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Abstract. As a quantum analogue of one-way function, the notion of
one-way quantum state generator is recently proposed by Morimae and
Yamakawa (CRYPTO’22), which is proved to be implied by the pseudo-
random state and can be used to devise the one-time secure digital sig-
nature. Due to Kretschmer’s result (TQC’20), it’s believed that pseudo-
random state generator requires less than post-quantum secure one-way
function. Unfortunately, it remains to be unknown how to achieve the
one-way quantum state generator without the existence of post-quantum
secure one-way function. In this paper, we mainly study that problem
and obtain the following results:
– Two variants of one-way quantum state generator are proposed,

called the weak one-way quantum state generator and distribution-
ally one-way quantum state generator. Then the equivalence between
weak and strong one-way state generator is obtained, and the equiv-
alence between weak and distributionally one-way quantum state
generator is shown in the symmetric setting.

– We construct the symmetric distributionally one-way quantum state
generator from average-case hardness assumption of a promise prob-
lem belongs to QSZK.

– We construct quantum bit commitment with statistical binding (sum-
binding) and computational hiding directly from the average-case
hardness of QSZK.

– To show the non-triviality of the constructions above, a quantum
oracle U is devised relative to which such promise problem in QSZK
doesn’t belong to QMAU .

Our results present the first non-trivial construction of one-way quantum
state generator from the hardness assumption of complexity class, and
give another evidence that one-way quantum state generator probably
requires less than post-quantum secure one-way function.

1 Introduction

As the most fundamental primitive, one-way function (OWF) plays a crucial
role in cryptography. Plenty of cryptographic primitives have been shown equiv-
alent to OWF, including the pseudorandom generator (PRG), pseudorandom
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functions (PRFs), pseudorandom permutations (PRPs), digital signature, sym-
metric encryption, message authentication code (MAC). bit commitment and
more ([20,18,26,44,19,37,23,32]). By Impagliazzo’s famous “five worlds” [25], it
is called the MiniCrypt that the world OWF exists.

As a quantum analogue to MiniCrypt, the MiniQCrypt represents the world
that post-quantum secure one-way function (pqOWF) exists [21]. Many results
seem to be consistent with the classical setting [49,10,50]. However, MiniQCrypt
may contain some objects that contrast to its classical counterpart. When al-
lowing quantum communication, the celebrated result by Bennett and Brassard
showed that the key exchange protocol doesn’t need to rely on any cryptographic
assumption in quantum world [7] which seems impossible in classical world due to
the negative result [27]. Moreover, two independent works concurrently showed
the feasibility for constructing oblivious transfer (OT) protocol, secure multi-
party computation (MPC) protocols from pqOWFs within a non-black box and
black-box manner respectively [21,6]. Whereas, in classical world, no such con-
struction has been found, OT is believed to be a “higher-level” primitive than
OWFs due to the black-box barrier [27,33].

It seems that the existence of pqOWFs is probably not necessary for some
quantum objects whose classical counterparts are equivalent to (or even “stronger”
than) OWFs in classical world. In lieu of outputting a string, Ji, Liu, and Song
proposed a quantum analogue of PRGs which is called the pseudorandom states
(PRSs) [28]. Taking a random seed as input, PRS outputs a quantum state which
masquerades as a real random state (sampled from the Haar measure). It is
shown that PRSs can be constructed by quantum pseudorandom functions which
indicates that PRSs belongs to MiniQCrypt. But the other direction seems to be
infeasible, by constructing a quantum oracle O relative to which QMAO = BQPO

while PRS (and even pseudorandom unitary) still exists, the result by Kretschmer
gave negative evidence for ensuring pqOWF from PRS [31]. By exploiting the na-
ture of PRSs, two recently results by Morimae et al. and Ananth et al. devised
constructions of quantum commitment from PRSs [36,5], which further showed
that quantum bit commitment may be also “weaker” than pqOWFs. Besides, by
considering quantum state as output, Morimae et al. defined a new quantum
analogue of pqOWF, which they called the one-way quantum state generator
(OWSG), and proved the implication from OWSG to one-time secure digital
signatures with quantum public keys [36]. Ananth et al. proposed the notion of
pseudorandom function-like quantum states (PRFSs) and obtained several appli-
cations such as the pseudo one-time encryption schemes [5]. However, no known
construction of these quantum primitives has been found from well-known com-
plexity assumptions “below” pqOWF. That motivates us to study this problem:

Can we achieve these quantum primitives by some computational hardness
assumptions which are not sufficient for pqOWF?

One-Way Quantum State Generators. Motivated by that problem, we here
focus on the notion of OWSGs by Morimae and Yamakawa [36]. Informally, a
quantum polynomial-time (QPT) algorithm f is OWSGs, if it takes a string x as
input, and output a state |φx〉 (it can also be defined as outputting a mixed state
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by the very recent result [35]) which guarantees the computational infeasibility of
finding a “plausible” preimage x′ for any QPT adversary even given polynomial
many copies of the challenge state |φx〉. Here “plausible” means the state output
by x′ is not far from the challenge state |φx〉, which is characterized by the inner
product of these two states. It is obvious that pqOWFs meets the requirement
of OWSGs. More precisely, PRS is also OWSG.

OWSGs can be treated as the quantum version of OWFs, not only because of
the similarity between their definitions, but also due to the potential relations
to other cryptographic objects (e.g. the implication from PRS to OWSG can be
treated as the quantum version of the implication from PRG to OWF, and the
construction of one-time secure digital signatures with quantum public keys from
OWSG can be regarded as the quantum version of Lamport’s one-time signature
scheme from OWF). According to Kretschmer’s result, we know that pqOWFs
are probably not necessary to OWSGs [31]. But unfortunately, it remains to be
unknown that how to devise a non-trivial construction of OWSGs which can not
achieve the requirement of pqOWFs simultaneously.

1.1 Overview of Our Results and Techniques

In a nutshell, this work explores the nature of OWSGs, and studies how to con-
struct it with some complexity assumptions which are not known to imply the
OWFs. The main results are summarized as follows.

The Equivalence Among Variants of OWSGs. In order to construct OWSG,
we consider the weak version of quantum one-wayness. Note that for a QPT al-
gorithm f which takes a string x as input and outputs a state |φx〉, the quantum
one-wayness of f is defined by the computational infeasibility of any QPT adver-
sary A for finding a similar preimage x′ [36]. That similarity is characterized by
the inner product |〈φx|φx′〉| between the fake state |φx′〉 and the real challenge
state |φx〉 which should be negligible when f is OWSG. Note that OWSG (which
we call it the strong OWSG sometimes to make it clear) can be regarded as the
quantum analogue of (strong) one-way function. We hence accordingly define
the notions of weak one-way state generators (weak OWSGs) and distribution-
ally one-way quantum state generators (distributionally OWSGs), which can be
regarded as the quantum analogues of the weak one-way functions (weak OWFs)
and distributionally one-way functions (distributionally OWFs) [26,17].

These three notions share the same functionality. The only difference is their
security definitions. Similar as the weak OWF, the weak OWSG only requires
relaxed version of the one-wayness, which only bounds the success probability
to be at most 1 − 1/p(n) for any QPT adversary A and positive polynomial
p(·). A succeeds iff it measures |φx〉 with the basis {|φx′〉〈φx′ |, I − |φx′〉〈φx′ |}
generated by the forged x′ and gets |φx′〉 in result. To define the distributionally
OWSGs, note that the distributionally OWF requires the hardness for generating
a nearly random preimage for a challenge value, which is characterized by the
statistical distance between the real distribution of the input/output and the
forged distribution by the adversary. Taking inspiration of that, in quantum
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case, we describe that property by the trace distance between the real (mixed)
state |input string〉 ⊗ |output state〉 and the faked (mixed) state generated by

a QPT adversary. More specifically, if we denote by ρ
|φx〉
A,t the (mixed) state

with the form
∑
px|x〉〈x| which is output by an adversary A with |φx〉⊗t as its

challenge state. Then the distributionally one-wayness is characterized by the
existence of some polynomial nc such that

F
(

E
x
|x〉〈x| ⊗ |φx〉〈φx|,E

x
ρ
|φx〉
A,t ⊗ |φx〉〈φx|

)
≤ 1− 1

nc

for any QPT adversary A when n is sufficiently large. The expected value Ex is
taken over some distribution D(1n).

By the definitions of these variants of OWSGs, it’s obvious that strong OWSG
is immediately the weak OWSG, and weak OWSG is distributionally OWSG. As
for the other direction, the implication from weak OWSG to strong OWSG follows
Yao’s construction with only minor modification, Namely, assuming f is weak
OWSG which takes x as input, and outputs |φx〉, it’s not hard to prove

f′(x1, . . . , xm)→ ⊗mi=1|φxi
〉⊗poly(n)

is OWSG by a similar strategy as classical case, where poly(n) is some polynomial
decided by f. That result is consistent with its classical counterpart [17].

Theorem 1. The existence of weak OWSG is equivalent to the existence of
strong OWSG.

The implication from the distributionally OWSG to weak OWSG is more com-
plicated and remains to be open. In this paper, we only prove it in a “symmetric”
setting. Namely, we call f the symmetric ε-OWSG if the inner product between
the t-copy of challenge state |φx〉⊗t and t-copy of the resulting state |φx′〉⊗t is
larger than ε1/2. Accordingly, f is symmetric distributionally OWSG if

F

(
E
x
|x〉〈x| ⊗ |φx〉〈φx|⊗t,E

x
ρ
|φx〉
B,t′ ⊗ |φx〉〈φx|

⊗t
)
≤ 1− 1

q(n)

.
In that case assuming f(x) := |φx〉 is symmetric distributionally OWSG, the

candidate of symmetric weak OWSG is

f′(x, hk, k)→ |φx, k, hk, hk(x)〉.

Here hk : {0, 1}n → {0, 1}k is a universal hash function. For ease of notation, hk
also denotes the description of that function, and k ≤ n+O(log n) is the output
length.

The construction follows its classical counterpart by Impagliazzo and Luby
[26], where original proof strategy, is like that, assuming A breaks the weak one-
wayness of f ′(x) = (f(x), k, hk, hk(x)), then overwhelming parts of the outputs
f ′(x) can be inverted. However, it would contradict the distributionally one-
wayness of f if we find some suitable k (note that k denotes the output length of
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hk, there are at most polynomial many of k) such that the following conditions
hold with high probability: (1) hk is injective on the preimage space of the
challenge value (i.e. f−1(f(x))); (2) The size of the image space of hk (i.e. 2k)
is at most |f−1(f(x))| · nC for some polynomial nC . Conditioned on these two
events, for a random guessing r ∈ {0, 1}k, it holds that r ∈ hk(f−1(f(x)))
with non-negligible probability, and since hk is a universal hash and injective
on f−1(f(x)), the adversary A would return x′ randomly from f−1(f(x)) in
that case with high probability. That induces an adversary B for breaking the
distributionally one-wayness of f by invoking A(f(x), k, hk, r) with some random
r (and k goes through n + O(log n) to O(log n) until a valid output has been
found).

However, a subtle issue appears when we adopt the strategy above. That
is, the preimage space {x | f(x) → |φx〉} of the challenge state |φx〉 doesn’t
necessarily contain all “valid” forgeries. For example, let x′ be a forged preimage
such that corresponding output state |φx′〉 is very close to the real challenge state
|φx〉 (i.e. |〈φx′ |φx〉| > 1−negl(n)), such an x′ should also be considered since it’s
obviously a “valid” forgery. However, it’s a little intractable to decide which kinds
of x′ is “close” to the challenge state and which are not since |〈φx′ |φx〉| can be
arbitrary value in [0, 1] (and that problem doesn’t bother its classical counterpart
because the output of a one-way function f is a string, either 〈f(x)|f(x′)〉 = 1
or 〈f(x)|f(x′)〉 = 0).

Fortunately, this obstacle can be tackled by a potential nature of the quan-
tum state generator which doesn’t satisfy the weak one-wayness. We find that,
assuming a quantum state generator f is not symmetric weak one-way, then for
almost all x, x′, the output states |φx〉 and |φx′〉 are either very close, or far
enough. We call that property the polarization of a quantum state generator.
More specifically, we say f is (k, p)− polarized on I, if for any x, x′ ∈ I, either
|〈φx′ |φx〉|k ≥ 1− p(n) or |〈φx′ |φx〉|k ≤ p(n).

Lemma 1 (informal). If f is not symmetric weak OWSG, then for any positive
polynomial poly(·), there exists a positive polynomial t(·) and subspace In of
the domain, such that f is (2t(n), 1/poly(n)) − polarized on In and In takes
overwhelming part of the domain.

Assuming f is not symmetric weak OWSG, by the lemma above, we can hence
divide In into several equivalent classes according to their trace distance. Then
the collection f−1(f(x)) in the classical setting can be replaced by the collection
of x′ whose output state |φx′〉 is very close to the challenge state |φx〉. Then by
similar strategy (but different technique) as the result in [26], we hence show the
implication from the distributionally OWSG to weak OWSG.

Theorem 2. The existence of symmetric distributionally OWSG is equivalent
to the existence of symmetric weak OWSG.

However, proving the equivalence between symmetric weak OWSG and sym-
metric strong OWSG is also challenging because the success probability is highly
related to the number of copies that gives to the adversary. We believe the quan-
tum non-cloning principle is the main reason for causing this obstacle, because
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in classical setting it is natural to copy a string which is nearly impossible in
quantum case.

Constructing Symmetric OWSGs from Hard Problem in QSZK. Note
that it’s possible to construct (distributionally) OWF from any average-case
hard problem in statistical zero-knowledge (SZK) [41] 3. Therefore, to instantiate
OWSGs, we consider the average-case hardness of the quantum statistical zero-
knowledge (QSZK). Since the quantum state distinguishability (QSD) problem
is complete for QSZK (even in average-case) [46], it’s sufficient to investigate the
average hardness of the QSD problem.

Informally, the QSD problem is a promise problem, that given a pair of
quantum circuit Q0 and Q1, which is promised the distance of output (mixed)
states from these two circuits is either close enough or pretty far, the problem
is to decide which case it is. The QSD problem can be regarded as the quantum
analogue of the statistical difference (SD) problem, a complete promise problem
for SZK, which is given a pair of classical circuits C0 and C1, promised that the
output distributions of these two circuits are either close or far from each other
for a random input.

It’s easy to realize the distributionally OWF from the average-case hardness
of SD problem. If we denote by S(r)→ (Cr0 , C

r
1) the procedure that the sampler

S generates a hard-on-average instance (Cr0 , C
r
1) of the SD problem with r as

the internal random number, then f(r, b, x) := (Cr0 , C
r
1 , C

r
b (x)) is naturally a

distributionally OWF 4. Assuming there is a probabilistic polynomial time (PPT)
adversary generates preimages of f(r, b, x) randomly, it’s nearly impossible to
generates a valid preimage with b ⊕ 1 when the distributions of Cr0 and Cr1 are
far enough, whereas a preimage with b⊕ 1 would appear more often when these
two distributions are close. That induces a distinguisher for that SD problem.

However, it’s more challenging to construct (symmetric) distributionally OWSG
from a hard-on-average QSD problem. The output states by the instance Q0, Q1

are mixed with unknown distribution, which makes the purification procedure
hard to handle. Therefore, to get around this obstacle, we consider a purified
version of the QSD problem, which we call it the semi-classical quantum state
distinguishability (semi-classical QSD or scQSD) problem. Given a pair of uni-
tary operators (U0, U1) along with two samplers (S0, S1), it is promised that these
two states

∑
x p0,x|φU0

x 〉〈φU0
x | and

∑
x p1,x|φU1

x 〉〈φU1
x | are either very close, or far

enough, where Ub|0, x〉 = |φUb
x , x〉 and Pr[Sb(1

n)→ x] = pb,x. The problem is to
decide which case it is. It is easy to see that the semi-classical QSD problem is
a special case of the QSD problem which specifies the purification progress and
the distributions.

For ease of notation, we still use (Qr0, Q
r
1) to represent the instance of scQSD

problem, but in this case Qrb := (Ur0 , S
r
b) denotes the set of unitary circuit with

sampler under the random index r, and Urb |0, x〉 = |φU
r
b

x , x〉. Then assuming the

3 The existence of OWF can further rely on the non-triviality (i.e. average-case hard-
ness) of the computational zero-knowledge (CZK) [42].

4 Detailed description and other applications of the average-case hardness of the SD
problem may refer to [30,9].
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semi-classical QSD problem is hard-on-average for a sampler S(r) → (Qr0, Q
r
1),

we ensure the existence of symmetric distributionally OWSGs by the following
construction

f(r, b, x) := |ψQ
r
0,Q

r
1

b,x 〉 = |Qr0, Qr1〉 ⊗ |φ
Ur

b
x 〉.

