
Common Interest Protocol - dCommon
Stakehouse CIP Application

Bingsheng Zhang, Justinas Žaliaduonis, Matt Shams(Anis)

Blockswap Labs

Abstract

In this paper we introduce dCommon - auditable and programmable MPC as a
service for solving multichain governance coordination problems throughout DeFi and
Web3; Along with its on-chain part Common Interest Protocol (CIP) - an autonomous
and immutable registry smart contract suite. CIP enables arbitrary business logic
for off-chain computations using dCommon’s network/subnetworks with Ethereum
smart contracts. In Stakehouse, CIP facilitates a trustless recovery of signing keys
and key management for validator owners on demand. The paper elucidates a formal
overview of the MPC system cryptography mechanics and its smart contract business
logic for the Stakehouse CIP (SH-CIP) application implementation.

1 Introduction & Rationale
Ethereum node operations are an off-chain activity performed by validator node operators
for Ethereum consensus; They are controlled through on-chain deposits of ETH. Stake-
house is an extended business logic of the consensus protocol [13] [8] of Ethereum. It
is implemented on the execution layer using solidity smart contracts where it tokenizes
the validator deposits into two distinct token balances (dETH and SLOT). dETH is
the base capital that accrues all consensus rewards from validation, SLOT represents
the off-chain operators and has exclusivity on revenue rights from transaction building.
Ethereum network has two sets of distinct revenue flows for its staked deposits. One is
pure inflation yield from newly minted ETH for keeping the blockchain live and secure, and
the second is for injecting the transactions into the block. This is performed by off-chain
actors using an RPC-endpoint for transaction aggregation and using Ethereum client soft-
ware for ordering and building blocks as per Ethereum builder specification. Blockspace
and fees are determined by a dynamic transaction fee market protocol EIP 1559 [17] [10] [6].

Ethereum validator balances are considered as stake weight in consensus validation.
They are represented by a validator’s cryptographic address (as opposed to an IP address)
for consensus scheme and block building, which means every block in Ethereum has a
disclosure attached to it, in the form of validator addresses who had attested and proposed.
Further, the network keeps tracking this disclosure history for dispensing rewards for
validators who are active in the validation process, penalizing those who are inactive, and
slashing those who are malicious based on a whistleblower report.

Ethereum stake weight has a range-bound maximum of 32 ETH to be eligible as a
validator in the network and a minimum of 16 ETH to be included for validation duties;
please note that the active balance of a validator can be more or less than this stake
weight. However, if a validator falls below the minimum stake weight, it will be kicked

1

from the consensus validation process. A leakage mechanism consistently penalizes inactive
validators and eventually kicks them out when the balance falls below the minimum stake
weight.

1.1 Stakehouse and Ethereum Consensus
The rewards from consensus validation will go to dETH holders in Stakehouse, where
SLOT token holders will bear penalty and slashing. In return, SLOT tokens have the
exclusive right to transaction fee revenue earned according to the EIP-1559 protocol and
from their custom RPC transaction ordering logic, normally referred to as MEV (maximal
extraction value) for every block added to the chain.

In Stakehouse protocol, a critical measure is to keep all its registered validators active
and in optimal performance for Ethereum. Hence it re-configures the stake weight rep-
resentation on its business logic to a minimum of 24 and a maximum of 32. Thus it is
reflected as 24 dETH and 8 SLOT tokens per validator.

In the Stakehouse protocol, SLOT tokens are managed by a standalone SLOT Registry
[2] [5]. The registry records every change in token balances at the validator level. Validators
are grouped as an arbitrary collection of validators in the registry (a.k.a, Stakehouse) and
accounted on a native token, sETH, that serves as a unit of account for SLOT balance
movement in the house. Every 1 ETH decrease in the stake weight of validator balance is
registered in the Stakehouse protocol as a 1 SLOT token decrease. Anyone can top-up
ETH for the decreased amount and get newly issued SLOT tokens from the Stakehouse
protocol. There is also a specific logic on how SLOT tokens are classified in Stakehouse; 8
SLOT per validator as four free floating and, four collateralized (ref. Stakehouse position
paper [5]). If a validator within Stakehouse is slashed then the KNOT (validator) will
be removed from the protocol’s registry. For both leakages and slashing, it results in the
SLOT being burned from the collateralized SLOT vault.

Ethereum staking requires and incentivizes the validator’s liveness to be active all the
time. Being a multi-client network, the network coordination cannot be checked by a single
tracker. So with leakage for inactive validators and sudden kicking of validators from the
network after a slashing, it is imperative that the validators shall have an on-demand
Signing Key retrieval for managing the off-chain node (a device that is connected to the
Ethereum network running a client software).

