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Abstract. Binary elliptic curves are elliptic curves defined over finite fields of char-
acteristic 2. On software platforms that offer carryless multiplication opcodes (e.g.
pclmul on x86), they have very good performance. However, they suffer from some
drawbacks, in particular that non-supersingular binary curves have an even order, and
that most known formulas for point operations have exceptional cases that are detri-
mental to safe implementation.
In this paper, we show how to make a prime order group abstraction out of stan-
dard binary curves. We describe a new canonical compression scheme that yields a
canonical and compact encoding. We also describe complete formulas for operations
on the group. The formulas have no exceptional case, and are furthermore faster than
previously known complete and incomplete formulas (general point addition in cost
8M + 2S + 2mb on all curves, 7M + 2S + 2mb on half of the curves). We also show
how the same formulas can be applied to computations on the entire original curve, if
full backward compatibility with standard curves is needed. Finally, we implemented
our method over the standard NIST curves B-233 and K-233. Our strictly constant-
time code achieves generic point multiplication by a scalar on curve K-233 in as little
as 29600 clock cycles on an Intel x86 CPU (Coffee Lake core).

1 Introduction
Elliptic curves used in cryptography are defined over finite fields. When the base field is of
characteristic 2, i.e. the field is GF (2m) for some degree m, then the curve is called a bi-
nary elliptic curve. When elliptic curves were selected and chosen as standards by SEC[6],
and adopted by NIST[17], a number of binary curves were defined.

In practice, binary curves are not widely used, for a number of reasons, not all of them
being fully rational:

– Binary curves, at least when non-supersingular, cannot have a prime order, since they
necessarily contain a point of order 2. This implies potential cofactor issues; checking that
a given point is in a specific prime order subgroup can be done efficiently, but this is not
specified by relevant standards.

– Performance of binary curves can be poor on systems that do not offer a “carryless multi-
plication” opcode (i.e. support formultiplication of polynomials overGF (2) [z]).When
such an opcode is available, operations on binary curves are very fast, but much less so
on other systems. Small embedded software platforms (microcontrollers), in particular,
find such curves to be quite expensive to use.

– Most known formulas for adding points together are incomplete, i.e. they have excep-
tional cases thatmust be handled specially. Suchhandling is detrimental to either security



(if donewith conditional execution, then that leads to side-channel leaks) or performance
(if all cases are computed, and the correct one selected in a side-channel-free way). There
are known complete formulas for curves when converted into binary Edwards curves[3],
but at a steep cost (18M + 2S + 7mb in all generality).

– Known algorithms for solving discrete logarithm in the multiplicative subgroup of a bi-
nary field are more efficient than their counterparts in fields of large characteristic, espe-
cially when the field degree is composite. Thus, pairing-friendly binary curves must use
a very large base field and even larger extension field to hope to achieve some security,
making them impractical for pairing-based cryptography.

– There are some known results that indicate that discrete logarithm on binary curves is
“less secure” asymptotically than what we would expect from generic discrete logarithm
attacks[20]. The effect would impact only very large degrees (m ≥ 2000), making the
issue purely theoretical, but it highlights that binary curves do not necessarily follow the
same patterns as curves over large characteristic fields, and require some specific analysis.
More generally, binary fields are just weird, and that generates some unease among cryp-
tographers, who tend to feel that they have a better understanding of what happens with
prime fields (whether that feeling is actually correct or not is another question).

– Many implementation techniques pertaining to implementation of binary curves, espe-
cially in customhardware and using normal bases, have been patented, generating a chill-
ing effect on open-source implementations and work on binary curves in general. Note
that many such patents were filed in the 1990s and have since expired.

The potential security issues remain, indeed, potential; no actual reduction in security
was ever found for binary curves in general with sizes used in practical deployments, and in
particular forNIST curves. Some newer curves have also been proposed, notably binary GLS
curves[10], that feature an easily computed endomorphism that can be used to speed up some
operations, in particular multiplication of a point by a scalar. One specific instance of GLS
curves is GLS254[19]; a recent work[1] offers a very optimized implementation of multipli-
cation of a point by a scalar, completed in 35739 cycles on an Intel x86 “Kaby Lake” core. A
substantial part of this last article is devoted to the analysis of exceptional cases, working out
where they may happen in the computation, and adding corresponding workarounds; this
highlights the complexities that arise from relying on incomplete formulas.

In this article, we try to alleviate some of these issues. Namely, in the following sections,
we will show the following:

– We show how to leverage the (already known) tests for membership in the prime-order
subgroup of interest in order to obtain a prime order group abstraction. This is applica-
ble to all non-supersingular binary elliptic curves.

– We define a new coordinate system (called (x, s) coordinates) that allows representing all
members of the group, including the neutral element.On this system,we show complete
formulas. The formulas are also quite efficient, with general point addition in cost 8M+
2S + 2mb for all curves (7M + 2S + 2mb for half of all curves) and doubling in cost
3M + 4S + 4mb (or 3M + 5S + 2mb).

– We describe a new encoding/compression scheme with which a group element can be
encoded into a fixed-length sequence of bytes. The encoding is canonical (a given ele-
ment can be encoded only in a unique way) and verified (the decoding process inher-
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ently checks that the source indeed used that exact encoding). The encoding works over
all group elements, including the neutral.

– We also show how the new formulas can be used to perform computations over the full
curve.Normally, cryptographic protocols should be built over the prime order subgroup
only; however, in some scenarios, backward compatibility requirements mandate sup-
port of operations on arbitrary curve points. In this way, we can obtain the same effi-
ciency and completeness on the full curve.

– We implementedour formulas and techniques inC, for standardNISTcurvesB-233 and
K-233. On the latter, we achieve a point multiplication by a scalar in as little as 29602
cycles on an Intel x86 “Coffee Lake” system.1

A Note on Patents. Binary elliptic curves have the reputation of being a “patent mine-
field”. It is true that many patents were filed about various aspects of their implementation,
especially in the 1990s. Most of these patents have expired by now. To our knowledge, none
of the techniques described in this paper are currently covered by a patent. This is not legal
advice; we are not entitled to provide such advice. Moreover, the state of patent law is such
that in many jurisdictions, it is not even possible to ever offer a guarantee of applicability or
non-applicability of any patent over a given implementation. We can informally say that af-
ter some cursory scans,we foundonly patentWO2001035573A1,which covers point halving
and was filed in 2000; however, patents.google.com shows it as being expired, discon-
tinued, abandoned or withdrawn, depending on the involved jurisdiction.

We also claim that we have not and do not intend to file any patent on these techniques.

2 Background on Binary Fields and Curves
In this section, we recall some core definitions and properties of binary fields and binary el-
liptic curves. All these results are well-known and can be found in textbooks[7,11,23,25].

2.1 Binary Fields
Field Construction. Abinary field is a finite field of characteristic 2. Its order is equal to
2m for some integerm ≥ 1. We denote itGF (2m). That field can be instantiated with binary
polynomials. Let GF (2) [z] be the ring of polynomials in the variable z, with coefficients in
GF (2) (in all this text, zwill designate the formal variable for binary polynomials). LetM ∈
GF (2) [z] be an irreducible polynomial of degreem. The quotient ringGF (2) [z]/M is then
a finite field with 2m elements.

It can be shown that two finite fields with the same cardinal are isomorphic to each other,
and the isomorphisms can be efficiently computed.Therefore, it does notmatter, for security,
which modulus polynomialM we choose, as long as it is irreducible; we can thus use a mod-
ulus that promotes implementation efficiency. In practice, for slightly more than half of the

1Though nominally distinct, the Skylake, Kaby Lake, Cannon Lake and Coffee Lake cores “are
based on the same design” and “differ mainly in processing technology, number of cores, and cache
sizes.”[8]. These parameters should have about no influence on the measured performance for tight
cryptographic implementations that entirely fit in L1 cache; thus, benchmarks for these four core types
should be directly comparable.
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possible degreesm, there exists an irreducible trinomialM = zm+zu+1 for some 1 < u < m/2;
in case there are several such trinomials, we normally use the one with the smallest degree u
for the intermediate element.2Whenm is such that no irreducible trinomial exists, then there
are irreducible pentanomials (with three non-zero “intermediate” coefficients) andwe use the
smallest one in lexicographic order.

Whenm = m1m2 is composite, then GF (2m) can be mapped to a tower of field exten-
sions, i.e. as an extentionof degreem2 over thefieldGF (m1) (or vice versa).When a composite
degree is used, the GHS attack may apply[9]; thus, any use of a non-prime degreem requires
extra analysis, and can be deemed as slightly “riskier”, in a fuzzy way. One case is the use of
m = 254 = 2 × 127, in particular for the GLS254 curve; [10] offers extensive arguments on
why that specific choice is still safe.More conservative standards such asNISTFIPS 186-4[17]
stick to prime degreesm.

