
POST-QUANTUM KEY EXCHANGE FROM SUBSET PRODUCT WITH ERRORS

TREY LI

ABSTRACT. We introduce a new direction for post-quantum key exchange based on the mul-
tiple modular subset product with errors problem.

1. INTRODUCTION

Existing ideas for post-quantum key exchange are mostly from lattice problems (e.g.,
[ADPS16; BCDMNNRS16; DXL12]) and supersingular isogeny problems (e.g., [CLMPR18]1).

We propose a Diffie-Hellman analogy (one-round and non-interactive) that does not seem
to belong to the above two branches.

Our scheme is based on the hardness of the multiple modular subset product with errors
problem (M-MSPE), which is a concrete case of the multiple modular unique factorization
domain subset product with errors problem (M-MUSPE) proposed in [Li22d] with the un-
derlining unique factorization domain (UFD) the concrete ring of integers Z.

2. HARD PROBLEM

The abstract M-MUSPE is defined in [Li22d]. Our key exchange uses the following con-
crete settings.
Setup

Let ℓ1, . . . ,ℓ2n be the first 2n primes2; and p1, . . . , pn be the next n primes. Denote L =
{ℓ1, . . . ,ℓ2n} and P = {p1, . . . , pn}.3

Choose a safe prime q in [ℓ2n+1
2n , pn2/8

1] 4 (e.g., the smallest safe prime greater than ℓ2n+1
2n).5

This is the 5th paper of the series. Previously: [Li22a; Li22b; Li22c; Li22d].
Date: October 5, 2022.
Email: treyquantum@gmail.com

1The other line of works based on [JF11] are recently broken by [CD22; MM22; Rob22].
2Potential improvement of efficiency of the key exchange scheme may be achieved by replacing the param-

eter 2n by a smaller super-polynomial function. This can help reducing the size of q. The tradeoff is a slight
dropping of the correctness probability of the key exchange.

3The two sets of primes can be chosen more randomly as long as L∩P =∅.
4We expect that such a safe prime exists for n ≥ 17. This is because by the counting function of Sophie

Germain primes πSG(m) ∼ 2cm/(logm)2 [Sho09], where 2c ≈ 1.32032 is a constant, we expect that a safe
prime exists in every (logm)2/2c integers. And the width of the interval [ℓ2n+1

2n , pn2/8
1]∼ [(n2n)2n+1, (n2n)n2/8]=

[m2n+1,mn2/8] is mn2/8−m2n+1 > m2 > (logm)2/2c, where m := n2n and n ≥ 17. Note that 17 is the lower bound
for n to be such that n2/8− (2n+1)> 0; and whenever n2/8− (2n+1)> 0 we have n2/8− (2n+1)> 1 for integer
n.

5In other words, q is greater than the product of any 2n+1 primes in L; and smaller than the product of any
n/4 integers a j. The first condition is for success decoding of the key exchange scheme; and the second condition
is to avoid the modulus q to be too large that can be ignored — Specifically, a uniform vector x ← {0,1}n

is expected to have about n/2 entries to be 1 and thus if q is larger than the product of n/2 a j ’s then the
product ax1

1 · · ·axn
n (mod q) = ax1

1 · · ·axn
n is not reduced at all modulo q; now we use n/4 rather than n/2 for a

1

Let Da be the distribution that samples a vector v ← {0,1}n uniformly at random and
outputs the integer a :=∏n

i=1 pvi
i .

Let De be the distribution that keeps sampling vectors v = (v0, . . . ,vn−1) ← {0,1}⌈log(ℓ2n)⌉

uniformly at random until finding one such that the integer e := ∑⌈log(ℓ2n)⌉−1
i=0

(
vi ·2i) is a

prime in L and outputs e.
Let Dx with respect to some x ∈ {0,1}n be the distribution that samples a1, . . . ,an ← Da and

e ← De, computes X =∏n
i=1 axi

i · e±1 (mod q), and outputs (a1, . . . ,an, X), where the exponent
±1 of e is arbitrary.

Let Ox with respect to some x ∈ {0,1}n be the oracle that outputs instances (a1, . . . ,an, X)
sampled from Dx.
Problem

M-MSPE is given access to Ox, find x.6

3. IDEA

The high level story of our key exchange is the following.
Before Key Exchange

• Alice and Bob: We use the same public matrix of base numbers M := {ai, j}n×n; and
the same public set of error primes L = {ℓ1, . . . ,ℓ2n}.

