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Abstract

Non-malleable codes are a natural relaxation of error correction and error detection codes applicable
in scenarios where error-correction or error-detection is impossible.

Over the last decade, non-malleable codes have been studied for a wide variety of tampering families.
Among the most well studied of these is the split-state family of tampering channels, where the
codeword is split into two or more parts and each part is tampered independently.

We survey various constructions and applications of non-malleable codes in the split-state model.
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1 Introduction

Motivated by applications in tamper-resilient hardware, Dziembowski, Pietrzak, and Wichs [DPW10]
introduced non-malleable codes as a natural generalization of error correction and error detection codes.

The error correction and the error detection codes are the most basic objects in the codes theory. They
do, however, have significant drawbacks, which makes them unsuitable for the applications to tamper-
resilient cryptography. In the case of error correction codes, the message can be retrieved as long as only a
limited number of positions of the codeword have been flipped. However it is hard to find a scenario where
an adversary would limit himself to flipping only a few positions when given access to the whole codeword.
The error detection codes face a different interesting challenge, namely whatever tampering limitations
we impose on the adversary (be it polynomial time, bounded memory or some structure limitations
like split-state), the adversary can not be allowed to overwrite the codeword. Overwriting a codeword
with another valid pre-computed codeword makes the detection of tampering clearly impossible. But
overwrites are quite simple attacks, the adversary wipes the memory of the device and uploads some new
data. While this attack seems irrational, there are scenarios when partial overwrites are realistic attacks
on the scheme1. Naturally, we would like to allow for a wide spectrum of attacks including overwrite
attacks.

Motivated by this, Dziembowski, Pietrzak and Wichs [DPW10] considered a notion of non-malleable
codes (NMC). It was a weakening of detection/correction codes based on the concept of non-malleability
introduced by [DDN00].

The model is very natural and clean. We start with the message m, we encode it Enc(m) = c, then we
store the encoding on the device, the adversary picks any adversarial function t ∈ T (where T is a class
of tampering channels), a codeword is tampered to c′ = t(c), and after decoding we get Dec(t(c)) = m′.
In the error-correction codes, we would like m′ = m, in the error-detection codes we would like m′ = m
or m′ = ⊥ (where ⊥ is a special symbol denoting detection of tampering). As we already discussed, if the
family of channels T contains constant functions then neither correction nor detection is possible. There
is however a meaningful definition that can be considered here. Non-malleable code against the family
of channels T guarantees that after above tampering, m′ = m or m′ is completely independent of m, for
instance, m′ = m+ 1 is not possible.

Dziembowski, Pietrzak, and Wichs formalized this notion using the simulation paradigm: the output
of the experiment can be simulated by a simulator that depends only on the adversarial channel t (and
not the message m), and is allowed to output a special symbol same which is replaced by the encoded
message m.

Definition 1.1 (Non-malleable codes [DPW10]). A pair of (randomized2) algorithms, (Enc :
{0, 1}k → {0, 1}n,Dec : {0, 1}n → {0, 1}k), is an ε-non-malleable code with respect to a family of channels
T ⊆ {f : {0, 1}n → {0, 1}n}, if the following properties hold:

1. (Correctness)

For every message m ∈ {0, 1}k,
Pr[Dec(Enc(m) = m] = 1

where the probability is over the randomness of the encoding and decoding procedures.

2. (Security)

For every t ∈ T there is a random variable Dt supported on {0, 1}k ∪ {same} that is independent of
the randomness in Enc,Dec, such that for every message m ∈ {0, 1}k

(Dec(t(Enc(m))) ≈ε Copy(Dt,m)),

1Those attacks often allow the adversary to gradually learn the underlying secret key. They are especially prevalent in
the natural scenarios where the adversary gets to tamper the device multiple times.

2[DPW10] defined Dec to be deterministic, however here we allow decoding to be randomized. It is not clear if randomized
and deterministic decoding are equivalent; in particular, no strong separations are known.
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where ≈ε denotes statistical distance (total variation distance) at most ε and the function Copy is
defined as

Copy(x, y) =

{
x if x 6= same

y if x = same.

A few years later, Aggarwal, Dodis, Kazana, and Obremski [ADKO15a] introduced an alternative
perspective on non-malleable codes by introducing the notion of non-malleable reductions. To intuitively
describe a non-malleable reduction, imagine the scenario discussed earlier, where the messagem is encoded
as a codeword c, and c is tampered using t ∈ T into c′ = t(c). The tampered codeword c′ decodes to m′.
A non-malleable reduction from T to G guarantees that m′ = g(m), where g is a possibly randomized
tampering function sampled from G. In particular, if the family of functions G contains only the identity
function and all constant functions, then the corresponding non-malleable reduction is a non-malleable
code for T .

Motivation: tamper-resilient hardware. The relaxed guarantees of a non-malleable code may seem
a bit arbitrary at first glance, however the object has natural applications in tamper resilient hardware.
In the 90s, high profile side-channel attacks on a number of cryptographic schemes were published that
broke security by evaluating the schemes on a sequences of algebraically-related keys [Bih93, KSW96].
A number of ad hoc solutions for these “related-key attacks” were suggested, and eventually theoretical
solutions were proposed by Gennaro, Lysyanskaya, Malkin, Micali, and Rabin [GLM+03] as well as Ishai,
Prabhakaran, Sahai, and Wagner [IPSW06].

In [GLM+03], the authors addressed tampering attacks with a solution that assumes a (public) tamper
and leakage resilient circuit in conjunction with leakage resilient memory. The justification for using
tamper and leakage resilient-hardware was two-fold: (1) leakage-resilience had been addressed far more
systematically in the literature and existing approaches could be applied off-the-shelf, (2) because the
tamper and leakage resilient circuit was public (in particular, contained no secret keys), it was safer to
assume appropriately hardened hardware could be responsibly manufactured. Their approach was to
sign the contents of memory with strong signature scheme. Unfortunately, this also makes it infeasible to
update the memory without a secret key (which would again need to be protected). In [IPSW06], it was
shown how to compile a circuit into a tamper-resilient one, building on ideas from secure computation.
Unfortunately, the tampering attacks handled by this approach are quite limited and it has proven difficult
to extend their results to more general tampering attacks.

Dziembowski, Pietrzak and Wichs motivated non-malleable codes as a means of extending the ap-
proach of [GLM+03]. They considered the same model of a tamper and leakage resilient (public) circuit
with leakage-resilient memory, but instead of signing the memory (using a secret key), the memory is en-
coded with a (public) non-malleable code. This allows the tamper and leakage resilient circuit to update
any state in the memory itself by decoding, computing, and re-encoding. In contrast with [GLM+03],
where a trusted third party holding the secret signing key is needed to sign new memory contents, this
achieves non-malleability for stateful functionalities. The downside is that while a strong signature scheme
is resilient to arbitrary polynomial time tampering attacks, efficient non-malleable codes (because they
are public) have no hope of handling such attacks (See Feasibility below, as well as Section 7 for more
details).

Feasibility. It is not difficult to see that non-malleable codes only exist for restricted classes of channels
T : otherwise one can always consider the channel that decodes the message, flips a bit, and re-encodes
the resulting message. So the natural question to ask is against which classes of tampering channels is
it possible to build non-malleable codes. As a first result, Dziembowski, Pietrzak, and Wichs gave an
efficient, explicit construction of a non-malleable code against channels that can tamper each codeword bit
independently (so called “bitwise tampering”). They additionally provided a non-constructive argument
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that ε-non-malleable codes exist for any class of channels that is not too big, i.e. log log |T | < n−2 log 1/ε.
They left constructing explicit codes for larger, richer classes of channels as an open problem.

Split-state non-malleable codes. A well-studied class of tampering functions is the 2-split-state
model where the codeword consists of two states L and R, and the adversary tampers with each of
these states independently. This is a very large class of tampering channels that, in particular, includes
the bitwise tampering family of channels mentioned above. We now sketch the landscape of this area
and particularly summarize the results on 2-split-state NMCs in Table 1. In [DPW10], in addition to
introducing non-malleable codes, the authors also introduced a model of tampering called the t-split-
state model, where the codeword consists of t independently tamperable states. They give the first NMC
constructions in the n-split-state model3 (where n is the codeword length) and the 2-split-state model
(using random oracles). Dziembowski, Kazana and Obremski [DKO13] provided the first construction
of 2-split-state NMCs without any assumptions. Their construction enabled encoding of 1-bit messages
and used two-source extractors. The first NMC in the 2-split-state model for k-bit messages was given
by Aggarwal, Dodis and Lovett [ADL14], which used inner product extractors with tools from additive
combinatorics. In [CG14a], Cheraghchi and Guruswami studied the optimal rate of the non-malleable
codes for various tampering families, where the rate of a code is defined as message length

codeword length . In particular,
they showed that the optimal achievable rate for the t-split-state family is 1 − 1/t. Note that in the
split-state tampering model, having as few states as possible is most desirable, with 2 states being the
best achievable. By the above result, the best possible rate for the 2-split-state model is therefore 1

2 . A
long series of works4 [CG14b, CZ14, ADKO15a, CGL16, Li17, Li19a, KOS17, KOS18, GMW18, AO20,
ASK+22] has made significant progress towards achieving this rate. We now discuss some of these results.
The work of Cheraghchi and Guruswami [CG14b] gave the first optimal rate non-malleable code in the n-
split-state model (where n is the codeword length). More importantly, this work introduced non-malleable
two-source extractors and demonstrated that these special extractors can be used to generically build
2-split-state NMCs. This connection has led to several fascinating works [CZ14, CGL16, Li17, Li19a]
striving to improve the rate and number of states of non-malleable codes. Most notably, Chattopadhyay
and Zuckerman [CZ14] built a 10-state NMC with a constant rate, making this the first constant rate
construction with a constant number of states. They achieve their result by first building a non-malleable
extractor with 10 sources and then using the connection due to [CG14a] to obtain the corresponding non-
malleable code. The work of Kanukurthi, Obbattu and Sekar [KOS17] used seeded extractors to build
a compiler that transforms a low rate non-malleable code into one with high rate and, in particular,
obtained a rate 1/3, 4−state non-malleable code. This was subsequently improved to three states in the
works of Kanukurthi, Obbattu and Sekar [KOS18] as well as Gupta, Maji and Wang [GMW18]. Li [Li19a]

obtained 2-split-state NMC with rate O( log log log(1/ε)
log log(1/ε) ) (where ε is the error). Particularly, this gave a rate

of O(log log(n)/ log(n)), for negligible error ε = 2−Ω(n), and a constant rate for constant error, making
this the first constant rate scheme in the 2−split-state model. The concept of non-malleable reductions
due to [ADKO15a] was used to build the first constant rate NMC with negligible error in the 2-split-state
model [AO20]. In a recent work, [ASK+22], it was shown that the construction from [KOS17] (with rate
1/3) is actually non-malleable even against 2 split-state tampering (and hence is nearly an optimal rate
construction for 2 split-state tampering).

Applications of split-state non-malleable codes. The split-state tampering model is a very nat-
ural model. In particular, there are cryptographic settings where the separation of states is natural,

3We already mentioned this result above as a non-malleable code against bitwise tampering. We mention it again just to
emphasize that bitwise tampering is a special case of split-state tampering.

4Other works have considered non-malleable codes in models other than the 2-split-state model or under computational
assumptions [AAG+16, FMNV14, AGM+15, JW15, AKO17, ADN+19b, DLSZ20, DKS19, CKR16, ADKO15b, CGM+16,
CL17, DKO+18, GMW18, BDSKM18, FHMV17].
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like in secret sharing or in multiparty computation (MPC) scenarios. Non-malleable codes in the
split-state model have found many applications in achieving security against physical (leakage and
tampering) attacks [DPW10, LL12], domain extension of encryption schemes [CMTV15, CDTV16],
non-malleable commitments [GPR16], non-malleable oblivious transfer [?] non-malleable secret shar-
ing [GK18, ADN+19a, BS19, SV19], non-malleable oblivious transfer [IKSS21], and privacy amplifica-
tion [CKOS19]. We discuss the application to non-malleable commitments in more detail in Section 8.

Additionally, non-malleable codes in the split-state model have found many applications in the con-
struction of non-malleable codes against other important and natural tampering families, as mentioned
below.

• Decision tree tampering ([BGW19]): each tampered output symbol is a function of a small polyno-
mial number of (adaptively chosen) queries to codeword symbols.

• Small-depth circuit tampering ([BDSG+18, BGW19]): the tampered codeword is produced by a
boolean circuit of polynomial size and nearly logarithmic depth.

• (Bounded) Polynomial-size circuit tampering ([BDL21]): the tampered codeword is produced by
circuit of bounded polynomial size, nd for some constant d where n is the codeword length.

• Continuous NMCs ( [ADN+19b]): the tampering is still split-state, but the adversary is allowed to
tamper repeatedly until the tampering is detected.

The applications to decision tree tampering, small-depth circuits, and polynomial size circuit tampering
are discussed in Section 7.

1.1 Organization of the paper

• Section 2 contains preliminaries and definition of non-malleable reductions, and the reader may
refer to it when required.

• Section 3 contains a gentle introduction to different variants of non-malleable codes and their
properties such as secret sharing and leakage-resilience.

• In Section 4, we give the first, and arguably the simplest construction of non-malleable codes in the
split-state model [ADL14]. The simplicity made it a particularly useful tool for several follow-up
works that required non-standard properties from the underlying non-malleable code.

• In Section 5, we briefly mention two-source non-malleable extractors, and their connection to non-
malleable codes in the split-state model, as well as to other cryptographic primitives.

• In Section 6, we give an overview of the rate amplification technique from [KOS17, KOS18, AO20,
ASK+22] that gives an almost optimal rate non-malleable code in the split-state model.

• In Section 7, we survey some of the applications of split-state non-malleable codes to construct-
ing non-malleable codes against computationally bounded tampering classes. In particular, we
give an overview of the techniques in the following works: [BGW19] for small-depth decision
trees, [BDSG+18] for small-depth circuit tampering, and [BDL21] for polynomial size circuit tam-
pering.

