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Abstract. Key exchange protocols from the learning with errors (LWE)
problem share many similarities with the Diffie–Hellman–Merkle (DHM)
protocol, which plays a central role in securing our Internet. Therefore,
there has been a long time effort in designing authenticated key exchange
directly from LWE to mirror the advantages of DHM-based protocols. In
this paper, we revisit signal leakage attacks and show that the severity
of these attacks against LWE-based (authenticated) key exchange is still
underestimated.
In particular, by converting the problem of launching a signal leakage
attack into a coding problem, we can significantly reduce the needed
number of queries to reveal the secret key. Specifically, for DXL-KE we
reduce the queries from 1,266 to only 29, while for DBS-KE, we need only
748 queries, a great improvement over the previous 1,074,434 queries.
Moreover, our new view of signals as binary codes enables recognizing
vulnerable schemes more easily. As such we completely recover the secret
key of a password-based authenticated key exchange scheme by Dabra
et al. with only 757 queries and partially reveal the secret used in a
two-factor authentication by Wang et al. with only one query. The ex-
perimental evaluation supports our theoretical analysis and demonstrates
the efficiency and effectiveness of our attacks. Our results caution against
underestimating the power of signal leakage attacks as they are applica-
ble even in settings with a very restricted number of interactions between
adversary and victim.

Keywords: Post-quantum cryptography · Key exchange · Learning with
errors · Signal leakage attack

1 Introduction

The past decades have seen the rapid developments in post-quantum (PQ) cryp-
tography, i.e., cryptographic primitives that are secure even against attackers



having access to a quantum computer. Examples for such PQ cryptography are
primitives based on Regev’s learning with errors (LWE) problem [35]. Inter-
estingly, LWE-based key exchange protocols share many similarities with the
famous and elegant Diffie–Hellman–Merkle (DHM) protocol [15]. In a nutshell,
Alice computes and sends PA = asA + eA to Bob, while Bob responds with
PB = asB + eB . In contrast to the shared secret resulting from a DHM key
exchange, Alice and Bob only agree on an approximately equal value asAsB . To
enable establishing exactly the same key, Ding, Xie, and Lin [19] introduced a
signal function, which indicates whether an element belongs to a fixed interval
or not and that has been used to construct an LWE-based key exchange, called
DXL-KE. Similarly, in 2014, Peikert [31] suggested a reconciliation function that
has been used to construct key encapsulation mechanisms (KEMs), which were
then instantiated and tested in the transport layer security (TLS) protocol by
Bos, Costello, Naehrig, and Stebila [9]. While the progress regarding LWE-based
key exchange seems promising, in practice we need efficient authenticated key
exchange (AKE), as well as more advanced protocols, such as password or two-
factor authentication.

LWE-based AKEs can be achieved by instantiating generic constructions
from public-key encryption (PKE) or KEMs. For example, recently quantum-
safe AKEs from lattice-based KEMs for the TLS [36,37,22] and for the Signal
protocol [10,23] have been constructed. However, most classical AKEs avoid
generic transforms and construct them directly from DHM, e.g., [27,28,25]. The
only AKE constructed directly from LWE (inspired by [25]), has been presented
by Zhang, Zhang, Ding, Snook, and Dagdelen [41] in 2015. Mirroring the ideas
of DHM-based protocols for LWE-based ones is challenging, because protocols
using signal or reconciliation functions are often vulnerable to key reuse attacks.

Key reuse attacks have a long history starting with Bleichenbacher’s remark-
able attack against RSA PKCS#1 [8] and the key reuse attacks against the DHM
key exchange proposed by Menezes and Ustaoglu [29]. There are essentially two
types of key reuse attacks against LWE-based key exchange schemes.

The first one is called the key mismatch attack, which aims to recover the
secret by checking whether the shared keys of both parties match or not when
Alice’s key is reused. Ding, Fluhrer and Saraswathy first proposed a key mis-
match attack against DXL-KE [18]. Recently, key mismatch attacks have been
adopted to analyze candidates1 of NIST’s PQ cryptography project, such as
NewHope [5,32,30], Kyber [33], LAC [21], NTRU-HRSS [42], and others [4,24,34].

Another example of key reuse attack against LWE-based key exchange is the
signal leakage attack. Fluhrer [20] has been the first to show that the signal
function reveals secret key information. In a follow-up work, Ding, Alsayigh,
Saraswathy, Fluhrer, and Lin [16] attacked DXL-KE using signal leakage. The
idea of the attack is that the adversary sends PA = k for increasing k instead of
an honestly generated PA = asA + eA. From Bob’s honestly generated response
including the signal, the adversary can determine the absolute value of the secret

1 It is important to point out that these attacks are against candidates designed to
resist passive adversaries. Hence, security claims are not invalidated by these attacks.

2



coefficients by counting how often the signal switches between 0 and 1. For
DXL-KE, about 98,310 interactions between the adversary and Bob (also called
queries) are required to successfully launch the attack. Recently, Bindel, Stebila
and Veitch [7], proposed a sparse signal collection method to reduce the number
of needed queries to 1,266.

To counter signal leakage attacks, Ding, Branco, and Schmitt [17], proposed
a pasteurization technique to construct a key exchange called DBS-KE, which
is claimed to be robust against key reuse attacks. They also introduced an
authenticated key exchange (DBS-AKE) and proved its security in the Bel-
lare–Rogaway (BR) model [6]. Similar pasteurization techniques have been used
in other authentication/key exchange protocols such as the password-based AKE
called LBA-PAKE [13], Seyhan, Nguyen, Akleylek, Cengiz, and Islam’s key ex-
change [38], and Akleylek and Seyhan’s AKE [2]. There also exist other tech-
niques to thwart signal leakage attacks, for example a smart card based two
factor authenticated key exchange for mobile devices, called Quantum2FA [40].
The basic idea of Quantum2FA is to resist signal leakage attacks by putting the
public key shares in the smart card in advance.

While signal leakage attacks have been widely known and considered for
LWE-based key exchanges, we argue that the severity of this kind of attack
is still underestimated. Just recently, Bindel, Stebila and Veitch [7] used their
sparse signal leakage attack to reveal the secret key used in DBS-KE, showing
that the protocol is not robust against key reuse. Their attack against DBS-KE,
needs about 1,074,434 queries.

In this paper, we further caution against underestimating the power of signal
leakage attacks. In particular, we present a new view on the attack by repre-
senting the signals as binary codes. This novel perspective enables our targeted
signal extraction approach which decreases the number of needed queries dras-
tically. More concretely, we are able to reveal Bob’s secret used in the DXL-KE
from 1,266 to only 29 needed queries (i.e., we reduced the number by a factor
of 43). For DBS-KE, the improvement is even stronger, namely we reduce the
number of queries from 1,074,434 to only 748 (i.e., an improvement of factor
1,436). This makes the attack feasible in settings where the attacker is only able
to run a very limited number of sessions. At the same time, our results caution
strongly against, e.g., allowing key reuse for a restricted number of times, as
further improvements might be possible. For example, in our analysis against
Quantum2FA, we are able to recover part of the secret key without key reuse.
That is, revealing about 50% of the secret key used in the two-factor authen-
tication Quantum2FA with just a single query. While this does not reveal the
entire secret, it decreases the bit security considerably.