That is because, assuming there exists an adversary A breaks the distribu-
tionally one-wayness of f, when the mixed states by Qr0, Q

r
1 are pretty far, it’s

infeasible for A to generate a valid preimage (r∗, b⊕1, x∗) for Ex|φ
Ur

b
x 〉〈φU

r
b

x |⊗t as
input state (here the expectation of x is taken over the distribution of Sb(1

n)). Be-

cause in that case, the trace distance between Ex|φ
Ur

b
x 〉〈φU

r
b

x | and Ex|φ
Ur

b⊕1
x 〉〈φU

r
b⊕1

x |
is very far, by the definition of the distributionally OWSG, it’s nearly impossi-
ble for a successful adversary A to find another case’s preimage. On the other
hand, when the mixed states by Qr0, Q

r
1 are close enough, then the trace distance

between Ex|φ
Ur

b
x 〉〈φU

r
b

x |⊗t and Ex|φ
Ur

b⊕1
x 〉〈φU

r
b⊕1

x |⊗t is negligibly small. Therefore

the output of A should only change slightly when replacing Ex|φ
Ur

b
x 〉〈φU

r
b

x |⊗t by

Ex|φ
Ur

b⊕1
x 〉〈φU

r
b⊕1

x |⊗t. That indicates A would output another bit b ⊕ 1 with no-
ticeable probability, and hence we can devise a distinguisher of the semi-classical
QSD problem.

Theorem 3. Assuming the semi-classical QSD problem is hard-on-average in
quantum case, then there exists a symmetric distributionally one-way state gen-
erator.

As a special case, when {|φUb
x 〉}x are initialized as an (almost) orthogonal set for

any Ub, we can then deduce that the polarization lemma is naturally held, which
means we can further derive a OWSG from such an special case semi-classical
QSD problem.

Besides, since semi-classical QSD problem is a special case of the QSD prob-
lem, we can prove it is also a promise problem of QSZK. Hence we derive a
construction of distributionally OWSG from a hard-on-average promise problem
of QSZK, and therefore achieve the OWSG according to the constructions from
weak OWSG to OWSG, and distributionally OWSG to weak OWSG.

Constructing Quantum Commitment from Hardness of QSZK. Al-
though we face the problem for handling the purification progress when con-
structing the distributionally OWSG from the standard QSD problem, but as a
by-product and another cryptographic application, we can construct the quan-
tum bit commitment with statistical binding (sum-binding) and computational
hiding directly from the average-case hardness of the QSD problem.

Informally, note that the hardness of the QSD problem ensures that any QPT
adversary can not distinguish whether the mixed states by a given instance of
the QSD problem Qr0, Q

r
1 are close enough or pretty far. That implies if we

send one of the mixed states from Qr0, Q
r
1 as a commitment and reveal it by

sending the entangled part of this state. Then the verification can be achieved
by checking whether this state is output by the purification circuit of Qb (here we
fix the progress of purification as a deterministic algorithm). The computational
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hiding holds because of the hardness of the QSD problem, it’s infeasible to tell
which one it comes from. The binding property is supported by the following
fact: When the mixed states by Qr0, Q

r
1 are far enough, it is impossible for any

malicious commiter to convince the receiver with opening 0 and 1 as the message
simultaneously. Therefore the implication from the average-case hardness of the
QSD problem to the quantum commitment is obtained.

Theorem 4. Assuming QSD problem is hard-on-average in quantum case, then
there exists a statistical binding (sum-binding) and computational hiding quan-
tum commitment.

Note that the average-case QSD problem is also complete for average-case
QSZK, our result actually gives a construction of quantum bit commitment from
the average-case hardness of QSZK.

Oracle Separation. To show the non-triviality of our constructions above, we
want to prove the semi-classical QSD problem is probably not contained in QMA
relative to some quantum oracles.

To show that, we adopt Aaronson’s technique for separating the SZK and
QMA [2], the strategy is like that, we construct the quantum oracle U which can
be treated as the quantum version of the permutation testing problem (PTP)
oracle. Then we reduce the hardness for deciding U to the quantum lower bound
of the permutation testing problem, which is q · w = Ω(2n/3) for the query
number q and the length of witness w.

More specifically, the oracle U := {Un}n∈N is defined as follows, let Un :=

(UFn(1)
n , . . . ,UFn(2

n+1)
n ) for each n ∈ N, where UFn(i)

n is chosen from the Haar
measure over U(2n) independently for all i ∈ [2n+1]. Here Fn is either (1) a
random permutation on {0, 1}n+1 or (2) a random function that differs from
every permutation on at least 2n+1 · 2/3 coordinates (here the factor 2/3 can
change by other constant, we choose it for aesthetic reasons). Each of these
two cases occurs with probability 1/2. Then the semi-classical QSD relative to

U can be constructed as UUb |0, x〉 := UFn(b‖x)
n |0〉 ⊗ |x〉, and the sampler Sb is

trivially the uniform distribution on {0, 1}n. It doesn’t belong to QMAU due to
the quantum lower bound of the permutation testing problem. By the property
of Haar measure and the randomness of Fn(·), we can deduce that construction
is scQSD with probably 1.

Theorem 5. There exists a quantum oracle U such that scQSDU /∈ QMAU .

Since OWSGs and quantum bit commitment can be both implemented by the
average-case hardness of the scQSD problem, we thus achieve these two quantum
cryptographic primitives with complexity assumptions probably beyond QMA.

1.2 Related Works

Concurrent Works. Few days before our paper was published online, a re-
lated work by Brakerski, Canetti and Qian appeared. They considered to es-
tablish cryptographic primitives from complexity assumption as well [11]. More
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specifically, they showed the efficiently samplable, statistically far but compu-
tationally indistinguishable pairs of distributions (EFI pairs) are necessary and
sufficient for a large class of quantum-cryptographic applications including the
quantum commitments schemes, oblivious transfer, and general secure multi-
party computation, where EFI pairs have been shown to be equivalent to the
quantum commitment by Yan [48,47]. They also constructed EFI pairs from any
non-trivial quantum computationally zero-knowledge (QCZK). That seems to
be overlaped with (and also stronger than) our construction of quantum com-
mitment because the equivalence between quantum commitment and non-trivial
QCZK by [48,11] and the fact that QSZK ⊆ QCZK imply naturally a quantum
commitment from non-trivial QSZK. However, we believe our construction of
quantum commitment still be of interesting because it achieves quantum com-
mitment directly from non-trivial QSZK. Besides, comparing with [11], the more
different part is that we mainly focus on constructing the OWSGs from some
specific non-trivial problem in QCZK. That is not included in [11] because it’s
unknown whether the EFI pairs can be used to construct the OWSGs.

Besides, we remark another very recent result by Morimae and Yamakawa
also discusses about the properties of OWSGs [35]. They give the generalized
definition of OWSGs which allows the output state to be a mixed state and
provides an additional verification algorithm for checking the validity, and show
the equivalence between OWSGs and weak OWSG by the amplification theorem
for weakly verifiable puzzles which is applicable to the secretly verifiable case of
OWSGs.

Quantum Primitives below MiniQCrypt. The initiated work by Ji, Liu
and Song proposed the notions of PRS and pseudorandom unitary (PRU) [28].
They showed the implication of PRSs from the pqOWFs, and gave application
on quantum money. Then Brakerski and Shmueli showed that random binary
phase suffices for the indistinguishability from a Haar random state [12]. They
also gave construction of scalable pseudorandom quantum states from pqOWFs
in their following work [13]. Then Morimae et al. and Ananth et al. concurrently
gave constructions of statistically binding and computationally hiding quantum
commitment from PRSs in their independent works [36,5], which also indicate the
feasibility for constructing OT and MPC according to [21,6]. Besides, Morimae
and Yamakawa defined the notion of OWSGs and gave construction of one-time
secure signature from it [36], and Ananth, Qian and Yuen also gave the notion
of PRFSs and obtained several applications [5].

Cryptographic Primitives from Non-Triviality of (Q)SZK. By giving a
construction of distributionally OWF, Ostrovsky showed that if SZK contains
any hard-on-average problem, then OWFs exist [41]. Subsequently, Ostrovsky
and Wigderson further proved the existence of a hard-on-average problem in
CZK implies the existence of OWFs in infinitely-often case [42]. Ong and Vad-
han studied the equivalence between CZK and instance-dependent commitments
[45,40]. A recent work by Komargodski and Yogev implemented the distribu-
tional collision-resistant hashes from the average-case hardness of SZK [30]. In
quantum case, Kashefi and Kerenidis gave pqOWFs from the circuit quantum
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sampling (CQS) problem [29]. That induces a construction of pqOWFs from
the average-case hardness of SZK because any SZK language can be reduced to
the CQS problem [4]. Then Chailloux, Kerenidis and Rosgen devised computa-
tionally hiding and statistically binding auxiliary-input quantum commitment
schemes by the worst-case complexity assumptions such as QSZK * QMA [14]
and even much weaker assumption QIP * QMA (with quantum advice in the
commitment scheme).

Oracle Separations. There are lots of works about the oracle separations of
(Q)SZK, we only refer to those highly related. Aaronson and Chen defined the
oracle O relative to which BQPO * BPPOpath and BQPO * SZKO [1,15]. Then

Aaronson showed that SZKO * QMAO by giving a quantum lower bounded for
PTP [2]. Chailloux et al. devised computationally hiding and statistically bind-
ing auxiliary-input quantum commitment schemes by the worst-case complexity
assumptions and also separated the QSZK and QMA by a quantum oracle [14].
Menda and Watrous showed an oracle separation between QSZK and UP∩ coUP
[34], where the hardness of the later one yields the existence of one-way per-
mutation in worst case [24]. As the relations between cryptographic primitives,
Fischlin extended the Simon’s result [43] and devised an oracle relative to which
injective trapdoor functions and one-way permutations exist, while SZK collapses
to P [16]. Due to a series of works [42,40,22], the black-box reduction from hard-
on-average problems in SZK to OWPs has also been ruled out. Subsequently,
Bitansky et al. showed that even OWPs along with the indistinguishability ob-
fuscators (and the collision-resistant hash functions) do not imply hard problems
in SZK via black-box reductions [8,9]. Recently, by taking advantage of the con-
centration of Haar measure, Kretschmer gave a quantum oracle O relative to
QMAO = BQPO while PRS (and even PRU) still exists which gives negative
evidence for reducing pqOWF from PRS [31].

2 Preliminaries

2.1 Notations

Here are some basic notations used later. N and R denote the set of positive
integers and real numbers respectively. [n] is the set of integers {1, 2 . . . , n}. The
mathematical expectation of a random variable X is E[X]. A function negl(·)
is negligible if for any c > 0, negl(n) < 1/nc for all sufficiently large n.

We let S(N) denote the N -dimensional pure quantum states, and U(N) be
the group of N × N unitary operators. For U ∈ U(N), U† denotes the adjoint
of U , and In ∈ U(2n) is the identity map. Tr(ρ) is the trace of ρ, and TrA(ρ) is
the partial trace over A.

2.2 Quantum Computation

This part includes some background information on quantum computation, we
assume the familiarity with basic notions, the detail may refer to [39].

For two n qubits mixed states (density matrices) ρ0, ρ1, we let TD(ρ0, ρ1)
and F(ρ0, ρ1) be the trace distance and fidelity respectively, which are defined
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by TD(ρ0, ρ1) := Tr
√

(ρ0 − ρ1)†(ρ0 − ρ1)/2 and F(ρ0, ρ1) := Tr
√√

ρ0ρ1
√
ρ0.

For pure states |φ0〉, |φ1〉, we denote by TD(|φ0〉, |φ1〉) and F(|φ0〉, |φ1〉) the
trace distance and fidelity of |φ0〉〈φ0|, |φ1〉〈φ1| for simplicity. Then the following
two lemmas are used widely in this paper.

Lemma 2 (Uhlmann’s Theorem). For any pair of states ρ0 and ρ1, let |φ0〉
and |φ1〉 denote the purifications of ρ0 and ρ1 respectively. The fidelity F(·)
between ρ0 and ρ1 can be given by

F(ρ0, ρ1) = max
|φ0〉,|φ1〉

∣∣∣〈φ0|φ1〉∣∣∣. (1)

Where the maximization is taken over all purifications |φ0〉, |φ1〉.

Lemma 3 (Fuchs-van de Graaf Inequalities). For any pair of states ρ0 and
ρ1, we have

1− F(ρ0, ρ1) ≤ TD(ρ0, ρ1) ≤
√

1− F(ρ0, ρ1)2. (2)

Where TD(·) is the trace distance.

A quantum algorithm A is a collection of quantum circuits {An}n>0, it is
quantum polynomial-time (QPT) if the running time is bounded by some poly-
nomial. We say A is uniform QPT algorithm if {An}n>0 is polynomial-time
uniform family of quantum circuits, which means there is a polynomial time de-
terministic Turing machine M(1n) outputs An for each n ∈ N. Without specific
mention, the constructions we considered in this work are all uniform.

Moreover, we denote by PQ the purification of a general quantum circuit
Q which simulates the functionality of Q and satisfies the unitary property si-
multaneously. The existence of such simulation is justified in [3] by allowing
some additional ancillary qubits (which can be initialized as |0〉) as its input and
tracing-out the residual (or garbage) qubits. This simulation of circuit purifica-
tion can be done efficiently.

2.3 Average-Case Hardness of QSZK

The hardness of QSZK can be captured by its complete problem, the quantum
state distinguishability (QSD) problem. Let ρ0 and ρ1 denote the mixed state
obtained by running Q0 and Q1 on state |0〉 and discarding (tracing out) the
non-output qubits. Then the QSD problem is defined as follows.

Definition 1 (Quantum State Distinguishability (QSD)). Given a pair of
quantum circuits (Q0, Q1), and ρ0, ρ1 denote the states produced by Q0, Q1 with
|0〉 as input respectively, it’s promised either TD(ρ0, ρ1) > 2/3 or TD(ρ0, ρ1) <
1/3, the problem is to decide which is the case.

Note that the parameters 1/3 and 2/3 are optional, it can be replaced by
2−n and 1 − 2−n due to the technique of manipulating the trace distance [46].
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Therefore we usually adopt the parameters of the QSD problem as 2−n and
1−2−n in the following text. For simplicity, we introduce the following notations

QSD1 := {(Q0, Q1) | TD(ρ0, ρ1) > 1− 2−n},
QSD0 := {(Q0, Q1) | TD(ρ0, ρ1) < 2−n}.

Then QSD := QSD1 ∪ QSD0.
Similar as the notion of average-case hardness of statistical distance problem

in [30,9], which is known as a SZK complete promise problem, we formalize the
average-case hardness of QSD problem as follows.

Definition 2 (Average-Case Hardness of QSD). For a promise problem
QSD, it is quantum hard-on-average if there exists an efficient sampler S(1n) for
QSD such that any QPT adversary A can not distinguish an instance generated
from S(1n) with non-negligible advantage, namely it holds that

Pr [A(Q0, Q1) = b, (Q0, Q1) ∈ QSDb : (Q0, Q1)← S(1n)] ≤ 1

2
+ negl(n) (3)

for some negligble function negl(·).

Note that, when we assume the average-case hardness of QSD, it holds that

1

2
− negl(n) ≤ Pr [(Q0, Q1) ∈ QSD0 : (Q0, Q1)← S(1n)] ≤ 1

2
+ negl(n)

for some negligible function negl(·) (otherwise there is a trivial distinguisher
breaks the average-case hardness for infinitely many n ∈ N). Therefore an equiv-
alent definition of the average-case hardness of QSD can be defined as the non-
existence of QPT adversary A such that∣∣∣Pr[A(Q0, Q1) = 1 : (Q0, Q1)← S(1n) | (Q0, Q1) ∈ QSD0] (4)

− Pr[A(Q0, Q1) = 1 : (Q0, Q1)← S(1n) | (Q0, Q1) ∈ QSD1]
∣∣ ≤ negl(n)

for some negligible function negl(·). Sometimes, we denote by S(r) = (Qr0, Q
r
1)

the progress of S(1n) when we specify the internal random number r ← {0, 1}l(n).
Moreover, due to the reduction by Watrous [46], it is easy to see that the

average-case QSD is also complete for average-case QSZK, which means the con-
struction from the average-case hardness of QSD could be adjusted to suit other
hard-on-average languages in QSZK.

2.4 One-Way Quantum State Generator and Its Variants

In this part, we will introduce the notion of one-way quantum state generator
(OWSG) by Morimae and Yamakawa [36], and define it’s variants. To describe
the strong (weak) one-way quantum state generator, we firstly give a generalized
version of OWSG which we call it ε(n)-OWSG.
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Definition 3 (ε(n)-OWSG). Let f be a QPT algorithm that takes a string x ∈
{0, 1}n as its input, and outputs a state |φx〉Y ⊗ |ηx〉Z , where the registers Y
stores the output state and Z the ancilla state 5. For any QPT adversary A, we
consider the following experiment Expowsgf,A (n):

– The challenger generates x ← D(1n) by some sampleable D(1n), then runs
f(x)→ |φx〉⊗|ηx〉 about t(n) times and sends the resulting state |φx〉⊗t(n) to
A, where t(n) is a polynomial of n, and we denote by t for simplicity when
there is no confusion.

– A receives the state |φx〉⊗t and outputs a guess x′.

– The challenger measures the state |φx′〉 by {|φx〉〈φx|, I − |φx〉〈φx|} and re-
turns 1 if the measurement is |φx〉, and returns 0 otherwise 6.

Let Exp
owsg
f,A (n) = 1 when the measurement is |φx〉, and Exp

owsg
f,A (n) = 0 other-

wise. f is called ε(n)-one-way state generator (ε(n)-OWSG) on D(1n) if

Pr
x←D(1n)

[
Exp

owsg
f,A (n) = 1

]
≤ ε(n) (5)

for function ε(·) and all sufficiently large n ∈ N. Sometimes we denote the event
as Exp

owsg
A (n) for convenience when f is clear from the context.