• In Section 8, we give a construction of a non-malleable commitment scheme due to [GPR16] that
is one of the most important applications of non-malleable codes in the split-state model.
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Work Rate

Dziembowski, Pietrzak, Wichs [DPW10] 1/6 (Existential, Random Oracle Model)

Cheraghchi, Guruswami [CG14a] 1/2 (Existential, Lower bound)

Dziembowski, Kazana, Obremski [DKO13] Ω(1/n) (Only for 1-bit messages)

Aggarwal, Dodis, Lovett, Briët [ADL14, Agg15, AB16] Ω(1/n4/5)

Chattopadhyay, Goyal, Li [CGL16] n−Ω(1)

Li [Li17] Ω(1/ log(n))

Li [Li19a] Ω(log log(n)/ log(n))

Li [Li19a] Ω(1) (with constant error)

Aggarwal, Obremski [AO20] ≈ 1/1, 500, 000

Aggarwal, Sekar, Kanukurthi, Obremski, Obbattu [ASK+22] 1/3

Table 1: Prior Work on 2-state NMCs (n is codeword length)

2 Preliminaries

2.1 Notation and Mathematical Preliminaries

For a set T , let UT denote a uniform distribution over T , and, for an integer `, let U` denote uniform
distribution over ` bit strings. We say that b = a ± δ if a − δ ≤ b ≤ a + δ. For any random variable A
and any set A, we denote A|A∈A to be the random variable A′ such that

∀a, Pr[A′ = a] = Pr[A = a | A ∈ A] .

The statistical distance between two random variables A,B is defined by

∆(A ; B) =
1

2

∑
v

|Pr[A = v]− Pr[B = v]| .

We use A ≈ε B as shorthand for ∆(A,B) ≤ ε.

Lemma 2.1. For any function α, if ∆(A ; B) ≤ ε, then ∆(α(A) ; α(B)) ≤ ε.

The min-entropy of a random variable W is H∞(W )
def
= − log(maxw Pr[W = w]), and the conditional

min-entropy of W given Z is H∞(W |Z)
def
= − log (Ez←Z maxw Pr[W = w|Z = z]).

Definition 2.1. We say that a function Ext : Fn × Fn → F is a (k, ε)-2-source extractor if for all
independent sources X,Y ∈ Fn such that min-entropy H∞(X) + H∞(Y ) ≥ k, we have (Y,Ext(X,Y )) ≈ε
(Y, Um), and (X,Ext(X,Y )) ≈ε (X,Um).

Lemma 2.2. For all positive integers n and any finite field F, and for all ε > 0, the inner product
function 〈·, ·〉 : Fn × Fn → F is an efficient ((n+ 1) log |F|+ 2 log

(
1
ε

)
, ε) 2-source extractor.

In particular, for n being an integer multiple of m, and interpreting elements of {0, 1}m as elements
from F2m and those in {0, 1}n to be from (F2m)n/m, we have that for any ε > 0 there exists an efficient
(n+m+ 2 log

(
1
ε

)
, ε) 2-source extractor Ext : {0, 1}n × {0, 1}n → {0, 1}m.

The following is a definition of an ε-almost universal hash function.
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Definition 2.2. A function C : {0, 1}s×{0, 1}n → {0, 1}t is called an ε-almost universal hash function
if for any x, y ∈ {0, 1}n such that x 6= y,

Pr
R←{0,1}s

(C(R, x) = C(R, y)) ≤ ε

The following is a standard construction of a polynomial evaluation ε-universal hash function. The
parameters are from [DW09].

Lemma 2.3. For any n, t > 2 log n, there exists an efficiently computable 2−t/2-almost univeral hash
function C : {0, 1}s × {0, 1}n → {0, 1}t with s = 2t.

Lemma 2.4 (Lemma 4 of [DDV10], Lemma 9 of [ADKO15a]). Let A,B be independent random
variables and consider a sequence V1, . . . , Vi of random variables, where for some function φ, Vi = φi(Ci) =
φ(V1, . . . , Vi−1, Ci) with each Ci ∈ {A,B}. Then A and B are independent conditioned on V1, . . . , Vi. That
is, I(A;B|V1, . . . , Vi) = 0.

2.2 Non-malleable Codes and Reductions

Definitions. In [ADKO15a], the notion of non-malleable codes w.r.t. to a tampering family F (see
[DPW10]) was generalized to a more versatile notion of non-malleable reductions from F to G. The
following definitions are taken from [ADKO15a].

Definition 2.3 (non-malleable reduction). Let F ⊂ AA and G ⊂ BB be some classes of functions
(which we call manipulation functions). We will write:

(F ⇒ G, ε)

and say F reduces to G, if there exist an efficient randomized encoding function E : B → A, and an
efficient deterministic decoding function D : A → B, such that (a) for all x ∈ B, we have D(E(x)) = x,
and (b) for all f ∈ F , there exists G such that for all x ∈ B,

∆
(
D(f(E(x))) ; G(x)

)
≤ ε, (1)

where G is a distribution over G, and G(x) denotes the distribution g(x), where g ← G.
The pair (E,D) is called (F ,G, ε)-non-malleable reduction.

Intuitively, (F ,G, ε)-non-malleable reduction allows one to encode a value x by y ← E(x), so that
tampering with y by y = f(y) for f ∈ F gets “reduced” (by the decoding function D(y) = x) to tampering
with x itself via some (distribution over) g ∈ G.

In particular, the notion of non-malleable code w.r.t. F , is simply a reduction from F to the family
of “trivial manipulation functions” NMk defined below.

Definition 2.4. Let NMk denote the set of trivial manipulation functions on k-bit strings, which consists
of the identity function I(x) = x and all constant functions fc(x) = c, where c ∈ {0, 1}k.

We say that a pair (E,D) defines an (F , k, ε)-non-malleable code, if it defines a (F ,NMk, ε)-non-
malleable reduction.

The utility of non-malleable reductions comes from the following natural composition theorem that
was shown in [ADKO15a], which allows to gradually make our tampering families simpler and simpler,
until we eventually end up with a non-malleable code (corresponding to the trivial family NMk).

Theorem 2.1 (Composition). If (F ⇒ G, ε1) and (G ⇒ H, ε2), then (F ⇒ H, ε1 + ε2).
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We will also need the following trivial observation.

Observation 2.1 (Union). Let (E,D) be an (F ,H, ε) and a (G,H, ε′) non-malleable reduction . Then
(E,D) is an (F ∪ G,H,max(ε, ε′)) non-malleable reduction .

Useful Tampering Families. We define several natural tampering families we will use in this work.
For this, we first introduce the following “direct product” operator on tampering families:

Definition 2.5. Given tampering families F ⊂ AA and G ⊂ BB, let F ×G denote the class of functions
h from (A×B)A×B such that

h(x) = h1(x1)‖h2(x2)

for some h1 ∈ F and h2 ∈ G and x = x1‖x2, where x1 ∈ A, x2 ∈ B.
We also let F1 := F , and, for t ≥ 1, F t+1 := F t ×F .

We can now define the following tampering families:

• Sn = ({0, 1}n){0,1}
n

denotes the class of all manipulation functions on n-bit strings.

• Sn,p = (Fnp )F
n
p denotes the class of all manipulation functions on Fnp .

• Given t > 1, Stn,p denotes the tampering family in the t-split-state model, where the attacker can
apply t arbitrarily correlated functions h1, . . . , ht to t separate, parts of memory each in Fnp (but,
of course, each hi can only be applied to the i-th part individually).

• Given a prime p, AFFp denotes the class of all affine functions parametrized by a, b ∈ Fp such that
fa,b(x) := ax+ b for all x ∈ Fp.

2.3 Basic techniques

The following is a simple result from [ADL14] that says that if two pairs of random variables (X1, X2), (Y1, Y2)
are statistically close to each other then X1 conditioned on X2 is statistically close to Y1 conditioned on
Y2.

Lemma 2.5. Let X1, Y1 ∈ A1, and Y1, Y2 ∈ A2 be random variables such that ∆((X1, X2) ; (Y1, Y2)) ≤ ε.
Then, for any non-empty set A′ ⊆ A1, we have

∆(X2 | X1 ∈ A′ ; Y2 | Y1 ∈ A′) ≤
2ε

Pr(X1 ∈ A′)
.

The following is a variant of a similar simple lemma from [DKO13, ADL14]. The proof is just a simple
application of triangle inequality.

Lemma 2.6. Let S be some random variable distributed over a set S, and let S1, . . . ,Sj be a partition
of S. Let φ : S → T be some function, and let D1, . . . , Dj be some random variables over the set T .
Assume that for all 1 ≤ i ≤ j,

∆ (φ(S)|S∈Si ; Di) ≤ εi.

Then
∆ (φ(S) ; D) ≤

∑
εi Pr[S ∈ Si] ,

for some random variable D ∈ T such that for all d Pr[D = d] =
∑

i Pr[S ∈ Si] · Pr[Di = d].

Lemma 2.7. Let F be a finite field. Let X = (X1, X2) ∈ F× F be a random variable. Assume that for
all a ∈ F not both zero, ∆(X1 + aX2 ; UF) ≤ ε. Then ∆((X1, X2) ; UFp , X2) ≤ ε|F|2.
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Lemma 2.8. Let X ∈ F be a random variable. Assume that ∆(X ; UF) ≥ ε. Then if X ′ is an i.i.d copy
of X then

Pr[X = X ′] ≥ 1 + ε2

|F|
.

Lemma 2.9. Let Z = (X,Y ) ∈ Fn × Fn be a random variable, and let Z ′ = (X ′, Y ′) be an i.i.d copy of
Z. Then

Pr[〈X,Y 〉 = 〈X ′, Y ′〉] ≤ Pr[〈X,Y 〉 = 〈X ′, Y 〉].

3 Basic properties and variants of non-malleable codes and continuous
non-malleable codes

In this section we will discuss various basic properties of the 2− split state non-malleable codes, as well
as numerous variants of their definitions.

3.1 A few examples.

As a warm up we will go through few basic examples of codes that are not non-malleable.

Example 3.1. To encode m ∈ F we pick L ∈ F and R ∈ F uniformly random such that L+R = m.

Above clearly is not a non-malleable code: pick L = L+1 and R = R then Dec(L,R) = Dec(L,R)+1,
we have changed the message but the message is not independent of the original message.

Example 3.2. To encode m ∈ Fp, pick L,R ∈ Fnp uniformly random such that 〈L,R〉 = m, where 〈., .〉
stands for the inner product over Fp.

Again, the attack is quite simple: pick a /∈ {0, 1} and let L = a · L, R = R, then Dec(L,R) =
a ·Dec(L,R). Again the message has changed but remained strongly correlated with the original message.
Above attack depends on a /∈ {0, 1}, however over F2 we won’t have any other option. so maybe let’s
consider the following code:

Example 3.3. To encode m ∈ F2 pick L,R ∈ Fn2 uniformly at random such that 〈L,R〉 = m, where
〈., .〉 stands for the inner product over F2.

Sadly again there is a simple attack let L (and R respectively) be equal to L (and R respectively)
on all positions except the last, we will set the last position to (L)n = 1 (and (R)n = 1). Now with
probability 3

4 we have Dec(L,R) = Dec(L,R)⊕1, and with probability 1
4 we have Dec(L,R) = Dec(L,R).

This can not be a non-malleable code, as [DKO13] showed for single bit message5: if we can flip the
output of the Decoder with probability greater then 1

2 (plus some non-negligible factor) then the code
can not be non-malleable.

3.2 Secret sharing.

We will show that the 2− split state non-malleable code has to be a 2 out of 2 secret sharing. Let m0,m1

be two messages and let Enc(m0) = X0, Y0 and Enc(m1) = X1, Y1. If given Xi we could guess i we would
be able to tamper the codewords in a way that Dec(X0, Y 0) = a0 and Dec(X1, Y 1) = a1, where a0, a1

are two fixed distinct messages (different than m0,m1). This clearly breaks non-malleability since the
original messages m0,m1 are not preserved but the messages after tampering are correlated with the
original messages: tampered message is ai if and only if the original message was mi. This conveys the
main intuition: is message is not preserved then tampered message should not reveal the original message.

5We also assume that Dec 6= ⊥, i.e. there are no invalid codewords
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Let us construct the above-mentioned attack: find `0, `1, r, a0 6= a1 such that Dec(`0, r) = a0 and
Dec(`1, r) = a1 (we know they must exist else r alone would determine the output of the decoder, and we
could carry on the same attack on the right state). Now for the tampering: we will completely overwrite
the right state Yi → r, and given Xi if we think i = 0 we will tamper Xi → `0, if we think that i = 1
then we tamper Xi → `1, this gives the desired result.

To be more precise we recall theorem from [ADKO15b].

Lemma 3.1 (from [ADKO15b]). If (Enc,Dec) is an ε− non-malleable code then for any two messages
m0,m1, and for Enc(m0) = X0, Y0 and Enc(m1) = X1, Y1, we get:

X0 ≈2ε X1 and Y0 ≈2ε Y1

3.3 Leakage-resilience.

So far we only discussed active adversary that tampers the states. It is natural to consider its weaker
version: a passive adversary.

Long time ago we thought of cryptographic device as a box that holds a secret key and has a strictly
defined interface, and the attacker is only allowed to use that well defined input/output interface. But no
device is a true blackbox, it consumes electricity, emits electromagnetic radiation, has a heat signature
and a running time, those values were not predicted in the clean blackbox-security model, and thus the
first wave of passive attacks was born. Now the adversary could exploit side-channel information like
the one mentioned above and with its help break the security of the device. We often refer to such side
information as leakage, and adversary that exploits it as a passive adversary.