• Alice: My static public key is an M-MSPE product sequence S = (S1, . . . ,Sn) with the
base vectors the rows of M. My static private key is the corresponding M-MSPE
secret (s,u) ∈ {0,1}n ×Ln.

• Bob: My static public key is an M-MSPE product sequence T = (T1, . . . ,Tn) with the
base vectors the columns of M. My static private key is the corresponding M-MSPE
secret (t,v) ∈ {0,1}n ×Ln.

Key Exchange

• Alice: I want to share a fresh M-MSPE secret (x, e) ← {0,1}n ×Ln with Bob. I first
use this secret to compute an M-MSPE product sequence (A1, . . . , An). I then use
x ∈ {0,1}n to compute a composite MSPE product B by treating Bob’s public M-
MSPE product sequence T as the base vector. I send the M-MSPE product sequence
(A1, . . . , An,B) to Bob. If Bob has the secret (t, f) of the public key T he can recover
(x, e).

more confident claim that this does not happen unless a random x has less than n/4 1’s, which happens with
very low probability. For example, the probability that a 128-bit string has less than 32-bits of 1’s is about
0.00000001.

However the safe prime that we want is quite large and not easy to find. We suggest to use a Mersenne
prime instead. When n = 256, the 31st Mersenne prime 2216091 −1 is a proper choice for q.

6The differences between M-MSPE and M-MUSPE [Li22d] are: (1) M-MSPE is M-MUSPE over the concrete
quotient ring Z×

q ; (2) the bases a1, . . . ,an in M-MSPE are square-free rather than uniform; (3) we use a single
prime e ∈ L for the error term e±1 of each MSPE instance, while MUSPE instances are allowed to use t ≥ 1
many; and (4) we allow an arbitrary exponent in {−1,1} for the error e of each MSPE instance, while in the
specific definition of MUSPE in [Li22d] the exponents of the error primes are −1 or 1 with equal probability.

Also, a further change is to use x ∈Zn
q−1 instead of x ∈ {0,1}n. In that case, the choice of q still works because

when x ∈Zn
q−1 the required upper bound of q is expected to be even greater than the previous required upper

bound pn2/8
1 when x ∈ {0,1}n.

2

• Bob (simultaneously): I want to share a fresh M-MSPE secret (y, f) ∈ {0,1}n×Ln with
Alice. I first use this secret to compute an M-MSPE product sequence (C1, . . . ,Cn). I
then use y ∈ {0,1}n to compute a composite MSPE product D by treating Alice’s public
M-MSPE product vector S as the base vector. I send the M-MSPE product sequence
(C1, . . . ,Cn,D) to Alice. If Alice has the secret (s,u) of the public key S she can recover
(y, f).

Key Share

• Alice: I use my secret (s,u) to recover (y, f) and set KA = (x, y, e, f) as the shared
secret.

• Bob: I use my secret (t,v) to recover (x, e) and set KB = (x, y, e, f) as the shared secret.

The key idea of the above story is that Alice and Bob respectively encode rows and columns
of the same base matrix M into two M-MSPEs, called the “row M-MSPE” and the “column M-
MSPE”; then the intersecting “block” of base numbers of the row M-MSPE and the column
M-MSPE can be precisely cut off using the correct static private keys, and that the error
terms will expose.

4. SCHEME

The public parameters of the key exchange scheme are (n, q, M,L), where M = {ai, j}n×n ←
Dn×n

a . The scheme is as follows.

Key Generation:
a1,1 · · · a1,n u1

...
...

...
an,1 . . . an,n un
v1 . . . vn 1

s−→ S1
...
s−→ Sn

↓ t · · · ↓ t
T1 · · · Tn

• Alice: Sample static private key (s,u)← {0,1}n×Dn
e . Compute an M-MSPE prod-

uct sequence S = (S1, . . . ,Sn), where Si = as1
i,1 · · ·a

sn
i,n ·ui (mod q) for i ∈ [n]. Pub-

lish S as the public key.
• Bob: Sample static private key (t,v) ← {0,1}n ×Dn

e . Compute an M-MSPE prod-
uct sequence T = (T1, . . . ,Tn), where T j = at1

1, j · · ·a
tn
n, j · (1/v j) (mod q) for j ∈ [n].

Publish T as the public key.
Key Exchange:

a1,1 · · · a1,n e1
...

