
New Time-Memory Trade-Offs for Subset Sum –
Improving ISD in Theory and Practice

Andre Esser1 and Floyd Zweydinger2∗

1 Technology Innovation Institute, UAE
andre.esser@tii.ae

2 Ruhr University Bochum, Germany
floyd.zweydinger@rub.de

Abstract. We propose new time-memory trade-offs for the random
subset sum problem defined on (a1, . . . , an, t) over Z2n .
Our trade-offs yield significant running time improvements for every
fixed memory limit M ≥ 20.091n. Furthermore, we interpolate to the
running times of the fastest known algorithms when memory is not
limited. Technically, our design introduces a pruning strategy to the
construction by Becker-Coron-Joux (BCJ) that allows for an exponentially
small success probability. We compensate for this reduced probability
by multiple randomized executions. Our main improvement stems from
the clever reuse of parts of the computation in subsequent executions to
reduce the time complexity per iteration.
As an application of our construction, we derive the first non-trivial time-
memory trade-offs for Information Set Decoding (ISD) algorithms. Our
new algorithms improve on previous (implicit) trade-offs asymptotically as
well as practically. Moreover, our optimized implementation also improves
on running time, due to reduced memory access costs. We demonstrate
this by obtaining a new record computation in decoding quasi-cyclic codes
(QC-3138). Using our newly obtained data points we then extrapolate
the hardness of suggested parameter sets for the NIST PQC fourth round
candidates McEliece, BIKE and HQC, lowering previous estimates by up
to 6 bits and further increasing their reliability.

Keywords: representation technique · information set decoding · code-based
cryptography · record computation · security estimates · NIST PQC

1 Introduction

For the ongoing NIST PQC standardisation process to be successful, large
cryptanalytic efforts analysing the involved primitives are required. This includes
theoretical studies of the asymptotically best attacks as well as experiments
on a meaningful scale to safely extrapolate the hardness of cryptographic-sized
instances. This methodology, combining theory and practice, is well established
∗ Funded by BMBF under Industrial Blockchain – iBlockchain

https://orcid.org/0000-0001-5806-3600

for conventional (number-theoretic) cryptographic systems and has found its
adaptation to post-quantum secure schemes in recent years [EKM17,ADH+19,
DSvW21,UV21,EMZ22].

The best attacks on post-quantum schemes often suffer from high memory
demands [BJMM12,BKW00,BDGL16,BBC+20,Din21]. This either leads to an
immense slowdown of the algorithm due to physical access times or, in the worst
case, prevents its application entirely. In practice, both cases usually lead to a
fallback to more memory-efficient but asymptotically inferior procedures. In these
cases time-memory trade-offs for the best algorithms are needed which allow
to tailor their memory consumption to any given amount while (only slightly)
increasing their running time.

For post-quantum secure candidates, especially from code- and lattice-families,
several of the known attacks are built on techniques initially introduced in the
context of the (random) subset sum problem [MMT11,BDGL16,BCDL19,May21].
This is because the underlying problems can usually be formulated as (vectorial)
variants of subset sum, as it is the case for LPN / LWE, SIS or the syndrome
decoding problem.

The subset sum problem defined on (a1, . . . , an, t) ∈ Z2n asks to find a subset
S ⊆ {1, . . . , n} such that

∑
i∈S ai = t mod 2n. For this problem time-memory

trade-offs are actually well studied [HJ10,DDKS12,AKKM13,Din18]. However,
the translations of those trade-offs to the aforementioned applications are mostly
missing. The reason is the very diverse landscape of optimal trade-offs for subset
sum, i.e., for different memory limitations there exist different optimal trade-
offs. Furthermore, these trade-offs often do not match the design of the fastest
subset sum algorithm used in the original application, which implies a separate
translation effort for each algorithm.

In this work we construct new improved time-memory trade-offs for the
subset sum problem. In contrast to previous works, our constructions follow the
design by Becker-Coron-Joux (BCJ) [BCJ11], which is the basis for the fastest
known algorithms. This allows for an easy adaptation of our trade-off to known
applications of the BCJ algorithm. Further, our trade-offs reduce the running
time of previous approaches for any fixed memory significantly. Only for very
small available memory a trade-off based on a memory-less algorithm by Esser
and May [EM20] becomes favourable. In total this reduces the trade-off landscape
to only two algorithms.

We illustrate the potential of our trade-off by formalizing its application to
the syndrome decoding problem, whose hardness forms the basis of code-based
cryptography. Informally, the problem asks to find a low Hamming weight solution
e ∈ Fn

2 to the matrix-vector equation He = s, where H ∈ Fr×n
2 and s ∈ Fr

2.
Moreover, it allows for a direct translation to a vectorial subset sum variant.
Denote by hi the columns of H, then (h1, . . . , hn, s) defines a subset sum instance
over Fn

2 , i.e., we are looking for a small subset of the hi that sums to s over Fn
2 .

Information Set Decoding (ISD) algorithms now solve this problem by first
applying a dimension reduction technique, which yields an instance with decreased
n, r and smaller solution weight. Then an adaptation of the BCJ subset sum

2

algorithm over F2 is applied to solve this reduced instance. Since the dimension
reduction technique, in contrast to the subset sum algorithm, does not require
any memory, every ISD algorithm inherits a naive time-memory trade-off. That
is, reduce the instance size sufficiently so that the latter applied BCJ algorithm
does not exceed the given memory. So far this simple interpolation to a full
dimension-reduction based ISD algorithm proposed by Prange in 1962 [Pra62],
was the best known trade-off strategy. Our adaptation now yields the first time-
memory trade-offs for advanced ISD algorithms improving their performance
asymptotically as well as in practice.

1.1 Related Work

Subset Sum. Any subset sum instance can be solved in time and memory
Õ

(
2 n

2
)

via a meet-in-the-middle algorithm [HS74]. Schroeppel and Shamir [SS81]
then showed how to reduce the memory complexity to Õ

(
2 n

4
)
. Later, their

technique formed the basis for a series of advanced time-memory trade-offs
[DDKS12,Din18,DEM19].

The second key-ingredient for most subset sum trade-offs [HJ10, BCJ11,
DEM19,EM20] is the so-called representation technique introduced by Howgrave-
Graham and Joux (HGJ) in [HJ10]. In their work they constructed the first
algorithm breaking the 2 n

2 time bound for random subset sum instances by
achieving running time 20.337n. In the cryptographic setting we usually encounter
random instances, i.e., the vector a := (a1, . . . , an) is chosen uniformly at random
and the target is set to t = ⟨a, e⟩ for a randomly chosen solution vector e ∈ {0, 1}n

of Hamming weight n
2 . Howgrave-Graham and Joux then split the solution e =

e1 + e2 with ei ∈ {0, 1}n of weight n/4. Now, there exist multiple, namely
(

n/2
n/4

)
,

such representations of e, i.e., different combinations e1, e2 that sum to e. The core
observation is that it suffices to find a single of these representations to recover
the solution. This representation is then constructed using a search-tree imposing
restrictions on the exact form of the solution (similar to Wagners k-tree algorithm
[Wag02]) so that in expectation one representation satisfies all restrictions. Becker,
Coron and Joux (BCJ) [BCJ11] improved the running time to 20.291n by choosing
ei ∈ {−1, 0, 1}n to increase the amount of representations. Later Bonnetain,
Bricout, Schrottenloher and Shen (BBSS) [BBSS20] further extended the digit
set to ei ∈ {−1, 0, 1, 2}n yielding a time and memory complexity of 20.283n.

As mentioned, the time-memory trade-off landscape for subset sum is diverse
[HJ10, BCJ11, DDKS12, DEM19, Ess20, EM20]. Additionally, there are several
techniques [DDKS12, NS15, Din18] improving the time-memory behaviour of
the k-tree algorithm, which forms the foundation of the fastest known subset
sum algorithms. However, since these techniques usually introduce asymmetries
in the matching algorithm, which are inherently difficult to combine with the
representation technique, they did not find a broad adaptation in trade-offs for
the subset sum problem yet.

Information Set Decoding. ISD algorithms are the fastest known algorithms
to solve general instances of the syndrome decoding problem and form the

3

basis in assessing the security of code-based schemes. Introduced originally by
Prange [Pra62], the class was extended by several improved algorithms over the
years [Ste88, Dum91, MMT11, BJMM12, MO15]. All these works improve the
running time by using more advanced subset sum techniques to solve the reduced
instance after dimension reduction, which simultaneously increases the memory
requirements. Surprisingly, there has been very limited work on time-memory
trade-offs for ISD algorithms. Karpman and Lefevre [KL22] recently constructed
advanced time-memory trade-offs for the special case of decoding ternary codes
based on a subset sum trade-off strategy known as Dissection [DDKS12]. Further,
a work by Wang et al. [WL15] extends an early ISD algorithm from Stern [Ste88]
by the Dissection approach. However, this trade-off is entirely outperformed by
the previously mentioned implicit trade-offs of more advanced ISD procedures.

1.2 Our Contribution

Subset Sum. As a first contribution we give a generalized description of the BCJ
algorithm, that combines previous interpretations from [EM19,BBSS20]. This
description then forms the basis for one of our main contributions which are new
time-memory trade-offs for the random subset sum problem. Our constructions
yield significantly improved running times for every fixed memory M ≥ 20.091n,
which corresponds to more than two-thirds of the meaningful memory parameters.
Recall that M = 20.283n memory is sufficient to instantiate the fastest known
algorithm with time complexity T = M . In Figure 1 we illustrate the performance
of our new trade-offs in comparison to previous works. For example, if the memory
is limited to 20.17n, we improve the running time from 20.51n down to 20.4n,
corresponding to an improvement by a factor of 20.11n.