Ethereum PoS design is focused on onboarding long tail users as validators and it
allows anyone with 32 ETH to become a validator and a node in the network, this is a
very brave attempt for decentralizing the PoS network thus increasing its resilience and
longevity. Stakehouse protocol takes this mission a step further and allows mainstream
users to have fractional ownership of a validator on SLOT tokens, and it continuously
incentivizes its registered validator’s performance using Price of Anarchy principles [16],
first by applying a decay on existing house payoff rate and then by allowing permissionless
topup of SLOT tokens and collect transaction revenue of that validator.

1.2 Ethereum Staking Keys
Every Ethereum Validator registered in the Consensus layer maintains three distinct
cryptographic addresses [7] (keys):

• Public Key - BLS [3].

• Validator Private Key - a.k.a. Signing Key - BLS

2

• Withdrawal Credential Key (BLS or Ethereum ECDSA [8]), where in Stakehouse
protocol withdrawal credential is assigned to its Account Manager contract serving
the KNOT token addresses - dETH and SLOT owners.

The signing key is an operational key that is required to perform off-chain node opera-
tions of Ethereum staking, it has no right to receive either validation consensus rewards or
the underlying deposit withdrawal.

The Stakehouse protocol’s immutable and permissionless nature demands trustless and
autonomous coordination for both onchain and off-chain elements of Ethereum staking since
the validator ownership is fractionalized and openly traded in the market. Every validator
in the stakehouse and its value generation is actively priced by market actors, hence any
small downtime of validators may reflect in market reflexivity on house payoff rates on
transaction revenue earning, consequently, the dETH yield rates may vary negatively.

The relationship between Stakehouse protocol and Ethereum keys is displayed in the
figure below (Fig. 1).

Figure 1: Ethereum Staking Keys & Stakehouse Protocol

2 Stakehouse - CIP
Stakehouse CIP application enables stakehouse validators to have an on-demand trustless
backup and recovery of their validator signing key [8] that is encrypted and stored on the
Ethereum blockchain using dCommon subnet DKG derived master public key.

A core primitive of dCommon is its CIP applications are standalone networks within
dCommon, they have complete autonomy to have their own MPC solvers or appoint a
solver sub-network registered under dCommon using DKGRegistry and SafeBox contracts,
and can freely ragequit via resignation mechanism anytime. For Stakehouse we define a
business logic to have Stakehouse protocol users (Ethereum stakers) act as MPC solvers

3

with its own exclusive MPC network instance serving other stakers. An MPC network
serves its common interest for its well-being and continuity.

3 Key building blocks

3.1 Cryptographic Primitives
Throughout the CIP system, it uses four Probabilistic Polynomial Time Algorithms to
derive a hybrid encryption scheme for ensuring operations of secure Multiparty Computa-
tion, referred to as Hybrid Encryption.

Formally, the cryptographic primitives can be described by incorporating Probabilistic
Polynomial Time - PPT algorithms.

The first algorithm – Gengp(1λ) is used for generating the group parameter σ given
the security parameter λ ∈ N, using elliptic curve group P-256 (secp256r1) [18].

The other 3 algorithms are from the Hybrid Encryption set HE and are mostly used
for the Hybrid Cryptography scheme. It serves three operations for the protocol: Key
Generation, Plaintext Encryption, and Ciphertext Decryption.

HE.Keygen(σ) - the algorithm is used for generating the hybrid credential pair
(pk, sk) = ((g, h), s) and works by picking a private key s from the prime integer group Zq

and obtaining the public key by raising the generator point g to the power of s: h = gs.

HE.Encpk(σ,m) is used for forming a ciphertext C hiding the message m. The ci-
phertext is formed by picking a random element r ∈ Zq, computing the generator point
raised to the power of r, and the public key of the recipient h raised to the power of r:
c1 := gr, c2 := hr. Then, the joint AES key k is computed by hashing c2: k = hash(c2),
and the final ciphertext is formed by utilizing the AES encryption: u := AES−GCMk(m).

HE.Decsk(σ,m) is used to obtain the message m given the ciphertext u and the
encryptor hybrid public key c1. The algorithm works by computing the shared key seed
c2 := (c1)sk and hashing it to compute the joint AES key k = hash(c2). Further, the
shared key k together with the ciphertext u is fed into the AES decryption function
m = AES −GCMk(u)−1.

Notation: For the purpose of formally presenting the operations used in the SH-CIP
protocol we will simplify the notation by emitting the group parameter σ.

• HE.Encpk(σ;m) - Instead we will use the notation HE.encryptpk(m, sk). This
should be read as the message m is encrypted for the recipient who has a public key
pk while using the secret key sk.