When ε(·) is a negligible function, the definition of ε(n)-OWSG is exactly the
OWSG defined in [36], and we call it the strong one-way quantum state generator
(strong OWSG) sometimes for clarity. When ε(n) = 1− 1/nc for some constant
c > 0, we call it the weak one-way quantum state generator (weak OWSG).

The original notion of strong (weak) OWSG is hard to capture, so here we

give an equivalent definition by the trace distance. Let ρ
|φx〉
A,t = TrNA(|φx〉⊗t) be

the mixed state after tracing out all the non-output registers by A with |φx〉⊗t
as input. Without loss of generality, we assume TrN A(|φx〉⊗t) has the form∑
px|x〉〈x| because if not, we can “measure” the output register by performing

the CNOT on those x to an additional auxiliary part before tracing out.

5 In this definition, |ηx〉 is the garbage part which is not non-entangled with |φx〉, the
reason for that is explained in [36]. However, the states in Y,Z could be entangled
in mixed state version [35] by adding a verification algorithm.

6 If we consider f(x) as a unitary operator that takes |0〉 as input, and outputs |φx〉⊗
|ηx〉, then this process can be achieved by invoking the f(x)† to |φx′〉 ⊗ |ηx〉.
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In that case, f(ρ
|φx〉
A,t ) denotes the unitary process from ρ

|φx〉
A,t ⊗ |0〉〈0| to∑

px|x〉〈x| ⊗ |φx, ηx〉〈φx, ηx|. Then it holds that

E
x

[
TD

(
|φx〉〈φx|, Tr

X,Z
f(ρ
|φx〉
A,t )

)]
≤ E

x

√1− F

(
|φx〉〈φx|, Tr

X,Z
f(ρ
|φx〉
A,t )

)2


≤

√√√√E
x

[
1− F

(
|φx〉〈φx|, Tr

X,Z
f(ρ
|φx〉
A,t )

)2
]

≤

√
1− E

x

[
〈φx| Tr

X,Z
f(ρ
|φx〉
A,t )|φx〉

]
=
√

1− Pr
x

[ExpowsgA (n) = 1].

On the other hand,

E
x

[
TD
(
|φx〉〈φx|, Tr

X,Z
f(ρ
|φx〉
A,t )

)]
≥ E

x

[
1− F

(
|φx〉〈φx|, Tr

X,Z
f(ρ
|φx〉
A,t )

)]
≥ 1−

√
E
x

[
〈φx| Tr

X,Z
f(ρ
|φx〉
A,t )|φx〉

]
= 1−

√
Pr
x

[ExpowsgA (n) = 1].

Therefore ε(·) is negligible (or 1 − 1/nc for some c > 0), iff the trace distance

between |φx〉〈φx| and TrZ f(ρ
|φx〉
A,t ) is negligible (resp. 1− 1/nc

′
for some c′ > 0)

that hence derives the equivalent definition of strong (resp. weak) OWSG. We call
the strong OWSG the OWSG for convenience when it’s clear from the context.
Inspired of that, we give the definition of distributionally one-way quantum state
generator which is also characterized by the trace distance as follows.

Definition 4 (Distributionally OWSG). Let f be a QPT algorithm that takes
a string x ∈ {0, 1}n as its input, and outputs a state |φx〉Y ⊗ |ηx〉Z . Then f is
called distributionally one-way quantum state generator (OWSG) on sampleable
D(1n), if for any QPT adversary A in the experiment ExpowsgA (n) (which is de-
fined in Definition 3) it holds that

TD

(
E
x
|x〉〈x| ⊗ |φx〉〈φx|,E

x
ρ
|φx〉
A,t ⊗ |φx〉〈φx|

)
≥ 1

nc

for some constant c > 0. The expectation Ex is taken over the distribution D(1n),

and ρ
|φx〉
A,t = TrNA(|φx〉⊗t) is the mixed state after tracing out all the non-output

registers by A with |φx〉⊗t as input.

Remark 1. Note that the concurrent work by Morimae and Yamakawa general-
ized OWSGs to the mixed state version [35], it remains to be open how to lift
such notion to the mixed state setting, because a large fidelity forgery state is
not the necessary condition for getting a valid verification.
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3 The Equivalence among Variants of OWSGs

In this section, we show the equivalence among these three kinds of OWSGs.
Firstly, we show the equivalence between weak OWSG and strong OWSG.

Theorem 6. The existence of weak OWSG is equivalent to the existence of
strong OWSG.

Proof. Note that the strong OWSG implies the weak OWSG trivially. Therefore
the rest of this proof aims to show the other direction. Here we adopt Yao’s
original construction with minor modification. Let f be a weak OWSG on D(1n),
such that Exp

owsg
B (n) = 1 occurs with probability at most 1 − 1/q(n) for some

positive polynomial q(·) and any QPT adversary B. Then for some suitable
polynomial m(n) (which is determined by q(n)), the following construction of f′

is strong OWSG:

f′(x1, . . . , xm) = ⊗mi=1|φxi〉
⊗nq(n)
Y ⊗mi=1 |ηxi〉

⊗nq(n)
Z (6)

The strategy of proof is very similar to it’s classical counterpart [17]. Here we
give a sketch to note the different part, and leave the detailed proof in A.1.

Assuming A breaks the strong one-wayness of f′ with probability 1/p(n),
then for a random challenge state ⊗mi=1|φxi

〉⊗nq(n), the probability that A out-
puts (x′1, . . . x

′
m) satisfying

∏m
i=1 |〈φxi |φx′i〉|

2nq(n) ≥ 1/2mp(n) is noticeble. There-

fore, for a challenge state |φx∗〉 of f, we just embed it into ⊗mi=1|φxi
〉⊗nq(n)

for some suitable position j ∈ [m]. Then give this state to A and repeat it
for polynomial many times. We can prove that A would output x′j satisfying

|〈φx∗ |φx′j0 〉|
2 ≥ (1/2mp(n))1/nq(n) with high probability. By Chernoff bound,

such x′i can be detected with overwhelming probability by measuring |φx∗〉 with
basis {|φx′j 〉〈φx′i |, I − |φx′i〉〈φx′i |} for polynomial many times.

Remark 2. Note that this result is shown in the pure state version of OWSG, it
can be adjusted to fit the mixed state version as well. Assuming the output state

of mixed state version of weak OWSG is Φx, then f′(x1, . . . , xm) = ⊗mi=1Φ
⊗nq(n)
xi

is a mixed state version of strong OWSG, the proof strategy is almost the same as
the pure state one, we just replace the inner product of two states by the fidelity,
and consider the verification algorithm instead of measuring the resulting state
with basis {|φx′j 〉〈φx′i |, I − |φx′i〉〈φx′i |}.

Then we give the equivalence between distributionally OWSG and weak
OWSG by the following theorem.

Theorem 7. The distributionally OWSG is implied by weak OWSG.

Proof. Since the distance is invariant under unitary operator, it holds that

TD
(

E
x
|x〉〈x| ⊗ |φx〉〈φx|,E

x
ρ
|φx〉
A,t ⊗ |φx〉〈φx|

)
= TD

(
E
x
|x〉〈x| ⊗ |φx〉〈φx| ⊗ |φx〉〈φx|,E

x
Tr
Z
f(ρ
|φx〉
A,t )⊗ |φx〉〈φx|

)
,
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where f(|x〉〈x|) denotes the unitary process from |x〉〈x| ⊗ |0〉〈0| to |x〉〈x| ⊗
|φx, ηx〉〈φx, ηx|. Since f is weak OWSG such that

E
x

[
〈φx| Tr

X,Z
f(ρ
|φx〉
A,t )|φx〉

]
= Pr

x
[ExpowsgA (n) = 1] ≤ 1− 1

nc
(7)

for some constant c > 0. Without loss of generality, we still assume ρ
|φx〉
A,t has the

form
∑
x px|x〉〈x|. If we denote by G the collection of x that is “hard-to-find”,

namely G := {x | 〈φx|TrX,Z(f(ρ
|φx〉
A,t ))|φx〉 ≤ 1 − 1/2 · nc}. According to (7) we

have
∑
x∈G px ≥ 1

2·nc . That hence implies

TD

(
E
x
|x〉〈x| ⊗ |φx〉〈φx| ⊗ |φx〉〈φx|,E

x
Tr
Z
f(ρ
|φx〉
A,t )⊗ |φx〉〈φx|

)
≥ TD

(
E
x
|φx〉〈φx| ⊗ |φx〉〈φx|,E

x
Tr
X,Z

f(ρ
|φx〉
A,t )⊗ |φx〉〈φx|

)
= TD

(
E
x
SWAP

(
|φx〉〈φx| ⊗ |φx〉〈φx| ⊗ |0〉〈0|

)
,E
x
SWAP

(
Tr
X,Z

f(ρ
|φx〉
A,t )⊗ |φx〉〈φx| ⊗ |0〉〈0|

))
≥ Tr

(
E
x

(1− 〈φx|TrX,Z f(ρ
|φx〉
A,t )|φx〉

2

))

≥ Tr

(
x∈G∑
x

px

(1− 〈φx|TrX,Z f(ρ
|φx〉
A,t )|φx〉

2

))

≥ 1

2 · nc
·
(

1

4 · nc

)
=

1

8 · n2c
,

where SWAP is the swap test on the first two parts, and stores the result in the
additional qubit |0〉. That hence justifies the implication from weak OWSGs to
distributionally OWSGs 7.

The other direction is more involved, in fact only a compromised version
can be shown. We call a quantum state generator f the symmetric weak (resp.,
strong) OWSG, if the following experiment Exp

s−owsg
f,A (n) = 1 with probability

at most 1− 1/poly(n) (resp., negl(n)) :

– The challenger generates x ← D(1n) by some sampleable D(1n), then runs
f(x) → |φx〉 ⊗ |ηx〉 about t(n) times and sends the resulting state |φx〉⊗t(n)
to A, where t(n) is a polynomial of n, and we denote by t for simplicity when
there is no confusion.

– A receives the state |φx〉⊗t and outputs a guess x′.
– The challenger measures the state |φx′〉⊗t by {|φx〉〈φx|⊗t, I − |φx〉〈φx|⊗t}

and returns 1 if the measurement is |φx〉⊗t, and returns 0 otherwise.

7 When considering the mixed state version of OWSG [35], similar result can be
achieved by replacing the operator f and the swap test by the verification algorithm.
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Besides, f is symmetric distributionally OWSG if

F

(
E
x
|x〉〈x| ⊗ |φx〉〈φx|⊗t,E

x
ρ
|φx〉
B,t′ ⊗ |φx〉〈φx|

⊗t
)
≤ 1− 1

q(n)

for some polynomial p(n). In that case, we can show the equivalence between
the symmetric distributionally OWSG and symmetric weak OWSG as follows:

Theorem 8. The existence of symmetric distributionally OWSG is equivalent
to the existence of symmetric weak OWSG.

Proof (of Theorem 8). Since one direction follows directly from Theorem 7, here
we focus on the implication from symmetric distributionally OWSG to symmetric
weak OWSG, we adopt the construction by Impagliazzo and Luby. Assuming
f(x)→ |φx〉 ⊗ |ηx〉 is symmetric distributionally OWSG such that for any QPT
adversary A, it holds that

F

(
E
x
|x〉〈x| ⊗ |φx〉〈φx|⊗t,E

x
ρ
|φx〉
B,t′ ⊗ |φx〉〈φx|

⊗t
)
≤ 1− 1

q(n)

for some positive polynomial p(·) when n ∈ N is sufficiently large. Then we
construct f′ as follows:

f′(x, hk, k)→ |ψx,hk,k〉 ⊗ |ηx〉 := |φx, hk(x), hk, k〉 ⊗ |ηx〉 (8)

where hk : {0, 1}n → {0, 1}k is a universal hash function (we assume those keys
hk have the same length), and k ≤ n+O(log n) denotes the output length of hk.

Before delving into the correctness of this construction, we firstly introduce a
notion of polarization, we say quantum state generator f is (k, p)−polarized on
In, if for any x, x′ ∈ In, either |〈φx′ |φx〉|k ≥ 1−p or |〈φx′ |φx〉|k ≤ p (alternatively,
when considering the mixed state, it is characterized by the fidelity F(Φ⊗kx , Φ⊗kx′ )

between two mixed states Φ⊗kx , Φ⊗kx′ ). Then the following lemma shows that the
polarization property for any f which is not weak OWSG.

Lemma 4. Assuming f is not symmetric weak OWSG. For any positive poly-
nomial p(·), let A breaks the one-wayness with probability at least 1 − p(n)−5

with t(n) input copies, then f is (2t(n), 1/p(n)) − polarized on a collection
In(1/16p(n)2), where In(1/16p(n)2) is

In(1/16p(n)2) :=

{
x′ | Pr

[
Exp

s−owsg
f,A (n) = 1 | x = x′

]
≥ 1− 1

16p(n)2

}
.

The proof of Lemma 4 may refer to A.2.
It is easy to note that |In(1/16p(n)2)|/2n > 1− p(n)−2. Lemma 4 indicates

that for any polynomial p(·), there is an |In(1/16p(n)2)|/2n > 1− p(n)−2, such
that for any x0, x1 ∈ In(1/16p(n)2), either

TD(|φx0
〉, |φx1

〉) ≤

√
1− (1− 1

p(n)
)

1
t , or TD(|φx0

〉, |φx1
〉) ≥

√
1− (

1

p(n)
)

1
t ,
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for infinitely many n ∈ N. That inspired us to consider a family of pairwise
disjointed sets {N2t

x (1/p(n))}x∈X covering all elements in In(1/16p(n)2), namely,
for x ∈ In(1/16p(n)2), the “2t-degree neighbor” of x is

N2t
x (

1

p(n)t(n)
) := {x′ | |〈φx′ |φx〉|2t ≥ 1− 1

p(n)
}.

The strategy for generating that collection is simple, we just find such x ∈
In(1/16p(n)2) which are not contained in the former union ∪x∈XN2t

x (1/p(n)),
then add these x in X recursively, until all elements of In(1/16p(n)2) have been
included. Therefore the collections in {N2t

x (1/p(n))}x∈X cover all elements in
In(1/16p(n)2). The pairwise disjointed property can be justified by making a
contradiction, assuming there exist x, x′ ∈ In(1/16p(n)2) such that

N2t
x (1/p(n)) ∩N2t

x′(1/p(n)) 6= ∅

Then it holds that√
1− (

1

p(n)
)

1
t ≤ TD(|φx〉, |φx′〉) ≤ 2

√
1− (1− 1

p(n)
)

1
t <

√
1− (

1

p(n)
)

1
t

which is contradictory to that lemma 4.
Then we get back to the proof of Theorem 8. We show f′ satisfies the symmet-

ric weak one-wayness by making a contradiction. Assuming f′ is not symmetric
weak OWSG, then for any positive polynomial p(n), there exists a QPT adversary
A and a polynomial t(n) such that A breaks the symmetric weak one-wayness
of f′ with advantage 1− 1/p(n) by using t(n) copies of challenge state. Namely

Pr
x,hk,k

[Exps−owsgf′,A (n) = 1] > 1− 1/q(n) (9)

for infinitely many n ∈ N. Then we construct an adversary B breaks the sym-
metric distributionally one-wayness of f as follows:

– B takes as input a challenge state |φx∗〉⊗t
′

where t′ = (n3 +n) ·m · t. It then
repeats the following steps from k = n+C · log n to k = C · log n (note that
k is the output length of the universal hash hk : {0, 1}n → {0, 1}k, C > 1 is
a constant that will be determined later) 8:
• B generates the key hk of the universal hash function and chooses rk ←
{0, 1}k uniformly at random.

• B invokes A with input |φx, rk, hk, k〉⊗t and gets x′ as measurement,
then checks if f†(x′)|φx∗〉|ηx′〉 equals to 0 for n2 · t times 9, if all the n2 · t
measurements are 0, B would accept that output x′ and stop. Otherwise,
it repeats that step with a new generated random hk, rk about m times
until finds some x′, if it still fails to find such x′, it would continue to
the case k − 1 until k = C · log n.

8 We call the following steps k-th round when the output length in this iteration is k.
9 Here f(x′) denotes the unitary operator that takes |0〉 as input state and outputs
|φx′ , ηx′〉, it is equivalent to measure it with {|φx′〉〈φx′ |, I − |φx′〉〈φx′ |}.
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– If B doesn’t find an acceptable output in the iterations above until k =
C · log n, it would output ⊥.

Note that some parts of B is described in classical setting, but it’s equivalent to
analyze it as a unitary operation (such as replacing |φx, rk, hk, k〉 by the state∑
rk
|rk〉 ⊗ |φx, rk, hk, k〉/2−l/2 and tracing out the first register). So here we

still use ρ
|φx〉
B,t′ to denote the output (mixed) state by B after tracing out the

non-output part.
Then the strategy for proving this part is as follows. Since f is symmetric

distributionally one-way, there should exist a positive polynomial q(·) such that

F

(
E
x
|x〉〈x| ⊗ |φx〉〈φx|⊗t,E

x
ρ
|φx〉
B,t′ ⊗ |φx〉〈φx|

⊗t
)
≤ 1− 1

q(n)

for any QPT adversary B. Then, we are going to show that, if f′ is not weak
one-way, then the adversary B constructed above should satisfy

1− 1

q(n)
< F

(
E
x
|x〉〈x| ⊗ |φx〉〈φx|⊗t,E

x
ρ
|φx〉
B,t′ ⊗ |φx〉〈φx|

⊗t
)
,

which will lead a contradiction.
For that purpose, before estimating the output distribution for each chal-

lenge state |φx〉, we firstly introduce a classification strategy on the input space
according to the polarization lemma. Since k, hk and hk(x) are given as classi-
cal string, we can omit it and just consider the quanutm part |φx〉 when using
Lemma 4. In that case, let

In(
1

16p(n)2
) :=

{
x′ |

∧
k

(
Pr
hk

[
Exp

s−owsg
f′,A (n) = 1 | x = x′

]
≥ 1− 1

16p(n)2

)}
.