From a technical side we allow the BCJ and BBSS construction to impose
larger restrictions on the representation-space, yielding an exponentially small
success probability. We then perform multiple randomized executions to compen-
sate for the reduced probability. In this context we introduce a novel strategy of
reusing lower levels of the search-tree in subsequent randomized executions to
reduce the time complexity per iteration. Note that while Dinur in [Din18] also
reuses the first level of his list construction in later repetitions, this is motivated
by the use of different algorithms to construct the first and later levels. An
asymmetry that makes the incorporation of representations even more difficult.
In contrast our technique is symmetric, allows for easy incorporation of represen-
tations and, moreover, precisely exploits this embedding of representations when
reusing lists in later stages. Also our technique extends well to every level of the
construction.

Furthermore, to obtain instantiations for small memory parameters and to
further reduce the time complexity, we then integrate the Dissection framework
[DDKS12] in our construction, inspired by the combination of Wagners k-tree
and Dissection in [Din18].

Information Set Decoding. We give the first non-trivial time-memory trade-
offs for advanced ISD algorithms by combining our trade-offs with the ISD

4

0 0.05 0.1 0.15 0.2 0.25 0.3

0.3

0.4

0.5

0.6

0.7

BCJ

•
BBSS

•

memory exponent λ, where M = 2λn

tim
e

ex
po

ne
nt

ϑ
,w

he
re

T
=

2ϑ
n

previous work
this work
this work

Fig. 1: Our new subset sum trade-offs in comparison to the previously best known
time-memory trade-offs. The dashed line illustrates the minimum running time over the
algorithms given in [HJ10,BCJ11,DDKS12,DEM19,Ess20,EM20]. The dotted and solid
lines are obtained via our trade-off Algorithm 2 (see Section 4). For a memory larger
than 20.091n (20.093n resp.) our new trade-offs are superior to previous approaches.

algorithms by May-Meuer-Thomae (MMT) [MMT11] and Becker-Joux-May-
Meurer (BJMM) [BJMM12]. Overall this yields asymptotic improved running
times for every fixed memory. Moreover, for the MMT algorithm we are able to
improve the memory, while maintaining its running time.

On the practical side, we extend the fastest implementation of the MMT
/ BJMM algorithm from [EMZ22] by our trade-off strategy observing memory
and time improvements. Using our optimized implementation we obtain a new
record computation in decoding quasi-cyclic codes (QC-3138) [ALL19]. Further
we re-break several old records, consuming less resources, i.e., time and memory.
Hence, our trade-off is the first asymptotic improvement of the MMT algorithm
that transfers to the implementation level. Eventually, using our newly obtained
data-points in combination with an estimation script we extrapolate the hardness
of suggested parameter sets for code-based NIST PQC fourth round candidates
McEliece, BIKE and HQC, resulting in reduced security estimates by up to 6 bits
compared to previous works. This improvement is even more significant consider-
ing that the bit-complexity estimates of code-based schemes have essentially been
stable over the past decades, which is especially true for quasi-cyclic schemes.
In this context, we provide estimates following two different methodologies, a
conventional approximation of the bit complexity and an extrapolation method
based on our practical experiments, recently suggested in [EMZ22]. Overall we
find that both methods paint a comparable picture regarding the security claims
of proposed parameter sets, invalidating claims that the ladder method would
lead to drastically decreased estimates [Var21].

5

All our used estimation and optimization scripts are available at https://
github.com/FloydZ/Improving-ISD-in-Theory-and-Practice. Our adapted
implementation of the BJMM algorithm can be found at https://github.com/
FloydZ/Decoding.

Outline. In Section 2 we set up necessary notation and cover some basics on
the Dissection technique. Subsequently, in Section 3 we give the generalized
description of the BCJ algorithm, which is then used as a basis to build our
new trade-offs in Section 4. Eventually, in Section 5 we give the asymptotic and
practical results of our decoding application including security estimates for all
NIST PQC candidates of the ongoing forth round.

2 Preliminaries

All logarithms are base 2. We define H(x) := −x log(x) − (1 − x) log(1 − x)
to be the binary entropy function with H−1 its inverse on [0, 1

2]. Extending
this definition, we also use the 2-way entropy function defined as g(x, y) :=
−x log(x) − y log(y) − (1 − x − y) log(1 − x − y). We simplify binomial and
multinomial coefficients via Sterling’s formula as(

n

αn

)
≃ 2nH(α) and

(
n

αn, βn, ·

)
≃ 2ng(α,β),

where
(

n
αn,βn,·

)
:=

(
n

αn,βn,(1−α−β)n

)
. We use standard landau notation, with Õ-

notation suppressing poly-logarithmic factors and write A = Õ (B) as A ≃ B. Our
asymptotic complexity statements are all to be understood up to poly-logarithmic
factors, even though we sometimes drop the Õ for convenience.

For a vector x ∈ Fn
2 we denote by wt(x) its Hamming weight. Additionally

we denote by ⟨x, y⟩ the inner product of two vectors x, y.
All our algorithms target the random subset sum problem defined as follows,

even if we might omit the term random sometimes.

Definition 2.1 (Random Subset Sum Problem). Let a := (a1, . . . , an) ∈
Z2n be drawn uniformly at random. For a random e ∈ {0, 1}n with wt(e) = n

2 , let
t := ⟨a, e⟩. The random subset sum problem is given (a, t) find any e′ ∈ {0, 1}n

satisfying ⟨a, e′⟩ = t. We call any such e′ a solution. and (a, t) an instance.

Our definition of the subset sum problem asks for a solution in {0, 1}n.
However, algorithms like the BCJ algorithm approach the problem in a divide-
and-conquer manner, which requires solving sub-instances with solutions in a
different domain D. These sub-instances are usually solved via a meet-in-the-
middle strategy, which we later exchange by a more memory efficient strategy
known as Dissection.

6

https://github.com/FloydZ/Improving-ISD-in-Theory-and-Practice
https://github.com/FloydZ/Improving-ISD-in-Theory-and-Practice
https://github.com/FloydZ/Decoding
https://github.com/FloydZ/Decoding

Schroeppel-Shamir and Dissection A standard meet-in-the-middle solves a
subset sum instance with solution in a set D in time and memory |D| 1

2 [HS74].
Therefore it first splits D = D1 × D2, with |Di| = |D| 1

2 , enumerates all possible
elements of D1 and D2 separately in lists L1 and L2 and then searches for
a solution in D by combining elements from L1 and L2. The algorithm by
Schroeppel and Shamir [SS81] now achieves the same time complexity of |D| 1

2

while improving the memory complexity to |D| 1
4 . It works similarly by first

splitting D = D1 × D2 × D3 × D4 with |Di| = |D| 1
4 and then enumerating all

elements of Di in lists Li. Next an artificial constraint is introduced restricting
the search to solutions which lie in a specific subset (D12 × D34) ⊆ D. This
constraint is used to combine elements from L1 and L2 to obtain only elements
from D12 in a new list L12 and analogously elements from D34 in a new list L34
by combining L3 and L4. From there the two lists L12 and L34 are combined as
in the usual meet-in-the-middle case to search for a solution in D. As a priori it is
not known in which subset the solution is located the algorithm partitions D in a
number of subsets and re-applies the procedure for each of them. The Dissection
framework introduced in [DDKS12] offers instantiations with less memory in
form of a continues time-memory trade-off starting from the Schroeppel-Shamir
algorithm. Besides the Schroeppel-Shamir algorithm our constructions make use
of another instantiation of this framework, a so-called 7-Dissection. A 7-Dissection
runs in time |D|4/7 and uses memory |D|1/7. Moreover, with more memory its
time complexity can be gradually decreased until it reaches the complexity of
the Schroeppel-Shamir algorithm. Technically a 7-Dissection works similar to
the Schroeppel-Shamir technique by initially splitting D = D1 × . . . × D7 and
creating seven corresponding lists. Then multiple times artificial constraints are
introduced to combine the lists most effectively, while, eventually, the algorithms
is iterated for each possible choice of the constraints.

We summarize the time and memory complexity of the 7-Dissection in the
following lemma. For more details on the dissection framework the reader is
referred to [DDKS12].

Lemma 2.1 (7-Dissection, [DDKS12]). Let 1
7 ≤ λ ≤ 1

4 . The 7-Dissection
algorithm finds all solutions e ∈ D to a random subset sum instance in expected
time |D|

2(1−λ)
3 and expected memory |D|λ.

3 The generalized BCJ Algorithm

In this section we give a general description of the BCJ algorithm [BCJ11] for
solving the random subset sum problem. This description forms the basis for
our new trade-offs presented in the following section. We advise the reader to
follow Figure 2. In our exposition we assume a certain familiarity of the reader
with the representation technique, otherwise we refer to [HJ10, BCJ11] for an
introduction.

7

▷◁ ▷◁ ▷◁

▷◁
ℓ1 ℓ1ℓ1 ℓ1

▷◁

▷◁

▷◁
ℓ1ℓ1

n

0

1

2

3

4

Level

cz1 cz2

cy1 cy2 cy3 cy4

cx8

t

x1 x2 x3 x4 x5 x6 x7 x8

y1 y2 y3 y4

z1 z2

e

filter
for D3

▷◁ ▷◁▷◁ ▷◁ ▷◁ ▷◁ ▷◁ ▷◁

ℓ1 ℓ1 ℓ1 ℓ1

.

L1 L2 L15 L16

filter
for D2

domain

wi ∈ D0

xi ∈ D1

yi ∈ D2

zi ∈ D3

e ∈ D4

w1 w2 w15 w16

L

ℓ2 ℓ2 ℓ2 ℓ2

ℓ2 ℓ2ℓ3 ℓ3

Fig. 2: Generalized tree construction of the BCJ Algorithm in depth 4. Shaded areas
on the right of a list L indicate that for all elements v ∈ L the inner product ⟨a, v⟩
matches a predefined value cv (resp. t) on those bits.

