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Abstract—Vehicular-to-Everything (V2X) communications en-
able vehicles to exchange messages with other entities, including
nearby vehicles and pedestrians. V2X is, thus, essential for
establishing an Intelligent Transportation System (ITS), where
vehicles use information from their surroundings to reduce traffic
congestion and improve safety. To avoid abuse, V2X messages
should be digitally signed using valid digital certificates. Messages
sent by unauthorized entities can then be discarded, while
misbehavior can lead to the revocation of the corresponding
certificates. One challenge in this scenario is that messages
must be verified shortly after arrival (e.g., within centiseconds),
whereas vehicles may receive thousands of them per second.
To handle this issue, some solutions propose prioritization or
delayed-verification mechanisms, while others involve signature
schemes that support batch verification. In this manuscript,
we discuss two mechanisms that complement such proposals,
enabling the authentication of a sequence of messages from the
same source with one single signature verification. Our analysis
shows that the technique can reduce the number of verified
signatures by around 90% for reliable communication channels,
and by more than 65% for a maximum packet loss rate of 20%.

Index Terms—Vehicular communications (V2X), security.

I. INTRODUCTION

Reducing traffic congestion and improving safety for ve-
hicles and pedestrians are among the main goals of an In-
telligent Transportation System (ITS). To this end, vehicle-
to-everything (V2X) communications are employed for dis-
tributing information about road conditions (e.g., accident
or speed limit alerts) and nearby vehicles (e.g., position,
speed, and direction) [1]. Given their critical nature, safety
messages must be authenticated, preventing malicious entities
from disseminating fake data. This is usually accomplished by
establishing a Vehicular Public Key Infrastructure (VPKI) [2],
where authorized vehicles receive valid digital certificates for
signing their messages, and can be evicted/suspended from the
system in case of misbehavior. Examples of prominent VPKIs
are the Security Credential Management System (SCMS) [3],
which is part of the IEEE 1609.2 standard [4], and the Coop-
erative Intelligent Transport Systems (C-ITS) [5], proposed by
the European Telecommunications Standards Institute (ETSI).
Both solutions provision vehicles with multiple, simultane-
ously valid pseudonym certificates (e.g., up to 100 [6]). As
a result, vehicles can avoid long-term tracking by periodically
changing the pseudonym employed when signing messages.
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Since vehicles should quickly react to any emergency, safety
messages exchanged among them must follow strict timing
requirements [7]. For example, to enable the quick distribution
of such messages, they are designed to have a small size.
Specifically, their payload is 50-300 bytes [8], plus security-
related information, like a 117-byte pseudonym certificate and
a 64-byte digital signature [9]. Since all messages must be
signed, but four out of five might include only an 8-byte
certificate identifier rather than the actual certificate [10],
their total size should range from 122-481 bytes. Besides, the
maximum latency for processing critical messages (e.g., those
related to crashing avoidance) can be as low as 20 ms [11].

Likewise, it is also imperative to minimize the time taken for
processing safety messages after arrival. Part of this processing
time is due to the application(s) responsible for handling those
messages, such as trajectory prediction and collision avoidance
software. Another important component, though, refers to the
messages’ authenticity verification process, in special because
the number of individual messages received per second by
each vehicle may reach the order of thousands [7][12][13].

Considering the timing requirements, during the standard-
ization of V2X message broadcasting in the United States,
the Crash Avoidance Metrics Partnership (CAMP) considered
three approaches for message authentication [12]: simply using
ECDSA digital signatures [14], the TESLA authentication
scheme (based on Messages Authentication Codes) [15], or a
combination of both (named TADS). In the end, the decision
was to use only ECDSA signatures, an approach that is also
adopted in European standards [16]. In part, this choice was
motivated by the fact that TESLA and TADS rely on the
delayed disclosure of the secret keys employed for authen-
tication, creating critical time dependencies [12, Sec 8.2.1].

In addition, to deal with the large number of messages
received by vehicles, [12] proposes the adoption of a Verify-
on-Demand (VoD) mechanism [7]. In summary, this means
that received messages are first processed by the application
layer, and then their authenticity is verified only when some
warning or control action is needed (e.g., if they indicate the
possibility of a collision). As a result, the security overhead
becomes proportional to the number of relevant messages
received by the vehicle, i.e., only messages that raise the
system’s threat level beyond a defined threshold are verified. In
regular operations, this strategy is expected to be considerably
more efficient than a “verify-then-process” approach, in which
all received messages would have their authenticity verified
before being handed over to the application layer. However,
this higher efficiency due to on-demand verification may
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be problematic when the application layer requires several
messages to be verified at once. This is the case, for example,
for commonly employed trajectory prediction algorithms that
rely on a sliding-window of past messages [17], [18], [19],
[20]; whenever a potential emergency is detected, all messages
in the sliding window that led to the prediction would have
to be verified in batch. The system would then be forced to
decide between two strategies: (1) verify all messages, even if
this delays potentially critical actions; or (2) verify as many
messages as possible in an acceptable time interval, and then
risk to take actions based on false data. Designing mechanisms
to minimize the overhead of individual and multiple signature
verifications in V2X communications is paramount to optimize
either strategy and, thus, avoid the need for more expensive
onboard hardware (one of the goals of VoD itself).

In this manuscript, our goal is to tackle this issue of
efficiently verifying multiple messages sent by the same
pseudonym. Specifically, we evaluate schemes that allow sig-
nature verifications to be traded by operations that orders of
magnitude less resource intensive [21], like hash functions and
Message Authentication Codes (MACs). For that purpose,
we first revisit the TADS scheme from [12], noticing (1)
that its underlying mechanisms can be adapted to efficiently
verify multiple messages on demand, and (2) that CAMP
and subsequent works on secure V2X communications (e.g.,
[22]) only consider ECDSA in a VoD setting, but not TADS.
In addition to this modified, VoD-oriented TADS, we assess
a similarly efficient mechanism that avoids TADS’s inherent
critical time dependencies. Specifically, instead of relying on
delayed disclosure of keys, we consider a mechanism simi-
lar to the Efficient Multi-chained Stream Signature (EMSS)
scheme [15]: the solution is based on hash chaining [23],
meaning that each signed message is linked to its predecessors
by carrying their hashes. In both cases, verifying the signature
of one message is enough to ascertain the authenticity of prior
messages; consequently, at the cost of a small increase in
the messages’ size, one can obtain considerable performance
gains when compared to individual signature verifications. The
resulting solutions are evaluated in different settings, including
tests on the SUMO [24] vehicular network simulator.