Furthermore, signal representation as binary codes and the resulting targeted
signal extraction, enables to recognize vulnerable schemes more easily. As such,
we successfully carry out a signal leakage attack against the password-based
authentication LBA-PAKE using 757 queries. Since these schemes are claimed
to be secure against signal leakage attacks, our results show that although signal
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Table 1: Summary of parameters and notation

RLWE parameters

n dimension of RLWE instances q modulus

χ discrete Gaussian distribution α standard deviation

Variables used in the key exchange protocols

sA, sB reused secrets yA,yB ephemeral public keys

PA,PB reused public keys eA, eB ,
errors terms sampled from χα

ωB signal value of Bob gA,gB ,g′
A,g′

B

KA,KB approx. equal shared secrets SKA, SKB shared secret keys

Parameters used in the signal leakage attack

z number of consecutive zeros t code length

m1 range size of sB [i] m2 alphabet size of signals

leakage attacks are well-known, it seems challenging to construct robust schemes
and to spot their vulnerabilities.

All our attacks are supported by experimental evaluation that matches our
theoretical analysis well. To recover a complete secret key, the average time
needed for our proposed attacks on DXL-KE is 0.44 seconds, while our proposed
attack on DBS-KE costs 6.53 seconds. As a comparison, the attacks presented
in [7] need more than 24.1 and 582.08 seconds against DXL-KE and DBS-KE,
respectively. Meanwhile, it costs less than 8 seconds to completely recover the
long-term secret key of LBA-PAKE. For Quantum2FA, on average we can suc-
cessfully recover 54.57% of 512 coefficients using one query.

In addition and on a more theoretical level, viewing the signals used in LWE-
based key exchange as binary codes, supports the strong connection between
these two field of research. Similarities between lattices and binary codes have
gained more attention recently and have been systematically analyzed by Debris-
Alazard, Ducas, and van Woerden [14].

For the remainder of this paper, we first recall signal leakage attacks in
Section 2. We continue in Section 3, with describing how to define the binary
codes and our targeted signal extraction. In Section 4, we give the details on
how to apply the attack to DXL-KE, and in Section 5 to DBS-KE, LBA-PAKE,
and Quantum2FA. We explain our experimental results in Section 6.

2 Background

Notations. All key exchange protocols discussed in this paper are based on
Ring-LWE (RLWE) [26], a variant of the Learning with Errors (LWE) problem.
For a prime q and a dimension n, let the polynomial ring Rq be Zq[x]/⟨xn +
1⟩ with Zq = Z/qZ = {− q−1

2 , · · · , q−1
2 }. All polynomials are in bold lower-

case letters, and we use c[i] (0 ≤ i ≤ n − 1) to represent the i-th coefficient
of the polynomial c ∈ Rq. We denote by p ← χα sampling every coefficient
of p from a discrete Gaussian distribution over Z with standard deviation α.
The operation ⌊x⌋ represents the maximum integer not exceeding x, while ⌈x⌉
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Alice Bob

sA, eA ← χα

PA ← asA + 2eA
PA−−−−→ sB , eB ,gB ← χα

PB ← asB + 2eB

gA ← χα KB ← PAsB + 2gB

KA ← PBsA + 2gA

(PB ,ωB)←−−−−−− ωB ← Sig(KB)
SKA ←Mod2(KA, ωB) SKB ←Mod2(KB , ωB)

Oracle OsB (PA):

1 eB ,gB ← χα

2 PB ← asB + 2eB

3 KB ← PAsB + 2gB

4 ωB ← Sig(KB)

5 Return (PB , ωB)

Fig. 1: Pseudo-code description of DXL-KE (left) and oracle O (right)

represents the minimal integer greater than or equal to x; we define ⌊x⌉ = ⌊x+ 1
2⌋.

We summarize used variables and parameters in Table 1.
For prime q > 2, set E = {−⌊ q4⌋, · · · , ⌊

q
4⌉}. The aim of a signal function

Sig(x) is to tell whether the coefficients of the shared key belong to E or not.
Specifically, for x ∈ Zq we define

Sig(x) =

{
0 if x ∈ E,
1 otherwise,

(1)

for x ∈ Zq. Further, Sig(p) = (Sig(p[i]))i=0,...,n−1 ∈ {0, 1}n is a natural exten-
sion to each of the polynomial coefficients. Moreover, we define

Mod2(x, ω) =

(
x+ ω · q − 1

2

)
mod q mod 2, (2)

and its coefficient-wise extension to Mod2(p, ω) to polynomials.

DXL-KE. We depict the details of DXL-KE in Fig. 1, which is vulnerable to
signal leakage attacks [16]. In this kind of attacks, Bob’s private key sB is reused.
An active adversary A impersonating Alice, deliberately chooses values for PA

and tries to recover Bob’s secret. To formalize this, we define an oracle O that
reuses Bob’s secret key sB as shown in Fig. 1. The parameters for DXL-KE are
n = 1024, α = 3.197, q = 214 + 1 = 16, 385.

Signal Leakage Attacks. The signal leakage attack can be divided into two
steps. In Step 1, the adversary A recovers the absolute value of each sB [i] for
i = 0, 1, · · · , n − 1. To launch the attack, A queries PA = k to the oracle OsB ,
which returns PB and ωB . Increasing k from 0 to q − 1, yields q signals for
each sB [i]. The oracle computes KB = PAsB + 2gB = ksB + 2gB to get ωB .
Ignoring the error 2gB for simplicity, when KB [i] enters or leaves the interval
[−⌊ q4⌋, ⌊

q
4⌉], the corresponding signal flips. For example, if sB [i] = ±1, |KB [i]| =

|(PAsB)[i]| = k|sB [i]| = k. As k changes from 0 to q−1, the signal ωB [i] changes
as 0→ 1→ 0, i.e., the signal changes 2 times. As |sB [i]| grows, the signal changes
more frequent, to be exact the signal changes 2|sB [i]| times. Counting the signal
changes, A can determine the absolute value of sB [i]. Since the range of gB

is small, it may affect only some small regions of the signals when ksB [i] is
approximate to ±⌊ q4⌋. Therefore, when counting the number of signals changes,
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Fig. 2: Alternate stable and fluctuated regions

the small (fluctuated) regions where the signal changes frequently, have been
mostly ignored in [16]. Bindel, Stebila, and Veitch [7] formalized this by dividing
the signals into stable and noisy regions as visualized for absolute values 1, 2,
and 3 of sB [i] in Fig. 2. The blue and yellow bars represent the stable regions
consisting of 0s and 1s, respectively; the wavy lines represent the fluctuated (or
noisy) regions. When k increases from 0 to q− 1, fluctuated regions occur when
KB [i] approaches ± q

4 due to the error terms. During stable regions, the error
terms have no impact on the signal.

In Step 2, the adversary tries to determine the sign of each sB [i]. Querying
PA = (1 + x)k to OsB for k = 0, . . . , q − 1, the adversary can recover the pairs
sB [0] − sB [n − 1], sB [1] + sB [2], . . . , sB [n − 2] + sB [n − 1]. However, there may
be the case that 1 or more consecutive 0s occur in sB , which prevents deciding
the relative sign of two non-zero coefficients. To eliminate this, the adversary
needs to set PA = (1 + xz+1)k to collect enough signals, where z represents the
maximum number of consecutive 0s. To be specific, setting z = 4 is sufficient to
successfully launch the attack [7]. During the first attack against DXL-KE [16],
the adversary queries the oracle q = 16, 385 times in Step 1 and (1+z)q = 81, 925
times during Step 2 for each coefficient of sB , which is very inefficient.

