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Abstract

We construct adaptively secure multiparty non-interactive key exchange (NIKE) from polyno-
mially hard indistinguishability obfuscation and other standard assumptions. This improves on
all prior such protocols, which required sub-exponential hardness. Along the way, we establish
several compilers which simplify the task of constructing new multiparty NIKE protocols, and
also establish a close connection with a particular type of constrained PRF.

1 Introduction

Non-interactive key exchange (NIKE) is a fundamental application in public key cryptography. In
a G-party NIKE protocol, a group of G users simultaneously publish individual public keys to a
bulletin board, keeping individual secret keys to themselves. Then just by reading the bulletin
board and using their individual private keys but no further interaction, the G users can arrive at a
common key hidden to anyone outside the group.

In this work, we build multiparty NIKE attaining adaptive security under polynomially-hard
non-interactive assumptions. Our assumptions are indistinguishability obfuscation (iO) and standard
assumptions on cryptographic groups1. The main restriction is that we must bound the number of
users that can be adaptively corrupted. That is, the number of honest users, and even the number
of adversarially generated users, can be unbounded; only the number of users that were initially
honest and later corrupted must be bounded. This improves on prior standard-model adaptively
secure schemes [BZ14, Rao14], which all bound the total number of users, and also required either
interactive or sub-exponential assumptions. Along the way, we give a toolkit for designing iO-based
multiparty NIKE, with several compilers to simplify the design process. We also explore adaptive
security for constrained PRFs, giving a new construction for what we call “one symbol fixing”
constraints, and show a close connection to multiparty NIKE.

1.1 Prior Work and Motivation

NIKE has a long history, with the 2-party case dating back to the foundational work of Diffie and
Hellman [DH76], and the multiparty case already referred to as “a long-standing open problem”

1We note that there are two uses of the term “group”: the group of users establishing a shared key, and the
cryptographic group used as a tool in our constructions. Which use of the term should always be clear from context.
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in 2002 [BS02]. Joux gave a 3-party protocol from pairings [Jou00]. The first protocol for G ≥ 4
used multilinear maps [GGH13a], though the only protocols directly based on multilinear maps
that have not been attacked are limited to a constant number of users [MZ18]. Currently, the
only known solutions for a super-constant number of users are built from indistinguishability
obfuscation (iO). The first such construction for polynomially-many users was due to Boneh and
Zhandry [BZ14] (using punctured programming techniques [SW14]), with a number of follow-up
works [Rao14, KRS15, HJK+16, MZ17, GPSZ17, BGK+18].

Multiparty NIKE remains a fascinating object: the central feature of non-interactive key ex-
change (as opposed to protocols requiring multiple interaction rounds) is that public keys can be
re-used across many groups, simplifying key management and significantly reducing communication.
This feature makes NIKE an important tool with many applications. Multiparty NIKE in particular
is a useful tool for group key management [STW96] and broadcast encryption with small parame-
ters [BZ14]. Multiparty NIKE is also interesting from a foundational perspective, being perhaps the
simplest cryptographic object which currently is only known via obfuscation2.

Adaptive Security. The re-use of public keys in a NIKE protocol, on the other hand, opens the
door to various active attacks. For example, if a shared key for one group is accidentally leaked, it
should not compromise the shared key of other groups, including those that may intersect. Worse,
an adversary may participate in certain groups using maliciously generated public keys, or may be
able to corrupt certain users. Finally, decisions about which groups’ shared keys to compromise,
how the adversary devises its own malicious public keys, which users to corrupt, and even which set
of users to ultimately attack, can all potentially be made adaptively.

Adaptive security is an important goal in cryptography generally, being the focus of hundreds
if not thousands of papers. Numerous works have considered adaptive NIKE. In the 2-party case,
adaptive security can often be obtained generically by guessing the group that the adversary will
attack. If there are a total of N users in the system, the reduction loss is N2, a polynomial. The
focus of works in the 2-party case (e.g. [CKS08, FHKP13, BJLS16, HHK18, HHKL21]) has therefore
been tight reductions, which still remains unresolved.

The situation becomes more critical in the multiparty case, where the generic guessing reduction
looses a factor of

(
N
G

)
≈ NG, which is exponential for polynomial group size G. In order to make this

generic reduction work, one must assume the (sub)exponential hardness of the underlying building
blocks and scale up the security parameter appropriately. This therefore results in qualitatively
stronger underlying computational assumptions. A couple works have attempted to improve on
this reduction, achieving security in the random oracle model [HJK+16], or under interactive
assumptions [BZ14, Rao14] 3. In fact, Rao [Rao14] argues that an exponential loss or interactive
assumption is likely necessary, by giving a black box impossibility of a polynomial reduction to
non-interactive assumptions. This impossibility will be discussed in more depth momentarily. We
also note that existing standard-model schemes with adaptive security all limit the total number of
users, including both honest and dishonest users, to an a priori polynomial bound.

Constrained PRFs. A constrained PRF is a pseudorandom function which allows the key holder
to produce constrained keys kC corresponding to functions C. The key kC should allow for evaluating

2Multiparty NIKE can also be built via functional encryption [GPSZ17], which is equivalent to iO [BV15a, AJ15]
under sub-exponential reductions.

3Note that multiparty NIKE security itself can already be phrased as an interactive assumption.
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the PRF on any input x where C(x) = 1, but the output should remain pseudorandom if C(x) = 0.
First proposed in three concurrent works [BW13, KPTZ13, BGI14], constrained PRFs have become
a fundamental concept in cryptography, with many follow-up works (e.g. [BV15b, BFP+15, CRV16,
DKW16, CC17, BTVW17, AMN+18]). A particularly interesting class of constrained PRFs are
those for bit-fixing constraints, where C takes the form of a vector v ∈ {0, 1, ?}n, and accepts any
string x such that vi = xi or vi =? for all i. Bit-fixing constrained PRFs give secret key broadcast
encryption [BW13], for example.

Adaptive security is of particular interest for constrained PRFs [Hof14, FKPR14, HKW15,
HKKW14, DKN+20]. For example, Boneh and Zhandry [BZ14] build “semi-statically” secure NIKE
from adaptively secure constrained PRFs. Unfortunately, with one exception, all known adaptively
secure constrained PRFs require random oracles, super-polynomial hardness, or a constant collusion
resistance bound. The one exception is [HKW15] for simple puncturing constraints, where C
contains a list of polynomially-many points, and accepts all inputs not in the list. Even with such
simple constraints, the construction requires iO, algebraic tools, and a non-trivial proof. Fuchsbauer
et al. [FKPR14] show that the bit-fixing construction of Boneh and Waters [BW13] inherently loses
a superpolynomial factor in any reduction to non-interactive assumptions.

1.2 Technical Challenges

Rao’s impossibility. Rao [Rao14] proves that multiparty NIKE protocols with standard model
proofs relative to non-interactive assumptions (including iO) must incur an exponential loss. The
proof follows a meta-reduction, which runs the reduction until the reduction receives the challenge
from the underlying non-interactive assumption. At this point, Rao argues that the adversary need
not commit to the group it will attack. Now, we split the reduction into two branches:

• In the first branch, choose and corrupt an arbitrary honest user i, obtaining secret key ski.
Then abort the branch.

• In the second branch, choose the group S to attack such that (1) S contains only honest users
for this branch, and (2) i ∈ S. User i is honest in this branch since it was never corrupted
here, despite being corrupted in the other branch. Use ski to compute the shared group key.

From the view of the reduction, the second branch appears to be a valid adversary. Hence, by the
guarantees of the reduction, it must break the underlying hard problem, a contradiction. Hence, no
such reduction could exist.

Rao’s proof is quite general, and handles reductions that may rewind the adversary or run it
many times concurrently. It also works in the more restricted setting where there is an upper bound
on the total number of users in the system.

There is one way in which Rao’s result does not completely rule out a construction relative to
polynomial hardness: in order to guarantee that the second branch is successful, one needs that
the shared key derived from ski must match the shared key in the second branch. This would
seem to follow from correctness, as i is a member of the group S. However, correctness only holds
with respect to honestly generated public and secret keys. The reduction may, however, give out
malformed public or secret keys that are indistinguishable from the honest keys. In this case, it
may be that ski actually computes the wrong shared key, causing the meta-reduction to fail.

Rao therefore only considers reductions where, roughly, the public keys of the users outputted
by the reduction, even if not computed honestly, uniquely determine the shared key. Rao calls these
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“admissible reductions.” Analogous lower bounds have been shown for tight reductions in the 2-party
setting [BJLS16, HHK18, HHKL21], making similar restrictions on the reduction referred to as
“committing reductions.”

All existing reductions for multiparty NIKE from iO are admissible. A closer look reveals that
all such schemes derive the shared key from some constrained PRF applied to the public values of
the users. While the secret key is used to compute this value, the value itself does not depend on the
secret key, only the public key. Therefore, Rao’s impossibility captures all the existing techniques,
and new ideas are required to achieve adaptive security from static polynomial assumptions.

Dual system methodology? The situation is reminiscent of HIBE and ABE, where Lewko
and Waters [LW14] showed that adaptive security cannot be proved under polynomially hard non-
interactive assumptions, using reductions that always output secret keys which decrypt consistently.
Solutions overcoming this barrier were already known, say based on dual system encryption [Wat09,
LOS+10]. The point of [LW14] was to explain necessary features of those proofs.

The multiparty NIKE setting appears much more challenging. HIBE and ABE benefit from a
central authority which issues keys. In the proof, the reduction provides the adversary with all of
the keys, which will have a special structure that allows for decrypting some ciphertexts and not
others. In the NIKE setting, the adversary is allowed to introduce his own users. This presents
many challenges as we cannot enforce any dual system structure on such users. It also gives the
adversary a lot more power to distinguish the reduction’s keys from honestly generated keys, as the
adversary can request the shared keys of groups containing both honest and malicious users.

Very recently, Hesse et al.[HHKL21] show how to circumvent the above barriers in the 2-party
setting. However there is no obvious analog to the multiparty setting.

Another barrier: adaptive constrained PRFs. Looking ahead, we will show that adaptive
multiparty NIKE implies adaptive constrained PRFs for a limited “one symbol fixing” functionality.
Here, the inputs are words over a polynomial-sized alphabet Σ, and constrains have the form
(?, ?, · · · , ?, s, ?, . . . ), constraining only a single position to some character. The resulting PRFs are
fully collusion resistant. One-symbol-fixing constrained PRFs can be seen as a special case of bit-
fixing PRFs, where only a single contiguous block of bits can be fixed. Adaptive constrained PRFs
for even very simple functionalities have remained a very challenging open question. In particular,
no prior standard-model construction from polynomial hardness achieves functionalities that have a
superpolynomial number of both accepting and rejecting inputs. Any adaptive multiparty NIKE
construction would along the way imply such a functionality, representing another barrier.

1.3 Result Summary

• We give several compilers, allowing us to simplify the process of designing multiparty NIKE
schemes. One compiler shows how to generically remove a common setup from multiparty
NIKE (assuming iO). We note that many iO-based solutions could be tweaked to remove
setup, but the solutions were ad hoc and in the adaptive setting often required significant
effort; we accomplish this generically.

Another compiler shows that it suffices to ignore the case where the adversary can compromise
the security of shared keys for a different groups of users. That is, we show how to generically
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compile any scheme that is secure against adversaries that cannot compromise shared keys
into one that is secure even if the adversary can.

• We show a close connection between multiparty NIKE and one-symbol-fixing PRFs:

– Adaptively secure multiparty NIKE—even for a bounded number of users, and no
maliciously generated users—implies adaptively secure one-symbol-fixing PRF.

– One-symbol-fixing PRFs, together with iO, imply a multiparty NIKE protocol with a
bounded number of honest users (and hence also corruption queries) and group size, but
an unbounded number of malicious users. This result starts by constructing a weaker
NIKE protocol, and then applying our compilers.

• We construct adaptively secure one-symbol-fixing PRFs from iO and DDH. We thus obtain
multiparty NIKE from the same assumptions with a bounded number of honest users.

• We finally give a direct construction of multiparty NIKE from iO and standard assumptions
on groups, which allows for an unbounded number of honest users. The construction roughly
follows the path above, but opens up the layers of abstraction and makes crucial modifications
to attain the stronger security notion. The main limitation is that there is still a bound on
the number of users that the adversary can adaptive corrupt, as well as on the group size.

1.4 On Polynomially-Hard iO

Indistinguishability obfuscation can be thought of as an exponential-sized family of assumptions:
for every pair of equivalent circuits C0, C1, iO assumes that the obfuscations of C0, C1 are compu-
tationally indistinguishable. This puts iO on a different footing that typical assumptions such as
DDH, which are just single fixed assumptions.

iO can be constructed from a constant-sized family of assumptions, as shown by Jain, Lin,
and Sahai [JLS21]. However, the underlying assumptions must be sub-exponentially hard, and
there is evidence that sub-exponential hardness is necessary when reducing from a fixed number of
assumptions [GGSW13]. Under sub-exponential hardness the resulting iO construction achieves
sub-exponential hardness as well. In this case, one can achieve adaptive multi-party NIKE under
the same sub-exponential assumptions by starting with a suitable selective scheme (say, Boneh-
Zhandry [BZ14]), and then applying the generic reduction between selective and adaptive security.

Nevertheless, it is still interesting to consider achieving adaptive security from polynomial iO.
Here we list several reasons:

• Achieving security under an exponential number of polynomially hard assumptions (as is the
case for polynomially-hard iO) offers a different trade-off than security under a constant number
of sub-exponentially hard assumptions. For example, it is conceivable that sub-exponential
hardness does not exist in NP, and yet iO (and other crypto) exist. Thus, while sub-exponential
hardness might be inherent to proving security relative to a polynomial number of assumptions,
sub-exponential hardness is not inherent in iO itself. In such a world, the security proof of iO
from sub-exponentially hard assumptions would be vacuous. In contrast, by proving security
relative to polynomial hardness, we guarantee security in such a world.

• [JLS21] requires constant-locality PRGs, which have not been well-studied in the sub-
exponential hardness regime. We also note that [JLS21] relies on “pre-quantum” assumptions,
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and has no security guarantees against quantum attackers. As a result of these considerations,
there are numerous constructions (e.g. [GGH+13b, GMM+16, MZ18, BGMZ18, BIJ+20,
BDGM20, GP21, WW21]) of iO based on multilinear maps or other objects that could
plausibly be secure, even if the assumptions underlying [JLS21] turn out to be insecure or do
not achieve the required subexponential hardness.

• If iO ever becomes truly practical, the exponential security loss required to base security
on a polynomial of assumptions would likely result in too-high an overhead. As such, we
expect any future practical iO construction to not have a meaningful security proof under such
assumptions, and instead only have conjectured security. In this setting, polynomially-hard iO
is a milder assumption, and a security proof with a polynomial loss would give a much more
efficient construction. This is consistent with the current state-of-affairs, where the the JLS
construction achieving security under a few assumptions is far more inefficient than “direct”
constructions.

• Ideally, future work would remove all bounds, including the bound on the group size. We
note that with an unbounded group size, it is no longer impossible to brute force your way to
adaptive security, as the security loss

(
N
G

)
≈ NG is an unbounded exponential. Any such result

using polynomial iO would have to, as a special case, also achieve security for a bounded group
size. Thus, our work represents a necessary step in this direction. Even in our more limited
setting, there are still significant barriers to achieving adaptive security under polynomial
hardness, as evidenced by Rao’s impossibility.

• Ideally, future work would also base security on a polynomial number of polynomial assumptions.
Currently, this only seems possible by basing security on functional encryption (perhaps
following [GPS16, GS16, GPSZ17, LZ17]), which is implied by iO under polynomial reductions.
Thus, any result along these lines would have to in particular also achieve security under
polynomial iO. Again, this means our work represents a necessary step in this direction.

1.5 Technical Overview

We first briefly recall the types of queries an adversary can make:

• Corrupt User. The adversary selects an honest user’s public key, and learns the secret key.

• Shared Key. The adversary selects a list of public keys, which may contain both honest
users adversarially-generated users, and learns the shared key for the group of users. Since
the adversary’s public keys may be malformed, different users may actually arrive at different
shared keys. So the query specifies which of the users’ version of the shared key is revealed.

• Challenge. Here, the adversary selects a list of honest public keys, and tries to distinguish
the shared key from random.

Upgrading NIKE. In addition to providing the first iO-based NIKE, Boneh and Zhandry [BZ14]
also construct the first NIKE without a trusted setup, or crs. Their basic idea is to first design an
iO-based protocol with a crs, but where the resulting crs is only needed to generate the shared keys,
but not the individual public keys. Then they just have every user generate their own crs; when it
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comes time to compute the shared key for a group, the group arbitrarily selects a “leader” and uses
the leader’s crs.

The above works in the selective setting. However, in the adaptive setting, problems arise.
The crs contains an obfuscated program that is run on the user’s secret key. The adversary could
therefore submit a Shared Key query on an adversarial public key containing a malicious crs. If that
malicious user is selected as the leader for the group, honest users’ secret keys will be fed into the
malicious program, the output being revealed to the adversary, leading to simple attacks. Worse, in
Rao’s basic scheme with setup, the users need to know the crs in order to generate their public key.
So in the setup-less scheme, each user would need to wait until the leader outputs their crs before
they can publish their public key, resulting in an interactive protocol. Boneh and Zhandry and later
Rao [Rao14] therefore devised more sophistocated techniques to remove the trusted setup.

Our first result sidesteps the above difficulties, by considering the setting where Shared Key
queries are not allowed. In this setting, we can make the above strategy of having each party run
their own trusted setup fully generic. To accommodate the case where the public keys may depend
on the trusted setup, we actually have each user produce an obfuscation of a program that takes as
input the crs, and samples a public key. In order to prove security, we also have the secret key for a
user be an obfuscated program, which is analogous to the public key program except that is samples
the corresponding secret key. In the reduction, this allows us to adaptively embed information in
the secret key, which is needed to get the proof to work. See Section 3.2 for details.

Then we show how to generically lift any NIKE scheme that does not support Shared Key
queries into one that does support them, without any additional assumptions. Combined with the
previous compiler, we therefore eliminate the crs and add Shared Key queries to any scheme. The
high-level idea is to give the reduction a random subset of the secret keys for honest users. The hope
is that these keys will be enough to answer all Shared Key queries, while not allowing the reduction
to answer the Challenge query. This requires care, as this will not be possible if some of the Shared
Key queries have too much overlap with the Challenge query. Our solution is to have have each user
actually have many public keys, a subset of which will be used to compute shared keys. By carefully
choosing subsets using error correcting codes, we can ensure that Shared Key queries are sufficiently
far from the Challenge query, allowing the above idea to work. See Section 3.3 for details.

Connection to Constrained PRFs. Multi-party NIKE already had a clear connection to
constrained PRFs, with all iO-based NIKE crucially using constrained PRFs. In Section 4, we make
this precise, showing that one symbol fixing (1-SF) PRFs are equivalent to NIKE, assuming iO.

One direction is straightforward: to build a 1-SF PRF from multiparty NIKE, create n× |Σ|
users, which are arranged in an |Σ| × n grid. Each input in Σn then selects a single user from each
column, and the value of the PRF is the shared key for the resulting set of n users. To constrain
the ith symbol to be σ, simply reveal the secret key for user σ in column i.

The other direction is more complicated, and requires additionally assuming iO. The high-level
idea is that the shared key for a group of users will be a PRF evaluated on the list of the users’
public keys. If we pretend for the moment that user public keys come from a polynomial-sized set
Σ, we could imagine using a 1-SF PRF for this purpose.

Following most iO-based NIKE protocols, we will then have a crs be an obfuscated program
which takes as input the list of public keys, together with one of the users secret keys, and evaluates
the PRF if the secret key is valid. Our novelty is how we structure the proof to attain adaptive
security. Observe that user σ’s secret key allows them to evaluate the PRF on any input that
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contains at least one σ. This is the union of the inputs that can be computed by keys that constrain
symbol i to σ, as i ranges over all input positions.

We therefore switch to a hybrid where user σ has the aforementioned constrained keys covertly
embedded in their secret key. In this hybrid, we crucially allow the reduction to generate the
user’s public key without knowing the constrained keys, and only later when the adversary makes a
corruption query will it query for the constrained keys and construct the user’s secret key. This
strategy is our first step to overcoming Rao’s impossibility result: the shared key is no longer
information-theoretically determined by the public keys, and is only determined once the secret
key with the embedded constrained key is specified. We note, however, that a version of Rao’s
impossibility still applies to the underlying adaptively secure constrained PRFs, which we will have
to overcome later when constructing our PRF.

Moving to this hybrid is accomplished using a simplified version of delayed backdoor program-
ming [HJK+16]. After switching the secret keys for each user, we switch the crs program to use
the embedded constrained keys to evaluate the PRF, rather than the master key. At this point,
adaptive NIKE security follows directly from adaptive 1-SF PRF security.

Of course, NIKE protocols cannot have public keys in a polynomial-sized set. Our actual protocol
first generically compiles a 1-SF PRF into a more sophisticated constrained PRF where now Σ
is exponentially large. By adapting the above sketch to this special kind of constrained PRF, we
obtain the full proof. See Section 4 for details.

Constructing 1-SF PRFs. We turn to constructing a 1-SF PRF. As mentioned above, a version of
Rao’s impossibility result still applies even to constrained PRFs. Namely, an “admissible” reduction
would commit at the beginning of the experiment to the PRF functionality it provides to the
adversary. Such an admissible reduction cannot be used to prove adaptive security for constrained
PRFs, for almost identical reasons as with Rao’s impossibility. This means our reduction must
actually have the PRF seen by the adversary be specified dynamically, where its outputs are actually
dependent on prior queries made by the adversary.

One may be tempted to simply obfuscate a puncturable PRF. Boneh and Zhandry [BZ14]
show that this gives a constrained PRF for any constraint, though only with selective security.
Unfortunately, it appears challenging to to get adaptively secure constrained PRFs with this strategy.
In particular, the punctured PRF specifies the value of the PRF at all points but one, which is
problematic given that we need to dynamically determine the PRF function in order to circumvent
Rao’s impossibility.

We will instead use algebraic tools to achieve an adaptively secure construction. Our PRF will
be Naor-Reingold [NR97], but adapted from a binary alphabet to a polynomial-sized alphabet. The
secret key contains n× |Σ| random values ej,σ, and the PRF on input (x1, . . . , xn) ∈ Σn outputs

F(k, x) = h
∏n

i=1 ei,xi ,

where h is a random generator of a cryptographic group. Without using any computational
assumptions, F is already readily seen to be a 1-SF constrained PRF for a single constrained key.
To constrain position i to σ, simply give out ei,σ and ej,x for all x ∈ Σ and all j ̸= i.

However, we immediately run into trouble even for two constrained keys, since constrained keys
for two different i immediately yield the entire secret key. Instead, we constrain keys in this way,
except that we embed the constrained keys in an obfuscated program. While this is the natural
approach to achieve many-key security, it is a priori unclear how to actually prove security.
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We show that obfuscating the constrained keys does in fact upgrade the single-key security of
the plain scheme to many-time security. The proof is quite delicate. Essentially, we move to a
hybrid where each constrained key uses its own independent h. But here we have a problem: since
multiple keys will be able to compute the PRF at the same point, we need to ensure consistency
between the keys. Maintaining this consistency is the main challenge in the many-key setting. To
maintain such consistency, a constrained key only uses its particular h for inputs that cannot be
computed by previous constrained keys. For outputs that can be computed by previous keys, the
new constrained key will have to use the h for those keys.

Interestingly, this means that keys in this hybrid must actually contain the h’s of all previous
constrained keys, and the evaluation of the PRF will actually depend on the order constrained keys
are queried. The salient point is that, when the ith constrained key query is made, we only commit
to the structure of the PRF on the points that can be evaluated by the first i queries, but the PRF
on the remaining part of the domain is unspecified. Structuring the proof in this way is the main
insight that allows us to circumvent Rao’s impossibility and prove adaptive security.

By careful iO arguments, we show that we are able to move to such a setting where the h for
different pieces are random independent bases. The challenge query is guaranteed to be in its own
piece, using a different h than all the constrained keys. Therefore, once we move to this setting the
constrained keys do not help evaluate the challenge, and security follows. See Section 5 for details.
By combining with our compilers, we obtain the following:

Theorem 1 (Informal). Assuming polynomial iO and DDH, there exist an adaptively secure
multiparty NIKE where the number of honestly generated users is a priori bounded, but where the
number of maliciously generated users is unbounded.

In addition to improving to only polynomial hardness, the above improves on existing works by
enhancing the security definition to allow an unbounded number of malicious users. Note that the
adversary can always create some of its unbounded malicious users in an honest way. In some ways,
such users behave as challenger-generated honest users, in that they can be corrupted trivially since
the adversary already knows their secret key. But on the other hand, they can never be a part of
the challenge set of users. Therefore, another way of phrasing security is that the adversary must
commit to a bounded-sized set of initially-honest users T , such that the challenge set is a subset of
T . Other than the bound on T , the number of honest and malicious users is unbounded. Such a
security notion may be useful in settings where the adversary has some idea of which group it wants
to attack, but may have some flexibility on exactly which users it includes in the group.

Our Final Construction. Finally, we give another NIKE construction which further improves
on the security attained in Theorem 1, at the cost of a slightly stronger group-based assumption:

Theorem 2 (Informal). Assuming polynomial iO and the DDH-powers assumption, there exist an
adaptively secure multiparty NIKE where the group size and number of corruptions is bounded, but
otherwise the number of honest and malicious users unbounded.

We note that bounding the number of corruptions is very natural, and has arisen in many cryp-
tographic settings under the name “bounded collusions.” Examples include traitor tracing [CFN94],
Broadcast encryption [FN94], identity-based encryption [DKXY02] and its generalizations to func-
tional encryption [GVW12], to name a few. Bounded collusions are often seen as a reasonable
relaxation, and in many cases are stepping-stones to achieving full security. We view bounded
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collusion security for NIKE similarly, except that in some ways, bounded corruptions for NIKE is
even stronger than bounded collusions, in that we allow the NIKE adversary to control an unbounded
number of users, only limiting the number of users that can be corrupted adaptively.

In our construction, we no longer go through 1-SF-PRFs explicitly, but instead open up the layers
of abstraction that gave Theorem 1 and make several crucial modifications to the overall protocol.
The main technical challenge is that, in our proof of security for 1-SF-PRFs, we must hard-code
all prior queries into each secret key. In the obtained NIKE scheme, this means hard-coding all
the keys of users generated by the challenger. But as the number of hard-coded users can never be
more than the bit-length of the secret key, this limits the number of honest users.

In our solution, we no longer explicitly hardcode the challenger-generated users, but switch
to a hybrid where they are generated with a trigger. Only the obfuscated programs can detect
this trigger so that they look like honestly generated users, and it moreover is impossible for the
adversary to generate users with the trigger. By a delicate hybrid argument, we are able to mimic
the security proof above using these triggers instead of the explicitly hardcoded public keys. See
Section 6 for details.

Note that the DDH-powers assumption is a q-type assumption, but this can be proved from a
single assumption in the composite order setting, assuming appropriate subgroup decision assump-
tions [CM14].

2 Preliminaries

2.1 Multiparty NIKE

Here, we define the version of NIKE that we will be considering.

Definition 1 (Multiparty NIKE, Syntax). A multiparty NIKE scheme with bounded honest users
is a pair (Pub,KeyGen) with the following syntax:

• Pub(1λ, 1ℓ, 1n, 1c) takes as input the security parameter λ, an upper bound n on the number of
honest users, an upper bound ℓ on the number of users in a set, and an upper bound c on the
number of corruptions. It outputs a public key pk and secret key sk.

• KeyGen(U, sk) takes as input a list U of t ≤ ℓ public keys, plus the secret key for one of the
public keys. It outputs a shared key. We have the following correctness guarantee: for any
ℓ, n, c > 0, t ∈ [ℓ] and any i, j ∈ [t],

Pr[KeyGen({pk1, . . . , pkt}, ski) = KeyGen({pk1, . . . , pkt}, skj)] ≥ 1− negl

where the probability is over (pki, ski)← Gen(1λ, 1ℓ, 1n, 1c) for i = 1, . . . , t.

Enhanced correctness notions. As a technical part of our compilers, we will also consider
stronger variants of correctness. The first is perfect correctness, where the probability above is
exactly 1. The second notion is adversarial correctness, which is defined via the following experiment
with an adversary A:

• On input 1λ, A computes 1ℓ, 1n, 1c.

• The challenger runs (pkb, skb)← Pub(1λ, 1ℓ, 1n, 1c) for b = 0, 1, and sends pk0, pk1 to A
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• A then computes a set U of public keys such that |U | ≤ ℓ and pk0, pk1 ∈ U .

• The challenger computes kb = KeyGen(U, skb) for b = 0, 1. A wins if and only if k0 ̸= k1.

A multi-party NIKE scheme is adversarially correct if, for all PPT adversaries A, there exists a
negligible function ϵ such that the A wins with probability at most ϵ.

Security. We now define security.