Basic idea To construct a solution e of the subset sum problem the BCJ
algorithm splits e in the sum of two addends, i.e.,

e = z1 + z2 .

Here the zi are chosen from a set, such that there exist multiple different
representations of the solution, i.e., different tuples that sum to e. The goal is
then to examine a respective fraction of the space of the z1, z2 to find one of
these representations.

From ⟨a, e⟩ = ⟨a, z1 + z2⟩ = t mod 2n we have by linearity

⟨a, z1⟩ = t − ⟨a, z2⟩ mod 2n. (1)

Note that the value of ⟨a, z1⟩ is not known. However, by considering only those
z1 which fulfill ⟨a, z1⟩ = cz1 mod 2ℓ for some fixed integer cz1 we are able to
impose a constraint on the search space. Here ℓ := ℓ1 + ℓ2 + ℓ3 is an optimization
parameter of the algorithm, with the ℓi’s being positive integers. Moreover, since
each representation of e fulfills Equation (1) the value of cz2 := ⟨a, z2⟩ = t − cz1

mod 2ℓ is fully determined.
The construction of the z1 and z2 then works recursively. Therefore, they are

split again in the sum of two addends

z1 = y1 + y2 and z2 = y3 + y4 ,

and we fix the values ⟨a, y1⟩ and ⟨a, y3⟩ to some constraints cy1 mod 2ℓ1+ℓ2

and cy3 mod 2ℓ1+ℓ2 . Note that this again determines the inner product of the

8

remaining addends for any representation (y1, y2) of z1 and (y3, y4) of z2 as

cy2 := ⟨a, y2⟩ = cz1 − cy1 mod 2ℓ1+ℓ2 and cy4 := ⟨a, y4⟩ = cz2 − cy3 mod 2ℓ1+ℓ2

The recursion continues once more by splitting the yi = x2i−1 + x2i and
introducing four additional modular constraints cx2i−1 mod 2ℓ1 . These modular
constraints together with the cyi ’s determine the values of inner products cx2i :=
⟨a, x2i⟩ mod 2ℓ1 , since we have

cz2 := t − cz1 mod 2ℓ

cy2i
:= czi

− cy2i−1 mod 2ℓ1+ℓ2 , i = 1, 2
cx2i

:= cyi
− cx2i−1 mod 2ℓ1 , i = 1, 2, 3, 4

(2)

Eventually, the xi’s are split in a meet-in-the-middle fashion, i.e.,

xi = (w2i−1, 0n/2) + (0n/2, w2i),

giving only a single representation of each xi.
The algorithm now starts by enumerating all possible values for the wi in the

base lists Li. Then two lists are merged at a time in a new list by only considering
those elements which fulfill the current constraint modulo 2ℓ1 , 2ℓ1+ℓ2 , 2ℓ or 2n

respectively (compare to Figure 2). After the level-i list construction only those
elements are kept whose coordinates follow a predefined distribution Di, while
all others are discarded. The choice of these distributions mainly determines
the existing amount of representations and ultimately the performance of the
algorithm. We give the pseudocode of the procedure in Algorithm 1.

Complexity Let the expected list sizes before filtering on level i be Li and let
the probability of any element of a level-i list surviving the filter be qi. Since the
level-1 lists are constructed from the Cartesian product of the level-0 lists by
enforcing a modular constrained on ℓ1 bits we have

L1 = (L0)2

2ℓ1
.

Analogously the level-2 lists are constructed from the filtered level-1 lists by
enforcing a modular constrained on ℓ1 +ℓ2 bits. However, since the last ℓ1 bits are
already fixed to some value in the previous step we only enforce a new constraint
on ℓ2 bits, which results in

L2 = (q1 · L1)2

2ℓ2
.

Analogously we obtain

L3 = (q2 · L2)2

2ℓ3
and L4 = (q3 · L3)2

2n−ℓ
.

9

Algorithm 1: BCJ Algorithm
Input : a ∈ (Z2n)n, t ∈ Z2n

Output : e ∈ Fn
2 with ⟨a, e⟩ = t mod 2n

1 Choose optimal ℓ1, ℓ2, ℓ3 and Di, i = 0, 1, 2, 3
2 Enumerate

L2i−1 = {w2i−1 | w2i−1 ∈ D0 × 0n/2}

L2i = {w2i | w2i ∈ 0n/2 × D0}, i = 1, . . . , 8

3 Choose random cz1 ∈ Fℓ
2, cy1 , cy3 ∈ Fℓ1+ℓ2

2 , cx1 , cx3 , cx5 , cx7 ∈ Fℓ1
2

4 Set remaining constraints according to Equation (2)
5 Compute (and filter)

L
(1)
i = {xi | ⟨a, xi⟩ = cxi mod 2ℓ1 , xi = w2i−1 + w2i}

from L2i−1, L2i, i = 1, . . . , 8 , then filter such that L
(1)
i ⊆ D1

L
(2)
i = {yi | ⟨a, yi⟩ = cyi mod 2ℓ1+ℓ2 , yi = x2i−1 + x2i},

from L
(1)
2i−1, L

(1)
2i , i = 1, . . . , 4 , then filter such that L

(2)
i ⊆ D2

L
(3)
i = {zi | ⟨a, zi⟩ = czi mod 2ℓ, zi = y2i−1 + y2i},

from L
(2)
2i−1, L

(2)
2i , i = 1, 2 , then filter such that L

(3)
i ⊆ D3

L = {e | ⟨a, e⟩ = t mod 2n, e = z2i−1 + z2i}

from L
(3)
1 , L

(3)
2 , then filter such that L ⊆ {0, 1}n

return e ∈ L

The construction of each unfiltered list can be performed via hashing in time
linear in the list’s sizes giving an expected time complexity of

T = max
i

(Li) .

Since we need to store only filtered lists and the filtering can be performed
on-the-fly the memory complexity becomes M = maxi(qi · Li).

Correctness Obviously the constraint’s sizes ℓ1, ℓ2 and ℓ3 cannot be chosen
arbitrarily large if one representation of the solution should survive all imposed
constraints. On the other hand we need to ensure that multiple representations
do not lead to the construction of duplicate elements in intermediate lists to
ensure a proper list distribution. This leads to further restrictions on the size of
ℓ1, ℓ2 and ℓ3, called saturation constraints in [BBSS20] or simply lower bounds
in [EM19].

In [BBSS20] this is formalized by ensuring that each list after filtering at
every level is not larger than the size of the set filtered for, reduced by the
total enforced constraint. Since by the randomness of the instance the elements
distribute uniformly, it follows that the lists will not contain duplicate elements
with high probability. The sets for which we filter on level i are Di, i = 1, 2, 3, 4.

10

Note that the choice of the sets Di, i ̸= 4 can be optimized, while the set D4 has
to describe the valid set of solutions, which is the set of binary vectors of length
n.

Hence, to guarantee that there are no duplicates present in the level-1, level-2
and level-3 lists we need to ensure that

q1 · L1 ≤ |D1|
2ℓ1

and q2 · L2 ≤ |D2|
2ℓ1+ℓ2

and q3 · L3 ≤ |D3|
2ℓ

(3)

Next let us write the probabilities qi in terms of representations and distribu-
tions. Therefore, let 2ri denote the amount of different representations of any
element from Di+1 as the sum of two elements from Di. Then we have

qi+1 = |Di+1| · 2ri

|Di|2
, (4)

describing the probability that a random sum of two elements from Di forms a
representation of any element from Di+1.

Recall that we construct level-1 elements xi = (w2i−1, w2i) ∈ D0×D0 = D1 in
a meet-in-the-middle fashion from level-0 elements wj , which implies L0 =

√
|D1|.

As this gives only a single representation of any level-1 element, we have r0 = 0,
which leads to q1 = 1, i.e., for this choice of D0 there is no filtering on level one.
It follows that the first saturation constraint from Equation (3) is always fulfilled
since

q1 · L1 = (L0)2

2ℓ1
= |D1|

2ℓ1
.

The second constraint of Equation (3) gives

q2 · L2 = |D2| · 2r1

|D1|2
· (L0)4

22ℓ1+ℓ2

!
≤ |D2|

2ℓ1+ℓ2
⇔ r1 ≤ ℓ1.

Analogously we get from the last saturation constraint

q3 · L3 = q3 · (q2)2 · (L1)4

24ℓ1+2ℓ2+ℓ3
= 22r1+r2 · |D3|

24ℓ1+2ℓ2+ℓ3

!
≤ |D3|

2ℓ
⇔ 2r1 + r2 ≤ 3ℓ1 + ℓ2.

Eventually, to find exactly one representation of the solution in the final list we
need to ensure that q4 · L4 = 1, which yields

q4 · L4 = q4 · (q3)2 · (q2)4(L1)8

2n+7ℓ1+3ℓ2+ℓ3
= 24r1+2r2+r3 · |D4|

2n+7ℓ1+3ℓ2+ℓ3

!= 1

⇔ 4r1 + 2r2 + r3 = 7ℓ1 + 3ℓ2 + ℓ3, (5)

since we have |D4| = 2n, as D4 is the set of binary vectors of length n.