An improvement presented in [18] leads to only
⌈
q
4 + 2

⌉
= 4, 099 queries for

determining the absolute values, and (1+z)(
⌈
q
4 + 2

⌉
) = 20, 495 queries to recover

each sB [i]. Since the signal flips when KB [i] changes from ⌊ q4⌉ to ⌊
q
4⌉ + 1, and

when sB [i] = ±1 the maximum number of queries is q
4 + 2. Therefore, in this

case the adversary needs (2 + z)( q4 + 2) = 24, 594 queries to recover the secret.
Bindel, Stebila, and Veitch [7] further decreased the number of needed queries

by using a sparse signal collection method. The idea of their sparse signal attack
is to collect at least one signal from a stable and at most one from a noisy region.
Totally, the adversary needs 36(3 + 2z)α ≈ 1, 266 queries. While the number
of needed queries is reduced drastically, they still need to sample the signals
periodically to count the number of times the signal changes. In what follows,
we reduce the number of needed queries even further. This is enabled by viewing
the received signals as codewords as explained next.

3 The Targeted Signal Extraction Method

This section presents our new view on LWE-based signal leakage attacks by
considering the collected signals as binary codes. This enables a variant of the
signal leakage attack that needs only very few queries.
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PA1 = k1 ⇒ ωB1 = (ωB1 [0], ωB1 [1], · · · ,
PA2 = k2 ⇒ ωB2 = (ωB2 [0], ωB2 [1], · · · ,

...
...

...
...

...

PAt = kt ⇒ ωBt = (ωBt [0], ωBt [1], · · · ,

Ωi

ωB1 [i]

ωB2 [i]

...

ωBt [i]

, · · · , ωB1 [n− 1])

, · · · , ωB2 [n− 1])

...
...

, · · · , ωBt [n− 1])

Fig. 3: PAj and its corresponding ωBj (j = 1, 2, · · · , t)
3.1 Description of codewords and Lower bound

Denote by S = {S0,S1, · · · ,Sm1−1} the set of all the possible values of sB [i], also
called the alphabet of sB [i] of size m1. Let C = {C0, C1, · · · , Cm2−1} represent the
alphabet of signals ωB [i] with m2 > 1 symbols. Taking DXL-KE as an example,
sB [i] is sampled from discrete Gaussian distribution with standard deviation α =
3.197. Hence, the probability of |sB [i]| < 5α = 15.985 is 99.9999%. Therefore,
we choose S = {0, · · · , 14, 15} with m1 = 16 for absolute value recovery. The
alphabet of signal function is C = {0, 1} with m2 = 2.

Assume that the adversary A accesses the oracle OsB (see Fig. 1) t times with
t different PAj

= kj , j = 1, 2, · · · , t. The oracle returns corresponding signals
ωBj where every ωBj = (ωBj [0], ωBj [1], · · · , ωBj [n − 1]) consists of n bits. It is
important to note that for the recovery of sB [i], it is sufficient to extract the i-th
coefficient from each signal ωBj

(j = 1, 2, · · · , t). We denote this signal sequence
by Ωi = (ωB1

[i], ωB2
[i], · · · , ωBt

[i]) ∈ Ct as shown in Fig. 3 and will refer to
it as the (targeted) signal sequence. We can regard Ωi ∈ Ct as a codeword and
establish a mapM : Ct → S which maps a codeword to the absolute value of a
coefficient of sB . Since, we would like to be able to determine every possible value
|sB [i]| with high probability, the mapM needs to be surjective. Surjectivity of
M implies that there is at least one codeword corresponding to every element
in S, which immediately implies that

|Ct| = mt
2 ⩾ m1 = |S| ⇔ t ⩾ logm2

m1. (3)

As t corresponds to the number of queries to the oracle OsB , t must be a positive
integer. Therefore, the lower bound of the number of queries for recovering an
entire secret key tbounds in our attack is

tbounds =
⌈
logm2

m1

⌉
. (4)

The challenge is to find values k1, ..., ktbounds such that the resulting codewords
determine the absolute values uniquely with very high probability. We explain
concrete values in Sections 4 and 5.

Taking the absolute value recovery of DXL-KE as an example again with
m1 = 16 and m2 = 2, it holds that tbounds =

⌈
logm2

m1

⌉
= ⌈log2 16⌉ = 4. Since

the best signal leakage attack against DXL-KE needs 1,266 queries [7], there is a
large gap between the theoretical lower bound and existing state-of-art results,
indicating that there may be more efficient signal leakage attacks.
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3.2 Description of our Targeted Signal Extraction Method

In this section, we introduce a generic method to improve the signal leakage
attacks, dubbed the targeted signal extraction method.

As stated before, there exists a surjective map M, mapping any codeword
Ωi = (ωB1

[i], ωB2
[i], · · · , ωBt

[i]) obtained by the response of the oracle, to an
element in S. Our key observation is that if there exists some component ωBj

[i]
that falls into some fluctuated region, then it can be either 0 or 1 due to the ran-
domness of gB , which means that it contributes very little to determine |sB [i]|.
It is important to note that this does not necessarily mean we can remove this
j-th query directly, since it may help determine other elements in S. However,
the more queries in the attack help determine all the elements in S, the smaller
the number of queries. The above observation inspires us to improve the known
signal leakage attacks by carefully selecting k1, ..., kt ∈ [0, ..., q − 1] such that
as many ωBj

[i] (for j = 1, ..., t and i = 0, ..., n − 1) as possible fall into stable
regions. For example, in Figure 2, all signals corresponding to PA ∈ {k1, k2, k3}
fall into stable regions.

In more detail, for PA = k1, the signal corresponding to |sB [i]| = 1 is in the
stable region of 0s, while both |sB [i]| = 2 and |sB [i]| = 3 correspond to the stable
regions of 1s. Likewise, for PA = k2, the signals corresponding to |sB [i]| = 1, 2, 3
are (1, 1, 0), respectively. Similarly, the signals corresponding to PA = k3 are
(1, 0, 1), respectively. In this way, the codewords Ω1 = (0, 1, 1), Ω2 = (1, 1, 0)
and Ω3 = (1, 0, 1) uniquely determine |sB [i]| = 1, 2 and 3.

Hence, designing a signal leakage attack with fewer queries can be reduced to
finding a sequence of kj (j = 1, · · · , t) with small t such that the corresponding
codewords Ωi’s satisfy two conditions: every Ωi determines an element in S
uniquely and all the components of every Ωi are in as many stable regions as
possible. Next we present a heuristic way to find such kj ’s.

Finding codewords. We first associate every sB [i] ∈ S with a unique code-
word such that the length of the codeword approaches our lower bound as
closely as possible. For example, in DXL-KE, since C = {0, 1}, we use the
strategy of dichotomy to assign codewords uniquely and of minimal length,
see Table 2 in Section 4.2

Finding values k1, ..., kt. Next, we find the appropriate values for k which re-
sults in the signal sequence we select above. To achieve this goal, we need
to calculate the stable regions of each symbol in S, and determine a set of
inequalities related to k whose solution defines the range of k. The selection
of k is not unique, and for each targeted signal, we simply select one of them.
In case there is no solution for the set of inequalities, we go to Step 1 to select
another target signal sequence and then compute the corresponding k.

2 Interestingly, assigning corresponding binary values as codewords fails because we
fail to find suitable values in the next step.
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Table 2: Signals ωBj [i] for kj and |sB [i]| in DXL-KE with i ∈ [0, n− 1]
|sB [i]| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

k1 = 550 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
k2 = 1, 050 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
k3 = 4, 000 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
k4 = 8, 192 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

4 Improved Signal Leakage Attacks on DXL-KE

In this section, we show how to apply the targeted signal extraction to improve
signal leakage attacks such that very few queries to the oracle OsB are needed
to reveal the entire secret key.