Definition 2 (Multiparty NIKE, Adaptive Security). Consider the following experiment with an
adversary A:

• The challenger initializes empty tables T and U . T will contain records of the form (pk, sk, b)
where pk, sk are the public key and secret key for a user, and b is a flag bit indicating if the
user is honest (0) or corrupted (1). We will maintain the invariant that if the flag bit is 0,
then sk ̸= ⊥. U will contain unordered sets of public keys. The challenger also keeps track of
an unordered set S∗, initially set to ⊥.

• A receives 1λ, and replies with 1ℓ, 1n, 1c. It can now make several kinds of queries:

– Register Honest User. Here, A sends nothing. The challenger runs (pk, sk) ←
Pub(1λ, 1ℓ, 1n, 1c). If there is a record containing pk in T , the challenger replies with ⊥.
Otherwise, it adds (pk, sk, 0) to T , and sends pk to A. The total number of such queries
is not allowed to exceed n.

– Corrupt User. Here, A sends an pk. The challenger finds a record (pk, sk, 0) in the
table T . If no such record is found, or if a record is found but with flag bit set to 1, the
challenger replies with ⊥. Otherwise it replies with sk. It then updates the record in T to
(pk, sk, 1). The total number of such queries is not allowed to exceed c.

– Register Malicious User. Here, A sends a public key pk. If there is no record in T
containing pk, the challenger adds to T the record (pk,⊥, 1). There is no limit to the
number of such queries.

– Shared Key. Here, the adversary sends an unordered set S = (pk1, . . . , pkt) of up to
t ≤ ℓ distinct public keys, as well as an index i ∈ [t]. If S∗ ̸= ⊥ and S = S∗, then the
challenger replies with ⊥.
Otherwise, the challenger checks for each j ∈ [t] if there is a record (pkj , skj , bj) in T .
Moreover, it checks that ski ̸= ⊥. If any of the checks fail, the challenger replies with ⊥.
If all the checks pass, the challenger replies with KeyGen(S, ski). It adds the list S to U .

There is no limit to the number of such queries.

– Challenge. The adversary makes a single challenge query on an unordered list S =
(pk∗1, . . . , pk

∗
t ) of up to t ≤ ℓ distinct public keys. The challenger sets S∗ = S. The

challenger then checks for each j ∈ [t] that there is a record (pk∗j , sk
∗
j , b

∗
j ) in T such that

b∗j = 0. The challenger also checks that S∗ is not in U . If any of the checks fails, the
challenger immediately aborts and outputs a random bit.

If the checks pass, the challenger chooses a random bit b∗ ∈ {0, 1} and replies with kb∗

where k0 ← KeyGen(S∗, sk1) and k1 is uniformly random.

• Finally, A produces a guess b′ for b∗. The challenger outputs 1 if b′ = b∗ and 0 otherwise.
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A Multiparty NIKE is adaptively secure if, for all PPT adversaries A, there exists a negligible
function ϵ such that the challenger outputs 1 with probability at most 1

2 + ϵ.

Other security notions. We can also consider multiparty NIKE with unbounded honest users,
where the input 1n is ignored in Pub, and there is no limit to the number of Register Honest User.
We can similarly consider multiparty NIKE with unbounded corruptions where there is no limit to
the number of Corrupt User queries, and unbounded set size, where there is no limit to the set size t
that can be inputted to KeyGen or queried in Shared Key or Challenger queries.

We can also consider NIKE that is “secure with out X queries”, which means that security holds
against all adversaries that do not make any queries of type X.

Common Reference String. We can also consider a crs model, where there is a setup algorithm
crs ← Setup(1λ, 1ℓ, 1n, 1c). Then Pub is changes to have the syntax (pk, sk) ← Pub(crs). In the
adaptive security experiment, we have the challenger run crs← Setup(1λ, 1ℓ, 1n, 1c) and give crs to
A. It then uses the updated Pub algorithm when registering honest users.

2.2 Constrained PRFs

A special case of bit-fixing PRFs. Here, we define a type of bit-fixing PRF.

Definition 3 (1-Symbol-Fixing PRF, Syntax). 1-SF-PRF is a tuple
(Gen,Eval,Constr,EvalC) with the following syntax:

• Gen(1λ, 1|Σ|, 1ℓ) takes as input a security parameter λ, an alphabet size |Σ|, and an input
length ℓ, all represented in unary. It outputs a key k.

• Eval(k, x) is the main evaluation algorithm, which is deterministic and takes as input a key k
and x ∈ Σℓ, and outputs a string.

• Constr(k, i, z) is a potentially randomized constraining algorithm that takes as input a key k,
an index i ∈ [ℓ], and symbol z ∈ Σ. It outputs a constrained key ki,z.

• EvalC(ki,z, x) takes as input a constrained key ki,z for an index/symbol pair (i, z), and an
input x. It outputs a string. We have the correctness guarantee that:

EvalC(ki,z, x) =

{
⊥ if xi ̸= z

Eval(k, x) if xi = z

Definition 4 (1-SF-PRF, Adaptive Security). Consider the following experiment with an adversary
A:

• A on input 1λ, produces 1|Σ|, 1ℓ. The challenger runs k ← Gen(1λ, 1|Σ|, 1ℓ). It returns nothing
to A.

• Then A can adaptively make the following types of queries:

– Constrain. A sends i, z, and receives ki,z ← Constr(k, i, z). The challenger records each
(i, z) in a table C. There is no limit to the number of constrain queries.
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– Eval. A sends an input x, and receives Eval(k, x). The challenger records each x in a
table E. There is no limit to the number of Eval queries.

– Challenge. A can make a single challenge query on an input x∗ ∈ Σℓ. The challenger
flips a random bit b ∈ {0, 1} and replies with y∗ = yb where y0 = Eval(k, x) and y1 is
sampled uniformly and independently.

If at any time, x∗i = z for some (i, z) ∈ C or x∗ ∈ E, the challenger immediately aborts and
outputs a random bit.

• The adversary outputs bit b′. The challenger outputs 1 if b = b′, 0 otherwise.

A 1-SF-PRF is adaptively secure if, for all PPT adversaries A, there exists a negligible function ϵ
such that the challenger outputs 1 with probability at most 1

2 + ϵ. It is adaptively secure without
Eval queries if this holds for all A that make no Eval queries.

A 1-SF-PRF scheme is said to be adaptively secure against unique-query adversaries if the above
holds for any adversary A that makes unique constrained key queries to the challenger.

2.3 Puncturable Pseudorandom Deterministic Encryption

Below, we present the notion of puncturable pseudorandom deterministic encryption (PPDE)
introduced by [KPW17]. In a PPDE scheme, we have a symmetric key deterministic encryption
algorithm, and a decryption algorithm. Additionally, the private key can be punctured at any point.
Given a key punctured at m, the encryption of m is indistinguishable from a uniformly random
string. The following syntax and definitions are taken from [KPW17].

LetM be the message space. A pseudorandom puncturable deterministic encryption scheme (or
PPDE scheme) forM and ciphertext space CT ⊆ {0, 1}ℓ (for some polynomial ℓ), is defined to be a
collection of four algorithms.

• PPDE.Setup(1λ) takes the security parameter and generates a key K in keyspace K. This
algorithm is randomized.

• DetEnc(K,m) takes a key K ∈ K and message m ∈M and produces a ciphertext CT ∈ CT .
This algorithm is deterministic.

• Dec(K,CT) takes a key K ∈ K and ciphertext CT ∈ CT and outputs m ∈ M ∪ {⊥}. This
algorithm is deterministic.

• PuncturePPDE(K,m) takes a key K ∈ K and message m ∈M and produces a punctured key
K{m} ∈ K and y ∈ {0, 1}ℓ. This algorithm may be randomized.

Correctness A PPDE scheme is correct if it satisfies the following conditions.

1. Correct Decryption For all messages m and keys K ← K, we require

Dec(K,DetEnc(K,m)) = m.

2. Correct Decryption Using Punctured Key For all distinct messages m, for all keys
K ← K,
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Pr

[
#{CT : Dec(K{m},CT) ̸= Dec(K,CT)} > 1

∣∣∣
(K{m}, y)← PuncturePPDE(K,m)

]
is less than negl(λ), where all probabilities are taken over the coins of PuncturePPDE.

3. For all messages m∗ ∈M and keys K ← K,{
y

∣∣∣ (K{m∗}, y)← PuncturePPDE(K,m∗)
}
≈ Uℓ

where Uℓ denotes the uniform distribution over {0, 1}ℓ.

Definition 5. A PPDE scheme is selectively secure if no PPT algorithm A can determine the bit
b in the following game except with probability negligibly close to 1

2 :

1. A chooses a message m∗ to send to the challenger.

2. The challenger chooses K ← PPDE.Setup(1λ) and (K{m∗}, y)← PuncturePPDE(K,m∗) and
CT = DetEnc(K,m∗). Next, it chooses b ← {0, 1}. If b = 0, it sends (K{m∗}, (CT, y));
otherwise it sends (K{m∗}, (y,CT)).

3. A outputs a guess b′ for b.

2.4 DDH-Powers Assumption

Definition 6. Let G be a group of order p. The k-DDH-powers assumption states that the following
distributions are computationally indistinguishable:

D1 ≡ {(g, ga, ga
2
, ga

k
, ga

k+1
) : g ← G, a← Zp} D2 ≡ {(g, ga, ga

2
, ga

k
, T ) : g ← G, a← Zp, T ← G}

3 Enhancing Multi-party NIKE

In this section, we give some compilers for multi-party NIKE, which allow for simplifying the task of
designing new NIKE protocols built from iO. Our ultimate goal is to show that one can safely ignore
Shared Key and Register Malicious User queries, and also employ a trusted setup. Our compilers
then show how to lift such a scheme into one secure under all types of queries and without a trusted
setup.

3.1 Achieving Adversarial Correctness

First, we show how to convert any NIKE that is perfectly correct into one with adversarial correctness.
While adversarial correctness is not a particular design goal in multiparty NIKE, this step will be
needed in order to apply our later compilers.

Theorem 3. Assume there exists a multi-party NIKE with perfect correctness, potentially in the crs
model. Assume additionally there exists a NIZK. Then there exists a multi-party NIKE with both
perfect and adversarial correctness in the crs model. If the perfectly correct scheme has unbounded
honest users, corruptions, and/or set size, then so does the resulting adversarially correctscheme.

Theorem 3 follows from a standard application of NIZKs, and is similar to a theorem used in the
context of two-party NIKE by [HHK18]. The proof is given in Appendix B.
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3.2 Removing the CRS

Next, we use iO to remove the common reference string (crs) from any multi-party NIKE. A side-
effect of this transformation, however, is that we only achieve security without Register Malicious
User queries.

Theorem 4. Assuming there exists iO an adaptively secure multi-party NIKE in the common
reference string (crs) model, then there also exists adaptively multi-party NIKE in the plain model
that is secure without Register Malicious User queries. If the crs scheme has unbounded honest
users, corruptions, and/or set size, or has perfect and/or adversarial correctness, or only has secure
without X queries for some X, then the same is true of the resulting plain model scheme.

Theorem 4 formalizes the ad hoc techniques for removing the CRS in iO-based constructions
starting from Boneh and Zhandry [BZ14]. The technique works by having each user separately run
the trusted setup. Then each group selects (deterministically) a distinguished user, whose trusted
setup is used to actually derive the shared key. The main limitation of this technique is that it does
not preserve security under Register Malicious User queries, which will be fixed in the compiler in
the next subsection. We now give the proof of Theorem 4.

Proof. The proofs of the various bounded/unbounded cases and perfect/adversarial correctness
cases are essentially the same, so we focus on the case where everything is bounded. We will let
(Setup,Pub′,KeyGen′) be a multi-party NIKE with setup. The idea is to replace a user’s public key
(which would have potentially needed the crs) with an obfuscated program that takes as input the
crs and samples a public/secret key pair from Pub′, outputting the public key. The user’s secret key
is the same program, except that it outputs the sampled secret key. We now give the construction
and proof in more detail.

Let F be a puncturable PRF. F can be constructed from any one-way function, which are in
turn implied by any NIKE scheme. We construct a new mutliparty NIKE (Pub,KeyGen) without
setup as follows:

• Pub(1λ, 1ℓ, 1n, 1c): Sample a random PRF key k for F. Also run crs ← Setup(1λ, 1ℓ, 1n, 1c).

Let PKeyk,SKeyk be the programs in Figures 1 and 2, and let P̂Key = iO(PKeyk), ŜKey =

iO(SKeyk). pk = (crs, P̂Key) and sk = ŜKey.

• KeyGen(S, ski): Let pk
∗ ∈ S be the minimal pk ∈ S according to some ordering; we will call

pk∗ the distinguished public key.

Write pk∗ = (crs∗, P̂Key
∗
). Let S′ be derived from S, where for each pk = (crs, P̂Key) ∈ S, we

include pk′ = P̂Key(crs∗) in S′. Also let ski = ŜKeyi, and run sk′i = ŜKeyi(crs
∗). Then run and

output KeyGen′(crs, S′, sk′i).

Correctness: Correctness follows from the correctness of the underlying scheme:

KeyGen(S, ski) = KeyGen′(crs, S′, sk′i)

= KeyGen′(crs, S′, sk′j)

= KeyGen(S, skj)
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Figure 1: The program PKeyk.

Inputs: crs
Constants: k

1. (pk′, sk′)← Pub′(crs; F(k, crs) )

2. Output pk′

Figure 2: The program SKeyk.

Inputs: crs
Constants: k

1. (pk′, sk′)← Pub′(crs; F(k, crs) )

2. Output sk′

Security: We now prove the security of the above construction. Let A be an adversary that wins
with probability 1

2 + ϵ0, where we assume towards contradiction that ϵ0 is non-negligible. Let ℓ be
an upper bound on the number of Register Honest User queries made by A. Consider the following
experiments:

• H0: This is the standard adaptive NIKE experiment. By assumption, we have that the
adversary wins in H0 with probability p0 =

1
2 + ϵ0.

• H1: This is the same as H0, except for the following changes. At the beginning of the
experiment, a random j∗ ∈ [ℓ] is chosen. Then if the distinguished public key for the Challenge
query is different from the public key from the j∗-th Register Honest User query, immediately
abort and output a random bit. We will call this an “H1 abort.” Let p1 = 1

2 + ϵ1 be the
probability A wins in experiment H1.

Let pkj∗ be the public key for the j∗-th honest user; note that we can sample pkj∗ at the
beginning of the experiment. Also note that if no abort happens, it must be that pkj∗ is never
corrupted.

• H2: This is the same as H1, except that we change how Register Honest User queries are
answered. For each such query, we sample (pk′′, sk′′) ← Pub′(crs∗). We then run Pub(1λ),

except that we set P̂Key = iO(PKey′kcrs∗ ,crs∗,pk′′) and ŜKey = iO(SKey′kcrs∗ ,crs∗,sk′′) where crs∗ =

crsj∗ , kcrs∗ is the result of puncturing k at crs∗, and PKey′kcrs∗ ,crs∗,pk′′ ,SKey
′
kcrs∗ ,crs∗,sk

′′ are the

programs given in Figures 3 and 4. The differences between PKey′kcrs∗ ,crs∗,pk′′ ,SKey
′
kcrs∗ ,crs∗,sk

′′

and PKeyk,SKeyk are highlighted in yellow.

Let p2 =
1
2 + ϵ2 be the probability A wins in H2.

Lemma 1. ϵ1 = ϵ0/ℓ.

Lemma 2. Under the assumed security of F and iO, there exists a negligible function negl such that
|ϵ2 − ϵ1| < negl(λ).

Lemma 3. Under the assumed security of (Setup,Pub′,KeyGen′), there exists a negligible function
negl such that ϵ2 < negl(λ).

Combining the above four lemmas shows that ϵ0 is negligible, a contradiction. It therefore
remains to justify the four lemmas.
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Figure 3: The program PKey′kcrs∗ ,crs∗,pk′′ .

Inputs: crs, x

Constants: k
crs∗

, crs∗, pk′′

1. (pk′, sk′)← Pub′(crs; F(k
crs∗

, crs) )

2. If crs∗ = crs, output pk′′. Otherwise

output pk′

Figure 4: The program SKey′kz∗ ,z∗,sk′′ .

Inputs: crs, x

Constants: k
crs∗

, crs∗, pk′′

1. (pk′, sk′)← Pub′(crs; F(k
crs∗

, crs) )

2. If crs∗ = crs, output sk′′. Otherwise

output sk′

Proof of Lemma 1. The only difference between H0 and H1 is the H1 abort. The distinguished
public key for the Challenge query must be one of the users registered as honest. Until the H1

abort, j∗ is independent of the adversary’s view, and j∗ has a probability of 1/ℓ of being the correct
guess. Therefore, from the adversary’s view, H1 is identical to H0 except for a 1− 1/ℓ probability
of abort. Hence, ϵ1 = ϵ0/ℓ.

Proof of Lemma 2. By a simple hybrid over Register Honest User queries, it suffices to show that
(crs∗, iO(PKeyk), iO(SKeyk)) is indistinguishable from (crs∗, iO(PKey′kz∗ ,z∗,pk′′), iO(SKey

′
kz∗ ,z∗,sk

′′)),
where

• crs∗ ← Setup′(1λ, 1ℓ, 1n, 1c).

• k is a random key for F.

• kcrs∗ is the result of puncturing k at crs∗.

• (pk′′, sk′′)← Pub′(crs∗).

This can be proven using the following sub-hybrids:

• Ha: Output (crs∗, iO(PKeyk), iO(SKeyk)).

• Hb: Output (crs∗, iO(PKey′kcrs∗ ,crs∗,pk′), iO(SKey
′
kcrs∗ ,crs∗,sk

′)) where

(pk′, sk′)← Pub′(crs∗;F(k, crs∗)).

• Hc: Output (pk∗, iO(PKey′kcrs∗ ,crs∗,pk′′), iO(SKey
′
kcrs∗ ,crs∗,sk

′′))
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The programs PKeyk and PKey′kcrs∗ ,crs∗,pk′ are identical, as are SKeyk and SKey′kcrs∗ ,crs∗,sk′ . Hence Ha

and Hb are indistinguishable by iO. Meanwhile, the only difference between (pk′, sk′) and (pk′′, sk′′)
is that the random coins used to generate them switch from being F(k, crs∗) to uniform. But the
rest of the experiment can be simulated using the punctured key kcrs∗ . Hence indistinguishability
between Hb and Hc follow from punctured PRF security.

Proof of Lemma 3. We now describe an adversary A′ for (Setup,Pub′,KeyGen′), which will run
A as a sub-routine. A works as follows:

• Let crs∗ be the common reference string provided to A′ by its challenger..

• A′ chooses a random j∗. A′ then simulates A, playing the role of challenger to A, answering
queries as follows:

– Register Honest User.: A′ makes a Register Honest User query to its own challenger,
receiving pk′′. It samples a random PRF key k for F, and punctures k at crs∗ to obtain

kcrs∗ . It computes P̂Key = iO(PKey′kcrs∗ ,crs∗,pk′′).

If this is the j∗-th Register Honest User query, then A′ sets crs = crs∗. Otherwise, it
samples crs← Setup(1λ, 1ℓ, 1n, 1c).

Finally, it returns (crs, P̂Key) to A.

– Corrupt User. Upon receiving a public key pk = (crs, P̂Key) from A, A′ checks to see if
pk was indeed the result of a previous Register Honest User query that has not previously
been corrupted. If the check fails, A′ replies with ⊥.
If the check passes, A′ then procures the pk′′ it received from its challenge when answering
the prior Register Honest User query. It makes a Corrupt User query to its own challenger

on pk′′, receiving sk′′. Then it replies with ŜKey = iO(SKey′kcrs∗ ,crs∗,sk′′).

– Shared Key. Upon receiving a list of public keys S and index i from A, A′ constructs a

list S′, where for each pk = (crs, P̂Key) ∈ S, A′ adds P̂Key(crs∗) to S′. Then A′ makes a
Shared Key query on S′, i to its own challenger, receiving k, which it forwards to A.

– Challenge. Upon receiving a list of public keys S, A′ constructs S′ as in a Shared Key
query. Then it makes a Challenge query on S′ to its own challenger, receiving k, which it
forwards to A.

It is not hard to see that A′ perfectly simulates the view of A in H2, and therefore has success
probability exactly p2. By the assumed security of (Setup,Pub′,KeyGen′), p2 must be negligible.
This completes the proof of Lemma 3, and therefore the proof of Theorem 4.

3.3 Adding Shared Key Queries

The final compiler generically convert a NIKE scheme whose security does not support shared key
queries into one that does.

Theorem 5. Assume there exists a multi-party NIKE with adversarial correctness and adaptive
security without Shared Key or Register Malicious User queries. Then there exists a multi-party
NIKE with adversarial correctness and adaptive security (with Shared Key and Register Malicious
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User queries). If the original scheme is also perfectly correct, then so is the resulting scheme. If the
original scheme has unbounded honest users, corruptions, and/or set size, then so does the resulting
scheme. The resulting scheme is in the CRS model if and only if the original scheme is.

Note the requirement that the underlying NIKE protocol have adversarial correctness. The
proof of Theorem 5 exploits the structure of multiparty NIKE, together with combinatorial tricks,
to ensure that the reduction can answer all Shared Key queries (even on sets involving malicious
users) while not being able to answer the challenge query. We now give the proof of Theorem 5.

Proof. The rough idea is to randomly give the reduction some of the secret keys for users. We give
the reduction enough secret keys so that with non-negligible probability it will be able to answer all
shared key queries, while simultaneously being unable to answer the challenge query.

There are several difficulties getting this to work. First, when the adversary makes an shared
key query on a set of users that includes a maliciously-generated user, correctness is no longer
guaranteed. This means different users may output different shared keys, even for the same set.
This in turn means the extra secret keys we gave the reduction may not answer correctly. We fix
this by assuming the underlying NIKE is adversarially correct.

A more important difficulty is that is that the shared key queries can be highly correlated with
the challenge query, potentially differing on only a single user. In order to be able to answer the
shared key query but not the challenge query, we must give out the secret key for exactly the
differing user, which we do not know in advance. We could of course guess the differing user and
incur a polynomial loss in the security reduction, but this will compound over all the shared key
queries, resulting in an exponential loss.

Our solution leverages the functionality of multi-party NIKE. Every user will actually contain
many sub-users. When computing the shared key for a group of users, a collection of each user’s
sub-users will be selected, and the key will be computed for the union of all sub-users. The collections
of sub-users will be chosen so that each group will yield collections that are “far” from each other.
This gives us many possibilities for giving out secret keys without compromising the challenge.

We now give the construction and proof of security in more detail. All the proofs are essentially
identical, so we prove the bounded case without a crs. Let (Pub′,KeyGen′) be a multiparty NIKE
scheme. Let H be a collision resistant hash function, with hashing key space H and range Y.
Let C ⊆ Σm be a code of minimum distance d, such that Σ is a polynomial-sized alphabet, and
|C| ≥ |H| × |Y|. Let Map : H× Y → C be an arbitrary efficiently computable injective mapping.

Our new multi-party NIKE scheme (Pub,KeyGen) is given as follows:

• Pub(1λ, 1ℓ, 1n, 1c): Sample a random hashing key hk ∈ H. Let n′ = n ×m, ℓ′ = ℓ × |Σ| ×
m, c′ = c × Σ. For each i ∈ [m], z ∈ Σ, run (pki,z, ski,z) ← Pub′(1λ, 1ℓ

′
, 1n

′
, 1c

′
). Output

pk = (hk, (pki,z)i,z), sk = (sk1,z)z∈Σ.

• KeyGen(U, sk): Write U = {pk1, . . . , pkt} and write pkj = (hkj , (pkj,i,z)i,z). Let j∗ be such
that pkj∗ is the minimal element in U for some ordering of public keys. Let y ← H(hkj∗ , U)
and c = Map(hkj∗ , y). Let Uj = (pkj,i,ci)i∈[m]. Output KeyGen′(∪j∈[t]Uj , skc1).

19



Correctness: Correctness follows straightforwardly from the correctness of (Pub′,KeyGen′):

KeyGen(U, skj1) = KeyGen′(∪j∈[t]Uj , skj1,c1)

= KeyGen′(∪j∈[t],i∈[m]pkj,i,ci , skj1,1,c1)

= KeyGen′(∪j∈[t],i∈[m]pkj,i,ci , skj2,1,c1)

= KeyGen(U, skj2)

Perfect and adversarial correctness follow from similar arguments.

Security: We now prove security. Let A be an adversary that wins with probability 1
2 + ϵ0, where

we assume towards contradiction that ϵ0 is non-negligible. Let q be a polynomial upper bound on
the number of Shared Key queries made by A. We prove security through a sequence of hybrids.

• H0: This is the standard adaptive NIKE experiment. By assumption, we have that the
adversary wins in H0 with probability p0 =

1
2 + ϵ0.

• H1: Here, we add two abort conditions:

– Inconsistency For every Shared Key query on set U = (pk1, . . . , pkt), we let Uj =
(pkj,i,ci)i∈[m] be as in KeyGen. Let skj,i,ci be the associated secret keys amongst the pkj,i,ci
belonging to honest users.

The challenger checks that KeyGen′(∪jUj , skj1,i1,ci1 ) = KeyGen′(∪jUj , skj2,i2,ci2 ) for each
(j1, i1), (j2, i2) ∈ [t] × [m] beloning to honest users. If any of the checks fail, then the
challenger outputs a random bit and aborts.

– Collisions For the challenge query S∗, let hk∗ be the hashing key selected during KeyGen.
For any Shared Key query on a set S (occurring before or after the challenge query), the
challenger checks that H(hk∗, S) ̸= H(hk∗, S∗).

If any of the checks fail, the challenger aborts an outputs a random bit.

Let 1
2 + ϵ1 be the probability the adversary wins.

• H2: Here, we add a new abort condition. Let u ∈ Z, r ∈ [0, 1] be parameters to be chosen
later. At the beginning of the experiment, do the following, for k = 1, . . . , u:

– Choose a random ik ∈ [m].

– Select a random subset Sk ⊂ Σ of size r|Σ|. Here, we assume r|Σ| is an integer.

Now, during any Shared Key query on a set S, we compute c as in KeyGen. Then we find a
k such that cik ∈ Sk, if it exists. If such a k does not exist, then we immediately abort and
output a random bit.

On the other hand, during the challenge query on a set S∗, we compute c∗ as in KeyGen. Then
we find a k such that c∗ik ∈ Sk, if it exists. If such a k does exist, then we immediately abort
and output a random bit.

If an abort happens as above, we call it a Simulation abort.

Finally, at the very end of the experiment, we do the following. Let L = c1, . . . , cq be the list of
c’s from the various Shared Key queries, and c∗ the c from the Challenge query. Note that, by
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the Collision abort condition, c∗ /∈ L. The probability of a Simulation abort, over the choice
of ik, Sk, only depends on L, c∗, u, r. We denote this probability by pL,c∗(u, r). Let pmin(u, r)
be a lower bound on pL,c∗(u, r) over the choice of L, c∗. We will discuss the computation
of pL,c∗ , pmin later. At the end of the experiment, assuming no abort has happened yet, we
Artificially abort with probability pmin(u, r)/pL,c∗(u, r), which is in [0, 1] since pmin lower
bounds pL,c∗ .

Let 1/2 + ϵ2 be the probability the adversary wins.

• H3: This is identical to H2, except that we answer Shared Key queries on a set S and index
j ∈ [t] using skj,ik,cik . Let 1/2 + ϵ3 be the probability the adversary wins.

• H4: This is identical to H3, except that we remove the Inconsistency abort condition. Let
1/2 + ϵ4 be the probability the adversary wins.

We now have the following lemmas:

Lemma 4. Under the assumed adversarial correctness of (Pub′,KeyGen′) and collision resistance
of H, there exists a negligible negl such that |ϵ0 − ϵ1| < negl(λ).

Lemma 4 is straightforward: any collision or inconsistency immediately yields an attack on the
collision resistance of H or the adversarial correctness of (Pub′,KeyGen′).

Lemma 5. ϵ2 = pminϵ1.

Lemma 5 is also straightforward: the overall abort probability introduced in H2 is just pmin,
independent of the adversary’s view.

Lemma 6. ϵ3 = ϵ2

Lemma 6 is also straightforward: by the Inconsistency abort condition, any of the sk’s will
give the same result, so switching to a different sk is identical from the adverary’s view.

Lemma 7. Under the assumed collision resistance of H, there exists a negligible negl such that
|ϵ4 − ϵ3| < negl(λ).

Lemma 7 is essentially identical to Lemma 4. Finally, we have:

Lemma 8. Under the assumed adaptive security of (Pub′,KeyGen′) without Shared Key queries, ϵ4
is negligible.

To prove Lemma 8, we devise an adversary A′ against the adaptive security of (Pub′,KeyGen′)
without Shared Key queries, which success probability 1/2 + ϵ4. A′ first chooses random ik ∈ [m]
for k = 1, . . . , u, and then selects random subsets Sk ⊂ Σ of size r|Σ|. Then it simulates A, and
does the following:

• On a Register Honest User query, A′, for each i ∈ [m], it lets Ti = ∪k:ik=iSk, the set of
symbols that are included in any of the Sk corresponding to that i. For each i and each
symbol z ∈ Ti, it runs (pki,z, ski,z)← Pub′(1λ, 1ℓ

′
, 1n

′
, 1c

′
). For all other (i, z) pairs, it makes

a Register Honest User query to its own challenger, receiving pki,z. It then samples a random
hashing key hk← H, and outputs pk = (hk, (pki,z)i,z).