Note that In(1/16p(n)2) is defined a little different as the standard description
in Lemma 4, here we require A wins with high probability for all k, and there
is an internal randomness from hk. However, since there are at most O(n) of k
(k denotes the output length of hash hk), |In(1/16p(n)2)|/2n > 1− p(n)−2 still
holds for sufficiently large p(n). Hence we can adopt the polarization lemma in
that case and show that f is (2t, p(n))-polarized on In(1/16p(n)2).

Then according to the discussion before, we can derive a family of disjointed
collections {N2t

x (1/p(n))}x that covering In(1/16p(n)2) (note that In(1/16p(n)2)
and N2t

x (1/p(n)) only contain those x, the classical parts generated by (k, hk) are
ignored here because either |〈hk(x), hk, k|h′k′(x′), h′k′ , k′〉| = 0 or |〈hk(x), hk, k|h′k′(x′), h′k′ , k′〉| =
1, in other words, we can treat the (k, hk) as the “evaluation key” of f′).

Then we choose a subset of {N2t
x (1/p(n)) ∩ In(1/16p(n)2)}x, and denote it

by {G2t
x1

(1/p(n)), . . . ,G2t
xl

(1/p(n))}, which satisfies

(
1 +

1

p(n)

)
·
∣∣∣∣G2t

xi

(
1

p(n)

)∣∣∣∣ >
∣∣∣∣∣∣
x | TD(|φxi〉, |φx〉) ≤

√
1−

(
1

p(n)

) 1
t

/2


∣∣∣∣∣∣ ,
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for all i = 1, . . . , l. Namely, we choose xi such that N2t
x (1/p(n))∩ In(1/16p(n)2)

is not “much smaller” than N2t
xi

(1/p(n)). In the following part, we will drop the
parameters and just write Gxi

, Nxi
, and In when they are clear from the context.

Besides, it’s easy to note that {x | TD(|φx1
〉, |φx〉) ≤

√
1− (1/p(n))t−1/2} . . .

{x | TD(|φxl
〉, |φx〉) ≤

√
1− (1/p(n))t−1/2} are pairwise disjointed.

Since the weak one-wayness of f is broken with advantage 1 − p(n)−5 by A
which requires t(n) copies of challenge state, we can derive that |In(1/16p(n)2)| ≥
2n · (1 − p(n)−2). Therefore some suitable {Gx1 , . . . ,Gxl

} can be chosen such
that the union of those Gxi

are also large. Namely, we observe that, there exists
Gxi

such that

I ′n :=
⋃
i

Gxi
,

and |I ′n| > 2n · (1 − p(n)). Otherwise, we can conclude that, |{x /∈ In}| >
2n(1−p(n)) which would also be contradictory to the assumption that A breaks
the weak one-wayness of f with probability 1− p(n)−5.

According to that classification, we can divide the input space into these
disjointed collections Gx1 , . . . ,Gxl

. By the convexity of the fidelity, we have 10

F

(
E
x
|x〉〈x| ⊗ |φx〉〈φx|⊗t,E

x
ρ
|φx〉
B,t′ ⊗ |φx〉〈φx|

⊗t
)

≥
(

1− 1

p(n)

)
· F
(

E
x∈I′n

|x〉〈x| ⊗ |φx〉〈φx|⊗t, E
x∈I′n

ρ
|φx〉
B,t′ ⊗ |φx〉〈φx|

⊗t
)

≥
(

1− 1

p(n)

)
·

l∑
i=1

|Gxi
|

2n
· F

(
E

x∈Gxi

|x〉〈x| ⊗ |φx〉〈φx|⊗t, E
x∈Gxi

ρ
|φx〉
B,t′ ⊗ |φx〉〈φx|

⊗t

)
.

Then it’s sufficient to consider the lower bound of each Gxi
, we then derive that

F

(
E

x∈Gxi

|x〉〈x| ⊗ |φx〉〈φx|⊗t, E
x∈Gxi

ρ
|φx〉
B,t′ ⊗ |φx〉〈φx|

⊗t

)

≥ 1− TD

(
E

x∈Gxi

|x〉〈x| ⊗ |φx〉〈φx|⊗t, E
x∈Gxi

ρ
|φx〉
B,t′ ⊗ |φx〉〈φx|

⊗t

)
.

10 Here for simplicity, we assume the distribution of x is the uniform distribution on
{0, 1}n, it’s easy to extend that result to a general distribution.
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Due to the triangle inequality of the trace distance, it holds that

TD

(
E

x∈Gxi

|x〉〈x| ⊗ |φx〉〈φx|⊗t, E
x∈Gxi

ρ
|φx〉
B,t′ ⊗ |φx〉〈φx|

⊗t

)

≤ TD

(
E

x∈Gxi

|x〉〈x| ⊗ |φxi〉〈φxi |⊗t, E
x∈Gxi

ρ
|φx〉
B,t′ ⊗ |φxi〉〈φxi |⊗t

)
(10)

+ TD

(
E

x∈Gxi

ρ
|φx〉
B,t′ ⊗ |φx〉〈φx|

⊗t, E
x∈Gxi

ρ
|φx〉
B,t′ ⊗ |φxi

〉〈φxi
|⊗t
)

+ TD

(
E

x∈Gxi

|x〉〈x| ⊗ |φxi
〉〈φxi

|⊗t, E
x∈Gxi

|x〉〈x| ⊗ |φx〉〈φx|⊗t
)
.

Then we can estimate the unwanted two parts of (10) as follows

TD

(
E

x∈Gxi

ρ
|φx〉
B,t′ ⊗ |φxi〉〈φxi |⊗t, E

x∈Gxi

ρ
|φx〉
B,t′ ⊗ |φx〉〈φx|

⊗t

)

≤

√√√√1− F

(
E

x∈Gxi

ρ
|φx〉
B,t′ ⊗ |φxi

〉〈φxi
|⊗t, E

x∈Gxi

ρ
|φx〉
B,t′ ⊗ |φx〉〈φx|⊗t

)2

≤

√√√√1−

(
E

x∈Gxi

F
(
ρ
|φx〉
B,t′ ⊗ |φxi

〉〈φxi
|⊗t, ρ|φx〉

B,t′ ⊗ |φx〉〈φx|⊗t
))2

≤

√√√√1−

(
E

x∈Gxi

F(|φxi
〉〈φxi

|⊗t, |φx〉〈φx|⊗t)

)2

≤

√
1

p(n)
.

Similar, we have

TD

(
E

x∈Gxi

|x〉〈x| ⊗ |φxi
〉〈φxi

|⊗t, E
x∈Gxi

|x〉〈x| ⊗ |φx〉〈φx|⊗t
)
≤

√
1

p(n)
.

Therefore, the inequality (10) becomes

F

(
E

x∈Gxi

|x〉〈x| ⊗ |φx〉〈φx|⊗t, E
x∈Gxi

ρ
|φx〉
B,t′ ⊗ |φx〉〈φx|

⊗t

)
(11)

≥ 1− TD

(
E

x∈Gxi

|x〉〈x| ⊗ |φxi
〉〈φxi

|⊗t, E
x∈Gxi

ρ
|φx〉
B,t′ ⊗ |φxi

〉〈φxi
|⊗t
)
− 2 ·

√
1

p(n)

≥ 1− TD

(
E

x∈Gxi

|x〉〈x|, E
x∈Gxi

ρ
|φx〉
B,t′

)
− 2 ·

√
1

p(n)
.

That implies it’s sufficient to consider the trace distance between Ex∈Gxi
|x〉〈x|

and Ex∈Gxi
ρ
|φx〉
B,t′ . We now estimate the trace distance above by showing the prob-

ability that B outputs x is not far from 1/|Gxi
| for any x ∈ Gxi

, and for other
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x /∈ Gxi the probability that B accepts and outputs those x only with small
probability. We divide these into three claims. The first one gives a lower bound
of the success probability of B in each repetition, and says that B would succeed
with overwhelming probability.

Claim 1. For a given challenge state |φx∗〉, where x∗ ∈ Gxi , let px
∗

k be the
probability that B accepts at one repetition of k-th round 11, then for k ∈
[n+ C · log n, log |Gxi

|+ C · log n], it holds that

px
∗

k ≥ (1− 3n2

p(n)
) ·
(
|Gxi |

2k
− |Gxi | · (|Gxi | − 1)

22k+1

)
. (12)

Hence, when m ≥ 2nC+1, we have

Pr [B accepts ∧ k ≥ log |Gxi
|+ C · log n] ≥ 1− exp(−n). (13)

Namely, the probability that B accepts for some k ≥ log |Gxi
| + C · log n is at

least 1− exp(−n) when m ≥ 2nC+1.

Then Claim 2 analyzes the probability for each output in detail when B
accepts. Before that, for ease of notation, let Bxi denote the collection of “bad”
x which are not “highly invertible” but “close” to xi, namely

Bxi :=
{
x | TD(|φxi〉, |φx〉) ≤

√
1− (

1

p(n)
)

1
t /2
}
\Gxi . (14)

Note that, by the definition of Gi, we have |Bxi | ≤ |Gxi | · p(n)−1.

Claim 2. For a given challenge state |φx∗〉, where x∗ ∈ Gxi
, px

∗

k,x denotes the
probability that B accepts with the measurement x from A at one repetition,
then the following four facts hold.

1. For any x ∈ In \Gxi
, the probability that B accepts with the measurement

x it is at most px
∗

k,x < p(n)−n
2

.
2. For any x ∈ Gxi

and k ≥ log |Gxi
| + C · log n for some suitable C > 0, it

holds that

(1− 2n−2C − 3n2/p(n))

2k
≤ px

∗

k,x ≤ 1/2k.

3. For any x ∈ Bxi
, it holds that px

∗

k,x ≤ 1/2k.

4. For any other x, the probability is at most px
∗

k,x < exp(−n2/16).

The proofs of Claim 1 and Claim 2 may refer to A.3 and A.4.
Then, based on the two claims above, we can show that the output would

follow a “nearly uniform” distribution on Gxi

11 Note that the probabilities that B accepts are the same in each of these m repetitions
of k-th round, so here we drop the number of repetitions, similar reason for px

∗
k,x.
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Claim 3. For a given challenge state |φx∗〉, where x∗ ∈ Gxi , p
x∗

x denotes the
probability that B accepts with the measurement x, then we have

1. For x ∈ Gxi ,
∣∣px∗x − 1/|Gxi |

∣∣ < 5n2/(p(n) · |Gxi |).
2. For x ∈ Bxi

, it holds that px
∗

x ≤ 2 · |Gxi
|−1 +O(exp(−n)).

3. For x /∈ Bxi
∪Gxi

, we have px
∗

x ≤ exp(−n).

Due to the limitation of space, we leave the proof of Claim 3 in A.5.

Back to the proof of Theorem 8, it is easy to note that ρ
|φx∗ 〉
A,t =

∑
x p

x∗

x |x〉〈x|,
according to Claim 2 and 3, we have

TD

(
E

x∈Gxi

|x〉〈x|, E
x∈Gxi

ρ
|φx〉
A,t

)

= max
0≤P≤I

Tr

[
P

(
E

x∈Gxi

|x〉〈x| − E
x∈Gxi

ρ
|φx〉
A,t

)]
<

∑
x∈{0,1}n

∣∣∣∣∣ E
x∗∈Gxi

px
∗

x −
1

|Gxi
|
· δx

∣∣∣∣∣
<
∑
x∈Gxi

∣∣∣∣∣ E
x∗∈Gxi

px
∗

x −
1

|Gxi |
· δx

∣∣∣∣∣+
∑

x/∈Bxi
∪Gxi

E
x∗∈Gxi

px
∗

x +
∑
x∈Bxi

E
x∗∈Gxi

px
∗

x

∗
<

5n2

p(n)
+ negl(n) +

2

p(n)

for some negligible function negl(·), where δx = 1 if x ∈ Gxi
, and δx = 0

otherwise. Here (∗) follows the Claim 3, and |Bxi | ≤ |Gi|/p(n).
Therefore, if we let p(n) > 36q(n)2 · n2, we can derive that

F

(
E
x
|x〉〈x| ⊗ |φx〉〈φx|⊗t,E

x
ρ
|φx〉
A,t ⊗ |φx〉〈φx|

⊗t
)

≥ (1− 1

p(n)
) ·

l∑
i=1

|Gxi
|

2n
· F

(
E

x∈Gxi

|x〉〈x| ⊗ |φx〉〈φx|⊗t, E
x∈Gxi

ρ
|φx〉
A,t ⊗ |φx〉〈φx|

⊗t

)

≥ (1− 1

p(n)
) ·

l∑
i=1

|Gxi |
2n

·

(
1− TD

(
E

x∈Gxi

|x〉〈x|, E
x∈Gxi

ρ
|φx〉
A,t

)
− 2 ·

√
1

p(n)

)

≥
(

1− 1

p(n)

)
·
(

1− 1

2 · q(n)

)
≥ 1− 1

q(n)

for infinitely many n ∈ N. It is contradictory to the fact that

F

(
E
x
|x〉〈x| ⊗ |φx〉〈φx|⊗t,E

x
ρ
|φx〉
A,t ⊗ |φx〉〈φx|

⊗t
)
< (1− 1

q(n)
),

which hence indicates that f′ is a weak one-way state generator. �

Remark 3. It is easy to note that these symmetric objects are “weaker” than
the normal primitives, because if f is not symmetric weak (resp., strong, dis-
tributionally) OWSG, it is obviously not weak (resp., strong, distributionally)
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OWSG. Besides, we believe that property is reasonable not only because of the
beauty of symmetry, it is also reasonable in practice. For example, the challenger
in the normal definition of OWSG can be “fooled” by a fake x′ returned by the
adversary A(|φx〉⊗t) such that |〈φx|φx′〉| = 1− n/t(n), however, it can be easily
“screened out” by measuring it t(n) times. Moreover, as the most important ap-
plication of OWSG, in the syntax of digital signature with quantum public keys,
it seems to be “too strong” to treat the 1/poly(n) similar message/signature
as a successful forgery because of the same reason.

4 The Cryptographic Applications of Average-Case
Hardness of QSZK

4.1 OWSG from Variant QSD Problem

In this part, we show how to construct symmetric distributionally OWSG from
the average-case hardness of a variant QSD problem which we call the semi-
classical quantum state distinguishability problem.

Definition 5 (Semi-Classical QSD). Given a pair of quantum unitary cir-
cuits (U0, U1) along with two samplers (S0, S1) such that Ub|0, x〉 = |φUb

x , x〉AB
and Pr[Sb(1

n)→ x] = pb,x for b ∈ {0, 1}. It is promised that either

TD

(∑
x

p0,x|φU0
x 〉〈φU0

x |,
∑
x

p1,x|φU1
x 〉〈φU1

x |

)
> 1− 2−n,

or

TD

(∑
x

p0,x|φU0
x 〉〈φU0

x |,
∑
x

p1,x|φU1
x 〉〈φU1

x |

)
> 2−n.

The semi-classical quantum state distinguishability problem (semi-classical QSD
or scQSD for short) is to decide which is the case.

It is easy to see that scQSD is also a promise problem for QSZK because when
we let Qb be the quantum circuit that outputs Ex Ub|0, x〉〈0, x|U†b , the scQSD
problem can be treated as a special case of QSD. So in this part, we denote by
Qb the pair (Sb, Ub) for convenience, and scQSD1 (scQSD0 resp.) the collection
of (Q0, Q1) such that the trace distance is at least 1− 2−n (at most 2−n resp).

The average-case hardness of semi-classical QSD problem is defined similarly
as the QSD problem, which is characterized by the hardness for any QPT dis-
tinguisher to distinguish (Q0, Q1) ∈ scQSD0 from (Q0, Q1) ∈ scQSD1 over a
instance sampler S(1n) → (Q0, Q1). Then we show the implication of distribu-
tionally OWSG from the hard-on-average semi-classical QSD problem as follows.

Theorem 9. Assuming semi-classical QSD problem is hard-on-average in quan-
tum case, then there exists a symmetric distributionally OWSG.
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We justify this theorem by giving the construction as follows:

The construction of symmetric distributionally OWSG: Assuming there
exists a efficient sampler ((Sr0 , U

r
0 ), (Sr1 , U

r
1 )) = (Qr0, Q

r
1) ← S(r) such that the

semi-classical QSD problem is hard-on-average on distribution of S(1n) 12, then
the following construction

f(r, b, x) := |ψQ
r
0,Q

r
1

b,x 〉 = |Qr0, Qr1〉 ⊗ |φ
Ur

b
x 〉 (15)

is a symmetric distributionally OWSG on the distribution over (r, b, x), where

|φU
r
b

x 〉 is the state for Urb |0, x〉 = |φU
r
b

x , x〉, and ((Sr0 , U
r
0 ), (Sr1 , U

r
1 )) = (Qr0, Q

r
1)←

S(r). It is apparently a correct implementation of distributionally OWSG. There-
fore we aim to show it meets the distributionally one-wayness. The detailed proof
please refer to A.6.