Representation and Operations. The most commonly used representation of ele-
ments in GF (2m) is a polynomial basis: the coefficients of the polynomial in GF (2) [z] are
listed in increasing sequence order, as so many bits. Other representations are possible (e.g.
normal bases) but they usually don’t yield improvements in software implementations.With
a polynomial basis, addition inGF (2m) is a simple bitwise XOR,withmostly negligible cost.
Subtraction is the same operation as addition.

Multiplication in GF (2m) is fast on platforms that offer a carryless multiplication op-
code (e.g. pclmul on x86 CPUs); the product is evaluated over polynomials, then reduced
moduloM. The reduction itself is relatively inexpensive, ifM was chosen as a sparse polyno-
mial, with its non-zero coefficients only in the low degrees. On software platforms without a
carryless multiplication opcode, multiplication inGF (2m) is expensive. Karatsuba’s method
can be applied repeatedly to reduce the operation to a sequence of individual multiplications
over smaller polynomials[13]. A bit-by-bit algorithm can be improved with table lookups[4],
but that tends to lead to side-channel leaks when operating over secret values. SIMD vector
instructions can help[2]. Integermultiplications can also be used, provided that they are used
on valueswith enough zeros inserted betweendata bits to allow carries to accumulatewithout
spilling over other bits.

Squaring inGF (2m) is a field automorphism: for any elements x and y, (xy)2 = x2y2 and
(x + y)2 = x2 + y2. This makes squaring a linear operation (when considering GF (2m) as a
vector space of dimensionm overGF (2)). In a square-and-reduce algorithm, the polynomial
squaring simply becomes an “expansion” in which a bit of value zero is inserted between any
two consecutive data bits; even without access to a carryless multiplication opcode, this can
be done with a few mask-and-shift operations. On platform with a carryless multiplication
opcode, squaring cost is typically between 0.5 and 0.75 times that of multiplication cost; on
other platforms, inparticular small embeddedmicrocontrollers, the ratio is oftenmuch lower,
with 0.1 being the traditional value retained for analysis.

Every element in GF (2m) is a quadratic residue, and has a single square root. Extracting
a square root is also a field automorphism (√x + y =

√
x + √y). Computation of

√
x can be

2Not always! E.g. when working inGF (2127), using z127 + z63 + 1may yield slightly better perfor-
mance than z127 +z+ 1, by computingmodulo z128 +z64 +z, with only one element which is not 64-bit
aligned.
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done easily by splitting x into its even-degree and odd-degree coefficients:

x =

( (m−1)/2∑
i=0

x2iz
2i

)
+ z ©­«

(m−3)/2∑
j=0

x2j+1z
2jª®¬

= xeven + zxodd

Then
√
x =
√
xeven +

√
z
√
xodd. The square roots of xeven and xodd can be done with “squeez-

ing” (the reverse of the expansion done in squaring), while the constant
√
z is usually of low

Hammingweight, ifMwas itself chosen as a sparse polynomial.On small software platforms,
square root extraction is about as cheap as squaring; on large systems with an efficient carry-
less multiplication opcode, a square root cost is typically similar or slightly above that of a
multiplication.

Inversion is more expensive. The main strategy for implementing inversions in GF (2m)
is to use a variant of Fermat’s little theorem described by Itoh andTsujii[12]: 1/x is computed
as:

1
x
=

(
x2

m−2
)
=

(
x2

m−1−1
)2

with the exponent 2m−1 − 1 having a regular format (only ones, no zeros) that is amenable to
efficient addition chains, so that the exponentiation can be performedwith a limited number
of field multiplications (roughly proportional to logm), and sequences of successive squar-
ings. Since squaring is a linear operation, each such sequence can be performed with a pre-
computedmatrixmultiplication.3Anothermethod for inversion is to use a binaryGCDvari-
ant[5], which is easier to implement andmore efficient than the binary GCDon integers due
to the absence of carry propagation when working with polynomials in GF (2) [z]. On plat-
forms with a carryless multiplication opcode, the Itoh-Tsujii method tends to be faster, with
a cost typically between 40 and 100 times that of a multiplication; on smaller systems, the bi-
nary GCDmay be preferred, especially since it avoids the use of large precomputed matrices.

Trace and Quadratic Equations. The trace of a field element x, denoted Tr(x), is de-
fined as:

Tr(x) =
m−1∑
i=0

x2
i

The trace has some important characteristics:

– The trace of any x is always equal to 0 or 1. Exactly 2m−1 elements ofGF (2m) have trace
0, and the 2m−1 other elements ofGF (2m) have trace 1.

– The trace is linear: for any x and y, Tr(x + y) = Tr(x) + Tr(y).
– For any x, Tr(x2) = Tr(x) = (Tr(x))2.

If the degree m is odd, then Tr(1) = 1. If m is even, then Tr(1) = 0; however, there is
always at least one degree i such that Tr(zi) = 1, so that one can always find an element of
minimal Hamming weight whose trace is 1.

3Itoh and Tsujii initially described their method using a normal basis representation, where squar-
ings and sequences of squarings are basically free. However, even with polynomial bases, the algorithm
remains efficient.
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As a linear operation that outputs a single bit, the trace of x can be computed as a XOR
of some of the bits of x. When the field modulus M is sparse, very few bits of x actually
contribute to the trace. For instance, with m = 233 andM = z233 + z74 + 1 (the field and
modulus used in the standardNIST curves B-233 andK-233), Tr(x) = x0 + x159, i.e. the sum
of only two of the value bits. In general, the cost of computing the trace is negligible.

Quadratic equations inGF (2m) can be solved by reducing the equation to x2 + x = d for
some field element d and unknown x. Note that Tr(x2 + x) = Tr(x)2 +Tr(x) = 0; therefore,
such an equation can be solved only if Tr(d) = 0. The converse is also true: solutions exist
for any d of trace zero. When x is a solution, the other solution is x + 1.

Whenm is odd, a solution is given by the halftrace:

H (x) =
(m−1)/2∑

i=0
x2

2i

Since x2m = x for all x ∈ GF (2m), it is easily seen thatH (d)2+H (d) = d+Tr(d). Ifm is even
(e.g. when working inGF (2254)), the expression of the solution of the quadratic equation is
slightly more complicated, but it boils down to the same result: a solution x can be found
from d with a linear operation, which can thus be implemented with a multiplication by a
constantmatrix. Evenwith a constant-time implementation that scans the wholematrix, this
is a relatively inexpensive operation (less than 20 times the cost of a multiplication).

We define as QSolve(d) the linear operation that returns a solution x to the equation
x2 + x = d + Tr(d) for any d. The other solution is x + 1 = QSolve(d) + 1.

2.2 Binary Elliptic Curves
Curve Equation. Any ordinary (non-supersingular) binary elliptic curve equation can
be transformed, through changes of variables, into a short Weierstraß equation:

y2 + xy = x3 + Ax2 + B

for two constants A and B in GF (2m), with B ≠ 0. The curve is the set of points (x, y) that
fulfill the equation, together with a formal “point-at-infinity” (hereafter denoted O) which
does not have defined x and y coordinates. The curve is well-defined for any choice of con-
stants A and B, as long as B ≠ 0.

Curve isomorphisms are mappings (x, y) ↦→ (x, y + C) for any constant C ∈ GF (2m);
this modifies the constant A into A + C + C2, while leaving B unchanged. This means that
through such an isomorphism, it is always possible to changeA into any other constantA′ as
long as Tr(A) = Tr(A′) (it suffices to choose C = QSolve(A + A′)). In particular, when a
curve usesA such that Tr(A) = 0, then an isomorphic curve works with A = 0, which tends
to make computations easier and faster. Similarly, when Tr(A) = 1, we can arrange for A to
be a value with minimal Hamming weight; ifm is odd, then we canmakeA = 1, which again
promotes implementation efficiency. In all of this article, we assume that multiplication byA
or A2 has negligible cost.

Point Addition Law. An addition law, that grants the curve anAbelian group structure,
is defined as follows:
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– For any point P, P + O = O + P = P.
– For P = (x, y), its opposite is −P = (x, y + x). For any given x ∈ GF (2m), there are at

most two points on the curve with that x coordinate, and the two points are opposite of
each other.