• On a Corrupt User query on pk = (hk, (pki,z)i,z), A′ makes Corrupt User queries for each
z /∈ T1, receiving sk1,z. For all other z, A′ already has sk1,z. A′ outputs (sk1,z)z∈Σ
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• On any Register Malicious User query, A′ simply registers all the component public keys,
assuming they have not been registered before.

• On a Shared Key query on U = (pk1, . . . , pkt), A′ computes y, c, Uj as in KeyGen. It then out-
puts KeyGen′(∪j∈[t]Uj , skj,ik,cik ), assuming it has the value skj,ik,cik . Otherwise this corresponds
to a Simulation abort, in which case A′ outputs a random bit and aborts.

• On the Challenge Query on a set U = (pk∗1, . . . , pk
∗
t ), A′ computes y∗, c∗, U∗

j as in KeyGen. If
∪j∈[t]Uj is not entirely comprised of un-corrupted Honest User queries made by A′, then this
corresponds to a Simulation abort, and A′ immediately aborts and outputs a random bit.
Otherwise, it makes a challenge query on ∪j∈[t]Uj , forwarding the result to A.

• At the end of the experiment, A′ checks for a Collision abort, and also simulates an Artificial
abort with the necessary probability. If no abort happens, A′ outputs whatever A outputs.

From inspection, it can seen that A′ perfectly simulates the view of A in H4, and thus has the
desired success probability 1/2 + ϵ4. Thus ϵ4 must be negligible.

In order to now conclude that ϵ0 is negligible, we must show that there are u, r such that pmin is
inverse-polynomial.

Lemma 9. Assume (1 − rd/2m)uq ≤ 1. For any L of size at most q and any c∗, pL,c∗(u, r) ≥
[(1− r)rd/2m]u.

We can therefore set pmin = [(1 − r)rd/2m]u.Fix a constant r ∈ [0, 1] and constant rate d/m.
Then for a polynomial q, we can set u = ⌈− log(q)/ log(1 − rd/2m)⌉ to satisfy the conditions of
Lemma 9. In this case, we have pmin = qΩ(1) as desired. We now prove Lemma 9.

Proof. We need to bound the probability both of the following conditions are met:

1. For every k, c∗ik /∈ Sj , and

2. For each c ∈ L, there exists a k such that cik ∈ Sk.

For each k, the probability that c∗ik /∈ Sk is exactly (1 − r). Over all k, the probability that
Condition 1 holds is (1− r)u.

We will now condition on Condition 1 holding. In this case, each Sk is a random subset of Σ\ c∗ik .
For each i and for each c ∈ L, there are two cases:

• ci = c∗i . In this case, if ik = i, then cik /∈ Sk with probability 1.

• ci ̸= c∗i . In this case, if ik = i, then cik ∈ Sk with probability r|Σ|/(|Σ| − 1) > r.

Since the code C has minimum distance d, for each c ∈ L, there are at least d different i such that
ci ̸= c∗i . For these i, we have Pr[ci ∈ Sk] > r from above. Thus, for each k, if we average over a
uniform choice of ik, we have that Pr[cik ∈ Sk] > rd/m.

For k = 0, . . . , u, let Mk be the set of c ∈ L for which Condition 2 is not yet satisfied by the kth
step. In other words, Lk is the set of c such that there does not exist a k′ ≤ k such that ci′k ∈ Sk′ .

L0 = L. Clearly Lk+1 ⊆ Lk. For each c ∈ Lk, Pr[c ∈ Lk+1] < 1 − rd/m. By linearity of
expectation, once we’ve fixed Lk, we have that E[|Lk+1|] < (1− rd/m)|Lk|. Therefore, Pr[|Lk+1| <
(1− rd/2m)|Lk|] ≥ rd/2m. Over all u trials, we therefore have that Pr[|Lu| < (1− rd/2m)u|L|] ≥
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(rd/2m)u. If we choose (1− rd/2m)uq ≤ 1, then |Lt| < (1− rd/2m)u|L| can only be true if Lu is
empty, meaning Condition 2 is met. Putting it all together, we have that the process outputs 1
with probability at least [(1− r)rd/2m]u. This completes the proof of Lemma 9.

One final piece remains: actually computing pL,c∗(u, r). Unfortunately, it is not necessarily true
that the probabilities can be exactly computed efficiently. This is analogous to the artificial abort of
Waters [Wat05]. As in [Wat05], we instead have A′ estimate pL,c∗ to within an error much less than
pminϵ by simply sunning poly(1/pminϵ, λ) trials of the process defining pL,c∗ . This will introduce
an error ≪ pminϵ into the simulation, still resulting in a non-negligible success probability. This
completes the proof.

3.4 Putting It All Together

We can combine Theorems 3, 4, and 5 together, to get the following corollary:

Corollary 1. Assume there exists iO and perfectly correct multi-party NIKE in the crs model with
adaptive security without Shared Key or Register Malicious User queries. Then there exists perfectly
correct (and also adversarially correct) multi-party NIKE in the plain model with adaptive security
(under both Shared Key and Register Malicious User queries). If the original scheme has unbounded
honest users, corruptions, and/or set size, then so does the resulting scheme.

Corollary 1 shows that, for multiparty NIKE from iO, it suffices to work in the CRS model and
ignore Shared Key and Register Malicious User queries.

4 The Equivalence of Multiparty NIKE and 1-SF-PRF

In this section, we show that NIKE is equivalent to a 1-SF-PRF.

4.1 From Multiparty NIKE to 1-SF-PRF

Let (Setup,Pub,KeyGen) be a multiparty NIKE. We construct a 1-SF-PRF (Gen,Eval,Constr,EvalC)
as follows:

• Gen(1λ, 1|Σ|, 1ℓ): let c = n := ℓ ∗ |Σ|. Run crs ← Setup(1λ, 1ℓ, 1n, 1c). In other words, we
set the maximum number of users in a group to be ℓ, and the total number of users (and
allowed corruptions) to be n × |Σ|. For z ∈ Σ, i ∈ [ℓ], run (pki,z, ski,z) ← Pub(crs). Set
k = {(pki,z, ski,z)}i∈[ℓ],z∈Σ.

• Eval(k, x): run KeyGen(crs, pk1,x1
, . . . , pkℓ,xℓ

, 1, sk1,x1)

• Constr(k, i, z): output ki,z = ({pki′,z′}i′∈[ℓ],z′∈Σ, ski,z).

• EvalC(ki,z, x): Output KeyGen(crs, pk1,x1
, . . . , pkℓ,xℓ

, i, ski,z)

Theorem 6. If (SetupPub,KeyGen) is an adaptively secure multiparty NIKE without Register
Malicious User queries in the CRS model, then (Gen,Eval,Constr,EvalC) is an adaptively secure 1-SF-
PRF. If (SetupPub,KeyGen) has security without Shared Key queries, then (Gen,Eval,Constr,EvalC)
has security without Eval queries.
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The proof is straightforward, and we only sketch it here. The (SetupPub,KeyGen) adversary
simply runs the supposed adversary for (Gen,Eval,Constr,EvalC), making Corrupt User queries to
answer any Constrain query in the obvious way, and making a Shared Key query to answer any
Eval query.

4.2 Adding Eval Queries to a 1-SF-PRF

In Appendix C, we explain how to generically lift a 1-SF-PRF that is insecure under Eval queries
into one that is secure. The idea follows from similar arguments as our NIKE compiler for adding
Shared Key queries. We note that upgrading the case of 1-SF-PRFs is not strictly needed for our
results, since the Eval queries ultimately correspond to Shared Key queries, which are handled by
our compiler. Nevertheless, we include this result for 1-SF-PRFs for completeness.

4.3 From 1-SF-PRF to Special Constrained PRF

Here, we define an intermediate notion of constrained PRF, which enhances a 1-SF-PRF. The idea
is that the symbol space Σ is now exponentially large. However, at the beginning a polynomial-sized
set S is chosen, and a punctured key is revealed that allows for evaluating the PRF on any point not
in S. The points in S then behave like the symbol space for a plain 1-SF-PRF, where it is possible
to generate keys that fix any given position to some symbol in S.

Looking ahead to our NIKE construction, the set S will correspond to the public keys of the
honest users of the system, while the rest of Σ will correspond to maliciously-generated keys. The
abstraction of our special constrained PRF in this section is the missing link to formalize the
connection between 1-SF-PRFs and NIKE as outlined in Section 1.

Definition 7 (Special Constrained PRF, Syntax). SC-PRF is a tuple of algorithms (Gen, Eval,
Punc, EvalP, Constr, EvalC) with the following syntax:

• Gen(1λ, |Σ|, 1ℓ, 1n) takes as input a security parameter λ, an alphabet size |Σ|, an input length
ℓ, and a maximal set size n. Here, |Σ| is represented in binary (thus allowing exponential-sized
Σ), but everything else in unary.

• Eval(k, x) is the main evaluation algorithm, which is deterministic and takes as input a key k
and x ∈ Σℓ, and outputs a string.

• Punc(k, S) is a randomized puncturing algorithm that takes as input a key k and set S ⊆ Σ of
size at most n. It outputs a punctured key kS.

• EvalP(kS , x) takes as input an x ∈ Σℓ, and outputs a value such that

EvalP(kS , x) =

{
⊥ if x ∈ Sn

Eval(k, x) if x /∈ Sn

• Constr(k, S, i, z) is a potentially randomized constraining algorithm that takes as input a set S,
a key k, an index i ∈ [ℓ], and symbol z ∈ S. It outputs a constrained key kS,i,z.
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• EvalC(kS,i,z, x) takes as input a constrained key kS,i,z for an set/index/symbol triple (S, i, z),
and input x. It outputs a string. The correctness guarantee is:

EvalC(kS,i,z, x) =

{
⊥ if xi ̸= z

Eval(k, x) if xi = z

Definition 8 (Special Constrained PRF, Adaptive Security). Consider the following experiment
with an adversary A:

• A on input 1λ, outputs |Σ|, 1ℓ, 1n, and set S of size at most n. The challenger runs k ←
Gen(1λ, |Σ|, 1ℓ, 1n) and kS ← Punc(k, S). It sends kS to A.

• Then A can adaptively make the following types of queries:

– Constrain. A sends i, z, and receives kS,i,z ← Constr(k, S, i, z). The challenger records
each (i, z) in a table C.

– Eval. A sends an input x, and receives Eval(k, x). The challenger records each x in a
table E. There is no limit to the number of Eval queries.

– Challenge. A can make a single challenge query on an input x∗ ∈ Sℓ. The challenger
flips a random bit b ∈ {0, 1} and replies with y∗ = yb where y0 = Eval(k, x) and y1 is
sampled uniformly and independently.

If at any time, x∗i = z for some (i, z) ∈ C or x∗ ∈ E, the challenger immediately aborts and
outputs a random bit.

• The adversary outputs bit b′. The challenger outputs 1 if b = b′, 0 otherwise.

A Special Constrained PRF is adaptively secure if, for all PPT adversaries A, there exists a negligible
function ϵ such that the challenger outputs 1 with probability at most 1

2 + ϵ.

Theorem 7. If 1-SF-PRFs exist, then so do Special Constrained PRFs.

The proof of Theorem 7 use purely combinatorial techniques. The idea is to set the symbol space
Σ for the Special Constrained PRF to be codewords over the symbol space for the 1-SF-PRF, where
the code is an error correcting code with certain properties. We defer the details to Appendix C.

4.4 From Special Constrained PRF to Multiparty NIKE with Setup

As a warm up, we construct multiparty NIKE in the common reference string model. We will need
the following ingredients:

Definition 9. A single-point binding (SPB) signature is a quadruple (Gen,Sign,Ver,GenBind) where
Gen,Sign,Ver satisfy the usual syntax of a signature scheme. Additionally, we have the following:

• (vk, σ)← GenBind(1λ,m) takes as input a message m, and produces a verification key vk and
signature σ.

• For any messages m,m′ ̸= m, with overwhelming probability over the choice of (vk, σ) ←
GenBind(1λ,m), Ver(vk,m′, σ′) = ⊥ for any σ′. That is, there is no message m′ ̸= m where
there is a valid signature of m′ relative to vk.
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• For any m, GenBind(1λ,m) and (vk,Sign(sk,m)) are indistinguishable, where (vk, sk) ←
Gen(1λ). This property implies that Ver(vk,m, σ) accepts, when (vk, σ)← GenBind(1λ,m).

Definition 10. A multi-point binding (MPB) hash function is a triple (Gen, H,GenBind) where:

• Gen(1λ, 1n) takes as input the security parameter λ, and an upper bound n on the number of
inputs to bind. It produces a hashing key hk.

• H(hk, x) deterministically produces a hash h.

• GenBind(1λ, 1n, S∗) takes as input λ, n, and also a set S∗ of inputs of size at most n. It
produces a hashing key hk with the property that, with overwhelming probability over the choice
of hk← GenBind(1λ, 1n, S∗), for any x ∈ S∗ and any x′ ̸= x (which may or may not be in S∗),
H(hk, x) ̸= H(hk, x′).

• For any n and any set S∗ of size at most n, (S∗,Gen(1λ, 1n)) is computationally indistinguish-
able from (S∗,GenBind(1λ, 1n, S∗)).

A single-point binding (SPB) hash function is as above, except we fix n = 1.

We will rely on the following Lemmas from Guan, Wichs, and Zhandry [GWZ21]:

Lemma 10 ([GWZ21]). Assuming one-way functions exist, so do single-point binding signatures.

Lemma 11 ([GWZ21]). Assuming one-way functions and iO exist, so do single-point binding hash
functions.

We now give an adaptation of Lemma 11 to achieve multi-point binding hashes:

Lemma 12. Assuming one-way functions and iO exist, then so do multi-point binding hash
functions.

This lemma is proved in Appendix C, following almost identical ideas to the proof of Lemma 11
from [GWZ21].

We use single/multi-point binding hash functions in order to statistically bind to an input m (or
set of inputs S∗) with a hash that is much smaller than m. Such hash functions will contain many
collisions, but the point binding guarantee means that there is no collision with m or S∗. The SPB
signature is used for similar reasons.

Our NIKE Construction. We don’t bound collusion queries c (that is, the number of corruption
queries), but bound the number of honest users, which implicitly bounds the collusion queries at n.

• Setup(1λ, 1ℓ, 1n): Run hk ← GenHash(1
λ, 1n). Let Y be the range of H. Also sample k ←

GenPRF (1
λ, |Y|, 1ℓ, 1n). Let KGenhk,k be the program given in Figure 5, padded to the

maximum size of the programs in Figures 5 and 6, and let K̂Gen = iO(KGenhk,k). Output

crs = K̂Gen.

• Pub(crs): Sample a random message m and run (vk, σ)← GenBindSig(1
λ,m). Output pk = vk

and sk = (m,σ).

• KeyGen(crs, pk1, . . . , pkℓ, i, ski): assume the pkj are sorted in order of increasing pk according
to some fixed ordering; if the pkj are not in order sort them, and change i accordingly. Write

crs = K̂Gen, pkj = vkj and ski = (mi, σi). Then output K̂Gen(vk1, . . . , vkℓ, i,mi, σi).
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Figure 5: The program KGenhk,k.

Inputs: vk1, . . . , vkℓ, i,mi, σi
Constants: hk, k

1. If the vki are not sorted in increasing order, immediately abort and output ⊥.

2. If Ver(vki,mi, σi) rejects, immediately abort and output ⊥.

3. For each t ∈ [ℓ], let ut = H(hk, vkt).

4. Output EvalPRF (k, u1||u2|| . . . ||uℓ)

Correctness. We must show that for any n and i, j ∈ [ℓ], KeyGen(crs, {pk1, . . . , pkℓ}, i, ski) outputs
a value equal to KeyGen(crs, {pk1, . . . , pkℓ}, j, skj) with overwhelming probability. This follows
from the correctness of the signature scheme. With overwhelming probability, Ver(vki,mi, σi)
=Ver(vkj ,mj , σj)=1. Once the signature check passes, the outputs are identical.

4.4.1 Security.

We will prove security via a sequence of hybrid experiments.

• Gamereal : This corresponds to the security game.

– Setup Phase:

The challenger samples hk← GenHash(1
λ, 1n).

Next, it samples k ← GenPRF (1
λ, |Y|, 1ℓ, 1n).

The challenger computes K̂Gen = iO(KGenhk,k) and sends crs = K̂Gen to the adversary.
It also maintains a table T which is initially empty.

– Pre-challenge Queries The adversary makes the following queries:

∗ Honest user registration query : For the ith registration query, the challenger chooses
m∗

i , computes (vk∗i , σ
∗
i )← GenBindSig(1

λ,m∗
i ), sets vk

∗
i as the public key and (m∗

i , σ
∗
i )

as the secret key. It adds (vk∗i , (m
∗
i , σ

∗
i ), 0) to the table T .

∗ Corruption query : On receiving a corruption query for vk∗i , the challenger sends
(m∗

i , σ
∗
i ) to the adversary, and updates the ith entry in T to (vk∗i , (m

∗
i , σ

∗
i ), 1).

∗ Registering Malicious user : On receiving pk, the challenger adds (pk,⊥, 1) to T .

– Challenge Query On receiving (vk1, . . . , vkℓ), the challenger checks that the table T
contains a (vki, (mi, σi), 0) for each i ∈ [ℓ]. If so, it chooses a random bit b← {0, 1}. If
b = 0, it sends EvalPRF (k, u1|| . . . ||uℓ), where ui = H(hk, vki). Else it sends a uniformly
random string.

– Post-challenge Queries Same as pre-challenge queries.

– Guess Finally, the adversary sends its guess b′, and wins if b = b′.

• Game1: In this experiment, the challenger chooses the ℓ (vk, σ) pairs during setup. These are
used to answer registration queries. The distribution of all components is identical to that in
the previous experiment.
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– Setup Phase:

For j ∈ [n], the challenger chooses m∗
j and (vk∗j , σ

∗
j )← GenBindSig(1

λ,m∗
j ).

The challenger samples hk← GenHash(1
λ, 1n).

Next, it samples k ← GenPRF (1
λ, |Y|, 1n, 1ℓ).

The challenger computes K̂Gen = iO(KGenhk,k) and sends crs = K̂Gen to the adversary.
It also maintains a table T which is initially empty.

• Game2: In this experiment, the challenger uses the honest users’ verification keys to sample a
hash key that is binding to all the verification keys.

– Setup Phase:

For j ∈ [n], the challenger chooses m∗
j and (vk∗j , σ

∗
j )← GenBindSig(1

λ,m∗
j ).

The challenger samples hk← GenBindHash

(
1λ, {vk∗i }i∈[n]

)
.

Next, it samples k ← GenPRF (1
λ, |Y|, 1ℓ, 1n).

The challenger computes K̂Gen = iO(KGenhk,k) and sends crs = K̂Gen to the adversary.
It also maintains a table T which is initially empty.

• Game3: In this game, the challenger uses a different (but functionally identical) program
(KGenAlt, defined in Figure 6) for computing the CRS.

– Setup Phase:

For j ∈ [n], the challenger chooses m∗
j and (vk∗j , σ

∗
j )← GenBindSig(1

λ,m∗
j ).

The challenger samples hk← GenBindHash

(
1λ,

{
vk∗j

}
j∈[n]

)
.

Next, it samples k ← GenPRF (1
λ, |Y|, 1ℓ, 1n).

The challenger then computes u∗j = H(hk, vk∗j ) and sets S = {u∗j}j∈[n].

It computes KS ← Punc(k, S) and constrained keys

K∗
j =

(
Constr(k, S, t, u∗j )

)
t∈[ℓ]

. It sets v∗j = m∗
j ⊕K∗

j for each j ∈ [n].

The challenger computes ̂KGenAlt = iO
(
KGenAlthk,{u∗

j ,v
∗
j ,K

∗
j },KS

)
and sends

crs = ̂KGenAlt to the adversary. It also maintains a table T which is initially empty.

• Game4: In this experiment, the challenger chooses the verification keys using GenSig instead
of GenBindSig.

– Setup Phase:

For j ∈ [n], the challenger chooses m∗
j , (sk∗j , vk

∗
j )← GenSig(1

λ) and σ∗
j ← Sign(sk∗j ,m

∗
j ).

The challenger samples hk← GenBindHash

(
1λ,

{
vk∗j

}
j∈[n]

)
.

Next, it samples k ← GenPRF (1
λ, |Y|, 1ℓ, 1n).
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Figure 6: The program KGenAlthk,{u∗
j ,v

∗
j ,K

∗
j },KS

.

Inputs: vk1, . . . , vkℓ, i,mi, σi
Constants: Hash key hk

S =
{
u∗j

}
j∈[n]{

v∗j

}
j∈[n]

Punctured key KS

1. If the vki are not sorted in increasing order, immediately abort and output ⊥.

2. If Ver(vki,mi, σi) rejects, immediately abort and output ⊥.

3. For each t ∈ [ℓ], let ut = H(hk, vkt).

4. If ui ∈ {u∗j}j∈[n], compute K∗
j =

(
K∗

j,t

)
t∈[ℓ]

= mi ⊕ v∗i ,

then output EvalC(K∗
j,i, u1||u2|| . . . ||uℓ). Else output EvalP(KS , u1||u2|| . . . ||uℓ).

The challenger then computes u∗j = H(hk, vk∗j ) and sets S = {u∗j}j∈[n].

It computes KS ← Punc(k, S) and constrained keys K∗
j =

(
Constr(k, S, t, u∗j )

)
t∈[ℓ]

∀j ∈ [n].

It sets v∗j = m∗
j ⊕K∗

j for each j ∈ [n].

The challenger computes ̂KGenAlt = iO
(
KGenAlthk,{u∗

j ,v
∗
j ,K

∗
j },KS

)
and sends

crs = ̂KGenAlt to the adversary. It also maintains a table T which is initially empty.

• Game5: This game represents a syntactic change. Instead of choosing m∗
j first and then

computing v∗j , the challenger chooses uniformly random v∗j , and sets m∗
j = v∗j ⊕K∗

j . In terms
of the adversary’s view, this experiment is identical to the previous one.

– Setup Phase:

For j ∈ [n], the challenger chooses (sk∗j , vk
∗
j )← GenSig(1

λ).

The challenger samples hk← GenBindHash

(
1λ,

{
vk∗j

}
j∈[n]

)
.

Next, it samples k ← GenPRF (1
λ, |Y|, 1ℓ, 1n).

The challenger then computes u∗j = H(hk, vk∗j ) and sets S = {u∗j}j∈[n].
It computes KS ← Punc(k, S).

The constrained keys are not chosen during setup. It chooses v∗j for each j ∈ [ℓ].

The challenger computes ̂KGenAlt = iO
(
KGenAlthk,{u∗

j ,v
∗
j},KS

)
and sends crs = ̂KGenAlt

to the adversary. It also maintains a table T which is initially empty.
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– Pre-Challenge Queries:

∗ Corruption query : On receiving a corruption query for vk∗i , the challenger com-

putes K∗
i =

(
Constr(k, S, t, u∗j )

)
t∈[ℓ]

. It then computes m∗
j = v∗j ⊕K∗

j and sends

(m∗
i , σ

∗
i ) to the adversary, and updates the ith entry in T to (vk∗i , (m

∗
i , σ

∗
i ), 1).

In Appendix C.4, we analyse the adversary’s advantage in each of these experiments, and show
that these games are computationally indistinguishable.

5 Construction of 1-SF-PRFs

The previous section worked to distill adaptively secure NIKE to the more basic primitive of
constrained PRFs for one symbol fixing. While these transformations simplify the problem, the
central barriers to proving adaptive security still remain. In this section we address these head on.

Let’s review the main issues for adaptivity. Consider an adversary A that first makes several
constrained key queries (index1, sym1), . . . , (indexQ, symQ). Next the A submits a challenge input x∗

such that x∗i ̸= z for any pre-challenge key query (i, z) and receives back the challenge output from
the challenger. Before submitting its guess, A will first perform some consistency checks on the
constrained keys it received. For example, it can run the evaluation algorithm on multiple points
that are valid for different sets of constrained keys and verify that it receives the same output from
each execution. If not, it aborts and refuses to submit its guess.

Dealing with such an attacker is difficult for multiple reasons. First, a reduction algorithm
cannot simply guess x∗ or which index/symbol pairs will be queried without an exponential loss.
Second, it cannot issue constrained keys that are deviate much from each other less this be detected
by A’s consistency checks.

We overcome these issues with a proof strategy where the challenger gradually issues constrained
keys that deviate from a canonical PRF which is used to evaluate on the challenge input. However,
we endeavor to keep all subsequent issued keys consistent with any introduced deviation so that
this will avoid being detected.

Diving deeper our construction will use constrained keys which are obfuscated programs. Initially,
the obfuscated program will simply check if an input x is consistent with the single symbol fixing of
the key. If so, it evaluates the canonical PRF which is a Naor-Reingold style PRF.

The proof will begin by looking at the first key that is issued by the challenger for some query
(index1, sym1). For this key the obfuscated program will branch off and evaluate any inputs x where
xindex1 = sym1 in a different, but functionally equivalent way to the canonical PRF. By the security
of iO this will not be detected. Moreover, this alternative evaluation for when xindex1 = sym1 will
be adopted by all further issued keys. Once this alternative pathway is set for all keys, we can
change the evaluation on such inputs to be inconsistent with the canonical PRF, but mutually
consistent with all issued keys. This follows from the DDH assumption. The proof can then proceed
to the transforming the second issued key in a similar way such that there is a separate pathway
for all inputs x where xindex2 = sym2. The one exception is that the second and all future keys
will give prioritization to the first established pathway whenever we have an input x where both
xindex1 = sym1 and xindex2 = sym2.

The proof continues on in this way where each new key issued will establish an alternative
evaluation which will be used except when it is pre-empted by an earlier established alternative. In
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this manner the constrained keys issued will always be mutually consistent on inputs, even while the
gradually deviate from the canonical PRF. Finally, at the end of the proof all issued keys will always
used some alternative pathway for all evaluations. At this point we can use indistinguishability
obfuscation again to remove information about the canonical PRF from the all obfuscated programs
since it is never used. With this information removed no attacker can distinguish a canonical PRF
output from a random value.

We remark that in order to execute our proof strategy, our initial obfuscated program must be
as large as any program used in the proof. In particular, it must be large enough to contain an
alternative evaluation programming for all corrupted keys. Thus our constrained PRF keys must
grow in size proportional to ℓ · |Σ| and our resulting NIKE is parameterized for a set number of
collusions.

5.1 Construction

• Gen(1λ,Σ, 1ℓ): The key generation algorithm first runs G(1λ) to compute (p,G). Next, it
chooses v ← G, exponents ej,w ← Zp for each j ∈ [ℓ], w ∈ Σ. The PRF key K consists of
(v, {ej,w}).

• Eval(K, x): Let K = (v, {ej,w}) and x = (x1, . . . , xℓ) ∈ Σℓ. The PRF evaluation on input x is

vt, where t =
(∏

j≤n ej,xj

)
.

• Constr(K, i, z) : The constrained key is an obfuscation of the ConstrainedKeyK,i,z program
(defined in Figure 7). The program is sufficiently padded to ensure that its description is of
the same size as the programs ConstrainedKeyAlt, ConstrainedKeyAlt′ and ConstrainedKeyEnd
(defined in Figure 8 , 9 and 32 (Appendix D) respectively).

It outputs Ki,z ← iO(1λ,ConstrainedKeyK,i,z) as the constrained key.

ConstrainedKeyK,i,z

Input: x = (x1, . . . , xℓ) ∈ Σℓ

Constants: Group element v
Exponents {ej,w}j∈[ℓ],w∈Σ

Constraining index/symbol i ∈ [ℓ], z ∈ Σ

1. If xi ̸= z output ⊥.

2. Compute t =
(∏

j≤ℓ ej,xj

)
.

3. Output vt.

Figure 7: Program ConstrainedKey

• EvalC(Ki,z, x): The constrained key Ki,z is an obfuscated program. The evaluation algorithm
outputs Ki,z(x).

5.2 Security Proof

We will prove that the above construction satisfies security against unique-query adversaries, via a
sequence of hybrid games. The first game corresponds to the original security game (security against
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unique query adversary). Next, we define Q hybrid games {Gamey}y∈[Q], where Q is a bound on
the total number of constrained key queries by the adversary.

• Gamereal:

– Setup Phase: The challenger chooses v ← G, ej,w ← Zp for each j ∈ [ℓ], w ∈ Σ. Let
K = (v, (ej,w)j,w).

The challenger also maintains an ordered list L of (index, sym) pairs. This list is initially
empty, and for each (new) query, the challenger adds a tuple to L.

– Pre-challenge queries: Next, the challenger receives pre-challenge constrained key
queries. Let (indexj , symj) be the jth constrained key query. The challenger adds
(indexj , symj) to L.

The challenger computes the constrained key
Kj ← iO(1λ,ConstrainedKeyK,indexj ,symj

) and sends Kj to the adversary.