We can start with the following theorem:

Theorem 3.1 (from [AKO17]). Let k ≥ 3, and let ε < 1/20. Let Enc : {0, 1}k → {0, 1}n × {0, 1}n,
Dec : {0, 1}n × {0, 1}n → {0, 1}k be an ε−non-malleable code in the split state model. For every sets
A,B ⊂ {0, 1}n and every messages m0,m1 ∈ {0, 1}k

|Pr(Enc(m0) ∈ A×B)− Pr(Enc(m1) ∈ A×B)| ≤ ε .

Before we get to the proof, notice that one can run the above lemma for following sets: A × {0, 1}n
and {0, 1}n × B and A × B (for the set {0, 1}n × {0, 1}n statement is trivial) this means that given the
indicators 1A(Xi), 1B(Yi) we can not distinguish between i = 0 and i = 1 (where (Xi, Yi) encode message
mi). One should remark that while the above is just a one bit leakage, one can easily leverage it to the
arbitrary size t leakage at the price of the 2t multiplicative penalty in the error, we refer to the similar
reasoning below Remark 3.4.

This is only a mild version of leakage resilience and we will expand it further in this section.
Below we go over the proof of theorem 3.1, we remark that similar reasoning forms the core of remark

3.4 and theorem 3.4.

Proof. We claim that there exist x, y, z, w ∈ {0, 1}n such that m0,m1,Dec(x,w), Dec(z, w), and Dec(z, y)
are all different from Dec(x, y). Before proving this claim, we show why this implies the given result.
Let Enc(m) = X,Y , consider the tampering functions f, g such that f(X) = x if X ∈ A, and f(X) = z,
otherwise, and g(Y ) = y if Y ∈ B, and g(Y ) = w, otherwise. Thus, for b = 0, 1, Dec(X,Y ) = Dec(x, y)
if and only if Enc(mb) ∈ A×B. The result then follows from the ε-non-malleability of (Enc,Dec).

Now, to prove the claim, we will use the probabilistic method. Let U be uniform in {0, 1}k, and let
X,Y ← Enc(U). Furthermore, let W,Z ∈ {0, 1}n be uniform and independent of X,Y, U . We claim that
X,Y, Z,W satisfy the required property with non-zero probability.

It is easy to see that the probability that Dec(X,Y ) = U is either of m0 or m1 is at most 2/2k. Also,
by Lemma 3.1, we have that except with probability 2ε, X is independent of U . Also, W is independent
of U . Thus, the probability that Dec(X,W ) = U is at most 2ε + 1/2k. Similarly, the probability that
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Dec(Z, Y ) = U is at most 2ε + 1/2k. Finally, W,Z are independent of U , and so the probability that
Dec(Z,W ) = U is at most 1

2k
.

Thus, by union bound, the probability that X,Y, Z,W do not satisfy the condition of the claim is at
most 5

2k
+ 4ε ≤ 5

8 + 4ε < 1.

As we already hinted, above is only a mild version of leakage resilience, for full version we would
expect for example that the decoded message along with the leakage doesn’t reveal anything about the
message.

To formalize the above intuitive notion we first have to recall the original definition from [DPW10]:

Definition 3.1. (Non-Malleable Code from [DPW10].) Let (Enc :M→ X ×X ,Dec : X × X →
M ∪ {⊥}) be an encoding scheme. For f, g : X → X and for any m ∈ M define the experiment
DPWTamperf,gm as:

DPWTamperf,gm =


(X,Y )← Enc(m),

X := f(X), Y := g(Y )
m := Dec(X,Y )

output: m


Above represents the state of the message after tampering. The claim that the message has either not
changed or is completely independent of the original message is expressed in a following way: We say
that the encoding scheme (Enc,Dec) is ε-DPW-non-malleable in split-state model if for every functions
f, g : X → X there exists distribution Df,g onM∪{same,⊥} (without the access to the original message)
such that for every m ∈M we have

DPWTamperf,gm ≈ε


d← Df,g

if d = same then output m
otherwise output d.


In other words there exists a simulator Df,g that can simulate the tampering experiment, the simulator

has no access to original message: he can only output special symbol same that will be replaced with
original message.

Adding leakage resilience do non-malleable codes. To add a true leakage resilience we have few
options:

1. Tampering functions might depend on the leakages (e.g. [LL12, ADKO15b, BGW19]):

TamperLeakf,g,LeakX ,LeakYm =


(X,Y )← Enc(m),

X := f(X, LeakY (Y )), Y := g(Y, LeakX(X))
m := Dec(X,Y )

output: m


2. We can also consider outputting the leakage along with the tampered message (e.g. [BFO+20,

ASK+22]):

TamperLeakf,g,LeakX ,LeakYm =


(X,Y )← Enc(m),

X := f(X), Y := g(Y )
m := Dec(X,Y )

output: m, LeakX(X), LeakY (Y )



10



3. And of course we can also consider a combination of above, where tampering depends on the leakage
and the leakage is also part of the tampering output:

TamperLeakf,g,LeakX ,LeakYm =


(X,Y )← Enc(m),

X := f(X, LeakY (Y )), Y := g(Y, LeakX(X))
m := Dec(X,Y )

output: m, LeakX(X), LeakY (Y )


In all of the above we expect the (modified) simulator to be indistinguishable from the tampering ex-
periment. In the case of the experiment 2 and experiment 3 we slightly modify the simulator: The
Df,g,LeakX ,LeakY simulates not only the message but also the leakage:

TamperLeakf,g,LeakX ,LeakYm ≈ε


(d, `X , `Y )← Df,g,LeakX ,LeakY

if d = same then output m, `X , `Y
otherwise output d, `X , `Y .


Remark 3.1. Usually we consider LeakX , LeakY to be bounded output size leakages. Also LeakX and
LeakY might be a series of adaptive leakages depending on each other- then one has to apply lemma 2.4
to obtain independence of X and Y given the leakages. We have to remark here that lemma 2.4 states
that X and Y are independent given LeakX = `X and LeakY = `Y , however one has to remain vigilant
since X|LeakX = `X and Y |LeakY = `Y might not be efficiently samplable sources thus the extension to
the adaptive leakage case is straight forward only in the information theoretic world.

Remark 3.2. The second definition might seem a bit artificial, however it is quite useful for technical rea-
sons. Sometimes, non-malleable code is merely one of many building blocks of bigger protocol/application,
and the leakage is a byproduct of the technical proof- other parts of the protocol might behave differently
depending on the non-malleable encoding (which is most conveniently modeled as a leakage), thus non-
malleable code is tampered in a usual way while rest of the protocol leaks extra information.

The first compiler that returns a leakage resilient (with respect to the variant 1) non-malleable code
was given by [ADKO15b], it could tolerate up to 1

12 leakage rate (i.e. output size of leakage functions
can be up to 1

12 of the input size), but it required a symmetric decoder (Dec(X,Y ) = Dec(Y,X)). Later
Ball, Guo and Wichs gave a better compiler:

Theorem 3.2 (from [BGW19, BDL21]). For any α ∈ [0, 1
4) there exists a compiler that takes any

2−split state non-malleable code and outputs a leakage resilient (with respect to definition variants 1, 2,
and 3) non-malleable code with leakage rate α. The rate of the new code is Θ(original− rate) and the
error stays the same except for an extra exp (−Ω(n)) factor (where n is the new code’s length).

Remark 3.3. [BGW19] originally only showed that their compiler worked for variant 1. However, [BDL21]
later extended their analysis to the latter variants.

Also for the variants 2 and 3 we have the following result:

Theorem 3.3 (from [BFO+20]). Any 2−split-state ε−non-malleable code is also 2t · ε−non-malleable
code that tolerates up to t bits of leakage (with respect to definition 2 or 3).

Remark 3.4. Originally the above paper considered definition 2 only, but simple inspection of the proof
gives the security with respect to variant 3 too.

The idea of the proof is quite simple: we guess the leakage functions (thus the penalty 2t) and
tampering function check if the leakage is consistent with their view, if any of the views does not match
the guessed leakage then the tampering aborts (f or g outputs ⊥, and the decoder aborts). Else, if
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the guessed leakage is consistent with the views of the tampering functions the tampering happens as
intended. Above expands the power of tampering functions: instead of f, g : {0, 1}n → {0, 1}n we have
f, g : {0, 1}n → {0, 1}n ∪ {⊥}, this is without a loss of generality- in a similar fashion as in theorem 3.1
we can show that adding ⊥ as a possible output of the tampering functions doesn’t break the definition.

Later [ASK+22] expanded the result from theorem 3.3 for augmented (see section 3.4) non-malleable
codes.

Theorem 3.4 (from [ASK+22]). Any 2−split-state augmented ε−non-malleable code is also an aug-
mented 2t · ε−non-malleable code that tolerates up to t bits of leakage (with respect to definition 2 or
3).

Similarly, the [BGW19] compiler also preserves the augmented property:

Theorem 3.5 (from [BDL21]). For any α ∈ [0, 1/4), and 2-split-state augmented ε−non-malleable
code can be compiled into an augmented split-state ε+exp(−Ω(n))-non-malleable code with rate Θ(original− rate)
and leakage rate α (with respect to any variant above).

3.4 Augmented NMCs

Many applications require an extra property, namely that adversary on top of receiving a tampered
message can get one of the states (similar to the leakage resilience discussed above).

Definition 3.2 (Left-augmented NMC). Let (Enc :M→ X × X ,Dec : X × X →M∪ {⊥}) be an
encoding scheme. For f, g : X → X and for any m ∈M define the experiment Tamperf,gm as:

Tamperf,gm =


(X,Y )← Enc(m),

X := f(X), Y := g(Y )
m := Dec(X,Y )

output: m,X


We say that the encoding scheme (Enc,Dec) is left-augmented ε-non-malleable in 2−split-state model if
for every functions f, g : X → X there exists distribution Df,g on M∪ {same,⊥} (without the access to
the original message) such that for every m ∈M we have

Tamperf,gm ≈ε


(d, x)← Df,g

if d = same then output m,x
otherwise output d, x.


Symmetrically we can consider right-augmented property where right state is revealed.
Most of the known constructions like [ADL14, CGL16, Li17, Li19b, ASK+22] are augmented (both

left and right augmented). Interestingly [KOS18] non-malleable randomness encoder (see section 6.1 for
details) is right-augmented but not left-augmented.

3.5 Simulation vs game.

Definition 3.1 is the most common simulation-based definition. However in some situations it is actually
more convenient to consider a game based definition, where the adversary picks two messages m0,m1, the
challenger encodes mb for uniformly chosen b, and the adversary has to guess b based on the tampering
of Enc(mb) = (Xb, Yb).

In particular the following alternative definition of non-malleable code, will give a smoother transition
to the subsequent definitions in this section.

The transition from simulator to game is not quite trivial: let Enc(m0) = L,R imagine that the
tampering f(X) = L and g(Y ) = R now both messages have been completely overwritten and both

12



tampering experiments should output m0. However, notice that tampering experiment Tamperf,gm0
has

two options: it can answer m0 or it can answer same, while Tamperf,gm1
can only answer m0. In the

above example Tamperf,gm0
can not answer same else it will be distinguishable. To solve the dilemma we

have to add an extra “helper” sitting inside the tampering experiment that will decide if the tampering
experiment should output same or m.

Definition 3.3. (Game definition for non-malleable code, from [AKO17].) We say that an
encoding scheme (Enc :M→ X ×X ,Dec : X ×X →M∪{⊥}) is ε-non-malleable in split-state model if

for every functions f, g : X → X there exists family of distributions {Df,g
x,y}x,y∈X each on {0, 1} such that

for every m0,m1 ∈M
Tamperf,gm0

≈ε Tamperf,gm1

where

Tamperf,gm =


(X,Y )← Enc(m),

output same if Dec(X,Y ) = Dec(f(X), g(Y )) ∧Df,g
X,Y = 0

else output: Dec(f(X), g(Y ))


In [AKO17](Appendix A) authors show the equivalence of the definitions 3.1 and 3.3.

Theorem 3.6 (from [AKO17]). If (Enc,Dec) is an ε−non-malleable code according to the game-based
definition then it is also an ε−non-malleable code according to the definition from [DPW10].

Theorem 3.7 (from [AKO17]). If (Enc,Dec) is an ε−-non-malleable code according to the definition
from [DPW10], then it is 4ε−non-malleable code according to the game-based definition.

To prove above authors construct explicit “helper” distribution. There was another game based
definition already considered in [DPW10], but the above definition is easier to generalize to the definition
for stronger notions of non-malleable codes.

3.6 Strong, super and super-strong variants.

Some results in the literature like [FMNV14, JW15] have considered a notion of super-strong non-
malleable codes. We start with the following intermediate notion of super non-malleable codes introduced
in [AKO17]. In this variant if the tampering is successful and non-trivial i.e. output is not ⊥ or same
then tampering experiment outputs the whole tampered codeword. In other words we require that valid
tampering either tampering doesn’t change the message, or even the tampered codeword itself doesn’t
carry any information about the original message.

Definition 3.4. (Super non-malleable code.) We say that an encoding scheme (Enc : M → X ×
X ,Dec : X × X → M∪ {⊥}) is ε-super non-malleable in split-state model if for every functions f, g :

X → X there exists family of distributions {Df,g
x,y}x,y∈X each on {0, 1} such that for every m0,m1 ∈M

SuperTamperf,gm0
≈ε SuperTamperf,gm1

where SuperTamperf,gm =


(X,Y )← Enc(m),

output same if Dec(X,Y ) = Dec(f(X), g(Y )) ∧Df,g
X,Y = 0

else if Dec(f(X), g(Y )) = ⊥ output ⊥
else output: (f(X), g(Y ))


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Remark 3.5. This definition is clearly stronger then the standard version, since given the tampered
codeword we can apply decoder and obtain the tampered message.

In [DPW10] authors considered a strong variant. This is a variant that follows the standard definition
closely except puts a restriction on the use of same- it can only be outputted only if f(X) = X ∧ g(Y ) = Y .
6 This variant is perhaps the closest to the intuition, if the codeword is tampered then it’s either invalid
or it decodes to something independent of the original message.