• HE.Decsk(σ;m) - will be denoted as HE.decryptpk(m, sk). This should be read as
decrypting a message m sent by the holder of the public key pk, while using the
secret key sk

To have a better understanding on crypto primitives used in the context of Stakehosue
CIP we give a briew listing below (Tab. 1). All adopted primitives are widely used in the
cryptography field and have been tested in many other applications.

4

Table 1: Cryptographic primitives used in the Common Interest Protocol
CRYPTOGRAPHIC PRIMITIVE BUILDING BLOCKS CIP APPLICATION USAGE

Generic group (Elliptic Curve p256k) ECDSA address Ethereum wallet and token addresses

Hybrid KeyGen (AES Keys) Secure communication using block ciphers DKG and MPC decryption coordination.

Hybrid Encryption Symmetric and asymmetric encryption combination Secure data dissemination for DKG and MPC operations

Hybrid Encryption: encryption AES based encryptions Message broadcast in DKG & MPC

Hybrid Encryption: decryption AES based decryption Verifiable recipient delivery

Multi-Party computation Arbitrary custom message computations Computation of partial authentication of Signing Key decryption

NIZK - proof Non-interactive deterministic verification Authentication of an encrypted envelope in DKG & MPC

DKG - Distributed Key Generation Shared private credential of MPC network Setting up a trustless adhoc MPC committee

Shamir Secret Recombine split values into a secret value Combine received solver solutions and decrypt the signing key

4 Multi-Party Computation (MPC)
Multiparty computation (MPC) is a cryptographic protocol primitive, as the name implies
it distributes computation across multiple parties, who do not trust each other or any
common third party to jointly compute a function that depends on all of their private
inputs. Here, no individual party can see the other parties’ data and only disclosing the
result of the function to a specific counterparty. The MPC scheme has been around for
more than 30 years in academic and theoretical realms; with the advent of blockchains and
the proliferation of smart contract applications for real-time applications such as digital
asset trading, auction, privacy, etc, it became a core primitive for mainstream usage.

4.1 Stakehouse CIP MPC
Stakehouse CIP application utilizes MPC with Distributed Key Generation (DKG) for
registering its MPC solvers as having shared credentials and expanding the set from time
to time using a handover mechanism.

Additionally, the dCommon design offers a DKG that can be performed in an ad-hoc
network with an asynchronous setting discarding inactive participants from the committee
and ensuring robustness for the system. This is a great advantage over traditional systems
that operate in synchronized settings, where single-party failure requires the restart of the
whole system, thus becoming practically unusable for systems that require coordination at
scale.

5 SH-CIP Configuration
The Stakehouse Common Interest Protocol (SH-CIP) application allows a user who holds
more than 2 collateralized SLOT tokens in a stakehouse tokenized validator (KNOT) to
decrypt the encrypted message (validator BLS signing key) from the Ethereum blockchain.
SH-CIP application is designed to serve exclusively Stakehouse protocol Collateralized
SLOT token holders facilitating backup and on-demand trustless recovery option for their
validators signing keys, however, it remains independent from an operational standpoint
from the Stakehouse protocol. To avoid any doubt, Stakehouse protocol can continue its
full operations in absence of SH-CIP services.

5

5.1 Role Matrix

Table 2: The matrix describing role relationships in the Stakehouse CIP
ACTIONS REQUESTER STAKEHOUSE SAFEBOX MPC

Signing Key Backup (Encryption) YES YES NO NEUTRAL

Decryption Request YES NEUTRAL YES NO

Decrypiton Solution NO NEUTRAL YES YES

Decryption Key YES NO NEUTRAL NO

Joining DKG Solvers NO NEUTRAL YES NO

Expanding Solver Set NO YES YES YES

Solver Eligibility YES NEUTRAL YES NO

Decryptor Eligibility NO YES YES YES

5.2 Architecture
Stakehouse CIP application leverage dCommon for its off-chain cryptographic operations
and CIP smart-contract suite for its on-chain validation and intermediation for signing
key decryption.