– Challenge Phase: Next, the adversary sends a challenge x∗ such that x∗i ̸= z for any
pre-challenge key query (i, z). The challenger chooses b← {0, 1}. If b = 0, the challenger
computes t =

∏
i ei,x∗

i
and sends vt. If b = 1, the challenger sends a uniformly random

group element in G.

– Post-challenge queries: The post-challenge queries are handled similar to the
pre-challenge queries.

– Guess: Finally, the adversary sends the guess b′ and wins if b = b′.

• Gamey: In this game, the challenger uses an altered program for the first y constrained keys.
It computes an obfuscation of ConstrainedKeyAlt (defined in Figure 8), and it is padded to be
of the same size as ConstrainedKey, ConstrainedKeyAlt′ and ConstrainedKeyEnd.

– Setup Phase: The challenger chooses v ← G, hj ← G for all j ∈ [y] and ej,w ← Zp

for all j ∈ [ℓ], w ∈ Σ. Let H = (hj)j∈[y].

The challenger also maintains an ordered list L of (index, sym) pairs which is initially
empty.

– Pre-challenge queries: Next, the challenger receives pre-challenge constrained key
queries. Let (indexj , symj) be the jth constrained key query. The challenger adds
(indexj , symj) to L.

Let s = min(y, j), and let Ls (resp. Hs) denote the first s entries in L (resp. H). The
challenger computes the constrained key

Kj ← iO(1λ,ConstrainedKeyAlts,Ls,Hs,v,(ej,w),indexj ,symj
) and sends Kj to the adversary.

– Challenge Phase: Next, the adversary sends a challenge x∗ such that x∗i ̸= z for any
pre-challenge key query (i, z). The challenger chooses b← {0, 1}. If b = 0, the challenger
computes t =

∏
i ei,x∗

i
and sends vt. If b = 1, the challenger sends a uniformly random

group element in G.

– Post-challenge queries: The post-challenge queries are handled similar to the
pre-challenge queries.

– Guess: Finally, the adversary sends the guess b′ and wins if b = b′.
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ConstrainedKeyAlts,Ls,Hs,v,(ej,w),i,z

Input: x = (x1, . . . , xℓ) ∈ Σℓ

Constants: s ∈ ℓ · |Σ|

List Ls =
((
indexj , symj

))
j∈[s]

Hs = (hj)j∈[s]

Group element v,
Exponents (ej,w)j,w,

Constraining index/symbol i ∈ [ℓ], z ∈ Σ

1. If xi ̸= z output ⊥.

2. Compute t =
(∏

j≤ℓ ej,xj

)
.

3. Find the smallest j ∈ [s] such that xindexj = symj .

(a) If such j exists, then output ht
j .

(b) Else output vt.

Figure 8: Program ConstrainedKeyAlt

5.2.1 Analysis

We will now show that Gamereal and Gamey are computationally indistinguishable for all y ∈ [Q].
Finally, we will show that no polynomial time adversary has non-negligible advantage in GameQ,
thereby showing that the scheme is secure against unique query adversaries. For any adversary A,
let advA,real denote A’s advantage in Gamereal, and let advA,y denote A’s advantage in Gamey.

Lemma 13. Assuming iO is secure, for any PPT adversary A, there exists a negligible function
negl such that for all λ, |advA,real − advA,0| ≤ negl(λ).

Proof. For y = 0, the lists Ly and Hy are empty, and as a result, the programs are functionally iden-
tical. On any input x, both programs output vt. Therefore, their obfuscations are computationally
indistinguishable.

Lemma 14. Fix any y ∈ [Q]. Assuming DDH and security of iO, for any PPT adversary A making
at most Q queries, there exists a negligible function negl such that for all λ, |advA,y − advA,y+1| ≤
negl(λ).

Proof. We will define a few hybrid games to show that Gamey and Gamey+1 are computationally
indistinguishable. The main difference in the two games is with regard to the last Q− y constrained
key queries. Note that the first y constrained keys are identical in both experiments. For each of
the last Q− y constrained keys, if (i, z) is the constrained key query, then the adversary receives an
obfuscation of

• Py,i,z ≡ ConstrainedKeyAlty,Ly ,Hy ,v,(ej,w),i,z in Gamey,

• Py+1,i,z ≡ ConstrainedKeyAlty+1,Ly+1,Hy+1,v,(ej,w),i,z in Gamey+1
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Note that the programs Py,i,z and Py+1,i,z only differ on inputs x where xi = z (in one case the
output is vt, while in the other case the output is hty+1). We will prove that these two hybrid games
are indistinguishable, using a sequence of sub-hybrid experiments defined below.

• Gamey,a: This security game is similar to Gamey, except that the challenger guesses the
(y + 1)th query in the setup phase.

– Setup Phase: The challenger chooses v ← G, hj ← G for all j ∈ [y] and ej,w ← Zp for
all j ∈ [ℓ], w ∈ Σ. Let Hy = (hj)j∈[y].

The challenger maintains an ordered list L of (index, sym) pairs which is initially empty.

The challenger also chooses (indexy+1, symy+1)← [ℓ]× Σ.

– Pre-challenge queries: Next, the challenger receives pre-challenge constrained key
queries. Let (indexq, symq) be the qth constrained key query. The challenger adds
(indexq, symq) to L.

If the (y + 1)th query is not (indexy+1, symy+1), then the challenger aborts. The

adversary wins with probability 1/2.

Let s = min(y, q), and let Ls denote the first s entries in L. The challenger computes
the constrained key
Kq ← iO(1λ,ConstrainedKeyAlts,Ls,Hs,v,(ej,w),indexq ,symq

) and sends Kq to the adversary.

– Challenge Phase: Next, the adversary sends a challenge x∗ such that x∗i ̸= z for any
pre-challenge key query (i, z). The challenger chooses b← {0, 1}. If b = 0, the challenger
computes t =

∏
i ei,x∗

i
and sends vt. If b = 1, the challenger sends a uniformly random

group element in G.

– Post-challenge queries: The post-challenge queries are handled similar to the
pre-challenge queries.

– Guess: Finally, the adversary sends the guess b′ and wins if b = b′.

• Gamey,b: This security game is similar to Gamey,a, except that the challenger chooses the
hj constants and one of the ej,w exponents differently. However, the distribution of these
components is identical to their distribution in the previous game.

– Setup Phase: The challenger chooses g ← G, b← Zp, cj ← Zp for all j ∈ [y].

It sets v = gb, hj = gcj .

The challenger maintains an ordered list L of (index, sym) pairs which is initially empty.

The challenger also chooses (indexy+1, symy+1)← [ℓ]× Σ.

It chooses ej,w ← Zp for all j ∈ [n], w ∈ Σ, (j, w) ̸= (indexy+1, symy+1) .

It chooses a← Zp and sets eindexy+1,symy+1
= a, A = ga and T = va .

Note that the terms A and T are not used in this experiment; they will be used in some
of the following hybrid experiments. Let Hy = (hj)j∈[y].
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• Gamey,c: In this security game, the challenger computes the constrained keys differently.
Instead of sending an obfuscation of ConstrainedKeyAlt (with appropriate hardwired constants),
the challenger computes an obfuscation of ConstrainedKeyAlt′ (with appropriate hardwired
constants). The program ConstrainedKeyAlt′ is defined in Figure 9, and is padded to be of the
same size as ConstrainedKey, ConstrainedKeyAlt and ConstrainedKeyEnd.

The main difference is that ConstrainedKeyAlt′ does not contain the exponent eindexy+1,symy+1

(recall (indexy+1, symy+1) is the (y + 1)th constrained key query, and the challenger guesses
this query during setup). Instead, the program contains g

eindexj+1,symj+1 and v
eindexj+1,symj+1 . As

a result, the final output is computed differently (although the outputs are identical).

We will show that the two programs are functionally identical, and therefore their obfuscations
are computationally indistinguishable.

– Pre-challenge queries: Let (indexq, symq) be the qth constrained key query. The
challenger adds (indexq, symq) to L. Let Lj denote the first j entries in L.

If q ≤ y, the challenger computes
Kq ← iO(1λ,ConstrainedKeyAltq,Lq ,Hq ,v,(ej,w),indexq ,symq

) and sends Kq to the adversary.

If the (y+1)th query is not (indexy+1, symy+1),
4 then the challenger aborts. The adversary

wins with probability 1/2.

If q > y, the challenger sends an obfuscation of the following program:

ConstrainedKeyAlt′y,Ly ,(indexy+1,symy+1),{cy},g,v,B,T,(ej,w)(j,w)̸=(indexy+1,symy+1)
,indexq ,symq

• Gamey,d : In this security game, the challenger sets T to be a uniformly random element in G.

– Setup Phase: The challenger chooses g ← G, b← Zp, cj ← Zp for all j ∈ [y].

It set v = gb, hj = gcj .

The challenger maintains an ordered list L of (index, sym) pairs which is initially empty.

The challenger also chooses (indexy+1, symy+1)← [ℓ]× Σ.

It chooses ej,w ← Zp for all j ∈ [ℓ], w ∈ Σ, (j, w) ̸= (indexy+1, symy+1).

It chooses a← Zp and sets eindexy+1,symy+1
= a, A = ga and T ← G . Let Hy = (hj)j∈[y].

• Gamey,e : This security game represents a syntactic change. We choose hj+1 ← G and set
T = haj+1. The group element hj+1 is not used anywhere else.

• Gamey,f : In this experiment, the challenger uses ConstrainedKeyAlt for the last Q − y con-
strained key queries. More formally, on receiving query (i, z), the challenger sends an ob-
fuscation of ConstrainedKeyAlty+1,Ly+1,Hy+1,v,(ek,w),i,z. Here Ly+1 and Hy+1 are defined as in

Gamey,e.

• Gamey,g : This security game is identical to Gamey,f , and the changes in this game are syntactic.
Instead of sampling exponents cj and setting hj = gcj , the challenger chooses hj ← G. Similarly,
the challenger samples v ← G, and samples all the exponents ej,w ← Zp. Note that this
experiment is identical to Gamey+1, except that the challenger guesses (indexy+1, symy+1) in
the setup phase.

4Recall (indexy+1, symy+1) is chosen during the setup phase.
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ConstrainedKeyAlt′

Input: x = (x1, . . . , xℓ) ∈ Σℓ

Constants: y ∈ [ ℓ · |Σ| ]
List of first y queries Ly =

((
indexj , symj

))
j∈[y]

(y + 1)th query (indexy+1, symy+1)
exponents for computing (hj)j : (cj)j∈[y]

Group elements g, v, A, T
PRF eval exponents = (ej,w)(j,w)̸=(indexy+1,symy+1)

Constraining index/symbol i ∈ [ℓ], z ∈ Σ

1. If xi ̸= z output ⊥.

2. Compute t as follows:

(a) If xindexy+1 = symy+1 then set t =
(∏

j ̸=indexy+1
ej,xj

)
(b) Else t =

(∏
j ej,xj

)
3. Find the smallest j ∈ [y] such that xindexj = symj .

(a) If such j exists and xindexy+1
= symy+1 then output (A)

t·cj

(b) If such j exists and xindexy+1
̸= symy+1 then output

(
gcj
)t

(c) Else if no such j exists and xindexy+1 = symy+1 output (T )t.

(d) Else if no such j exists and xindexy+1
̸= symy+1 output vt.

Figure 9: Program ConstrainedKeyAlt′

Claim 1. For any y ∈ [Q], and any adversary A making at most Q constrained key queries,
|advA,y − advA,y+1| = 1

ℓ·|Σ| (|advA,y,a − advA,y,g|).

Proof. Note that the only difference between Gamey,a and Gamey is that the challenger guesses the
(y + 1)th constrained key query in the setup phase. Similarly, the only difference between Gamey,g
and Gamey+1 is that the challenger guesses the (y+1)th constrained key query. This guess is correct
with probability 1/(ℓ · |Σ|), and therefore |advA,y − advA,y+1| = 1

ℓ·|Σ| (|advA,y,a − advA,y,g|).

Therefore, it suffices to show that Gamey,a, . . . ,Gamey,g are computationally indistinguishable.
This is proved in Appendix D. Proving the indistinguishability of these hybrids completes the proof
of Lemma 14.

6 NIKE Scheme with Unbounded Honest Users

Construction Overview : In this scheme, our construction supports an unbounded number
of honest users, but at most c corruptions. The setup algorithm takes this corruption bound c,
together with a bound ℓ on the number of parties that can derive a shared key. It outputs a crs,
which is an obfuscated program that will be used for generating the shared key. The program
takes as input ℓ public keys and one secret key. Each public key consists of a random string s and
a signature scheme’s verification key vk. The corresponding secret key is a (random) message m
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and a signature σ on m. The crs program, on input pk1, . . . , pkℓ and ski = (mi, σi), first checks
that σi is a valid signature on mi. Next, it computes a hash of each of the ℓ public keys (that is,
uj = Hash(pk, pkj)). The crs program also has a PRF key Kmain hardwired, using which it computes
a pseudorandom integer tj = F(Kmain, uj). It finally computes the product of all these ℓ integers (let
t denote the product of t1, t2, . . . , tℓ), and outputs vt, where v is a random group element hardwired
in the program.

The ‘publish’ algorithm Pub is used to sample a public key and the corresponding secret key. It
chooses a random message m, then samples a verification key vk and a signature σ that is binding
to m (using the GenBindsig algorithm). It then chooses a random string s. The public key is (s, vk),
and the corresponding secret key is (m,σ).

The key generation algorithm simply takes ℓ public keys, one secret key, and runs the crs program
to sample the shared key.

Construction: Let ℓct denote the size of ciphertexts output by the PPDE scheme with message
space {0, 1}λ. Let ℓhash denote the output length of the hash function (note that the output length
depends only on λ, and does not depend on the message space for the hash function). Let ℓm denote
the size of message space of the signature scheme, and ℓvk the size of the verification key output by
GenSign. Finally, let ℓhk denote the size of the hash key output by GenHash.

• Setup(1λ, 1ℓ, 1c): The setup algorithm takes as input the security parameter λ, a bound c on
the number of corrupt users and a bound ℓ on the number of parties that can derive a shared
key.

Run hk← GenHash(1
λ, 1).5 Let Y be the range of H. Also sample Kmain ← GenPRF (1

λ, |Y|).
Let KGenhk,Kmain,v be the program given in Figure 10, and let K̂Gen = iO(KGenhk,Kmain,v).

Output crs = K̂Gen.

Figure 10: The program KGenhk,Kmain,v.

Inputs: pk1 = (s1, vk1), . . . , pkℓ = (sℓ, vkℓ), i,mi, σi
Constants: hk,Kmain, v

1. If Ver(vki,mi, σi) rejects, immediately abort and output ⊥.

2. For each j ∈ [ℓ], let uj = H(hk, (sj , vkj)).

3. For each j ∈ [ℓ], let tj = F(Kmain, uj).

4. Compute t =
∏

j tj and output vt.

• Pub(crs): Sample a random message m ← {0, 1}ℓm and run (vk, σ) ← GenBindSig(1
λ,m).

Choose s← {0, 1}ℓct , and output pk = (s, vk) and sk = (m,σ).

• KeyGen(crs, pk1, . . . , pkℓ, i, ski): let crs = K̂Gen, pkj = (sj , vkj) for all j ∈ [ℓ], and ski = (mi, σi).

The algorithm outputs K̂Gen(pk1, . . . , pkℓ, i,mi, σi).

5We only need single-point binding hash function for this construction.
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Correctness and Size of Various Components:
Correctness follows immediately from the correctness of iO and the correctness of the signature

scheme.
We will now list the sizes of the various components. First, the size of the public key is ℓct + ℓvk,

which is polynomial in λ, ℓ and c. Note that the message space of the signature scheme is {0, 1}ℓm ,
and looking ahead, the size of the message should be equal to the size of the obfuscation of program
EvalProg defined in Figures 13. The size of the obfuscation of EvalProg, and therefore ℓm, is bounded
by poly(λ, ℓ, c). 6 Since the message size is of size poly(λ, ℓ, c), the verification keys and the signatures
are of size poly(λ, c, ℓ). The size of the hash key generated by Genhash depends on ℓct (the size of s)
and ℓvk (the size of the verification key). As a result, the hash key has size poly(λ, c, ℓ). Finally, the
crs is an obfuscation of KGen, and therefore it has size bounded by poly(λ, c, ℓ).

Security: The security proof goes via a sequence of hybrid experiments. Let Q denote the number
of honest user registration queries made by the adversary (note that Q can be any unbounded
polynomial; it is not bounded during setup). First, we have experiments GameA,1, . . . ,GameA,Q. In
the yth experiment GameA,y, the challenger alters the crs program, as well as the first y honest user
registrations. For the jth honest user registration, if j ≤ y, then the string sj is a pseudorandom
deterministic encryption of j, and the message mj and the verification key vkj are derived from sj
(mj and rj are pseudorandom strings derived from sj , and (mj , σj) = GenBindsig(mj ; rj)). Let us
call these public keys of type = 1 (by default, type = 0).

The crs program, on input ℓ public keys and a secret key, checks how many of these public keys
are of type = 1. It has an integer a hardwired, and if there are cnt such public keys, (and assuming

the secret key is valid), the program sets t = acnt ·
∏

j tj and outputs vt. In Section 6.1, we provide
an overview of why GameA,y and GameA,y+1 are indistinguishable.

At the end of these Q hybrid experiments, in GameA,Q, all honestly registered keys have type = 1.
As a result, when the attacker sends an ℓ-size subset of these honestly registered, non-corrupted keys

as the challenge set, the challenger either outputs va
ℓ·
∏

j tj , or a uniformly random group element
(recall, tj is derived from the public key pkj by first hashing it, followed by PRF evaluation). Looking

ahead, we would like to use the DDH-powers assumption to argue that va
ℓ·
∏

j tj is indistinguishable
from a uniformly random group element. To do that, we need to alter the crs program so that it
can evaluate on all inputs using only va

0
, va

1
, . . . , va

ℓ−1
. We use the next Q hybrids {GameB,y}y∈[Q]

to set this up.
In experiment GameB,y, the first y public keys are chosen differently. For the jth public key

(j ≤ y), sj is still an encryption of j. However, the verification key is chosen in non-binding mode.
The challenger computes a pseudorandom string r′j (using sj and PRF key KC), and uses r′j for

sampling sigkj and vkj . This sets the jth public key, but the corresponding secret key will be chosen
only if this key is corrupted. When this key is corrupted, the challenger uses the signing key sigkj
to compute a signature σj on a ‘random-looking’ message mj . However, unlike in GameA,Q, this
message is not a random string - instead, it is an obfuscated program Pj masked by a pseudorandom
string. The first y public keys are now of type = 2.

The crs program counts the number of public keys that are of type = 1 or 2 (note - these are

6While it is immediate that the size of EvalProg depends on ℓ, it is not obvious why it also depends on c. This
dependency arises because the program EvalProg is appropriately padded to be of the same size as EvalProg-1,
EvalProg-2, EvalProg-3 and EvalProg-4. Some of these programs have c constants hardwired, hence the size of all
these programs also depends on c.
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the keys that were issued by the challenger). If all the public keys are either type = 1 or 2, and
the public key corresponding to the secret key is also type = 2, then the crs program extracts the
obfuscated program P from the message m (recall, since this is one of the first y keys, the message
is an obfuscated program masked by a pseudorandom string). This program P takes as input the

hash strings {uj} as input, computes the integers {tj} using F(Kmain, ·), and outputs va
ℓ·
∏

j tj . Note
that this is the same output that the crs program would’ve produced. In Section 6.2, we provide an
overview of the indistinguishability argument.

This brings us to hybrid GameB,Q. In this hybrid, all the public keys are of type = 2. Also,

note that the crs program does not require va
ℓ
because if all input public keys are of type 2, then

the program uses the message to extract an obfuscated program. If any one of the keys is not of
type = 2, then the count cnt is less than ℓ, and therefore, the crs program can compute this using
va

0
, va

1
, . . . , va

ℓ−1
. However, note that the message mj in the jth secret key contains program Pj ,

and this program currently computes va
ℓ·
∏

j tj . We will modify the outputs of these programs so
that va

ℓ
is not needed to compute the output. While we are altering the outputs of these programs

(and not just the implementation), since the tj integers are pseudorandom, the adversary does not
detect this change. More details can be found in the proof overview given in Section 6.3.

Formal description of hybrid experiments: The first experiment Gamereal corresponds to the
adaptive security game. Next, we have Q hybrid games {GameA,y}y∈[Q]. After GameA,Q, we have

Q more hybrid experiments {GameB,y}y∈[Q]. First, we show (in Section 6.1) that GameA,y and

GameA,y+1 are computationally indistinguishable (for any y ∈ [Q − 1]). Next, we show a similar
claim for GameB,y and GameB,y+1 (in Section 6.2). Finally, (in Section 6.3), we show that any
polynomial time adversary has negligible advantage in GameB,Q.

• Gamereal: In this experiment, the challenger first performs setup, then receives pre-challenge
queries from the attacker. After these queries, the challenger receives the challenge set. It
either sends the shared key corresponding to this challenge set, or sends a uniformly random
string. The post-challenge queries are handled similar to the pre-challenge queries. The queries
can be of the following types:

– Setup Phase The challenger chooses hash key hk, PRF Kmain and computes an obfusca-
tion of KGenhk,Kmain

.

– Pre/Post Challenge Queries The challenger receives the following queries in the
pre-challenge/post-challenge phase.

∗ honest user registration queries - the challenger chooses s,m uniformly at random,
computes (σ, vk) ← GenBindsig(1

λ,m). It sends pk = (s, vk) to the adversary, sets
sk = (m,σ), and adds (pk, sk, 0) to its records.

∗ corruption queries (at most c such queries) - let pk = (s, vk) be the query, and sk the
corresponding secret key. The challenger sends sk, and updates its records to indicate
that pk is corrupted (that is, the corresponding record is updated to (pk, sk, 1)).

∗ malicious user registration queries - the adversary sends the public key of the malicious
user

∗ shared key queries - adversary sends a set of public keys, together with an index
corresponding to an uncorrupted user. The challenger computes a shared key using
the secret key and sends the shared key.
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– Challenge Query On receiving the set of ℓ public keys for the challenge, the challenger
checks that none of these public keys are malicious or corrupted. After performing this
check, the challenger either sends the shared key or a uniformly random string.

• GameA,y: Next, we define Q hybrid experiments GameA,y for each y ∈ [Q]. There are two
changes when we go from GameA,y to GameA,y+1.

First, in the (y+1)th honest user registration, the s is now a PDE encryption of (y+1), (m, r)
are pseudorandomly derived from s, and the verification key and signature are derived using
GenBindsign with m as the message, and r as the randomness.

Second, the crs is also altered. Given a public key pk = (s, vk), it checks if the public key is of
this special form. If so, it changes the final PRF output accordingly.

– Setup Phase

∗ The challenger chooses hash key hk, PRF Kmain.

∗ It chooses PRF key KE , PPDE key KDet .

∗ It computes an obfuscation of KGenAlt-1hk,Kmain,KDet,KE ,y , where KGenAlt-1 is de-

fined in Figure 11.

– Pre/Post Challenge Queries The challenger receives the following queries in the
pre-challenge/post-challenge phase.

∗ honest user registration queries - The challenger receives Q honest user registration
queries.
For the jth query, if j ≤ y, the challenger does the following:

· The challenger computes sj = DetEnc(KDet, j).

· The challenger computes (mj , rj) = F(KE , sj)

· It computes (σj , vkj) = GenBindsig(mj ; rj)

If j > y, it chooses sj ,mj uniformly at random, computes (σj , vkj)← GenBindsig(mj).
It sends pk = (s, vk) to the adversary, sets sk = (m,σ), and adds (pk, sk, 0) to its
records.

∗ corruption queries (at most c such queries) - same as before

∗ malicious user registration queries - same as before

∗ shared key queries - same as before

– Challenge Query same as before

• GameB,y: After the experiment GameA,Q, we have Q more hybrid experiments GameB,y for
each y ∈ [Q]. In the experiment GameB,y, the challenger alters the crs during setup, as well as
the response to the first y honest user registration queries. In particular, the verification key is
now generated in non-binding mode. If any of these y keys are corrupted, then the challenger
sends a ‘special’ (message, signature) pair, where the message has a hidden obfuscated program.

– Setup Phase

∗ The challenger chooses hash key hk, PRF Kmain.
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Figure 11: The program KGenAlt-1y,hk,Kmain,KE ,KDet,v,a.

Inputs: pk1 = (s1, vk1), . . . , pkℓ = (sℓ, vkℓ), i,mi, σi
Constants: y, hk,Kmain,KE ,KDet, v, a

1. If Ver(vki,mi, σi) rejects, immediately abort and output ⊥.

2. For each j ∈ [ℓ], let uj = H(hk, (sj , vkj)).

3. For each j ∈ [ℓ], let tj = F(Kmain, uj).

4. For each j ∈ [ℓ] do the following:

(a) Compute d = Dec(KDet, sj). Interpret d as a positive integer.

(b) Compute (mj , rj) = F(KE , sj).

(c) If (σsj , vksj ) = GenBindsig(mj ; rj) and vksj = vki and d ≤ y, cnt = cnt+ 1.

5. Compute t = acnt ·
∏

j tj and output vt.

∗ It chooses PRF key KE , PPDE key KDet, PRF keys KC,KD.

∗ It chooses a string α, g ← G, a, ν ← Zp. It sets v = gν .

∗ It computes an obfuscation of KGenAlt-2y,hk,Kmain,KDet,KE ,KC,KD
, where KGenAlt-2 is

defined in Figure 12.

– Pre/Post Challenge Queries The challenger receives the following queries in the
pre-challenge/post-challenge phase.

∗ honest user registration queries - The challenger receives Q honest user registration
queries.
For the jth query, if j ≤ y, the challenger does the following:

· The challenger computes sj = DetEnc(KDet, j).

· The challenger computes rj = F(KC, sj).

· It computes (sigkj , vkj) = Gensig(1
λ; rj).

· The challenger sets skj = ‡‡ (indicating that the secret key is not yet set).

If j > y, it sets sj = DetEnc(KDet, j), (mj , rj) = F(KE , sj) and computes (σj , vkj)←
GenBindsig(mj ; rj).
It sends pkj = (sj , vkj) to the adversary, sets skj = (mj , σj), and adds (pkj , skj , 0)
to its records.

∗ corruption queries (at most c such queries) - On receiving a query for public key pk,
the challenger checks if pk = pkj for some registered public key pkj . If j > y, then
the corresponding secret key is already set (during the honest user registration), and
the challenger sends the corresponding secret key.
If pk = pkj for some j ≤ y, then the corresponding secret key is not yet set. It is
chosen as follows:

· Let u∗ = Hash(hk, pkj), t
∗ = F(Kmain, u

∗), w = gν·a
ℓ
, and let EvalProgKmain,w,u∗,t∗

be the program defined in Figure 13. The challenger sets program
Pj = iO(EvalProgKmain,w,u∗,t∗), message mj = Pj ⊕ F(KD, (sj , vkj))⊕ α.
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· It computes σj = Sign(sigkj ,mj), sends (mj , σj).

· It sets skj = (mj , σj), adds (pkj , skj , 1) to its records.

∗ malicious user registration queries - same as before

∗ shared key queries - same as before

– Challenge Query same as before

Figure 12: The program KGenAlt-2y,hk,Kmain,KE ,KC,KD,KDet,v,a.

Inputs: pk1 = (s1, vk1), . . . , pkℓ = (sℓ, vkℓ), i,mi, σi
Constants: y, hk,Kmain,KE ,KC,KD,KDet, v, a

1. If Ver(vki,mi, σi) rejects, immediately abort and output ⊥.

2. For each k ∈ [ℓ], let uk = H(hk, (sk, vkk)).

3. For each k ∈ [ℓ], let tk = F(Kmain, uk).

4. Set cnt = 0. For each k ∈ [ℓ] do the following:

(a) Set typek = 0, compute jk = Dec(KDet, sk). Interpret jk as a positive integer.

(b) Compute (mk, rk) = F(KE , sk) and r′k = F(KC, sk).

(c) If (σsk , vksk) = GenBindsig(mk; rk) and vksk = vkk and y < jk ≤ Q, then typek = 1.

Else if (sigksk , vksk) = Gensig(1
λ; r′k) and vksk = vkk and jk ≤ y, then typek = 2.

(d) If typek = 1 or typek = 2, then cnt = cnt+ 1.

5. If cnt == ℓ and typei == 2

– Compute P = mi ⊕ F(KD, (si, vki))⊕ α.

– Output P ((uj)j ̸=i).

Else compute t = acnt ·
∏

j tj and output vt.

Figure 13: The program EvalProgKmain,w,u∗ .

Inputs: u1, u2, . . . , uℓ−1

Constants: Kmain, w, u
∗, t∗

1. For each k ∈ [ℓ− 1], let tk = F(Kmain, uk). Let uℓ = u∗ and tℓ = t∗.

2. Compute t =
∏

k tk and output wt.