– The double of a point P = (x, y) is 2P = (x′, y′) with:

λ = x + y/x
x′ = λ2 + λ + A
y′ = λ(x + x′) + x′ + y

Note that if x = 0, then P is a point of order two, and 2P = O.
– If P1 = (x1, y1) and P2 = (x2, y2), with x1 ≠ x2 (equivalently, P1 ≠ ±P2), then their sum

is P1 + P2 = (x3, y3) with:

λ = (y1 + y2)/(x1 + x2)
x3 = λ2 + λ + A + x1 + x2
y3 = λ(x1 + x3) + x3 + y1

A binary elliptic curve has a single point of order two, which isN = (0,
√
B). This is the

only point with x = 0.

Group Structure. Hasse’s theorem on elliptic curves over finite fields also applies to bi-
nary elliptic curves, so the order of a binary elliptic curve over GF (2m) is n such that |2m +
1 − n| ≤ 21+m/2. The order can always be split into an even and odd parts: n = 2tr, for some
integer t ≥ 1, and odd integer r. Standard curves are normally chosen so that t is small and r
is prime; however, all the treatment in this article also applies to large t values and non-prime
r values. When r is prime, 2t is called the cofactor. The main goal of using such a binary ellip-
tic curve E in cryptographic protocols is to compute operations in the subgroup of points of
r-torsion, which is then a cyclic group with a prime order:

E[r] = {P ∈ E | rP = O}

Any point P ∈ E can be split into the sum of a point of r-torsion and a point of 2t-torsion.
Moreover, since there is a single point of order 2, it follows that there must be 2t−1 points of
order exactly 2t : the subgroup of points of 2t-torsion is cyclic. If we call T one such point of
order exactly 2t , then any point P on the curve splits as P = Q + kT for someQ ∈ E[r], and
integer k taken modulo 2t . This decomposition is unique; we can generically obtainQ as:

Q = 2t ((1/2t mod r)P)

Wewill see in section 4.2 a more efficient method to obtainQ and k. Note thatN = 2t−1T .

Point Halving. Point halving consists in computing a point P from a point P′ such that
P′ = 2P. It works as follows:

1. Find λ such that x′ = λ2 + λ + A. If Tr(x′ + A) = 1 then there is no solution (the point
P′ is not the double of any point over the curve). Otherwise, set λ = QSolve(x′ + A).
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2. Since y′ = (λ + 1)x′ + λx + y = (λ + 1)x′ + x2, we can compute x =
√
y′ + (λ + 1)x′.

3. From x and λwe get y = x(x + λ).

When P exists, then there are two solutions, which are P and P +N .
The first step highlights the important property that a point P′ can be halved (i.e. is the

double of another point) if and only if Tr(x′ + A) = 0. When applied to the point N =

(0,
√
B), we find the following:

– When Tr(A) = 1, N cannot be halved; the curve E has order 2r for some odd integer
r (i.e. the curve is double-odd). Points that can be halved are then exactly the points of
r-torsion. This implies that P = (x, y) is a part of the subgroup of order r if and only if
Tr(x) = 1.

– When Tr(A) = 0, N can be halved; the curve E has order 2tr for some t ≥ 2 and odd
integer r. The cofactor is at least 4. If A = 0 (as we saw, this can always be arranged with
an isomorphism when Tr(A) = 0), then the two points R = ( 4√

B,
√
B) and R + N =

−R = ( 4√
B,
√
B + 4√

B) are the two points such that 2R = N .

3 Prime Order Group Definition
The point addition law has exceptional cases, related to the point-at-infinity (which does not
have defined coordinates), and when adding a point to itself. To work around these issues,
and obtain complete formulas, we apply the folllowing methodology, that leverages the same
core ideas as double-odd curves[22]:

– We restrict ourselves to points of r-torsion, which we represent by other points: each
group element will be a point P + N , where P is a point of r-torsion. The sum in the
group of P1 +N and P2 +N is then defined as (P1 +P2) +N . This representationmakes
N the neutral element in the group, hence with defined coordinates.

– When addingP1+N toP2+N in the group, we have to compute (on the curve) the sum
P1 +P2 +N , which we can compute as (P1 +N ) +P2, with P2 being a point of r-torsion,
while P1 + N is not a point of r-torsion; thus, it cannot happen that P1 + N = ±P2.
This avoids the exceptional case of the additional law when adding a point to itself; we
thus immediately obtain unified formulas, where the only remaining exceptional cases
are related to the neutral (here,N ) as an operand or as a result.

– In order tomake the computation ofP2 fromP2+N easier, we apply a change of variable
on the curve so thatN becomes the point (0, 0).

– We then use a somewhat different coordinate sytem to remove exceptional cases related
to the neutral.

This methodology hinges on the ability to efficiently check or otherwise ensure that a given
pointP+N is indeed the sumofN and an r-torsionpoint.As seen in theprevious section, this
is immediate when Tr(A) = 1: non-r-torsion points (x, y) are exactly the points for whom
Tr(x) = 0. For the general case, see section 4.1.

The title of this section is slightly misleading because everything described below only
requires r to be odd, not necessarily prime. However, the most useful case for cryptography
is when r is prime.
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New Curve Equation. We first move the point N to (0, 0) by applying the change of
variable y ↦→ y +

√
B. We then obtain the following equation:

y2 + xy = x(x2 + ax + b)

for two constants (a, b) = (A,
√
B). We will now use these constants throughout the rest of

this paper.
This new equation is not a “shortWeierstraß” equation. The addition law (in (x, y) coor-

dinates) is mostly unchanged, except for point doublings: λ is now computed as:

λ = x +
y + b
x

instead of x + y/x. The other formulas are unchanged.
Given a point P = (x, y), we get P +N as:

(x, y) +N =

(
b

x
,
b(y + x)

x2

)
New Coordinate System. We replace the y coordinate with another value s:

s = y + x2 + ax + b

It is easy to see that given x, s can be computed from y and vice versa. Moreover, when x ≠ 0
(i.e. all curve points exceptN andO), we have s = y2/x. The s coordinate ofN is equal to b.
In (x, s) coordinates, the curve equation can be transformed into the following:

s2 + xs = x4 + a2x2 + b2

Group Definition. We can now formally define our groupG:

G =
{
(x, s) ∈ GF (2m) × GF (2m) | (x, s + x2 + ax + b) +N ∈ E[r]

}
In other words, G consists of the points P + N , for all r-torsion points P. The addition law
onG, denoted “�”, is:

(P1 +N ) � (P2 +N ) = P1 + P2 +N

Theneutral isN , with coordinates (0, b). The opposite ofP+N is−P+N . Since the opposite
of (x, y) on E is (x, y + x), it follows that the opposite of (x, s) inG is (x, s + x).

The group G is obviously homomorphic to E[r] (the group of r-torsion points on the
curve). If r is prime, then this is a prime-order group appropriate for building cryptographic
protocols.

Addition Formulas. Starting from the affine formulas in (x, y) coordinates, we can de-
rive formulas for addition in G. We are given P1 + N = (x1, s1) and P2 + N = (x2, s2), and
want to compute the coordinates of P3 +N = (P1 +N ) � (P2 +N ) = (x3, s3). We initially
assume that neitherP1+N norP2+N is the pointN ; hence, x1 ≠ 0 and x2 ≠ 0. SinceP1+N
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and P2 + N are both in G, it cannot happen that x1 = b/x2 (value b/x2 is the x coordinate
of P2, which is a point of r-torsion, while x1 is the x coordinate of P1 + N , which is not a
point of r-torsion); equivalently, x1x2 + b ≠ 0. We can thus apply the general addition law on
P1 +N and P2 without ever encountering the special case of point doublings. A lengthy but
straightforward calculation leads to the following formulas:

x3 =
b(x1x2 + s1x2 + s2x1)
(x1x2 + b)2

s3 =
b(b2 (s1s2 + a2x1x2) + x21 x22 ((a2 + 1)x1x2 + s1x2 + s2x1 + s1s2))

(x1x2 + b)4

These formulas were derived under the assumption that neitherP1+N norP2+N was equal
to N , but it is easily verified that they still return the proper result in those cases. Thus, the
formulas are complete.

4 Group Membership and Extension to Full Curves
In this section, we study the problem of validating whether a given curve point is part of
the group G or not. We then extend the process into a procedure that allows extending the
complete formulas on G (shown in section 3) to perform computations on the full curve.
Finally, we introduce a new point compression method that is appropriate for canonically
encoding and decoding elements ofG.

We recall that the base curve E has order 2tr, for t ≥ 1 and an odd integer r.

4.1 Group Membership Test
The general tool for testing whether a curve pointQ is a member ofG is point halving. Note
that we envision here halving on the original curve, not in the group.We are givenQ in (x, y)
coordinates (or some other coordinate system) and we want to know whether Q = P + N
for some point P ∈ E[r]. The cyclic structure of the 2t-torsion subgroup of E implies the
following result.

Lemma 1. Q ∈ G if and only ifQ can be halved successively exactly t − 1 times.