The rest of this paper is organized as follows. Sec. II
gives additional background on the contents and requirements
commonly considered for V2X messages. Sec. III describes
strategies for the batch verification of V2X messages, pre-
senting the time-dependent TESLA and TADS schemes, and
a time-independent scheme based on hash chaining. Sec.
IV shows our experimental results. Sec. V discusses related
works. Finally, Sec. VI presents our final considerations.

II. BACKGROUND: V2X COMMUNICATIONS

To support V2X communications, vehicles must have access
to reliable and low-latency radio technology. Some of the
technologies developed for this purpose are Dedicated Short-
Range Communication (DSRC) and Cellular-V2X (C-V2X),
whereas more efficient and scalable alternatives like New
Radio V2X and 802.11bd are currently under development
[25]. Whichever the case, a 300m minimum transmission
radius with a packet error rate below 10% is expected [10].

Using such communication capabilities, vehicles can ex-
change relevant information with their surroundings, including
other vehicles, roadside equipment, and pedestrians. The goal
of those messages is to inform about their respective locations
and status at each time, so adequate actions can be taken (semi-
)automatically to improve transportation safety and efficiency.
For example, with the regular broadcast of position and brake
status, collisions can be avoided if vehicles autonomously
adjust their speed, or issue warnings to drivers not respecting
a safe following distance; as another example, smart traffic
lights can adjust their cycling times aiming to optimize the
flow of vehicles and pedestrians. The expected frequency in
which messages are sent by each vehicle is around 10 Hz (i.e.,
10 messages per second) [10], although some specifications
allow a lower rate, e.g., to avoid communication channel [1].
In a busy road, this may translate to more than 1,000 messages
received per second by each vehicle [7], [12].

Two are the main data formats for conveying V2X safety
information: Basic Safety Messages (BSM), defined in the
SAE J2735 standard [26], [10] and adopted in IEEE 1609.2;
and Cooperative Awareness Messages (CAM) [1], employed in
C-ITS. BSM messages include the following mandatory fields
(which, for privacy-preserving purposes, are not easily linkable
to a specific vehicle, driver, or owner): Message Count, a 7-
bit sequence incremented for every message, which facilitate
detection of transmission errors ; Temporary ID, a random
4-byte number; Time, a timestamp using the Coordinated
Universal Time (UTC); Location, the latitude and longitude
of the vehicle; Elevation, with a 3-meter accuracy; Speed,
reported in increments of 0.02 mph (0.032 km/h); Heading,
i.e., motion of the vehicle’s center; Acceleration, for both
location and elevation; Yaw rate and Steering wheel angle,
which help predicting if the vehicle is spinning; Transmission
state (neutral, reverse, or forward); and Vehicle size (length
and width). SAE J2735 also describes optional fields that can
be sent periodically, possibly at a reduced rate compared to
the overall BSM transmission rate [12]. Examples are brake
system status, path history, path prediction, exterior lights and
multiple event flags (e.g., airbag deployment or flat tire).

The structure of Cooperative Awareness Messages (CAMs)
comprises the same or similar fields, including generation
time, position, speed, heading, and acceleration. One main
exception among the mandatory fields refers to the absence of
the “Message Count” element. Given this similarity between
CAMs and BSMs, we write “BSM” to indicate both types of
safety messages in the rest of this document, unless explicitly
stated otherwise to consider the differences between them.

III. BATCH VERIFICATION OF V2X MESSAGES

In the V2X scenario, all safety messages must be digitally
signed by the sender, so receiving vehicles can check their
authenticity before acting upon them. As a result, messages
are discarded if they have invalid signatures or are not as-
sociated with a certificate issued by an authorized Certificate
Authority (CA). Given the large number of messages received
per second, though, vehicles may be required to prioritize
the verifications of messages considered more critical, using
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Algorithm 1 Batch verification with ECDSA in a VoD setting.
Cost: 1 signature verification per non-null message.

INPUT: m[1..n] . Sequence of n messages to be verified
INPUT: U . Signer’s public key
OUTPUT: V[1..n] . Sequence having only verified messages

1: for (i← n ; i > 0 ; i← i− 1) do
2: if (mi 6= null and checkSig(mi, U )) then
3: Vi ← mi . message received with valid signature
4: return V . 1 signature verification per message

a Verify-on-Demand (VoD) approach [7]. In particular, the
safety applications running on the vehicle could provide a
“threat level” associated with each set of messages received,
based solely on their payload. Whenever the threat level sur-
passes a certain threshold, the authenticity of the n messages
that raised the issue must be verified. Such a batch verification
procedure is required, for example, in Forward Collision
Warning (FCW) applications, where multiple messages are
used for computing the trajectory of a vehicle ahead, in the
same lane and direction. Ideally, this verification should be
finished before any automatic action is taken by the vehicle or
a warning is issued to its occupants, aiming to avoid hazardous
responses or raising false alarms.

In principle, verifying the authenticity of n safety messages
would require checking their n individual signatures. This is
depicted in Algorithm 1, which takes as input a sequence
of BSMs that may include: authentic messages, i.e., whose
signatures are valid; forged messages, with invalid signatures;
and gaps (identified as null), due to errors. The algorithm
then filters out invalid messages, leaving them as gaps in
the output array. We note that, in practice, gaps in the input
sequence can be inferred by the application layer using the
messages’ timestamps. Actually, since BSMs (unlike CAMs)
have a mandatory “Message Count” field [10], gaps can be
even more easily identified when counting values are skipped.

Our goal in this section is to investigate techniques for
avoiding the burden of verifying n individual signatures on
demand as in Algorithm 1. In particular, we focus on mecha-
nisms that considerably accelerate verification whenever (some
of) those n messages come from the same source.

A. Schemes with time dependencies

We start by describing the two schemes considered in
[12] for reducing the cost of V2X message verifications
in comparison with regular ECDSA digital signatures: the
Timed Efficient Stream Loss-tolerant Authentication (TESLA)
scheme [27], and its merger with ECDSA (TESLA and Digital
Signature - TADS). We then show how TADS can be adapted
to a VoD setting, which is our objective with this discussion.