Analysis of Security Games
Let advA,real denote the advantage of adversary A in Gamereal, and advA,i the advantage in

Gamei.
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6.1 From GameA,y to GameA,y+1

There are two main differences when we go from GameA,y to GameA,y+1. In GameA,y, the first y
honest user registrations are in ‘special mode’ (that is, the public key is of type = 1). The crs (which
is an obfuscated program) detects how many of the public keys are in special mode. If there are cnt
public keys in the special mode, then the output is va

cnt·(...) instead of v(...). As a result, when going
from GameA,y to GameA,y+1, there are two main changes: the (y + 1)th honest user registration is
in special mode, and the crs program is altered so that it can detect how many of the first y + 1
honest public keys are present in the input to the program.

If the jth honest user registration is in special mode, then the string sj is a PPDE encryption
of j (instead of being a uniformly random string). The string sj is then used to sample mj and
randomness rj using PRF key KE , and (mj , rj) are used to sample σj and vkj (using GenBindsig).
To go from GameA,y to GameA,y+1, we first puncture the deterministic encryption key at y + 1, and
use this punctured key in the crs program. Note that using a PPDE key punctured at y+1 does not
alter the functionality since in GameA,y, the program does not increment the count of special mode
public keys if s is an encryption of j and j > y. This allows us to switch sy+1 from a uniformly
random string to an encryption of y + 1. After this, we switch back to the unpunctured PPDE key.
Next, we puncture the PRF key KE at sy+1 and use this punctured PRF key in the crs program.
Again, the functionality doesn’t change if we use a punctured PRF key. This allows us to switch
my+1 and ry+1 from uniformly random strings, to being the output of F(KE , sy+1). Having made
this change, the crs program again uses the unpunctured PRF key KE .

Next, we make the hash key binding at (sy+1, vky+1), and puncture the PRF key Kmain at
uy+1 = Hash(hk, pky+1). We hardwire the PRF output at uy+1. Using the security of puncturable
PRFs, we replace the hardwired value ty+1 = F(Kmain, uy+1) with a · F(Kmain, uy+1). This is
equivalent to incrementing cnt if the input is (sy+1, vky+1). Finally, by sampling the hash key in
non-binding mode, and removing the (sy+1, vky+1) hardwiring, we use the iO security to switch the
crs program, and therefore reach GameA,y+1.

Formal proof: We will show that GameA,y and GameA,y+1 are computationally indistinguishable,
via the following sequence of hybrid experiments.

• GameA,y,0: In this experiment, the PPDE key is punctured at y + 1. However, the crs uses
the unpunctured PPDE key. The puncturing algorithm outputs a punctured key and a string
zy+1, and zy+1 is used as sy+1.

• GameA,y,1: In this experiment, the PPDE key is punctured at y + 1. The crs also uses the
punctured PPDE decrytion key.

• GameA,y,2: In this experiment, sy+1 is encryption of y+1 (instead of being a uniformly random
string).

• GameA,y,3: In this experiment, the crs uses an unpunctured PPDE key.

• GameA,y,4: In this experiment, the PRF key KE is punctured at sy+1.

• GameA,y,5: In this experiment, the challenger uses KE to compute my+1 and ry+1.

• GameA,y,6: In this experiment, the challenger does not puncture the PRF key KE at sy+1.
The unpunctured key is used in the crs, as well as for responding to honest user registration
queries.
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• GameA,y,7: In this experiment, the hash key is in binding mode. The challenger computes
sy+1 and vky+1 during setup, and the hash key is binding at (sy+1, vky+1).

• GameA,y,8: In this experiment, PRF key Kmain is punctured at uy+1 : the hash of (sy+1, vky+1).
The PRF value at this input (ty+1) is hardwired in the crs program.

Figure 14: The program KGenAlt-1.1y,hk,Km{u∗},t∗,KE ,KDet,v,a.

Inputs: pk1 = (s1, vk1), . . . , pkℓ = (sℓ, vkℓ), i,mi, σi

Constants: y, hk, Km{u∗}, t∗ , KE ,KDet, v, a

1. If Ver(vki,mi, σi) rejects, immediately abort and output ⊥.

2. For each j ∈ [ℓ], let uj = H(hk, (sj , vkj)).

3. For each j ∈ [ℓ], if uj = u∗, tj = t∗ , else tj = F(Km{u∗}, uj).

4. For each j ∈ [ℓ] do the following:

(a) Compute d = Dec(KDet, sj). Interpret d as a positive integer.

(b) Compute (mj , rj) = F(KE , sj). If the PRF key is punctured at the input, then set
mj = rj =⊥.

(c) If (σsj , vksj ) = GenBindsig(mj ; rj) and vksj = vkj and d ≤ y, cnt = cnt+ 1.

5. Compute t = acnt ·
∏

j tj and output vt.

• GameA,y,9: In this experiment, the value ty+1 (which is hardwired in the crs program) is a
uniformly random element in Zp.

• GameA,y,10: In this experiment, the challenger alters the program as follows. The program
has sy+1, vky+1 hardwired. If (sj , vkj) = (sy+1, vky+1), then the program sets tj = a · t∗. Else
it proceeds as before.

• GameA,y,11: In this experiment, the challenger sets t∗ to be the PRF evaluation at uy+1.

• GameA,y,12: In this experiment, the challenger uses unpunctured key Kmain in the crs program,
and t∗ is computed in the program (instead of being hardwired).

• GameA,y,13: In this experiment, the challenger samples the hash key in the non-binding mode.

• GameA,y,14: This experiment corresponds to GameA,y+1.

Lemma 15. For any PPT adversary A, advA,y ≈c advA,y+1.

Proof. We will show that the intermediate hybrids are computationally indistinguishable.

Claim 2. Assuming the correctness property 3 of PPDE, advA,y = advA,y,0.

44



Figure 15: The program KGenAlt-1.2y,hk,s∗,vk∗,Km{u∗},t∗,KE ,KDet,v,a.

Inputs: pk1 = (s1, vk1), . . . , pkℓ = (sℓ, vkℓ), i,mi, σi

Constants: y, hk, s∗, vk∗, Km{u∗}, t∗ , KE ,KDet, v, a

1. If Ver(vki,mi, σi) rejects, immediately abort and output ⊥.

2. For each j ∈ [ℓ], let uj = H(hk, (sj , vkj)).

3. For each j ∈ [ℓ], if sj = s∗, vkj = vk∗ then tj = a · t∗ , else tj = F(Km{u∗}, uj).

4. For each j ∈ [ℓ] do the following:

(a) Compute d = Dec(KDet, sk). Interpret j as a positive integer.

(b) Compute (mj , rj) = F(KE , sj). If the PRF key is punctured at the input, then set
mj = rj =⊥.

(c) If (σsj , vksj ) = GenBindsig(mj ; rj) and vksj = vki and d ≤ y, cnt = cnt+ 1.

5. Compute t = acnt ·
∏

j tj and output vt.

Proof. Note that the adversary does not receive the punctured PPDE key (since the PPDE key is
used in the crs). As a result, using the property of PPDE, for any key KDet and any message m, if
(KDet,i+1, y) ← Puncture(KDet,m), then y is perfectly indistinguishable from a uniformly random
string.

Claim 3. Assuming iO is secure, and assuming the correctness property 2 of PPDE scheme, for any
PPT adversary A, there exists a negligible function negl such that for all λ, advA,y,0 − advA,y,1 ≤
negl(λ).

Proof. The main difference between the experiments GameA,y,0 and GameA,y,1 is that the adversary
receives an obfuscation of KGenAlt-1hk,Kmain,KDet,i+1,KE ,y. We need to show that the two programs
are functionally identical (and hence their obfuscations are computationally indistinguishable). In
Step 4a, one program uses a punctured key, while the other one uses a non-punctured key. These
two decryptions differ on only one input : the encryption of y + 1. However, if sk is an encryption
of y + 1, then in both programs, the count cnt is not incremented. Therefore, the two programs are
functionally identical.

Claim 4. Assuming the security of PPDE scheme, for any PPT adversary A, there exists a negligible
function negl such that for all λ, |advA,y,1 − advA,y,2| ≤ negl(λ).

Proof. The only difference in the two experiments is that sy+1 is uniformly random in one experiment,
and is set to encryption of y + 1 in another. Since the adversary only receives the PPDE key
punctured at y + 1, the encryption of y + 1 is computationally indistinguishable from a uniformly
random string.

Claim 5. Assuming iO is secure, and assuming the correctness property 2 of PPDE scheme, for any
PPT adversary A, there exists a negligible function negl such that for all λ, advA,y,2 − advA,y,3 ≤
negl(λ).
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Figure 16: The program KGenAlt-1.3y,hk,s∗,vk∗,Kmain,KE ,KDet,v,a.

Inputs: pk1 = (s1, vk1), . . . , pkℓ = (sℓ, vkℓ), i,mi, σi
Constants: y, hk, s∗, vk∗, Kmain , KE ,KDet, v, a

1. If Ver(vki,mi, σi) rejects, immediately abort and output ⊥.

2. For each j ∈ [ℓ], let uj = H(hk, (sj , vkj)).

3. For each j ∈ [ℓ], if sj = s∗, vkj = vk∗ then tj = a · F(Kmain, uj) , else tj = F(Km{u∗}, uj).

4. For each j ∈ [ℓ] do the following:

(a) Compute d = Dec(KDet, sk). Interpret d as a positive integer.

(b) Compute (mj , rj) = F(KE , sj). If the PRF key is punctured at the input, then set
mj = rj =⊥.

(c) If (σsj , vksj ) = GenBindsig(mj ; rj) and vksj = vki and d ≤ y, cnt = cnt+ 1.

5. Compute t = acnt ·
∏

j tj and output vt.

Proof. This proof is identical to the proof of Claim 3.

Claim 6. Assuming iO is secure, and assuming the correctness of puncturable PRF scheme, for any
PPT adversary A, there exists a negligible function negl such that for all λ, advA,y,3 − advA,y,4 ≤
negl(λ).

Proof. The proof of this claim relies on the observation that the programs
P1 ≡ KGenAlt-1hk,Kmain,KDet,i+1,KE ,y and P2 ≡ KGenAlt-1hk,Kmain,KDet,i+1,KE{sy+1},y are functionally
identical. Note that the punctured key is also used for the honest user registration queries. However,
for these queries, the PRF is never evaluated on input sy+1 (as my+1 and ry+1 are chosen at random
in both the experiments).

The only difference in the two programs is in Step 4b, where P1 uses the unpunctured key, while
P2 uses the key punctued at sy+1. These two evaluations only differ on the input sy+1. However, if
sk = sy+1 (which is encryption of y + 1), then count cnt is not incremented in both programs (due
to the d ≤ y condition).

Claim 7. Assuming F is a secure puncturable PRF, for any PPT adversary A, there exists a
negligible function negl such that for all λ, advA,y,4 − advA,y,5 ≤ negl(λ).

Proof. The only difference in the two experiments is that my+1, ry+1 are chosen uniformly at random
in GameA,y,4, while they are computed using F on input sy+1 in GameA,y,5. The adversary receives
only the PRF key punctured at sy+1, and as a result, any adversary that can distinguish between
GameA,y,4 and GameA,y,5 can be used to win the puncturable PRF security game against F.

Claim 8. Assuming iO is secure, and assuming the correctness of puncturable PRF scheme, for any
PPT adversary A, there exists a negligible function negl such that for all λ, advA,y,5 − advA,y,6 ≤
negl(λ).
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Proof. This proof is identical to the proof of Claim 6.

Claim 9. Assuming the indistinguishability of normal and binding mode for the hash function, for
any PPT adversary A, there exists a negligible function negl such that for all λ, advA,y,6−advA,y,7 ≤
negl(λ).

Proof. The only difference in the two experiments is that hk is chosen in (non-binding) mode in
GameA,y,6, and is chosen in binding mode in GameA,y,7. Note that sy+1 = DetEnc(KDet, y + 1),
(my+1, ry+1) = F(KE , sy+1) and (σy+1, vky+1) = GenBindsig(my+1; ry+1) can both be computed
during setup. Therefore, using the indistinguishability of binding and non-binding mode for Hash,
we can conclude that the two games are computationally indistinguishable.

Claim 10. Assuming iO is a secure indistinguishability obfuscator, and assuming correctness of F, for
any PPT adversary A, there exists a negligible function negl such that for all λ, advA,y,7−advA,y,8 ≤
negl(λ).

Proof. The main difference in the two experiments is the crs computation. In GameA,y,7, the crs
is an obfuscation of P1 ≡ KGenAlt-1hk,Kmain,KDet,i+1,KE ,y, while in GameA,y,8, it is an obfuscation
of P2 = KGenAlt-1.1y,hk,Km{uy+1},ty+1,KE ,KDet,v,a where uy+1 = H(hk, (sy+1, vky+1)) and ty+1 =
F(Kmain, uy+1). The programs are functionally identical as the only input where F(Kmain, ·) and
F(Km{uy+1}, ·) differ is uy+1. For this input, P2 uses the hardwired constant ty+1 in Step 3. The
remaining computation is identical in both the programs.

Claim 11. Assuming F is a secure puncturable PRF, for any PPT adversary A, there exists a
negligible function negl such that for all λ, advA,y,8 − advA,y,9 ≤ negl(λ).

Proof. The only difference in the two experiments is the constant t∗ that is hardwired in the crs
program. In one case, t∗ is equal to F(Kmain, uy+1), while in the other case, it is uniformly random.
The remaining experiment only uses Km{uy+1} (that is, the key Kmain punctured at uy+1). As a
result, the adversary only receives Km{uy+1}, and hence, if an adversary can distinguish between
GameA,y,8 and GameA,y,9, then this adversary can be used to break the puncturable PRF security
of F.

Claim 12. Assuming iO is a secure indistinguishability obfuscator, and assuming the binding
property of GenBindHash, for any PPT adversary A, there exists a negligible function negl such that
for all λ, advA,y,9 − advA,y,10 ≤ negl(λ).

Proof. The main difference between the two experiments is that the first one uses program P1 ≡
KGenAlt-1.1hk,uy+1,Km{uy+1},t∗,KDet,KE ,y,a, and the second one uses the program P2, which is an
obfuscation of KGenAlt-1.2hk,sy+1,vky+1,Km{uy+1},t∗,KDet,KE ,y,a. Program P1, in Step 3, sets tj = t∗ if
H(sj , vkj) = uy+1, while program P2, in Step 3, sets tj = a · t∗ if sj = sy+1 and vkj = vky+1. Using
the binding property of H, we know that H(sj , vkj) = uy+1 if and only if sj = sy+1 and vkj = vky+1

(since it is binding at (sy+1, vky+1). Secondly, since t∗ is uniformly random, both t∗ and a · t∗ are
identically distributed. Hence, the two programs are functionally identical, and therefore their
obfuscations are indistinguishable.

Claim 13. Assuming F is a secure puncturable PRF, for any PPT adversary A, there exists a
negligible function negl such that for all λ, advA,y,10 − advA,y,11 ≤ negl(λ).
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Proof. In both the experiments, the crs only contains the punctured PRF key Km{uy+1}. As a
result, using the PRF security, the PRF evaluation at uy+1 is indistinguishable from a uniformly
random string.

Claim 14. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, there
exists a negligible function negl such that for all λ, advA,y,11 − advA,y,12 ≤ negl(λ).

Proof. The two programs KGenAlt-1.2 and KGenAlt-1.3 are functionally identical. In one case, the
program has t∗ = F(Kmain, uy+1) hardwired, while in the other case, it computes t∗ in the program.
Since the programs are functionally identical, their obfuscations are indistinguishable.

Claim 15. Assuming the indistinguishability of normal and binding mode for the hash function, for
any PPT adversary A, there exists a negligible function negl such that for all λ, advA,y,12−advA,y,13 ≤
negl(λ).

Proof. The proof of this claim is similar to the proof of Claim 9.

Claim 16. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, there
exists a negligible function negl such that for all λ, advA,y,13 − advA,y,14 ≤ negl(λ).

Proof. The programs KGenAlt-1.3y and KGenAlt-1y+1 differ in two locations: in Step 3 and Step 4c.
Let s∗ denote the encryption of y + 1, and vk∗ the verification key derived from s∗ (as in

GameA,y,14). We consider the following cases:

• There exists some input public key pkj = (s∗, vk∗) The program KGenAlt-1.3y sets tj =
a · F(Kmain, uj), while the program KGenAlt-1y+1 increments the value of cnt. As a result, the
exponent of a in Step 5 is same in both programs. Therefore, the outputs are identical.

• For all j, pkj ̸= (s∗, vk∗) Both programs have identical behaviour in Steps 1-3, since pkj ̸=
(s∗, vk∗) for all j.

In Step 4c, the programs can potentially differ if the decryption of some sj is equal to y + 1,
and the corresponding vkj is equal to vk∗. However, since either sj ̸= s∗ or vkj ̸= vk∗, both
programs have the same value of cnt before the last step. As a result, the outputs are same.

6.2 From GameB,y to GameB,y+1

There are three main differences when we go from GameB,y to GameB,y+1.

1. In GameB,y+1, when the challenger registers the (y+1)th honest user, the verification key is in
non-binding mode (in GameB,y, the message my+1 and randomness ry+1 are pseudorandomly
derived from sy+1 (which is a PPDE encryption of y + 1), and verification key is in binding
mode, derived from my+1 using randomness ry+1). Having the verification key in non-binding
mode allows the challenger to choose the message at a later point (that is, when this key is
corrupted).
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2. At a later point, if the (y + 1)th key is corrupted, the challenger sets message my+1 to be an
obfuscated program, appropriately masked with a pseudorandom string. The challenger then
signs the message (computing σy+1) and sends (my+1, σy+1) as the corrupted key.

3. The final difference in the two games is with regard to the crs program. In GameB,y, the crs
program assigns a ‘type’ to each of the ℓ public keys. If the verification key is generated (using
appropriate pseudorandomness) in binding mode, and if the decryption of s is greater than y,
then the ‘type’ is set to be 1. If the verification key is generated in non-binding mode, and
the decryption of s is at most y, then the ‘type’ is set to 2. In GameB,y+1, if the decryption of
s is y + 1 and it is in non-binding mode, then ‘type’ is set to 2, otherwise (if it is in binding
mode) then ‘type’ remains 0.

Let sy+1 denote the encryption of (y + 1). In GameB,y, the verification key is generated by
first generating (my+1, ry+1) from sy+1 using the PRF key KE , and then using the message and
randomness to generate a verification key (together with a signature) in the binding mode. Therefore,
as a first step, we puncture the key KE , and use the punctured key in the crs program. The program
has (sy+1, vky+1) hardwired (and the program’s logic is suitably implemented to be functionally
identical to the previous hybrid). With the key punctured, we can first switch my+1, ry+1 to be
truly random strings. Next, through a sequence of hybrid experiments, we alter the condition in
which the crs program uses the program extracted from the message. If all the ℓ input public keys
are of type 1 or 2, and if the secret key corresponds to (sy+1, vky+1), then the crs program extracts
program P from the message, and uses that to compute the final output. This is possible because
the verification key is in binding mode, which means that if the signature is accepted, then the
message must be the program Py+1 masked by a pseudorandom string. Using the fact that the
output of program Py+1 is identical to the output of the crs program, it follows that this switch is
indistinguishable.

Once we make the above alteration to the crs program, the verification key can now be in
non-binding mode, and the message my+1 does not need to be chosen during setup. Again, using the
PRF security and the security of iO, we can alter the verification key to be derived pseudorandomly
from sy+1, and finally, we can remove the (sy+1, vky+1) hardwiring, and use the unpunctured PRF
key KE .

Below, we describe the hybrid experiments formally.

• GameB,y,1: In this experiment, the challenger computes sy+1, vky+1 during setup, and in the
crs obfuscated program, it hardwires the ‘type’ information when si = sy+1, vki = vky+1.

– Setup Phase

∗ The challenger chooses hash key hk, PRF Kmain.

∗ It chooses PRF key KE , PPDE key KDet, PRF keys KC,KD.

∗ It chooses a string α , g ← G, a, ν ← Zp.

It sets v = gν , w = gν·a
ℓ
.

∗ It computes sy+1 = DetEnc(KDet, y + 1), (my+1, ry+1) = F(KE , sy+1).

Using my+1, ry+1 it computes (σy+1, vky+1) = GenBindsig(my+1; ry+1). These are used

to answer queries related to the (y + 1)th registration.

It computes punctured key KE{sy+1} = Puncture(KE , sy+1) .
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∗ It computes an obfuscation of KGenAlt-2.1y,hk,Kmain,KDet,KE{sy+1},KC,KD,sy+1,vky+1
, where

KGenAlt-2.1 is defined in Figure 17. Note that this program has sy+1, vky+1 hard-
wired.

– Pre/Post Challenge Queries The challenger receives the following queries in the
pre-challenge/post-challenge phase.

∗ honest user registration queries - The challenger receives Q honest user registration
queries.
For the jth query, if j ≤ y, the challenger does the following:

· The challenger computes sj = DetEnc(KDet, j).

· The challenger computes rj = F(KC, sj).

· It computes (sigkj , vkj) = Gensig(1
λ; rj).

· The challenger sets skj = ‡‡ (indicating that the secret key is not yet set).

If j > y, it sets sj = DetEnc(KDet, j), (mj , rj) = F(KE , sj) and computes (σj , vkj)←
GenBindsig(mj ; rj).
It sends pkj = (sj , vkj) to the adversary, sets skj = (mj , σj), and adds (pkj , skj , 0)
to its records.

∗ corruption queries (at most c such queries) - On receiving a query for public key pk,
the challenger checks if pk = pkj for some registered public key pkj . If j > y, then
the corresponding secret key is already set (during the honest user registration), and
the challenger sends the corresponding secret key.
If pk = pkj for some j ≤ y, then the corresponding secret key is not yet set. It is
chosen as follows:

· Let u∗ = Hash(hk, pkj), t
∗ = F(Kmain, u

∗), w = gν·a
ℓ
, and let EvalProgKmain,w,u∗,t∗

be the program defined in Figure 21. The challenger sets program
Pj = iO(EvalProgKmain,w,u∗,t∗), message mj = Pj ⊕ F(KD, sj)⊕ α.

· It computes σj = Sign(sigkj ,mj), sends (mj , σj).

· It sets skj = (mj , σj), adds (pkj , skj , 1) to its records.

∗ malicious user registration queries - same as before

∗ shared key queries - same as before

– Challenge Query same as before

• GameB,y,2: In this experiment, the challenger switches my+1 and ry+1 to be uniformly random
strings.

• GameB,y,3: In this experiment, the challenger punctures the PRF key KD at sy+1 and uses
this punctured key in KGenAlt-2.1, as well as for responding to corruption queries.

• GameB,y,4: In this experiment, the challenger chooses my+1 uniformly at random, and sets
α = Py+1 ⊕my+1 ⊕ F(KD, sy+1) (note that Py+1 depends on the verification key vky+1, which
is derived from my+1 in binding mode).

• GameB,y,5: In this experiment, the challenger uses the unpunctured PRF key KD in KGenAlt-2.1.

• GameB,y,6: In this experiment, the challenger uses KGenAlt-2.2 (defined in Figure 18) for
computing the crs. The constants hardwired in the program are same as in previous hybrid.
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Figure 17: The program KGenAlt-2.1y,hk,Kmain,KE{sy+1},KC,KD,KDet,v,a,α,s∗,vk
∗

Inputs: pk1 = (s1, vk1), . . . , pkℓ = (sℓ, vkℓ), i,mi, σi

Constants: y, hk,Kmain, KE{s∗} , KC,KD,KDet, v, a, α, s∗, vk∗

1. If Ver(vki,mi, σi) rejects, immediately abort and output ⊥.

2. For each k ∈ [ℓ], let uk = H(hk, (sk, vkk)).

3. For each k ∈ [ℓ], let tk = F(Kmain, uk).

4. Set cnt = 0. For each k ∈ [ℓ] do the following:

(a) Set typek = 0, compute jk = Dec(KDet, sk). Interpret jk as a positive integer.

(b) Compute (mk, rk) = F(KE{s∗}, sk) and r′k = F(KC, sk). If punctured key KE (resp. KC)

is used, then set mk = rk =⊥ (resp. set r′k =⊥).

(c) If (sk, vkk) == (s∗, vk∗) then cnt = cnt+ 1 .

Continue to next iteration (go to step (a)) .

Else if (σsk , vksk) = GenBindsig(mk; rk) and vksk = vkk and y < jk ≤ Q, then typek = 1.

Else if (sigksk , vksk) = Gensig(1
λ; r′k) and vksk = vkk and jk ≤ y, then typek = 2.

(d) If typek = 1 or typek = 2, then cnt = cnt+ 1.

5. If typei == 2 and cnt == ℓ

– Compute P = mi ⊕ F(KD, si)⊕ α.

– Output P ((uj)j ̸=i).

Else compute t = acnt ·
∏

j tj and output vt.

• GameB,y,7: In this experiment, the challenger samples (sk∗, vk∗) using Gensig and sets vky+1 =
vk∗. It computes my+1 as in the previous experiment. When the (y + 1)th public key is
corrupted, the challenger computes a signature σy+1 on my+1 using sk∗ and sends (my+1, σy+1)
as the corrupted key.

• GameB,y,8: In this experiment, the challenger chooses α uniformly at random, and sets my+1

as Py+1 ⊕ α⊕ F(KD, sy+1). Note that, as in the previous experiment, vky+1 does not depend
on my+1 (since it is in non-binding mode), and therefore Py+1 does not depend on my+1.

• GameB,y,9: In this experiment, the challenger punctures KC at s∗, and uses this punctured
PRF key in KGenAlt-2.2.

• GameB,y,10: In this experiment, the challenger computes (sky+1, vky+1) using Gensign, but with
a pseudorandom string derived from sy+1. It computes sy+1 (as in the previous experiment).
Then it sets r′ = F(KC, sy+1), (sky+1, vky+1) = Gensign(1

λ; r′). The rest of the experiment is
same as the previous experiment.
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Figure 18: The program KGenAlt-2.2y,hk,Kmain,KE{sy+1},KC,KD,KDet,v,a,α,s∗,vk
∗

Inputs: pk1 = (s1, vk1), . . . , pkℓ = (sℓ, vkℓ), i,mi, σi
Constants: y, hk,Kmain, KE{s∗}, KC,KD,KDet, v, a, α, s

∗, vk∗

1. If Ver(vki,mi, σi) rejects, immediately abort and output ⊥.

2. For each k ∈ [ℓ], let uk = H(hk, (sk, vkk)).

3. For each k ∈ [ℓ], let tk = F(Kmain, uk).

4. Set cnt = 0. For each k ∈ [ℓ] do the following:

(a) Set typek = 0, compute jk = Dec(KDet, sk). Interpret jk as a positive integer.

(b) Compute (mk, rk) = F(KE{s∗}, sk) and r′k = F(KC, sk). If punctured key KE (resp. KC)
is used, then set mk = rk =⊥ (resp. set r′k =⊥).

(c) If (sk, vkk) == (s∗, vk∗) then cnt = cnt+ 1.

Continue to next iteration (go to step (a)).

Else if (σsk , vksk) = GenBindsig(mk; rk) and vksk = vkk and y < jk ≤ Q, then typek = 1.

Else if (sigksk , vksk) = Gensig(1
λ; r′k) and vksk = vkk and jk ≤ y, then typek = 2.

(d) If typek = 1 or typek = 2, then cnt = cnt+ 1.

5. If (typei == 2 or (si, vki) == (s∗, vk∗) ) and cnt == ℓ

(a) Compute P = mi ⊕ F(KD, si)⊕ α.

(b) Output P ((uj)j ̸=i).

Else compute t = acnt ·
∏

j tj and output vt.

• GameB,y,11: In this experiment, the challenger uses the unpunctured key KC in KGenAlt-2.2.

• GameB,y,12: In this experiment, the challenger uses KGenAlt-2.3 for computing the crs. This
program is similar to KGenAlt-2.2 (and the constants hardwired are same as in previous
experiment), except in Step 4c, where jk must be greater than y + 1 for typek = 1. The
program is described in Figure 19.

Analysis Let advB,y,j denote the advantage of an adversary A in GameB,y,j .

Claim 17. Assuming iO is a secure indistinguishability obfuscator, and assuming the correctness of F,
for any adversary A, there exists a negligible function negl(·) such that for all λ, |advB,y−advB,y,1| ≤
negl(λ).

Proof. The only difference in the two hybrids is that GameB,y uses KGenAlt-2, while GameB,y,1

uses KGenAlt-2.1. The only difference in the two programs is that KGenAlt-2.1 uses a punctured
PRF key KE , and for tuple (s∗, vk∗), it increments cnt and moves to the next iteration. Note that
the programs take ℓ pairs as input, GameB,y,1 sets s∗ to be PPDE encryption of y + 1, computes
(m∗, r∗) = F(KE , s

∗) and (σ∗, vk∗) = GenBindsig(m
∗; r∗). We will consider the following cases for
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Figure 19: The program KGenAlt-2.3y,hk,Kmain,KE{sy+1},KC,KD,KDet,v,a,α,s∗,vk
∗

Inputs: pk1 = (s1, vk1), . . . , pkℓ = (sℓ, vkℓ), i,mi, σi
Constants: y, hk,Kmain, KE{s∗}, KC,KD,KDet, v, a, α, s

∗, vk∗

1. If Ver(vki,mi, σi) rejects, immediately abort and output ⊥.

2. For each k ∈ [ℓ], let uk = H(hk, (sk, vkk)).

3. For each k ∈ [ℓ], let tk = F(Kmain, uk).

4. Set cnt = 0. For each k ∈ [ℓ] do the following:

(a) Set typek = 0, compute jk = Dec(KDet, sk). Interpret jk as a positive integer.