Proof. If we decompose Q into Q = P + kT , as in section 2.2, then Q ∈ G if and only if
k = 2t−1. The P part can be halved indefinitely since it is an r-torsion point and r is odd. In
theT part, halving corresponds to dividing k by 2, which is possible modulo 2t only if k is an
even integer (in the 0 to 2t − 1 range). Halving yields two possible points, which correspond
to k/2 and (k + 2t)/2 (which are the two possible halves of an even integer kmodulo 2t).

If the initial value k is not zero, then it is equal to 2ef for some integers e and f such that
0 ≤ e ≤ t − 1 and f = 1 mod 2, and it can be halved if and only if e ≥ 1; the two possible
halves are then 2e−1f and 2e−1 (f + 2t−1−e). Note that f + 2t−1−e is odd. Thus, starting with
the pointQ, we can halve it exactly e times; this does not depend onwhich solutionwe choose
for each halving.

If the initial value k is zero, then the first halving yields k/2 = 0 or (k + 2t)/2 = 2t−1.
We can chain an indefinite number of halvings by staying on k = 0; otherwise, the choice
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k = 2t−1 then yields exactly t − 1 more possible halvings. In total, starting with k = 0 (i.e.
Q ∈ E[r]), we can perform at least t successive halvings.

The only case that leads to exactly t−1 halvings is when k = 2t−1, i.e. whenQ ∈ G, which
completes the proof. ut

We can thus test whether a point Q = (x, y) is in G by halving it t − 1 times, and checking
that the final point cannot be halved. This can be done with algorithm 1:

Algorithm 1 Test membership in groupG

Input: Q = (x, y) in curve E : y2 + xy = x(x2 + ax + b) (curve order is 2tr with r = 1 mod 2)
Output: True ifQ ∈ G, False ifQ ∉ G
1: for i = 1 to t − 1 do
2: ifTr(x + a) ≠ 0 then
3: return False
4: λ← QSolve(x + a)
5: x←

√
y + λx + x + b ⊲Halving formulas adapted to curve y2 + xy = x(x2 + ax + b)

6: y← λx + x2 + b
7: ifTr(x + a) ≠ 0 then
8: returnTrue
9: else
10: return False

Note thatwe arenot, in this algorithm,particularly interested in the actual point obtained
from all these halvings. In particular, in the last loop iteration (when i = t−1), we do not have
to compute y, since that value will not be used afterwards. In the same iteration, we can also
skip the square root computation to get x, because at the end, instead of testing Tr(x + a),
we can use Tr((x + a)2) = Tr(x2 + a2). With these two optimizations, and in the case of
t = 1 (cofactor 2) and t = 2 (cofactor 4), algorithm 1 becomes exactly the process already
described by Solinas in his classic paper on Koblitz curves ([24], appendix A). In the general
case, ignoring the additions and traces (which have negligible cost), algorithm 1 requires t − 1
calls to QSolve, t − 1multiplications, t − 2 squarings and t − 2 square roots.

4.2 Full Curve Support
A group membership test is sufficient for obtaining a proper prime-order group abstraction
(on a curve with a prime r). It is usually not necessary to ever consider computations on the
whole curve. However, there are conceivable scenarios where such computations are made
necessary. One example is a distributed system that processes signed data with a consensus
protocol, in which all systems must fully agree on whether any given purported signature
is acceptable or not. Some of these systems might employ a traditional ECDSA verification
mechanism that does not check whether the public key is really part of the r-torsion group of
the curve. A normal, legitimate public key should always be in the r-torsion group; it is not
“wrong” to reject keys which are not in that group. However, the combination of the con-
sensus requirement and of backward compatibility implies that new implementations (based
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on the methods described in this paper) should, in that scenario, support operations on all
curve points, not just on an appropriate subgroup of order r.

If faced with such a situation, then the followingmethod can be employed. The idea is to
decompose the input pointQ intoQ = P+kT , whereP is an r-torsionpoint,T is a fixedpoint
of order exactly 2t , and k is an integer modulo 2t . We then representQ as the pair (P +N, k),
with P + N ∈ G and k ∈ Z2t . Such pairs form a group of order 2tr, isomorphic to the full
curve, with the law (P1 +N, k1) + (P2 +N, k2) = ((P1 +N ) � (P2 +N ), k1 + k2 mod 2t).
Computations on the k values are trivial (additions modulo a power of 2, usually small); if
using a double-odd curve (t = 1, i.e. Tr(a) = 1), then the k values are Boolean flags and
the addition is a simple XOR. Computations on the P + N parts simply use the group G.
Conversion of (P +N, k) back toQ can be done by computingQ = (P +N ) + (k+2t−1 mod
2t)T .

In this way, complete formulas are obtained for computing over the full original curve,
provided that we can reasonably efficiently perform the decomposition. This can be done by
recovering k on a bit-by-bit basis, as shown in algorithm 2.

Algorithm 2 Curve point decomposition

Input: Q in curve E : y2 + xy = x(x2 + ax + b) (curve order is 2tr with r = 1 mod 2)
Output: (P +N, k) with P +N ∈ G and k ∈ Z2t such thatQ = P + kT
1: ifQ = O then
2: return (N, 0)
3: Q′ ← Q
4: k← 0
5: for i = 0 to t − 1 do
6: (x, y) ← Q′

7: ifTr(x + a) ≠ 0 then
8: Q′ ← Q′ − T ⊲Addition of curve points
9: k← k + 2i mod 2t
10: ifQ′ = O then
11: return (N, k)
12: (x, y) ← Q′

13: λ← QSolve(x + a) ⊲ This can be skipped for the final iteration (see text below)
14: x←

√
y + λx + x + b

15: y← λx + x2 + b
16: Q′ ← (x, y)
17: P ← 2tQ′ ⊲ t successive point doublings
18: return (P +N, k)

Algorithm 2 works as follows: upon entry of iteration i of the loop, the current point
Q′ and integer k are such that 2iQ′ = Q − kT . This is true when entering the first iteration
(Q′ = Q, k = 0, i = 0). When Q′ can be halved, we simply do that; if Q′ cannot be halved,
then subtractingT transformsQ′ into a newpoint that can be halved (sinceT itself cannot be
halved); tomaintain the invariant,we add2i to k. After all t iterations,wehave2tQ′ = Q−kT .
We double that Q′ point t times, which necessarily yields a point P of r-torsion, since P can
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then be halved t times. We therefore have found the decomposition Q = P + kT . It only
remains to addN to P to get its P +N representation in the groupG.

The following notes apply:
– Subtraction of T must be performed over the full curve, with the incomplete addition

formulas. It may happen that Q′ = T or Q′ = −T , both cases being exceptional. A
correct implementation can be challenging, especially if constant-time processing is re-
quired (though in general such decompositionwould happen onpublicly knownpoints,
e.g. public keys). Note that the case of the point-at-infinity is explicitly handled in algo-
rithm 2; there again, a constant-time implementation would have to keep going in such
cases.

– Subtraction of T must furthermore yield a result in affine coordinates, which involves
an inversion in the field. Inversion is not too expensive, but can still cost as much as 1/20
of a point multiplication by a scalar. If the curve is such that t is large, then this process
can become relatively expensive. Fortunately, standard curves tend to have low cofactors
(i.e. 2t = 2 or 4).

– In the final iteration, most computations can be optimized away:
• The final halving does not need to be performed, since it is immediately cancelled
by a doubling when computing P. We can thus skip it, and instead compute P =

2t−1Q′.
• Similarly, the subtraction of T can be skipped in the final iteration, because sub-
tracting T from Q′ at this point is equivalent to subtracting 2t−1T = N from the
pointP = 2t−1Q′. That last-iteration subtraction ofT can then be transformed into
a conditional subtraction of N from the point P, which neatly combines with the
final addition ofN to P at the end of the algorithm.

With the optimization above, algorithm 2 becomes trivial for double-odd curves (i.e.
t = 1), and remains reasonably simple and efficient for curves with cofactor 4 (t = 2). We
nonetheless stress that in general we should not have to apply algorithm 2 at all; it is required
only for rather contrived scenarios involving strict backward compatibility with support of
nominally invalid values.

4.3 Point Compression
All of the above could be applied on any points in (x, y) coordinates, and thus is compat-
ible with any encoding scheme, including the various compression schemes that have been
defined. A most common one (often called “IEEE p1363 compression” because it was speci-
fied in the IEEE p1363-2000 standard, a document which has since been inactivated). In that
scheme, a point (x, y) on the shortWeierstraß curve y2+xy = x3+Ax2+B is encoded as x and
an extra bit v; the y coordinate is then rebuilt by first computing w = QSolve(x +A + B/x2),
and replacing wwith w + 1 if necessary so that its least significant bit matches the value v; the
value y is obtained as y = xw. This encoding scheme can be applied as is on elements of G,
provided that such elements are first converted into (x, y) coordinates (with y = s+x2+ax+b)
then mapped back to the shortWeierstraß coordinates by adding b to y. The fact thatG does
not contain the point-at-infinityO even simplifies such operations.