Recovering the Absolute Value of sB[i]. We choose the alphabet of |sB [i]|
to be S = {0, 1, · · · , 15} with m1 = 16, see Section 3.1. We recall that the core
idea is to determine the symbols in S by collecting codes Ct = {0, 1}t of fixed
length t. Moreover, according to the previous section we know t ≥ ⌈logm2

m1⌉ =
4. Our strategy is to use dichotomic search to identify four values, namely k1 =
550, k2 = 1050, k3 = 4000, and k4 = 8192, whose corresponding codes uniquely
identify |sB [i]| for every i = 0, ..., n − 1. The columns in Table 2 show the
corresponding codewords of length 4 for each absolute value. For example, if
we collect the the codeword (0, 0, 1, 1), we know that |sB [i]| = 3 with very high
probability. We give the details on how to choose appropriate k1, k2, k3, and k4
in Appendix A. It is important to note that the choice is not unique.

Recovering the Sign of sB[i]. In this step, the adversary queries the oracle
OsB with different PA = (1 + x)k to recover each |sB [i] + sB [i+ 1]|. The corre-
sponding alphabet is S = {0, 1, · · · , 30} and m1 = 31, thus t ≥ ⌈logm2

m1⌉ = 5.
We again identify values for k1, ..., k5 such that the corresponding codewords

uniquely determine the absolute values. We explain our choice of the kj ’s in
Appendix A and present Table 4 which shows the resulting codewords for our
selected values k1 = 260, k2 = 525, k3 = 1050, k4 = 4000, and k5 = 8192.

In order to recover each |sB [i] + sB [i + 1]|, the adversary queries PA =
(1+x)kj to the oracle to collect the corresponding signal ωBj . Next, the adversary
combines each ωBj

[i] to get the codeword corresponding |sB [i] + sB [i + 1]| and
determines its value according to Table 4. Then the relative sign of sB [i] and
sB [i + 1] can be determined as described in Section 2. Finally, the adversary
needs to repeat this step with (1 + xz+1)k to recover the relative sign of two
non-zero coefficients separated by z consecutive zeros.

Query Complexity. During absolute value recovery and since m1 = 16, we
need ⌈log2 16⌉ = 4 queries per coefficient of sB . During sign recovery, m1 = 31,
we need ⌈log2 31⌉ = 5 queries to recover the complete secret key. Since z ≈ 4,
this step needs (1+z) ⌈log2 31⌉ = 25 (expected) queries. Therefore, our targeted
signal attack needs ⌈log2 16⌉+ (1+ z) ⌈log2 31⌉=29 queries per coefficient of sB .
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Success Probability of Attacking DXL-KE. In DXL-KE, all coefficients
of sB and error gB are sampled from discrete Gaussian distribution. Thus, the
probability that sB [i] or gB [i] are greater than h = 15 with α = 3.197 is

Pr[sB [i] > h] =

∞∑
x=h+1

1√
2πα2

e

(
−x2

2α2

)
=

1

2
erfc

(
h√
2α

)
≈ 1.35 · 10−6, (5)

for DXL-KE and with erfc(x) = 2√
π

∫∞
x

exp
(
−t2

)
dt being the complementary

error function [12]. To determine the success probability, we recall that with t
satisfying Equation (3), we guarantee that each |sB [i]| corresponds to a code-
word. Furthermore, by selecting the appropriate PA = k near k’s mid range, we
make sure that noisy regions are not larger than expected. Therefore, failure in
recovering |sB [i]| occurs only when some coefficients of sB lie outside [−15, 15].
Based on Equation (5), the probability that some coefficient of sB lies outside
[−15, 15], is at most

Pfailure1 = n (Pr[|sB [i]| > h]) ≈ 0.002772.

Similarly, we can get Pr[sB [i] + sB [i + 1] > 2h] = 1
2erfc

(
2h√
2α

)
≈ 3.182 · 10−21.

And the failure probability of recovering the sign of sB [i] as Pfailure2 = (1 +
z) ⌈log2 30⌉nPr[|sB [i] + sB [i+ 1]| > 2h] ≈ 6.5166 · 10−18, which can be ignored.
Hence, the probability of recovering a complete secret key sB for our targeted
signal attack is Psuccess ≈ (1− Pfailure1 − Pfailure2)× 100% = 99.7228%.

5 Our Targeted Signal Leakage Attack on KEs and AKEs

In this section, we apply our targeted signal extraction to give an improved signal
leakage attack against DBS-KE [17], and then we show that our attack can also
be migrated directly to LBA-PAKE [13] and Quantum2FA [40].

5.1 Improved Attack Against DBS-KE

Description of DBS-KE. The DBS-KE [17] proposed by Ding, Branco, and
Schmitt is presented in Fig. 4. H1 : {0, 1} → χα is a hash function whose outputs
are sampled from the discrete Gaussian distribution χα. DBS-KE is designed to
provide robustness for key reuse using the pasteurization technique. The key
point of this technique is that Bob does not use Alice’s public key PA to multiply
his private key directly, but transforms PA to PA as

PA = PA + aH1(idA, idB ,PA) + 2gB . (6)

DBS-KE is instantiated with α = 4.19, n = 512, and q = 26, 038, 273.
Unfortunately, Bindel, Stebila and Veitch show that the scheme is in fact

not robust against key re-use [7]. In their proposed attack, the adversary selects
PA = k for some k ∈ [0, q − 1]. Upon input PA, the oracle computes

KB = PAsB + (PAd+ cPB + acd) + (2gBsB + 2gBd+ 2g′
B − 2ceB)

= PAsB +∆+ ε,
(7)
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Alice Bob

sA, eA ← χα

PA = asA + 2eA
PA−−−−→ sB , eB ,gB ,g

′
B ← χα

c← H1(idA, idB ,PA) PB = asB + 2eB

c← H1(idA, idB ,PA)
d← H1(idA, idB ,PA,PB)

d← H1(idA, idB ,PA,PB) PA = PA + ac+ 2gB

gA,g
′
A ← χα KB = PA(sB + d) + 2g′

B

PB = PB + ac+ 2gA

(PB ,ωB)←−−−−−− ωB = Sig(KB) ∈ {0, 1}n
KA = PB(sA + c) + 2g′

A

SKA ←Mod2(KA, ωB) ∈ {0, 1}n SKB ←Mod2(KB , ωB) ∈ {0, 1}n

Fig. 4: Pseudo-code description of DBS-KE

with ∆ = PAd+ cPB + acd and ε = 2gBsB + 2gBd+ 2g′
B − 2ceB .

The adversary knows a,PA,PB , hence,∆. That means in particular, that the
adversary can choose idA and PA such that ∆[i] = 0, i.e., KB [i] = ksB [i] + ε[i].
Furthermore, the adversary can calculate a bound for ε[i] = (2gBsB + 2gBd +
2g′

B − 2ceB)[i], since all of these terms are sampled from discrete Gaussian
distribution with standard deviation α. This circumvents the pasteurization and
allows for the signal leakage attack.