1) TESLA: The Timed Efficient Stream Loss-tolerant Au-
thentication (TESLA) scheme relies on a Message Authenti-
cation Code (MAC) whose secret keys, generated via crypto-
graphic pseudorandom functions, are disclosed in a timeliness
manner. More formally, TESLA considers three sequential
time instants, t0, t1, and t2. At instant t0, the message sender
S commits to a key k by publishing its hash H(k) via an
authenticated channel. This commitment is then used as a

secure anchor for the authentication scheme. At t1, message
m and its authentication tag MACk(m) computed with secret
key k is sent by S. Such a message cannot be authenticated
by receiver R until instant t2, when S publishes k. Then, at
t2, R learns the disclosed k and performs two verifications
for authenticating m. First, R computes H(k) and checks if it
matches the secure anchor of t0. Second, if the first check is
successful, R verifies if MACk(m) matches the authentication
tag received with message m.

The scheme’s security relies on: (1) the fact that it is
infeasible to compute k from H(k), assuming H is a cryp-
tographically secure hash function; and (2) the assumption
that no message authenticated with k is accepted by receivers
after instant t2, when that key is published. Therefore, such a
delayed authentication can be performed safely as long as the
sender and receiver are loosely synchronized.

Building upon this single-message approach, TESLA can be
expanded to authenticate multiple messages, sent at different
time windows. This is accomplished by using a hash chain to
generate multiple keys from the same random seed key ks.
First, the following hash chain is computed:

kn=H(ks); kn−1=H(kn); kn−2=H(kn−1); . . . ; k0=H(k1);

Then, at instant t0, the sender publishes k0 using an authenti-
cated channel as the secure anchor for the following messages.
Thereafter, at instant ti, for 1 ≤ i ≤ n and ti < ti+1, message
mi is sent with authentication tag MACki

(mi). Finally, at
instant tn+1, ks is published. The receiver can then compute
the entire hash chain from ks, and check if the last element
calculated, k′0, matches the broadcast value k0. If that is the
case, all the computed kj (0 ≤ j ≤ n) are considered authenti-
cated, and the receiver proceeds by calculating all MACkj (mj)
and validating the corresponding messages. Aiming to shorten
the authentication delay, the sender may also include key ki−a
(where a ≥ 1) with message mi, so the receiver does not have
to wait until instant tn+1 to start verifying messages.

Despite its high efficiency, and besides the time dependency
resulting from the (delayed) disclosure of keys, TESLA has
two important limitations. The first is that the authentication
scheme is highly dependable on the correct reception of the
secure anchor. After all, if k0 is not received at instant t0, the
receiver cannot authenticate the ensuing messages that depend
on that anchor. The second deficiency is the time delay forcibly
introduced in the verification procedure, since no message in
the chain can be validated before its key is published. The
TESLA and Digital Signature (TADS) scheme was designed
to mitigate these problems.

2) TADS: The TESLA and Digital Signature (TADS)
scheme [12] was proposed to address two deficiencies of the
standalone TESLA: its critical dependency on the distribution
of secure anchors, and delayed message verification. Albeit
quite simple, the solution of adding a digital signature in
complement to the TESLA scheme is effective. Specifically, all
messages in TADS carry, in addition to their authentication tag,
a digital signature. Hence, receivers can fall back to signature
verification when validating messages (1) if the secure anchor
transmission is lost or (2) if verification is required before the
corresponding key (or its seed) is published.
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Algorithm 2 Adapting TADS to VoD. Valid signature enables
the verification of multiple messages using their MACs.

INPUT: m[1..n] . Sequence of n messages to be verified
INPUT: U . Signer’s public key
OUTPUT: V[1..n] . Sequence having only verified messages

1: for (i← n ; i > 0 ; i← i− 1) do
2: if mi 6= null and checkSig(mi, U ) then
3: Vi ← mi ; k ← ki
4: break . valid signature enables MAC computation
5: for (i← i− 1; i > 0 ; i← i− 1) do
6: k ← H(k ‖U) . MAC key for this message
7: if (mi 6= null and checkMac(mi, k)) then
8: Vi ← mi . message received with valid MAC
9: return V . 1 signature verification if all valid

pi-1 ki-2Cert.

pi ki-1Cert.

pi+1 ki Sig(pi+1 || ki || MAC    )Cert.

...

MAC

Sig(pi || ki-1 || MAC  ) MACki

Sig(pi-1 || ki-2 || MAC   )MACki-1

ki+1

ki-1

ki

ki+1

ki-1  = H(ki || U)

ki-2  = H(ki-1 || U)

...

Pre-computed hash chain

Fig. 1: Message verification with VoD-adapted TADS.

The main drawback of TADS in comparison with TESLA
lies, thus, in the additional bandwidth required to transmit
digital signatures with every message.

3) TADS and VoD: It is reasonable simple to adapt the
TADS framework for a VoD setting (see Algorithm 2 and
Fig. 1). Indeed, by using the variant of TESLA where every
message mi carries the key ki−1 employed in the authentica-
tion of the immediately preceding message mi−1, any message
acts as a secure anchor for the key hash chain. Because each
message mi is also signed, verifying this signature indirectly
validates key ki−1, as well as all previous keys ki−j (with
j > 1) that can be derived from it. Note that, with this
adaptation, there is no need for the sender to commit to a
specific security anchor k0. After all, the signature verification
over ki−1 already ensures the legitimacy of any pre-image of
ki−1, including the actual anchor k0. The resulting scheme can
then efficiently handle transmission errors: even if there is a
gap in the sequence of messages to be verified, the receiver can
still use ki−1, validated via signature verification, to compute
the MAC keys for messages placed before and after the gap.