Table 3: Architectural base module roles
CORE COMPONENTS CONTEXT APPLICATION UTILITY

SafeBox Smart Contract Registry Smart Contract as BulletinBoard Preserves computation request integrity and availability
Solver off-chain Client S_BOX Off-chain MPC nodes Perform cryptographic operations for MPC and DKG

Cryptography Module Off-chain library or package Cryptography logic for key generation and computations.
SLOT token Stakehouse Validator Tokenized access with identity for decryption request, DKG and MPC Solver

5.2.1 SafeBox Smart Contract

CIP consist of two smart contracts: SafeBox and DKGRegistry. SafeBox is primarily
responsible for orchestrating the entire lifecycle management of the CIP application and
dCommon MPC instance. It’s responsible for the following:

• Complete information broadcasting as events and coordination of actors

• Implement all checklists for decryption and MPC solver set DKG services

• Enable custom business logic between operations

Decryption Rule: SafeBox

• When a user executes the decryption request for a KNOT’s signing key by calling
applyForDecryption(), then

– the KNOT is active and has not rage-quit
– the KNOT has no slashed SLOT with the latest balance update
– the user owns more than 2 collateralized SLOT for the KNOT
– The user has not submitted any decryption request for the KNOT within the

last 6300 blocks.

• When a solver submits information for a decryption request by calling submitDe-
cryption(), then

6

– the solver must be registered with the SafeBox contract
– the decryption request must be less than 6300 blocks old,
– the solver must not already have submitted any information for this specific

decryption request
– the solver must not have relinquished his duties

DKG Registration rule: SafeBox

The SafeBox contract also imposes the following requirements for DKG committee:

• Initial DKG committee consists only of the ECDSA addresses and Hybrid public keys
specified on the SafeBox smart contract deployment procedure. Further expansions
can be achieved during the Handover procedure.

• Guardians who have relinquished their duties cannot further participate in the
protocol.

• The data sent by the participants must pass various length checks.

5.2.2 DKG Registry

DKG registry is a contract that keeps track of Distribution Generation Process participants’
active status. It also Keeps track of initial progress through the DKG procedure, performs
submitted data sanity checks, and makes sure the round process is sequential (i→ i+ 1).

5.2.3 SlotRegistry - SLOT token

In addition to the above contracts CIP also leverages SlotRegistry from Stakehouse Protocol
for querying information related to SLOT tokens of the KNOT(validator) that requested
the Signing Key and the MPC solver eligibility.

5.2.4 MPC solver Client - S_BOX

A custom standard software for dCommon MPC solvers to run computation for a puzzle
and generate proof satisfying the conditions of CIP onchain SafeBox smart contract for
both decryption services and Solver committee DKG process.

5.2.5 Cryptography Module

Cryptography module is an off-chain software utilized by the MPC solvers and the SafeBox.
The module holds all of the cryptographic operations, credential generation, and other
computations, and can be used in isolation or hosted environment.

5.2.6 SLOT token

SLOT token is an ERC20 token issued by Stakehouse protocol from minting a KNOT and
against an Etheruem Validator. Collateralized SLOT is the specific token that is accepted
by CIP for both decryption requests and registering as an MPC solver.

6 MPC Operation
SH_CIP application process description in pseudo formal spec for Validator signing Key
encryption performed by a user and then get decrypted using CIP application can be seen
in the figure (Fig. 9).

7

Figure 2: Identity and Responsibility management through registries

7 Core Assumptions
Recovery Requestor: Must hold > 2 Collateralized SLOT tokens
Corllateralized SLOT Token: Non-transferable SLOT held in KNOT Collateralized
Vault, deposited by initial validator owner at the time of tokenizing the staked Validator,
subject to have ownership change based on validator leakage/slashing top-ups.

We define a mapping b : (v, a)→ N0 that takes in a BLS public key v and an ECDSA
address a and returns a collateralized SLOT token balance owned by the address a for the
validator v.

Then, whenever the request for a validator v key recovery is submitted by an address
a, the system requires SafeBox smart contract to satisfy the following condition:

b(v, a) > 2 (1)

Recovered validator: Must have no untopped-up penalties reported
Leakage penalties: Stakehouse protocol allows reporting consensus layer accrued penal-
ties and reducing the collateralized SLOT balance of the validator. The balance can also
be recovered by topping up the collateralized SLOT balance by sending an equivalent
amount of Ethereum to the Ethereum Deposit Contract [11].

Here, the system requires the validator to have no reported penalties i.e. have a full
4 SLOT Collateralized tokens balance. It is checked by defining a mapping ψ : v → N0
which takes a validator BLS public key v and gives reported and untopped-up validator
penalties in the Stakehouse protocol. The system requires the following equation to hold:

ψ(v) = 0 (2)

Recovery Requestor: Must submit the recovery request when no active request is
present for the requested validator.
Request timing: In order to prevent spam and give sufficient time for solver request

8

processing, the requests can only be submitted periodically. Consider the decryption validity
period α = 6300 blocks, the block during which the decryption request is submitted λ and
the last request block r, then specified as follows:

λ > r + α (3)

8 SH-CIP MPC operation overview
In this section we will discuss the essential SH-CIP operations based on the algorithms
and primitives described in the crypto primitives section.