We here define another compression scheme, which is applicable to elements of G (not
to the full curve). It relies on the fact that the point addition on curves has a geometric in-
terpretation: the line that goes from point P1 to point P2 also intersects the curve on a third
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point, which is −(P1 + P2). It follows that the line that goes from point N to point P also
intersects the curve on point −P + N , and these are the only three curve points that belong
to that specific line. Note that only at most one of points P and −P + N can be part of G.
Therefore, if we define w = y/x =

√
s/x, then w is the slope of the line from N to point

(x, s) and the map from points inG to their w coordinate is injective. We can thus encode an
element ofG by its w coordinate.

The pointN itself does not have a definedw coordinate.We conventionally choose a field
element w0 that will serve as the formal w coordinate ofN ; that value just needs to be “free”,
i.e. not corresponding to

√
s/x for any point of (x, s) ∈ G. We will detail later on how to

choose w0. In order to ultimately encodeN as the value zero, we define that the encoding of
a point (x, s) ∈ G is the field element w0 +

√
s/x.

Decompression, i.e. decoding a field element into a point (x, s) in G, is performed using
algorithm 3.

Algorithm 3 Curve point decoding
Input: c ∈ GF (2m)
Output: P +N ∈ G, or Invalid
1: if c = 0 then
2: returnN

3: w← c + w0 ⊲ w0 is a conventional constant, often zero
4: d← w2 + w + a
5: if d = 0 then ⊲ This case cannot happen if Tr(a) = 1
6: return Invalid
7: e← b/d2
8: ifTr(e) = 1 then
9: return Invalid
10: f ← QSolve(e)
11: x← df
12: (x′, y′) ← (x, xw)
13: for i = 1 to t − 1 do
14: ifTr(x′ + a) ≠ 0 then
15: return Invalid
16: λ← QSolve(x′ + a)
17: x′ ←

√
y′ + λx′ + x′ + b

18: y′ ← λx′ + x′2 + b
19: ifTr(x′ + a) = 0 then
20: x← x + d
21: return (x, xw2)

We recognize in steps 13 to 18 the sequence of point halvings which was already in the
group membership test (algorithm 1). As in that previous algorithm, the value y′ does not
need to be computed in the last iteration, and the square root extraction for x′ can be omitted
as well since Tr(x′ + a) = Tr(x′2 + a2). When t = 1 (for double-odd curves), the entire loop
disappears.
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Algorithm 3 first finds a point (x, y) that matches the input w value; the curve equation
(y2 + xy = x(x2 + ax + b)) is easily turned into:

x(w2 + w + a) = x2 + b

which is a quadratic equation in x solved by transforming it into a shape amenable to the
QSolve function: ( x

w2 + w + a

)2
+ x

w2 + w + a =
b

w2 + w + a
Note thatTr(d) = Tr(w2+w+a) = Tr(a), sod cannot be zero if Tr(a) ≠ 0. On curveswhere
Tr(a) = 0, there can exist a curve pointR (distinct fromO andN ) such thatw2 +w + a = 0;
however, that implies that x =

√
b = b/x, which implies thatR = −R +N , i.e. that point is a

point of order 4 (and therefore not a valid element ofG).
The solution f obtained fromQSolve is turned into the candidate x by simplymultiplying

by d = w2 +w + a; the other solution to QSolve is f + 1, corresponding to x + d. At most one
of the two resulting points is in G. To know which solution to use, and whether it actually
designates a point in the group, we apply some point halvings on the decoded pointQ:

– IfQ ∈ G, then it can be halved exactly t − 1 times, but no more than that.
– IfQ ∈ E[r] (i.e.Q +N ∈ G), then it can be halved at least t times.
– IfQ is neither inG nor E[r], then it can be halved only at most t − 2 times.

The loop computes the t − 1 halvings (if one fails, then neither Q nor Q + N is in G), then
checks (in step 19)whether another extra halving couldbeperformedornot, to knowwhether
Q was inG or E[r].

For the choice of w0, conventionally used as the w coordinate of the neutral, it suffices to
choose a value that would make algorithm 3 return Invalid. Any value w0 such that either
w2
0 + w0 + a = 0 or Tr(b/(w2

0 + w0 + a)) = 1 will work; in about half of the curves, w0 = 0
happens to be an appropriate value. We also note that in the case of curves with a = 0, the
value w0 = 0 is always appropriate.

5 Formulas
In order to implement the point addition and doubling formulas efficiently, we define a rep-
resentation of a point P +N = (x, s) ∈ G, consisting of four field elements (X :S:Z:T ), with
the following rules:

Z ≠ 0
x =
√
bX/Z

s =
√
bS/Z2

T = XZ

The neutralN uses X = T = 0, and S =
√
bZ2.

All the formula costs are expressed in terms of field element multiplications (M), squar-
ings (S) and multiplications by a constant (mb). In almost all formulas, the latter constant is
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√
b. We ignore additions, whose cost is negligible, as well as multiplications by a or a2, be-

cause, as was pointed out in section 2.2, it is always possible to apply a curve isomorphism
to turn the constant a into a value of minimal Hamming weight. Indeed, all standard NIST
curves use a = 0 or a = 1.

When selecting a new curve, it is normally possible to focus on values for b such that√
b has a low Hamming weight, and multiplications by

√
b are inexpensive.4 Some standard

curves, in particular the NIST non-Koblitz curves (B-233, B-283...) were selected with pseu-
dorandomly generated constants B, leading to expensive multiplications by

√
b (practically

speaking, about as expensive as generic multiplications in the field). For support of such
curves, it is thus desirable to reduce the “mb” cost.The constant

√
bwasused in the definitions

of theX and S coordinates precisely for that reason: it reduces the number of multiplications
by
√
b in the point addition and doubling formulas.
Standard Koblitz curves represent an ideal case, because they use B = 1, makingmultipli-

cations by
√
b trivial (and thus with no cost at all). Moreover, all of them (except K-163) use

a = 0, which further helps with performance since it removes one multiplication from the
point addition formulas.

In the following subsections, the formulas are expressed mathematically, then illustrated
with pseudocode in a Python/Sage syntax. The costs correspond to the operations shown in
the pseudocode figures.

5.1 Point Addition
Given points P1 + N = (X1:S1:Z1:T1) and P2 + N = (X2:S2:Z2:T2), their sum in G is
P3 +N = (P1 +N ) � (P2 +N ) = (X3:S3:Z3:T3), which can be computed as follows:

X3 = T1T2 + S1T2 + S2T1

S3 =
√
b((Z1Z2)2 (S1S2 + a2T1T2) + (X1X2)2 ((a2 + 1)T1T2 + S1T2 + S2T1 + S1S2))

Z3 =
√
b(X1X2 + Z1Z2)2

T3 = X3Z3

These formulas can be computed in cost 8M + 2S + 2mb, as illustrated in figure 1. The com-
putation of a2T1T2 (variable E in the pseudocode) disappears when a = 0, which lowers the
cost to 7M + 2S + 2mb. Note that these costs are quite lower than that of the previously best
known formulas (11M + 2S with lambda coordinates[18]).

4Itmay be noted that wework herewith
√
b =

4√
B, withB being the constant chosen in the original

shortWeierstraß curve. If Bwas chosen so that multiplications by B are fast, but multiplications by 4√
B

turn out to be not so fast, then a possible optimization strategy is to raise everything to the power 4, i.e.
define (x′, y′) = (x4, y4), and work in the curve y′2 + x′y′ = x′3 +A4x′2 +B4, i.e. with curve constants
A′ = A4 and B′ = B4. We then have 4√

B′ = B.
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# Addition in the group, XSZT coordinates.
def point_add(P1, P2):

(X1, S1, Z1, T1) = P1
(X2, S2, Z2, T2) = P2
X1X2 = X1*X2
S1S2 = S1*S2
Z1Z2 = Z1*Z2 # for mixed addition (Z2 == 1), Z1Z2 = Z1
T1T2 = T1*T2
D = (S1 + T1)*(S2 + T2)
E = aa*T1T2 # aa == a^2; this disappears if a == 0
F = X1X2**2
G = Z1Z2**2
X3 = D + S1S2
S3 = sqrt_b*(G*(S1S2 + E) + F*(D + E))
Z3 = sqrt_b*(F + G)
T3 = X3*Z3
return (X3, S3, Z3, T3)

Fig. 1: Point addition inG.