One additional tweak required in this adapted TADS,
though, refers to how the hash chains linking the different
MAC keys are computed: instead of computing ki−1 = H(ki),
vehicles should make ki−1 = H(ki, U), where U is the
public key enclosed in the pseudonym certificate employed
by the signer when sending message mi. The reason for this
modification in the original TADS is to avoid birthday attacks
similar to those discussed in [28]. More precisely, let the keys
employed in the system be ` bits long, so the hash function
employed is truncated to match that length; for example, in
[29], a value of ` = 96 is suggested. Also, suppose that

an attacker A picks random `-bit values x and computes
their corresponding hash chains Hc(x), for some arbitrarily
small c. Assume that A builds a table containing 2`1 pairs
{Hc(x), x} for some arbitrary `1 < `, and is later able to
observe 2`2 secret keys ki disclosed by legitimate vehicles.
According to the birthday paradox, as `1 + `2 approaches `,
there is a high probability that at least one of those ki will
match one of the table indices Hc(x). Whenever that occurs,
A can repeatedly hash the corresponding x to obtain some
kj>i that are valid pre-images of ki. Assuming that such kj>i

match the ones employed by the legitimate sender, rather than
being second pre-images, they can be used by A to compute
valid MACs for forged messages in subsequent time frames
tj>i. This does not allow A to compute valid signatures for
those forged messages, though. In particular, the message that
triggers the verification procedure is likely to have its signature
evaluated by the receiver, and, thus, it might be difficult to
trigger such alerts using this attack technique. Nevertheless,
after a legitimately signed message triggers an alert, attackers
would be able to trick the receiver into accepting some invalid
messages, which in itself may be harmful to the system.

To put this threat in perspective, consider the choice of ` =
96 from [29]. Suppose an attacker A places 200,000 V2X-
enabled communication devices at very busy road points. Each
device is then expected to receive up to 3,000 messages per
second from passing vehicles [13], which roughly translates to
228 messages per day per device. If the attacker builds a table
with 250.5 entries, the fact that 250.5×200, 000×228>296 means
that, daily, at least one vehicle’s message would match a table
entry with high probability. The forgery of MACs would then
be possible for that vehicle. The table itself could be accessed
from some cloud storage, as long as the corresponding server
has an upstream throughput of at least 200, 000×3, 000×12 =
7.2 GBps and can perform the 600 million table look-ups with
low latency. Assuming that the price of a repository with 1
petabyte can be as low as U$35,000 [30], storing 250.5 of
such 24-byte entries would cost less than $175,000.

Fortunately, adding the public key U to the computation
of hash chains as hereby described frustrates such birthday
attacks. The reason is that, analogous to security strings
in SCMS’s certificate linkage procedure [28], each attack
table would only be useful for a specific U . Therefore, the
aforementioned storage costs would have to be multiplied
by the (huge) number of keys in the system. Also, V2X
communications operate with short-lived pseudonyms that are
revealed only when the vehicle starts transmitting messages
under that pseudonym [3], [31]. Consequently, any computa-
tional resource invested for building such attacks would go to
waste after the corresponding pseudonym certificate expires
(e.g., within one week [3]). In the end, besides being thwarted
from building attack tables beforehand, attackers that do so on
the fly would hardly have a chance to find collisions with that
table’s entries given the limited number of legitimate messages
generated under the same U . For example, suppose that a
vehicle sends safety messages uninterruptedly, and alternate
between 40 pseudonym certificates along a week (i.e., every
certificate is used for a total of 24×7/40 = 4.2 hours); even if
an attacker can somehow eavesdrop on all messages sent under
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pi-1 hi-2 Sig(pi-1 || hi-2)Cert.
hi-1  = H(pi-1 || hi-2 || U)

pi+1 hi Sig(pi+1 || hi)Cert.
hi  = H(pi || hi-1 || U)

pi hi-1Cert. Sig(pi || hi-1)

Fig. 2: Message verification via hash chaining.

the same pseudonym in this extreme scenario, there would
be only 4.2 × 36000 ≈ 217 messages to use in the attack.
Consequently, the attack table would require 2`−17 entries,
which should be infeasible for ` > 96.

B. Avoiding time dependencies via message chaining

Albeit efficient, the adaptation of TADS for a VoD setting
described in Sec. III-A3 still critically depends on senders and
receivers being (loosely) synchronized. Otherwise, after key
kj is disclosed, an attacker may modify the original message
mj , turning it into m′j , and recompute its authentication tag as
MACkj (m

′
j). Although forging the corresponding ECDSA sig-

nature for m′j would still be unfeasible, that would be enough
to trick the receiver into accepting m′j as valid whenever only
this message’s authentication tag is verified.

In principle, this need for synchronization should not be
a major issue in V2X communications. After all, (1) safety
messages carry GPS-based timestamps; and (2) the time skew
between vehicles’ clocks and the reference clock should be
below 1.5 ms [29], much lower than the 100 ms interval
between BSMs [10]. Nevertheless, since the NHTSA study
indicated that TADS’s time dependencies are a burden to its
adoption in V2X communication [12, Sec 8.2.1], it is relevant
to consider alternatives without such dependencies. For this
reason, we hereby consider an approach similar to the Efficient
Multi-chained Stream Signature (EMSS) scheme, based on
hash chaining (see Fig. 2): instead of relying on the delayed
disclosure of secret keys, every BSM can carry the hash of its
predecessor, or a few predecessors. The signature of one BSM
can, thus, validate a series of previously received BSMs.

1) Basic scheme: Suppose that the i-th safety message sent
by a vehicle corresponds to the triple mi = (pi, hi−1, sigi),
where: p is the message’s payload (described in Sec. II);
hi−1 =H(pi−1 ‖hi−2 ‖U) is the preceding message’s hash,
mi−1, combined with the sender’s public key U ; and sigi =
Sig(pi ‖hi−1) is the signature of mi, computed using the
sender’s private key whose public counterpart U is enclosed
in a valid pseudonym certificate. In this scenario, if mi’s
signature is authentic, the previously transmitted mi−1 =
(pi−1, hi−2, sigi−1) can be validated by checking whether
hi−1 = H(pi−1 ‖hi−2 ‖U) [15]. After all, attackers should
be unable to forge a message with the same hash as mi−1
unless they find a second pre-image for hi−1, which should
be infeasible for a second pre-image resistant hash function
[32]. Similarly, mi−2 can be considered valid as long as its
hash matches the value of hi−2 enclosed in an authentic mi−1,
and so forth. Hence, when checking a sequence of n messages

Algorithm 3 Batch verification with hash chaining. At the cost
of 1 hash computation, some valid messages can be indirectly
verified and invalid messages are filtered out.