4.2 Constructing Quantum Bit Commitment Directly from QSD

To show the application of the average-case hardness of QSZK, we construct
a quantum commitment scheme directly from the average-case hardness of the
QSD problem.

Theorem 10. Assuming QSD problem is hard-on-average in quantum case,
then there exists a statistical binding (sum-binding) and computational hiding
quantum commitment.

The construction of quantum bit commitment: Assuming there exists a
efficient sampler (Qr0, Q

r
1)← S(r) such that the QSD problem is hard-on-average

under distribution of S(1n), then the quantum bit commitment scheme is as
follows:

– Commit phase: The commiter generates |0〉 →H⊗l·n ⊗n
i=1

∑
ri
|ri〉/2l/2,

then gets n copies of the superposition state of these circuits by S

n⊗
i=1

∑
ri

|ri, 0〉
2l/2

S⊗n

→
n⊗
i=1

∑
ri

|ri, Qri0 , Q
ri
1 〉

2l/2
.

Let b← {0, 1} be the message the commiter intends to commit, it generates

n⊗
i=1

∑
ri

|ri, Qri0 , Q
ri
1 , 0〉

2l/2
U⊗n

b→ |Ψb〉⊗nABCD,

where

|Ψb〉ABCD :=
∑
r

|Qr0, Qr1〉A ⊗ PQrb |0〉BC ⊗ |r〉D
2l/2

.

12 Here r ∈ {0, 1}l(n) is the internal randomness of S which is a polynomial of n, and
we denote l(n) by l for short when there is no confusion
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PQrb denotes a purified circuit of Qrb (here we fix the purification procedure).
Then the commiter sends the registers A,B of |Ψb〉⊗nABCD to the receiver as
the commitment, where A stores the Qr0, Q

r
1, the registers B,C store the

output/ancilla parts of PQrb |0〉, and D stores the random number r.
– Reveal phase: The commiter sends the register C,D and the message b

to the receiver. The receiver invokes the operator (H⊗l ⊗ IABC) ◦ (S† ⊗
IBC) ◦ U†b )⊗n to the whole system, then measures the resulting state in the
computational basis. The receiver accepts iff the measurement is 0.

It is not hard to derive the correctness of this construction. The remaining
aims to discuss the hiding and binding properties, we give a sketch here and
leave the detailed version to A.7.

Firstly, we show the computationally hiding property by making a contra-
diction, assuming there exist a QPT adversary A breaks it. That implies A can
distinguish one state from another of these commitments with non-negligible
advantage. However, when (Q0, Q1) ∈ QSD0, no adversary can distinguish one
from another with advantage larger than O(2−n), that hence indicates a QPT
distinguisher of these QSD problem. On the other hand, the sum-binding prop-
erty is guaranteed by the fact that the trace distance between these two states re-
turned by (Q0, Q1) ∈ QSD1 is pretty far. That indicates these two commitment
states are far from each other, therefore no (computational unbounded) cheat-
ing commiter can both open 0 and 1 for one commitment with non-negligible
probability which ensures the sum-binding of this construction.

Remark 4. Note that, the hard-core predicate of OWSGs can be realized by the
same way as OWFs. Therefore for a one-way state generator f, when there exist
some positive polynomial p(·) such that |〈φx′ |φx〉| ≤ 1− 1/p(n) for any x 6= x′,
we can just send the p(n) ·n copies of |φx〉 along with its hard-core predicate (or
a random bit) as the commitment, which can also achieve the sum-binding and
computationally hiding quantum commitment. Since the proof is very similar
to the classical counterpart from OWPs to the commitment via the hard-core
predicate, so we omit the proof here.

5 Oracle Separation

In this section, we show an evidence of the non-triviality for our constructions
above. Note that, the existence of pqOWF at least requires QMA 6= BQP, and by
Kretschmer’s result [31], there is a quantum oracle relative to which QMAO =
BQPO while PRS exists. Therefore, to give evidence indicating our result is
meaningful, we show scQSD doesn’t belong to QMA relative to a quantum oracle.

Theorem 11. There exists a quantum oracle U such that scQSDU /∈ QMAU .

Proof. We Firstly construct the oracle U as follows:

The description of U : Let U := {Un}n∈N and Un := (UFn(1)
n , . . . ,UFn(2

n+1)
n )

for each n ∈ N, here UFn(i)
n is chosen from the Haar measure over U(2n) inde-

pendently for all i ∈ [2n+1]. In this case, Fn is either (1) a random permutation
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on {0, 1}n+1, or (2) a random function that differs from every permutation on
at least 2n+2/3 coordinates, each case occurs with probability 1/2 respectively.
Let Un,0 and Un,1 be the ensembles of thers two types of Un respectively.

The construction of the hard instance (Q0, Q1) = ((UU0 , S
U
U ), (UU1 , S

U
1 )) of the

semi-classical QSD problem is given directly by

UUb |0, x〉 := UFn(b‖x)
n |0〉 ⊗ |x〉,

and the Sb is the uniform distribution on {0, 1}n. It’s easy to see the correctness
of this construction. Because when Fn is a random permutation, we have

E
U

[
F

(
E
x

(
UFn(0‖x)
n |0〉〈0|

(
UFn(0‖x)
n

)†)
,E
x

(
UFn(1‖x)
n |0〉〈0|

(
UFn(1‖x)
n

)†))]
∗
≤E
U

max
V

∣∣∣∣∣(∑
x

〈0|(UFn(0‖x)
n )† ⊗ 〈x|

)(∑
x

UFn(1‖x)
n |0〉 ⊗ V |x〉

)∣∣∣∣∣/2n ∗∗≤O(1/2n/2)

for any such Fn, where (∗) holds due to the Uhlmann’s theorem (Lemma 2), and

(∗∗) follows the fact that UFn(i)
n is chosen from the Haar measure independently.

In the case that Fn differs from every permutation on at least 2n+2/3 coordi-
nates, there is at least 2n+2/9 disjointed pairs 13. Let X := {(x10, x11), (x20, x

2
1), . . .}

be the collections of the pairwise disjointed pairs such that Fn(0‖xi0) = Fn(1‖xi1)
and xib 6= xjb for all i 6= j and b = 0, 1 which achieves the maximum cardinality.
Since Fn is chosen randomly (it’s equivalent to the distribution of Fn ◦p−1n with
random permutation pn), each disjointed pair contained separately in 0‖· and
1‖· with probability nearly 1/2, one may hence deduce that |X| is smaller than
its expected value (c · 2n for some constant c > 0) with negligible probability,
which means that

E
U

[
TD

(
E
x

(
UFn(0‖x)
n |0〉〈0|

(
UFn(0‖x)
n

)†)
,E
x

(
UFn(1‖x)
n |0〉〈0|

(
UFn(1‖x)
n

)†))]
∗
≤
∑
x0 /∈X

max
P

Tr
[
PUFn(0‖x0)

n |0〉〈0|(UFn(0‖x0)
n )†

]
≤ 1− c.

occurs with overwhelming probability. It’s obvious that (1−c) < (1−O(1/2n/2))2

for all sufficiently large n which meets the requirement for amplifying the gap
[46], and by Borel-Cantelli lemma we can see that it’s a correct implementation
of scQSD for all but finite n ∈ N with probability 1 under the randomness of U .

Then we show that the semi-classical QSD problem doesn’t belong to QMAU

by Aaronson’s result [2].

Proposition 1. For any q-query oracle-aided QMA verifier V with w qubits wit-
ness that decides the scQSDU problem, it holds that q · w = Ω(2n/3).

13 Here we call {(y10 , y11), (y20 , y
2
1), . . .} collection of disjointed pairs if Fn(yi0) = Fn(yi1)

and yib 6= yjb′ for all i 6= j ∨ b 6= b′.
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Proof (of Proposition 1). Let V be the quantum verifier of scQSD problem rela-
tive to U , Note that the choice of Um is irrelevant for distinguishing Un,1 from
Un,0 when m 6= n, therefore∣∣∣Pr

U
[VU (1n) = 1 | Un ∈ Un,0]− Pr

U
[VU (1n) = 1 | Un ∈ Un,1]

∣∣∣ (16)

=
∣∣∣Pr
Un

[VUn(1n) = 1 | Un ∈ Un,0]− Pr
Un

[VUn(1n) = 1 | Un ∈ Un,1]
∣∣∣.

However, that induces a quantum distinguisher B for the permutation testing
problem (PTP) in [2]. That is, for a give oracle Fn, which is either (1) a ran-
dom permutation on {0, 1}n+1, or (2) a random function that differs from every
permutation on at least 2n+2/3 coordinates. We can then establish B as follows:

– B is quanutm accessible to oracle Fn, it then simulates Ū (Fn(i))
n ← U(2n)

locally for all i ∈ [2n+1].

– B simulates UUb by taking |b, x〉 as input and outputs Ū (Fn(b‖x))
n |0〉 ⊗ |x〉.

– B invokes V with Ūn, then outputs V’s decision as result.

We then have

Pr[BFn(1n) = 1 | Fn is case(b)] = Pr[AUn0 (1n) = 1 | Un ∈ Un,b] (17)

However, according to the quantum query lower bound of permutation testing
problem (Theorem 8 in [2]), the number of queries for such B is bounded by
q · w = Ω(2n/3), which hence justifies the Proposition 1. �

Therefore, by Proposition 1, any verifier V can not distinguish Un,0 from
Un,1 with at most polynomial many queries and witness, which hence completes
the proof of Theorem 11. �
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A Supplementary Materials

A.1 Proof of Theorem 6

We firstly recall Theorem 6 as follows:

Theorem 6. The existence of weak OWSG and strong OWSG are equivalent.
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Proof. In this part, let f be a weak one-way state generator on distribution
D(1n), satisfying

Pr
x←D(1n)

[
Exp

owsg
f,B (n) = 1

]
≤ 1− 1

q(n)
(18)

where q(·) is a positive polynomial. For some suitable polynomial m(n) (which
is determined by q(n)), the construction f′

f′(x1, . . . , xm) = ⊗mi=1|φxi
〉⊗nq(n)Y ⊗mi=1 |ηxi

〉⊗nq(n)Z (19)

is a strong OWSGs on distribution D(1n)m. We prove it by making a contra-
diction. Assuming A breaks the strong one-wayness of f′ with t copies, namely
there is a positive polynomial p(·) such that

Pr
(x1,...,xm)←D(1n)m

[
Exp

owsg
f′,A (n) = 1

]
≥ 1

p(n)
(20)

for infinitely many n ∈ N. Then we construct B breaks the weak one-wayness of
f as follows:

– B takes as input the state |φx∗〉⊗2n
2·m2·p(n)·q(n)·(t+q(n)), it runs the following

steps from j = 1 to m.
– B sets |φxj

〉 = |φx∗〉 and generates |φxi
〉 by xi ← D(1n) for all i ∈ [m]/{j}.

– B invokes A with input state |Φ〉⊗t := ⊗mi=1|φxi〉⊗nq(n)·t, and gets outputs
(x′1, . . . , x

′
m). Then it repeats that step for a new generated |φxi〉 as input

for i ∈ [m]/{j} about 2n ·m · p(n) times.
– B checks all the 2nm2p(n) outputs by measuring |φx∗〉 with {|φx′j 〉〈φx′j |, I −
|φx′j 〉〈φx′j |} about n · q(n)2 times for each x′j and returns the most possible

answer (that is, one of those x′j that gets |φx′j 〉 as measurement with at least

n · q(n)2 − n · q(n)/3 times).

To estimate the probability that B wins, for each j ∈ [m], let BadXj be the
collection of x such that

BadXj :=

{
x | Pr

[
m∏
i=1

|〈φxi
|φx′i〉|

2nq(n) ≥ 1

2mp(n)
, |φxj

〉 = |φx〉

]
≤ 1

2mp(n)

}
,

where the probability is taken over the randomness of A(|Φ〉⊗t)→ (x′1, . . . , x
′
m)

and xi ← D(1n) for i ∈ [m]/{j}. Namely, BadXj is the collection of “bad”
xj such that A outputs those “good” (x′1, . . . , x

′
m) satisfying |〈φxi

|φx′i〉|
2nq(n) ≥

1/2mp(n) with probability at most 1/2mp(n) when taking ⊗mi=1|φxi
〉⊗nq(n)·t as

input (note that xj is fixed, and others are chosen randomly from xi ← D(1n)
for i ∈ [m]/{j}). Then there is at least one j ∈ [m] satisfies that

Pr
x

[x ∈ BadXj ] ≤
1

2 · q(n)
(21)
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for those n satisfying (20). Since if not, when let m = 2 · q(n) · n, it holds that

1

p(n)
≤ Pr

(x1,...,xm)←D(1n)m

[
Exp

owsg
f′,A (n) = 1

]
= Pr

(x1,...,xm)←D(1n)m

[
Exp

owsg
f′,A (n) = 1 ∧mi=1 xi /∈ BadXi

]
+ Pr

(x1,...,xm)←D(1n)m

[
Exp

owsg
f′,A (n) = 1 ∧ (∨mi=1xi ∈ BadXi)

]
≤ Pr

(x1,...,xm)←D(1n)m
[∧mi=1xi /∈ BadXi]

+m ·max
j

Pr
(x1,...,xm)←D(1n)m

[
Exp

owsg
f′,A (n) = 1 ∧ xj ∈ BadXj

]
≤
(

1− 1

2 · q(n)

)m
+m ·max

j
Pr

(x1,...,xm)←D(1n)m

[
Exp

owsg
f′,A (n) = 1 | xj ∈ BadXj

]
∗
≤
(

1− 1

2 · q(n)

)m
+m · 1

2 ·m · p(n)
<

1

p(n)

which is a contradiction. Here (∗) follows the definition of BadXj . We denote
by j0 the index that BadXj0 satisfies (21). Since we run all possible j (i.e. from
1 to m), we could get that j = j0 with probability 1.

Conditioned on x∗ /∈ BadXj0 , and B chooses j = j0 (|φxj0
〉 = |φx∗〉),

the probability A outputs some (x′1, . . . , x
′
m) satisfying

∏m
i=1 |〈φxi

|φx′i〉|
2nq(n) ≥

1/2mp(n) is at least 1/2mp(n). Since B repeats each round j for 2nmp(n) times,
it has output some (x′1, . . . , x

′
m) satisfying

∏m
i=1 |〈φxi |φx′i〉|

2nq(n) ≥ 1/2mp(n)

with probability at least 1− (1− 1/2mp(n))2nmp(n) ≥ 1−O(exp(−n)).
That implies B would get some (x′1, . . . , x

′
m) satisfying

∏m
i=1 |〈φxi

|φx′i〉|
2nq(n) ≥

1/2mp(n) with probability at least 1−O(exp(−n)). In that case, it holds that∣∣∣〈φx∗ |φx′j0 〉∣∣∣2 =
∣∣∣〈φxj0

|φx′j0 〉
∣∣∣2 ≥ (1/2mp(n))

1/nq(n)
> 1− 1

4q(n)
.

That implies B finds some returns such that |〈φx∗ |φx′j0 〉|
2 > 1−1/4q(n) with

probability at least 1−O(exp(−n)) when x∗ /∈ BadXj0 . The remaining problem
is how to find it among the polynomial many (i.e. 2nm2p(n)) candidates x′j . That
can be settled by measuring |φx∗〉 with {|φx′j 〉〈φx′j |, I − |φx′j 〉〈φx′j |} polynomial

times (i.e. n · q(n)2) for each output x′j . To show that, for any output x′j , we let
X ′j be the number that B measures |φx∗〉 with {|φx′j 〉〈φx′j |, I − |φx′j 〉〈φx′j |} and

gets |φx′j 〉 in result among this n · q(n)2 measurements. Since each measurement

is independent, by Chernoff bound, the result is close to its expected value (for
some polynomial amount) with probability

Pr

[∣∣∣∣X ′j − ∣∣∣〈φx∗ |φx′j 〉∣∣∣2 · n · q(n)2
∣∣∣∣ ≤ ∣∣∣〈φx∗ |φx′j 〉∣∣∣2 · n · q(n)2 · δ

]
(22)

≥ 1− 2 · exp

(
−δ2 ·

∣∣∣〈φx∗ |φx′j 〉∣∣∣2 · n · q(n)2/3

)
.
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Therefore, in the case that
∣∣∣〈φx∗ |φx′j 〉∣∣∣2 > 1 − 1/4q(n), X ′j should be at least

n · q(n)2 − n · q(n)/3 with overwhelming probability, namely

Pr[X ′j > n · q(n)2 − n · q(n)/3]

≥ 1− 2 · exp

(
−
(

1

12q(n)− 3

)2

· |〈φx∗ |φx′j 〉|
2 · n · q(n)2/3

)
> 1− 2 · exp(−n/432).

On the other hand, in the case that
∣∣∣〈φx∗ |φx′j 〉∣∣∣2 ≤ 1− 1/2q(n), it holds that

Pr[X ′j ≤ n · q(n)2 − n · q(n)/3]

≥ 1− 2 exp

−( n · q(n)2 − n · q(n)/3

|〈φx∗ |φx′j 〉|
2 · n · q(n)2

− 1

)2

· |〈φx∗ |φx′j 〉|
2 · n · q(n)2/3


≥ 1− 2 exp

(
−
(

1

6q(n)− 3

)2

· (1− 1

2q(n)
) · n · q(n)2/3

)
> 1− 2 · exp(−n/108).