...
...

an,1 . . . an,n en
f1 . . . fn 1

x−→ A1
...
x−→ An

↓ y · · · ↓ y
C1 · · · Cn

3

• Alice: Sample ephemeral key (x, e)← {0,1}n ×Dn+1
L . Compute an M-MSPE prod-

uct sequence A = (A1, . . . , An), where A j = ax1
i,1 · · ·a

xn
i,n · e i (mod q) for i ∈ [n]. Com-

pute an MSPE product B = Tx1
1 · · ·Txn

n · (1/en+1) (mod q). Send (A,B) to Bob.
• Bob (simultaneously): Sample ephemeral key (y, f) ← {0,1}n ×Dn+1

L . Compute
an M-MSPE product sequence C = (C1, . . . ,Cn), where C j = ay1

1, j · · ·a
yn
n, j · (1/ f j)

(mod q), for j ∈ [n]. Compute an MSPE product D = S y1
1 · · ·S yn

n · fn+1 (mod q).
Send (C,D) to Alice.

Key Share:
• Alice: Compute E = D/Cs1

1 · · ·Csn
n (mod q). Compute y′ ∈ {0,1}n such that y′j = 1

if and only if u j|E, for j ∈ [n]. Compute f ′ ∈ Ln+1 such that f ′j = a
y′1
1, j · · ·a

y′n
n, j/C j

(mod q), for j ∈ [n]; and f ′n+1 = D/S
y′1
1 · · ·S y′n

n . Set the shared secret to be KA =
(x, y′, e, f ′).

• Bob: Compute F := At1
1 · · ·Atn

n /B (mod q). Compute x′ ∈ {0,1}n such that x′i = 1

if and only if vi|F, for i ∈ [n]. Compute e′ ∈ Ln+1 such that e′i = A j/a
x′1
i,1 · · ·a

x′n
i,n

(mod q) for i ∈ [n]; and e′n+1 = T
x′1
1 · · ·Tx′n

n /B. Set the shared secret to be KB =
(x′, y, e′, f).

5. CORRECTNESS

THEOREM 1. KA = KB with overwhelming probability.

Proof. Note that L is exponentially large and we only sample 4n+ 2 (i.e. linearly many)
error primes from L (they are the ui ’s, vi ’s, e i ’s and the f i ’s in the scheme). Hence the error
primes are all different with overwhelming probability p.

Again recall that q is greater than the product of any 2n+1 primes in L. Hence

E = (
uy1

1 · · ·uyn
n

) · (f1
s1 · · · fn

sn
) · fn+1 (mod q)

= (
uy1

1 · · ·uyn
n

) · (f1
s1 · · · fn

sn
) · fn+1

and

F = (
e1

t1 · · · en
tn

) · (vx1
1 · · ·vxn

n
) · en+1 (mod q)

= (
e1

t1 · · · en
tn

) · (vx1
1 · · ·vxn

n
) · en+1.

Therefore if all error primes in the scheme are different, then yj = 1 if and only if u j|E;
and xi = 1 if and only if vi|F. Then y′ = y and x′ = x (and thus f ′j = f j and e′i = e i for all
i, j ∈ [n+1]). Then KA = KB. Hence KA = KB with overwhelming probability p. □

6. EFFICIENCY

THEOREM 2. The time complexities of key generation and key exchange are both O(n4).

Proof. The complexities mainly come from modular multiplications. Note that q ⪆ ℓ2n+1
2n ≳

(n2n)2n+1 = 2O(n2). Hence the complexity of a single modular multiplication is O(log2 q) =
O(n2). There are O(n2) modular multiplications in both key generation and key exchange
(including key share). Hence the time complexities of key generation and key exchange are
both O(n4). □

4

7. SECURITY

The differences between the problem that we use to construct our key exchange scheme
and the M-MSPE in Section 2 are: (1) instead of giving unlimited access to the oracle Ox, the
scheme only gives n+1 MSPE instances for each secret; (2) one of the instances is a special
instance whose base numbers are themselves MSPE products rather than regular bases
sampled from Da; and (3) the scheme reuses the base matrix M for different uniformly
sampled secrets x in different executions of the scheme7. We denote this M-MSPE as M-
MSPEKE.

We show securities against private key recovery and shared key recovery assuming the
hardness of MSPEKE.

THEOREM 3. If M-MSPEKE (with regular bases only, i.e., bases sampled from Da) is hard,
then there does not exist a probabilistic polynomial time adversary that finds the static
private keys (s,u) or (t,v) from the transcripts S,T, A,B,C,D and the public parameters
n, q, M,L.