INPUT: m[1..n] . Sequence of n messages to be verified
INPUT: U . Signer’s public key
OUTPUT: V[1..n] . Sequence having only verified messages

1: for (i← n ; i > 0 ; i← i− 1) do
2: if (mi 6= null and checkSig(mi, U )) then
3: Vi ← mi . message received with valid signature
4: while (mi−1 6= null and H(mi−1 ‖U) = hi) do
5: Vi−1 ← mi−1 . Match to hi, carried by valid mi

6: i = i− 1 . skip message: indirectly verified
7: return V . 1 to dn/2e signature verifications if all valid

from a single sender, there is no need to verify each individual
signature sigi−1 . . . sigi−n, since the data authenticated by
such signatures are also indirectly authenticated by sigi.
This allows the receiver to trade signature verifications for
hash computations, amortizing the costs of the former over
multiple messages. Namely, the only situation in which the
described hash chaining approach would not provide any gain
is when every other message is lost during transmission. In
this peculiar case, all dn/2e received messages need to have
their signatures verified because the hashes that would enable
their faster verification would be unavailable.

We note this approach’s resilience to birthday attacks like
those described in Sec. III-A3 against the original TADS.
Once again, this happens because the public key U included
in the hash computation acts as a salt, limiting the attackers’
capability of pre-building an attack table and gathering enough
legitimate messages to find collisions against its entries.

Algorithm 3 shows this verification approach based on hash
chaining. Algorithm 3 assumes that the order of the messages
can be inferred from their timestamps or message count values
(for BSMs). Nevertheless, it can be easily adapted to handle
inputs where multiple messages appear to occupy the same
time slot, i.e., that have very close timestamps or the same
message count. Specifically, since this situation should not
occur unless fake messages are inserted in the network, it
would suffice to look for the first message whose signature
or hash value is valid among the duplicates. If none is found
to be valid, then the authentic message was probably lost
during transmission, and the algorithm would keep null in
the output array’s corresponding position to indicate that loss.

2) Extended chaining: The basic approach described in
Sec. III-B1 can be extended in a manner that each mi carries
multiple hashes instead of one. The motivation for an extended
chaining can be understood with a simple example. Suppose
that each mi includes only the hash for mi−1, as shown in
Fig. 2. If a vehicle receives mi−2 and mi, but misses the
transmission of mi−1, then the link between mi−2 and sigi is
lost. Therefore, the authenticity of the received messages can
only be ascertained by verifying sigi−2 and sigi directly.

To avoid this penalty, mi could carry the hashes for mi−2
and mi−1, so any non-contiguous message loss would not
incur additional signature validations. More generally, a few
hashes of previous (possibly non-contiguous) messages could
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Algorithm 4 Message verification algorithm: extended chain-
ing, assuming that each message carries e hashes. At the cost
of 1 hash computation, some valid messages can be verified
and invalid messages are filtered out.

INPUT: m[1..n] . Sequence of n messages to be verified
OUTPUT: V[1..n] . Sequence having only verified messages

1: M ← new Map() . Messages to verify, mapped by index
2: for all (mi 6= null) do
3: M.put({key : i, value : mi})
4: while (M 6= ∅) do
5: m` ←M.removeMaxKey() . Latest m to be verified
6: if (checkSig(m`)) then . Message’s signature is valid
7: Q← new Queue(m`) . Enqueue verified messages
8: while (Q 6= ∅) do . Try some indirect verifications
9: mi ← Q.Dequeue()

10: Vi ← mi

11: for all (hi−j ∈ mi) do . Check message’s hashes
12: if (mi−j ∈M ) then . mi−j not yet validated
13: if (H(mi−j ‖U) = hi−j) then
14: . Match to hi−j , carried by valid mi

15: Q.Enqueue(mi−j)

16: . Remove mi−j from M: it is valid (above),
17: . or it is invalid due to failed hash verification
18: M.removeKey(i− j)

19: return V . 1 to dn/(e+1)e signatures verified if all valid

be included in each broadcast. Nevertheless, in the specific
context of V2X, such an “extended chaining” approach should
be considered with care, as discussed in what follows.

First, critical applications are the most prone to benefit
from faster verification of a sequence of messages, so they
can help drivers to react quickly. However, they are also less
likely to require the verification of many old messages, in
particular messages older than the driver’s natural reaction
time. Since the average reaction time for an attentive driver is
around 1 second (see [33] and references therein), the ability
to quickly verify sequences containing much more than 10 or
20 messages may not be of much use for critical applications.

Moreover, the bandwidth overhead of each additional hash
is not totally negligible when compared to the size of V2X
messages. More precisely, assume 16-byte hashes, so the
system’s resistance against second pre-image attacks is 2128.
Each hash corresponds, thus, to an overhead of 3% to 13%
over the V2X messages’ expected size of 122-481 bytes; since
the larger size is applies to messages carrying certificates,
which correspond to 20% of all messages, the average commu-
nication overhead for each hash is around 8.3%. We note that
this overhead considers only mandatory BSM fields and, thus,
it should be proportionately smaller if messages also include
optional fields like those mentioned in Sec. II. Given that
reducing the safety messages’ size is a core requirement in
V2X environments, adding much more than one or two hashes
per message may be too much of a bandwidth burden.

Finally, one of the main benefits of this extended chaining
is to make the system more resilient to lossy communication
channels (albeit not as resilient as TADS). In particular, includ-
ing the hashes for non-contiguous packets in each message
is useful to handle burst packet losses: e.g., if two hashes

are placed in mi, then choosing (hi−1, hi−3) instead of
(hi−1, hi−2) allows mi−3 to be indirectly verified even if both
mi−1 and mi−2 are lost. However, in some cases the indirect
verification would not be possible without incurring delayed
verification: e.g., if mi carry hi−1 and hi−3 and mi−1 is lost,
the indirect verification of mi−2 would not be possible until
the arrival of mi+1 (carrying hi and hi−2). Since this delay
translates to about 100 ms, which should be time enough
to verify the signature of mi−2 directly, this benefit of the
extended chaining with non-contiguous hashes would dwindle.
Moreover, empirical studies indicate that burst data loss is
actually not the most common in V2X environments [34], [35].
Indeed, such studies show that Inter-Packet Gaps (IPGs) of up
to 400 ms (i.e., up to 3 contiguous packets lost) are to be
expected, while longer IPGs are usually correlated (e.g., they
indicate that the sender moved too far from the receiver).