Definition 3.5. (Strong non-malleable code.) We say that an encoding scheme (Enc : M →
X × X ,Dec : X × X → M∪ {⊥}) is ε-strong non-malleable in split-state model if for every functions
f, g : X → X and for every m0,m1 ∈M

StrTampf,gm0
≈ε StrTampf,gm1

where

StrTampf,gm =


(X,Y )← Enc(m),

output same if (X,Y ) = (f(X), g(Y ))
else if Dec(f(X), g(Y )) = ⊥ output ⊥

else output: Dec(f(X), g(Y ))


Notice that above we do not need a “helper” distribution anymore since the condition to output same

are so restrictive.
Finally one can consider both the super and strong version. Here we require that same can only be

outputted if f(X) = X ∧ g(Y ) = Y and if the codeword is valid and not trivially tampered then the
whole tampered codeword doesn’t reveal any information about the original message.

Definition 3.6. (Super strong non-malleable code.) We say that an encoding scheme (Enc :M→
X×X ,Dec : X×X →M∪{⊥}) is ε-super strong non-malleable in split-state model if for every functions
f, g : X → X and for every m0,m1 ∈M

SupStrTampf,gm0
≈ε SupStrTampf,gm1

where

SupStrTampf,gm =


(X,Y )← Enc(m),

output same if (X,Y ) = (f(X), g(Y ))
else if Dec(f(X), g(Y )) = ⊥ output ⊥

else output: (f(X), g(Y ))


Examples of the codes:

• [DKO13] is not super and not strong,

• [ADL14] is super but not strong,

• all non-malleable extractors including [CGL16, Li17, Li19b] are strong but not super,

• [ADL14] compiled with [AKO17] is super and strong.

6Notice that outputting same in that case is unavoidable.
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Informal Theorem 3.1 (from [AKO17]). There exists a compiler that turns any super non-malleable
code (with certain sampling properties which we discuss below) in 2−split state model into a super-strong
non-malleable code in a 2−split state model, at the minimal loss to the rate of the code. The above
compiler also turns a non-malleable code into a strong non-malleable code.

The idea behind the compiler is to introduce a certain level of circularity: Enc(m||checkX , checkY ) =
X,Y in other words codeword encodes it’s own “checks”. Notice that the difference between strong and
not-strong variant is only in the use of same output. The checks ensure that if the code was tampered
with and still decodes to the same message then the checks remain unchanged - this leads to the decoder
error since the checks will not match the changed codeword.

This approach has a problem: the circularity introduced above does not necessarily allow for efficient
encoding, and thus there are additional requirements on the underlying non-malleable code. The authors
show that the extra assumptions are fulfilled by the code from [ADL14], thereby giving a super-strong
non-malleable code.

3.7 Continuous non-malleable codes

We can push the definition further, imagine that the codeword is tampered not once, but multiple times.
This is the idea behind continuous non-malleable codes. While in principle we can take any of the four
variants: standard, strong, super, super-strong and extend the definition to multiple tamperings for
various technical reasons7 the super-strong extension is the one that received attention.

There are again four variants that stem from two possible flags: self-destruct (yes/no) and persistence
(yes/no).

Self-destruct decides what happens when one of the tamperings outputs ⊥- should we stop the exper-
iment, or should we allow adversary to continue tampering? We will discuss later that non-self-destruct
codes do not exist for the most of the reasonable tampering families.

Persistence(often referred to as resettability) decides how the tampering is applied. Say codeword c
was tampered into c′, is the next tampering applied to original c, or should it be applied on top of c′?
As long as c→ c′ is a bijection that is not a problem, but if the tampering function was very lossy given
c′ we can’t recreate c thus this becomes a non-trivial choice. Indeed later we will discuss impossibility
results that strongly separate persistent (not-resettable) and non-persistant (resettable) codes.

Remark 3.6 (Note on two-source non-malleable extractors). It is important to stress few things:
two-source non-malleable extractors do not output ⊥ thus (for the same reason why non-self-destruct
codes do not exist for reasonable tampering classes) we can not consider a continuous version of them.
However we can, and usually do, consider a t−times tampering variants where two-source non-malleable
extractor is tampered t times for some fixed in advance t.

Definition 3.7. (Continuous Non-Malleable Code.) [JW15] define four types of continuous non-
malleable codes based on two flags: sd ∈ {0, 1} (self-destruct) and prs ∈ {0, 1} (persistent). We say
that an encoding scheme (Enc : M → X × X ,Dec : X × X → M ∪ {⊥}) is (T, ε)-continuous [sd, prs]
non-malleable in split-state model if for every Adversary A and for every m0,m1 ∈M

ConTamperA,T,m0
≈ε ConTamperA,T,m1

where ConTamperA,T,m =

7Main problem of non-super variants is that immediately after the first tampering X,Y are not independent anymore
given Dec(f1(X), g1(Y )), this causes huge technical problems, thus in practice it’s actually easier to aim for the strongest
variant. Intuitively speaking X,Y remain “somewhat-independent” given f(X), g(Y ), where by “somewhat-independent”
we mean that X,Y still form a valid codeword, but revealing extra information doesn’t add any additional correlations.
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

(X,Y )← Enc(m),
f0, g0 ≡ id,
Repeat i = 1, 2, ...,T
A chooses functions f ′i , g

′
i

if prs = 1 then fi = f ′i ◦ fi−1, gi = g′i ◦ gi−1

else fi = f ′i , gi = g′i
if (fi(X), gi(Y )) = (X,Y ) then output same

else
if Dec(fi(X), gi(Y )) = ⊥ then output ⊥ if sd = 1 then experiment stops

else output (fi(X), gi(Y )) if prs = 1 then experiment stops


Remark 3.7. In the case of persistent tampering, the above definition by [JW15] assumes that the
tampering experiment stops if there is a non-trivial tampering that does not decode to ⊥ since in this case
the adversary learns the entire tampered codeword, and can simulate the remaining tampering experiment
himself (since the tampering is persistent).

Remark 3.8. In any model allowing bitwise tampering, in particular the 2−split state model, it is
not difficult to conclude that the non-self-destruct property is impossible to achieve even in the case of
persistent tampering if the space of messages contains at least 3 elements. To see this, notice that one can
tamper the codeword c = (c1, c2, c3, . . .) to obtain c′1 = (0, c2, . . .). The adversary then obtains the output
of the tampering experiment which is same if and only if c1 = 0. Thus the adversary learns c?1 = c1 and
continues the tampering experiment with (c?1, 0, c3, . . .) (note that this tampering is persistent). Thus, the
adversary can continue learn the codeword one bit at a time, thereby learning the entire codeword in N
steps where N is the length of the codeword.

The constructions:

Theorem 3.8 (from [AKO17]). If (Enc,Dec) is an ε-super strong non-malleable code in the 2−split-
state model then (Enc,Dec) is a (T, (2T + 1)ε)−continuous self-destruct, persistent non-malleable code
in the 2−split-state model. This combined with [ADL14] compiled with [AKO17] gives an explicit and
efficient continuous self-destruct persistent non-malleable code in the 2−split-state model.

Remark 3.9. The number of tampering rounds T does not have to be specified in advance (unlike with
two-source non-malleable extractors). We expect the number of tamperings to be polynomial, and ε to be
negligible, one can plug those in and obtain a code with unlimited (but polynomial) number of tamperings
and security εα for any α < 1.

The idea behind the theorem is as follows: there are only two output patters that we can observe:
either there will be some number of same outputs followed by a ⊥ or followed by the tampered codeword
c′. Authors argue that the long same chain doesn’t teach us much thus the only tampering that really
matters is the last one (the one that leads to not-same). Thus the continuous tampering is actually
reduced to the one non-trivial tampering, we just have to pay a small price in epsilon, since we basically
have to guess in which round the non-same tampering will happen.

Remark 3.10. Above technique was extended and generalized by [BFM+22] for other tampering classes.
In particular authors achieve continuous NMC against persistent decision tree tampering.

Informal Theorem 3.2 (from [ADN+19b]). There exists an explicit and efficient self-destruct, non-
persistent (resettable) continuous non-malleable code in 8−split state model (i.e. where we have 8 states
instead of 2).
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Remark 3.11. [FMNV14] show that non-persistent continuous non-malleable codes are impossible to
construct in 2−split state model. We know that 8 states is enough, we hypothesize that the idea behind
[ADN+19b] could be extended to give an existential (not efficient or explicit) 6 state construction. The
exact number of states required to construct non-persistent code remains an opened question even in the
non-explicit case.

4 The non-malleable code construction via inner product

In this section we show a construction of non-malleable codes via inner product due to [ADL14, Agg15,
AB16].

Theorem 4.1. There exist absolute constants c, c′ > 0 such that the following holds. For any finite field
Fp of prime order, and any n > c′ log4 p,

(S2
n,p ⇒ AFFp, 2−cn

1/4
) .

We will prove the following theorem which immediately implies Theorem 4.1. To see this, consider
the encoding function that takes as input an element of x ∈ Fp and chooses uniformly random L,R ∈ Fnp
conditioned on 〈L,R〉 = x, and the decoding function Dec(`, r) is defined as Dec(`, r) := 〈`, r〉.

Theorem 4.2. There exist absolute constants c, c′ > 0 such that the following holds. For any finite field
Fp of prime order, and any n > c′ log4 p, let L,R be random variables uniform and independent in Fnp ,
and f, g : Fnp → Fnp be arbitrary functions. Then,

∆(〈L,R〉, 〈f(L), g(R)〉 ; UFp , D(UFp) ,

where UFp is uniform and independent of L,R, and D is a distribution over AFFp.

We need the following result that can be seen as a generalization of the linearity test from [Sam07]
and that is discussed and proved in [ADL14].

Theorem 4.3. Let p be a prime, and n be a positive integer. For any ε = ε(n, p) > 0, γ1 = γ1(n, p) ≤ 1,
γ2 = γ2(n, p) ≥ 1, the following is true. For any function f : Fn → Fn, let A ⊆ {(x, f(x)) : x ∈ Fn} ⊆ F2n.
If |A| ≥ γ1 · |Fn| and there exists some set B such that |B| ≤ γ2 · pn, and

Pr
a,a′∈A

[a− a′ ∈ B] ≥ ε,

then there exists a linear map M : Fn → Fn such that

Pr
(x,f(x))∈A

[f(x) = Mx] ≥ p−O(log6(
γ2
γ1ε

))
.

4.1 Proof sketch of Theorem 4.2

The following lemma shows that for any large enough subdomain of Fn×Fn for which 〈L,R〉, 〈f(L), g(R)〉
is not close to the desired distribution for some D, there exists a large enough subdomain on which f is
linear.

Lemma 4.1. Let p be a prime, n a positive integer, and 0 < t < n. Let L ⊆ Fnp such that |L| ≥ pn−t.
Let L,R be independent random variables uniformly distributed in L and Fnp , respectively. Then, either
there exists a distribution G over AFFp such that

∆(〈L,R〉, 〈f(L), g(R)〉 ; UFp , D(UFp) ≤ p−t ,

or there exists a subset |L′ ⊆ L|, a linear map M ∈ (Fnp )F
n
p , and a constant C such that |L′| ≥ |L| ·

p−Ct
4 log4 p, and f(x) = Mx for all x ∈ L′.
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Proof. We assume that
∆(〈L,R〉, 〈f(L), g(R)〉 ; UFp , D(UFp) > p−t ,

as otherwise the result trivially holds. Then, by Lemma 2.7 there exist a ∈ F such that ∆(〈L,R〉 +
a〈f(L), g(R)〉 ; UFp) ≥ p−t−2. Define functions F,G : Fn → F2n as follows

F (x) = (x, f(x)), G(y) = (y, ag(y)).

We have that ∆(〈F (L), G(R)〉 ; UFp) ≥ p−t−2. Applying Lemma 2.8, we get that for (L′, R′) i.i.d to
(L,R) we have

Pr[〈F (L′), G(R′)〉 = 〈F (L), G(R)〉] ≥ 1

p
+

1

p2t+5
.

Applying Lemma 2.9 with X = F (L), Y = G(R), X ′ = F (L′), Y ′ = G(R′) we get that

Pr[〈F (L)− F (L′), G(R)〉 = 0] ≥ 1

p
+

1

p2t+5
.

Define

B :=

{
α ∈ F2n

p : Pr[〈α,G(R)〉 = 0] ≥ 1

p
+

1

p2t+6

}
.

Let B ∈ B be uniform. Then ∆(〈B,G(R)〉, UFp) ≥ 1
p2t+6 . Also, since R is uniform in Fnp , G(R) has min-

entropy n log p. Hence, by Lemma 2.2, we have H∞(B) ≤ (n+4t+13)·log p, which implies |B| ≤ pn+4t+13.
Furthermore, we have that

Pr[〈F (L′)− F (L′′), G(R′)〉 = 0] ≤ Pr[F (L′)− F (L′′) ∈ B] +
1

p
+

1

p2t+6
.

So we must have that

Pr[F (L′)− F (L′′) ∈ B] ≥ 1

p2t+5
− 1

p2t+6
≥ 1

p2t+6
.

Thus, using Theorem 4.3, we get that there exists a linear map M : Fn → Fn for which

Pr
x∈Fn

[Mx = f(x)] ≥ p−O(t4 log4 p) .

We now show that if f is linear, then we get the desired distribution.

Lemma 4.2. Let p be a prime, n a positive integer, and 0 < s < n. Let L′ ⊆ Fnp such that |L′| ≥ pn−s,
and f(x) = Mx for all x ∈ Fnp , where M is a linear map in (Fnp )F

n
p . Let L,R be independent random

variables uniformly distributed in L′ and Fnp , respectively. Then, there exists a distribution G over AFFp
such that

∆(〈L,R〉, 〈f(L), g(R)〉 ; UFp , G(UFp) ≤ p−s .

Proof. We will prove that the given statistical distance is small for almost all fixing of R ∈ Fnp , and hence
conclude the desired result.

Let S be the set of all x ∈ Fnp such that ∆(〈L, s〉, UFp) > p−3−s. By Lemma 2.2, |S| ≤ p3s+8.
Note that

〈f(L), g(r)〉 = 〈ML, g(r)〉 = 〈L,MT g(r)〉 .