Our Improved Signal Leakage Attack on DBS-KE. We improve the sparse
signal attack against DBS-KE further by using our targeted signal extraction,
reducing the number of queries drastically. For DBS-KE, the oracle OsB com-
putes KB [i] as PAsB [i] + ∆[i] + ε[i]. We regard ∆[i] + ε[i] as the cause of the
fluctuated region just like the errors 2gB [i] do in DXL-KE. As such, KB [i] has
the same form in DBS-KE and DXL-KE. Therefore, we can use our targeted
signal extraction to launch an improved attack against DBS-KE. We present the
details on how to choose kj and the bounds on ∆ in Appendix B.

For recovering |sB [i]|, the same targeted signals as in Table 2 can be used
since |sB [i]| ∈ [0, 15]. However, the values for k will be different, namely k1 =
868,000, k2 = 1,735,800, k3 = 6,076,000, and k4 = 13,019,136. We let ∆j [i]
where j = 1, 2, 3, 4 denote the term ∆[i] corresponding to each kj . Difficulties
during signal collection might occur if ∆[i] is large (while gB [i] is small with
high probability), and hence, disturb the signal. Since the adversary is able
to calculate the value of ∆[i], they are able to only collect signals where the
corresponding ∆j [i] is small enough. More concretely, signals are only collected
when |∆j [i]| ⩽ 426,000 (j = 1, 2, 3), and |∆4[i]| ⩽ 6,500,000. It is important to
note that this requirement is much less restrictive than the one in the sparse
signal attack [7], where ∆[i] need to be exactly 0. We compute the probability of
∆j [i] being sufficiently small in Section 5.1. The adversary will keep querying the
oracle until enough signals ωBj

[i] to determine the absolute values are collected.
Afterwards, Ωi = (ωB1

[i], ωB2
[i], ωB3

[i], ωB4
[i]) are taken and used to recover

|sB [i]| according to Table 2.
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To determine the sign of sB [i], we also use targeted signal extraction with
S = {+,−} and the corresponding codewords being 1 and 0. The adversary
first finds a small enough k to make its corresponding signal Sig(k|sB [i]|) = 0.
Then, they need to find a ∆[i] which is approximately equal to q

4 . If sB [i] < 0,
ksB [i] +∆[i] <

⌊
q
4

⌉
− |ε[i]|, and the corresponding signal Sig(ksB [i] +∆[i]) = 0.

Otherwise (i.e., if sB [i] > 0), ksB [i]+∆[i] >
⌊
q
4

⌉
+ |ε[i]|, and Sig(ksB [i]+∆[i]) =

1. That is, the positive sB [i] corresponds to the signal ωB [i] = 1, while ωB [i] = 0
represents the negative sB [i]. Specifically, the adversary selects the parameter
PA = k = 813, 000 to access the oracle, when 5, 710, 000 ⩽ ∆[i] ⩽ 7, 310, 000,
and collects the corresponding signal ωB [i]. This process is repeated for every
ωB [i] (i ∈ [0, n−1]). If ωB [i] = 0, the adversary determines that sB [i] is negative,
otherwise sB [i] is positive.

Query Complexity. In our improved attack on DBS-KE it is clear that the
number of queries is related to the range of our bound ∆[i]. More concretely, the
larger the range of the bound ∆[i] is, the more signals the adversary gets after
each query, and thus fewer queries are required to complete the attack. We use b
to denote the bound on |∆[i]|. Since the distribution of ∆[i] is close to uniformly
random, the probability of |∆[i]| ⩽ b is approximately 2b/q. Consequently, in
our improved attack, the adversary approximately collects 2nb/q signals after
the first query, while n(1−2b/q) signals remain to be collected. Let t denote the
number of queries. After t queries, there are still n(1− 2b/q)t signals left to be
collected by the adversary. Therefore, the number of signals that the adversary
has collected after t queries is

n−

⌊
n

(
1− 2b

q

)t
⌉
, (8)

where the collected signals are all integers in practice. When the result of Equa-
tion (8) is n, the adversary stops collecting signals, which means⌊

n

(
1− 2b

q

)t
⌉
= 0. (9)

Or equivalently,

n

(
1− 2b

q

)t

<
1

2
. (10)

That is,

t > log q−2b
q

1

2n
. (11)

According to Equation (11), we directly take the minimum value of t, namely

t = ⌈log q−2b
q

1

2n
⌉. (12)

For the improved attack against DBS-KE, with q = 26, 038, 273, n = 512,
and the bounds b1 = b2 = b3 = 426, 000 and b4 = 6, 500, 000 for the absolute
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value recovery, we can compute the respective number of queries t1 = t2 = t3 =
⌈208.35⌉ = 209, and t4 = ⌈10.02⌉ = 11. Thus, the total number of required
queries in Step 1 is 638. In the second step (i.e., sign recovery), ∆j [i] should be
in the range of [5 710 000, 7 310 000] over Zq, thus b = 1, 600, 000. Similarly, we
can get the needed queries t as

t =

⌈
log q−b

q

1

2n

⌉
= ⌈109.30⌉ = 110. (13)

Therefore, the total number of needed queries to recover the key of DBS-KE is
748.

Success Probability. Recall that in our improved signal leakage attack against
DBS-KE, the failure probability to recover the secret key only depends on its
bound. More precisely, based on Equation (5), the failure probability of recov-
ering all sB [i] ∈ [−15, 15] is related to the fixed bound h = 15 of sB and α.

In case of DBS-KE with α = 4.19, the failure probability is Pfailure1 ≈ 0.1760.
Hence, the success probability of our improved signal leakage attack against
DBS-KE is Psuccess = (1− Pfailure1)× 100% ≈ 82.40%.

5.2 Application to DBS-AKE

DBS-AKE is an AKE based on DBS-KE using a similar pasteurization tech-
nique. Bindel, Stebila, and Veitch [7] extended their attack against DBS-KE to
DBS-AKE under the extended Canetti-Krawczyk (eCK) model [11]. Since DBS-
AKE also uses the pasteurization technique, they analyze the components of
KB in DBS-AKE, which can be formalized as KB = yAsB + ∆ + ε. Here yA

is an ephemeral public key of Alice. Similar to DBS-KE, the value of ∆ is ap-
proximately uniform over Rq, and ε follows a discrete Gaussian distribution. In
the eCK model, the adversary is able to calculate the value of ∆, which can be
exploited similarly to the attack against DBS-KE to recover the long-term key
sB in DBS-AKE.

Similar to the result in Section 5.1, our attack can be applied to DBS-AKE
in the eCK model. Compared to the sparse signal collection, our targeted signal
extraction requires much fewer signals. Specifically, DBS-KE and DBS-AKE
share the same parameters, thus the needed queries against DBS-AKE are almost
the same as that against DBS-KE, which is 745. However, note that in the BR
security model, the adversary does not have the ability to obtain the value of ∆,
hence DBS-AKE can resist the various signal leakage attacks above in accordance
with the BR model.

5.3 Improved Attack Against LBA-PAKE

Description of LBA-PAKE. LBA-PAKE [13] is a password-based authenti-
cated key exchange, which integrates the conventional password authentication
to the RLWE-based key exchange. In LBA-PAKE, Bob stores the hash value of
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Alice’s password and idA. When Alice initiates a key exchange with Bob using
her password, idA, and public key PA. Bob first checks that the hash over PA

is the same as the stored value, and computes

PA = PA + aH1(PA). (14)

The transformation from PA to PA can be seen as a simplified variant of
pasteurization, which uses only PA as the input to H1, but without the em-
ployment of identity idA, idB , and the errors. Then, Bob computes a ephemeral
public key yB = arB + 2gB , with rB ,gB ← χα. He then uses his long-term
secret key sB to compute KB as

KB = PAsB + (PAd+ cPB + acd) + (2g′
B − 2ceB), (15)

where g′
B , eB ← χα, c = H1(PA), d = H1(yB). Finally, Bob computes the

signal ωB = Sig(KB), and sends yB and ωB to Alice. The protocol is claimed to
be secure in the Real-or-Random model that has been introduced by Abdalla,
Fouque, and Pointcheval [1]. As we show, this claim is unfortunately not true.
More concretely, every registered user with a password (i.e., after an honest
registration phase) can recover the server’s long-term key by launching signal
leakage attacks. The following instantiation is proposed n ∈ {512, 256, 128},
q = 7, 557, 773, α = 3.192.