Instantiation The description of the general BCJ algorithm gives several
degrees of freedom, including the choice of sets Di, i = 1, 2, 3 and the size of
the constraints ℓ1, ℓ2, ℓ3. The original BCJ algorithm restricts all Di’s to include

11

only vectors with coordinates in {0, ±1}. The purpose of including −1’s is simply
to increase the number of representations. Since the final goal is to construct
a binary vector, minus one entries are supposed to cancel out with one entries
in the addition. Thus, the distribution D3 is chosen as vectors of length n with
exactly ω3 := n/4+α3 one entries and m3 := α3 minus one entries for some small
α3, which has to be optimized. The distribution D2 is then composed similarly as
vectors of length n with ω2 := ω3/2 + α2 one entries and m2 := m3/2 + α2 minus
one entries, where again α2 minus ones are supposed to cancel out. Analogously
the level-1 distribution is chosen as vectors of length n with ω1 := ω2/2 + α1 one
entries and m1 := m2/2 + α1 minus one entries, expecting α1 cancellations. An
overview of this choice of distributions is given in Table 1. The size of these sets
is

|Di| =
(

n

ωi, mi, ·

)
≃ 2g(ωi

n ,
mi
n)n,

while the number of representations is given as

2ri−1 =
(

ωi

ωi/2

)(
mi

mi/2

)(
n − ωi − mi

αi−1, αi−1, ·

)
≃ 2ωi+mi+ρi ,

where ρi := g
(

αi

n−ωi−mi
, αi

n−ωi−mi

)
(n − ωi − mi).

D4 D3 D2 D1

BCJ ωi
1
2

1
4 + α3

1
8 + α3

2 + α2
1

16 + α3
4 + α2

2 + α1

mi 0 α3
α3
2 + α2

α3
4 + α2

2 + α1

ωi
1
2

1
4 + α3 − γ3

1
8 + α3−γ3

2 + α2 − γ2
1

16 + α3−γ3
4 + α2−γ2

2 + α1 − γ1

BBSS mi 0 α3
α3
2 + α2

α3
4 + α2

2 + α1

ci 0 γ3
γ3
2 + γ2

γ3
4 + γ2

2 + γ1

Table 1: Choices of Di made by BCJ and BBSS algorithm. The table states the
proportion of coordinates equal to 1 (ωi), −1 (mi) and 2 (ci). The proportion of zeros
is 1 − ωi − mi − ci. Set D0 has half the proportions of D1.

Here the two binomial coefficients count the number of possibilities how to
distribute the one and minus one entries of an element from Di equally over
a sum of two elements. The multinomial coefficient then counts the number of
possibilities how remaining the minus one and one entries can cancel out.

Note that the algorithm splits D1 into D0 ×D0, where D0 is the set of vectors
of length n/2 containing exactly ω1/2 ones and m1/2 minus ones. This leads to
all Di only including balanced elements, i.e., elements which contain an equal
amount of ones (resp. minus ones) on their first and second half of the coordinates.
However, this affects the sizes of the Di and the amount of representations only
by a polynomial factor, which is subsumed in the landau notation.

12

Eventually, the BCJ algorithm chooses ℓ1 = r1 and ℓ2 = r2 − r1, which yields
ℓ3 = r3 − r2. A numerical optimization of the αi results in a time complexity of
20.291n (originally reported as 20.292n) for the BCJ configuration.

Bonnetain et al. [BBSS20] then showed that a more flexible choice of ℓ1 and
ℓ2 and correspondingly adapted ℓ3 allows to decrease the time complexity to
20.289n. They also showed that extending the digit set of the Di to {0, ±1, 2}
allows to further decrease the time complexity to 20.283n, yielding the best known
time complexity for the random subset sum problem.

The BCJ algorithm achieves optimal time complexity for a depth of the search-
tree of four. However, in general the optimal depth varies with the application. We
therefore give for completeness and later reference the complexity and saturation
constraints for variable depth in Appendix A.

4 Our new Subset Sum Trade-Off

The (generalized) BCJ algorithm from the previous section already inherits some
time-memory trade-off potential. That is, one can try to optimize the choice of
the ℓi with respect to the memory usage, since the larger the ℓi the smaller the
list’s sizes. However, the overall size of the ℓi’s is bounded by the restriction that
the last list should contain a representation of the solution.

On a high level our new trade-off works by relaxing this restriction, i.e. we
do not require the last list to contain a solution. This allows to balance the lists
more memory-friendly. We then perform multiple randomized executions of the
algorithm to ensure that we find a solution overall. However, let alone this is
not sufficient to obtain our improvements. The main runtime advantage of our
improved trade-off comes from our observation that we can reuse parts of the
tree in subsequent randomized executions, reducing the cost per iteration. A
second improvement stems from our use of the Dissection framework [DDKS12]
for the construction of the level-1 lists.

Note that if we change some bit-constraints in the tree (the values of cv in
Figure 2) not necessarily all levels are affected. That means we do not need to
re-compute all lists of the tree, but only those which depend on the changed
constraints. Now, if the computation of each list had the same complexity, this
strategy would only yield a constant factor improvement since at least one list
needs to be recomputed. However, by adapting parameters accordingly and ex-
ploiting the involved filtering, we can guarantee that the creation of frequently
reconstructed lists (from already existing lists) is much cheaper than a recon-
struction of the whole tree. This partial reconstruction strategy in combination
with relaxing the correctness constraint from Equation (5) allows us to obtain
significant improvements for rather high memory parameters M ≥ 20.169n.

From there on the base lists, which are so far a meet-in-the-middle split of
the first level domains start dominating the memory. The only possibility for the
algorithm to decrease the size of those lists is to choose a set D1 with smaller
size on level 1. For the BCJ algorithm this means including less −1 entries,
until ultimately no −1 entries are included in the enumeration. In this case

13

the base lists require a memory of
(

n/2
n/32

)
≃ 20.169n. From there the list sizes

are as small as possible and we can not obtain instantiations for less memory.
We circumvent this problem by exchanging the meet-in-the-middle strategy for
exhaustive examination of the level-1 domain by the 7-Dissection algorithm. We
find that apart from offering instantiations for memory parameters M < 20.169n,
this gives also (slight) time improvements in the high memory regime M ≥ 20.169n

as the optimization can choose a more optimal, usually larger set D1 (implying
larger D0) without exceeding the memory limit.

▷◁

▷◁

▷◁

L
(1)
1

L
(2)
1

L
(3)
1

L

n

ℓ1

ℓ1

ℓ1

T3

T2

T1

T

t1

t2

t3

. . .

. . .

. . .

L1 L2 L3 L4 L5 L6 L7

7 Dissection

ℓ2

ℓ2ℓ3

cx1

cy1

cz1

t

Fig. 3: Our new trade-off in depth 4. Dashed boxes frame different subtrees Ti, which
are rebuild 2ti times. The level-1 lists are constructed using the 7-Dissection algorithm.

Note that the 7-Dissection in our setting requires a memory of at least(
n

n/16
)1/7 ≃ 20.049n. To obtain instantiations for every M > 0 we could exchange

the 7-Dissection by a c-Dissection for c > 7. However, since for a memory of
M ≤ 20.091n a trade-off based on an algorithm by Esser-May offers a better time
complexity anyway, we stick with a 7-Dissection for simplicity.

Adaptation of the BCJ Algorithm We advise the reader to follow Figure 3.
Let T be the full tree and Ti, i = 1, 2, 3 the subtrees only including the lists from
level i onwards. We denote by 2ti the number of times we rebuild the subtree Ti

from the (already existing) lists of the previous level.

14

We start by changing only the upper ℓ3 bits of the modular constraint cz1

which requires recomputing only the subtree T3, since the level-i lists for i ≤ 2 do
not depend on these bits. Since there are only 2ℓ3 choices for those bits we have
t3 ≤ ℓ3. If 2ℓ3 iterations are not sufficient to find the solution we start modifying
the upper ℓ2 bits of the modular constraints cy1 , cy2 , cz1 mod 2ℓ2 . This implies
again that t2 ≤ 3ℓ2. Still, for every different choice of those bits we recompute
the subtree T3 another 2t3 times for different choices of the upper ℓ3 bits. If
23ℓ2+ℓ3 iterations are still not sufficient to find a solution, we eventually start
modifying the lower ℓ1 bits of the chosen modular constraints. Again for each
choice of lower bits we reconstruct the tree T2 and T3 several times. Furthermore,
as there are seven constraints that can be freely chosen we have t1 ≤ 7ℓ1

Finally, instead of computing the level-1 lists via a meet-in-the-middle algo-
rithm we now use the 7-Dissection algorithm.

The pseudocode of our modified BCJ trade-off is given in Algorithm 2.

Complexity. The memory complexity stays as before with the only difference
that the memory requirement of the base lists is now substituted by the memory
requirement M7D of the 7-Dissection algorithm, i.e.,

M = max(M7D, q1L1, q2L2, q3L3, q4L4).

To balance the memory requirement we instantiate the 7-Dissection algorithm
with M7D = |D1|max(1

7 ,λ′) memory where |D1|λ′ = maxi(qiLi).
The analysis of the time complexity also follows along the lines of the previous

analysis, with the essential difference that the three subtrees are now computed
differently many times.

A single construction of subtree T1 can be performed in time

T1 = max(T7D, L1, L2, L3, L4),

where T7D is the time it takes to compute the level-1 lists via the 7-Dissection
algorithm. Recall that instantiated with |D1|δ memory, the 7-Dissection runs in
time T7D = |D1|max

(
2(1−δ)

3 , 1
2

)
(compare to Lemma 2.1). The subtrees T2 and T3

can then be computed in time

T2 = max(q1 · L1, L2, L3, L4) and T3 = max(q2 · L2, L3, L4),

as they can be computed from the stored and already filtered level-1 respectively
level-2 lists. Now the total time complexity becomes

T = max(2t1 · T1, 2t1+t2 · T2, 2t1+t2+t3 · T3),

as subtree Ti is rebuild 2t1+...+ti many times.