Mixed Addition. When the second operand (P2 +N ) is a precomputed constant, it will
often be already normalized to affine (x, s) coordinates, i.e. with Z2 = 1. In that case, the
computation of Z1Z2 (into variable Z1Z2 in the code) simplifies to using Z1 wherever Z1Z2
would be used. This reduces the cost to 7M + 2S + 2mb (6M + 2S + 2mb for curves with
a = 0).

We also note that such affine points only need two coordinates for storage, since Z = 1
implies that T = X .

5.2 Point Doubling
The generic point addition formulas also work for adding a point to itself. However, some
extra optimizations are possible when it is statically known that the two addition operands
are the same point. Given input point P + N = (X :S:Z:T ), its double (in G) P′ + N =

2P +N = (X ′:S′:Z′:T ′) can be computed as:

X ′ = T 2

S′ =
√
b((X2 + Z2) (S + aT ) + X2T )2

Z′ =
√
b(X2 + Z2)2

T ′ = X ′Z′

There are several ways to translate these formulas into code, and optimization trade-offs lever-
aging the fact that b(X +Z)4 = S2 +a2T 2 + ST (this comes directly from the curve equation
in (x, s) coordinates). Figure 2 shows one such possibility, with cost 3M+ 4S+ 4mb. If work-
ing with a curve whose

√
b constant is not “simple”, then performance may be improved by
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using the code from figure 3, which has cost 3M + 5S + 2mb (in essence, exchanging two
multiplications by

√
b for one squaring).

# Doubling in the group, XSZT coordinates (cost 3M+4S+4mb)
def point_double(P):

(X, S, Z, T) = P
D = (S + a*T)*(S + a*T + T)
E = (S + a*T + T + sqrt_b*Z**2)**2
F = T**2
Xp = sqrt_b*F
Zp = D + a*F
Sp = sqrt_b*(E*(E + Zp + F) + (D + sqrt_b*Xp)**2)
Tp = Xp*Zp
return (Xp, Sp, Zp, Tp)

Fig. 2: Point doubling inG.

# Doubling in the group, XSZT coordinates (alternate, cost 3M+5S+2mb)
def point_double_alt(P):

(X, S, Z, T) = P
XX = X**2
ZZ = Z**2
Xp = T**2
Sp = sqrt_b*((XX + ZZ)*(S + a*T) + XX*T)**2
Zp = sqrt_b*((XX + ZZ)**2)
Tp = Xp*Zp
return (Xp, Sp, Zp, Tp)

Fig. 3: Point doubling inG (alternate version).

Multiple successive doublings can be performed by invoking the point doubling routine
repeatedly; however, some extra optimizations are possible for curves on which multiplica-
tions by

√
b are expensive. The doubling procedure shown in figure 2 is really the combina-

tion of two successive operations:

1. Convert point P +N into point P in (x, λ) coordinates (cost: 1S + 1mb).
2. DoubleP (in (x, λ) coordinates) into2P+N (in (x, s) coordinates) (cost: 3M+3S+3mb).

(x, λ) coordinates are described in [18]; translated to our curve (which does not uses a short
Weierstraß equation), λ = x + (y + b)/x. These coordinates are represented by the triplet
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(X :L:Z) with x = X/Z and λ = L/Z. The first of the two steps above consists in computing
the (X ′:L′:Z′) coordinates of P, given P +N = (X :S:Z:T ):

X ′ =
√
bZ2

L′ = S + aT + T
Z′ = T

and the second step, which computes 2P +N = (X ′′:S′′:Z′′:T ′′) from P is the following:

X ′′ =
√
bZ′2

Z′′ = L′ (L′ + Z′) + aZ′2

S′′ =
√
b((L′ + X ′)2 ((L′ + X ′)2 + Z′′ + Z′2) + (L′ (L′ + Z′) +

√
bX ′′)2)

T ′′ = X ′′Z′′

Between the two steps, it is possible to insert additional doublings in (x, λ) coordinates,
using the formulas from [18]. Each such extra doubling requires three field multiplications,
four squarings, and only onemultiplication by a non-trivial constant (that constant is a2 +b2
on our curve). In total, this method computes n doublings with cost (3n)M + (4n)S + (n +
3)mb, which is preferable (for curves with a non-simple

√
b constant) over calling n times the

simple doubling function (fromfigure 3), whichwould lead to cost (3n)M+(5n)S+(2n)mb.
This multiple-doubling process is detailed in figure 4. It shall be noted that the neu-

tral N is properly handled, i.e. this function is complete. (x, λ) coordinates are not nomi-
nally defined for eitherN orO. However, it can be easily verified that the doubling formulas
in (x, λ) coordinates are, in fact, complete, provided that the point N is represented with
(X :L:Z) = (0:L:0) for some L ≠ 0, andO is represented with (L:L:0) for some L ≠ 0.

5.3 Point Negation and Subtraction
The opposite of P + N ∈ G is −P + N , which is obtained by replacing s with s + x. In our
coordinate system, this is done by adding T to S. The cost is negligible (a single field element
addition). Subtraction of a point from another can be done by simply negating the second
operand, then performing a point addition.

5.4 Montgomery Ladders
López-Dahab Formulas. Multiplication of a point P0 by a scalar n can be performed
efficiently through aMontgomery ladder. A pair of points (P1, P2) is maintained, with the
rule that P2 = P0 + P1. Suppose that at some point, P1 = kP0 for some integer k (and thus
P2 = (k + 1)P0). Then, the point P3 = P1 + P2 = (2k + 1)P0 is computed, as well as the
double of either P1 or P2. The pair (P1, P2) is then replaced with either (2P1, P3), or the pair
(P3, 2P2). In both cases, the invariant is maintained (the difference of the two points is P0),
and the new P1 is equal to (2k)P0 (first case) or (2k + 1)P0 (second case). In that way, we can
compute nP0 for arbitrary scalars n by processing the bits of n in high-to-low order.

The main advantage of the technique is that such computations can be performed with
the x coordinates only: given the x coordinates of P0, P1 and P2, the x coordinate of P3 can

19



# Multiple doublings in the group (cost (3n)M+(4n)S+(n+3)mb)
def point_xdouble(P, n):

(X, S, Z, T) = P

# P+N (x,s) -> P (x,lambda)
X = sqrt_b*Z**2
Z = T
L = S + a*T + T

# n-1 doublings in (x, lambda) coordinates
for i in range(0, n - 1):

D = Z**2
E = (L + X)**2
F = L*(L + Z)
U = F + a*D
X = U**2
Z = D*U
L = E*(E + U + D) + (aa + bb)*D**2 + X + a*Z + Z
# aa = a^2, bb = b^2 (curve constants)

# P (x,lambda) -> 2*P+N (x,s)
D = Z**2
E = (L + X)**2
F = L*(L + Z)
X = sqrt_b*D
Z = F + a*D
S = sqrt_b*(E*(E + Z + D) + (F + sqrt_b*X)**2)
T = X*Z
return (X, S, Z, T)

Fig. 4: Multiple doublings inG (for curves with a non-simple
√
b constant).
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be computed without knowing the y coordinates of any of the points. When the final point
is obtained (in P1 at the end of the algorithm), its y coordinate can nonetheless be efficiently
rebuilt from the x coordinates of P0, P1 and P2, and the y coordinate of P0.

In 1999, López and Dahab[15] showed how to apply a Montgomery ladder to any non-
supersingular binary elliptic curve, with a cost of 5M + 4S + 1mb per scalar bit. The formulas
have only one exceptional case, when the base point P0 has order two (i.e. when P0 = N ).We
can use that ladder with our groupG in the following way:

1. Inputs are P0 +N = (X :S:Z:T ) ∈ G, and the scalar n. We assume that P0 +N ≠ N ; we
will handle the case of multiplying the group neutral at the end with a single corrective
step. We first compute P0 = (x0, y0) with:

x0 =
√
bZ/X

y0 =
√
b(S + aT + T +

√
b(X + Z)2)/X2 + b

The addition of b to y0 means that we get P0 on the original short Weierstraß curve
(y2 + xy = x3 + Ax2 + B). The point P0 is furthermore an r-torsion point (by definition
of G); in particular, it cannot be a point of order two, which avoids the exceptional case
of the López-Dahab formulas. These formulas imply one inversion (to compute 1/X ).
If we do not obtain the affine version of x0, then the cost per scalar bit is increased by
one multiplication; computing a single inversion at the start yields better overall perfor-
mance.