Our Signal Leakage Attack on LBA-PAKE. The designers of LBA-PAKE
claimed that LBA-PAKE is secure and robust for reusing the long-term key sB .
However, we discover that any registered user could recover the long-term key
under the key reuse setting. As a registered user, an adversary can pass the
verification of the server Bob using their own password and identity. Then they
are able to launch the key exchange with the server/Bob. Similar to the case
in DBS-KE, the adversaries are able to calculate ∆ = PAd+ cPB + acd, since
they know the long-term public key PB , and receive yB from Bob. As before,
∆ is close to uniformly distributed over Rq, and the error term ε = 2g′

B − 2ceB
follows a discrete Gaussian distribution. Based on the above discussion, it is
easy to see that targeted signal extraction against DBS-KE can also be directly
applied to LBA-PAKE. Therefore, the adversary performs the same operations
as in Section 5.1 with the following attack parameters.

For absolute value recovery, the adversary queries PA = ki, with k1 =
252, 000, k2 = 503, 800, k3 = 1, 764, 000, and k4 = 3, 778, 886. The corresponding
|∆j [i]| is bounded as |∆j [i]| ⩽ 122, 000 when j ∈ [1, 3], and |∆4[i]| ⩽ 1, 887, 000.
For sign recovery, the adversary only queries PA = 236, 000, and bounds ∆[i] as
1, 656, 000 ⩽ ∆[i] ⩽ 2, 120, 000.

Following [7, Section 5.3], we calculate the standard deviation of ε[i] to be√
4nα2 + 4α2. Since 4.5

√
4nα2 + 4α2 ≈ 2075.13, we assume that |ε[i]| ≤ 2100.

We give details on how to choose the values as described above in Appendix B.

Query Complexity. Following Section 5.1 closely, in the attack against LBA-
PAKE, we choose the bounds b1 = b2 = b3 = 122, 000 and b4 = 1, 887, 000,
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during absolute value recovery. Hence, the total number of needed queries is
t1+ t2+ t3+ t4 = 647. Similarly, the number of required queries t in Step 2 with
∆j [i]’s bound b = 464, 000, is t = 110. Thus, the total number of queries for our
attack against LBA-PAKE is 757.

Success Probability. Similar to the case of DBS-KE, we can write h ≈
4.6992α, and the failure probability is Pfailure1 ≈ 0.0013. Therefore, the success
probability against LBA-PAKE is Psuccess = (1− Pfailure1)× 100% ≈ 99.87%.

5.4 Application to Quantum2FA

Quantum2FA [40] is a password-based authentication that uses a modified ver-
sion of NewHope-Simple [3] to establish shared keys. Specifically, Quantum2FA
is instantiated with q = 12289, n = 512. The secret s and error e are sampled
from the centered binomial distribution ψ8, i.e., they are integers in [-8, 8].

In Quantum2FA, the server A computes the long-term public key PA =
asA+eA, where sA, eA ← ψ8. It is important to point out that A stores PA in a
smart card B in advance. When B is used to log into the server to complete the
password-based authenticated key exchange, B samples the ephemeral secret sB
to compute PB = asB + eB , where sB , eB ← ψ8. Then B chooses a random key
m to compute c = PAsB+e′B+Encode(m), where m← {0, 1}128, e′B ← ψ8, and
Encode(m) is a polynomial f with f[i+ j · 128] = ⌊q/2⌋ ·m[i] for i ∈ {0, . . . , 127}
and j = 0, 1, 2, 3. After that, B computes c̄ = Compress(c), where c̄[i] = ⌊(c[i] ·
8)/q⌉ mod 8 and sends PB , c̄ to server A.

To thwart the signal leakage attack in Quantum2FA, the server A needs to
pre-embed the public key PA into B, which means that even a malicious A
cannot deliberately select more than one PA to launch attacks. The question is
whether it is possible to launch the attack with only one query.

Since the signal c̄[i] ∈ [0, 7] and sB [i] ∈ [−8, 8], from Equation (4) we need
tbounds = ⌈log8 17⌉ = 2 queries to fully recover the secret. However, by restricting
sB [i] ∈ [−1, 1], we can successfully recover part of sB with one query. Specifically,
we assume that server A is malicious and launches the following attack.

Step 1. A chooses PA = 12603 and embeds it into the smart card B in advance.

Step 2. After receiving the authentication information and the signal c̄ sent
from B, A checks whether c̄[i] is equal to the targeted signal. Specifically,
A determines that sB [i] = 0 if c̄[i] ∈ {0, 4}, sB [i] = 1 if c̄[i] ∈ {1, 5}, and
sB [i] = −1 if c̄[i] ∈ {3, 7}.

According to the distribution of ψ8, the probability that sB [i] ∈ [−1, 1] is
54.55%. Hence, A can recover about 1/2 of all coefficients of sB . Although this
is not a complete key recovery, it decreases the bit security drastically.

3 Other values than 1260 are possible but at this time, our attack needs PA to be a
constant polynomial
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Table 3: Comparison of the experimental results on DXL-KE and DBS-KE

Protocols Attacks n α q Average Average

#Queries Time (s)

DXL-KE
Sparse Signal Attack [7]

1024 3.197 214 + 1
824.13 24.14

Ours 24.23 1.04

DBS-KE
Sparse Signal Attack [7]

512 4.19 ≤ 224.7
390,597.15 582.08

Ours 737.45 6.53

LBA-PAKE Ours 512 3.192 ≤ 222.9 742.53 7.67

6 Experimental Evaluation

To support our theoretical analysis, we perform experimental validation of our
improved attacks against the above mentioned (authenticated) key exchange
protocols in this section. Furthermore, we compare the results of our proposed
attacks on DXL-KE and DBS-KE with the sparse signal attack [7] in terms
of average queries and time, which shows that our attacks are more efficient.
Our implementations are publicly available on https://github.com/frostry/

improved-signal-leakage-attack.

6.1 Experimental Setup

We implement our proposed improved attacks against DXL-KE and DBS-KE
on the basis of the publicly available implementation of the sparse signal at-
tack [39,7]. It is important to note that the implementation of the sparse signal
attack is designed to recover sB [i] ∈ [−13, 13], while our attack is designed for
the range [−15, 15]. Thus, for consistency, we modify the sparse signal param-
eters for attacking DBS-KE in their implementation by reducing the limit h2
(resp., h′2) for ∆ from 220, 000 (resp., 110, 000) to 210, 000 (resp., 100, 000).
Moreover, we set the sampling parameter t1 (resp., t2) from 465, 000 (resp.,
230, 000) to 434, 000 (resp., 220, 000). Moreover, in the implementation of [39],
two polynomial multiplication functions, namely poly mul mont and poly mul,
are implemented. In our experiments, we use poly mul as it is experimentally
faster in our setting. Furthermore, we follow [39] in collecting signals during
the attack in parallel to ensure a fair comparison. In addition, we also simulate
the attack against Quantum2FA by implementing the part of authenticated key
exchange.