So, without loss of generality, we assume M to be the identity function, and replace g by MT g. Assume
(〈L, r〉, 〈f(L), g(r)〉) is not p−s−1-close to UFp , G(UFp) for any G distributed over AFFp. This means
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that for any a ∈ Fp, (〈L, r〉, 〈f(L), g(r)〉) is not p−s−1-close to UFp , aUFp + B, for some random variable
B independent of UFp . By Lemma 2.7, for every a ∈ Fp, there exists b ∈ Fp such that

∆(〈L, r + b(g(r)− ar)〉 ; UFp) ≥ p−3−s . (2)

We will show that this implies that r ∈ FpS + FpS.

r ∈ {α1x1 + α2x2 | α1, α2 ∈ Fp, x1, x2 ∈ S} .

By equation 2 with a = 0, there is some b = b∗ such that r + b∗g(r) = x1 ∈ S. We assume without
loss of generality that b∗ 6= 0 since if b∗ = 0, then r ∈ S, and the desired statement is true.

Letting a = −1/b∗, we have that there exists b such that r(1 + b/b∗) + bg(r) = x2 ∈ S.
Combining, we get that r = (bx1−bx2)/b∗, thereby proving that r ∈ FpS+FpS. Thus, by Lemma 2.6,

the desired statistical distance is at most

p6s+20

pn
· 1 + p−1−s ≤ p−s .

Finishing the proof sketch. By Lemma 4.1, whenever 〈L,R〉, 〈f(L), g(R)〉 are not close to U,D(U)
for some affine function D, we can always find a large subset of the domain on which f is linear, and
thus, using Lemma 4.2, we get that on this subset, 〈L,R〉, 〈f(L), g(R)〉 is close to U,D(U) for some D.
We thus continue to find a large subset of the domain on which 〈L,R〉, 〈f(L), g(R)〉 is close to U,D(U)
until we are left with a very small fraction of the entire domain. The result then follows from Lemma 2.6.

4.2 Non-malleable codes against affine tampering in Fp
To complete the construction of non-malleable codes in the split-state model, we need non-malleable
codes against affine tampering in Fp. The following was shown in [Agg15].

Theorem 4.4. For any integer k > 0, and p > 24k,

(AFFp ⇒ NMk, 2
−Ω(k)) .

The construction for this is quite simple. A so called affine-evasive subset S of Fp of size significantly
larger than 2k was constructed with the property that for any fixed (a, b) ∈ Fp×Fp \ {1, 0}, we have that
|aS + b ∩ S| � |S|. The set S is then partitioned into K = 2k subsets S1, . . . , SK , and the encoding of
the i-th message is a uniformly random element of Si, and all elements in Fp not in S decode to a special
symbol ⊥.

5 The non-malleable codes via two-source non-malleable extractors

Towards the goal of constructing non-malleable codes, Cheraghchi and Guruswami [CG14b] introduced
non-malleable extractors as a stronger primitive that immediately yields efficient non-malleable codes
as long as the preimage of the extractor is efficiently samplable. Informally, a non-malleable two-source
extractor nmExt guarantees that for any independent random sources X,Y , and any functions f, g with
at least one of them having no fixed points, nmExt(X,Y ) is indistinguishable from uniform even given
nmExt(f(X), g(Y )).8 It is easy to see that a non-malleable two-source extractor gives non-malleability for

8We say that the extractor is a strong non-malleable two-source extractor if for any independent random sources X,Y ,
and any functions f, g with at least one of them having no fixed points, nmExt(X,Y ) is indistinguishable from uniform even
given nmExt(f(X), g(Y )) and Y .
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a uniformly random message (average-case security) while a non-malleable code achieves non-malleability
for every message (worst-case security). A non-malleable two-source extractor can be transformed into a
non-malleable code (Enc,Dec) by setting Enc(m) := nmExt−1(m), and Dec(x, y) := nmExt(x, y).
NME to NMC: Limitations. We note that the transformation from nm2Ext to NMCs requires
arguing worst-case security from average-case security, which incurs a factor 2|message size| penalty in the
security parameter. Most results on building 2-split-state NMCs have focused on improving the rate of
non-malleable two-source extractors and relied on this lossy transformation to build NMCs.

Since their conception, the non-malleable two-source extractors went a long way and found indepen-
dent applications, from the network extraction [GSZ21], to variants of privacy amplification [AOR+22].
More importantly, we know numerous connections and reductions between two-source extractors, seeded
non-malleable extractors and two-source non-malleable extractors (see [CGL16, Li17, BCD+18, AOR+22]).
This gives us hope that further progress in the constructions of these objects might give us an explicit
two-source extractor with a negligible error and a low entropy requirements for both sources.

6 Rate amplification techniques

Another useful technique towards improving the rate of NMC constructions is rate amplification or
bootstrapping. It’s a recurring theme in cryptography to combine a scheme with a very strong security
but bad efficiency with a scheme with bad security but a great efficiency in such a way that resulting
scheme inherits the best of both worlds: good security and efficiency.

In the context of non-malleable codes it was first used by [AGM+15]. Authors achieved a rate 1
non-malleable code against bitwise tampering and permutations by combining the rate 0 scheme (from
[AGM+14]) with an error correcting secret sharing scheme (that has no non-malleability guarantee). In
the context of 2 split state tampering it was used by [KOS17, KOS18, AO20, ASK+22].

The abstract idea is to use an efficient code to encode the message, while the bad rate code will encode
tags and checks independent of the message’s size. What is left is to argue that those tags will guarantee
the security of the construction.

In the remainder of this section we will dive deeper into the construction of [KOS17, KOS18, ASK+22].
The latter paper achieves current state of the art rate of 1

3 , but it strongly builds on the construction of
the former paper, thus we can’t discuss one without the other.

6.1 Technical Overview of [KOS18]

This paper does not build non-malleable code but it forms a crucial building block for the construction
of [ASK+22].

Informal Theorem 6.1 (Main Result of [KOS18]). There exists an efficient, information theoret-
ically secure non-malleable randomness encoder with rate arbitrarily close to 1

2 , and the negligible error.

Kanukurthi, Obbattu and Sekar [KOS18] introduced the notion of non-malleable randomness encoders
(NMRE). Similar to a 2-split-state NMC, a 2-split-state NMRE consists of two independently tamperable
states L and R. Contrary to an NMC, where the encoder encodes arbitrary messages, an NMRE’s encoder
outputs L and R such that they decode to a random string, and herein lies all the difference: as we have
already discussed in the context of non-malleable extractors, it might not be possible to efficiently find
the preimage of the specific message, or the security parameter might be too small to allow for fixing the
specific message in a blackbox way.

While the problem of building high-rate NMCs has eluded researchers for over a decade, we know how
to build NMREs with rate 1

2 (see [KOS18]). At the same time, we emphasize that obtaining a high-rate
NMC (instead of an NMRE) is critical for many applications (such as non-malleable commitments.)
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Figure 1: Construction of the non-malleable randomness encoder by [KOS18].

Informally, the NMRE of [KOS18] (see Figure 1.) picks the source w and seed s to a strong seeded
extractor (Ext) as well as a key k to a message authentication code (MAC). The code consists of two
states, left: `‖w‖σw, and right: r, where `, r are an encoding of s, k with any low-rate augmented non-
malleable code, and σw is a tag evaluated on w with k as the key. The codeword, if valid, decodes to
Ext(w; s).

To denote the tampering of a variable x we will use the x notation. The security proof can be split
into an analysis of the following three cases:

• Pid = {(`, w, σw, r) : (w, σw) = (w, σw) ∧ NMDec(`, r) = NMDec(`, r)}. This partition corresponds
to the adversary not tampering with the codeword. In this case, the codeword will decode to the
same message.

• Ptag = {(`, w, σw, r) : (w, σw) 6= (w, σw) ∧ NMDec(`, r) = NMDec(`, r)}. This partition corresponds
to the case where s = s and k = k. Since the MAC’s key remains secure and hidden from the
adversary, the codeword will decode to ⊥ with high probability via the security of the message
authentication codes.

• Prest = {(`, w, σw, r) : NMDec(`, r) 6= NMDec(`, r)}. Finally, this partition represents the case when
adversary did apply non-trivial tampering to `, r. By the properties of non-malleable code, if the
codeword falls into this partition (and the likelihood of falling into this partition is not too small)
S is independent of S (even given L).

Now we will proceed with the following trick: we will reveal S and L, since W is now a function of
W only9 we get that H∞(W |Ext(W,S), S, L) ≥ |W | − |Ext| − |S|, where |S| penalty comes since L
might have depended on W and thus S might depend on W .

This is a spot where we need augmented property as S remains uniform and independent of W , S
and L. Thus, as long as H∞(W |Ext(W,S), S, L) > |Ext|, we will obtain that Ext(W,S) is uniform
given Ext(W,S). This means that the original message remains uniform given the message after
tampering. The only thing to ensure is that |W | − |Ext| − |S| > |Ext|. Since the size of S is small,
we roughly get that |W | > 2|Ext| which leads to the rate 1

2 .

In order to extend this construction to encode an arbitrary message m, one option would be to reverse
sample w and s such that Ext(w; s) = m. Unfortunately, this won’t work because, on the one hand, we

9We can ignore tag σw as a tiny leakage, alternatively the tag can be moved inside the non-malleable encoding.
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require the seed s to be short (as it is encoded using a poor-rate NMC) and, on the other hand, given
a source w, there will be at most 2|s| possible messages that could have been encoded. Thus adversary
tampering with w will likely be able to distinguish between two messages of his choice (since only for
one of them there will exist si such that Ext(w, si) = mi). In other words, to obtain any meaningful
security, s needs to be as long as the message. However, if s is long, the above approach will not yield
an improvement in the rate.

6.2 Technical Overview of [ASK+22]

Theorem 6.1 (Main Result of [ASK+22]). There exists an efficient, information-theoretically
secure ε-right-augmented10 non-malleable code in the 2-split-state model with rate 1/3. Authors give
two instantiations of the scheme: the first gives a strikingly simple construction and achieves an er-
ror of 2−Ω(κ1/5/ polylog(κ)); the second instantiation loses out on the simplicity but achieves an error of

ε = 2
−Ω( κ

log3 κ
)
, where κ is the size of the message.

As we discussed earlier, fixing a specific message in the scheme of [KOS18] is not possible. The
idea is to add extra information to the right state that will allow for fixing a specific message. The
construction described in Figure 2 goes as follows: as before we will pick random w, s then we will fix
c = Ext(w, s)⊕m, and after that we will pick two random keys kc, kw and encode using a non malleable
code: Enc(s, kc, kw) = `, r. Finally, we calculate σw a MAC of w under key kw and σc a tag of c under
key kc. The encoding is left state: (`||w||σw) and right state: (r||c||σc).

As a side note, we mention that the encoding scheme is identical to that due to Kanukurthi, Obbattu
and Sekar [KOS17]. While [KOS17] gave a four-state construction, [ASK+22] merged states to obtain a
two-state construction.
We now offer an overview of the proof.

r

𝑀𝐴𝐶௞೎(𝑐)

𝑀𝐴𝐶௞ೢ(𝑤)

௖ ௪

Left State

Right State

Message m

Decoder:

Figure 2: Overview of the construction from [ASK+22]. Blocks `, r come from augmented non-malleable
code. The encoder proceeds in steps: first, we randomly sample s, kw, kc, w (all independently of the
message we are encoding), then we encode s, kw, kc using NMC into `, r. We then set c = Ext(w; s)⊕m,
and evaluate σc as a MAC tag of c on key kc, and σw as MAC tag of w on key kw.

This construction uses the following building blocks: a message authentication code, a strong seeded
extractor, and a low-rate non-malleable code which we shall use to encode the keys of the message

10Right-augmented property guarantees that the right state of the NMC is simulatable independent of the message, along
with the tampered message.
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authentication code and the seed for the seeded extractor. Also, for a variable X, X will denote its
tampering. We proceed with a slightly simplified sketch of the proof.

Proof Overview The proof proceeds by partitioning the codeword space. We describe the partitions
below:

• P1 = {(`, w, σw, r, c, σc) : (w, σw, c, σc) = (w, σw, c, σc)∧NMDec(`, r) = NMDec(`, r)}. This partition
captures the scenario when, even after tampering, the inner codeword (`, r) decodes to the same
message, and W,σw, C, σc remain unchanged. In this case, the final codeword must decode to the
same message.

• P2 = {(`, w, σw, r, c, σc) : (w, σw, c, σc) 6= (w, σw, c, σc) ∧ NMDec(`, r) = NMDec(`, r)}. P2 captures
the scenario when, the decoding of the inner code remains unchanged after tampering, while one
of the pairs (W,σw) or (C, σc) are changed. If this event occurs then, using the security of MACs,
the tampering is detected with overwhelming probability.

• P3 = {(`, w, σw, r, c, σc) : NMDec(`, r) 6= NMDec(`, r)}. P3 captures the scenario that the inner code
is non-trivially tampered and does not decode to NMDec(L,R). Authors show that the tampered
codeword is independent of the original message m. This is the most interesting case.

In order to prove non-malleability, we need to demonstrate the existence of a simulator whose outputs
is indistinguishable from the output of the tampering experiment. The simulator doesn’t use the message;
however, it outputs a special symbol same to indicate that the tampered message is unchanged. The
simulator’s output is run through a special wrapper function (typically called “Copy” function) that, in
this case, outputs the original message.