2. The x coordinate of P1 is represented as X1/Z1; The point-at-infinity uses Z1 = 0; for all
other points, Z1 ≠ 0. Note that X1 ≠ 0 for all points (includingO), since P0 cannot be
a point of order two. The formulas for computing P3 = P1 + P2 and P4 = 2P1 are:

Z3 = (X1Z2 + X2Z1)2

X3 = (X1Z2)(X2Z1) + x0Z3

Z4 = (X1Z1)2

X4 = (X1 +
√
bZ1)4

(The formula for X4 is expressed slightly differently from the original in [15] so that the
constant is equal to

√
b, like in our other formulas.)

3. Once the x coordinates ofP1 = nP0 andP2 = P1+P0 are obtained, the full (X ′:S′:Z′:T ′)
coordinates of the result, back in groupG, are computed as follows (note that the original
source point (X :S:Z:T ) coordinates are used):

Zr =
√
bZZ2

1Z2

Yr = X (X1 + x0Z1) ((X1 + x0Z1) (X2 + x0Z2) + (x20 + y0)Z1Z2) + y0Zr

X ′ =
√
bZZ1Z2

Z′ = X1ZZ2

S′ = ZZ2 (Yr +
√
bZ′ (X1 + aZ1 + Z1))

T ′ = X ′Z′
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4. If P2 = O (i.e Z2 = 0), then the above formulas return zero in all four coordinates,
which is invalid. This happens only when n = −1 mod r, in which case the result should
be −P0 + N . This can be readily detected by checking whether Z′ = 0; in that case, the
four coordinates should be replaced with the coordinates of−P0 +N = (X :S +T :Z:T ).

5. If the original source point P0 +N was the neutral (i.e. ifX = 0), then all of the above is
wrong, and the four output coordinates should be set to a representation of the neutral.
Note that −P0 +N , in that case, is a representation of the neutral. Thus, this corrective
action can be merged into the previous one: the output coordinates are to be replaced
with those of −P0 +N if Z′ = 0 or X = 0.

Ladder Formulas in the Group. Efficient ladder formulas also exist in the group G
itself; their cost is 5M + 4S + 2mb per scalar bit, which is equivalent to the López-Dahab
formulas costwhen

√
b is “simple”, but slightlymore expensive ifmultiplications by

√
bhave a

non-negligible cost.Using these formulas avoids conversions between curves andmakes initial
and final formulas somewhat simpler.

The source point P0 +N is first normalized to affine coordinates (x0, s0), which requires
inverting the source value Z. Since Z ≠ 0, this has no special case.

Suppose that you have points P0 + N , P1 + N and P2 + N in G, such that (P1 + N ) �
(P0 + N ) = P2 + N . The x coordinate of P0 + N is x0, while the x coordinates of P1 + N
and P2 + N are known as the fractions

√
bX1/Z1 and

√
bX2/Z2. Then the x coordinates of

P3+N = (P1+N )� (P2+N ) andP4+N = 2P1+N can be computed as fractions
√
bX3/Z3

and
√
bX4/Z4, such that:

Z3 =
√
b(X1X2 + Z1Z2)2

X3 = X1X2Z1Z2 + x0 (X1X2 + Z1Z2)2

Z4 =
√
b(X1 + Z1)4

X4 = (X1Z1)2

When the scalar has been processed and the x coordinate of the result is
√
bX1/Z1, we can

rebuild the complete (X ′:S′:Z′:T ′) of the result with the following formulas (that use the
affine coordinate of P0 +N = (x0, s0)):

X ′ = x0X1Z2

S′ = x0Z2 (X1Z1Z2 (x0 + s0) + X2 (x0X1 +
√
bZ1)2)

Z′ = x0Z1Z2

T ′ = X ′Z′

These last conversion formulas, unfortunately, admit one exceptional case, which hap-
pens when x0 = 0 (i.e. the source point P0 + N was N , the neutral element of G). In that
case, all output coordinates are zero, which is invalid. That case can be easily detected (we can
check whether x0 = 0, or whether Z′ = 0, these tests are equivalent); the corrective action is
then to set S′ andZ′ to

√
b and 1, respectively, so that a valid representation ofN is obtained.

Figure 5 illustrates thewhole processwith these formulas.Thefigure uses two conditional
swap operations of all four running coordinates per loop iteration; they could bemerged into
a single conditional swap (of all four coordinates), as is done in the Montgomery ladder on
Curve25519 specified in RFC 7748 ([14], section 5).
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# Multiplication of a group element by a scalar (ladder algorithm)
def point_mul_ladder(P, n):

(X, S, Z, T) = P
n = int(n)
if n < 0:

S += T
n = -n

# Normalize the point to affine.
iZ = 1/Z
x0 = sqrt_b*X*iZ
s0 = sqrt_b*S*(iZ**2)

# Ladder.
(X1, Z1) = (0, 1)
(X2, Z2) = (x0, 1)
for i in reversed(range(0, n.bit_length()):

# swap P1 and P2 if the scalar bit is 1
bit = (n >> i) & 1
if bit != 0:

(X1, Z1, X2, Z2) = (X2, Z2, X1, Z1)
X1X2 = X1*X2
Z1Z2 = Z1*Z2
D = (X1X2 + Z1Z2)**2
X3 = X1X2*Z1Z2 + x0*D
Z3 = sqrt_b*D
X4 = (X1*Z1)**2
Z4 = sqrt_b*(X1 + Z1)**4
if bit != 0:

(X3, Z3, X4, Z4) = (X4, Z4, X3, Z3)
(X1, Z1, X2, Z2) = (X3, Z3, X4, Z4)

# Rebuild the full result coordinates.
Z1Z2 = Z1*Z2
D = x0*X1
Xp = D*Z2
Sp = x0*Z2*(X1*Z1Z2*(x0 + s0) + X2*(D + sqrt_b*Z1)**2)
Zp = x0*Z1Z2
Tp = Xp*Zp

# Corrective action if the source was the neutral.
if x0 == 0:

Sp = sqrt_b
Zp = 1

return (Xp, Sp, Zp, Tp)

Fig. 5: Multiplication of a point by a scalar (with a Montgomery ladder).
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5.5 Comparisons
We can compare two points together by noticing that the mapping from group elements to
their w = y/x coordinate is injective (see section 4.3). Since w2 = s/x, we can thus check
whether points (X1:S1:Z1:T1) and (X2:S2:Z2:T2) are in fact the same point by verifying the
following:

S1T2
?
= S2T1

This equation directly translates the affine relation s1/x1 = s2/x2; it obviously works if s1, x1,
s2 and x2 are non-zero. To see why it in fact works in all cases, consider the following:

– N is the only point such that T = 0.
– There can be only at most two points on the curve such that s = 0 (since that implies

x2 + ax + b = 0, which can have at most two solutions). Their x coordinates are then x
and b/x for some x ≠ 0, i.e. the points areV and−V +N for some curve pointV . Only
one of these two points (at most) can be inG.

Therefore, the only potential exceptional cases for this comparison relation would be related
to usingN = (0, b) or V = (x, 0) as operand. Simply enumerating all possibilities of com-
paringN ,V and P ≠ N,V shows that the formula works in all cases.

6 Implementation
We implemented the formulas described in this paper, for theNIST curves B-233 andK-233.
The code is available at:

https://github.com/pornin/c-xs233

C was used. The implementation assumes that a 64-bit platform is used, and that the
compiler provides a 128-bit unsigned __int128 integer type; it was tested on x86 and
ARMv8 platforms, with both the Clang (14.0.0) and GCC (11.2.0) compilers, on a Linux
operating system. When compiled for an x86 target that offers the pclmul opcodes and the
SSE4.1 vector instructions, then a backend using these instructions is used, which greatly
improves performance; otherwise, a generic and portable backend is employed.

The groupsG for curves B-233 and K-233 are called xsb233 and xsk233, respectively. In
both cases, a flexible API is offered, that includes functions for the following operations:

– Statically allocated neutral and generator elements. The generator corresponds to the
standard generator defined in the NIST curves.

– Point decoding and encoding, as per the compression method described in section 4.3.
– Comparisons (equality of two points, and equality with the neutral element).
– Point addition, subtraction, negation, doubling, and sequences of successive doublings.
– Conditional negation and selection, based on a flag.
– Multiplication of a point by a scalar. A classic double-and-add algorithmwith 5-bit win-

dows and Booth recoding (16 points per window) is offered (under the name “mul”),
as well as an alternate implementation using aMontgomery ladder (“mul_ladder”), as
described in section 5.4.
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– An optimized point multiplication routine, when the base point is the conventional
generator (“mulgen”). This operation typically corresponds to key pair generation in
cryptographic protocols. It uses a double-and-add algorithm with 5-bit windows; four
precomputed windows are used (for points G + N , (260)G + N , (2120)G + N and
(2180)G +N ) and these windows use affine coordinates.