Proof. Suppose for contradiction that such an adversary A exists. We use it to solve M-
MSPEKE. Given an M-MSPEKE (M,S), where S = (S1, . . . ,Sn) is the MSPE product se-
quence. Treat S as the public key of Alice in the scheme. Compute all the rest of the scheme
to have T, A,B,C,D. Note that this can be done because T, A, B and C are independent of
S; and D only relies on the public numbers S1, . . . ,Sn. Then call A to find the secret (s, e),
where s is the solution to the target M-MSPEKE (M,S). □
THEOREM 4. If M-MSPEKE is hard, then there does not exist a probabilistic polynomial
time adversary that finds the shared key (x, y, e, f) from the transcripts S,T, A,B,C,D and
the public parameters n, q, M,L.

Proof. Suppose for contradiction that such an adversary A exists. We use it to solve M-
MSPEKE. Given an M-MSPEKE ((M,T), (A,B)), where (A,B) = (A1, . . . , An,B) is the MSPE
product sequence, and T = (T1, . . . ,Tn) is the base vector of B with the bases T1, . . . ,Tn ∈
Z×

q themselves MSPE products. Now treat (A,B) as Alice’s message in the key exchange
scheme. We compute the rest of the scheme to have S,T,C,D. This can be done because
S,C,D are independent of (A,B); and T is given. Then call A with (S,T, A,B,C,D) to solve
for (x, y, e, f) and x is the solution to the target M-MSPEKE. □

REFERENCES

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. “Post-
quantum Key {ExchangeA} New Hope”. In: 25th USENIX Security Sym-
posium (USENIX Security 16). 2016, pp. 327–343.

7One way to avoid reusing the base matrix M is to change the scheme to be an interactive key exchange
scheme by putting Alice and Bob’s own ephemeral base matrices MA and MB into their key exchange messages
respectively; and cancel the use of public keys. Then the security relies on a weaker assumption than M-
MSPEKE . The tradeoffs are lower efficiency, larger message sizes, and interactivity.

5

[BCDMNNRS16] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. “Frodo:
Take off the ring! practical, quantum-secure key exchange from LWE”.
In: Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security. 2016, pp. 1006–1018.

[CD22] Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH (preliminary version). Cryptology ePrint Archive, Paper 2022/975.
https://eprint.iacr.org/2022/975. 2022. URL: https://eprint.
iacr.org/2022/975.

[CLMPR18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and
Joost Renes. “CSIDH: an efficient post-quantum commutative group ac-
tion”. In: International Conference on the Theory and Application of Cryp-
tology and Information Security. Springer. 2018, pp. 395–427.

[DXL12] Jintai Ding, Xiang Xie, and Xiaodong Lin. “A simple provably secure
key exchange scheme based on the learning with errors problem”. In:
Cryptology ePrint Archive (2012).

[JF11] David Jao and Luca De Feo. “Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies”. In: International Workshop
on Post-Quantum Cryptography. Springer. 2011, pp. 19–34.

[Li22a] Trey Li. “Subset Product with Errors over Unique Factorization Domains
and Ideal Class Groups of Dedekind Domains”. 1st paper of the series.
2022, October 1.

[Li22b] Trey Li. “Jacobi Symbol Parity Checking Algorithm for Subset Product”.
2nd paper of the series. 2022, October 2.

[Li22c] Trey Li. “Power Residue Symbol Order Detecting Algorithm for Subset
Product over Algebraic Integers”. 3rd paper of the series. 2022, October
3.

[Li22d] Trey Li. “Multiple Modular Unique Factorization Domain Subset Prod-
uct with Errors”. 4th paper of the series. 2022, October 4.

[MM22] Luciano Maino and Chloe Martindale. An attack on SIDH with arbitrary
starting curve. Cryptology ePrint Archive, Paper 2022/1026. https://
eprint.iacr.org/2022/1026. 2022. URL: https://eprint.iacr.org/
2022/1026.

[Rob22] Damien Robert. Breaking SIDH in polynomial time. Cryptology ePrint
Archive, Paper 2022/1038. https : / / eprint . iacr . org / 2022 / 1038.
2022. URL: https://eprint.iacr.org/2022/1038.

[Sho09] Victor Shoup. A computational introduction to number theory and alge-
bra. Cambridge university press, 2009.

6

https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1038
https://eprint.iacr.org/2022/1038

	1. Introduction
	2. Hard problem
	3. Idea
	4. Scheme
	5. Correctness
	6. Efficiency
	7. Security
	References