The simulator generates the codeword ((L,W, σw), (R, C̃, σ̃c)) of a random message. If this simu-
lated codeword is in P1, it outputs same. Recall that the wrapper function will then output the orig-
inal message. If the simulated codeword is in P2, the simulator outputs ⊥, else the simulator outputs

Dec
(

(L,W, σw), (R, C̃, σ̃c)
)

. (Note that the code is right-augmented i.e., it satisfies a stronger notion of

security where the right state of the codeword can be revealed without breaking non-malleability.)
To prove non-malleability, we need to show that this behaviour of the simulator is indistinguishable

from that of the tampering experiment. To do this, we first need to argue that the probability of a
codeword being in any given partition is independent of the message. Authors do it by showing how to
determine a partition given small leakages from left and right state and then arguing that those small
leakages can’t leak the encoded message, and thus the probability of falling into each partition can not
depend on the encoded message11. Next, authors show that the output of the tampering experiment is,
in each case, indistinguishable from the simulator’s output.

For the case where the codeword is in partition P1, it is clear that the simulator output is identical
to that of the tampering experiment. We, therefore, focus on the other two cases.

6.2.1 Codeword is in P2 i.e., NMDec(L,R) = NMDec(L,R).

Intuitively, we would like to argue that the tag keysKw,Kc will remain securely hidden from the adversary,
and if he decides to tamper with W or C he will not be able to fake tags σw, σc. Thus either the whole
codeword remains untampered (in which case, we are in P1) or the new codeword will not be valid.

The standard approach would be to argue that if Pr(NMDec(L,R) = NMDec(L,R)) is not too small
then

Pr(tampered codeword is valid ∧ (W,C) 6= (W,C) | NMDec(L,R) = NMDec(L,R))

11This proof relies on the secret sharing property of the non-malleable code as well as the security of the strong randomness
extractor.
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is negligible. However we have to be delicate here. For example if adversary wants to tamper with W he
has access to L and knows that NMDec(L,R) = NMDec(L,R). This reveals some information about R
and thus adversary potentially might get hold of some partial information about the encoded data (and
Kw,Kc in particular). This is why it is actually easier to directly argue that

Pr(tampered codeword is valid ∧ (W,C) 6= (W,C) ∧ NMDec(L,R) = NMDec(L,R)) (3)

is negligible. Notice that the codeword will not be valid in only one of three cases: if NMDec(L,R) = ⊥
or if one of the MACs on W or C does not verify correctly. Since NMDec(L,R) = NMDec(L,R) we know
that the only options left are the failures to verify MACs. Moreover we know that (Kw,Kc) = (Kw,Kc),
thus Inequality 3 can be rewritten:

Pr(VrfyKw(W,σw) = VrfyKc(C, σc) = 1 ∧ (W,C) 6= (W,C) ∧ NMDec(L,R) = NMDec(L,R)) (4)

is negligible. Now we can upper-bound the term in the Inequality 4 by the following

Pr(VrfyKw(W,σw) = VrfyKc(C, σc) = 1 ∧ (W,C) 6= (W,C)).

Which by the union bound can be upper-bounded with

Pr(VrfyKw(W,σw) = 1 ∧W 6= W ) + Pr(VrfyKc(C, σc) = 1 ∧ C 6= C).

Finally, we can argue that each of the elements of the sum is negligible. Notice that when tampering with
W adversary has access to L but that can not reveal any information about Kw since every non-malleable
code is a secret sharing scheme. The rest follows from the security of MACs.

6.2.2 Codeword is in P3 i.e., NMDec(L,R) 6= NMDec(L,R).

In this case, we will follow the adventures of the seed S; the MACs and keys do not play any role here.
In fact, for the purposes of this proof sketch, we will ignore the MAC keys and tags. We will also assume
that this case (i.e., codeword ∈ P3) occurs with substantial probability (else we don’t have to worry about
it). In such a case, we will argue that the final message is independent of the original message.

We start with replacing C (see figure 2) with C̃ where C̃ is completely uniform and independent of
the message (eventually we would need to replace C̃ back with C = Ext(W,S)⊕m).

After technical transformations authors obtain that:

Ext(W ;S) ≈ U |S,L, C̃, L,Ext(W ;S), S (5)

The intuition behind the equation above is very similar to the case of Prest in the section 6.1, the proof
is more involved than the one in [KOS18], but we omit the technical details behind the equation 5. Also,
note that in the equation above, there is no dependence on m on either side as C̃ is independent of m.
Ultimately, we would like to say that the output of the tampering experiment is indistinguishable from
the simulated output. Authors accomplish this in three steps:

1. Adding R. In equation 5, the only information correlated to W and R is S. Since Ext(W ;S) ≈ U
even given S, we can safely add R to Equation 5.

Ext(W ;S) ≈ U |S,L, C̃, L,Ext(W ;S), S,R, g1(R, C̃, σ̃c) .

From here, we would ideally like to drop C̃ and somehow bring back the dependence on m via C. For
now, we drop C̃

Ext(W ;S) ≈ U |S,L, L,Ext(W ;S), S,R,R . (6)

The way we’ll bring C is to condition C̃ on being a “cipher of m”. For that, we first need to prove
that C̃ is independent of W given appropriate auxiliary information.
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2. Capturing C̃’s correlation with W . In this step, authors prove that C̃ is independent of W
given S,L, L,Ext(W ;S), S,R,R. We first observe that C̃ is independent of W given (L,R, S). Now
we would like to add the other random variables in the auxiliary information. Authors use a Lemma
due to Dziembowski and Pietrzak which states that independence in the presence of additional auxiliary
information is indeed possible, provided it satisfies a few properties:

• The auxiliary information may be computed in multiple steps.

• Computation in all of the steps can use (L,R, S) and the part of the auxiliary information generated
in previous steps.

• Computation in a given step can either depend on C̃ or W but not both.

By computing auxiliary information in the order L followed by R followed by Ext(W ;S), one can easily
prove that C̃ is independent of W given S,L, L,Ext(W ;S), S,R,R.

3. Conditioning C̃ appropriately Since W is independent of C̃ given appropriate auxilliary infor-
mation, in Equation 6, we can condition C̃ to either be m⊕ Ext(W,S) or m⊕ U . (Note that the former
is identical to C.) By doing so, Equation 6 will lead to the following C, S, L, L,Ext(W ;S), S,R,R ≈
U , S, L, L,Ext(W ;S), S,R,R, where R,S are appropriately computed.
The desired result follows by observing that the tampered codeword is a function of

L,R,Ext(W ;S), C,R .

Putting it Together. So far, we’ve described the simulator and sketched the proof for showing that
the simulated output is indistinguishable from the tampered output in each of the cases. To complete the
proof, we need to combine all three cases and, in particular, the probability that the codewords (tampered
vs simulated) lie in each of the partitions needs to be analysed.

To do this, authors follow a standard argument: they consider a “skewed” codeword which, like the
tampered codeword, encodes the real message. However the probability with which the skewed codeword
lie in various partitions are the same as for the simulated codewords (in other words “skewed” codeword
behaves like original codeword on each partition, but partitions are “assembled” with slightly modified
probabilities). Authors complete the proof by showing that the probability that the tampered codeword
lies in a partition is independent of the message and then combine all three cases using the skewed
codeword as a intermediate hybrid.

This allows authors to finish the argument about tampered message not revealing the original message.

Candidate Instatiation. While one can turn any augmented non-malleable code (or randomness
encoder) into a good rate non-malleable code, a very simple result can be obtained using [ADL14]. To
encode a message m all we will need is an affine evasive function h. It is a function h : Fp →M∪⊥ such
that Pr(h(aU + b) 6= ⊥ | h(U) = m) is negligible for all a, b,m, and U |h(U) = m should be efficiently
samplable, the construction of the said function can be found in [ADL14, Agg15]. The encoding procedure
is described in Figure 3.

25



Short and Simple: The Encoding Procedure:

1. Sample s, kw, kc, w uniformly at random.

2. Sample x uniformly random, such that h(x) = s, kw, kc.

3. Sample `, r ∈ Fnp uniformly random, such that 〈`, r〉 = x.

4. Evaluate c = Ext2(w; s)⊕m.

5. Calculate MACs σc = Tagkc(c) and σw = Tag′kw(w).

The final output is: on the left: `, w, σw, and on the right: r, c, σc.

Figure 3: Simple non-malleable code with a great rate. Here h is an affine evasive function. The decoding
procedure is analogous: the decoder inverts Steps 3 and 2, obtains keys kw, kc, verifies MACs from the
Step 5 and proceeds to obtain the message via the Step 4. If in Step 2 the function h outputs ⊥, then
the decoder aborts and outputs ⊥.

7 Application: Non-Malleable Codes for Computable Tampering

Split-state tampering functions, even when allowed leakage between the states, are subject to strong
independence constraints. In this section, we will look at tampering families without any such constraints
but instead having limited computational complexity. In fact, we will show, in some sense, how to reduce
computational constraints to independence by showing how to construct non-malleable codes for a variety
natural computational tampering classes from split state non-malleable codes. We will consider the
following tampering classes:

• Decision tree tampering (Section 7.1 [BGW19]): each tampered output symbol is a function of a
small polynomial number of (adaptively chosen) queries to codeword symbols.

• Small-depth circuit tampering (Section 7.2 [CL17, BDSG+18, BGW19]): the tampered codeword
is produced by a boolean circuit of polynomial size and nearly logarithmic depth.

• (Bounded) Polynomial-size circuit tampering (Section 7.3 [BDL21]): the tampered codeword is
produced by circuit of bounded polynomial size, nd for some constant d where n is the codeword
length.

On computational complexity and non-malleable codes. We begin with some remarks connecting
non-malleable codes with more conventional computational complexity. First, we note that non-malleable
codes for circuit classes require circuit lower bounds.

Proposition 7.1 (Informal). For most natural tampering classes, C, an explicit non-malleable code
resilient to tampering by class C implies a circuit lower bound for that class: an explicit function that is
hard for C to compute.

In particular, if (Enc,Dec) is a non-malleable code resilient to C tampering, then Dec cannot be
computed by C. Suppose not, then consider the tampering function that computes Dec and outputs a
fixed encoding 0 if the first bit of the message is 1 and outputs a fixed encoding of 1 otherwise. Moreover,
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it is not difficult to observe that Enc gives rise to (efficiently samplable) input distributions against which
Dec is hard-on-average for C to compute.

Given our difficulties in proving circuit lower bounds, one interpretation of this observation is that
we can only expect to construct unconditionally secure non-malleable codes against very limited circuit
classes. Or in other words, non-malleable codes for expressive circuit classes, such as polynomial size
circuits, require computational assumptions.

Given that (strong) circuit lower bounds are necessary for non-malleable codes, one might wonder if
they are sufficient. In general, this is not true.

Theorem 7.1 (Informal [BDKM20]). Explicit hard functions for a class C, do not imply non-
malleable codes for C.

Consider the class of tampering functions, Localn−1 = {f}, such that each output bit is an arbitrary
function of all but 1 of the input bits, i.e. for each j ∈ [n] the function computing the jth tampered
bit, fj can be written as fj(c1, c2, . . . , cij−1, cij+1, . . . , cn) for some ij ∈ [n]. It is easy to observe that

such functions cannot compute Parity, i.e ⊕ici.12 In fact, functions in Localn−1 have no advantage over
random guessing computing Parity of uniformly random inputs.

One might hope to use the fact that Parity is hard for this class, Localn−1, directly by encoding a
single bit b as uniformly bits c1, . . . , cn such that ⊕ici = b. However, note that this code, while providing
some form of leakage-resilience, is trivially malleable by the class: consider the function that flips the
first bit.

This straw man argument intuitively leads us to believe that non-malleability requires much more
than (average-case) circuit lower bounds. [BDKM20] justified this intuition, proving that non-malleable
codes for Localn−1 tampering do not exist.

Key idea: communication bottlenecks. We saw that the straw man approach of encoding directly
using a hard function for a computational tampering class will not succeed. Instead, we show how to
leverage split-state non-malleable codes to construct non-malleable codes against computational tamper-
ing classes. The high level intuition for all of these constructions is to induce and exploit communication
bottlenecks in the tampering computation.

What do we mean by communication bottlenecks? Imagine that the (random) inputs to a computation
can be partitioned into two subsets X and Y such that two parties, Alice (holding X) and Bob (holding
Y ), can simulate the computation by communicating at most t bits. Why is this helpful? This class
of computation (independent tampering on X and Y conditioned on small communication between X
and Y ) is precisely corresponds to the tampering class handled by (adaptive) leakage-leakage resilient
split-state non-malleable codes (See extensions to Definition 3.1 and Remark 3.1). For clarity we define
this tampering class as two-party t-communication tampering.13

Definition 7.1. Let f : {0, 1}n×{0, 1}n → {0, 1}n×{0, 1}n be a function and fA : {0, 1}n → {0, 1}n,fB :
{0, 1}n → {0, 1}n such that f(x, y) = fA(x, y), fB(x, y).

We say that f is a two-party t(n)-communication tampering function if there is a two-party protocol
Πf where two parties Alice and Bob communicate at most t(n) bits such that for any x, y ∈ {0, 1}n, if
Alice is given x and Bob is given y, Alice outputs fA(x, y) and Bob outputs fB(x, y).

We denote the class of two-party t(n)-communication tampering functions as t(n)−SS. Moreover, we
say a non-malleable code for this tampering class is augmented if the left half of the codeword, commu-
nication transcript, and outcome of the tampering experiment can be jointly simulated.

12There is a syntactic problem here in that the output length of Parity does not match that of the tampering class, but
consider instead a function whose first bit of output is the Parity of its inputs.

13This class is also referred to as “leaky split state tampering” in the literature.
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Our goal, in this section, is to construct coding schemes, Enc,Dec, that induce communication bot-
tlenecks when composed with any tampering function in the target class, i.e. for any tampering f , the
function Dec(f(Enc(X,Y )) can be simulated by a two party protocol with at most t bits of commu-
nication (existing leakage-resilient split-state codes can handle t that is a constant fraction of |X| and
|Y |). More precisely, we want to construct a non-malleable reduction (Definition 2.3), Enc,Dec, from
the computational tampering class, C, to two-party t-communication tampering, i.e. for every tampering
function f ∈ C there exists some distribution Df over two-party t-communication tampering protocols
such that

Dec(f(Enc(X,Y )) ≈ε Df (X,Y ).