– On xsk233 only, extra variants of mul and mulgen are also implemented, under the
names mul_frob and mulgen_frob. These functions leverage the Frobenius endor-
morphism on Koblitz curves, using the methods described by Solinas[24].

Everything is strictly constant-time. This applies to all implemented operations, includ-
ing encoding and decoding functions (side channel leaks will not disclose the decoded point,
nor even whether the decoding succeeded or failed). For the point multiplication routines on
xsk233with acceleration from the Frobenius endomorphism, this required “un-NAFfing” of
the output of scalar reduction, so that a constant-time lookup with 5-bit windows could be
performed: the scalar reduction uses a complicated process which inherently outputs signed
digits (of value−1, 0 or+1) in a non-adjacent format (no two consecutive digits are non-zero);
regrouping them into chunks of 5 digits yields 43 possible combinations, out of which one
consists only of zeros, and the 42 others are opposite pairs that can thus be reduced to 21
points per window.

With pclmul. We measured the performance of the point multiplication operations on
an Intel i5-8259U (Coffee Lake) system, clocked at 2.3 GHz, running under Linux (Ubuntu
22.04) in 64-bitmode.Compiler isClang-14.0.0,with flags “-O2 -mpclmul -mavx2” (the
code does not explicitly use AVX or AVX2 registers or opcodes, but the compiler can still
take advantage of these features to automatically speed up some operations such as memory
copies). The cycle counter register is used (TurboBoost is disabled). A single core is employed.
The obtained performance is shown in table 1.

Operation xsb233 xsk233
mul 60621 49378
mul_ladder 51537 46365
mul_frob - 29602
mulgen 25754 20084
mulgen_frob - 16546

Table 1: Performance of operations on groups xsb233 and xsk233 on 64-bit x86 “Coffee
Lake”, with use of pclmul and SSE4.1 (values in clock cycles).

Wemay note that the ladder implementations outperform the generic window-based im-
plementations on both curves, but less so in the case of xsk233. For every 5 scalar bits, the
window based method is expected to have cost 23M + 22S + 10mb, versus 25M + 20S + 5mb
for the ladder method (for xsb233). Given that multiplications by

√
b cost as much as generic

multiplications for that curve, it is no wonder that the ladder is faster. On xsk233, one mul-
tiplication is saved for each point addition (since a = 0 for that curve) and multiplications
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by
√
b cost nothing (since b = 1), and the end result is more balanced. Both algorithms have

some overhead (window building and constant-time window lookups for the mul function,
initial inversion for mul_ladder); the measurements should be interpreted as the overhead
for mul_ladder being lower.

Compared to the ladder code, though, the generic window-based addition can be ex-
tended to other situations, including use of multiple precomputed windows (as in mulgen
and mul_frob) ormultiscalarmultiplication, i.e. when computing uP+vQ for two pointsP
andQ and two scalars u and v, as is commonly used in ECDSA or Schnorr signature verifica-
tion (we did not implement this functionality, but the completeness of the formulas should
help).

The performance achieved by mul_frob on xsk233 is, by elliptic curve standards, very
good. In fact it is close to three times faster than what could be achieved with, for instance,
Curve25519[16]; it also beats the fastest reported performance for GLS-254 (at 35739 cycles
on a Kaby Lake core). Of course, K-233 offers a security of “only” 112 bits instead of 128
bits, though in practice the difference is rather meaningless; with foreseeable improvements
in computing technology, neither 112-bit nor 128-bit security will be broken within the next
few decades, for rather fundamental energy consumption reasons, unless aworking quantum
computer finally emerges, and such a machine would destroy security of both curves with
similar ease.Themain advantage of the 128-bit level is psychological, since 128 is amore round
number, thus aesthetically more pleasing, and magically more potent.

Without pclmul. If we compile the same code on the same system but without the op-
tions that enable use of pclmul and SSE4.1, i.e. invoking Clang with only -O2, then the im-
plementation switches to a portable backend that relies on integer multiplications (over 64
bits, with a 128-bit result). Field elements are split into limbs of 58 bits each (59 bits for the
top limb), and themultiplication of two limbs as polynomials inGF (2) [z] uses integer mul-
tiplication with “holes”: three bits out of four are masked out, so that carries inherent to the
additions induced by the multiplication accumulate only inside these holes without spilling
over the next data bit. Each multiplication of two limbs then requires 16 integer multiplica-
tions, and somemasking and combining of values. This is a techniquewhich has already been
used in several places, e.g. as part of some of the GHASH implementations in the BearSSL
library[21].

Even though the integermultiplications inmodern x86 cores are fast andwell pipelined (a
newmultiplication can be issued at every cycle, and results are obtainedwith a latency of 4 cy-
cles), this implementation strategy yields much worse performance. This can already be seen
in the speed of field element multiplications, going from about 30.5 cycles (with pclmul) to
a whooping 415 cycles (without pclmul). Note that such values are only estimates, because
they weremeasured over long sequences of co-dependentmultiplications: the output of each
multiplication is used as one operand for the next one. This implies that what is measured
is the latency of the operation, but not the throughput. Indeed, such CPUs can not only is-
sue several instructions in parallel, but will routinely dynamically reorder instructions over a
pipelinewhich can extendovermore than ahundred instructions; thus, two implementations
that seem to offer the same performance through this latency-based measurement may yield
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different overall performancewhen integrated in larger operations.5Wecan still expect things
to be considerably slower with this non-pclmul code. More interestingly, squarings are also
slower, but less so comparatively speaking: their measured latency jumps from 22.2 to 78.5
cycles. This situation is thus a data point that illustrates a larger multiplication-to-squaring
cost ratio. Measured performance is shown in table 2.

Operation xsb233 xsk233
mul 818079 577398
mul_ladder 712140 607688
mul_frob - 267945
mulgen 332388 231132
mulgen_frob - 153376

Table 2: Performance of operations on groups xsb233 and xsk233 on 64-bit x86 “Coffee
Lake”, with generic portable code (no use of pclmul nor SSE2+ intrinsics) (values in clock
cycles).

As expected, cost of each operation is about 12 to 14 times the cost of the same operation
in the pclmul implementation; however, the ratio is only 9 times for the squaring-heavy
“frob” versions, since squarings have become much faster relatively to multiplications. We
also note that the double-and-add mul is now a bit faster than the ladder-based mul_ladder
on xsk233: this is due partly to the higher use of multiplications in the latter (25 vs 22 for
each chunk of 5 scalar bits), and partly to the lower relative cost of window lookups in this
version (lookupswith 64-bit registers are a bit slower than their SSE2-aware counterparts, but
the slowdown is less dramatic than that of multiplications or squarings).

7 Conclusion
In this article, we have detailed a construction for using the odd-order subgroup of a binary
curve as a safe abstraction, with canonical and verified encoding, no cofactor issue, and com-
plete formulas for computing operations in a safe way, with no timing-based side channels
and no exceptional cases. While safety and convenience were the main point, it turned out
that the new formulas are also faster than the best previously known formulas for point ad-
dition (which were moreover incomplete). Furthermore, we showed that with a bit of extra
effort upon decoding, it is possible to apply the new formulas to the complete curve, not just
its subgroup of interest, if backward compatibility considerations make such a functionality
desirable.

5Indeed, during the development of our code, a previous version of the field squaringwith pclmul
yielded the same latency as the current version, but the current version is still 15% faster for point mul-
tiplications. The new version uses fewer instructions, thanks to judicious use of the palignr opcode,
giving the CPUmore free slots in which to schedule elements of other non-dependent operations. This
effect is not well captured by latency-based benchmarks.
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We cannot fully recommend binary elliptic curve for general usage, because their perfor-
mance on small embedded systems is likely to be poor. More research is warranted in that
area: the traditional lore is that performance on small CPUs will be abysmal, but microcon-
trollers and smartcards in 2022 are not the same hardware as what they were in 1995. A very
common low-power microcontroller is the ARM Cortex M0+, which is a 32-bit core that
can perform 32 × 32→ 32 integer multiplications in one cycle; it is possible that a properly
optimized implementation of a fast binary curve such as K-233might actually be competitive
on such a platform. The question is still open for now.

On large CPUs with carryless multiplication opcodes, a quite large category since such
opcodes tend to be part of any modern hardware acceleration of AES/GCM, it is known
that binary elliptic curves are very fast, more so than elliptic curves of similar security defined
over large characteristic fields. Among fast binary curves, Koblitz curves such as K-233 are
especially efficient, as demonstrated here; GLS curves such as GLS254 are also quite fast. The
formulas described in this paper apply to all binary elliptic curves, and that includes GLS254.
It is plausible that even with GLS254, these formulas would not only grant safety through
completeness, but also some tangible performance benefit. This is also an open question for
now.
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