Correctness. Most of the correctness follows from the correctness of the BCJ al-
gorithm and the 7-dissection algorithm. Note that we instantiate the 7-Dissection

15

Algorithm 2: BCJ Trade-Off
Input : a ∈ (Z2n)n, t ∈ Z2n

Output : e ∈ {0, 1}n with ⟨a, e⟩ = t mod 2n

1 Choose optimal ℓ1, ℓ2, ℓ3 and Di, i = 1, 2, 3, let r := r3 + 2r2 + 4r1

2 repeat 2t1 := 2max(7ℓ1−r,0) times
3 Choose random cz1 ∈ Fℓ

2, cy1 , cy3 ∈ Fℓ1+ℓ2
2 , cx1 , cx3 , cx5 , cx7 ∈ Fℓ1

2
4 Set remaining constraints according to Equation (2)
5 Compute

L
(1)
i = {xi | ⟨a, xi⟩ = cxi mod 2ℓ1 , xi ∈ D1, },

via 7-Dissection, i = 1, . . . , 8

6 repeat 2t2 := 2max(7ℓ1+3ℓ2−r,0)−t1 times
7 Choose randomly the upper ℓ2 bits of cz1 , cy1 , cy3 mod 2ℓ1+ℓ2

8 Update cz2 , cy2 , cy4 according to Equation (2)
9 Compute

L
(2)
i = {yi | ⟨a, yi⟩ = cyi mod 2ℓ1+ℓ2 , yi ∈ D2, yi = x2i−1 + x2i},

from L
(1)
2i−1, L

(1)
2i , i = 1, . . . , 4

10 repeat 2t3 := 2max(7ℓ1+3ℓ2+ℓ3−r,0)−t1−t2 times
11 Choose randomly the upper ℓ3 bits of cz1

12 Update cz2 according to Equation (2)
13 Compute

L
(3)
i = {zi | ⟨a, zi⟩ = czi mod 2ℓ, zi ∈ D3, zi = y2i−1 + y2i},

from L
(2)
2i−1, L

(2)
2i , i = 1, 2

L = {e | ⟨a, e⟩ = t mod 2n, e ∈ D4, e = z2i−1 + z2i},

from L
(3)
1 , L

(3)
2

if |L| > 0 then
14 return e ∈ L

with at least |D1| 1
7 memory, which is the minimum requirement given by

Lemma 2.1.

The main difference to before is that we relaxed the restriction given in
Equation (5), such that the last list is not guaranteed to contain a solution
anymore. However, we compensate for this by multiple randomized constructions
of the final list. In contrast to completely independent executions of the algorithm,
which would select all constraints uniformly at random, we only randomize the
constraints affecting certain subtrees. However, note that under the standard
assumption that the representations distribute independently and uniformly over
all constraints, any set of constraints has the same independent probability of
leading to a representation of the solution. Now, since we change at least one

16

constraint for every reconstruction of the final list, we can treat the iterations as
independent.

In order to ensure that over all iterations we find at least one representation,
the final list’s size accumulated over all its reconstructions must be at least one,
which leads to (compare to Equation (5))

q4 · L4 · 2t1+t2+t3 ≥ 1
⇔ 4r1 + 2r2 + r3 + t1 + t2 + t3 ≥ 7ℓ1 + 3ℓ2 + ℓ3.

Note that this constraint is fulfilled for our choice of

t1 = max(7ℓ1 − r, 0)
t2 = max(7ℓ1 + 3ℓ2 − r, 0) − t1

t3 = max(7ℓ1 + 3ℓ2 + ℓ3 − r, 0) − t1 − t2,

where r := r3 + 2r2 + 4r1 and the maximum is needed since we need to build
each subtree at least once.

Configuration of our Trade-Off In terms of distributions we adopt the
choice of the original BCJ algorithm, specified in Table 1. We then optimize
the parameters αi, ℓi, i = 1, 2, 3 numerically. We optimize such that the time is
minimized, while simultaneously ensuring that the saturation constraints are
satisfied and a given memory limit of M = 2λn is not exceeded.

The resulting trade-off curve is depicted in Figure 1. We observe that our
trade-off outperforms all existing approaches for M ≥ 20.093n. Prior to our
work, this interval was covered by a diverse landscape of different trade-offs
including [HJ10, BCJ11, Ess20, EM20, DEM19, DDKS12]. For M < 20.093n a
trade-off given in [Ess20] based on a memory-free algorithm by Esser-May [EM20]
becomes superior to our procedure.

Extending the digit set. We also adopted the choice of distributions made by the
BBSS algorithm [BBSS20] (see Table 1). We find that the refined choice of the
Di gives an overall slight improvement, interpolating smoothly to their 20.283n

algorithm. The resulting trade-off curve is depicted in Figure 1 as well, which
remains superior to [EM20,Ess20] as long as M ≥ 20.091n.

Linear approximations. Observe that both our trade-offs split in three almost
linear segments (compare to Figure 1). To ease the comparison of further results
to our trade-offs, we provide a linear approximation T = −a · M + b of these
segments in Table 2. This allows to easily compare to the (approximate) running
time of our trade-off, without rerunning the optimization of parameters.

5 Application to Decoding Linear Codes

A linear code C ⊂ Fn
2 is a k-dimensional subspace of Fn

2 and can be efficiently
described via a parity check matrix H ∈ F(n−k)×n

2 , such that C = {c ∈ Fn
2 |

17

≤ M 0.18 0.27 0.28

a 2.54 2.65 1.06 1.13 0.27 0.36
b 0.84 0.85 0.58 0.58 0.37 0.39

Table 2: Slope a and y-intercept b of the linear approximations T = −a · M + b of the
three different segments, each denoted by the maximal memory available in the segment.
Left columns refer to the trade-off using BCJ-like representations, while right columns
use BBSS-syle representations.

Hc = 0}. Decoding an error-prone codeword y := c + e to c is polynomial-time
equivalent to recovering e from the so-called syndrome s := Hy = H(c+e) = He.
This leads to the following definition of the syndrome decoding problem.

Definition 5.1 (Syndrome Decoding Problem). Let H ∈ F(n−k)×n
2 be the

parity check matrix of a code of length n and dimension k, with constant code-rate
R := k

n . Given a syndrome s ∈ Fn−k
2 and an integer ω the syndrome decoding

problem asks to find a vector e ∈ Fn
2 of Hamming weight wt(e) = ω satisfying

He = s.

Note that the problem admits a unique solution as long as ω ≤ ⌊ d−1
2 ⌋, where

d is the minimum distance of the code, i.e., the minimum Hamming distance
between two codewords. We call the setting with unique solution half distance
decoding, while for ω ≤ d we refer to full distance decoding. In general the
time complexity increases with ω, such that we only consider the cases where
ω is equal to those upper bounds. Further, random linear codes are known to
achieve a minimum distance that is equal to the Gilbert-Varshamov bound of
d ≈ H−1(1− k

n)n, i.e., the minimum distance is a function of the rate R := k
n and

the code-length n. We now maximize the complexity in our asymptotic analysis
over all constant rates R to obtain a runtime formula which only depends on n.

The best known algorithms to solve the syndrome decoding problem are
Information Set Decoding (ISD) algorithms. In the full and half distance setting
these algorithms have exponential time and memory complexity of the form
Õ (2cn) for some constant c depending on the algorithm. On the other hand,
cryptographic applications usually use a a sublinear weight, i.e., ω = o(n). In
these cases the running time of ISD algorithms is subexponential of the form
Õ (2cω) for some constant c. Moreover, it was shown [TS16] that in this case all
known ISD algorithms converge to the same running time, i.e., they obtain the
same constant c. However, in practical experiments advanced ISD algorithms
were shown to provide significant speedups [BLP08,EMZ22].

We therefore first analyse our trade-offs in the full and half distance decoding
setting, which allow to easily verify their superiority since they obtain improved
constants c. We then study the practical effect of our trade-offs by providing an
optimized implementation. Finally, we extrapolate the hardness of cryptographic
schemes using our obtained data points.

18

Information Set Decoding Information Set Decoding algorithms first apply a
permutation matrix P to the columns of the parity check matrix. This allows to
redistribute the weight on the error since the permuted instance H′ := HP has
as valid solution e′ := P−1e, since HP(P−1e) = s. Then H′ is transformed into
semi-systematic form via Gaussian elimination modelled via the multiplication
with an invertible matrix Q

QH′(P−1e) =
(

In−k−ℓ H1
0 H2

)
(e1, e2) = (e1 + H1e2, H2e2) = Qs = (s1, s2), (6)

where we write e′ := P−1e = (e1, e2) ∈ Fn−k−ℓ
2 × Fk+ℓ

2 with ℓ an optimization
parameter of the algorithm. Let us further assume that the permutation dis-
tributes the weight on e′ such that wt(e1) = ω − p and wt(e2) = p, for some p
that has to be optimized, too.

Now Equation (6) yields a (dimension) reduced syndrome decoding instance
in form of the equation H2e2 = s2 with weight-p solution e2 ∈ Fk+ℓ

2 . Usually,
e2 is not a unique solution to this reduced instance. The algorithm therefore
computes all solutions x to this smaller instance and checks if the corresponding
e1 = s1 + H1x has weight ω − p. In this case P(e1, x) forms a solution to the
original syndrome decoding instance. If no solution is found, the algorithm is
repeated for another random permutation.

Complexity. Let us briefly argue about the complexity of such a procedure. The
probability of distributing the weight on e′ as desired is

q :=
(

n−k−ℓ
ω−p

)(
k+ℓ

p

)(
n
ω

) . (7)

Hence, we expect that after q−1 random permutations one of them distributes the
weight as desired. If now the cost to retrieve all weight-p solutions to the reduced
instance for any of those permutations is TS, the total complexity becomes

T = Õ
(
q−1 · TS

)
.