(b) Compute (mk, rk) = F(KE{s∗}, sk) and r′k = F(KC, sk). If punctured key KE (resp. KC)
is used, then set mk = rk =⊥ (resp. set r′k =⊥).

(c) If (sk, vkk) == (s∗, vk∗) then cnt = cnt+ 1.

Continue to next iteration (go to step (a)).

Else if (σsk , vksk) = GenBindsig(mk; rk) and vksk = vkk and y + 1 < jk ≤ Q , then
typek = 1.

Else if (sigksk , vksk) = Gensig(1
λ; r′k) and vksk = vkk and jk ≤ y, then typek = 2.

(d) If typek = 1 or typek = 2, then cnt = cnt+ 1.

5. If (typei == 2 or (si, vki) == (s∗, vk∗)) and cnt == ℓ

(a) Compute P = mi ⊕ F(KD, si)⊕ α.

(b) Output P ((uj)j ̸=i).

Else compute t = acnt ·
∏

j tj and output vt.

each input pair, and argue that either both programs increment cnt, or neither does. Secondly, the
final output of the two programs remains the same.

• the input tuple doesn’t contains s∗: in this case, using the correctness of PRF evaluation, we
can argue that the programs are functionally identical.

• the tuples is (sk, vkk) = (s∗, ṽk) and ṽk ≠ vk∗: in this case, KGenAlt-2 doesn’t increment cnt,
and typek = 0. In the program KGenAlt-2.1, the behaviour is similar; mk = rk =⊥, and since
ṽk ̸= vk∗, cnt is not incremented and typek = 0.

• the tuple is (s∗, vk∗): in this case, KGenAlt-2 sets typek = 1 and increments cnt. The program
KGenAlt-2.1 increments cnt but sets typek = 0. However, note that the two programs don’t
differentiate based on whether typek is 0 or 1.

As a result, the two programs are functionally identical, and therefore the obfuscations are
indistinguishable.
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Claim 18. Assuming F is a secure puncturable PRF, for any adversary A, there exists a negligible
function negl(·) such that for all λ, |advB,y,1 − advB,y,2| ≤ negl(λ).

Proof. This follows from the definition of the two hybrid experiments. The PRF key KE , punctured
at sy+1, is used in the two experiments. As a result, the PRF evaluation at sy+1 is indistinguishable
from a truly random pair (my+1, ry+1).

Claim 19. Assuming iO is a secure indistinguishability obfuscator, and assuming the correctness of F,
for any adversary A, there exists a negligible function negl(·) such that for all λ, |advB,y,2−advB,y,3| ≤
negl(λ).

Proof. The only difference in the two experiments is that one uses PRF key KD punctured at s∗

(where s∗ is the encryption of y + 1.
The two programs can potentially differ on inputs where (si, vki) = (s∗, · · · ). However, note

that if si = s∗, then typei cannot be 2 (since s∗ is an encryption of y + 1). As a result, computation
using KD/KD{s∗} is not executed, and hence the two programs are functionally identical.

Claim 20. Assuming F is a secure puncturable PRF, for any adversary A, there exists a negligible
function negl(·) such that for all λ, |advB,y,3 − advB,y,4| ≤ negl(λ).

Proof. In both the hybrids, the PRF key KD is punctured at sy+1, and as a result, the PRF
evaluation F(KD, sy+1) is indistinguishable from a uniformly random string. The only difference in
the two hybrids is that α is uniformly random in one case (which is same as ‘uniformly random’
⊕my+1⊕Py+1), and it is equal to F(KD, sy+1)⊕my+1⊕Py+1 in the other. Hence, using puncturable
PRF security, we can argue that the two hybrids are indistinguishable.

Claim 21. Assuming iO is a secure indistinguishability obfuscator, and assuming the correctness of F,
for any adversary A, there exists a negligible function negl(·) such that for all λ, |advB,y,4−advB,y,5| ≤
negl(λ).

Proof. The proof is identical to the proof of Claim 19.

Claim 22. Assuming iO is a secure indistinguishability obfuscator, and assuming the binding
property of the signature scheme, for any adversary A, there exists a negligible function negl(·) such
that for all λ, |advB,y,5 − advB,y,6| ≤ negl(λ).

Proof. The challenger uses KGenAlt-2.1 in GameB,y,5, and uses KGenAlt-2.2 in GameB,y,6. The only
difference in these two programs is in Step 5. The program KGenAlt-2.2 uses mi if (si, vki) ==

(s∗, vk∗) and cnt == ℓ, while program KGenAlt-2.1 outputs va
ℓ·
∏

k tk in this case. Hence it suffices to
focus on inputs where the signature σi verifies in Step 1, (si, vki) == (s∗, vk∗) and cnt == ℓ. Note
that s∗ is encryption of y + 1, and vk∗ is binding at m∗ = Py+1 ⊕ F (KD, s

∗)⊕ α.
If the execution reaches Step 5, then the verification using vki = vk∗ passes. Using the binding

property of the signature scheme, it follows that mi must be m∗. Since si = s∗, the program
computed in Step 5a must be m∗ ⊕ F(KD, s

∗)⊕ α = Py+1.

Finally, since cnt == ℓ, the output of Py+1({uj}j ̸=i) is exactly va
ℓ·
∏

k tk , and therefore the
outputs of KGenAlt-2.1 and KGenAlt-2.2 are identical.
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Claim 23. Assuming the mode-indistinguishability of the signature scheme, for any PPT adversary
A, there exists a negligible function negl(·) such that for all λ, |advB,y,6 − advB,y,7| ≤ negl(λ).

Proof. Note that in GameB,y,6, the signature keys are generated in binding mode using my+1 =
Py+1 ⊕ α⊕ F(KD, sy+1). In GameB,y,7, the challenger chooses (sky+1, vky+1) using Gensig, sets my+1

as in GameB,y,6, and computes a signature on my+1 using sky+1. Indistinguishability of the two
experiments follows from the mode-indistinguishability of the signature scheme.

Suppose there exists a polynomial time adversary A that can distinguish between GameB,y,6

and GameB,y,7. Then we can use A to break the mode-indistinguishability of the signature scheme.
The reduction algorithm computes sy+1 = DetEnc(KDet, y + 1), sets my+1 = Py+1 ⊕ α⊕ F(KD, sy+1)
and sends my+1 to the challenger. It receives a verification key vky+1 and a signature σy+1. The
reduction algorithm chooses the remaining components for interacting with A. In the setup phase,
the reduction sends sy+1, vky+1 (along with other components). If the (y + 1)th key is corrupted,
the reduction algorithm uses my+1 and the signature σy+1. Note that the signing key is not needed
anywhere else in the game(s).

Therefore, an adversary with distinguishable advantage in GameB,y,6 and GameB,y,7 can be used
to break the mode-indistinguishability of the signature scheme.

Claim 24. For any adversary A, advB,y,7 = advB,y,8.

Proof. The only difference in the two experiments is the choice of my+1 and α. In GameB,y,7, my+1

is chosen uniformly at random and α is set to Py+1 ⊕my+1 ⊕ F(KD, sy+1), while in GameB,y,8, α is
chosen uniformly at random, and my+1 is set to Py+1α ⊕ F(KD, sy+1). In both experiments, the
program Py+1 does not have any constants that are dependent on my+1 or α, and as a result, the
pair (my+1, α) are distributed identically in both experiments.

Claim 25. Assuming iO is a secure indistinguishability obfuscator, and assuming the correctness of F,
for any adversary A, there exists a negligible function negl(·) such that for all λ, |advB,y,8−advB,y,9| ≤
negl(λ).

Proof. The only difference in the two experiments is that GameB,y,7 uses an unpunctured PRF key
KC in KGenAlt-2.1, and GameB,y,8 uses KC{s∗} punctured at s∗ (which is encryption of y + 1). As
in the proof of Claim 17, we will consider different cases for the (s, vk) input pairs, and compare the
internal state of both programs just before before Step 5. Note that s∗ is the encryption of (y + 1),
r′ is chosen uniformly at random and (sk∗, vk∗) = Gensig(1

λ; r′).

• the input tuple does not contain s∗: in this case, both programs have identical behaviour
(using the correctness of PRF evaluation on non-punctured points)

• the input tuple (sk, vkk) = (s∗, ṽk) and ṽk ̸= vk∗: Note that both programs set mk = rk =⊥.
As a result, typek cannot be 1 in both cases. Similarly, typek cannot be 2 in both programs.
This is because in GameB,y,7 (where KC is used), the check “jk ≤ y” is violated in Step 4c,
while in GameB,y,8, since KC is punctured, the program sets r′k =⊥.

• (sk, vkk) = (s∗, vk∗): in this case, both programs increment cnt and set typek = 0.

Using the above cases, it follows that the programs are functionally identical, and hence their
obfuscations are computationally indistinguishable.
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Claim 26. Assuming F is a secure puncturable PRF, for any adversary A, there exists a negligible
function negl(·) such that for all λ, |advB,y,9 − advB,y,10| ≤ negl(λ).

Proof. The key KC is punctured at sy+1, hence F(KC, sy+1) is indistinguishable from a random
string. In GameB,y,9, a random string is used to sample vky+1, while in GameB,y,10, F(KC, sy+1) is
used. These two distributions are computationally indistinguishable.

Claim 27. Assuming iO is a secure indistinguishability obfuscator, and assuming the correctness
of F, for any adversary A, there exists a negligible function negl(·) such that for all λ, |advB,y,10 −
advB,y,11| ≤ negl(λ).

Proof. This is identical to the proof of Claim 25.

Claim 28. Assuming iO is a secure indistinguishability obfuscator, for any adversary A, there
exists a negligible function negl(·) such that for all λ, |advB,y,11 − advB,y,12| ≤ negl(λ).

Proof. Similar to the previous proofs, we will show that for each pair (sk, vkk), the corresponding
value of typek is identical before Step 5. Note that the only difference in the two programs is the
additional check jk > y + 1 when checking for typek = 1 in KGenAlt-2.3. Therefore, the value of
typek can differ in the two programs only if sk is an encryption of y + 1. If sk is an encryption of
y + 1, then sk = s∗, and if sk = s∗, then both programs set mk = rk =⊥. As a result, the value of
typek is 0 (the value of cnt may be incremented, based on the value of vkk, but this behaviour is
same in both programs).

Claim 29. Assuming iO is a secure indistinguishability obfuscator, and assuming the correctness
of F, for any adversary A, there exists a negligible function negl(·) such that for all λ, |advB,y,12 −
advB,y+1| ≤ negl(λ).

Proof. First, note that for any (sk, vkk) ̸= (s∗, vk∗), the value of typek is same in both programs. If
sk ̸= s∗, then both programs compute mk, rk and r′k correctly. The check for typek = 1 is identical
in both programs. The check for typek = 2 is different, since KGenAlt-2.3 checks if jk ≤ y, while
KGenAlt-2 checks if jk ≤ y+ 1. However, since sk ̸= s∗, the value of typek is same in both programs.
If sk == s∗ but vkk ̸= vk∗, then typek ̸= 2. Since the check for typek = 1 is same in both programs,
either both set typek = 1, or both set it to 0.

If (sk, vkk) == (s∗, vk∗), then program KGenAlt-2.3 sets typek = 0 and increments cnt, while
KGenAlt-2 sets typek = 2. Note that the value of cnt is same in both programs. If k ≠ i, then it
does not matter whether typek = 0 or typek = 2 (only the value of cnt matters). If k == i, then
program KGenAlt-2.3 checks if (typek == 2) or (sk, vkk) == (s∗, vk∗), and uses mi in this case. As
a result, if (si, vki) == (s∗, vk∗), then either both programs use mi, or both compute vt. Hence the
two programs are functionally identical.
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6.3 Adversary’s advantage in GameB,Q

In GameB,Q, the adversary only receives type = 2 public keys. Recall, the jth key is sampled as
follows: the challenger computes sj — a pseudorandom deterministic encryption of j. Next, it
derives (sigkj , vkj) pseudorandomly from sj . If this key is corrupted, the challenger computes Pj —
an obfuscation of the EvalProg program. This program has u∗ = Hash(hk, pkj) and t∗ = F(Kmain, u

∗)

hardwired, takes ℓ − 1 inputs {tk}, sets tℓ = t∗, and outputs va
cnt·

∏
k tk . After computing Pj , it

expresses this as a bit-string, and masks this with a pseudorandom string to compute the message
mj . The challenger then signs this message using sigkj and sends mj together with the signature.

Note that in GameB,Q, the crs program can compute the outputs on all inputs using just

va
0
, va

1
, . . . , va

ℓ−1
. However, the Pj programs still need va

cnt
. Therefore, we will gradually alter the

outputs of these programs.
We alter the outputs of these programs via a sequence of c hybrid experiments. Let u∗1, . . . , u

∗
η

be the hash of the first η corrupted public keys. In the ηth hybrid experiment, the programs have
u∗1, . . . , u

∗
η hardwired (along with the hash of the corresponding public key),7 as well as group

elements
{
hj,j′

}
j∈[η],j′∈[ℓ] (that is, corresponding to each u∗j , we have ℓ group elements hardwired).

Consider some program Pz that takes inputs u1, . . . , uℓ−1 (and sets ukbd according to the hardwired
u∗ value). The program checks if one of the inputs is equal to the η hardwired values. If so, let j∗

be the smallest value such that u∗j∗ is one of the inputs, and suppose this input appears j′ times.

The program outputs h
∏

k tk
j∗,j′ .

To go from the ηth game to the next one, we first puncture Kmain at u∗η+1 (the hash of the

(η + 1)th key that is corrupted). Next, we replace t∗η+1 = F(Kmain, u
∗
η+1) with a · F(Kmain, u

∗
η+1).

Due to this, the product of the tk values will have extra a factors, and as a result, the output will
be v(a

ℓ+...·(
∏

k tk)). Using the DDH-powers assumption, we can therefore switch va
ℓ+...

to a random
group element.

Formal proof
We will now show that the adversary’s advantage in GameB,Q, denoted by advA,B,Q is negligible.

First, let us recall GameB,Q.

• Setup Phase

– The challenger chooses hash key hk, PRF Kmain.

– It chooses PRF key KE , PPDE key KDet, PRF keys KC,KD.

– It chooses a string α, g ← G, a, ν ← Zp. It sets v = gν .

– It computes an obfuscation of KGenAlt-2Q,hk,Kmain,KDet,KE ,KC,KD
, where KGenAlt-2Q,... is

defined in Figure 20.

• Pre/Post Challenge Queries The challenger receives the following queries in the pre-
challenge/post-challenge phase.

– honest user registration queries - The challenger receives Q honest user registration
queries.

For the jth query, the challenger does the following:

7Strictly speaking, if pkj is the jth corrupted key and j ≤ η, then the program Pj will only have the first j hash
values.
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∗ The challenger computes sj = DetEnc(KDet, j).

∗ The challenger computes rj = F(KC, sj).

∗ It computes (sigkj , vkj) = Gensig(1
λ; rj).

It sends pkj = (sj , vkj) to the adversary and adds (pkj , ‡‡, 0) to T (note that the secret
key corresponding to pkj is not set at this point).

– corruption queries (at most c such queries) - On receiving a query for public key pk, the
challenger checks if pk = pkj for some registered public key pkj .

If pk = pkj for some j ≤ y, then the corresponding secret key is chosen as follows:

∗ The challenger computes u∗ = Hash(hk, pk), t∗ = F(Kmain, u
∗), w = gν·a

ℓ
, sets

program Pj = iO(EvalProgj,u∗,t∗,...), message mj = Pj ⊕ F(KD, (sj , vkj))⊕ α.

∗ It computes σj = Sign(sigkj ,mj), sends skj = (mj , σj).

The challenger also updates the corresponding entry in T to (pkj , skj , 1).

– malicious user registration queries - the adversary sends pk to the challenger, and the
challenger adds (pk,⊥, 1) to the database T .

– shared key queries - the adversary sends an unordered set of public keys S = {p̃k1, . . . , p̃kℓ}
and an index i. If S∗ ̸=⊥ and S = S∗, then the challenger sends ⊥.
For each k ∈ [ℓ], the challenger checks if there exists a record (pkj , skj , bj) in T such

that pkj = p̃kk. Additionally, it checks that skj ̸=⊥. Let sk∗ denote the secret key

corresponding to p̃ki.

If these checks pass, the challenger runs the crs on input ({p̃k1, . . . , p̃kℓ}, i, sk∗).

• Challenge Query The adversary sends a set S∗ = (pk∗1, . . . , pk
∗
ℓ). The challenger checks

that for each pk∗i, there exists a record (pkj , ‡‡, bj) in T s.t. bj = 0. Let sk∗ denote the secret
key corresponding to pk∗1.

If these checks pass, then the challenger chooses a random bit b. If b = 0, the challenger does
the following:

- it computes uj = H(hk, pk∗j) and tj = F(Kmain, uj).

- it computes t′ =
∏

j tj , t = aℓ · t′ and outputs vt = gνa
ℓt′ .

If b = 1, it sends a uniformly random element in G as the shared key.

We will define a sequence of hybrid experiments to show that advA,B,Q (the advantage of A in
GameB,Q) is at most negligible.

Sequence of games for proving security in GameB,Q We define c hybrid experiments
{GameB,Q,η}η∈[c], where we alter the program Pj that is used in the secret key for jth corrup-
tion.

• GameB,Q,0 : This game is similar to GameB,Q. However, the challenger uses an obfuscation of
KGenAlt-2′ (defined in Figure 22). This program is similar to KGenAlt-2Q,, except that it does
not set typei = 1.
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Figure 20: The program KGenAlt-2Q,hk,Kmain,KE ,KC,KD,KDet,v,a.

Inputs: pk1 = (s1, vk1), . . . , pkℓ = (sℓ, vkℓ), i,mi, σi
Constants: hk,Kmain,KE ,KC,KD,KDet, v, a

1. If Ver(vki,mi, σi) rejects, immediately abort and output ⊥.

2. For each k ∈ [ℓ], let uk = H(hk, (sk, vkk)).

3. For each k ∈ [ℓ], let tk = F(Kmain, uk).

4. Set cnt = 0. For each k ∈ [ℓ] do the following:

(a) Set typek = 0, compute jk = Dec(KDet, sk). Interpret jk as a positive integer.

(b) Compute (mk, rk) = F(KE , sk) and r′k = F(KC, sk).

(c) If (σsk , vksk) = GenBindsig(mk; rk) and vksk = vkk and Q < jk ≤ Q, then typek = 1.

Else if (sigksk , vksk) = Gensig(1
λ; r′k) and vksk = vkk and jk ≤ Q, then typek = 2.

(d) If typek = 1 or typek = 2, then cnt = cnt+ 1.

5. If cnt == ℓ and typei == 2

• Compute P = mi ⊕ F(KD, (si, vki))⊕ α.

• Output P ({uj}j ̸=i).

Else compute t = acnt ·
∏

j tj and output vt.

• GameB,Q,η : Next, we define c games, one for each η ∈ [c]. In GameB,Q,η, everything except
the response to corruption queries is identical to GameB,Q,0. However, the challenger uses an
obfuscation of EvalProg-1η,... (defined in Figure 23). The challenger samples ℓ · η uniformly
random group elements {hj,j′}j∈[η],j′∈[ℓ].
On receiving a corruption query for public key pk, the challenger checks if pk = pkj for some
registered public key pkj . If pk = pkj for some j, then the corresponding secret key is chosen
as follows:

– Let s = min(j, η). The challenger sets program Pj = iO(EvalProg-1s) (where EvalProg-1

is defined in Figure 23), message mj = Pj ⊕ F(KD, (sj , vkj))⊕ α.

– It computes σj = Sign(sigkj ,mj), sends skj = (mj , σj).

Figure 21: The program EvalProgj,Kmain,w,u∗,t∗ .

Inputs: u1, u2, . . . , uℓ−1

Constants: j,Kmain, w, u
∗, t∗

1. For each k ∈ [ℓ− 1], let tk = F(Kmain, uk). Let uℓ = u∗ and tℓ = t∗.

2. Compute t′ =
∏

k tk and output wt′ .
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Figure 22: The program KGenAlt-2′hk,Kmain,KE ,KC,KD,KDet
.

Inputs: pk1 = (s1, vk1), . . . , pkℓ = (sℓ, vkℓ), i,mi, σi
Constants: hk,Kmain,KE ,KC,KD,KDet, v

1. If Ver(vki,mi, σi) rejects, immediately abort and output ⊥.

2. For each k ∈ [ℓ], let uk = H(hk, (sk, vkk)).

3. For each k ∈ [ℓ], let tk = F(Kmain, uk).

4. Set cnt = 0. For each k ∈ [ℓ] do the following:

(a) Set typek = 0, compute jk = Dec(KDet, sk). Interpret jk as a positive integer.

(b) Compute (mk, rk) = F(KE , sk) and r′k = F(KC, sk).

(c) If (sigksk , vksk) = Gensig(1
λ; r′k) and vksk = vkk and jk ≤ Q, then typek = 2.

(d) If typek = 2, then cnt = cnt+ 1.

5. If cnt == ℓ and typei == 2

– Compute P = mi ⊕ F(KD, (si, vki))⊕ α.

– Output P ({uj}j ̸=i).

Else compute t = acnt ·
∏

j tj and output vt.

Let advA,B,Q,η denote the advantage of A in GameB,Q,η.

Claim 30. For any PPT adversary A, there exists a negligible function negl such that for all λ,
advA,B,Q − advA,B,Q,0 is at most negl(λ).

Proof. The two programs are functionally identical, since the program in GameB,Q sets typek = 1
only if Q < jk ≤ Q, and since no jk can satisfy these two inequalities, the program never sets
typek = 1.

Claim 31. For any η ∈ {0, . . . , c− 1}, for any PPT adversary A, there exists a negligible function
negl such that for all λ, advA,B,Q,η − advA,B,Q,η+1 is at most negl(λ).

The proof of this claim involves a sequence of hybrid experiments, and it is described in Section
6.3.1.

Claim 32. For any PPT adversary A, there exists a negligible function negl such that for all λ,
advA,B,Q,c is at most negl(λ).

Proof. The main idea is that the programs KGenAlt-2′ and EvalProg-1 do not require va
ℓ
. Note

that KGenAlt-2′ uses mi if cnt == ℓ and typei == 2. If cnt < ℓ, then the program can be evaluated
using constants {vaj}j<ℓ. If cnt == ℓ, then typei must be 2.

Similarly, note that EvalProg-1c does not use the constant w = va
ℓ
, since there exists at least

one uj (namely uℓ) that is equal to one of the hardwired {u∗1, . . . , u∗c}.
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Figure 23: The program EvalProg-1Kmain,w,{hj},{u∗
j}.

Inputs: u1, u2, . . . , uℓ−1

Constants: s, Kmain, w, u
∗, t∗, {hj,j′}j∈[s],j′∈[ℓ], {u∗j}j∈[s]

1. For each k ∈ [ℓ− 1], let tk = F(Kmain, uk), uℓ = u∗ and tℓ = t∗.

2. Find the smallest j∗ ≤ s such that uj = u∗j∗ for some j ∈ [ℓ].

3. If such j∗ ≤ s exists, let j′ denote the number of occurrences of u∗j∗ in input.

Set z = hj∗,j′ . If no such j∗ exists, then set z = w.

4. Compute t′ =
∏

k:uk ̸=u∗
j∗
tk and output zt

′
.

On the other hand, the response to challenge query is either va
ℓ·(

∏
k tk) or a uniformly random

group element. By setting v = gc·a for a uniformly random c, and using the DDH-powers assumption,
we can show that any PPT adversary has negligible advantage in the final experiment.

6.3.1 Proof of Claim 31

Proof. We will prove security via a sequence of hybrid experiments.

• G1: This experiment is similar to GameB,Q,η, except that the challenger, during setup, guesses
the (η+ 1)th corruption query. That is, the challenger guesses an index j∗, indicating that the
(η + 1)th corruption query will correspond to the (j∗)th public key. If the guess is incorrect,
the challenger aborts and the adversary wins with probability 1/2.

The challenger computes s∗ = DetEnc(KDet, j
∗), (sigk∗, vk∗) = Gensig(1

λ;F(KC, s
∗)). These

will be used in the following hybrid experiments.

• G2: In this experiment, the hash key is made binding at (s∗, vk∗); that is, it chooses hk ←
GenBindHash(1

λ, (s∗, vk∗)). Since the hash key is chosen during setup, the challenger needs to
correctly guess the (η + 1)th corruption query.

• G3: In this experiment, the PRF key Kmain is punctured at u∗ = Hash(hk, (s∗, vk∗)). The
crs is an obfuscation of KGenAlt-2′′, which is similar to KGenAlt-2′, except that it uses the
punctured PRF key, and has the value t∗ = F(Kmain, u

∗) hardwired. Similarly, in response to
the corruption queries, the challenger sends an obfuscation of EvalProg-2. This is similar to
EvalProg-1, except that it has the punctured key.

• G4: This experiment is similar to the previous one, except that the value t∗ is uniformly
random.

• G5: In this experiment, the challenger uses KGenAlt-2′′′ instead of KGenAlt-2′′ for the crs, and
EvalProg-3 instead of EvalProg-2 for the corruption queries. In both these programs, the main
change is that the challenger sets t∗ = c∗ · a for a random c∗, and the obfuscated programs do
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Figure 24: The program KGenAlt-2′′hk,u∗,Km{u∗},t∗,KE ,KC,KD,KDet
.

Inputs: pk1 = (s1, vk1), . . . , pkℓ = (sℓ, vkℓ), i,mi, σi
Constants: hk,Km{u∗}, u∗, t∗,KE ,KC,KD,KDet, v

1. If Ver(vki,mi, σi) rejects, immediately abort and output ⊥.

2. For each k ∈ [ℓ], let uk = H(hk, (sk, vkk)).

3. For each k ∈ [ℓ], if uk ̸= u∗, let tk = F(Km{u∗}, uk). Else uk = u∗.

4. Set cnt = 0. For each k ∈ [ℓ] do the following:

(a) Set typek = 0, compute jk = Dec(KDet, sk). Interpret jk as a positive integer.

(b) Compute (mk, rk) = F(KE , sk) and r′k = F(KC, sk).

(c) If (sigksk , vksk) = Gensig(1
λ; r′k) and vksk = vkk and jk ≤ Q, then typek = 2.

(d) If typek = 2, then cnt = cnt+ 1.

5. If cnt == ℓ and typei == 2

– Compute P = mi ⊕ F(KD, (si, vki))⊕ α.

– Output P ({uj}j ̸=i).

Else compute t = acnt ·
∏

j tj and output vt.

not contain a or t∗ explicitly. Instead, the programs contain the constant a in the exponent.
The game is described in detail below.

Setup Phase

– The challenger chooses PRF key Kmain.

– It chooses PRF key KE , PPDE key KDet, PRF keys KC,KD.

– It guesses the (η + 1)th corruption query j∗. It computes s∗ = DetEnc(KDet, j
∗),

(sigk∗, vk∗) = Gensig(1
λ;F(KC, s

∗)).

Next, it chooses hk← GenBindHash(1
λ, (s∗, vk∗)) and computes u∗ = Hash(hk, (s∗, vk∗)).

It then punctures Kmain at u∗. Let Km{u∗} be the punctured key.

– It chooses a string α, g ← G, a, ν, c∗ ← Zp. It sets v = gν and t∗ = c∗ · a.8

It computes constants θj = gν·a
j
for each j ∈ [ℓ]. These are used as constants in

KGenAlt-2′′′ (defined next).

– The challenger computes an obfuscation of KGenAlt-2′′′hk,u∗,Km{u∗},KDet,KE ,KC,KD,{θj}j , where

KGenAlt-2′′′... is defined in Figure 26.

The challenger chooses constants cj,j′ for each j ∈ [s], j′ ∈ [ℓ], and sets hj,j′,e = gcj,j′ ·(c
∗)e·ae

for each j ∈ [s], j′ ∈ [ℓ], and e ∈ [ℓ] ∪ {0}. Next, the challenger sets ze = gν·(c
∗)e·aℓ+e

8The constant t∗ is not hardwired in any of the programs. Instead, an appropriate power of a is used in the
programs.
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Figure 25: The program EvalProg-2s,u∗,Km{u∗},t∗,w,{hj,j′},{u∗
j}.

Inputs: u1, u2, . . . , uℓ−1

Constants: s, u∗, Km{u∗}, t∗, w, {hj,j′}j∈[s],j′∈[ℓ], {u∗j}j∈[s]

1. For each k ∈ [ℓ− 1], if uk ̸= u∗, let tk = F(Km{u∗}, uk). Else tk = t∗. Let uℓ = u∗ and tℓ = t∗.

2. Find the smallest j∗ ≤ s such that uj = u∗j∗ for some j ∈ [ℓ].

3. If such j∗ ≤ s exists, let j′ denote the number of occurrences of u∗j∗ in input.

Set z = hj∗,j′ . If no such j∗ exists, then set z = w.