All implementations are run on a computer with two 3 GHz Intel Xeon E5-
2620 CPUs and a 64 GB RAM. Reported runtimes and number of queries are
averaged over 1000 runs. For each attack, we generate a unique secret key. We
present the procedures of our improved attacks against DXL-KE and DBS-KE
in Algorithm 1 and 2, respectively.
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Algorithm 1 Pseudocode of our attack against DXL-KE

Input: PA

Output: sB
1: k = [550, 1050, 4000, 8192]
2: Set n = 512, queries = 0, c = 0
3: for i from 0 to 3 do
4: Set PA = k[i]
5: (PB , ωBi) ← O(PA)
6: end for
7: for i from 0 to n− 1 do
8: for j from 0 to 3 do
9: Extract Wi from ωBj [i]
10: end for
11: Recover each |sB [i]| from Wi ac-

cording to Table 2
12: end for
13: Set z = the maximum number of con-

secutive 0s

14: k = [260, 525, 1050, 4000, 8192]
15: for c from 1 to z + 1 do
16: for i from 0 to 4 do
17: Set PA = k[i](x+ c)
18: (PB , ωBi) ← O(PA)
19: end for
20: for i from 0 to n− 1 do
21: for j from 0 to 4 do
22: Extract Wi from ωBj [i]
23: end for
24: Recover each |sB [i] + sB [i+ c]|

from Wi according to Table 4
25: end for
26: end for
27: Recover the relative sign of sB [i] and

sB [i+ 1]
28: return sB or −sB

6.2 Results and Comparison

The experimental results of our proposed attacks in comparison with our re-run
of the sparse signal attacks are presented in Table 3.

As shown in the table, our improved attacks against DXL-KE using targeted
signal recovery reduce the number of queries by 97.1% (i.e., about 33 times),
and reduce the run time by 95.7% (i.e., about 22 times). For attacks against
DBS-KE, our improved attack significantly reduces the queries and time by
99.8% and 98.9%, respectively, which means our attack is nearly 100 times more
efficient than the sparse signal attack [7]. Moreover, the table shows that our
attack against LBA-PAKE is also efficient, namely only about 743 queries and
less than eight seconds are needed to reveal the secret. In addition, our attack
against Quantum2FA successfully recovers 54.57% of 512 coefficients in each
session on average.

These results demonstrate that our attacks are more practical in the real
world than known signal leakage attacks. Moreover, they enable an attack against
Quantum2FA that would not have been feasible using the sparse signal attack.
Finally, our experiment results match our theoretical analysis closely.

7 Conclusion

In this paper, we show that although known and analyzed in the literature,
signal leakage attacks can still be further improved. This is enabled by our new
technique regarding the signals as codewords. As a result, our improved attacks
are capable of reducing the number of queries by tens or even hundreds of times
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Algorithm 2 Pseudocode of our attack on DBS-KE

Input: PA

Output: sB
1: k = [868000, 1735800, 6076000, 13019136]
2: t = [426000, 426000, 426000, 6500000]
3: Set n = 512, queries = 0, c = 0
4: Select idA and idB
5: for i from 0 to 3 do
6: Set PA = k[i]
7: while c < n do
8: (PB , ωBi) ← O(PA)
9: c← H1(idA, idB ,PA)
10: d← H1(idA, idB ,PA,PB)
11: ∆ = PAd+ cPB + acd
12: for j from 0 to n− 1 do
13: if |∆[j]| ⩽ t[i] then
14: if ωBi [j] has not been

collected then
15: Collect ωBi [j]
16: c = c+ 1
17: end if
18: end if
19: end for
20: Change idA
21: end while
22: c = 0
23: end for
24: for i from 0 to n− 1 do
25: for j from 0 to 3 do
26: Extract Wi from ωBj [i]

27: end for
28: Recover each |sB [i]| from Wi ac-

cording to Table 2
29: end for
30: PA = 813 000
31: Set t1 = 5710 000, t2 = 7310 000
32: while c < n do
33: (PB , ωB) ← O(PA)
34: c← H1(idA, idB ,PA)
35: d← H1(idA, idB ,PA,PB)
36: ∆ = PAd+ cPB + acd
37: for i from 0 to n− 1 do
38: if t1 ⩽ ∆[i] ⩽ t2 then
39: if ωB [i] has not been col-

lected then
40: Collect ωB [j]
41: c = c+ 1
42: if ωB [i] == 0 then
43: sB [i] is negative
44: else
45: sB [i] is positive
46: end if
47: end if
48: end if
49: end for
50: Change idA
51: end while
52: return sB

18



compared to previous attacks. It is important to emphasize that DBS-AKE and
Zhang et al.’s AKE [41] can still thwart our proposed signal leakage attacks.

In addition, our results show that although signal leakage attacks are known
since 2016, protocols do not sufficiently protect against them as we can success-
fully break recently constructed RLWE-based protocols using our improvement.
Therefore, out work cautions against underestimating signal leakage attacks dur-
ing the design of key exchange protocols.
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A Parameter Choices in the Improved Attack Against
DXL-KE

In this section, we provide details of choosing k to match the corresponding
targeted signals in Section 4.

A.1 The choices of k for absolute value recovery

Recall that KB = PAsB + 2gB = ksB + 2gB . Hence, |ksB [i]| − |2gB [i]| ≤
|KB [i]| ≤ |ksB [i]|+ |2gB [i]|. Moreover, if |KB [i]| <

⌊
q
4

⌋
the corresponding signal

is 0, and the signal is 1 if
⌈
q
4

⌉
< |KB [i]| <

⌊
3q
4

⌋
. Thus, a signal is zero in a stable

region if

|ksB [i]|+ |2gB [i]| <
⌊q
4

⌋
⇔ k <

⌊
q
4

⌋
− |2gB [i]|
|sB [i]|

, (16)

and 1 in a stable region if⌈
q
4

⌉
+ |2gB [i]|
|sB [i]|

< k <

⌊
3q
4

⌋
− |2gB [i]|
|sB [i]|

. (17)
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We start with the first targeted signal (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1).
When |sB [i]| ⩽ 7, the corresponding signal ωB [i] is in the stable region of 0,
otherwise ωB [i] is in the stable region of 1. Thus, according to Equation (16),
we need to choose k1 such that

k1 <

⌊
q
4

⌋
− |2gB [i]|
7

.

When 7 < |sB [i]| ⩽ 15, based on Equation (17), we need to choose k1 such that⌈
q
4

⌉
+ |2gB [i]|
8

< k1 <

⌊
3q
4

⌋
− |2gB [i]|
15

.

Combing the above two results, we have⌈
q
4

⌉
+ |2gB [i]|
8

< k1 <

⌊
q
4

⌋
− |2gB [i]|
7

. (18)

For k2, the corresponding targeted signal is (0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,
0) as |sB [i]| increases from 0 to 15. From our observation, we know that the signal
is always 0 when |sB [i]| increases from 0 to 3, and when |sB [i]| ⩾ 12. Based on
Equation (16), we have⌈

3q
4

⌉
+ |2gB [i]|
12

< k2 <

⌊
q
4

⌋
− |2gB [i]|
3

.

When 4 ⩽ |sB [i]| ⩽ 11, the signal changes to 1. Thus, by Equation (17),⌈
q
4

⌉
+ |2gB [i]|
4

< k2 <

⌊
3q
4

⌋
− |2gB [i]|
11

.