In a nutshell different ISD algorithms differentiate in how they retrieve the
solutions to the reduced instance. Usually they consider the reduced instance as
a vectorial subset sum instance, where the solution encodes a size-p subset of
the columns of H2 that sums to s2. Then they make use of advanced algorithms
for subset sum, such as the BCJ algorithm, to retrieve the solutions to that
instance. It is not hard to see, that instead of working over Z2n , the generalized
BCJ algorithm outlined in Section 3 and, hence, also our improved trade-off from
Section 4, work analogously over Fn

2 .

5.1 Improved ISD Trade-Offs

The May-Meurer-Thomae (MMT) ISD algorithm [MMT11] originally uses the
BCJ construction in depth-2 to retrieve the solutions to the reduced instance.

19

In the following we give an improved version of the MMT algorithm based on
our new subset sum trade-off from Section 4. Our version improves the overall
memory complexity and yields a better trade-off curve, i.e., we achieve runtime
improvements for every fixed memory.

To make use of our generalized trade-off description (in depth 2) we need to
define appropriate sets D0, D1 and D2. Then to retrieve the running time we
calculate the amount of existing representations and optimize the parameter ℓ1.
The pseudocode of our improved MMT algorithm is given in Algorithm 3.

Note that in our ISD application we find that already using the Schroeppel-
Shamir technique for level-1 list construction, rather than the 7-Dissection, offers
optimal instantiations for all memory parameters M > 0. We therefore stick with
the Schroeppel-Shamir technique in our description for simplicity.

Algorithm 3: New MMT Trade-Off
Input : H ∈ F(n−k)×n

2 , s ∈ Fn−k
2 , w ∈ N

Output : e ∈ Fn
2 , He = s

1 Choose optimal ℓ, ℓ1, p

2 let r1 = log
(

p
p/2

)
3 πℓ1 : Fℓ

2 → Fℓ1
2 , πℓ1 (x1, . . . , xℓ) = {x1, . . . , xℓ1 }

4 repeat
5 choose random permutation matrix P

6 H̄ =
(

In−k−ℓ H1
0 H2

)
= QHP s̄ = (s1, s2) = Qs

7 repeat 2ℓ1−r1 times
8 Choose random t ∈ Fℓ1

2
9 Compute

L
(1)
1 = {z1 | πℓ1 (H2z1) = t, z1 ∈ D1} , via Schroeppel-Shamir

L
(1)
2 = {z2 | πℓ1 (H2z2 + s2) = t, z2 ∈ D1} , via Schroeppel-Shamir

10 Compute L = {e2 | H2e2 = s2, e2 = z1 + z2} from L
(1)
1 , L

(2)
2

11 for e2 ∈ L do
12 e1 = H1e2 + s1
13 if wt(e1) ≤ ω − p then
14 return P (e1, e2)

Complexity. We let D2 be the set of vectors from Fk+ℓ
2 with weight p, as it defines

our solution set. The MMT algorithm now chooses D1 as vectors from Fk+ℓ
2 with

weight p/2. Finally D0 is the set of vectors from F
k+ℓ

2
2 and weight p/4, i.e., a

20

meet-in-the-middle split of D1, hence |D0| =
√

|D1|.The size of D1 is

|D1| =
(

k + ℓ

p/2

)
,

while the amount of representations of one element from D2 as sum of two
elements from D1 is

2r1 =
(

p

p/2

)
≃ 2p.

Observe that the binomial coefficient counts the possibilities to distribute half
of the ones of the target vector over the first addend, while the other half must
then be covered by the second addend. Now, to find one representation of each
solution to the reduced instance in the final list we need to ensure (compare to
Equation (8))

ℓ1
!= r1.

Our trade-off from Section 4 now allows for ℓ1 > r1 and compensates by repeating
the procedure. Note that in depth-2 we have no further saturation constraints,
nor can we make use of reconstructing different levels differently many times.
The time complexity for finding all solutions to the vectorial subset sum problem
then becomes

TS = 2ℓ1−r1 · max(
√

|D1|, |D1|/2ℓ1 , |D1|2/2ℓ+ℓ1)

The memory complexity is equal to the level-0 and level-1 lists, since elements
of the final list can be checked on the fly for being a solution. Moreover, by using
the Schroeppel-Shamir algorithm for the construction of the level-1 lists we can
reduce the memory required for storing the level-0 lists from |D0| =

√
|D1| to√

|D0| = |D1|1/4 (see Section 2), which yields

M = max(|D1|1/4, |D1|/2ℓ1).

5.2 Asymptotic Behavior of new Trade-off

For the asymptotic classification of our algorithmic improvement let us first
consider the half distance setting, i.e., ω := H(1 − k

n) · n
2 . Here our MMT variant

improves the memory complexity by almost a square-root down to 20.0135n

from 20.0213n of standard MMT, while maintaining the same time complexity of
T = 20.05364n. The optimal parameters for our MMT variant in this case are

ℓ = 0.0278n, ℓ1 = 0.0091n and p = 0.0064n,

where the found worst case rate is k = 0.45n as for standard MMT. We now
further optimized the time complexity of our trade-off under a memory limitation
of M ≤ 2λn for decreasing λ. Figure 4 shows the complete trade-off curves for
both MMT variants – the original and our improved version. We observe that
our trade-off outperforms the original trade-off for all memory parameters.

21

0.00 0.02 0.04 0.06 0.080.100

0.105

0.110

0.115

0.120

MMT

•

BJMM

•

•

tim
e

ex
po

ne
nt

ϑ
,w

he
re

T
=

2ϑ
n

full distance

0.00 0.01 0.02 0.03

0.050

0.052

0.054

0.056

0.058

MMT

•

BJMM

•

•

half distance

memory exponent λ, where M = 2λn

BJMM [BJMM12] new BJMM MMT [MMT11] new MMT

Fig. 4: Comparison between the implicit (solid) and our new trade-off (dashed) for the
MMT and BJMM algorithm. Complexity uses known worst case rates of the algorithm
in the full distance (left) and half distance setting (right).

In the full distance setting we obtain a similar improvement. Here our improved
MMT algorithm improves the memory complexity down to 20.0375n from pre-
viously 20.053n, while achieving the same time complexity of 20.112n. Again we
obtain runtime improvements over standard MMT for any fixed memory.

Even though, the MMT algorithm is not the asymptotically fastest ISD
algorithm, so far none of its known asymptotic improvements [BJMM12,MO15,
BM18] did transfer to the implementation level. This makes the MMT algorithm
the preferred choice for record computations [ALL19] as well as security estimates
[EMZ22].

BJMM algorithm. However, we also analyzed the algorithm by Becker-Joux-
May-Meurer (BJMM) [BJMM12], which in contrast to the MMT algorithm
uses slightly different sets Di. That is, the vectors on each level have a slightly
increased weight. Then, in the F2-addition of those vectors some weight is assumed
to cancel to still obtain a vector of weight p. The different possibilities, how
the weight can cancel, increase the amount of representations and lead to an
increased optimal tree-depth of three. This increased tree-depth allows us to
make use of our subtree reconstruction technique yielding an improved trade-off
curve also shown in Figure 4. We observe that the refined choice of the Di gives
the algorithm a possibility to balance the list sizes if memory is not limited. For
that reason our strategy yields improvements only for limited memory in the
case of the BJMM algorithm.

22

5.3 Practical Results and Security Estimates

We adapted the MMT / BJMM implementation from [EMZ22] to our new trade-
off strategy. Interestingly, besides reducing the memory requirements we also
obtain practical running time improvements, which stem from less, usually costly
memory accesses.

We were able to solve several instances provided at decodingchallenge.org
[ALL19], which were either unsolved or broken using more time and memory.
Most notably, we obtained a new record computation in the quasi-cyclic setting,
which follows the parameter selection of the BIKE and HQC schemes.

New record computation Precisely, we solved the QC-3138 instance with
code parameters (n, k, ω) = (3138, 1569, 56) with an estimated bit complexity
of 66.7 (respectively 60.7 if counted in 64-bit register operations) in only 2.23
CPU years. We estimated the expected time to solve this instance on our cluster,
based on the processed permutations per second, to about 9.47 CPU years. The
previous best implementation from [EMZ22] would need an expected amount
of 30.31 CPU years, i.e., our implementation is about 3.2 times faster on this
instance.

We also analysed the performance of our implementation on the next instance
QC-3366 with parameters (n, k, ω) = (3366, 1683, 58), which has an estimated bit
security of 68.7. We obtain an expected running time of 30.2 CPU years, which
corresponds to an improvement by a factor of 5.7.

Furthermore we re-broke the previous QC-2918 record instance with parame-
ters (n, k, ω) = (2918, 1459, 54) two times in just 224 CPU days, almost precisely
hitting its expectation, which is about 6.9 times faster than the previous best
implementation.

On McEliece like medium-sized instances we obtain a speedup by a factor
of about 2.5. For the current record instance McEliece-1284 using parameters
(n, k, ω) = (1284, 1028, 24) we estimated a running time of 11.06 CPU years,
where the initial record computation expected 26.28 CPU years, corresponding to
a speedup of about 2.4. Considering the next (unsolved) McEliece record instance
with parameters (n, k, ω) = (1347, 1078, 25), we estimate a running time of about
59.74 CPU years, improving from the previous estimate of 156.6 CPU years by a
factor of 2.6.