4. Compute t′ =
∏

k:uk ̸=u∗
j∗
tk and output zt

′
.

and w = gν·a
ℓ
, and uses these as constants in EvalProg-3 (which is used for handling

corruption queries).

Pre/Post Challenge Queries The challenger receives the following queries in the pre-
challenge/post-challenge phase.

– honest user registration queries - The challenger receives Q honest user registration
queries.

For the jth query, the challenger does the following:

The challenger computes sj = DetEnc(KDet, j).

The challenger computes rj = F(KC, sj).

It computes (sigkj , vkj) = Gensig(1
λ; rj).

It sends pkj = (sj , vkj) to the adversary and adds (pkj , ‡‡, 0) to T (note that the secret
key corresponding to pkj is not set at this point).

– corruption queries (at most c such queries) - On receiving the f th corruption query for
public key pk, if f = (η + 1), the challenger checks if pk = (s∗, vk∗) and aborts if not.

Let s = min(f, η), and u∗1, . . . , u
∗
s are the hash of the first s public keys.

The challenger uses the following constants to be hardwired in the program Pf :

u∗, u∗j for each j ∈ [s], Km{u∗}, s, hj,j′,e for each j ∈ [s], j′ ∈ [ℓ] and e ∈ [ℓ] ∪ {0}, ze for
each e ∈ [ℓ] and w.

It sets program Pf = iO(EvalProg-3s,), message mf = Pf ⊕ F(KD, (sf , vkf ))⊕ α.

It computes σf = Sign(sigkf ,mf ), sends skf = (mf , σf ).

• G6: In this experiment, the challenger replaces ze with uniformly random elements in G.

• G7: In this experiment, the challenger uses program EvalProg-4 for responding to corruption
queries. The main differences are highlighted below.

On receiving the f th corruption query for public key pk, if f = (η + 1), the challenger checks
if pk = (s∗, vk∗) and aborts if not.
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Figure 26: The program KGenAlt-2′′′hk,u∗,Km{u∗},KE ,KC,KD,KDet,{θj}j .

Inputs: pk1 = (s1, vk1), . . . , pkℓ = (sℓ, vkℓ), i,mi, σi
Constants: hk,Km{u∗}, u∗, t∗,KE ,KC,KD,KDet, {θj}j

1. If Ver(vki,mi, σi) rejects, immediately abort and output ⊥.

2. For each k ∈ [ℓ], let uk = H(hk, (sk, vkk)).

3. For each k ∈ [ℓ], if uk ̸= u∗, let tk = F(Km{u∗}, uk) .

4. Set cnt = 0. For each k ∈ [ℓ] do the following:

(a) Set typek = 0, compute jk = Dec(KDet, sk). Interpret jk as a positive integer.

(b) Compute (mk, rk) = F(KE , sk) and r′k = F(KC, sk).

(c) If (sigksk , vksk) = Gensig(1
λ; r′k) and vksk = vkk and jk ≤ Q, then typek = 2.

(d) If typek = 2, then cnt = cnt+ 1.

5. If cnt == ℓ and typei == 2

– Compute P = mi ⊕ F(KD, (si, vki))⊕ α.

– Output P ({uj}j ̸=i).

Else if ∃j s.t. uj = u∗ then compute t′ =
∏

j:uj ̸=u∗ tj and output θc
∗·t′
cnt+1 .

Else output θt
′
cnt .

Let s = min(f, η), and u∗1, . . . , u
∗
s are the hash of the first s public keys.

The challenger uses the following constants to be hardwired in the program Pf :

u∗, t∗ , u∗j for each j ∈ [s], Km{u∗}, s, hj,j′ = gcj,j′ for each j ∈ [s], j′ ∈ [ℓ] , ze for each e ∈ [ℓ]

and w.

It sets program Pf = iO(EvalProg-4s,), message mf = Pf ⊕F(KD, (sf , vkf ))⊕α. The program
is defined in Figure 28.

It computes σf = Sign(sigkf ,mf ), sends skf = (mf , σf ).

• G8: In this game, the challenger uses EvalProg-2, but with s set to be the minimum of the
index of corruption query, and η + 1.

The challenger, during setup, chooses uniformly random group elements hj,j′ for each j ∈ [η+1],
j′ ∈ [ℓ].

For the f th corruption query, if f ≤ η, the challenger uses an obfuscation of
EvalProg-2f,u∗,Km{u∗},t∗,w,{hj,j′}j≤f,j′≤ℓ,{u∗

j}j≤f
.

For f ≥ η + 1, the challenger uses an obfuscation of EvalProg-2η+1,... where the hardwired
constants are as follows:
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Figure 27: The program EvalProg-3Km{u∗},{u∗
j},w,{hj,j′,e},{ze}.

Inputs: u1, u2, . . . , uℓ−1

Constants: s, u∗, Km{u∗}, t∗, w, {hj,j′,e}j∈[s],j′∈[ℓ],e∈[ℓ], {ze}e∈[ℓ], {u∗j}j∈[s]

1. For each k ∈ [ℓ− 1], if uk ̸= u∗, let tk = F(Kmain, uk), else set tk = t∗. Let uℓ = u∗ and tℓ = t∗.

2. Find the smallest j∗ ≤ s such that uj = u∗j∗ for some j ∈ [ℓ].

If such j∗ ≤ s exists, let j′ denote the number of occurrences of u∗j∗ in input.

Let e denote the number of times u∗ appears in the input.

3. Compute t′ =
∏

k:uk ̸=u∗
j∗ ,uk ̸=u∗ tk .

If j∗ is defined, then output ht
′
j∗,j′,e .

Else if j∗ is undefined but e ̸= 0 then output zt
′
e .

Else output wt′ .

u∗ and punctured PRF key Km{u∗}, the PRF evaluation at u∗ - t∗, w = gν·a
ℓ
, hash of the

first η + 1 corrupted public keys {u∗j}j≤η+1 (note that u∗η+1 = u∗), and group elements hj,j′

for each j ≤ η + 1, j′ ≤ ℓ.

• G9: In this game, the challenger sets t∗ = F(Kmain, u
∗).

• G10: In this game, the challenger uses EvalProg-1η+1.

• G11: This is similar to GameB,Q,η+1, except that the challenger, during setup, guesses the
(η + 1)th corruption query. Compared to the previous game, the only difference is that the
hash function is not in binding mode.

Claim 33. For any adversary A, |advA,B,Q,η − advA,B,Q,η+1| = 1
Q |advA,G1 − advA,G11 |.

Proof. This follows from the definition of the experiments. Note that the advantage of A in G1 is
1
QadvA,B,Q,η, since the challenger guesses the honest registration index which corresponds to the ηth

corruption, and this guess is correct with probability 1/Q. Similarly, advA,G11 = 1
QadvA,B,Q,η+1.

Claim 34. Assuming the mode indistinguishability of Hash, for any PPT adversary A, there exists
a negligible function negl such that for all λ, |advA,G1 − advA,G2 | ≤ negl(λ).

Proof. The only difference in G1 and G2 is that the hash key is binding at u∗. Using the indistin-
guishability property of Hash, the two games are computationally indistinguishable.

Claim 35. Assuming the correctness of the PRF scheme, and the security of iO, for any PPT
adversary A, there exists a negligible function negl such that for all λ, |advA,G2 − advA,G3 | ≤ negl(λ).
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Figure 28: The program EvalProg-4Km{u∗},t∗,w,{hj},{u∗
j}.

Inputs: u1, u2, . . . , uℓ−1

Constants: s, u∗, Km{u∗}, t∗, w, {hj,j′}j∈[s],j′∈[ℓ] , {ze}e∈[ℓ], {u∗j}j∈[s]

1. For each k ∈ [ℓ− 1], if uk ̸= u∗, let tk = F(Kmain, uk), else set tk = t∗. Let uℓ = u∗ and tℓ = t∗.

2. Find the smallest j∗ ≤ s such that uj = u∗j∗ for some j ∈ [ℓ].

3. If such j∗ ≤ s exists, let j′ denote the number of occurrences of uj∗ in input.

4. Let e denote the number of times u∗ appears in the input.

Set z = hj∗,j′ . If no such j∗ exists, then set z = w.

5. Compute t′ = (
∏

k:uk ̸=u∗
j∗ ,uk ̸=u∗ tk), t = t′ · (t∗)e.

If j∗ is defined, then output htj∗,j′ .

Else if j∗ is undefined but e ̸= 0 then output zt
′
e

Else output wt.

Proof. In G3, the challenger punctures the PRF key Kmain at u∗. The PRF evaluation at u∗ is
hardwired in the programs KGenAlt-2Q, and EvalProg-1. The punctured PRF key can evaluate
at all points other than u∗, and the evaluation at u∗ is hardwired in these programs. Therefore,
the programs in G3 are functionally identical to the corresponding programs in G2, and using the
security of iO, the games are computationally indistinguishable.

Claim 36. Assuming the security of the PRF scheme, for any PPT adversary A, there exists a
negligible function negl such that for all λ, |advA,G3 − advA,G4 | ≤ negl(λ).

Proof. The only difference in the two games is the constant t∗ hardwired in the obfuscated programs.
In one case, t∗ is computed using Kmain, while in G4, it is a uniformly random element. Since the
adversary only receives the punctured PRF key, the evaluation at u∗ is indistinguishable from a
uniformly random element in Zp.

Claim 37. Assuming the correctness of the PRF scheme, and the security of iO, for any PPT
adversary A, there exists a negligible function negl such that for all λ, |advA,G4 − advA,G5 | ≤ negl(λ).

Proof. First, in G5, t
∗ is set to be c∗ · a, where c∗ is a uniformly random element in Zp. Hence, t

∗ is
distributed as a uniformly random element in Zp. Next, the programs KGenAlt-2′′ and EvalProg-2
contain powers of a. The constants hardwired in the programs are such that the programs are
functionally identical to KGenAlt-2′ and EvalProg-1 respectively. Below, we argue this via a case
analysis:

• In Step 5, if cnt == ℓ and typei = 2, then both KGenAlt-2′ and KGenAlt-2′′ have the same
output (they both use the message mi to recover P , and output P (u1, . . . , uℓ).
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• In Step 5, if either cnt ̸= ℓ or typei = 0 then KGenAlt-2′ outputs va
cnt·(

∏
j tj). If none of the uj

are equal to u∗, then this is equal to va
cnt·(

∏
j tj). Since θω = gν·a

ω
, the outputs of KGenAlt-2′

and KGenAlt-2′′ are identical.

• In Step 5, if either cnt ̸= ℓ or typei = 0 then KGenAlt-2′ outputs va
cnt·(

∏
j tj). If there exists one

uj that is equal to u∗,9 then the output is v
acnt·(

∏
j:uj ̸=u∗ tj)·t∗

= (gν·a
cnt+1

)
c∗·

∏
j:uj ̸=u∗ tj

. This is
identical to the output of KGenAlt-2′′, given that θω = gν·a

ω

Claim 38. Assuming the DDH-powers assumption, for any PPT adversary A, there exists a negligible
function negl such that for all λ, advA,5 − advA,6 is at most negl(λ).

Proof. The only difference in the two experiments is that the ze terms are switched to being random
group elements. This follows from the DDH-powers assumption. Note that all the hj,j′,e terms can
be generated using ga

e
, and the ze terms can be computed from the challenge terms Te, which is

either ga
ℓ+e

or a uniformly random group element.

Claim 39. Assuming the security of iO, for any PPT adversary A, there exists a negligible function
negl such that for all λ, |advA,6 − advA,7| ≤ negl(λ).

Proof. In both these games, the challenger sends c obfuscated programs, one for each corrupt key
query. It suffices to show that for all f ∈ [c], the f th program in G6 and G7 are functionally identical.
Fix any corrupt key query index f , and consider the following cases:

1. there exists some input uj that’s equal to one of the u∗k. Let j
∗ be the smallest index such that

u∗j∗ is equal to some input uj , and let j′ denote the number of inputs that are equal to u∗j∗ .
Let e denote the number of inputs that are equal to u∗. In EvalProg-3, the program outputs
ht

′
j∗,j′,e where t′ is the product of all tk such that uk /∈ {u∗, u∗j∗}. In EvalProg-4, the program

outputs htj∗,j′ , where t = t′ · (t∗)e. These two outputs are identical since hj∗,j′,e in G6 is equal

to ha
(t∗)e

j∗,j′ .

2. none of the inputs are equal to the u∗k, but e of them are equal to u∗. In this case, both
programs output zt

′
e , where t′ is the product of all tk such that uk ̸= u∗.

3. none of the inputs are equal to either the u∗k or u∗. In this case, both programs output wt

where t is the product of all tk.
10

Claim 40. Assuming the security of iO, for any PPT adversary A, there exists a negligible function
negl such that for all λ, |advA,7 − advA,8| ≤ negl(λ).

9Note that there can be at most one such uj .
10The last line of EvalProg-3 outputs wt′ , but note that t′ =

∏
k:uk /∈{u∗

k
,u∗} tk, and since none of the uk are equal

to any of the u∗
j or u∗, t′ is simply the product of all tk.
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Proof. The main difference in these two experiments is the response to corruption queries. In G7,
the challenger uses an obfuscation of EvalProg-4 with the following constants: s - minimum of index
of corruption query and η, u∗, t∗, u∗j for each j ∈ [s], Km{u∗}, hj,j′ = gcj,j′ for each j ∈ [s], j′ ∈ [ℓ],
ze for each e ∈ [ℓ] and w.

In G8, the challenger uses an obfuscation of EvalProg-2 with the following constants: s - minimum
of index of corruption query and η + 1, u∗, Km{u∗}, t∗, w = gν·a

ℓ
, hash of the first η + 1 corrupted

public keys {u∗j}j≤η+1 (note that u∗η+1 = u∗), and group elements hj,j′ for each j ≤ η + 1, j′ ≤ ℓ.
We will consider two cases:

• the index of corruption query is at least η+1 (and therefore s = η): here, we have the following
sub-cases, depending on the input:

1. the input contains a uj that is equal to some u∗k, k ≤ η: Let j∗ be the smallest such index
where one of the inputs is equal to u∗j∗ . In this case, both programs output htj∗,j′ , where
t =

∏
k:uk ̸=u∗

j∗
tk. In one case (in program EvalProg-2), this t is computed directly, while

in EvalProg-4, the program first computes t′ =
∏

k:uk ̸=u∗
j∗ ,uk ̸=u∗ tk and then multiplies

the correct power of t∗.

2. the input contains no uj that is equal to some u∗k, k ≤ η, but it contains some inputs
that are equal to u∗: in program EvalProg-2η+1,, the program outputs htη+1,e where e
is the number of times u∗ is present in the input, and t =

∏
k:uk ̸=u∗ tk. In EvalProg-4η,,

the program outputs zte, where ze is distributed identically to hη+1,e (both are uniformly
random group elements) and t =

∏
k:uk ̸=u∗ tk.

3. the input contains no uj that is equal to some u∗k, k ≤ η or u∗: here, both programs
output wt where t =

∏
k tk.

• the index of corruption query is at most η: Let f denote the index of the corruption query.
There are two sub-cases, depending on the input:

1. the input contains a uj that is equal to some u∗k, k ≤ f : This case is similar to the case 1
above.

2. the input doesn’t contain a uj equal to one of the u∗k, k ≤ f : In this case, both programs

output wt where w = gν·a
ℓ
and t =

∏
k tk.

Claim 41. Assuming the PRF security of F, for any PPT adversary A, there exists a negligible
function negl such that for all λ, |advA,8 − advA,9| ≤ negl(λ).

Proof. In G8, the constant t∗ is chosen uniformly at random, while in G9, it is computed using
the PRF key Kmain at input u∗. The adversary receives only the punctured PRF key Km{u∗}, and
therefore, using the PRF security, these two games are computationally indistinguishable.

Claim 42. Assuming the security of iO, for any PPT adversary A, there exists a negligible function
negl such that for all λ, |advA,9 − advA,10| ≤ negl(λ).
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Proof. The only difference between G9 and G10 is with regard to the PRF computation at u∗. In G9,
this value is hardwired in the program, while it is computed within the program in G10. Therefore
the programs obfuscated are functionally identical, and hence their obfuscations are computationally
indistinguishable.

Claim 43. Assuming the mode indistinguishability of Hash, for any PPT adversary A, there exists
a negligible function negl such that for all λ, advA,10 − advA,11 is at most negl(λ).

Proof. The only difference between G10 and G11 is that the hash key is binding at u∗ in G10, and it
is chosen in non-binding mode in G11. Using the security of Hash, it follows that the two games are
computationally indistinguishable.
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A 1-SF-PRF: From Security Against Unique-Query Adversaries
to General Adversaries

Let (Genuq,Evaluq,Construq,EvalCuq) be a 1-SF-PRF scheme secure against unique query adver-
saries, where the constraining algorithm Construq requires r(λ) bits of randomness to compute the
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constrained key. Let F be a standard pseudorandom function with input domain [n]× Σ and range
{0, 1}r(λ).

Consider the following 1-SF-PRF scheme:

• Gen: The key generation algorithm chooses K ← Genuq and (standard) PRF key KF. The key
consists of K and KF.

• Eval((K,KF), x): The evaluation on input x is Evaluq(K,x).

• Constr((K,KF), (i, z)): The constraining algorithm first computes r = F(KF, (i, z)). Next,
it uses r as the randomness for computing the constrained key; that is, it sets K(i,z) =
Construq(K, (i, z); r).

• EvalC(Ki,z, x): The constrained evaluation simply outputs EvalCuq(Ki,z, x).

Claim 1. Let (Genuq,Evaluq,Construq,EvalCuq) be a 1-SF-PRF scheme secure against unique query
adversaries, and let F be a standard pseudorandom function. Then (Gen,Eval,Constr,EvalC) is a
1-SF-PRF scheme secure against general adversaries (as per Definition 4).

Proof. Consider the following intermediate security game G: the challenger receives constrained
key queries from the adversary, and maintains a table of (query, response) pairs. For each query
(i, z), it checks if (i, z) is present in the table. If so, it returns the corresponding response. Else, it
computes K(i,z) ← Construq(K, (i, z)) (using true randomness), sends K(i,z) to the adversary, and
adds ((i, z),K(i,z)) to the table.

If an adversary has advantage ϵ in the 1-SF-PRF security game (against our scheme), then
the adversary has advantage ϵ − negl in the above defined security game (for some negligible
function negl). Note that the only difference between the two security games is that in one case, the
randomness for constraining queries is generated using F(KF, ·), while in the other case, it is chosen
at random. Using the security of the PRF scheme, it follows that any adversary has nearly identical
advantage in both the security games.

Next, we use the security against unique-query adversaries to argue that any adversary has
negligible advantage in the security game G. This concludes our proof.

B Missing NIKE Compiler Proofs

Here, we formally prove Theorem 3.

B.1 Achieving Adversarial Correctness

Here, we prove Theorem 3 for achieving adversarial correctness, which is repeated for convenience:

Theorem 3. Assume there exists a multi-party NIKE with perfect correctness, potentially in the crs
model. Assume additionally there exists a NIZK. Then there exists a multi-party NIKE with both
perfect and adversarial correctness in the crs model. If the perfectly correct scheme has unbounded
honest users, corruptions, and/or set size, then so does the resulting adversarially correct scheme.

Proof. The proofs of the various bounded/unbounded cases are essentially the same, so we focus on
the case where everything is bounded. The construction and proof are straightforward: we simply
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append a NIZK to every public key, proving that it was generated using the honest Pub algorithm
for some choice of random coins. KeyGen will then verify all input NIZKs and abort if any are
rejected. By the perfect correctness of the underling NIKE and the soundness of the NIZK, there
will be no valid public keys that cause different users to output different shared keys on the same
set, implying (statistical) adversarial correctness.

The main caveat is that we need a multi-theorem NIZK, which can be constructed generically
from any plain NIZK [FLS90]. We will place the NIZK crs in the NIKE crs. Hence, even if we start
with a setup-free NIKE, the result of Theorem 3 is a NIKE with setup.

C Missing Proofs from Section 4

Here, we provide the missing proofs from Section 4.

C.1 Adding Eval Queries to a 1-SF-PRF

Here, we show how to upgrade a 1-SF-PRF that is adaptively secure without Eval queries to one
that is adaptively secure (with Eval queries). The idea is very similar to the proof of Theorem 5.
This is not technically necessary for our results, but is provided for completeness, since it shows
how to add such queries without having to go through NIKE. The latter would require assuming iO,
whereas our direct conversion is completely generic.

Let (Gen′,Eval′,Constr′,EvalC′) be a 1-SF-PRF that is adaptively secure without Eval queries.
Consider the new 1-SF-PRF (Gen,Eval,Constr,EvalC) defined as:

• Gen(1λ, 1|Σ|, 1ℓ): Let Σ′ = F be a finite field of size |F| ≥ max(|Σ|, 2ℓ). Arbitrarily embed
Σ ⊂ Σ′. Run and output k ← Gen′(1λ, 1|Σ

′|, 12ℓ).

• Eval(k, x): Let P be the unique polynomial of degree ℓ−1 such that P (i) = xi for i = 0, . . . , ℓ−1.
Let y = (P (1), P (2), . . . , P (2ℓ)) = (x1, . . . , xℓ, P (ℓ+ 1), P (ℓ+ 2), . . . , P (2ℓ)). Run Eval′(k, y).

• Constr(k, i, z) = Constr′(k, i, z)

• Eval(ki,z, x) = Eval′(ki,z, y) where y is derived from x as above.

Theorem 8. If (Gen′,Eval′,Constr′,EvalC′) is adaptively secure without Eval queries, then
(Gen,Eval,Constr,EvalC) is adaptively secure (with Eval queries).

Proof. Let A be a supposed adversary for (Gen,Eval,Constr,EvalC) that wins with probability 1
2 + ϵ

for a non-negligible ϵ. Let q be a polynomial upper bound on the number of Eval queries made by A.
We will construct a new adversary A′ for (Gen′,Eval′,Constr′,EvalC′), which makes no Eval queries.

Before defining A′, consider a list L ⊆ Fℓ of size at most q, and let M ⊆ F2ℓ where the elements
y ∈M are derived from the elements x ∈ L by the process above. Also consider an x∗ ∈ Fℓ \ L and
let y∗ be derived from x∗. Clearly, y∗ /∈M and |M | = |L|.

Now fix an integer t > 0 and a value r ∈ [0, 1] such that r|F| is an integer. Consider the following
process:

• For j = 1, . . . , t, choose a random ij ∈ [2ℓ]. Then select a random subset Sj ⊆ F of size r|F|.

• Output 1 if the following conditions are met:
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1. For every j, y∗ij /∈ Sj , and

2. For each y ∈M , there exists a j such that yij ∈ Sj .

Otherwise, output 0.

Let pL,x∗ be the probability the process outputs 1.

Claim 44. Assume (1 − r/4)tq ≤ 1. For any L of size at most q and any x∗, pL,x∗ ≥ pmin :=
[(1− r)r/4]t.

For any polynomial q, we can therefore choose a constant r ∈ [0, 1] and t = ⌈− log(q)/ log(1−r/4)⌉,
to get the probability to be Ω(q−cr) for cr := log[r(1− r)/4]/ log(1− r/4). Note that cr is minimized
when r ≈ 0.8258, at which point cr ≈ 14.38. We now prove the claim.

Proof. For each j, the probability that y∗ij /∈ Sj is exactly (1− r). Over all j, the probability that

Condition 1 holds is (1− r)t.
We will now condition on Condition 1 holding. In this case, each Sj is a random subset of F \ y∗ij .

For each i and for each y ∈M , there are two cases:

• yi = y∗i . In this case, if ij = i, then yij /∈ Sj with probability 1.

• yi ̸= y∗i . In this case, if ij = i, then yij ∈ Sj with probability r|F|/(|F| − 1) > r.

Since the polynomials P defining the various y have degree at most d = ℓ − 1, any two distinct
polynomials can agree on at most d+ 1 = ℓ points. Therefore, for each y ∈M , there are at least
(2ℓ)− ℓ = ℓ different i such that yi ̸= y∗i . For these i, we have Pr[yi ∈ Sj ] > r from above. Thus, for
each j, if we average over a uniform choice of ij , we have that Pr[yij ∈ Sj ] > r/2.

For j = 0, . . . , t, let Mj be the set of y ∈M for which Condition 2 is not yet satisfied by the jth
step. In other words, Mj is the set of y such that there does not exist a j′ ≤ j such that yi′j ∈ Sj′ .

M0 = M . Clearly Mj+1 ⊆ Mj . For each y ∈ Mj , Pr[y ∈ Mj+1] < 1 − r/2. By linearity of
expectation, once we’ve fixed Mj , we have that E[|Mj+1|] < (1− r/2)|Mj |. Therefore, Pr[|Mj+1| <
(1 − r/4)|Mj |] ≥ r/4. Over all t trials, we therefore have that Pr[|Mt| < (1 − r/4)t|M |] ≥ (r/4)t.
If we choose (1− r/4)tq ≤ 1, then |Mt| < (1− r/4)t|M | can only be true if Mt is empty, meaning
Condition 2 is met. Putting it all together, we have that the process outputs 1 with probability at
least [(1− r)r/4]t.

We are now ready to describe A′:

• First it sets parameters r, t as above. For j = 1, . . . , t, it does the following:

– Choose a random ij ∈ [2ℓ]. Then choose a random subset Sj ⊆ F of size r|F|.
– Make constrain queries on (ij , z) for each z ∈ Sj , obtaining kij ,z.

• Now A′ simulates A, answering it’s queries as follows:

– Constrain. For a constrain query on (i, z), A′ simply forwards the query to its challenger,
obtaining ki,z, which it sends back to A.

– Eval. For an Eval query on an input x, A′ computes y from x as above. It then checks
if yij ∈ Sj for some j ∈ [t]. If so, it runs EvalC′(kij ,yij , y). If no such j is found, A′

immediately aborts and outputs a random bit.
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– Challenge. For the challenge query on input x∗, A′ computes y∗ from x∗. It then checks
if y∗ij ∈ Sj for some j ∈ [t]. If such a j exists, then A′ immediately aborts and outputs a
random bit. Otherwise, it forwards y∗ to the challenger, and sends the response to A.

• At the end of the experiment, A′ lets L be the set of Eval queries. It then aborts with
probability pmin/pL,x∗ , and outputs a random bit. If no abort happens, then A′ outputs
whatever A outputs.

First, if we ignore the final abort step, then A′ aborts with probability pL,x∗ . Thus, the overall
abort probability is pmin, independent of the queries made.

Therefore, conditioned on no abort, A′ perfectly simulates the view of A, and moreover the
challenge y∗ is not covered by any constrain queries. Thus, conditioned on not aborting, A′ has
success probability 1

2+ϵ. The overall success probability is therefore 1
2+pminϵ, which is non-negligible.

Remark 1. The above description assumes that pL,x∗ can be computed exactly, which is not
necessarily true. This is analogous to the artificial abort of Waters [Wat05]. As in [Wat05],
we instead have A′ estimate pL,x∗ to within an error much less than pminϵ by simply sunning
poly(1/pminϵ, λ) trials of the process defining pL,x∗. This will introduce an error ≪ pminϵ into the
simulation.

C.2 Lifting 1-SF-PRFs to Special PRFs

Here, we prove Theorem 7, showing that 1-SF-PRFs imply Special Constrained PRFs.

Perfect List-Recoverable Codes. We will need a special type of error correcting code, that we
will call a perfect list recoverable code.

Definition 11. A (Σ, s, u, n)-perfect list-recoverable code is a subset C ⊆ Σu of size s with the
following property. For any set L ⊆ C of size at most n, let L′ ⊂ C be the set of all codewords c
such that, for each i ∈ [u], there exists a c′ ∈ L such that ci = c′i. Then L′ = L.

In other words, there is no way to mix and match the symbols from ≤ n codewords to obtain a
new codeword.

Lemma 16. For any s, n, there exists a (Σ, s, u, n)-perfect list-recoverable code with |Σ|, u =
poly(log s, n).

Proof. Let Σ = F be a finite field and u, d be integers such that:

• u > nd.

• |F| > u

• s ≤ |F|d+1

Let C = Fu be a Reed-Solomon code: the set of vectors c = (c1, . . . , cu) such that ci = P (i) for a
polynomial P of degree at most d.

Now consider any set L ⊆ C of size at most n. Consider any other codeword c that agrees with
some element of L in each position. Then there must be some c′ ∈ L such that c agrees with c′ in
at least d+ 1 positions. But then c = c′. Hence, L′ = L.
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Lemma 17. Let C be a perfect list-recoverable code. For any set M ⊆ C of size at most n+ 1 and
any x ∈M , there exists an j ∈ [u] such that x′j ̸= xj for all x′ ∈M \ {x}.
Proof. Let L = M \{x}. If for all j ∈ [u] there exists an x′ ∈ L such that xj = x′j , then x ∈ L′, where
L′ is as defined in the definition of perfect list-recoverable code. But then L′ ̸= L, a contradiction.

