MULTIPLE MODULAR UNIQUE FACTORIZATION DOMAIN SUBSET PRODUCT
WITH ERRORS

TREY LI

ABSTRACT. We propose the multiple modular subset product with errors problem over unique
factorization domains and give search-to-decision reduction as well as average-case-solution
to worst-case-solution reduction for it.

1. INTRODUCTION

In [Li22a] we proposed a family of new computational problems. One of them is the
modular unique factorization domain subset product with errors problem (MUSPE). It was
defined as a single-instance problem, and we had only studied its global-case hardness,
which is a notion stronger than worst-case hardness but incomparable with average-case
hardness. If we zoom in each unique factorization domain (UFD), then global-case hardness
is about worst-case hardness in the UFDs.

In this paper we consider the multiple-instance version of the problem and study its
average-case hardness in certain UFDs. We call it the multiple modular unique factor-
ization domain subset product with errors problem (M-MUSPE).

We give a search-to-decision reduction for M-MUSPE over unique factorization domains
that are also cyclic groups. We give a worst-case-solution to average-case-solution reduc-
tion for M-MUSPE over unique factorization domains that are also cyclic groups and with
integral solutions x € Z" (i.e. not restricted to be in {0, 1}").

2. PROBLEM

First recall that (worst-case single-instance) MUSPE [Li22a] is given n+1 elements ay,...,
a,,X of a unique factorization domain (UFD) R, an ideal I of R, as well as a set L c R of
prime elements of R that are coprime to all a;, find a binary vector (x1,...,x,) € {0,1}* and a
square-free ring element e factored over L such that

n
Hafi ce=X (mod I).
i=1

A concrete example is the modular subset product with errors problem (MSPE) [Li22al],
which is given n +2 integers aq,...,a,,X,N and a set L of primes such that no elements of L
divide any a; for i € [n], find a binary vector x = (x1,...,x,) € {0,1}* and a square-free integer

e factored over L such that
n

[[a}-e=X (mod N).

i=1
Now we define the average-case multiple-instance problem.
This is the 4" paper of the series. Previously: [Li22a; Li22b; Li22c].
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Setup

Let R be a UFD and I be an ideal of R such that the quotient ring R/I is a cyclic group.’

Le;c L=1{¢,...,0,) be a set of (random) prime elements of R, where w is super-polynomial
in n.

Let D/ be a (not low entropy) distribution over L.

Let D, be the distribution that samples t elements u1,...,u; — Dy, a uniform vector v —
{~1,1}, and outputs the integer e :=[T’_ 1uv‘.3

An M-MUSPE oracle O, with respect to some x € {0,1}" is an oracle that outputs ran-
dom MUSPE instances of the form (a1,...,a,,X), where a1,...,a, — R/I, e — D,, and
X =TI",a} -e (mod I).*
Problem

Search M-MUSPE (or M-MUSPE) is given access to O, find x.

Decision M-MUSPE is given access to either an M-MUSPE oracle O, for some x € {0,1}",
or a random oracle O,,, which outputs random instances (ai,...,an,X) — (R/I)"*!, decide
which oracle is given.

3. UNIQUE SOLUTION

This section is about quotient order R/I := Ok/I = (g) that is a cyclic group of even order
d and that the second power residue symbol of the generator g is (g/I)g = —1. The reason
for requiring R to be an order Ok is because we want the second power residue symbol
to be defined; and requiring (g/I)s = —1 and even order d is for a convenient probability
argument5.

A typical example is R/I =(Z/qZ)* = Z; with q a rational prime.

PROPOSITION 1. The solution x € {0,1}" to an M-MUSPE over a quotient order Ok/I = (g)
which is a cyclic group of even order d is unique with overwhelming (in n) probability if
(g/l)g =—1.

Proof. Take the second power residue symbol for an MUSPE equation

n
[[a]-e=X (mod I)

=1

() (6),=(5),

we have an equation

—

1=
n

=T1(%) -9, (%),

=T1(5) (),

1A variant is to consider different random ideals I for different MUSPE instances.

~.

~.
—

27 typical choice for w is 2".
3A typical choice for ¢ is 1.
4Here we assume the existence of an efficient algorithm for uniform sampling from R/I.
5We could see from the proof that an odd d does not make a big difference and that the uniqueness of
solutions is plausible in that case.
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This gives a linear equation
n
Y aix;=p (mod2),
i=1

where a; and f are 1 if (a;/I)y and (eX/I), are —1, respectively; a; and § are 0 if (a;/I)y and
(eX/I)y are 1, respectively.

For £ > n MUSPE equations we have a system of % linear equations of this kind. Write
the system as a matrix equation we have

Ax=b (mod 2),

where A € ngn and b € Zg.

Note that a; = g"* (mod I) for a uniform r; — Z;. Also g is a quadratic non-residue modulo
I. Hence a; is a quadratic residue if an only if r; is even, of which the probability is 1/2.
Therefore A is uniform over Zs.

Now notice that the probability [Lan93; Ber80; BS06] that a uniform matrix in [F’;x” with
k > n is of full Fo-rank n is

k 1
i=k—-n+1
Hence A is of full Fe-rank n with probability p.
In particular, if £ = 2n then A is of full Fo-rank n with probability

k 1 2n 1 1\
p= (1——.)2 (1__)>(1__n) y
i:kllﬂ 2! i:lll 2! 2

which is overwhelming in n.
If A is really of full Fo-rank n then Ax = b (mod 2) has a unique solution and thus M-

MUSPE has a unique solution. Therefore M-MUSPE has a unique solution with overwhelm-
ing probability p. O]

4. SEARCH-TO-DECISION REDUCTION
THEOREM 1. Search M-MUSPE < Decision M-MUSPE.

Proof. Assume a distinguisher D for Decision M-MUSPE. We learn each entry of x € {0,1}"
from multiple fresh MUSPE instances from O,.
To learn the k-th entry xz, we do the following. Each time sample an MUSPE instance

(a]." .. ,an,X),
where
X

n
a’ici -e  (mod I).
i=1

Sample a random element
r—R/I.
Let
br=ap-r;and b; =a; for i €[nl,i Zk.
Let

Y=X-r (mod]I).
3



Call the distinguisher D with
(bla"-ybnyY)

and record the output of D.