Security Estimates Next we investigate the impact of our improvement on
the security of cryptographic sized instances. Therefore, we first adapted the
estimation scripts from [EB22] to incorporate our trade-off strategy, which
allows us to precisely estimate the bit-complexity of given instances. Following
previous works [EB22, BBC+19, EMZ22] we consider different memory access
cost models. A memory access cost tries to model the practically faced memory
access timings, by penalizing the algorithm for a high memory usage. Precisely,
an algorithm with time complexity T and memory complexity M is assumed to
have cost T · f(M), where f determines the penalty. We consider the established

23

decodingchallenge.org

models of constant, logarithmic and cube-root access costs, which correspond to
f(M) = 1, f(M) = log M and f(M) = 3

√
M .

From here we follow two different estimation methodologies. First, we use our
estimation script to obtain bit complexity estimates, which we compare directly
against similar estimates obtained in [EB22]. For the second methodology we then
extrapolate the time it would take to solve an instance of proposed parameters
from our obtained record computations, comparing our results against a similar
estimation performed in [EMZ22].

Let us start with the bit complexity estimation using our script.

Quasi-Cyclic Category 1 Category 3 Category 5

constant:

BIKE message 2.90 (0.00) 4.13 (0.00) 4.22 (0.12)
key 4.31 (0.04) 3.68 (0.08) 6.08 (0.63)

HQC 1.71 (0.00) 5.91 (0.00) 3.08 (0.00)

logarithmic:

BIKE message 7.04 (0.46) 8.36 (0.48) 8.62 (0.50)
key 8.65 (0.42) 8.46 (0.45) 11.29 (0.47)

HQC 5.89 (0.48) 10.18 (0.50) 7.40 (0.52)

cube-root:

BIKE message 8.40 (2.57) 9.97 (2.89) 10.41 (3.14)
key 9.92 (2.34) 9.99 (2.66) 13.01 (2.90)

HQC 7.37 (2.75) 11.91 (3.08) 9.32 (3.30)
Table 3: Bit-difference in security of BIKE/HQC and AES with respective key-length
considering different memory access cost.

Bit Complexity Estimation The commonly addressed security categories 1,
3 and 5 relate their security to the security of AES-128, -192 and -256. NIST
specifies the bit complexity to break those AES instantiations as 143, 207 and
272 respectively.

BIKE / HQC. In Table 3 we state the security margin in bits the corresponding
parameter set has over breaking AES with corresponding key-size. Precisely
the table states TScheme − TAES, where TScheme is the bit complexity estimate
obtained from our script and TAES the bit complexity of breaking AES, i.e., 143,
207 or 272 respectively. The number in parenthesis states the improvement over
the estimation performed in [EB22], i.e., one obtains their result as the sum of
both numbers.

24

As expected, we obtain essentially the same security margin as [EB22] if no
memory access cost is imposed. However, for logarithmic and, especially, for
cube-root memory access costs, our time-memory trade-offs yield reduced security
estimates. Furthermore, note that the improvement in the cube-root case is even
higher than the improvement of representation-based ISD algorithms like MMT
over early algorithms like Stern and Dumer on these instances [EB22].

In the case of BIKE we distinguish message and key security as both settings
allow for slightly different speedups [ABB+20].

McEliece Category 1
n = 3488

Category 3
n = 4608

Category 5a
n = 6688

Category 5b
n = 6960

Category 5c
n = 8192

constant:
unlimited −0.98 (0.23) −25.09 (0.55) −23.82 (0.17) −24.51 (0.25) 5.37 (0.27)
M ≤ 80 0.14 (0.56) −22.94 (1.74) −13.42 (1.29) −13.13 (1.80) 21.40 (1.51)
M ≤ 60 2.47 (1.49) −18.84 (0.04) −8.84 (4.52) −8.36 (4.10) 26.65 (5.59)
logarithmic:
unlimited 5.44 (0.22) −18.39 (0.33) −16.62 (0.18) −17.28 (0.25) 12.83 (0.27)
M ≤ 80 6.14 (0.61) −16.88 (1.52) −7.42 (1.23) −7.13 (1.77) 27.45 (1.45)
M ≤ 60 8.06 (1.37) −13.41 (0.13) −3.34 (4.15) −2.83 (3.69) 32.19 (5.23)
cube-root:

14.25 (1.68) −7.31 (1.76) 4.13 (2.63) 4.97 (2.35) 41.12 (3.05)

Table 4: Bit-difference in security of McEliece and AES with respective key-length
considering different memory access cost.

McEliece. For the round 4 parameter sets of McEliece we performed a similar
estimation shown in Table 4.

Since in the McEliece setting ISD algorithms tend to use very high amounts
of memory we also consider memory-limited settings. In those we restrict the
memory consumption of the algorithm to not exceed 280 or 260 bits respectively.
We reduce the security estimates for McEliece by up to 6 bits and obtain the
best results in memory-limited settings, where our new time-memory trade-offs
can play its strength. Again the number in brackets indicates by how much we
reduced the previous estimate from [EB22].

Note that under cube-root memory access cost none of the optimal algorithmic
configurations exceeds 260 bits of memory.

Extrapolation Methodology. Now, let us provide a security estimation, where
we extrapolate the time to solve an instance of suggested parameters from our
obtained record computations, as recently proposed in [EMZ22]. This methodology

25

Quasi-Cyclic Category 1 Category 3 Category 5

constant:

BIKE message −0.65 (3.09) −0.59 (3.09) 0.26 (3.23)
key 0.73 (3.15) −1.07 (3.20) 2.13 (3.74)

HQC −1.84 (3.08) 1.19 (3.09) −0.86 (3.09)

logarithmic:

BIKE message −0.36 (3.22) −0.21 (3.25) 0.84 (3.26)
key 1.24 (3.18) −0.10 (3.21) 3.50 (3.24)

HQC −1.51 (3.23) 1.61 (3.26) −0.38 (3.28)

cube-root:

BIKE message 0.37 (4.10) 0.77 (4.43) 1.99 (4.69)
key 1.89 (3.88) 0.79 (4.21) 4.60 (4.43)

HQC −0.67 (4.29) 2.71 (4.63) 0.90 (4.85)
Table 5: Bit-difference in security of BIKE/HQC and AES with respective key-length
considering different memory access cost obtained via extrapolation methodology.

scales the time of the largest experiment in the respective setting by the difference
in the bit-complexity of our experiment and the suggested parameters.

Methodology Example. Let us give a brief example of that methodology. Take the
HQC category 1 parameter set (n, k, ω) = (35338, 17669, 132), in the constant
memory access setting. This instance achieves a bit complexity of 144.7 according
to our estimator, while our QC-3138 record has a bit complexity of 66.7 and took
us about 2.24 CPU years to compute. We, therefore, extrapolate the time for
breaking the HQC 128-bit parameters to 2.24 · 2144.7−66.7 ≈ 279.16 CPU years.

To then set this time into context to the security categories 1, 3 and 5 that
relate their security to the security of AES-128, -192 and -256, the time complexity
of breaking AES on the used cluster is estimated. Therefore, one benchmarks the
number of AES encryptions the cluster is able to perform per second from which
the expected time to break AES with respective key size is obtained. While this
methodology introduces platform dependencies, it allows for direct comparison
between (scaled) practical experiments for both settings.

BIKE / HQC. Table 5 states the security margin (in bits) the corresponding
parameter set has over breaking AES. Precisely the table states log TScheme

TAES
. Here,

TScheme is the estimated time to break the schemes parameters and TAES the
estimated time to break the corresponding AES instantiation on our cluster.
The number in parentheses states the improvement over the analysis performed
in [EMZ22].

We now observe already improvements in the constant memory access setting,
which reflects our obtained speedup on the mid-sized instance used for the

26

extrapolation. Still we obtain higher gains towards higher memory access costs,
due to the reduced memory usage. Overall the margins are slightly lower using
the extrapolation methodology compared to the bit complexity estimate, with
larger differences towards higher memory access costs. This is because some of the
memory access costs are accounted to the mid-sized instance, which is subtracted
from the overall estimate in the extrapolation.

McEliece Category 1
n = 3488

Category 3
n = 4608

Category 5a
n = 6688

Category 5b
n = 6960

Category 5c
n = 8192

constant:
unlimited −0.65 (0.74) −25.93 (1.07) −23.86 (0.68) −24.55 (0.75) 5.32 (0.78)
M ≤ 80 0.47 (1.07) −23.77 (2.25) −13.47 (1.80) −13.18 (2.31) 21.35 (2.02)
M ≤ 60 2.80 (2.00) −19.67 (0.55) − 8.89 (5.03) − 8.41 (4.61) 26.60 (6.10)

logarithmic:
unlimited 0.84 (0.93) −24.16 (1.05) −21.60 (0.90) −22.27 (0.98) 7.84 (1.00)
M ≤ 80 1.53 (1.33) −22.66 (2.25) −12.41 (1.95) −12.12 (2.49) 22.47 (2.17)
M ≤ 60 3.45 (2.10) −19.19 (0.86) − 8.32 (4.86) − 7.81 (4.41) 27.20 (5.96)

cube-root:
8.92 (1.45) −13.81 (1.54) − 1.59 (2.41) − 0.75 (2.13) 35.40 (2.82)

Table 6: Bit-difference in security of Classic McEliece and AES with respective key-
length considering different memory access cost obtained via extrapolation methodology.

McEliece. For the round 4 parameter sets of McEliece we performed a similar
extrapolation shown in Table 6. For this extrapolation we used the expected time
complexity of 59.74 CPU years for the McEliece-1347 instance.

While reducing the estimate in all settings, the overall picture stays the same
under both estimation methods: All but the category 3 parameter set reach their
security claims if cube-root memory access costs are imposed.

References

ABB+20. Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loïc Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Guneysu,
Carlos Aguilar Melchor, et al. BIKE: bit flipping key encapsulation. 2020.

ADH+19. Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Ea-
monn W. Postlethwaite, and Marc Stevens. The general sieve kernel and
new records in lattice reduction. In Yuval Ishai and Vincent Rijmen, edi-
tors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 717–746.
Springer, Heidelberg, May 2019.