C. Impact of changing pseudonym certificates

Both TADS and the described hash chaining approach use
the vehicle’s pseudonym certificate public key U in the com-
putation of chaining sequences. Although this key is regularly
changed during communications, this procedure’s impact on
the performance of both schemes is expected to be minimal
in practice. The reason is that pseudonym changes in V2X
communications should not occur much more often than 2-6
minutes, aiming to preserve the accuracy of safety applications
[36], [37]. The simulation from [29, Appendix G-1] considered
an even worse scenario, where vehicles exchanged their cer-
tificates every minute. With 10 messages sent per second, this
would translate to a scenario where any negative impact from
pseudonym changes occurs only once every 600 messages,
when a new chain has to be created. Even so, the simulation
results showed that less than 1% of the messages are lost due
to the certificate change when TESLA was used.

We also note that, if a vehicle changes its pseudonym,
messages sent under different identities are not expected
to be linked and cannot benefit from the hereby discussed
batch verification methods. After all, the objective behind
a pseudonym certificate system is to provide unlinkability
between messages from different certificates belonging to the
same vehicle. Obviously, a pseudonym change must also lead
to the usage of different chains to ensure privacy preservation.

D. Compatibility with existing standards

At least in principle, the hereby described approaches bene-
fit from the IEEE 1609.2 packet format [4]. The reason is that
this format assumes that the payload to be signed may include
both: (1) data explicitly transported within the packet; and (2)
the hash value of data not explicitly transported within the
packet, but that the sender wants to cryptographically bind
to the signature. Hence, in the case of the hash chaining
approach, this latter “external data” field could correspond to
the hash of the previously sent message (or omitted for the first
message sent under a pseudonym). For TADS, the field could
carry the message’s authentication tag and the key employed
in the preceding message; in this case, and even though a
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MAC is essentially a keyed hash function, this can be seen as
a loose interpretation of this field. With either approach, the
only modification required on current V2X standards would be
on the security profile defined by the J2945/1 format for IEEE
1609.2 messages: this profile should allow additional data to
be signed for BSMs, which is forbidden in [37, Table 10].

As an alternative, the fields added by both solutions (high-
lighted in grey in Figures 2 and 1) could become part of the
payload’s data format, so no other field is required. Actually,
if the mechanism adopted for fast batch verification adds more
than 256 bits to each BSM, this alternative would be inevitable,
given that this is the maximum size of the aforementioned
“external data” field in the J2945/1 message format.

IV. SIMULATION AND ANALYSIS

To evaluate both the schemes described in Sec. III, we sim-
ulated TADS and several hash chaining configurations aiming
to determine their average verification costs. Our simulator,
available at [38], takes into account the following parameters:
• Window size: we consider scenarios in which the se-

quence of messages to be verified fits different batch
sizes. This is useful to assess how each solution would
perform in different application scenarios (e.g., different
window sizes used by a trajectory prediction algorithm).

• Missing packets: the number and pattern of missing
packets inside a message window influence the number
of signatures that must be directly verified by the hash
chaining approach. Thus, our simulations consider all
possible patterns for each window size, going from a
scenario where only mi−1 is missing to a scenario
where mi−1 through mi−w+1 are lost. We also single
out patterns containing only burst data losses, aiming to
evaluate which chaining configurations would better fit
some cases. Albeit such patterns are not likely to be too
common in V2X environments, the corresponding tests
enable the comparison with related works in Sec. V.

• Hash chaining configurations: every mi may carry one,
two or three hashes. We denote by C[p, j, k] the configu-
ration where mi carries (hi−p, hi−j , hi−k), and can thus
be indirectly verified using either mi+p, mi+j or mi+k).
For a window size of w, we evaluate all possible hash
configurations, going from C[1] (i.e., the basic scheme
described in Sec. III-B1) to C[w − 1, w − 2, w − 3].

• psv metric: for each scheme and window size, we
compute the percentage of signature verifications (psv)
for all patterns of missing packets in that window. For
example, when psv = 0.1, this means that 1 message out
of 10 needs to have its signature verified, while the other
9 can have its authenticity checked indirectly, via hash or
MAC computations. Given the negligible cost of hashes
and MACs when compared to signature verifications [21],
the corresponding performance gains are then 1 − psv
(e.g., a psv = 0.1 translates to a performance gain of
90%). We then organize those patterns according to the
total number of packets missed, i.e., going from the most
reliable to a highly lossy communication environment.

First, to determine the best hash chaining configuration for
window sizes w covering different numbers of messages, we

psv % Missed packets
reduction 0 10 20 30 40 50 60 70 80 90

(w
=

1
0

) Standard − TADS .90 .89 .88 .86 .83 .80 .75 .67 .50 .00
Standard − C[1] .90 .79 .68 .57 .46 .36 .25 .15 .06 .00
C[2,1]− C[1] .00 .10 .17 .21 .23 .22 .19 .13 .06 .00
C[3,2,1]− C[2,1] .00 .00 .02 .06 .10 .13 .13 .11 .06 .00

(w
=

2
0

) Standard − TADS .95 .94 .94 .93 .92 .90 .88 .83 .75 .50
Standard − C[1] .95 .85 .74 .64 .53 .43 .32 .22 .12 .03
C[2,1]− C[1] .00 .09 .16 .21 .24 .24 .21 .17 .11 .03
C[3,2,1]− C[2,1] .00 .01 .03 .06 .10 .13 .14 .13 .09 .03

TABLE I: Reduction of psv brought by each additional hash
carried by safety messages, for window sizes w = 10 and
w = 20 (the higher, the better). TADS is included as reference.

simulated every possible combination of hash configurations
for w = 8 to w = 20 (i.e., windows of 0.8 to 2 seconds).
The result is that, on average, the contiguous configurations
(namely, C[1], C[2, 1] and C[3, 2, 1]) display the best psv
in all settings. This is shown in Fig. 3, which is a plot of
the simulation results for w = 10 (left) and w = 20 (right).
For comparison purposes, this figure also shows configurations
where each message carries hashes for similarly-spaced mes-
sages – i.e., for a window size of w the configurations having
C[1+w/2, 1] for two hashes, and C[1+2w/3, 1+w/3, 1] for
three hashes. The potential interest of the latter configurations
is that, according to [15] and to our simulations, they would
lead to the best psv against burst data losses. Nevertheless, as
depicted in Fig. 3, they perform worse than their continuous
counterparts in a V2X scenario, where packet loss is not
expected to follow an exclusively burst pattern [34], [35].