Repeat the above process for poly(n) times with poly(n) MUSPE instances; and output
xp = 1 if D outputs 1 more than poly(n)/2 times, or output x; = 0 otherwise.

Now we show how it works. Note that both a; and r are uniform over R/I. Thus by =ap-r
is uniform. Therefore (b1,...,b,) is a legal base vector for both O, and O,;,.

Again, note that

n n
Y = Hafi-r-ez Hbfi-rl_xk-e (mod I).
i=1 i=1

Hence Y is an MUSPE product with respect to (b1,...,b,) if xz = 1; and it is a random
element if x; = 0 because r is uniform. It follows that (b1,...,5,,Y) is an MUSPE instance
from O, if x; = 1; and it is a random instance from O, if x; = 0. Note that the advantage of
learning x;, is the same as the advantage of D distinguishing D and D9, which is noticeable
by assumption. Hence with polynomially many trials we are able to amplify the success
probability to approximately 1. 0]

5. AVERAGE-TO-WORST SOLUTION REDUCTION
The following reduction is for M-MUSPE with integral solutions x € Z7.

THEOREM 2. M-MUSPE with average-case-solution x < Z7, is at least as hard as the prob-
lem with worst-case-solution x € Z7).

Proof. For each instance

(al,...,an,X)
from the MUSPE distribution D, with respect to an arbitrary (i.e. worst-case) solution
x € Z}; such that

a;-e=X (modI),
i=1
choose a random vector y — Z”, compute

n

n
Haf" =Y (mod I)
=1

and
Z=XY (modI).

Call the M-MUSPE solver with the instances of the form
(a1,...,an,2).
Note that

i

n

[[a7™-e=Z (mod D)

i=1

where y; are uniform, hence x; + y; (mod d) are uniform. Hence the M-MUSPE solver will

return

z=x+y (mod d)
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and we have that
x=z-y (mod d).

6. SUBSET SUM WITH ERRORS

We show relation with other problems.

Let N e Nand D1, Dy be two distributions over Zp. Let O, with respect to some x € {0,1}"
be an oracle that outputs instances of the form (as,...,a,,8), where ai,...,a, — D1, € —
D, and = Z?:l a;x; +€¢ (mod N). We define the multiple modular subset sum with errors
problem (M-MSSE) to be given access to Oy, find x.

A special case is the learning with errors problem (LWE) [Reg09], which is M-MSSE with
uniform coefficient distribution D1 and Gaussian error distribution Ds.

Another special case is the learning parity with noise problem (LPN) [BMT78; BFKL94;
BKWO03; Piel2], which® is given oracle access to instances of the form (ai,...,an,B) with
respect to the same vector (x1,...,x,) € Z3, where ay,...,a,,6 — Z3 and f = Z?zl a;x; +€
(mod 2), find the vector (x1,...,x,). We see that LPN is the special case of M-MSSE with
N =2 and uniform D7 and Ds.

We show that M-MSSE is at least as hard as the M-MUSPE variant that satisfy the
following conditions: (1) it is over a quotient order Og/I = {(g) that is a cyclic group of even
order d; (2) the second power residue symbol of the generator g is (g/I)2 = —1; and (3) both
the bases a; and the errors e are sampled uniformly from Og/I. In other words, this is the
M-MUSPE in Section 3 with uniform error distribution.

In particular, we will work with LPN since the second power residue symbol (-/p)y is
always well-defined for any prime ideal p c Og.”

In fact, the reduction is implied by the proof of Proposition 1. Specifically, take the second
power residue symbols for an MUSPE equation

n
a’i”-e =X (modI)
-1

~

we have an equation

%) (6,7,

This gives a linear equation

n

Z aixi+e=0p (mod 2),

i=1
where a;, € and 8 are 1 if (a;/I)y, (e/I)g and (X/I)y are —1, respectively; or «;, € and  are 0
if (ai/I)q, (e/I)g and (X/I)s are 1, respectively.

6Here we use the typical definition of LPN with uniform coefficient and noise distributions.
TLet p < Ok be a prime ideal and let £ € Z-5 be an integer coprime to p. Le., £ ¢ p; in particular, ¢ can be a

rational prime. We say that the ¢-th power residue symbol (a/p), is well-defined if N(p) =1 (mod ¢) so that by
Np)-1

the analogue of Fermat’s theorem aV®-1=1 (mod p) for any a € Ok —p, the number a 7 is “well-defined”,
N(p)-1
namely a = = ¢* (mod p) for a unique ¢-th root of unity ¥, where { is a primitive ¢-th root of unity and

k€ Z>0, also N(p) :=|Oxk/p| is the norm of the ideal p.
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By similar arguments as in the proof of Proposition 1, a; and ¢ are uniform over Zs.
This means that we can always transform an M-MUSPE oracle into an LPN oracle by tak-
ing second power residue symbols for the MUSPE instances (a1,...,a,,X); and by similar
arguments as in the proof of Proposition 1, the LPN problem has a unique solution with
overwhelming probability. Hence if one solves the LPN, one solves the source M-MUSPE
with overwhelming probability.
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