Since there are at most polynomial many outputs, all results would follow that
rules with probability 1− negl(n). Namely, if we denote by Good the event that
all the outputs x′j by A meet the following conditions:

– If
∣∣∣〈φx∗ |φx′j 〉∣∣∣2 ≤ 1− 1/2q(n), then X ′j < n · q(n)2 − n · q(n)/3.

– If
∣∣∣〈φx∗ |φx′j 〉∣∣∣2 ≥ 1− 1/4q(n), then X ′j > n · q(n)2 − n · q(n)/3.

Then by the argument above, we can conclude that

Pr[Good] > (1− exp(−C · n))2nm
2p(n)

> 1− 2nm2p(n) · exp(−C · n) > 1− negl(n).

In that case, B would find some satisfactory x′j0 only if |〈φx∗ |φx′j0 〉|
2 > 1 −

1/2q(n), because all these “bad” outputs can be distinguished with overwhelming
probability.
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Overall, B would output some x′j0 such that |〈φx∗ |φx′j0 〉|
2 > 1−1/2q(n) with

probability at least 1− negl(n)−O(exp(−n)). Namely

Pr
x∗←D(1n)

[
Exp

owsg
f,B (n) = 1

]
≥ Pr
x∗←D(1n)

[
Exp

owsg
f,B (n) = 1 ∧ x∗ /∈ BadXj0

]
≥ Pr
x∗←D(1n)

[
Exp

owsg
f,B (n) = 1 | x∗ /∈ BadXj0

]
·
(

1− 1

2q(n)

)
≥
(

1− 1

2q(n)

)
·
∣∣∣〈φx∗ |φx′j0 〉∣∣∣2 · Pr

x∗←D(1n)

[
B finds a such x′j0∧

A has output a satisfactory output (x′1, . . . , x
′
m) | x∗ /∈ BadXj0 ]

≥
(

1− 1

2q(n)

)2

· (1− negl(n)−O(exp(−n))) > 1− 1

q(n)
.

That is contradictory to the weak one-wayness of f (namely the inequality (18))
which hence completes the proof of Theorem 6. �

A.2 Proof of The Adjusted Lemma 4

Let

In(δ) :=
{
x′ | Pr

[
Exp

s−owsg
f,A (n) = 1 | x = x′

]
≥ 1− δ

}
.

Nk
x(ε) be the set of the “k-degree neighbor” of x such that

Nk
x(ε) :=

{
x′ | |〈φx′ |φx〉|k ≥ 1− ε

}
. (23)

We show that lemma by making a contraction, assuming there are x0, x1 ∈
In(δ), such that

1

p(n)
< |〈φx0

|φx1
〉|2t < 1− 1

p(n)
. (24)

Since x0, x1 ∈ In(δ), by the definition of In(δ), we have

〈φxb
| Tr
X,Z

(
f
(
ρ
|φxb
〉

A,t

))
|φxb
〉 ≥ (1− δ)1/t,

for b = 0, 1. If we denote ρ
|φxb
〉

A,t by
∑
αbx|x〉〈x| for b = 0, 1, that hence implies

the coefficient of those x satisfying |〈φxb
|φx〉|2t ≥ 1 −

√
δ should not be small,

namely ∑
x∈N2t

xb
(
√
δ)

αbx ≥ 1−
√
δ, (25)
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On the other hand, for any x′, it holds that

∑
b

√
1− |〈φx′ |φxb

〉|2t =
∑
b

TD
(
|φx′〉〈φx′ |⊗t, |φxb

〉〈φxb
|⊗t
)

≥ TD
(
|φx0〉〈φx0 |⊗t, |φx1〉〈φx1 |⊗t

)
≥

√
1−

(
1− 1

p(n)

)
.

Therefore, if x′ ∈ N2t
x0

(
√
δ) ∩N2t

x1
(
√
δ), we should have

2 · δ1/4 ≥
∑
b

√
1− |〈φx′ |φxb

〉|2t >

√
1

p(n)
.

That means N2t
x0

(
√
δ) ∩ N2t

x1
(
√
δ) = ∅ when

√
δ ≤ 1/4p(n). Therefore if

we denote by ΠN2t
xb

(
√
δ) the projection map of the space generated by {|x〉 |

x ∈ N2t
xb

(
√
δ)}, the trace distance between these two cases can be estimated as

follows

TD
(
ρ
|φx0
〉

A,t , ρ
|φx1
〉

A,t

)
(26)

= TD

(
Π

N2t
x0

(
√
δ)

(
ρ
|φx0
〉

A,t

)
+ gx0

, Π
N2t

x1
(
√
δ)

(
ρ
|φx1
〉

A,t

)
+ gx1

)
∗
≥TD

(
Π

N2t
x0

(
√
δ)

(
ρ
|φx0 〉
A,t

)
/Tr

(
Π

N2t
x0

(
√
δ)

(
ρ
|φx0 〉
A,t

))
, Π
N2t

x1
(
√
δ)

(
ρ
|φx1 〉
A,t

)
/Tr

(
Π

N2t
x1

(
√
δ)

(
ρ
|φx1 〉
A,t

)))

− TD

(
Π

N2t
x1

(
√
δ)

(
ρ
|φx1 〉
A,t

)
+ gx1 , Π

N2t
x1

(
√
δ)

(
ρ
|φx1 〉
A,t

)
/Tr

(
Π

N2t
x1

(
√
δ)

(
ρ
|φx1 〉
A,t

)))

− TD

(
Π

N2t
x0

(
√
δ)

(
ρ
|φx0
〉

A,t

)
+ gx0 , Π

N2t
x0

(
√
δ)

(
ρ
|φx0
〉

A,t

)
/Tr

(
Π

N2
x0

(
√
δ)

(
ρ
|φx0
〉

A,t

)))
∗∗
≥ 1− 2 ·

√
δ ≥ 1− 1

2 · p(n)

where gxb
is the “garbage” part such that ρ

|φxb
〉

A,t = ΠN2t
xb

(
√
δ)(ρ

|φxb
〉

A,t ) + gxb
. (∗)

follows the triangle inequality, and (∗∗) holds due to the convexity of the trace
distance and the fact that Tr(gxb

) ≤
√
δ (by the inequality (25)).
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However, since we assume 1/p(n) < |〈φx0 |φx1〉|2t in (24), we can also derive
an upper bound of that trace distance

TD
(
ρ
|φx0
〉

A,t , ρ
|φx1
〉

A,t

)
(27)

= TD
(
TrZA

(
|φx0〉⊗t ⊗ |0〉

)
,TrZA

(
|φx1〉⊗t ⊗ |0〉

))
≤ TD

(
A
(
|φx0〉⊗t ⊗ |0〉

)
,A
(
|φx1〉⊗t ⊗ |0〉

))
= TD

(
|φx0〉⊗t, |φx1〉⊗t

)
≤
√

1− 1/p(n).

Combining the inequalities (26) and (27) would lead to a contradiction, which
completes the proof of Lemma 4. �

A.3 Proof of Claim 1

We recall Claim 1 as follows:

Claim 1. For a given challenge state |φx∗〉, where x∗ ∈ Gxi
, let px

∗

k be the
probability that B accepts at one repetition of k-th round 14, then for k ∈
[n+ C · log n, log |Gxi |+ C · log n], it holds that

px
∗

k ≥ (1− 3n2

p(n)
) ·
(
|Gxi

|
2k
− |Gxi

| · (|Gxi
| − 1)

22k+1

)
. (28)

Hence, when m ≥ 2nC+1, we have

Pr [B accepts ∧ k ≥ log |Gxi |+ C · log n] ≥ 1− exp(−n). (29)

Namely, the probability that B accepts for some k ≥ log |Gxi | + C · log n is at
least 1− exp(−n) when m ≥ 2nC+1.

Proof. Before delving into the proof, we firstly recall that Nk
x(ε) is the set of the

“k-degree neighbor” of x such that

Nk
x(ε) :=

{
x′ | |〈φx′ |φx〉|k ≥ 1− ε

}
, (30)

and G2t
x (1/p(n)) := N2t

x (1/p(n)) ∩ In(1/16p(n)2) for

In(
1

16p(n)2
) :=

{
x′ |

∧
k

(
Pr
hk

[
Exp

s−owsg
f′,A (n) = 1 | x = x′

]
≥ 1− 1

16p(n)2

)}
,

which are simplified as Gx and Nx.

14 Note that the probabilities that B accepts are the same in each of these m repetitions
of k-th round, so here we drop the number of repetitions, similar reason for px

∗
k,x.
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For each k ∈ [n+C · log n, log |Gxi |+C · log n], the probability that B accepts
in one repetition at the k-th round is at least the probability that B accepts with
some measurement in Nxi

, namely

px
∗

k ≥ Pr
rk,hk

[B accepts ∧ A(|φx∗ , rk, hk, k〉⊗t) ∈ Nxi)] (31)

∗
≥ Pr
rk,hk

[B accepts ∧ A(|φx∗ , rk, hk, k〉⊗t) ∈ Nxi
) ∧ rk ∈ hk(Gxi

))].

Here (∗) holds because any measurement x ∈ Nxi
returned by A accepted by B

only if rk = hk(x), otherwise, it would reject by B with probability 1.
We now estimate the probabilities above. By the Bonferroni’s inequality,

conditioned on the fact that hk : {0, 1}n → {0, 1}k is a universal hash function,
it holds that

Pr
rk,hk

[rk ∈ hk(Gxi))] (32)

≥
∑
x∈Nxi

Pr
rk,hk

[rk = hk(x)]−
∑

x,x′∈Nxi

Pr
rk,hk

[rk = hk(x) = hk(x′)]

≥ |Gxi |
2k
− |Gxi

| · (|Gxi
| − 1)

22k+1
.

Consider any x ∈ Gxi , due to the definition of I ′n, it holds that

Pr
hk

[A(|φx, hk(x), hk, k〉⊗t) ∈ N2t
xi

(1/4p(n))] ≥ 1− 1/4p(n).

Since N2t
xi

(1/4p(n)) ⊆ Nxi
(because Nxi

is simply N2t
xi

(1/p(n))), we further have

Pr
hk

[A(|φx, hk(x), hk, k〉⊗t) ∈ Nxi
] ≥ 1− 1/4p(n).

Since

|
(
A(|φx, rk, hk, k〉⊗t)

)†A(|φx∗ , rk, hk, k〉⊗t)|2 = |〈φx|φx∗〉|2t ≥ 1− 1/p(n),

for any x ∈ Gxi , therefore if we change the input state |φx∗〉 by some state
|φx〉 satisfying hk(x) = rk the output is similar as the former one except with
O(1/p(n)) probability. More specifically

Pr
hk

[
A
(
|φx∗ , hk(x), hk, k〉⊗t

)
∈ Nxi

]
≥ 1− 5

4 · p(n)
. (33)

Note that for any measurement x ∈ Nxi
, B accepts with probability at least

(1− n2/p(n)), therefore

Pr
hk

[
B accepts ∧ A(|φx∗ , hk(x), hk, k〉⊗t) ∈ Nxi

]
(34)

≥
(

1− n2

p(n)

)
·
(

1− 5

4 · p(n)

)
.
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Then we get back to estimate the inequality (31) as follows. Since conditioned
on rk ∈ hk(x) for some x ∈ Gxi

, the distribution of (rk, hk) is identical to the
real distribution (hk(x), hk), therefore according to inequalities (32) and (34), it
holds that

Pr
rk,hk

[
B accepts ∧ A

(
|φx∗ , rk, hk, k〉⊗t

)
∈ Nxi

∧ rk ∈ hk(Gxi
)
]

≥ Pr
rk,hk

[
B accepts ∧ A(|φx∗ , rk, hk, k〉⊗t) ∈ Nxi

| rk ∈ hk(Gxi
)
]

· Pr
rk,hk

[rk ∈ hk(Gxi
))]

≥
(

1− n2

p(n)

)(
1− 5

4 · p(n)

)
·
(
|Gxi |

2k
− |Gxi | · (|Gxi | − 1)

22k+1

)
> (1− 3n2

p(n)
) ·
(
|Gxi |

2k
− |Gxi | · (|Gxi | − 1)

22k+1

)
.

That hence finish the first part of this claim. To show the other part, we let
a(n) := 1− 3n2/p(n), and g be the integer such that 2g ≤ |Gxi

)| < 2g+1. Then
pk ≥ a(n) ·

(
1

2k−g − 1
22k−2g+1

)
, therefore the probability that B rejects for all the

k ∈ [log |Gxi
|+ C · log n, n+ C · log n] is at least

log |Gxi
|+C·logn∏

k=n+C·logn

(1− px
∗

k )m ≤
g+1+C·logn∏
k=n+C·logn

(1− a(n) ·
( 1

2k−g
− 1

22k−2g+1

)
)m

≤
g+1+C·logn∏
k=n+C·logn

(1− b(n) ·
( 1

2k−g
)
)m

where b(n) := a(n) · (1− 1/(2 · n2C)). Since the fact that

(1− b(n) ·
( 1

2k−g
)
)2 > 1− b(n) ·

( 1

2k−g−1
)
,
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we can further estimate the inequality as

g+1+C·logn∏
k=n+C·logn

(1− b(n) ·
( 1

2k−g
)
)m

≤
n−g−1∏
i=0

(1− b(n) ·
( 1

2n−i+C logn−g

)
)m

≤
n−g−1∏
i=0

(1− b(n) ·
( 1

2n+C logn−g

)
)2

i·m

= (1− b(n) ·
( 1

2n+C logn−g

)
)
∑n−g−1

i=0 2i·m

< (1− b(n) ·
( 1

2n+C logn−g

)
)2

n−g·m

< (1− b(n) ·
( 1

2n+C logn−g

)
)

2n−g+C log n

b(n)
·m·2−C log n·b(n)

<
1

e

m·2C log n·b(n)
=

1

e

m·n−C ·b(n)

That shows, if B repeats m > nC+1/b(n) times for each k ∈ [log |Gxi | + C ·
log n, n + C · log n], it would accept with probability at least 1 − exp(−n) for
those given state |φx∗〉 (which satisfies x∗ ∈ Gxi

). It’s easy to see that when
n2/p(n) = o(1), then m can be 2 · nC+1 for all sufficiently large n ∈ N. That
completes the proof of Claim 1. �

A.4 Proof of Claim 2

We firstly recall Claim 2 as follows:

Claim 2. For a given challenge state |φx∗〉, where x∗ ∈ Gxi
, px

∗

k,x denotes the
probability that B accepts with the measurement x from A at one repetition,
then the following four facts hold.

1. For any x ∈ In \Gxi
, the probability that B accepts with the measurement

x it is at most px
∗

k,x < p(n)−n
2

.
2. For any x ∈ Gxi

and k ≥ log |Gxi
| + C · log n for some suitable C > 0, it

holds that

(1− 2n−2C − 3n2/p(n))

2k
≤ px

∗

k,x ≤ 1/2k.

3. For any x ∈ Bxi , it holds that px
∗

k,x ≤ 1/2k.

4. For any other x, the probability is at most px
∗

k,x < exp(−n2/16).

Proof. It’s easy to derive the Fact 1, since f′ is “polarized” when it’s not weak
one-way, Lemma 4 implies that |〈φx|φx∗〉|2t ≤ 1/p(n) for any x ∈ In \Gxi

. That
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implies if B gets an x ∈ In\Gxi as a measurement returned by A, it would accept

by t ·n2 times of measuring with probability at most |〈φx|φx∗〉|2t·n
2 ≤ 1/p(n)n

2

.
That immediately justifies the Fact 1.

The Fact 2 is the most important part, to prove that, we first show that hk
is injective on Gxi

with high probability when k ≥ log |Gxi
|+C · log n for some

suitable C > 0. Since hk is universal hash, it holds that

Pr
rk,hk

[|h−1k (rk) ∩Gxi
| ≥ 2]

≤
∑

x0,x1∈Gxi

Pr
rk,hk

[hk(x0) = hk(x1) = rk]

≤ |Gxi
| · (|Gxi

| − 1)

22k+1
≤ n−2C

Therefore hk is injective on Gxi
with probability at least 1−n−2C . Note that con-

ditioned on hk is injective on Gxi
, the probability that A(|φx∗ , hk(x), hk, k〉⊗t)

outputs x ∈ Gxi
is at least 1 − 5/(4 · p(n))− n−2C . That is because, by in-

equality (33), for a random hk, A(|φx∗ , hk(x), hk, k〉⊗t) outputs x ∈ Gxi with
probability at least 1 − 5/(4 · p(n)), and there are at most 1/n2C of hk is not
injective. Hence we have

px
∗

k,x = Pr
rk,hk

[B accepts ∧ A(|φx∗ , rk, hk, k〉⊗t)→ x ∧ rk = hk(x)] (35)

≥ Pr
rk,hk

[B accepts ∧ A(|φx∗ , rk, hk, k〉⊗t)→ x ∧ rk = hk(x) ∧ hk is injective on Gxi
]

≥ (1− n2/p(n))(1− 5/4 · p(n)− n−2C)(1− n−2C)

2k

>
(1− 2n−2C − 5/(4 · p(n))− n2/p(n))

2k
.

On the other hand, since when A returns x as a measurement, it’s necessary to
have rk ∈ hk(x) for B to accept, that implies

px
∗

k,x ≤ Pr
rk,hk

[rk = hk(x)] = 1/2k (36)

Combining the (36) with (36), we thus have

(1− 2n−2C − 3n2/p(n))

2k
≤ px

∗

k,x ≤ 1/2k.

which completes the proof of the Fact 2.