Constructing Special Constrained PRFs. We now turn to constructing our special constrained
PRFs from any 1-SF-PRF. The high-level idea is to set the exponentially-large symbol space Σ of
the special PRF to be codewords over the symbols space Σ′ of the underlying 1-SF-PRF. To generate
the initial punctured key for a set S, for each position k, we collect the set Sj ⊆ Σ′ of characters
the words in S attain at position j. We then, for that position, reveal 1-SF-PRF keys constraining
that position to every symbol not in Sj . By the perfect list-recoverability, for any codeword c /∈ S,
there must exist a j such that cj /∈ Sj . Therefore, these constrained keys allow for evaluating the
PRF on any codeword not in S, as needed for the punctured key. Subsequent constrained keys for
the special PRF are handled straightforwardly by making appropriate additional constrained key
queries to the underlying 1-SF-PRF.

We now give the construction and proof in more detail. Let (Gen′,Eval′,Constr′,EvalC′) be a
1-SF-PRF. Define the following Special Constrained PRF:

• Gen(1λ, s, 1ℓ, 1n): Let Σ′, u, C ⊂ (Σ′)u be a (Σ′, s, u, n)-perfect list-recoverable code guaranteed
by Lemma 16, where |Σ′|, u have polynomial size. Set Σ to be an arbitrary subset of C of size
s.

Let ℓ′ = ℓ× u. Define Map : Σn → (Σ′)ℓu as Map(x1, . . . , xℓ)(i−1)u+j = (xi)j for i ∈ [ℓ], j ∈ [u].

Run k ← Gen′(1λ, 1|Σ|, 1ℓ
′
).

• Eval(k, x): on input x ∈ Σℓ, run Eval′(k,Map(x)).

• Punc(k, S): Recall that S is a subset of Σ ⊆ (Σ′)u. For each j ∈ [u], let Sj ⊂ Σ′ be the set of
symbols attained in the jth position by elements of S. For each i ∈ [ℓ], j ∈ [u], z′ ∈ Σ′ \ Sj ,
run k′(i,j),z′ ← Constr′(k, (i− 1)u+ j, z′). Output kS = (k′(i,j),z′)i∈[ℓ],j∈[u],z′∈Σ′\Sj

.

• EvalP(kS , x): if x ∈ Sℓ, output ⊥. Otherwise, let y = Map(x). There is some i such
that (y(i−1)u+j)j∈[u] /∈ S, in which case there is a j such that yi,j /∈ Sj . Therefore run
EvalC′(k(i,j),y(i−1)u+j

, y).

• Constr(k, S, i, z): By Lemma 17, since z ∈ S and |S| ≤ n, there exists a j such that y′j ̸= zj
for all y′ ∈ S \ {z}. Output kS,i,z = k′(i,j),zj .

• EvalC(kS,i,z, x): If xi ̸= z, output ⊥. Otherwise, run EvalC′(k′(i,j),zj ,Map(x)), where j is defined

as in Constr.

Correctness. For EvalP, we have that EvalP(kS , x) = EvalC′(k(i,j),y(i−1)u+j
, y) for some i, j, where

y = Map(x) and where k′(i,j),y(i−1)u+j
← Constr′(k, (i − 1)u + j, y(i−1)u+j), which is a part of kS .

Thus, EvalC′(k(i,j),y(i−1)u+j
, y) = Eval′(k, y) = Eval(k, x).

For EvalC, we have that EvalC(kS,i,z, x) = EvalC′(k′(i,j),zj , y) for some j, where again y = Map(x)

and where k′(i,j),zj ← Constr′(k, (i − 1)u + j, zj). Here again, k′(i,j),zj is a part of kS,i,z. Thus,

EvalC′(k′(i,j),zj , y) = Eval′(k, y) = Eval(k, x).
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Security. We now state and prove security.

Theorem 9. If (Gen′,Eval′,Constr′,EvalC′) is secure, then so is (Gen,Eval,Punc,EvalP,Constr,EvalC).

Proof. Let A be an adversary for (Gen,Eval,Punc,EvalP,Constr,EvalC). We construct a new adver-
sary A′ for (Gen′,Eval′,Constr′,EvalC′). A′ simulates A, making queries to its 1-SF-PRF challenger
as needed to answer the queries made by A. When A makes a challenge query on x∗ ∈ Sℓ, A′ makes
a challenge query on y∗ = Map(x∗), forwarding any response to A.

Correctness of the simulation is straightforward. All that is needed is to show that A′ never
needs to make a query that will allow it to answer the challenge query. Recall that the queries
A′ makes to generate kS can only evaluate the PRF on codewords that are outside the symbols
of codewords in S. Therefore, these queries cannot help answering x∗ ∈ S. We now address the
constrained keys made by A, for symbol z. Recall that we chose the constrained key according to
Lemma 17. This means the constrained constrained key for z cannot be used to evaluate the PRF
on any codeword in S other than z. In particular, since the symbols in the challenge x∗ must be
distinct from the queries A makes, none of the resulting constrained keys can evaluate x∗. Thus, A′

is a valid adversary for 1-SF security, and perfectly simulates the view of A with the same advantage
as A. By the assumed 1-SF-PRF security, this advantage must therefore be negligible.

C.3 Constructing Multi-point Binding Hashes

Here, we prove Lemma 12, which is repeated here for convenience:

Lemma 18. Assuming one-way functions and iO exist, then so do multi-point binding hash
functions.

Proof. Let iO be an indistinguishability obfuscator, Gen′ the generation algorithm for a puncturable
PRF, and G a length-doubling pseudorandom generator.

• Gen(1λ, 1n): Sample k ← Gen′(1λ), and output hk = iO(1λ,Hashk), where Hashk is the program
given in Figure 29, padded to the appropriate length (depending on n).

• H(hk,m) = hk(m)

• GenBind(1λ, S∗): Write S∗ = (m∗
1, . . . ,m

∗
n). Sample k ← Gen′(1λ), and choose a vector of

random strings x = x∗1, . . . , x
∗
n. Output hk = iO(1λ,HashBindk,x), where HashBindk,x is the

program given in Figure 30.

Figure 29: The Program Hashk.

Inputs: m
Constants: k

1. Output G(F(k,m))

Figure 30: The Program HashBindk,S∗,x.

Inputs: m
Constants: k, S∗,x∗

1. If m = m∗
i ∈ S∗, output x∗i .

2. Otherwise, output G(F(k,m))

The binding property is proved as follows. For any point outside of S∗, the output is in the
image of G. On the other hand, the image of G is sparse, and so all the points in S∗ will, with
overwhelming probability, not be in the image, and they will moreover be distinct. Therefore, the
points in S∗ will be the unique points with these images.
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Security The indistinguishability of (S∗,Gen(1λ, 1n)) and (S∗,GenBind(1λ, S∗)) follows via a
sequence of hybrid experiments.

• Game0: This corresponds to the case where the adversary receives (S∗,Gen(1λ, 1n)).

The adversary sends set S∗. The challenger chooses a puncturable PRF key k, and outputs
Hashk.

• Game1: In this experiment, the challenger uses a PRF key punctured at the set S∗. For the
points in S∗, the challenger hardwires the output.

More formally, after the adversary sends S∗ = (m∗
1, . . . ,m

∗
n), the challenger chooses a PRF

key k and computes a punctured PRF key kS∗ ← Punc(k, S∗). For each i ∈ [n], it sets xi =
G(F(k,mi)). Finally, it computes an obfuscation of HashBindkS∗ ,S∗,x∗ where x∗ = (x∗1, . . . , x

∗
n).

• Game2: This experiment is similar to the previous one, except that the challenger chooses n
strings y = (y1, . . . , yn) uniformly at random and sets x∗i = G(yi).

• Game3: This experiment is similar to the previous one, except that the challenger chooses all
x∗i strings uniformly at random.

• Game4: This experiment corresponds to the case where the adversary receives GenBind(1λ, S∗).

Claim 45. Assuming the security of iO, Game0 and Game1 are computationally indistinguish-
able.

Proof. The only difference in Game0 and Game1 is that the program Hashk is used in Game0,
while HashBindkS∗ ,S∗,x is used in Game1. Therefore, it suffices to show that these two pro-
grams are functionally identical (and as a result, their obfuscations are computationally
indistinguishable).

For all inputs m /∈ S∗, the programs have identical output, since G(F(k,m)) = G(F(kS∗ ,m))
(using the correctness of punctured PRF on non-punctured points).

For any inputs mi ∈ S∗, note that the program HashBind outputs x∗i , and this is set to
G(F(k,mi)). As a result, the outputs are identical in this case too. This concludes our proof.

Claim 46. Assuming the security of F, Game1 and Game2 are computationally indistinguish-
able.

Proof. Suppose there exists an adversary that can distinguish between Game1 and Game2.
Then there exists a reduction algorithm that can break the security of F.

The reduction algorithm receives set S∗ from the adversary, and sends this to the PRF
challenger. It receives a punctured key kS∗ , and n strings y = (y1, . . . , yn) which are either
PRF evaluations or truly random strings. The reduction algorithm computes x∗i = G(yi) for all
i ∈ [ℓ], and then uses these strings and kS∗ to compute the obfuscation of HashBindS∗,kS∗ ,x∗ .

If the yi strings are pseudorandom, then this corresponds to Game1, else this corresponds to
Game2. Therefore, an adversary that can distinguish between these two experiments can be
used to break the PRF security.
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Claim 47. Assuming the security of G, Game2 and Game3 are computationally indistinguish-
able.

Proof. The only difference in the two experiments is that x∗i = G(yi) in Game2, while x∗i is
chosen uniformly at random in Game3. Note that the strings yi are chosen uniformly at random
in Game2, and are not used anywhere else in the experiment. As a result, the two games are
computationally indistinguishable, assuming G is a secure pseudorandom generator.

Claim 48. Assuming the security of iO, Game3 and Game4 are computationally indistinguish-
able.

Proof. The only difference in the two experiments is that Game3 uses a PRF key punctured at
set S∗, while Game4 uses HashBind. On the set S∗, both programs use the hardwired strings
x∗. On the remaining strings, the PRF evaluation using kS∗ is identical to the evaluation
using k.

C.4 Analysis of Hybrids from Section 4.4

We now analyze the hybrids from Section 4.4.

Lemma 19. For any adversary A, advA,0 = advA,1.

Proof. This follows directly from the definition of the security experiments. In one case (Gamereal),
the message m∗

i and verification key vk∗i are chosen after receiving the ith query. In Game1, all these
messages and verification keys are chosen during setup. Since the messages are chosen uniformly
at random in both experiments, and vk∗i is derived from m∗

i using GenBindsig in both cases, the
distributions are identical.

Lemma 20. Assuming the multi-point binding security of H, for any PPT adversary A, there
exists a negligible function negl such that for all λ, |advA,1 − advA,2| ≤ negl(λ).

Proof. The only difference between Game1 and Game2 is the choice of hk. In one case, it is computed
using GenHash(1

λ, 1n), while in the other case, it is computed using GenBindHash(1
λ, {vki}i∈[n]).

These two hash keys are computationally indistinguishable, assuming the multi-point binding
security of H.

Lemma 21. Assuming the security of iO, for any PPT adversary A, there exists a negligible
function negl such that for all λ, |advA,2 − advA,3| ≤ negl(λ).

Proof. The only difference in the two experiments is the CRS. In one case, the CRS is an obfuscation
of KGenhk,k, while in the other case, it is an obfuscation of KGenAlthk,{u∗

j ,v
∗
j ,K

∗
j },KS

. We will show

that these two programs (with appropriate hardwired constants) are functionally identical, and
therefore their obfuscations are computationally indistinguishable. We will use the multi-input
binding property of H, (single-input) binding property of signature scheme and the correctness of
the constrained/punctured key’s evaluation.

Recall,
{
m∗

j , vk
∗
j , σ

∗
j , u

∗
j , v

∗
j

}
j∈[n]

are computed/chosen by the challenger during setup. We will

consider the following cases to show that the two programs are functionally identical:
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• ∀j, vkj = vk∗j and mi = m∗
i and (vk∗i ,m

∗
i , σi) verifies: in this case, the two programs are

identical. The first program outputs PRF evaluation using the key k, while the second
program uses the vector of constrained keys K∗

i . Note that this key can evaluate at all points
(x1, . . . , xn) where xi ∈ {u∗j}j∈[n], and in this program, the input to the constrained evaluation
algorithm satisfies the constraint.

• ∀j, vkj = vk∗j but either mi ̸= m∗
i or (vk∗i ,m

∗
i , σi) does not verify: In this case, both the

programs reject. This is due to the binding property of the signature scheme. If vki = vk∗i ,
then ∄ m ̸= m∗

i with a verifying signature.

• If there exists a t such that vkt /∈ {vk∗j}j∈[n] (say t∗ ∈ [ℓ] is the smallest such index), then
using the multi-input binding property of the hash function, there does not exist a vkt∗ such

that H(hk, vkt∗) = H(hk, vk∗t∗) = u∗t∗ . Therefore, the string ( H(hk, vkj) )j /∈
({

u∗j

}
j

)ℓ

. As a

result, the punctured key can be used to perform the PRF evaluation at this point.

Lemma 22. Assuming the security of single-point binding signatures, for any PPT adversary A,
there exists a negligible function negl such that for all λ, |advA,3 − advA,4| ≤ negl(λ).

Proof. The only difference between the two experiments is the choice of vk∗i and σ∗
i . In one case,

the verification keys and signatures are chosen using GenBindsig, while in the other case, they are
chosen using Gensig (that is, in non-binding mode). These two experiments are computationally
indistinguishable, assuming the security of single-point binding signatures.

In particular, we define n intermediate hybrid experiments {Game3,w}w∈[n] between Game3 and
Game4. In Game3,w, the first w verification keys are chosen using Gensig, while the remaining are
chosen using GenBindsig. Suppose |advA,3 − advA,4| is non-negligible, then there exists an index
w ∈ [ℓ] such that |advA,3,w − advA,3,w+1| is non-negligible. We can use A to build a reduction
algorithm B that breaks the security of single-point binding signatures. The reduction algorithm
samples the first w (message, verification key, signature) tuples as in Game3,w. For the (w + 1)th

tuple, it chooses a uniformly random message m∗
w+1 and sends it to the challenger. The challenger

sends a verification key vk∗ and σ∗. The reduction algorithm sets vk∗w+1 = vk∗ and σ∗
w+1 = σ∗. The

remaining (verification key, signature) pairs are chosen using GenBindsig. Once all verification keys
are chosen, the reduction algorithm chooses hk as in Game3, computes the crs and sends it to the
adversary.

The honest user registration queries are answered using the verification keys, while the corruption
queries are answered using the (message, signature) pairs. Note that if vk∗ is in binding mode,
then this corresponds to Game3,w, else it corresponds to Game3,w+1. Therefore, an adversary
distinguishing between these two experiments can be used to break the single-point binding security
of the signature scheme.

Lemma 23. For any adversary A, advA,4 = advA,5.

Proof. This follows directly from the definition of the experiments, since the difference in the two
experiments is syntactic. In Game4, the challenger chooses m∗

j uniformly at random, and sets v∗j as
m∗

j ⊕K∗
j . In Game5, it chooses v

∗
j uniformly at random, and sets m∗

j = v∗j ⊕K∗
j . The remaining

experiments are identical.
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Lemma 24. Assuming (Gen,Eval,Punc,EvalP,Constr,EvalC) is an adaptively secure special con-
strained PRF, for any PPT adversary A, there exists a negligible function negl such that for all λ,
|advA,5| ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A with non-negligible advantage in Game5. We will
use this adversary to build an algorithm B to break the adaptive security of the special constrained
PRF scheme.

First, the algorithm B simulates the setup phase. It chooses (sk∗j , vk
∗
j ) for each j ∈ [n], samples hk

and computes u∗j = H(hk, vk∗j ). The reduction sets S =
{
u∗j

}
, and queries for a punctured PRF key

for set S. It receives KS , chooses v
∗
j at random, and sends an obfuscation of KGenAlthk,{u∗

j ,v
∗
j},KS

as the CRS.
Next, the reduction receives pre-challenge queries. For the ith registration query, the challenger

queries for a constrained key for (S, i, u∗i ). It receives K
∗
i from the challenger, and sets m∗

i = v∗i ⊕K∗
i .

It computes a signature σ∗
i on m∗

i and sends (vk∗i , (m
∗
i , σ

∗
i )) to the adversary. The reduction algorithm

also adds (vk∗i , (m
∗
i , σ

∗
i ), 0) to T .

When the adversary queries for corrupting a user, the reduction algorithm sends the corresponding
secret key. And when the adversary queries to register a malicious user, the adversary sends pk,
and the reduction algorithm adds (pk,⊥, 1) to T .

For responding to shared key queries, the reduction algorithm sends evaluation queries to the
challenger.

Finally, the reduction receives the challenge set (vk1, . . . , vkℓ). It computes ui = H(hk, vki) and
sends u1|| . . . ||uℓ to the challenger, and forwards the challenger’s response to the adversary.

The post challenge queries are handled similar to the pre-challenge queries. Finally, the adversary
sends a guess, which is forwarded to the PRF challenger.

D Missing Proofs from Section 5

Here, we complete the proof of Lemma 14, by showing that the various hybrids are indistinguishable.

Claim 49. For any y ∈ [Q], and any adversary A making at most Q constrained key queries,
advA,y,a = advA,y,b.

Proof. The only differences in the two games are the following:

• In Gamey,a, the challenger chooses all {hj}j∈[y] uniformly at random from G. In Gamey,b, the

challenger chooses cj ← Zp and sets hj = gcj for each j ∈ [y]. The distributions of these y
group elements is identical in both the experiments.

• In Gamey,a, the challenger chooses v ← G, while in Gamey,b the challenger chooses a ← Zp

and sets v = ga. The distribution of v is identical in both experiments.

• In both the games, all ej,w elements are uniformly random elements in Zp. Finally, we define
B = g

eindexj+1,symj+1 and T = v
eindexj+1,symj+1 .
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Claim 50. Fix any y ∈ [Q]. Assuming iO is a secure indistinguishability obfuscator, for any PPT
adversary A making Q constrained key queries, there exists a negligible function negl such that for
all λ, |advA,y,b − advA,y,c| ≤ negl(λ).

Proof. The only difference in the two hybrids is the challenger’s response to the last Q−y constrained
key queries. Fix any q ∈ {y + 1, . . . , Q}. We will show that the programs obfuscated in the two
experiments (in response to the qth query) are functionally identical, and have the same size. As a
result, we can use the security of iO to argue that the qth constrained key is indistinguishable in
both the games. Therefore, we can conclude that |advA,y,b − advA,y,c| is bounded by (Q− y) · adviO,
which is negligible if adviO is negligible.

Proving that the programs are functionally identical: Take any input x ∈ Σℓ. Note that
both the programs have list Ly which consists of the first y constrained key queries

(
(indexj , symj)

)
j≤y

.

Additionally, the program in Gamey,c has (indexy+1, symy+1). We consider the following cases:

1. there exists a j ∈ [y] such that xindexj = symj . In this case, ConstrainedKeyAlt outputs h
∏

l el,xl
j .

The program ConstrainedKeyAlt′ has two cases:

• if xindexy+1 = symy+1, then the program outputs (g
∏

l el,xl )cj = h

∏
l el,xj

j . Here, we use the

fact that A is set to g
eindexy+1,symy+1 and hj = gcj .

• if xindexy+1 ̸= symy+1, then the program outputs (g
∏

l el,xl )cj = h

∏
l el,xj

j . Here, we only
use the fact that hj = gcj .

2. there does not exist a j ∈ [y] such that xindexj = symj . In this case, the first program outputs

v
∏

l el,xl . The second program again has two cases:

• if xindexy+1 = symy+1, then the program outputs (v
∏

l el,xl ). Here, we use the fact that T
is set to v

eindexy+1,symy+1 .

• if xindexy+1 ̸= symy+1, then the program outputs (v
∏

l el,xl ). The computation is identical
in both cases.

As a result, the two programs are functionally identical (assuming the constants are hardwired
as described in Gamey,b and Gamey,c).

Claim 51. Fix any y ∈ [Q]. Assuming DDH , for any PPT adversary A making Q constrained key
queries, there exists a negligible function negl such that for all λ, |advA,y,c − advA,y,d| ≤ negl(λ).

Proof. The only difference in the two hybrids is that A = ga, v = gb and T = va in Gamey,c,
and in Gamey,d, A = ga, v = gb and T ← G. If there exists an adversary that can distinguish
between these two games with advantage ϵ, then there exists an algorithm that can break the DDH
assumption.

Claim 52. For any y ∈ [Q], and any adversary A making at most Q constrained key queries,
|advA,y,d = advA,y,e| ≤ 1/p.
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Proof. The only difference in the two hybrids is that T ← G in Gamey,d, and in Gamey,f , we first
choose hj+1 ← G and set T = haj+1. Since hj+1 is uniformly random, and a is non-zero with
overwhelming probability, the two distributions are negligibly close.

Claim 53. Fix any y ∈ [Q]. Assuming iO is a secure indistinguishability obfuscator, for any PPT
adversary A making Q constrained key queries, there exists a negligible function negl such that for
all λ, |advA,y,e − advA,y,f | ≤ negl(λ).

Proof. This proof is very similar to the proof of Claim 50. Again, the only difference in the two
games is in the response to the last Q− y key queries. We will show that for each of these queries,
the programs obfuscated in the two experiments are functionally identical.

Fix any q ∈ {y + 1, . . . , Q}. Below we show that the qth constrained key is functionally
identical in both the experiments. Let hj = gcj for all j ≤ y, Hy = (hj)j≤y, Hy+1 = (hj)j≤y+1,

Ly =
(
(indexj , symj)

)
j≤y

, Ly+1 =
(
(indexj , symj)

)
j≤y+1

, v = gb, eindexy+1,symy+1
= a, A = ga,

T = haj+1. Finally, let q
∗ = (indexy+1, symy+1).

• In Gamey,e, the challenger uses P1 ≡ ConstrainedKeyAlt′y,Ly ,q∗,{cj},g,v,A,T,(ej,w)(j,w) ̸=q∗ ,i,z
.

• In Gamey,f , the challenger uses P2 ≡ ConstrainedKeyAlty+1,Ly+1,Hy+1,v,(ej,w),i,z.

Proving that the programs are functionally identical: Consider any input x ∈ Σℓ. As in
the proof of Claim 50, we will have the following cases:

1. there exists a j ∈ [y + 1] such that xindexj = symj . In this case, P2 outputs h
∏

l el,xl
j . The

program P1 has the following cases:

• if xindexy+1 = symy+1 and j < y + 1, then the program outputs (g
∏

l el,xl )cj = h

∏
l el,xj

j .

Here, we use the fact that A is set to g
eindexy+1,symy+1 and hj = gcj .

• if xindexy+1 = symy+1 and j = y + 1, then the program executes Step 3(c). Note that this

is equal to (haj+1)
∏

l̸=indexy+1
el,xl = (hj+1)

∏
l el,xl . Here, we use the fact that T = haj+1.

• if xindexy+1 ̸= symy+1 and j < y + 1, then the program outputs (g
∏

l el,xl )cj = h

∏
l el,xj

j .
Here, we only use the fact that hj = gcj .

2. there does not exist a j ∈ [y + 1] such that xindexj = symj . In this case, P2 outputs v
∏

l el,xl .
The program P1 again has two cases:

• if xindexy+1 = symy+1, then the program outputs (v
∏

l el,xl ). Here, we use the fact that T
is set to v

eindexy+1,symy+1 .

• if xindexy+1 ̸= symy+1, then the program outputs (v
∏

l el,xl ). The computation is identical
in both cases.

Claim 54. For any y ∈ [Q], and any adversary A making at most Q constrained key queries,
advA,y,f = advA,y,g.
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Proof. This proof is similar to the proof of Claim 49. The changes in the two experiments are
syntactic, and therefore the distributions are identical.

From the above claims, it follows that for any PPT adversary A, |advA,y − advA,y+1| ≤ ℓ · |Σ| ·
(2adviO + advDDH ) ≤ negl.

Finally, we show that any adversary A has negligible advantage in GameQ.

Claim 55. For any adversary A, there exists a negligible function negl such that for all λ, advA,Q ≤
negl(λ).

Proof. First, let us recall GameQ.
GameQ: In this game, the challenger uses the program ConstrainedKeyAlt for all the constrained

keys.

• Setup Phase: The challenger chooses v ← G, hk ← G for all k ∈ [Q] and ek,w ← Zp for all
k ∈ [ℓ], w ∈ Σ. Let H = (hk)k∈[Q].

The challenger also maintains an ordered list L of (index, sym) pairs which is initially empty.

• Pre-challenge queries: Next, the challenger receives pre-challenge constrained key queries.
Let (indexj , symj) be the jth constrained key query. The challenger adds (indexj , symj) to L.

Let s = min(Q, j) = j, and let Ls (resp. Hs) denote the first s entries in L (resp. H). The
challenger computes the constrained key
Kj ← iO(1λ,ConstrainedKeyAlts,Ls,Hs,v,(ek,w),indexj ,symj

) and sends Kj to the adversary.

• Challenge Phase: Next, the adversary sends a challenge x∗ such that x∗i ̸= z for any
pre-challenge key query (i, z). The challenger chooses b ← {0, 1}. If b = 0, the challenger
computes t =

∏
i ei,x∗

i
and sends vt. If b = 1, the challenger sends a uniformly random group

element in G.

• Post-challenge queries: The post-challenge queries are handled similar to the pre-challenge
queries.

• Guess: Finally, the adversary sends the guess b′ and wins if b = b′.

We will define a new security game Gameend, show that it is computationally indistinguishable
from GameQ, and finally show that any adversary has negligible advantage in Gameend.

Gameend: In this game, the challenger uses the program ConstrainedKeyEnd for all the constrained
keys. The only difference between the programs ConstrainedKeyAlt and ConstrainedKeyEnd is that
the latter does not have the Step 3(b), and therefore does not contain the constant v.

• Setup Phase: The challenger chooses hk ← G for all k ∈ [Q] and ek,w ← Zp for all
k ∈ [ℓ], w ∈ Σ. Let H = (hk)k∈[Q].

The challenger does not sample v ← G .

The challenger also maintains an ordered list L of (index, sym) pairs which is initially empty.
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ConstrainedKeyAlts,Ls,Hs,v,(ek,w),i,z

Input: x = (x1, . . . , xℓ) ∈ Σℓ

Constants: s ∈ ℓ · |Σ|
List Ls = ((indexk, symk))k∈[s]

Hs = (hk)k∈[s]

Group element v,
Exponents (ek,w)k,w,

Constraining index/symbol i ∈ [ℓ], z ∈ Σ

1. If xi ̸= z output ⊥.

2. Compute t =
(∏

k≤ℓ ek,xk

)
.

3. Find the smallest k ∈ [s] such that xindexk = symk.

(a) If such k exists, then output ht
k.

(b) Else output vt.

Figure 31: Program ConstrainedKeyAlt

• Pre-challenge queries: Next, the challenger receives pre-challenge constrained key queries.
Let (indexj , symj) be the jth constrained key query. The challenger adds (indexj , symj) to L.

Let s = min(Q, j) = j, and let Ls (resp. Hs) denote the first s entries in L (resp. H). The
challenger computes the constrained key

Kj ← iO(1λ,ConstrainedKeyEnds,Ls,Hs,(ek,w),indexj ,symj
) and sends Kj to the adversary.

• Challenge Phase: Next, the adversary sends a challenge x∗ such that x∗i ̸= z for any
pre-challenge key query (i, z). The challenger chooses b← {0, 1}.

If b = 0, the challenger samples v ← G , computes t =
∏

i ei,x∗
i
and sends vt. If b = 1, the

challenger sends a uniformly random group element in G.

• Post-challenge queries: The post-challenge queries are handled similar to the pre-challenge
queries.

• Guess: Finally, the adversary sends the guess b′ and wins if b = b′.

To show that GameQ and Gameend are computationally indistinguishable, it suffices to show
that the Q constrained keys are computationally indistinguishable. We will show that for each
j ∈ [Q], the programs ConstrainedKeyAltj,Lj ,Hj ,v,(ek,w),i,z and ConstrainedKeyEndj,Lj ,Hj ,(ek,w),i,z are

functionally identical. Note that the only difference in the two programs is that ConstrainedKeyEnd
does not have an ’else’ condition in Step 3(b). However, note that xindexj = symj , and as a result,
Step 3(b) is never executed in ConstrainedKeyAlt. As a result, both the programs are functionally
identical, and hence their obfuscations are computationally indistinguishable.

Finally, we need to show that any adversary has negligible advantage in Gameend. This follows
from the fact that v is chosen uniformly at random in the challenge phase, and v is not used
anywhere else in the experiment. As a result, the adversary receives a random group element in
both cases (when b = 0 and b = 1). Therefore, the adversary has advantage 0 in Gameend.
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ConstrainedKeyEnds,Ls,Hs,(ek,w),i,z

Input: x = (x1, . . . , xℓ) ∈ Σℓ

Constants: s ∈ n · |Σ| List Ls = ((indexk, symk))k∈[s]

Hs = (hk)k∈[s]

Exponents (ek,w)k,w,

Constraining index/symbol i ∈ [ℓ], z ∈ Σ

1. If xi ̸= z output ⊥.

2. Compute t =
(∏

k≤ℓ ek,xk

)
.

3. Find the smallest k ∈ [s] such that xindexk = symk.

(a) If such k exists, then output ht
k.

Figure 32: Program ConstrainedKeyEnd
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