In Section 7.1, we will see how [BGW19] constructs such a non-malleable reduction for the class of
decision tree tampering functions: where each tampered output bit is produced by a bounded number of
queries to the input bits. ([BGW19]’s construction extends an earlier of [BDSKM16] for local tampering
functions, which corresponds to the case where the queries are static: chosen independently of the input.)

Section 7.2 will not construct a communication bottlenecking non-malleable reduction directly, but
implicitly. In particular, this Section will present [BDSG+18]’s non-malleable reduction from small-depth
circuit tampering to decision tree tampering. This reduction, as well as an earlier (but inefficient) con-
struction of [CL17], critically use a technique from the circuit lower bound literature: random restrictions.

Finally, in Section 7.3, we will see how assumptions in the derandomization literature can be used to
induce communication bottlenecks in polynomial size circuit tampering. In particular, how [BDL21] use
hardness against nondeterministic circuits to construct non-malleable codes for polynomial size circuit
tampering from augmented leakage-resilient split-state non-malleable codes. The code presented here has
only inverse polynomial security. Other constructions for this class are known that do not rely on split-
state non-malleable codes. Unfortunately, while these constructions are beautiful and achieve negligible
security error, they are not fully explicit: relying either on an untamperable common random strings
(CRS model) [CG14a, FMVW14], or poorly understood heuristic cryptographic assumptions [BDK+19,
DKP21].14

Challenges (comparison with pseudorandomness). The idea of communication bottlenecks has
a fruitful history in pseudorandomness [Nis92, INW94, NZ96, IMZ19], but our setting presents unique
challenges that make it difficult to extend results directly.

Firstly, non-malleable codes are required to meaningfully encode (and decode) information. (In con-
trast, pseudorandomness is only required to “fool” the computation.) While it is often intuitive how to
tweak a pseudorandom generator to encode information, we must also simulate decoding of whatever the
computation outputs with low communication, which can be delicate as the adversarial tampering could
try to force decoding to behave badly.

Secondly, and perhaps more importantly, non-malleable codes must handle adversarial computations
that take n bits of input and output n bits. (Compare with pseudorandomness, where it only necessary
(and possible) to consider adversarial computations with short output.) For example, while it is straight-
forward to fool a single decision-tree (using bounded-inependence), n decision trees can copy X to the Y
portion which cannot be simulated with low communication.

On the upside, here the adversarial computation doesn’t have the last word: the (standard) non-
malleability experiment only outputs after decoding. Additionally, non-malleable codes are not concerned
with pseudorandomness, so there is no need to stringently account for the randomness consumed by the
encoding.

Despite these differences, some of the constructions here will draw on techniques from the pseudoran-
domness literature, particularly those of Section 7.2 and Section 7.3.

14The latter constructions from cryptographic assumptions only achieve computational security: no efficient distinguisher
(polynomial size circuit) can distinguish the real and simulated experiments.

28



7.1 Decision Tree Tampering [BGW19]

As mentioned above, decision trees of depth d capture tampering where each output bit is set arbitrarily
after adaptively reading d locations of the input, where the choice of which input location to read next
at any point in time can depend on the values of all the previous locations read.

Definition 7.2 (Decision Trees). A decision tree with n input bits is a binary tree whose internal
nodes have labels from x1, . . . , xn and whose leaves have labels from {0, 1}. If a node has label xi then the
test performed at that node is to examine the i-th bit of the input. If the result is 0, one descends into
the left subtree , whereas if the result is 1, one descends into the right subtree. The label of the leaf so
reached is the output value on that particular input. The depth of a decision tree is the number of edges
in a longest path from the root to a leaf. Let DT(t) denote decision trees with depth at most t.

[BGW19] construct non-malleable codes resilient to tampering by decision-trees of depth n1/4−o(1).

Theorem 7.2 ([BGW19]). For any t = O(n1/4/ log3/2 n), there is an explicit and efficient non-
malleable code that is unconditionally secure against depth-t decision trees with codeword length n =
O(kt2 log4 n/ log log n) and error exp(−Ω(n/t4 log5 n)) for a k-bit message.

Technical overview. This theorem follows by constructing a non-malleable reduction (Def. 2.3) from
decision-tree tampering to two-party bounded communication tampering. Theorem 7.2 follows from
composing this reduction with a leakage-resilient split-state non-malleable code (i.e. a non-malleable
code for two-party bounded communication tampering).

Lemma 7.1 (NMR from [BGW19]). For any constant α ∈ (0, 1) and t = O(n1/4/ log3/2 n), there is
a (DT(t)⇒ t(n)−SS, ε)-non-malleable reduction with rate Ω(1/t2 log3 n) where ε ≤ exp(−Ω(n/t4 log5 n)).

We will outline [BGW19]’s reduction for decision tree tampering. Their reduction builds on a reduction
of [BDSKM16] for local tampering (where the bounded number queries to codeword are made non-
adaptively). In fact, the two reductions are quite similar (though not identical), however the analysis
differs substantially.

The key idea of this construction is to exploit size differences. The encoder and decoder will work
independently on the left and right pieces of the message, so we will in turn think of having left and right
encoders, decoders, codewords, and tampering functions (corresponding to the respective outputs).

First, suppose that the right piece of the message (corresponding to the right split-state codeword) is
much longer than that of the left. Then, suppose both the right and left encoders and decoders are simply
the identity function. Then, all the left tampering functions together will make a number of queries to
the right codeword that is below the leakage threshold.

However, because the right is much longer than the left, the above analysis won’t help in simulating
tampering on the right with low leakage from the left. Instead, [BGW19] modify the left encoder/decoder
to make it much longer than the right, but while retaining the property that the left can be decoded from
just a few decision trees. To do so, sample a random small set, whose size is that of the message, in a much
larger array. Then, plant the message in these locations and zero everything else out. Then, bit-wise
secret share a description of the small set (i.e., its seed) such that the secrecy threshold is relatively large.
To decode, simply extract the seed and output what is in the corresponding locations of the array.

Now, note that decoding the left still only requires at most relatively few queries to the right: decision
tree depth times both encoded seed length plus message length. But we can’t make the encoded seed
too long or we will be dead again. Instead, [BGW19] critically use the fact that tampering is by a forest
of decision trees. In particular, for any small set of tampering functions on the right, the seed remains
uniformly chosen regardless of what queries the set makes, so we expect only a small fraction of any
queries made to the array to actually hit the message locations. Strong concentrations bounds guarantee
that this is more or less what actually happens. Then, simply union bound over all such subsets to
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guarantee that collectively the right tampering function makes few queries to the left with overwhelming
probability.

Finally, apply the same style of encoding used on the left to the right side to fix the syntactic mismatch
and reduce to the case where the right and left messages are the same size.

7.2 Small-Depth Circuit Tampering [BDSG+18]

Small-depth circuit tampering captures the case where each tampered output bit is produced by a size
S(n) = nω(1) circuit of depth d(n) = o(log n/ log logn) over the standard basis with arbitrary fan-in, we
denote this class ACd(S(n)). (This includes the case where each output is produced by a constant depth
polynomial size circuit, AC0.)

Theorem 7.3 ([BDSG+18, BGW19]). For d ≤ c1 log n/ log log n, there exists an explicit, efficient,
information theoretic non-malleable code for d-depth circuits (of unbounded fan-in) of size exp(nc2/d) with
error exp(−nΩ(1/d)) and encoding length n = k1+c, where c, c1, c2 ∈ (0, 1) are constants.

For the special case of AC0-tampering, there exist efficient non-malleable codes for O(1)-depth poly-
nomial size circuits circuits with negligible error and encoding length n = k1+o(1).

[BDSG+18] showed how to use a tool from circuit lower bounds and derandomization, pseudoran-
dom switching lemmas, to construct a non-malleable reduction from small-depth circuit tampering to
decision tree tampering (which, as we have seen, can be reduced to split-state tampering). Prior to this
construction, Chattopadhyay and Li had constructed an (invertable) seedless non-malleable extractor for
small-depth circuit tampering [CL17]. However, unlike the construction here, the error of their extractor

yields inefficient non-malleable codes (k length messages encode into codewords of length n = 2Ω(
√
k)). We

state [BDSG+18]’s main technical lemma, a non-malleable reduction from small-depth circuit tampering
to small-depth decision tree tampering, before sketching their non-malleable reduction and its analysis
here.

Lemma 7.2 ([BDSG+18]). For S, d, n, t ∈ N, p, δ ∈ (0, 1), there exists σ = poly(t, log(2tS), log(1/δ), log(1/p))
and m = O(σ log n) such that, for any 2m ≤ k ≤ n(p/4)d,

(ACd(S) =⇒ DT(dmt), ε)

where
ε = nS

(
22t+1(5pt)t + δ

)
+ exp(− σ

2 log(1/p)).

Let us start by considering the simpler case of reducing w-DNFs (each clause contains at most w
literals) to low-depth decision tree tampering. The reduction for general small-depth circuits will follow
from a recursive composition of this reduction.

A non-malleable reduction (E ,D) reducing DNF-tampering to small-depth decision tree tampering
needs to satisfy two conditions (i) Pr[D(E(x)) = x] = 1 for any x and, (ii) D ◦ f ◦ E is a distribution
over small-depth decision trees for any width-w DNF f . A classic result from circuit complexity, the
switching lemma [FSS84, Ajt89, Yao85, H̊as86], states DNFs become small-depth decision trees under
random restrictions (“killing” input variables by independently fixing them to a random value with some
probability). Thus a natural choice of E for satisfying (ii) is to simply sample from the generating
distribution of restrictions and embed the message in the surviving variable locations (fixing the rest
according to restriction). However, although f ◦ E becomes a decision tree, it is not at all clear how
to decode and fails even (i). To satisfy (i), a naive idea is to simply append the “survivor” location
information to the encoding. However, this is now far from a random restriction (which requires among
other things that the surviving variables are chosen independently of the random values used to fix
the killed variables)is no longer guaranteed to “switch” the DNFs to decision trees with overwhelming
probability.
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To circumvent those limitations, we consider pseudorandom switching lemmas, usually arising in the
context of derandomization [AW85, AAI+01, IMP12, GMR13, TX13, GW14], to relax the stringent prop-
erties of the distribution of random restrictions needed for classical switching lemmas. In particular, we
invoke a pseudorandom switching lemma from Trevisan and Xue [TX13], which reduces DNFs to decision
trees while only requiring that randomness specifying survivors and fixed values be σ-wise independent.
This allows us to avoid problems with independence arising in the naive solution above. Now, we can
append a σ-wise independent encoding of the (short) random seed that specifies the surviving variables.
This gives us a generating distribution of random restrictions such that (a) DNFs are switched to decision
trees, and (b) the seed can be decoded and used to extract the input locations.

At this point, we can satisfy (i) easily: D decodes the seed (whose encoding is always in, say, the first
m coordinates), then uses the seed to specify the surviving variable locations and extract the original
message. In addition to correctness, f◦E becomes a distribution over local functions where the distribution
only depends on f (not the message). However, composing D with f ◦E induces dependence on underlying
message: tampered encoding of the seed, may depend on the message in the survivor locations. The
encoded seed is comparatively small and thus (assuming the restricted DNF collapses to a low-depth
decision tree) requires a comparatively small number of bits to be leaked from the message in order to
simulate the tampering of the encoded seed. Given a well simulated seed we can accurately specify the
decision trees that will tamper the input (the restricted DNFs whose output locations coincide with the
survivors specified by the tampered seed). This intermediate leaky decision tampering class, which can
be described via the following adversarial game: (1) the adversary commits to N decision trees, (2) the
adversary can select m of the decision trees to get leakage from, (3) the adversary then selects the actual
tampering function to apply from the remaining local functions. However, provided the seed length, m,
is short enough, this just amounts to querying a slightly higher depth decision tree.

To deal with depth d circuits, we can recursively apply this restriction-embedding scheme d times.
Each recursive application allows us to trade a layer of gates for another (adaptive) round of m bits of
leakage in the leaky decision tree game. One can think of the recursively composed simulator as applying
the composed random restrictions to collapse the circuit to decision trees and then, working inwardly,
sampling all the seeds and the corresponding survivor locations until the final survivor locations can be
used to specify ultimate decision tree tampering.

7.3 (Bounded) Polynomial Size Circuit Tampering [BDL21]

In this subsection, we show how to construct non-malleable codes for tampering by nc-size circuits,
where c is some constant. As mentioned at the outset, non-malleable codes for circuit tampering imply
circuit lower bounds. Given that explicit lower bounds against superlinear size circuits are well-beyond
our current techniques in complexity, assumptions are needed for such non-malleable codes. [BDL21]
showed how to use hardness assumptions against nondeterministic circuits to construct such codes from
split-state non-malleable codes. We begin by presenting the hardness assumption before giving a brief
overview of [BDL21]’s construction.

Definition 7.3 (Nondeterministic circuit). A nondeterministic circuit C is a circuit with “non-
deterministic” inputs, in addition to the usual inputs. We say C evaluates to 1 on x if and only if there
exists an assignment, w, to the non-deterministic input wires such that the circuit, evaluated determinis-
tically on input (x,w) outputs 1.

Assumption 1 (E requires exponential size nondeterministic circuits). There is a language
L ∈ E = DTIME(2O(n)) and a constant γ such that for sufficiently large n, non-deterministic circuits of
size 2γn fail to decide L on inputs of length n.

Informally, the above assumption says that non-uniformity and non-determinism do not always imply
significant speed-ups of uniform deterministic computations.
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Theorem 7.4 ([BDL21]). If E requires exponential size non-deterministic circuits, then for every
constant c, and for sufficiently large k, there is an explicit, efficient, n−c-secure non-malleable code for
k-bit messages, with codeword length n = poly(k), resilient to tampering by nc-size circuits.

[BDL21] construct their codes by “fooling” non-malleable codes for split-state tampering with special
properties: augmented, leakage-resilient, and admitting a special form of encoding (given half a codeword,
can efficiently sample the other half to encode any message).