The Fact 3 also follows directly from (36), namely

px
∗

k,x ≤ Pr
rk,hk

[rk = hk(x)] = 1/2k

for any x ∈ Bxi .
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Then we turn to the final part, since x /∈ In ∪Bxi , that implies

x ∈ {x | TD(|φxi〉, |φx〉) >

√
1− (

1

p(n)
)

1
t(n) /2} \ In,

then in the case that B gets such an x as a measurement, the probability that
B accepts it is at most

|〈φx|φx∗〉|2t(n)·n
2

≤
(

1− (TD (|φxi
〉, |φx〉)− TD (|φx∗〉, |φx〉))2

)t(n)·n2

≤
(

1−
(√1− (1/p(n))

1
t(n) −

√
1− (1− 1/p(n))

1
t(n)

2

)2)t(n)·n2

≤
(

1−
(√1− (1/p(n))

1
t(n)

4

)2)t(n)·n2

≤
(

1− 1− (1/p(n))
1

t(n)

16

)t(n)·n2

≤
(15

16
+

(1/p(n))
1

t(n)

16

)t(n)·n2 ∗
≤
(

1− 1

16 · t(n)

)t(n)·n2

≤ exp(−n2/16),

where (∗) holds because 1/p(n) < (1−1/t(n))t(n) for all sufficiently large n ∈ N.
That hence completes the proof of Fact 4. That finishes the proof of Claim 2.�

A.5 Proof of Claim 3

We recall Claim 3 as follows:

Claim 3. For a given challenge state |φx∗〉, where x∗ ∈ Gxi
, px

∗

x denotes the
probability that B accepts with the measurement x, then we have

1. For x ∈ Gxi
,
∣∣px∗x − 1/|Gxi

|
∣∣ < 5n2/(p(n) · |Gxi

|).
2. For x ∈ Bxi

, it holds that px
∗

x ≤ 2 · |Gxi
|−1 +O(exp(−n)).

3. For x /∈ Bxi
∪Gxi

, we have px
∗

x ≤ exp(−n).

Proof. Combining the facts in Claim 2, we can get an upper bounded of px
∗

k as
follows

px
∗

k ≤
∑
x

Pr
rk,hk

[B accepts ∧ A(|φx∗ , rk, hk, k〉⊗t)→ x] =
∑
x

px
∗

k,x (37)

< p(n)−n · 2n + |Gxi | · p(n)−1 · 2−k + |Gxi | · 2−k + exp(−n2/16) · 2n

< 2−2n + |Gxi
| · (p(n)−1 + 1) · 2−k.

For a challenge state |φx∗〉, if we denote by px
∗

x the probability that B accepts
with a measurement x, then it holds that

px
∗

x =

C logn∑
k=n+C logn

m−1∑
m′=0

qx
∗

k,m′p
x∗

k,x, (38)
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where qx
∗

k,m′ :=
∏k+1
j=n+C logn(1 − px∗j )m · (1 − px∗k )m

′
is the probability that B

doesn’t accept from n + C log n to k + 1 and the first m′ repetitions of the
k-th round. Then by (37) and Claim 1 and Claim 2, for any x ∈ Gxi

, and
k ≥ log |Gxi

|+ C · log n for some suitable C > 0, we have

(1− 3n2

p(n)
) ·
(
|Gxi

| − |Gxi
| · (|Gxi

| − 1)

2k+1

)
<

px
∗

k

px
∗
k,x

<
2k−2n + |Gxi

|(p(n)−1 + 1)

(1− 2n−2C − 3n2/p(n))

Namely, if we let C > (deg p(n))/2, it holds that

(p(n)− 4n2)

(2 + p(n)) · |Gxi
|
<
p∗k,x
p∗k

<
p(n)

(p(n)− 4n2) · |Gxi
|

(39)

for any k ≥ log |Gxi
|+ C log n.

Then still by Claim 1, B would succeed for some k ≥ log |Gxi
| + C · log n

with overwhelming probability, which means

log |Gxi
|+C·logn∑

k=n+C logn

m−1∑
m′=0

qx
∗

k,m′p
x∗

k ≥ 1−O(exp(−n))

and ∑
k<log |Gxi

|+C·logn

m−1∑
m′=0

qx
∗

k,m′p
x∗

k ≤ O(exp(−n)).

Combining them with (39), we get

log |Gxi
|+C·logn∑

k=n+C logn

m−1∑
m′=0

qx
∗

k,m′p
x∗

k ·
(p(n)− 4n2)

(2 + p(n)) · |Gxi |
< px

∗

x ,

and

px
∗

x <

log |Gxi
|+C·logn∑

k=n+C logn

m−1∑
m′=0

qk,m′pk ·
p(n)

(p(n)− 4n2) · |Gxi |
+O(exp(−n)).

That hence implies

(p(n)− 4n2)

(2 + p(n)) · |Gxi
|
−O(exp(−n)) < px

∗

x <
p(n)

(p(n)− 4n2) · |Gxi
|

+O(exp(−n))

for any x ∈ Gxi
. Then for any x ∈ Gxi

, we have∣∣∣px∗x − 1/|Gxi |
∣∣∣

< max{ 4n2

(p(n)− 4n2) · |Gxi |
+O(exp(−n)),

(4n2 + 2)

(2 + p(n)) · |Gxi |
+O(exp(−n))}

<
5n2

p(n) · |Gxi |
,
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when the degree of p(n) is larger than 2, that completes the proof of Fact 1.
Similarly, for x ∈ Bxi

, we have

px
∗

k,x

px
∗
k

<
p(n)

(p(n)− 4n2) · |Gxi |
, (40)

therefore the Fact 2 follows

px
∗

x <
p(n)

(p(n)− 4n2) · |Gxi
|

+O(exp(−n)) ≤ 2 · |Gxi
|−1 +O(exp(−n)),

when the degree of polynomial p(n) is larger than 2.
In the case x /∈ Bxi ∪Gxi , by Claim 2, we have

(1− 3n2

p(n)
) ·
(
|Gxi | −

|Gxi | · (|Gxi | − 1)

2k+1

)
· exp(n2/16) <

px
∗

k

px
∗
k,x

,

Therefore

px
∗

x < exp(−n2/16) < exp(−n).

That completes the proof of that claim. �

A.6 Proof of Theorem 9

We firstly recall the construction of Theorem 9 as follows:

The construction of symmetric distributionally OWSG: Assuming there
exists a efficient sampler ((Sr0 , U

r
0 ), (Sr1 , U

r
1 )) = (Qr0, Q

r
1) ← S(r) such that the

semi-classical QSD problem is hard-on-average on distribution of S(1n), then the
following construction

f(r, b, x) := |ψQ
r
0,Q

r
1

b,x 〉 = |Qr0, Qr1〉 ⊗ |φ
Ur

b
x 〉 (41)

is a distributionally one-way state generator on the distribution over (r, b, x).

Proof. We justify the symmetric distributional one-wayness of that construction
by making a contradiction. Assuming there exists an adversary A that takes t
copies of a challenge state as input, and breaks the distributional one-wayness of
f(r, b, x) efficiently. Namely, there exists a negligible function negl(·) such that

TD

(
E
r,b,x
|r, b, x〉〈r, b, x| ⊗ |ψQ

r
0,Q

r
1

b,x 〉〈ψQ
r
0,Q

r
1

b,x | (42)

, E
r,b,x

ρ
|ψQr

0,Qr
1

b,x 〉
A,t ⊗ |ψQ

r
0,Q

r
1

b,x 〉〈ψQ
r
0,Q

r
1

b,x |
)
≤ negl(n),

where ρ
|ψQr

0,Qr
1

b,x 〉
A,t is the (mixed) state output by A with |ψQ

r
0,Q

r
1

b,x 〉⊗t as input.
Similarly, we assume it is the state after tracing out all irrelevant part except
the input register of f (which only contains r, b, x).

We now give a QPT algorithm B decides (Qr0, Q
r
1) = S(r) as follows:
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– B is given (Qr0, Q
r
1) ← S(1n) as its input, it firstly generates the state

Ex |ψ
Qr

0,Q
r
1

b,x 〉⊗t for a random b ∈ {0, 1} and x ∈ {0, 1}k.

– B invokes A with the input state |ψQ
r
0,Q

r
1

b,x 〉⊗t and gets output (r∗, b∗, x∗) in
result.

– B returns 1 if b 6= b∗, otherwise, B outputs a random decision d ∈ {0, 1}.

Note that some part of B is described in classical setting, but it’s equivalent to
consider it as a quantum operation. To estimate the success probability of B, we
further derive the following relation by inequality (42) and Lemma 3

negl(n) ≥ TD

(
E
r,b,x
|r, b, x〉〈r, b, x| ⊗ |ψQ

r
0,Q

r
1

b,x 〉〈ψQ
r
0,Q

r
1

b,x | (43)

, E
r,b,x

ρ
|ψQr

0,Qr
1

b,x 〉
A,t ⊗ |ψQ

r
0,Q

r
1

b,x 〉〈ψQ
r
0,Q

r
1

b,x |
)

= max
P

Tr

[
P

(
E
r,b,x

(
|r, b, x〉〈r, b, x| − ρ

|ψQr
0,Qr

1
b,x 〉
A,t

)
⊗ |ψQ

r
0,Q

r
1

b,x 〉〈ψQ
r
0,Q

r
1

b,x |
)]

Then we let P0 and P1 be some projections on the space spaned by Qr0, Q
r
1 ∈

scQSD0 and Qr0, Q
r
1 ∈ scQSD1 respectively 15, then by average-case hardness of

scQSD, we have

negl(n) ≥
∣∣∣∣Tr

[
Pd

(
E
r,b,x

(
|r, b, x〉〈r, b, x| − ρ

|ψQr
0,Qr

1
b,x 〉
A,t

)
⊗ |ψQ

r
0,Q

r
1

b,x 〉〈ψQ
r
0,Q

r
1

b,x |
)]∣∣∣∣

≥
(

1

2
− negl0(n)

)
·
∣∣∣∣Tr

[
Pd

(
Qr

0,Q
r
1∈scQSDd

E
r,b,x

(
|r, b, x〉〈r, b, x| − ρ

|ψQr
0,Qr

1
b,x 〉
A,t

)
⊗|ψQ

r
0,Q

r
1

b,x 〉〈ψQ
r
0,Q

r
1

b,x |
)]∣∣∣

for any possible projections space spaned by Qr0, Q
r
1 ∈ scQSDd. That hence

implies

TD

(
Qr

0,Q
r
1∈scQSDd

E
r,b,x

|r, b, x〉〈r, b, x| ⊗ |ψQ
r
0,Q

r
1

b,x 〉〈ψQ
r
0,Q

r
1

b,x | (44)

,
Qr

0,Q
r
1∈scQSDd

E
r,b,x

ρ
|ψQr

0,Qr
1

b,x 〉
A,t ⊗ |ψQ

r
0,Q

r
1

b,x 〉〈ψQ
r
0,Q

r
1

b,x |
)
≤ negl′(n)

for both d = 0, 1, and some negligible function negl′(·).
Then we consider the Qr0, Q

r
1 ∈ scQSD0 and Qr0, Q

r
1 ∈ scQSD1 separately. In

the case that Qr0, Q
r
1 ∈ scQSD0, since it holds that

TD(|ψQ
r
0,Q

r
1

0,x 〉〈ψQ
r
0,Q

r
1

0,x |⊗t+1, |ψQ
r
0,Q

r
1

1,x 〉〈ψQ
r
0,Q

r
1

1,x |⊗t+1) ≤ (t+ 1)/2−n (45)

15 Namely, Pd is the projection on the space that generated by {|r, b, x,Q0, Q1, φ〉 |
(Q0, Q1) ∈ scQSD0, r ∈ {0, 1}l, b ∈ {0, 1}, x ∈ {0, 1}k, φ ∈ {0, 1}m}
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for anyQr0, Q
r
1 ∈ scQSD0, hence when we replace the challenge state |ψQ

r
0,Q

r
1

1,x 〉〈ψQ
r
0,Q

r
1

1,x |⊗t

by the |ψQ
r
0,Q

r
1

0,x 〉〈ψQ
r
0,Q

r
1

0,x |⊗t, the output of A would only change slightly, more
specifically, according to (44) and (45), it holds that

TD

(
Qr

0,Q
r
1∈scQSD0

E
r,b,x

|r, b, x〉〈r, b, x| ⊗ |ψQ
r
0,Q

r
1

b,x 〉〈ψQ
r
0,Q

r
1

b,x |

,
Qr

0,Q
r
1∈scQSD0

E
r,x

ρ
|ψQr

0,Qr
1

0,x 〉
A,t ⊗ |ψQ

r
0,Q

r
1

0,x 〉〈ψQ
r
0,Q

r
1

0,x |
)
≤ negl′(n) + (t+ 1)/2−n.

That implies, when tracing out the all the registers except the decision bit b (we

denote by these registers the W0) of ρ
|ψQr

0,Qr
1

0,x 〉
A,t , we can get∣∣∣∣〈1| Tr

W0

Qr
0,Q

r
1∈scQSD0

E
r,x

ρ
|ψQr

0,Qr
1

0,x 〉
A,t |1〉 − 1

2

∣∣∣∣ ≤ negl1(n)

for some negligible negl1(·).
Therefore, when A takes E

Qr
0,Q

r
1∈scQSD0

x,r |ψQ
r
0,Q

r
1

0,x 〉〈ψQ
r
0,Q

r
1

0,x |⊗t as input state,
it would output b∗ = 1 with probability nearly equals to 1/2. By a similar
argument, we can get the same conclusion for the case that A takes the state

E
Qr

0,Q
r
1∈scQSD0

x |ψQ
r
0,Q

r
1

1,x 〉〈ψQ
r
0,Q

r
1

1,x |⊗t as input. Therefore we have

Pr
(Q0,Q1)←S(1n)

[B(Q0, Q1) = 1 | (Q0, Q1) ∈ scQSD0] ≤ 1

2
+ negl1(n) (46)

On the other hand, when Qr0, Q
r
1 ∈ scQSD1, by the definition of scQSD1, it

holds that

TD

(
E
x
|ψQ

r
0,Q

r
1

0,x 〉〈ψQ
r
0,Q

r
1

0,x |,E
x
|ψQ

r
0,Q

r
1

1,x 〉〈ψQ
r
0,Q

r
1

1,x |
)
≥ 1− 2−n/2

We then denote by PQr
0,Q

r
1

the projection that maximizes the trace distance

between Ex |φ
Ur

0
x 〉〈φU

r
0

x | and Ex |φ
Ur

1
x 〉〈φU

r
1

x |, namely

Tr

[
PQr

0,Q
r
1

(
E
x

(
|φU

r
0

x 〉〈φU
r
0

x | − |φU
r
1

x 〉〈φU
r
1

x |
))]

= TD

(
E
x
|φU

r
0

x 〉〈φU
r
0

x |,E
x
|φU

r
1

x 〉〈φU
r
1

x |
)
≥ 1− 2−n.

That indicates TrPQr
0,Q

r
1

Ex(|φU
r
1

x 〉〈φU
r
1

x |) ≤ 2−n and TrPQr
0,Q

r
1

Ex(|φU
r
0

x 〉〈φU
r
0

x |) ≥
1−2−n. Then we denote by P ′ the projection that operates on the whole registers
as follows

P ′ :=
∑

Qr
0,Q

r
1∈scQSD1

|0〉〈0| ⊗ |Qr0, Qr1〉〈Qr0, Qr1| ⊗ PQr
0,Q

r
1
.
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After tracing out the registers W0 (which contains all the registers except
the decision bit b), the trace distance can be further estimated as

TD

(
Qr

0,Q
r
1∈scQSD1

E
r,b,x

|r, b, x〉〈r, b, x| ⊗ |ψQ
r
0,Q

r
1

b,x 〉〈ψQ
r
0,Q

r
1

b,x | (47)

,
Qr

0,Q
r
1∈scQSD1

E
r,b,x

ρ
|ψQr

0,Qr
1

b,x 〉
A,t ⊗ |ψQ

r
0,Q

r
1

b,x 〉〈ψQ
r
0,Q

r
1

b,x |
)

≥ TD

(
Tr
W0

Qr
0,Q

r
1∈scQSD1

E
r,b,x

|r, b, x〉〈r, b, x| ⊗ |ψQ
r
0,Q

r
1

b,x 〉〈ψQ
r
0,Q

r
1

b,x |

, Tr
W0

Qr
0,Q

r
1∈scQSD1

E
r,b,x

ρ
|ψQr

0,Qr
1

b,x 〉
A,t ⊗ |ψQ

r
0,Q

r
1

b,x 〉〈ψQ
r
0,Q

r
1

b,x |
)

≥ Tr

[
P ′
(Qr

0,Q
r
1∈scQSD1

E
r,b,x

(|b〉〈b| − Tr
W0

ρ
|ψQr

0,Qr
1

b,x 〉
A,t )⊗ |ψQ

r
0,Q

r
1

b,x 〉〈ψQ
r
0,Q

r
1

b,x |
)]

≥ 1

2
· Tr

[
P
(Qr

0,Q
r
1∈scQSD1

E
r,x

(|0〉〈0| − Tr
W0

ρ
|ψQr

0,Qr
1

0,x 〉
A,t )⊗ |ψQ

r
0,Q

r
1

0,x 〉〈ψQ
r
0,Q

r
1

0,x |
)]
− 2−n

≥ 1

2
· (1− 2−n) ·

(
1−

Qr
0,Q

r
1∈scQSD1

E
r,x

〈0| Tr
W0

ρ
|ψQr

0,Qr
1

0,x 〉
A,t |0〉

)
.