We also evaluated the savings provided by each additional
hash when vehicles need to authenticate a sequence of safety
messages. The goal, in this case, is to assess the difference
between the main curves in Fig. 3, understanding how the
extra bandwidth overhead brought by each hash translates to
lower processing. As shown in detail in Table I, the extra
psv reduction for each hash after the first is small when less
than 20% of the packets are lost. In such situations, a single
hash is enough to ensure processing savings between 68% and
95% when compared to a scenario where all signatures are
directly verified. A second hash may then be useful for less
reliable communication scenarios. Indeed, when the packet
losses reach up to 50%, this additional hash helps to keep
the processing savings above 58%. A third hash, on the
other hand, does not add much in terms of savings for the
simulated messages windows. More precisely, this extra hash
is particularly useful for packet losses higher than 50%, when
the extra processing savings reach up to 14%.

In contrast, the TADS scheme always requires a single
signature verification for any w ≥ 1. Therefore, it provides
lower psv in all scenarios, and is particularly interesting for
larger window sizes and less reliable communication channels.
TADS achieves savings from 80% to 95% when up to 50% of
the packets are lost, considering both window sizes evaluated.

A. Validation with SUMO

In complement to the tests using a dedicated simulator, we
also analyzed the hash chaining and TADS schemes in a traffic
scenario under the Simulation of Urban Mobility (SUMO) tool



8

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9

%
 s

ig
na

tu
re

 v
er

ifi
ca

tio
ns

 (p
sv

)

# missed packets

Standard C[1]
C[2,1] C[6,1]
C[3,2,1] C[7,4,1]
TADS

(a) w = 10

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

%
 s

ig
na

tu
re

 v
er

ifi
ca

tio
ns

 (p
sv

)

# missed packets

Standard C[1]
C[2,1] C[11,1]
C[3,2,1] C[15,8,1]
TADS

(b) w = 20

Fig. 3: Average percentage of signatures verified (psv) for tested window sizes (w) and configurations (lower means better).

Verification Window Size Window Size
Strategy wmax = 10 wmax = 20

Standard 115787 (psv = 1) 217064 (psv = 1)
TADS 14779 (psv = 0.13) 14779 (psv = 0.07)
Chaining C[1] 32681 (psv = 0.28) 52804 (psv = 0.24)
Chaining C[2, 1] 17956 (psv = 0.16) 22020 (psv = 0.10)
Chaining C[3, 2, 1] 15310 (psv = 0.13) 16185 (psv = 0.07)

TABLE II: Number of signatures to be validated by cars in
the SUMO simulation using different verification approaches.

[24]. The goal of such simulation is to evaluate a more realistic
V2X communication scenario, rather than assuming that all
patterns for missing packets are equiprobable.

Our scenario uses the street map of Eichstätt, Germany.
The map is based on the one available at [39], with minor
modifications: routes restricted for pedestrians were removed;
routes restricted for special vehicles were replaced by regular
routes. This map is populated with 300 cars, driving at 3
different speeds (equivalent to 40, 50 and 60 km/h). When cars
get in communication range, the equivalent to 0.5 to 30 meters,
they exchange messages, at a rate of 10 messages per second.
Then, we once again assume that each vehicle may have to
verify all past messages in a window w=10 or w=20 once a
critical message is received (this window includes the critical
message). Each exchanged message has an unconditional 1%
probability of being critical and a 20% unconditional probabil-
ity of being missed. Moreover, since vehicles move at different
speeds, they can get in communication range briefly before a
critical message is received, resulting in smaller window sizes.
In this case, the vehicle analyzes all the messages, even if they
do not reach the expected window size. The total simulation
time was 300 s, and the results use the number of messages
verified by all vehicles. We emphasize that this simulation
scenario is kept small because using a larger number of
vehicles did not lead to more relevant results: after all, our goal
is to evaluate how many signature verifications can be avoided
whenever messages must have their authenticity validated, not
to somehow ”stress” the underlying virtual hardware. In a real-
world, large-scale scenario, the same results hereby obtained
are expected to be observed assuming that the vehicle can
handle as many on-demand verifications as needed (and the
hereby evaluated approaches help with meeting this goal).
The resulting map and simulation scripts are available at [38].

The results of the simulations are summarized in Table
II. As shown in this table, a total of 115787 and 217064
messages have to be verified for w = 10 and w = 20,
respectively. Hence, when no chaining mechanism is employed
(i.e., psv=1), these numbers correspond to the total number
of signature verifications. When each message carries the
hashes of predecessors or uses TADS, though, this number
drops dramatically. Specifically, for the C[1] hash chaining
configuration, the savings are such that psv = 0.28 and
psv = 0.24 for w = 10 and w = 20, respectively. When
messages are verified using TADS, we obtained a psv=0.13
for w = 10, and psv= 0.07 for w = 20. We note that these
numbers are very close to the theoretical results from Fig. 3
for a 20% packet loss. Conversely, the C[2, 1] and C[3, 2, 1]
configurations have a slightly worse performance for w=10.
Nevertheless, for w=20, the results for C[2, 1] and C[3, 2, 1]
are also similar to our theoretical results. Indeed, for w=10,
we obtained psv = 0.16 for C[2, 1] and psv = 0.13 for
C[3, 2, 1], when the expected values would be psv = 0.15
and psv = 0.09, respectively; for w = 20, the result was
psv = 0.10 for C[2, 1] and psv = 0.07 for C[3, 2, 1],
matching the expected psv= 0.10 and psv= 0.07 depicted
in Fig. 3b. Such results corroborate the analysis from Sections
III-A3, III-B2, showing that: (1) inserting at least one hash into
BSMs enables relevant signature verifications savings; (2) for a
verification window as small as 1 or 2 seconds and low packet
loss rates, including a single hash (or maybe two) on each
message is likely to be enough; and (3) when TADS’s time
dependencies can be tolerated, the savings are very significant.