Split-state tampering functions may manipulate the left and right halves of a codeword arbitrarily, but
independently (i.e. functions such that (cL, cR) 7→ (fL(cL), fR(cR)) for some fL, fR). Leakage-resilient
split-state tampering allows each tampered codeword half to depend on bounded leakage from the opposite
codeword half. In addition to split-state NMC, [BDL21] also use a pseudorandom generator (PRG) for
nondeterministic circuits, where c′ > c is a constant. In particular, they require that the PRG, G, is
secure even when given the seed (seed extending), i.e. no nondeterministic circuit of bounded polynomial
size can distinguish G(s) from a uniformly random string and s is a prefix of G(s). The existence of such
PRGs follows from Assumption 1 [KvMS12, IW97, KvM02, SU05, SU06, AASY16].

Given a (leakage-resilient) split-state non-malleable code, with necessary properties and a seed-
extending pseudorandom PRG for nondeterministic circuits, G, we encode a message x by sampling
the following:

(s, cR) such that (G(s), cR)is a split-state encoding of x.

The proof proceeds by contradiction starting with the assumption that the construction is not non-
malleable. The analysis follows by giving a nondeterministic reduction that uses the (assumed) malleablity
of the construction to violate the PRG security.

1. Assume towards contradiction that (s, cR) is malleable and fix the corresponding poly-size tampering
function g which is not split-state and violates non-malleability.

2. Transform g into a split-state tampering function fL, fR on (cL, cR), where (1) fL is unbounded,
relies on |s| bits of leakage from cR and returns some c′L, (2) fR is efficient, relies on |s| bits of
leakage from cL and returns c′R. Crucially, split-state tampering function (fL, fR) is guaranteed to
break non-malleability when cL = (s||y) = G(s).

3. Since (cL, cR) is a leakage-resilient split-state non-malleable code where cL is uniform random, then
when cL is random (as opposed to in the construction where codewords are sampled as (G(s), cR)),
every tampering functon (f ′L, fR) fails to break non-malleability, even when f ′L is unbounded and
chooses its output c′L in the “optimal” way.

4. Construct an Arthur-Merlin protocol (with bounded poly-size Arthur), that distinguishes between
input cL being random or pseudorandom. Such a protocol can then be transformed into a non-
deterministic polynomial bounded circuit (this follows from classical results: IP[O(1)] ⊆ AM ⊆
NP/poly [GS86, Bab85, BM88, AASY16]).

5. Intuitively, Arthur can efficiently compute all the values needed to simulate the tampering exper-
iment except for c′L, which is obtained from Merlin. Specifically, on input cL, Arthur samples cR,
and computes c′R = fR(cR), as well as the leakage on cR. Arthur sends cL and the leakage on
cR to Merlin who responds with c′L. If cL is pseudorandom, then an honest Merlin will return
c′L = fL(cL), and, with Merlin’s help, Arthur can check that non-malleability is violated with this
c′L. If cL is random, then despite any response c′L = f ′L(cL) from Merlin, non-malleability will not
be violated, and a dishonest Merlin cannot convince Arthur otherwise.
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8 Application to Non-malleable Commitments

In this section, we discuss one of the most important applications of non-malleable codes in the split-state
model. In [ASK+22], the authors construct a 1/3-rate NMC (which we described in Section 6.2), and then
use the textbook non-malleable commitment scheme with computational binding and statistical hiding
from [GPR16]. This construction achieves a communication cost of approximately 41 times the length of
the message being committed. We begin by defining non-malleable commitments, introduced by Dolev,
Dwork and Naor [DDN91], that give computational binding and statistical hiding property.

Definition 8.1. [GPR16] A non-malleable commitment scheme, 〈C,R〉 is a two-phase, two-party
protocol between a committer C and a receiver R. In the commit phase, C uses secret m and inter-
acts with R who uses no input. Let z = Com(m; r) denote R’s view after the commit phase. Let
(w,m) = Decom(z,m, r) denote R’s view after the decommit phase, which R either accepts or rejects.
We say that 〈C,R〉 is a computationally binding and ε-statistically hiding non-malleable commitment
scheme if the following properties hold:

1. Correctness: If the parties follow the protocol, then R(z, w,m) = 1, i.e., the receiver accepts.

2. Binding: For any PPT adversarial receiver R∗, that outputs (w′,m′), (w,m), z, with m′ 6= m, the
probability that R(z, w,m) = 1 = R(z, w′,m′) is negligible.

3. Hiding: For all distinct message pairs m,m′, {Com(m; r)}r ≈ε {Com(m′; r′)}r′.

4. Non-malleability: For avoiding trivial man-in-the-middle attack of copying the identity of the
committer, we consider the committer and receiver to additionally have an identity Id ∈ {0, 1}λ as
common input (λ is the computational security parameter). To define non-malleability, we consider
the real/ideal paradigm. In the real interaction, there is a man-in-the-middle adversary M inter-
acting with a committer, C, in the left session and a receiver R, in the right. All the quantities
associated with the right interaction are denoted by the “tilde’d” versions of their left counterparts
(e.g., C commits to m in the left interaction while M commits to m̃ in the right). Let MIMm denote
the random variable describing (VIEW, m̃), consisting of M ’s view in the experiment and the value
M commits to in the right interaction, given that C committed to m on the left. The ideal inter-
action is the same, except that C commits to an arbitrary message, say 0, on the left. Let MIM0

denote the corresponding random variable for 0. M is forced to use an identity Ĩd on the right,
which is distinct from Id used on the left. MIMm and MIM0 output a special symbol ⊥Id when M
has used the same identity on the right as received on the left.
Non-malleability guarantees that for every PPT man-in-the-middle M , and for all messages m, we
have {MIMm(y)}y∈{0,1}∗ ≈c {MIM0(y)}y∈{0,1}∗, where y is the auxiliary input received by M .

The round complexity of a commitment scheme denotes the number of rounds of interaction between the
committer and receiver. The communication complexity of a commitment scheme denotes the total size
of the transcript of the interaction between the committer and the receiver.

The non-malleable commitment scheme from [GPR16] uses a 2-split-state augmented non-malleable
code tolerating leakage as an underlying building block. By Theorems 3.2 and 3.4, the leakage-resilience
requirement can be removed. So, if one instantiates this scheme with the 1/3-rate augmented non-
malleable code, one gets a non-malleable commitment scheme with a communication complexity of 41 ·
|message length|. We begin by looking at the building blocks used.

8.1 Building Blocks

The construction from [GPR16] requires two building blocks, which were instantiated in [ASK+22] as
follows.
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• A non-interactive computationally binding and statistically hiding commitment, (Com,Decom),
with message space {0, 1}2β1 , which is a non-interactive two phase protocol as in Definition 8.1
satisfying correctness, computational binding and statistical hiding. There is a hashing based
statistically hiding commitment of [HM96], which has commitment size of ≈ 9 · (message length).

• A leakage resilient and augmented non-malleable code, (Enc,Dec), with message space {0, 1}α and
codeword space {0, 1}β1 × {0, 1}β2 .

8.2 Construction

We now describe the construction of non-malleable commitments from [GPR16], using the building blocks
from Section 8.1. For multiplication and addition operations in the construction below, we assume a
natural correspondence between the binary β1-bit strings and the field GF (2β1).

• Setup: Let Id ∈ {0, 1}λ be C’s identity, also given as input to R. λ is the computational
security parameter.

• Inputs: C has input message m ∈ {0, 1}α to be committed to. Id is a common input of both
C and R.

• Commit Phase:

1. C → R: Let (L,R)← Enc(m‖Id). Pick random r ← {0, 1}β1 and send Com(L‖r) to R.

2. R → C: Send random a← {0, 1}β1\{0|β1|}.
3. C → R : Send b = ra+ L and R.

• Decommit Phase: C opens the commitment in Step 1. Let L′‖r′ be the decommited value.

• Receiver’s Output: If L′ and r′ do not satisfy r′a+L′ = b, then output ⊥inc. Else, compute
m′‖Id′ = Dec(L′, R), and output ⊥Id if Id′ = Id. Else output m′.

Figure 4: Non-malleable Commitment Scheme 〈C,R〉

In [GPR16], the additional property needed from the underlying NMC is called conditional augmented
property [GPR16, Definition 10], which guarantees that if the left state L is first picked at random from
the space of left state of valid codewords (whose decode is 6= ⊥) and then the right state is picked,
conditioned on the message and the left state, the augmented non-malleability (with right augmentedness)
is still guaranteed. One can observe that the proof of [GPR16, Claim 2], showing that a non-malleable
code is conditional augmented, only requires leakage resilience from the left state of the NMC. Hence,
the main theorem of [GPR16, Theorem 1], with instantiations from Section 8.1, can be stated as follows.

Theorem 8.1. [GPR16, ASK+22] If (Com,Decom) is a non-interactive computationally binding and
statistically hiding commitment scheme, and (Enc,Dec) is a leakage resilient augmented non-malleable
code, then the protocol 〈C,R〉 in Figure 4 is a non-malleable commitment scheme against synchronizing
adversary with computational binding and statistical hiding.

Further, using the hashing based non-interactive commitment scheme [HM96] and the non-malleable
code from [ASK+22], the communication cost of the above scheme is 41α, where α is the message length.

9 The New Frontier, Open Questions.

In this section we will describe few interesting unresolved questions that are related to this survey:
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Exponential error. To date, none of the explicit split-state non-malleable codes achieve genuinely
exponential error, ε = 2−Ω(n). In particular, if one desires error 2−k, no construction with a codeword
of length O(k) is currently known. This is of particular importance in applications where the security
parameter may be larger than the message length.

Surpassing Bourgain’s extractor. As we already mentioned in Section 5, further improvements
to the constructions of non-malleable extractors would imply an explicit construction of a two-source
extractor with a negligible error and low sources entropy requirements. For more reading on the problem
we refer to [COA21]. Finding such non-malleable extractors is an interesting open question.

Rate above 1
3 . The techniques mentioned in Section 6 do not allow us to build a non-malleable code

with rate better than 1/3. Each of the states has to be at least as long as the message (because of the
secret sharing property discussed in Section 3), and the seeded extractor trick requires the length of one
of the states to be double the message length. Thus going below 1/3 requires a new approach, and is left
as a (perhaps challenging) open question.

Is the construction from [ADL14] way stronger than we can prove? We discuss this construc-
tion in Section 4. The construction requires very large size of the vectors (Ω(n4) coordinates, each of
size Ω(n) for an n-bit message). We hypothesise, however, that [ADL14] should remain secure even for
a constant number of coordinates. Even if the above is not true, finding an explicit attack would greatly
expand our understanding of tamper resistance of the inner product. This might even have interesting
consequences in additive combinatorics.

Eight is a crowd.. As we discuss in Remark 3.11, the question about the minimum number of states
necessary to build a continuous non-malleable code remains unanswered. We know it’s at least 3 and
at most 8. We hypothesise that extending the techniques from [ADN+19b] to existential results in non-
malleable extractors will yield an existential result in 6 state model. Closing the gap between 3 and 8
would be very interesting, especially if the answer is not 3!
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[FHMV17] Sebastian Faust, Kristina Hostáková, Pratyay Mukherjee, and Daniele Venturi. Non-
malleable codes for space-bounded tampering. In Annual International Cryptology Con-
ference, pages 95–126. Springer, 2017.

[FMNV14] S. Faust, P. Mukherjee, J. Nielsen, and D. Venturi. Continuous non-malleable codes. In
Theory of Cryptography Conference - TCC. Springer, 2014.

[FMVW14] S. Faust, P. Mukherjee, D. Venturi, and D. Wichs. Efficient non-malleable codes and key-
derivation for poly-size tampering circuits. In Eurocrypt. Springer, 2014. To appear.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

[GK18] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In Ilias Diakoniko-
las, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June
25-29, 2018, pages 685–698. ACM, 2018.

[GLM+03] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Algorith-
mic Tamper-Proof (ATP) security: Theoretical foundations for security against hardware
tampering. In Moni Naor, editor, First Theory of Cryptography Conference — TCC 2004,
volume 2951 of LNCS, pages 258–277. Springer-Verlag, February 19–21 2003.

[GMR13] Parikshit Gopalan, Raghu Meka, and Omer Reingold. DNF sparsification and a faster
deterministic counting algorithm. Computational Complexity, 22(2):275–310, 2013.

39



[GMW18] Divya Gupta, Hemanta K Maji, and Mingyuan Wang. Constant-rate non-malleable codes
in the split-state model. Technical report, Technical Report Report 2017/1048, Cryptology
ePrint Archive, 2018.

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commit-
ments. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pages 1128–1141. ACM, 2016.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof
systems. In Juris Hartmanis, editor, Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages 59–68. ACM,
1986.

[GSZ21] Vipul Goyal, Akshayaram Srinivasan, and Chenzhi Zhu. Multi-source non-malleable extrac-
tors and applications. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 468–497. Springer, 2021.

[GW14] Oded Goldreich and Avi Wigderson. On derandomizing algorithms that err extremely rarely.
In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, pages 109–118, 2014.

[H̊as86] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In Proceedings of
the 18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley,
California, USA, pages 6–20, 1986.

[HM96] Shai Halevi and Silvio Micali. Practical and provably-secure commitment schemes from
collision-free hashing. In Neal Koblitz, editor, Advances in Cryptology—CRYPTO ’96, vol-
ume 1109 of LNCS, pages 201–215. Springer-Verlag, 18–22 August 1996.

[IKSS21] Yuval Ishai, Dakshita Khurana, Amit Sahai, and Akshayaram Srinivasan. On the round
complexity of black-box secure MPC. In Tal Malkin and Chris Peikert, editors, Advances in
Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO
2021, Virtual Event, August 16-20, 2021, Proceedings, Part II, volume 12826 of Lecture
Notes in Computer Science, pages 214–243. Springer, 2021.

[IMP12] Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm
for AC0. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 961–972, 2012.

[IMZ19] Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from shrink-
age. J. ACM, 66(2):11:1–11:16, 2019.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings
of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994,
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