According to (43) and (47), we have

Qr
0,Q

r
1∈scQSD1

E
r,x

〈0| Tr
W0

ρ
|ψQr

0,Qr
1

0,x 〉
A,t |0〉 ≥ 1− negl2(n) (48)

for some negligible function negl2(·).
That implies, when taking E

Qr
0,Q

r
1∈scQSD1

r,x |ψQ
r
0,Q

r
1

0,x 〉〈ψQ
r
0,Q

r
1

0,x |⊗t as input state,
the output decision b∗ by A would equal to the real b with overwhelming prob-
ability. By a similar argument, we can get the same conclusion for the case that

A takes E
Qr

0,Q
r
1∈scQSD0

r,x |ψQ
r
0,Q

r
1

1,x 〉〈ψQ
r
0,Q

r
1

1,x | as input. Therefore we have

Pr
(Q0,Q1)←S(1n)

[B(Q0, Q1) = 1 | (Q0, Q1) ∈ scQSD1] ≥ 1− negl2(n) (49)

Combining the inequalities (46) and (49), we have

Pr
(Q0,Q1)←S(1n)

[B(Q0, Q1) = 1 | (Q0, Q1) ∈ scQSD0] (50)

− Pr
(Q0,Q1)←S(1n)

[B(Q0, Q1) = 1 | (Q0, Q1) ∈ scQSD0]

≥ 1

2
− negl3(n)

for some negligible function negl3(·). That hence contradicts the average-case
hardness of the scQSD problem, which justifies our result. �

A.7 Proof of Theorem 10

We firstly recall the construction of Theorem 10 as follows:
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The construction of quantum bit commitment: Assuming there exists a
efficient sampler (Qr0, Q

r
1)← S(r) such that the QSD problem is hard-on-average

under distribution of S(1n), then the quantum bit commitment scheme is as
follows:

– Commit phase: The commiter generates |0〉 →H⊗l·n ⊗n
i=1

∑
ri
|ri〉/2l/2,

then gets n copies of the superposition state of these circuits by S

n⊗
i=1

∑
ri

|ri, 0〉
2l/2

S⊗n

→
n⊗
i=1

∑
ri

|ri, Qri0 , Q
ri
1 〉

2l/2
.

Let b← {0, 1} be the message the commiter intends to commit, it generates

n⊗
i=1

∑
ri

|ri, Qri0 , Q
ri
1 , 0〉

2l/2
U⊗n

b→ |Ψb〉⊗nABCD,

where

|Ψb〉ABCD :=
∑
r

|Qr0, Qr1〉A ⊗ PQrb |0〉BC ⊗ |r〉D
2l/2

.

PQrb denotes a purified circuit of Qrb (here we fix the purification procedure).
Then the commiter sends the registers A,B of |Ψb〉⊗nABCD to the receiver as
the commitment, where A stores the Qr0, Q

r
1, the registers B,C store the

output/ancilla parts of PQrb |0〉, and D stores the random number r.
– Reveal phase: The commiter sends the register C,D and the message b

to the receiver. The receiver invokes the operator (H⊗l ⊗ IABC) ◦ (S† ⊗
IBC) ◦ U†b )⊗n to the whole system, then measures the resulting state in the
computational basis. The receiver accepts iff the measurement is 0.

It is not hard to derive the correctness of this construction. The remaining
aims to discuss the hiding and binding properties.

We firstly show that any efficient adversary can’t break the computational
hiding property unless it breaks the average-case hardness of the QSD problem.
We prove it by making a contradiction, let A be the adversary that breaks the
computational hiding, instead of considering it as a unitary operator, without
loss of generality, we assume A is a linear trace-preserving CP maps which takes
TrC,D|Ψ0〉〈Ψ0|⊗n as input, outputs one qubit (mixed) state u0|0〉〈0| + u1|1〉〈1|
as its decision, and when refer to A(ρ) → b, we denote the event that A gets a
measurement b with ρ as its input. It then holds that∣∣∣Pr

[
Exp

hiding
A (0) = 1

]
− Pr

[
Exp

hiding
A (1) = 1

]∣∣∣
≤ TD

(
A
(
TrC,D|Ψ0〉〈Ψ0|⊗n

)
,A
(
TrC,D|Ψ1〉〈Ψ1|⊗n

))
≤
√

1− F (A (TrC,D|Ψ0〉〈Ψ0|⊗n) ,A (TrC,D|Ψ1〉〈Ψ1|⊗n))
2
.
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If we denote by PAb,b′ the probability that A takes TrC,D|Ψb〉〈Ψb|⊗n as input,
and outputs b′. Then it holds that

1− F
(
A
(
TrC,D|Ψ0〉〈Ψ0|⊗n

)
,A
(
TrC,D|Ψ1〉〈Ψ1|⊗n

))
≤ 1−

(√
PA0,0 · PA1,0 +

√
PA0,1 · PA1,1

)2
= 1− PA0,0 + PA0,0 · PA1,1 − PA0,1 + PA0,1 · PA1,0 − 2

√
PA0,0 · PA1,0 · PA0,1 · PA1,1

=
(√

PA0,0 · PA1,1 −
√
PA0,1 · PA1,0

)2 ∗
≤
(√

PA1,1 −
√
PA0,1

)2 ∗∗
≤ 2 ·

∣∣PA1,1 − PA0,1∣∣ .
Here (∗) and (∗∗) holds because PAb,b′ ≤ 1 and PAb,b′ = 1− PAb,b′⊕1 for any b, b′ ∈
{0, 1}. Note that if we let ρrb be the (mixed) state produced by the quantum
circuit Qrb , it holds that

PAb,b′ = Pr
r1,...,rn

[
A

(
n⊗
i=1

|Qri0 , Q
ri
1 〉〈Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
b

)
= b′

]
.

Therefore, if A breaks the computational hiding property with non-negligible
advantage, we can derive that there exist c > 0 such that∣∣PA1,1 − PA0,1∣∣ ≥ 1

nc
(51)

for infinitely n ∈ N.
Then for j ∈ {0, . . . , n}, we denote by Hybj = b the following event:

– Choose r1, . . . , rn uniformly at random and generate S(ri) = (Qri0 , Q
ri
1 ).

– A is given ⊗n−ji=1 |Q
ri
0 , Q

ri
1 〉〈Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
0 ⊗ni=n−j+1 |Q

ri
0 , Q

ri
1 〉〈Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
1

as input state, and output b as the measurement.

Note that the Hyb0 and Hybn represent the two cases of in the inequality (51),
therefore

E
j

∣∣Pr
[
Hybj = 1

]
− Pr

[
Hybj+1 = 1

]∣∣
≥

∣∣∣∣∣∣
n−1∑
j=0

(
Pr
[
Hybj = 1

]
− Pr

[
Hybj+1 = 1

])∣∣∣∣∣∣ /n (52)

=
∣∣PA1,1 − PA0,1∣∣ ≥ 1

nc+1

Let jmax be the index that maximizes |Pr[Hybjmax
= 1] − Pr[Hybjmax+1 = 1]|,

and without loss of generality, we assume Pr[Hybjmax+1 = 1] > Pr[Hybjmax
= 1].

Based the inequality above, we construct an adversary B for the QSD as follows:

– B receives a pair of circuits (Q0, Q1) as its input, its task is to determine
whether (Q0, Q1) ∈ QSD1 or not.
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– B chooses j ← {1, . . . , n} randomly, and generates r1, . . . , rj−1, rj+1, . . . , rn
uniformly at random. Then it invokes S(ri) = (Qri0 , Q

ri
1 ) for those i 6= j, and

sets (Q
rj
0 , Q

rj
1 ) = (Q0, Q1).

– B tosses t← {0, 1} randomly, if t = 0, it runs A with input state

n−j⊗
i=1

|Qri0 , Q
ri
1 〉〈Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
0

n⊗
i=n−j+1

|Qri0 , Q
ri
1 〉〈Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
1

if t = 1, it runs A with input state

n−j−1⊗
i=1

|Qri0 , Q
ri
1 〉〈Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
0

n⊗
i=n−j

|Qri0 , Q
ri
1 〉〈Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
1 .

– B returns 1 if A outputs t, otherwise, it returns 0.

Therefore, we can deduce that∣∣∣∣Pr [B(Q0, Q1) = 1 : (Q0, Q1)← S(1n)]− 1

2

∣∣∣∣
=

1

2
·
∣∣∣∣E
j

(
Pr[Hybj = 0 | t = 0] + Pr[Hybj+1 = 1 | t = 1]

)
− 1

∣∣∣∣ (53)

=
1

2
·
∣∣∣∣E
j

(
Pr[Hybj = 1]− Pr[Hybj+1 = 1]

)∣∣∣∣ ≥ 1

nc+1

Therefore, either Pr[B(Q0, Q1) = 1 : (Q0, Q1) ← S(1n)] ≥ 1/2 + 1/nc+1, or
Pr[B(Q0, Q1) = 1 : (Q0, Q1) ← S(1n)] ≤ 1/2 − 1/nc+1, and hereon we assume
the first case, the conclusion of other case can be derived accordingly.

Since TD(ρ
rj
0 , ρ

rj
1 ) ≤ 2−n when (Q0, Q1) ∈ QSD0, that implies the difference

is negligible if we replace the ρ
rj
1 by ρ

rj
0 , namely

Pr [B(Q0, Q1) = 1 : (Q0, Q1)← S(1n) | (Q0, Q1) ∈ QSD0]

=
1

2
· E
j

(
Pr
[
Hybj = 0 | (Q0, Q1) ∈ QSD0 ∧ t = 0

]
+Pr

[
Hybj+1 = 1 | (Q0, Q1) ∈ QSD0 ∧ t = 1

])
(54)

≤ 1

2
· E
j

(
Pr
[
Hybj = 0 | (Q0, Q1) ∈ QSD0 ∧ t = 0

]
+Pr

[
Hybj = 1 | (Q0, Q1) ∈ QSD0 ∧ t = 0

]
+ negl1(n)

)
≤ 1

2
· (1 + negl1(n))

for some negligible function negl1(·). Note that (Q0, Q1) ∈ QSD0 with proba-
bility nearly equals to 1/2, namely

1

2
− negl0(n) ≤ Pr[(Q0, Q1) ∈ QSDb : (Q0, Q1)← S(1n)] ≤ 1

2
+ negl0(n)
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for b ∈ {0, 1}. Therefore, we have

Pr [B(Q0, Q1) = 1 : (Q0, Q1)← S(1n) | (Q0, Q1) ∈ QSD1] ·
(

1

2
+ negl0(0)

)
≥ Pr [B(Q0, Q1) = 1 : (Q0, Q1)← S(1n) | (Q0, Q1) ∈ QSD1] · Pr [(Q0, Q1) ∈ QSD1]

≥ Pr [B(Q0, Q1) = 1 : (Q0, Q1)← S(1n)]

−
(

1

2
+ negl0(n)

)
· Pr [B(Q0, Q1) = 1 : (Q0, Q1)← S(1n) | (Q0, Q1) ∈ QSD0]

∗
≥Pr [B(Q0, Q1) = 1 : (Q0, Q1)← S(1n)]− 1

2
· (1 + negl1(n)) ·

(
1

2
+ negl0(n)

)
∗∗
≥ 1

4
+

1

nc+1
− negl2(n)

for infinitely many n, where (∗) comes from the inequality (54), and (∗∗) holds
because we assume the case Pr[B(Q0, Q1) = 1 : (Q0, Q1) ← S(1n)] ≥ 1/2 +
1/nc+1 of the inequality (53)16. That inequality indicates there is a negligible
function negl(·) such that

Pr [B(Q0, Q1) = 1 : (Q0, Q1)← S(1n) | (Q0, Q1) ∈ QSD1] (55)

≥ 1

2
+

2

nc+1
− negl(n)

for infinitely many n.

Therefore, combining the inequality (54) with (55), we thus have∣∣∣Pr
[
B(Q0, Q1) = 1 : (Q0, Q1)← S(1n) | (Q0, Q1) ∈ QSD1

]
− Pr [B(Q0, Q1) = 1 : (Q0, Q1)← S(1n) | (Q0, Q1) ∈ QSD0]

∣∣∣
≥ 2

nc+1
− negl′(n)

for some negligible function negl′(·), which breaks the average-case hardness of
QSD problem. That hence proves the computational hiding of this construction.

Then we discuss the sum-binding property, we denote by pb the probability
that the receiver accepts with message b. Let TrC,D,E |Ψ〉〈Ψ | be the commitment
sent by a cheating commiter, where |Ψ〉〈Ψ | is the whole “fake” state, and E
stores the auxiliary qubits of the cheating commiter. Then the cheating com-
miter invokes the operator U bCDE when it intends to open that with b. Since the

16 In the other case that Pr[B(Q0, Q1) = 1 : (Q0, Q1) ← S(1n)] ≤ 1/2 − 1/nc+1, we
can estimate the lower bound of that probability in the inequality (53), which is
1/2 − negl1(n), and the upper bound of Pr[B(Q0, Q1) = 1 : (Q0, Q1) ← S(1n) |
(Q0, Q1) ∈ QSD1] is 1/2− 2/nc+1 + negl(n) accordingly.
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monotonicity of the fidelity under trace-preserving CP maps, it holds that

p0 + p1 =
∑
b

〈Ψb|⊗n Tr
E

[
I ⊗ U bCDE |Ψ〉〈Ψ |I ⊗

(
U bCDE

)†] |Ψb〉⊗n (56)

=
∑
b

F
(
|Ψb〉〈Ψb|⊗n,Tr

E

[
I ⊗ U bCDE |Ψ〉〈Ψ |I ⊗

(
U bCDE

)†])2
≤
∑
b

F

(
Tr
C,D
|Ψb〉〈Ψb|⊗n, Tr

C,D,E

[
I ⊗ U bCDE |Ψ〉〈Ψ |I ⊗

(
U bCDE

)†])2

≤
∑
b

F

(
Tr
C,D
|Ψb〉〈Ψb|⊗n, Tr

C,D,E
|Ψ〉〈Ψ |

)2

∗
≤ 1 + F

(
Tr
C,D
|Ψ0〉〈Ψ0|⊗n, Tr

C,D
|Ψ1〉〈Ψ1|⊗n

)
≤ 1 +

(
1− TD

(
E

r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 〉〈Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
0

, E
r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 〉〈Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
1

)2
 1

2

,

where (∗) holds because F(η0, η1)2 + F(η0, η2)2 ≤ 1 + F(η1, η2) for any state
η0, η1, η2 (refer to [38,36]).

Then we further estimate the trace distance above. Since it holds that

TD

(
E

r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 〉〈Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
0 , E

r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 〉〈Q

ri
0 , Q

ri
1 | ⊗ ρ

ri
1

)

≥ Tr

[
P E
r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 〉〈Q

ri
0 , Q

ri
1 | ⊗

(
n⊗
i=1

ρri0 −
n⊗
i=1

ρri1

)]

for any 0 ≤ P ≤ I. We hence let

P :=

∃ i:(Qri
0 ,Q

ri
1 )∈QSD1∑

r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 〉〈Q

ri
0 , Q

ri
1 | ⊗ Pr1,...,rn ,

where Pr1,...,rn is the projection that maximizes the trace of
⊗n

i=1 ρ
ri
0 −

⊗n
i=1 ρ

ri
1 ,

namely

TD

(
n⊗
i=1

ρri0 ,

n⊗
i=1

ρri1

)
= Pr1,...,rn

(
n⊗
i=1

ρri0 −
n⊗
i=1

ρri1

)
.

In the case that there exists i satisfying (Qri0 , Q
ri
1 ) ∈ QSD1, we have

Pr1,...,rn(

n⊗
i=1

ρri0 −
n⊗
i=1

ρri1 ) = TD(

n⊗
i=1

ρri0 ,

n⊗
i=1

ρri1 ) ≥ 1− 2−n.
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Since the event ∃ i : (Qri0 , Q
ri
1 ) ∈ QSD1 occurs with overwhelming probability

Pr
r1,...,rn

[∃ i : Qri0 , Q
ri
1 ∈ QSD1] ≥ 1−

(
1

2
+ negl0(n)

)n
> 1− (

2

3
)n

for all sufficiently large n ∈ N. We further have

Tr

[
P

(
E

r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 〉〈Q

ri
0 , Q

ri
1 | ⊗

(
n⊗
i=1

ρri0 −
n⊗
i=1

ρri1

))]
(57)

≥ Tr

∃ i:Qri
0 ,Q

ri
1 ∈QSD1∑

r1,...,rn

n⊗
i=1

|Qri0 , Q
ri
1 〉〈Q

ri
0 , Q

ri
1 | ⊗ Pr1,...,rn

(
n⊗
i=1

ρri0 −
n⊗
i=1

ρri1

)
/2l


≥
(

1−
(

2

3

)n)
·
(
1− 2−n

)
.

Combining the inequality (57) with (56), we thus have

p0 + p1 = 1 +

√
1−

[(
1−

(
2

3

)n)
· (1− 2−n)

]2
≤ 1 + negl(n)

for some negligible negl(·), that hence completes the proof of the sum-binding
property. �
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