B. Comparison: hash Chaining vs. TADS

As shown in Sec. IV, TADS is particularly interesting for
reducing verification costs in lossy communication channels:
it requires a single valid signature to verify every received
message in a window even if many messages are lost. For
reliable channels, on the other hand, the hash chaining ap-
proach can lead to competitive results. Specifically, C[2, 1] and
C[3, 2, 1] can match TADS’s performance for packet losses
smaller than 10%, and 25%, respectively, whereas C[1] only
matches TADS’s performance when no message is lost.

Each strategy also provides different bandwidth overheads.
For attaining a 128-bit security level, each hash value em-
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Method Bandwidth Time Tolerance to
overhead dependencies? data loss

C[1] 8.3% No Low
TADS 16.5% Yes Highest
C[2, 1] 16.5% No Average
C[3, 2, 1] 24.8% No High

TABLE III: Comparison between the discussed methods.

ployed in a chaining-based approach should be 16-bytes long.
Hence, the overhead of this approach is 16, 32 and 48 bytes
for C[1], C[2, 1] and C[3, 2, 1], respectively (i.e., when using
one, two and three hashes). Similarly, messages protected with
TADS would carry a MAC of up to 16 bytes and a 16-
byte key, so the overhead is at most 32 bytes per message.
As discussed in Sec. III-B2, adding a 16-byte block to V2X
messages translates to a communication overhead of ≈8.3%.

The results of these comparisons are compiled in Table III.

V. RELATED WORKS

There are in the literature works aimed at enabling security
in V2X communications (for a survey on security-related
challenges, see [40]). However, most of the recent studies aims
at efficiently provisioning [3][31] and revoking pseudonym
certificates of misbehaving nodes [41][42][43][44]. These so-
lutions are orthogonal to this study, whose focus is on the
regular use of pseudonym certificates by non-revoked vehicles.

Many works in the literature discuss the challenge and
importance of accelerating BSM verification in V2X environ-
ments [7][12][45][46][47] Solutions involve both the provi-
sioning of highly optimized implementations [45] and enabling
batch verification of signatures [46][47]. Indeed, as described
in [48], ECDSA is amenable to batch verification for small
batch sizes (68); when compared to the individual verification
of signatures, the speed-ups obtained can reach 6× when all
signatures come from the same signer, and 2× for different
signers. In addition, a variant of ECDSA named ECDSA*
[49] enables accelerations for larger batches, with speed-ups
of 7× and 4× when the signatures belong to the same and
to distinct signers, respectively [50]. In the V2X scenario,
such gains can also be combined with the verification of the
corresponding pseudonym certificates [46], [47] to amortize
the latter operation’s costs. Albeit appealing, batch verification
has one important limitation: if it fails (i.e., at least one
invalid signature is in the batch), vehicles must fall back
to single signature verification [51]. Hence, attackers can
force vehicles to repeatedly check individual signatures by
inserting fake messages into the communication. This would
not only nullify the gains expected from batch verification,
but turn the attempt of verifying the batch into a waste of
processing time. Conversely, the hereby evaluated strategies
can trade signature verifications for simpler operations (hash
and MAC computations) when verifying messages from the
same vehicle. Hence, even in the presence of fake messages,
there is no wasted effort in trying to perform such a ”chained
verification” after a valid signature is identified. Besides, the
technique can be combined with batch signature verification
schemes like those in [48],[50] for higher speed-ups whenever
the batch contains some messages from the same signer.

The TADS scheme, whilst analyzed in [12] where it was
originally proposed, has not been evaluated in a VoD setting.
Besides closing this gap, we also contribute to the original
TADS design by improving its resilience to birthday attacks.

Finally, the hash chaining approach hereby described shares
similarities with EMSS [15]. In that scheme, messages are
not individually signed, but instead carry one or more hashes
of previous messages. Periodically, the sender broadcasts a
digitally signed packet containing the hashes of the last sent
message (and optionally of some extra messages, if robustness
against packet loss is desired). Then, receivers need to verify
only the authenticity of the signed packet, which indirectly
validates all messages whose hashes are enclosed in either (1)
the signed packet itself, or (2) any other validated message.
This delayed verification of EMSS does not appear in the
hereby evaluated hash chaining scheme, though, because in the
latter all messages include their own signatures to be verified
whenever needed. This design difference between the schemes
also influences our experimental analysis, which shows that
the best performance is achieved when hashes carried by
each BSM refer to contiguous predecessors. This strikingly
contrasts with EMSS’s recommendations, aimed at increasing
resilience to burst packet loss, where such a configuration
would lead to the worst results [15, Sec. 3.1].

VI. CONCLUSION

In this manuscript, we discuss the challenge of timely
verifying V2X safety messages. In particular, our goal is to
ensure that V2X messages can be verified within tens of
milliseconds, even though each vehicle may receive thousands
of them per second. To this end, we evaluate two mechanisms
in a VoD setting: the TADS scheme proposed in [12], which
is modified to resist attacks based on hash collisions; and a
strategy involved hash chainings, whose main benefit is to
avoid the time dependencies observed in TADS. Our theo-
retical and experimental analyses show that the use of the
TADS scheme can lead to savings of more than 80% when
the communication channel packet loss rate is below 50%.
Moreover, we also show that a hash chaining approach can
present similar savings with lower overhead for highly reliable
communication channels (less than 10% packet losses), or
similar savings for slightly higher overheads. These methods
can be further combined with other mechanisms intended
for alleviating the load of V2X message validation, such as
prioritization [7] and batch signature verification [46][47], to
efficiently handle messages from different sources.

For future work, a study of the communication channel in
V2X environments would be useful to evaluate the perfor-
mance of the hereby described solutions in real-world scenar-
ios. This analysis should assess the channel limitations, such
as maximum acceptable bandwidth overhead, usual packet
loss ratios, and the ability of modern V2X technologies (e.g.,
New Radio V2X and 802.11bd [25]) in handling TADS’s time
dependencies. The investigation of these variables is necessary
to determine the actual suitability of TADS and the multiple
hash chaining configurations evaluated in this manuscript.
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