27

AKKM13. Per Austrin, Petteri Kaski, Mikko Koivisto, and Jussi Määttä. Space-
time tradeoffs for subset sum: An improved worst case algorithm. In
Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg,
editors, ICALP 2013, Part I, volume 7965 of LNCS, pages 45–56. Springer,
Heidelberg, July 2013.

ALL19. Nicolas Aragon, Julien Lavauzelle, and Matthieu Lequesne. decodingchal-
lenge.org, 2019.

BBC+19. Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and
Paolo Santini. A finite regime analysis of information set decoding algorithms.
Algorithms, 12(10):209, 2019.

BBC+20. Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray A.
Perlner, Daniel Smith-Tone, Jean-Pierre Tillich, and Javier A. Verbel. Im-
provements of algebraic attacks for solving the rank decoding and MinRank
problems. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part I, volume 12491 of LNCS, pages 507–536. Springer, Heidelberg, De-
cember 2020.

BBSS20. Xavier Bonnetain, Rémi Bricout, André Schrottenloher, and Yixin Shen.
Improved classical and quantum algorithms for subset-sum. In Shiho Moriai
and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume 12492 of
LNCS, pages 633–666. Springer, Heidelberg, December 2020.

BCDL19. Rémi Bricout, André Chailloux, Thomas Debris-Alazard, and Matthieu
Lequesne. Ternary syndrome decoding with large weight. In Kenneth G.
Paterson and Douglas Stebila, editors, SAC 2019, volume 11959 of LNCS,
pages 437–466. Springer, Heidelberg, August 2019.

BCJ11. Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic
algorithms for hard knapsacks. In Kenneth G. Paterson, editor, EURO-
CRYPT 2011, volume 6632 of LNCS, pages 364–385. Springer, Heidelberg,
May 2011.

BDGL16. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions
in nearest neighbor searching with applications to lattice sieving. In Robert
Krauthgamer, editor, 27th SODA, pages 10–24. ACM-SIAM, January 2016.

BJMM12. Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. De-
coding random binary linear codes in 2n/20: How 1 + 1 = 0 improves
information set decoding. In David Pointcheval and Thomas Johansson,
editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 520–536. Springer,
Heidelberg, April 2012.

BKW00. Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning,
the parity problem, and the statistical query model. In 32nd ACM STOC,
pages 435–440. ACM Press, May 2000.

BLP08. Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and
defending the McEliece cryptosystem. In Johannes Buchmann and Jintai
Ding, editors, Post-quantum cryptography, second international workshop,
PQCRYPTO 2008, pages 31–46. Springer, Heidelberg, October 2008.

BM18. Leif Both and Alexander May. Decoding linear codes with high error rate and
its impact for LPN security. In Tanja Lange and Rainer Steinwandt, editors,
Post-Quantum Cryptography - 9th International Conference, PQCrypto 2018,
pages 25–46. Springer, Heidelberg, 2018.

DDKS12. Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Efficient dissec-
tion of composite problems, with applications to cryptanalysis, knapsacks,
and combinatorial search problems. In Reihaneh Safavi-Naini and Ran

28

Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 719–740.
Springer, Heidelberg, August 2012.

DEM19. Claire Delaplace, Andre Esser, and Alexander May. Improved low-memory
subset sum and LPN algorithms via multiple collisions. In Martin Albrecht,
editor, 17th IMA International Conference on Cryptography and Coding,
volume 11929 of LNCS, pages 178–199. Springer, Heidelberg, December
2019.

Din18. Itai Dinur. An algorithmic framework for the generalized birthday problem.
Designs, Codes and Cryptography, pages 1–30, 2018.

Din21. Itai Dinur. Cryptanalytic applications of the polynomial method for solving
multivariate equation systems over GF(2). In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of
LNCS, pages 374–403. Springer, Heidelberg, October 2021.

DSvW21. Léo Ducas, Marc Stevens, and Wessel P. J. van Woerden. Advanced lattice
sieving on GPUs, with tensor cores. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS,
pages 249–279. Springer, Heidelberg, October 2021.

Dum91. Ilya Dumer. On minimum distance decoding of linear codes. In Proc. 5th
Joint Soviet-Swedish Int. Workshop Inform. Theory, pages 50–52, 1991.

EB22. Andre Esser and Emanuele Bellini. Syndrome decoding estimator. In Public-
Key Cryptography - PKC 2022 - 25th IACR International Conference on
Practice and Theory of Public-Key Cryptography, volume 13177 of Lecture
Notes in Computer Science, pages 112–141. Springer, 2022.

EKM17. Andre Esser, Robert Kübler, and Alexander May. LPN decoded. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402
of LNCS, pages 486–514. Springer, Heidelberg, August 2017.

EM19. Andre Esser and Alexander May. Better sample–random subset sum in
20.255n and its impact on decoding random linear codes. arXiv preprint
arXiv:1907.04295, withdrawn, 2019.

EM20. Andre Esser and Alexander May. Low weight discrete logarithm and subset
sum in 20.65n with polynomial memory. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 94–122.
Springer, Heidelberg, May 2020.

EMZ22. Andre Esser, Alexander May, and Floyd Zweydinger. McEliece needs a break
- solving McEliece-1284 and quasi-cyclic-2918 with modern ISD. In Orr
Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part III,
volume 13277 of LNCS, pages 433–457. Springer, Heidelberg, May / June
2022.

Ess20. Andre Esser. Memory-efficient algorithms for solving subset sum and related
problems with cryptanalytic applications. PhD thesis, Ruhr University
Bochum, Germany, 2020.

HJ10. Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard
knapsacks. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of
LNCS, pages 235–256. Springer, Heidelberg, May / June 2010.

HS74. Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to
the knapsack problem. Journal of the ACM (JACM), 21(2):277–292, 1974.

KL22. Pierre Karpman and Charlotte Lefevre. Time-memory tradeoffs for large-
weight syndrome decoding in ternary codes. In Public-Key Cryptography -
PKC 2022 - 25th IACR International Conference on Practice and Theory
of Public-Key Cryptography, volume 13177 of Lecture Notes in Computer
Science, pages 82–111. Springer, 2022.

29

May21. Alexander May. How to meet ternary LWE keys. In Tal Malkin and Chris
Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages
701–731, Virtual Event, August 2021. Springer, Heidelberg.

MMT11. Alexander May, Alexander Meurer, and Enrico Thomae. Decoding ran-
dom linear codes in Õ(20.054n). In Dong Hoon Lee and Xiaoyun Wang,
editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 107–124. Springer,
Heidelberg, December 2011.

MO15. Alexander May and Ilya Ozerov. On computing nearest neighbors with
applications to decoding of binary linear codes. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS,
pages 203–228. Springer, Heidelberg, April 2015.

NS15. Ivica Nikolic and Yu Sasaki. Refinements of the k-tree algorithm for the
generalized birthday problem. In Tetsu Iwata and Jung Hee Cheon, editors,
ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages 683–703. Springer,
Heidelberg, November / December 2015.

Pra62. Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory, 8(5):5–9, 1962.

SS81. Richard Schroeppel and Adi Shamir. A T = O(2n/2), S = O(2n/4) algorithm
for certain NP-complete problems. SIAM J. Comput., 10(3):456–464, 1981.

Ste88. Jacques Stern. A method for finding codewords of small weight. In Inter-
national Colloquium on Coding Theory and Applications, pages 106–113.
Springer, 1988.

TS16. Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set
decoding for a sub-linear error weight. In Tsuyoshi Takagi, editor, Post-
Quantum Cryptography - 7th International Workshop, PQCrypto 2016, pages
144–161. Springer, Heidelberg, 2016.

UV21. Aleksei Udovenko and Giuseppe Vitto. Breaking the $ikep182 challenge.
Cryptology ePrint Archive, Report 2021/1421, 2021. https://eprint.iacr.
org/2021/1421.

Var21. Various. Round 3 official comment: Classic McEliece, 2021. Avail-
able at: https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/
ldAzu9PeaIM/m/VhLBcydEAAAJ.

Wag02. David Wagner. A generalized birthday problem. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 288–303. Springer, Heidelberg,
August 2002.

WL15. Maoning Wang and Mingjie Liu. Improved information set decoding for code-
based cryptosystems with constrained memory. In International Workshop
on Frontiers in Algorithmics, pages 241–258. Springer, 2015.

30

https://eprint.iacr.org/2021/1421
https://eprint.iacr.org/2021/1421
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/ldAzu9PeaIM/m/VhLBcydEAAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/ldAzu9PeaIM/m/VhLBcydEAAAJ

A Generalization to arbitrary depth d

Note that in general we have

Li+1 = (qi · Li)2

2ℓi
,

where ℓi is the additional bitwise constraint introduced on level i. The time and
memory complexity are then given as before. The saturation constraints extend
to

qi · Li ≤ |Di|
2ℓ1+...+ℓi

for i = 2, . . . , d − 1,

where d is the depth of the tree. Together with the definition of the filtering
probability given in Equation (4), we can rewrite the saturation constraints for
each level i as

i∑
j=1

(2i−j − 1)ℓj ≥
i∑

j=1
2i−j · rj for i = 1, . . . d − 2,

where there exist 2rj different representations of any element from Dj+1 as a sum
of two elements from Dj . Finally, the requirement of finding one representation
of the solution in the final list is expressed via the condition

qd · Ld = 1,

which similar to the saturation constraints rewrites to
d−1∑
j=1

(2d−j − 1)ℓj =
d−1∑
j=1

2d−j−1 · rj . (8)

31

	New Time-Memory Trade-Offs for Subset Sum – Improving ISD in Theory and Practice