Then we conclude that⌈
q
4

⌉
+ |2gB [i]|
4

< k2 <

⌊
3q
4

⌋
− |2gB [i]|
11

. (19)

For k3, when |sB [i]| increases from 0 to 15, the corresponding targeted signal
is (0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1). Similarly to before, we conclude that We
observe that the signal periodically changes in a way like 0→ 1→ 0. We choose
4k3 to be close to q, that is, k3 is close to

q
4 . Since the signal is 0 when |sB [i]| = 1,

according to Equation (16), we know

k3 <
⌊q
4

⌋
− |2gB [i]|. (20)

From Equation (20) we know that when |sB [i]| (mod 4) = 1, |k3sB [i]| <⌊
q
4

⌋
− |2gB [i]|, which ensures that the corresponding signals are 0. Therefore,

when the signal is 1, |sB [i]| (mod 4) = 2 or 3. According to Equation (17), we
have ⌈q

4

⌉
+ |2gB [i]| < k2|sB [i]| (mod q) <

⌊
3q

4

⌋
− |2gB [i]|, (21)
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where |sB [i]| (mod 4) = 2 or 3. When |sB [i]| (mod 4) = 0 where the correspond-
ing signal changes from 1 to 0, k3 should satisfy

k2|sB [i]| (mod q) >

⌈
3q

4

⌉
+ |2gB [i]|. (22)

Combining Equation (20), (21), and (22), we can deduce

3q +
⌊
q
4

⌋
+ |2gB [i]|
14

< k3 <
⌊q
4

⌋
− |2gB [i]|,

or equivalently, ⌊q
4

⌋
−

⌊
q
4

⌋
− |2gB [i]|
14

< k3 <
⌊q
4

⌋
− |2gB [i]|. (23)

Similarly, for the targeted signal (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1), we ob-
serve that, every time the signal changes, |sB [i]| is added by 1. Therefore, k4 is
set near q

2 .To be specific, we have∣∣∣sB [i](⌊q
2

⌋
− k4)

∣∣∣ < ⌊q
4

⌋
− |2gB [i]| or

∣∣∣sB [i](k4 − ⌊q
2

⌋
)
∣∣∣ < ⌊q

4

⌋
− |2gB [i]|.

Since |sB [i]| is at most 15, k4 satisfies⌊q
2

⌉
−

⌊
q
4

⌋
− |2gB [i]|
15

< k4 <
⌊q
2

⌉
+

⌊
q
4

⌋
− |2gB [i]|
15

. (24)

For parameters of DXL-KE, this means concretely k1 ∈ (515.88, 580.86),
k2 ∈ (1031.75, 1114.36), k3 ∈ (3805.57, 4066), and k4 ∈ (7921.93, 8464.07). Con-
sequently, we select k1 = 550, k2 = 1, 050, k3 = 4, 000, and k4 = 8, 192.

A.2 The choices of k in sign recovery

We follow a similar way as that in absolute value recovery to decide the range
of ki, where j ∈ [1, 5], according to the corresponding targeted signal in Table
4. For k1, we adopt the approaches mentioned above to obtain⌈

q
4

⌉
+ |2gB [i]|
16

< k1 <

⌊
q
4

⌋
− |2gB [i]|
15

. (25)

Then, we consider the targeted signal

(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0)

to choose k2. Similarly, we can deduce⌈
q
4

⌉
+ |2gB [i]|
8

< k2 <

⌊
3q
4

⌋
− |2gB [i]|
23

. (26)

23



Table 4: Signals ωBj [i] for kj and s[i] = |sB [i] + sB [i + 1]| in DXL-KE with
j + 1, 2, 3, 4, 5 and i = 0, ..., n− 1
s[i] 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

k1 = 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

k2 = 525 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

k3 = 1, 050 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0

k4 = 4, 000 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

k5 = 8, 192 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

For the third targeted signal

(0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0),

we observe that the signal changes from 0 to 1 and then to 0 twice as |sB [i]|
increases from 0 to 30. Thus, k3 should be close to q

16 . Since the signal first
changes from 0 to 1 when |sB [i]| = 4,

k3 >

⌈
q
4

⌉
+ |2gB [i]|
4

.

Similar to the selection of k in Step 1, when the signal corresponding to |sB [i]|
is 0 or 1, combining Equation (16) and (17) we obtain⌈

q
4

⌉
+ |2gB [i]|
4

< k3 <
⌊ q
16

⌋
+

⌊
q
16

⌋
− |2gB [i]|
27

. (27)

For the last two targeted signals, they both change in a same way as that in
Step 1, except that |sB [i]| increases from 0 to 30. Similarly, we have

⌊q
4

⌋
−

⌊
q
4

⌋
− |2gB [i]|
30

< k4 <
⌊q
4

⌋
− |2gB [i]|, (28)

and ⌊q
2

⌉
−

⌊
q
4

⌋
− |2gB [i]|
30

< k5 <
⌊q
2

⌉
+

⌊
q
4

⌋
− |2gB [i]|
30

. (29)

B Parameter Choices of the Improved Attack on
DBS-KE

In order to ensure that we can collect the targeted signals from the stable regions,
k1, k2, k3 and k4 should satisfy conditions similar to those of the improved attack
against DXL, except that the errors |2gB [i]| are replaced with |∆[i]|+|ε[i]|. Then,
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based on Equations (18), (19), (23), and (24), it holds⌊
q
4

⌉
+ |∆1[i]|+ |ε[i]|

8
< k1 <

⌊
q
4

⌉
− (|∆1[i]|+ |ε[i]|)

7
,⌊

q
4

⌉
+ |∆2[i]|+ |ε[i]|

4
< k2 <

⌈
3q
4

⌉
− (|∆2[i]|+ |ε[i]|)

11
,⌊q

4

⌉
−

⌊
q
4

⌋
− (|∆3[i]|+ |ε[i]|)

14
< k3 <

⌊q
4

⌉
− (|∆3[i]|+ |ε[i]|),⌊q

2

⌉
−

⌊
q
4

⌋
− (|∆4[i]|+ |ε[i]|)

15
< k4 <

⌊q
2

⌉
+

⌊
q
4

⌉
− (|∆4[i]|+ |ε[i]|)

15
.

(30)

Therefore, we can determine the conditions that ∆1[i], ∆2[i], ∆3[i], and ∆4[i]
should satisfy. For example, |∆1[i]| <

⌊
q
4

⌉
/15− |ε[i]|.

In the DBS-KE, q = 26, 038, 273, n = 512, and α = 4.19. According to the
Section 5.3 in [7], ε[i] is normal distributed with standard deviation

√
12nα4 + 4α2.

Since 4.5
√
12nα4 + 4α2 ≈ 6192.61, we assume that |ε[i]| ≤ 6200. We can first

calculate the ranges of ∆j [i] (j = 1, 2, 3, 4), obtaining that |∆1[i]| < 427771.2,
|∆2[i]| < 427771.47, |∆3[i]| < 427771.2, and |∆4[i]| < 6503368. Then we select
the specific values for ∆j [i] as shown in Section 5.1.

Subsequently, we can get the ranges of k1, k2, k3, and k4 as k1 ∈ (867721, 868195.43),
k2 ∈ (1735442, 1736045.91), k3 ∈ (6075470.29, 6077368), and k4 ∈ (13018912.47,
13019361.53).

25


	Light the Signal: Optimization of Signal Leakage Attacks against LWE-Based Key Exchange

