=1

aijgij +

r∑
i=1

〈~ϕi, ~s∗i 〉 − b

=

K∑
k=1

αk

 r∑
i,j=1

a
(k)
ij gij +

r∑
i=1

〈~ϕ(k)
i , ~s∗i 〉 − b(k)


+

d 128
log q e∑
k=1

βk

 r∑
i,j=1

a
′′(k)
ij gij +

r∑
i=1

〈~ϕ′′(k)i , ~s∗i 〉 − b′′(k)
 = 0

is at most q−d/2 because the equation contains the additive independently uni-
formly random term

βk0

 r∑
j,j=1

a
′′(k0)
ij gij +

r∑
i=1

〈~ϕ′′(k0)i), ~s∗i 〉 − b′′(k0)
 .

In particular, this term is independently uniformly random modulo one of the
two prime divisors of degree d/2 of (q). Now, if the equation does not hold
in an accepting transcript, there must be some i0 such that hi0i0 6= 〈~ϕi0 , ~s∗i0〉
since the verifier checks the above equation with 〈~ϕi, ~s∗i 〉 replaced by hii. We
then write ~z = ~y + ci0~s

∗
i0

. Now, ~y is a weak opening of norm 4T (b + 1)β′ for∑
i 6=i0 ci

~ti of rank κ. The prover is bound to ~y for all accepting transcripts whose
challenges differ only in ci0 since a different ~y′ would still be a weak opening for
the same challenge difference c̄i0 . So, ~z must be of the same form in all accepting
transcripts whose challenges differ only in ci0 . Substituting this expression for ~z
into the verification equations gives

∑
1≤i≤r
i 6=i0

〈~ϕi, ~y〉ci +

〈~ϕi0 , ~y〉+
∑

1≤i≤r
i6=i0

〈~ϕi, ~s∗i0〉ci

 ci0 + 〈~ϕi0 , ~s∗i0〉c
2
i0

=
∑

1≤i,j≤r
i,j 6=i0

hijcicj +
∑

1≤i≤r
i6=i0

(hii0 + hi0i)cici0 + hi0i0c
2
i0 .

33

This is a quadratic non-zero polynomial in ci0 whose coefficients are independent
of ci0 . So it can only be zero with probability at most 2 · 2−128. Since this holds
for all accepting transcripts where some hii is malicious we see that this can only
happen with probability at most 2 · 2−128. Finally, adding probabilities shows
that the prover can only produce an accepting transcript with probability at
most

2−128 + q−d128/ log qe + q−d/2 + 2 · 2−128 < 2−125 = ε0.

This is in contradiction to ε > ε0 and hence the norm bound
∑r
i=1‖~s∗i ‖2 ≤

(128/30)β2 must hold.

Now, we turn to the dot product functions. We have already proven that with
probability at least 1 − 2−127, accepting transcripts must be such that hii =
〈~ϕi, ~s∗i 〉 for all i. We now show that gij = 〈~s∗i , ~s∗j 〉 for all i, j. Recall that the gij
are deterministic in that they are the same in all accepting transcripts. Suppose
that gi0j0 6= 〈~s∗i0 , ~s

∗
j0
〉 for some i0, j0. The argument for i0 = j0 follows almost

exactly as for hi0i0 . So we handle the case i0 6= j0. Then, for an arbitrary
accepting transcript we define ~y such that ~z = ~y + ci0~s

∗
i0

+ cj0~s
∗
j0

. Here ~y is

a (strong) opening of norm (b + 1)β′ + 2T
√

128/30β for
∑
i 6∈{i0,j0} ci

~ti. So the

prover is bound to ~y in all accepting transcripts that have the same challenges
ci, i 6∈ {i0, j0}. In these transcripts, we get from the verification equations that

〈~y, ~y〉+ 2〈~y, ~s∗i0〉ci0 + 2〈~y, ~s∗j0〉cj0
+ 2〈~s∗i0 , ~s

∗
j0〉ci0cj0 + 〈~s∗i0 , ~s

∗
i0〉c

2
i0 + 〈~s∗j0 , ~s

∗
j0〉c

2
j0

=
∑

i,j 6∈{i0,j0}

gijcicj +
∑

i 6∈{i0,j0}

2gii0cici0 +
∑

i 6∈{i0,j0}

2gij0cicj0

+ 2gi0j0ci0cj0 + gi0i0c
2
i0 + gj0j0c

2
j0 .

This quadratic non-zero bivariate polynomial in ci0 and cj0 can only evaluate
to zero with probability 2 · 2−128. Since ε > 2−127 this can not be. Now, sup-
pose that some of the functions f (k) do not evaluate to zero or that some of
the functions f ′(l) do not have zero constant coefficients. Then the aggregated
function F only evaluates to zero with probability at most q−d/2 over the chal-
lenges αk,βl. Otherwise, we must have that hii is malicious for some i, which
only happens with probability 2−127. Together, we see that the prover can only
win with probability at most q−d/2 + 2−127 < ε0. This is again a contradiction
and therefore the functions do hold. ut

34

	LaBRADOR: Compact Proofs for R1CS from Module-SIS