8.1 Helper functions
Here we define a few helper functions that abstract the logic specified in the Zero-Knowledge
proof section for forming and verifying a ZK proof. Additionally, we add a function to
compute an EIP712 [15] signature over specified data.

• formNIZK(encryptor public key ,shared secret key, partial decryption solution) =
Function to form a proof verifying the correctness of partial decryption solution

• verifyNIZK(shared public key, encryptor public key, partial decryption solution, NIZK)
= Function to verify the NIZK proof for partial decryption solution correctness.

• eip712Sign([data], destination, deadline) = Function to form an EIP712-compliant
signature over the specified data together with a destination and a deadline.

• assembleHybridKey([partialDecryptionSolutions]) = Assemble the hybrid decryption
key k that unlocks the ciphertext u while using the Shamir secret sharing primitive.

8.2 Signing Key Encryption on Ethereum
Every validator in the Stakehouse validator shall backup its Signing Key using CIP as a
part of the staking process prior to depositing 32 ETH with Etheruem Deposit Contract,
generating a random hybrid key pair (τ, h), and encrypting the validator signing key m
for the SH-CIP DKG key PK.

u = HE.encryptP K(m, τ) (4)

After the encryption is completed, the validator BLS public key m, ciphertext u and
an encryptor public key h is registered in the Stakehouse registry.

8.3 Signing Key Decryption MPC
8.3.1 Recovery request

There are two distinct scenarios of decryption requests that were submitted, a) a single
party initiated the recovery request b) The request was initiated by a multi-party coordi-
nated address via EIP-712 signature. For successful recovery, the system must pass the
Core assumptions.

9

8.3.2 Single-party decryption request

Requestor will generate a Hybrid Encryption (AES) key for instigating the recovery process
communication, with the MPC solvers (skr, pkr).

Further, the requester will add the BLS public key v of the Signing Key validator, and
submit pkr and v to the SafeBox smart contract as a blockchain transaction, upon success-
fuly meeting core assumptions, an event message is broadcasted to the MPC solver network.

8.3.3 Multi-party decryption request (fractionalized/pooled validator)

For multiple owner’s requests for a signing key recovery, they shall coordinate to generate
the above-mentioned requestor key pair (skr, pkr), and then consolidate their consent of
recovery request by forming a set of EIP712 signatures (Eq. 5) containing a deadline t,
destination d = SafeBox, hybrid public key pkr, and a BLS public key v.

S := {βi|βi = eip712Sign([v, pkr], d, t)} (5)

The set of above signatures need to satisfy the aggregate signature holds Core Assump-
tion property, that is the signatures would be issued only by collateralized SLOT owners
totaling a balance over 2 Collateralized SLOT tokens.

Eventually, S, v, and pkr is sent to the smart contract by an arbitrary party, and the
work is terminated.

8.4 Decryption procedure
Solvers listen to SafeBox events for receiving decryption requests, and upon fetching the
request data from SafeBox perform the Core Assumption feasibility checks.

Once the Core Assumption checks pass, solvers fetch the ciphertext encryptor public
key h, and perform the following computation involving their secret shared key ski:

si = hski (6)

Here, i ∈ {1, ..., N} is the solver index, si is the partial decryption solution, and the is
an Elliptic Curve multiplication.

Once a partial decryption solution (Eq. 6) is formed, the value is encrypted for the
recipient.

ei = HE.encryptpkr
(si, ski) (7)

Further, the MPC solver forms a Non-Interactive Zero Knowledge (NIZK) Proof to
prove that the partial decryption solution corresponding to the encryption public key h
and the solver shared secret key ski formed correctly:

NIZKi = formNizkProof(h, ski, si) (8)

Once the NIZK formation is completed, each solver posts NIZKi and ei to the SafeBox
smart contract and terminate the requested computation.

Note: The ciphertext u hiding the BLS signing key is not necessary to form a partial
decryption solution, and the only information used in forming partial decryption solution
is the encryptor signing key h.

10

8.5 NIZK Proof
Note: c1 = gr, c2 = hr, h = gsk, where r ∈ Zq is a random point drawn from the field.

Non-Interactive Zero Knowledge Proof (NIZK) will enable a deterministic validation of
the correctness of received encrypted solution from an MPC solver by the recipient, i.e;
prove the correctness of the plaintext m with respect to the given ciphertext u.

We are given the public key of the encryptor h, the generator point g, the encryption
elements c1, and c2 and the ciphertext u. In this case we want to ensure that the contents
of the ciphertext correspond to the global DKG public key PK.

1. Pick a random integer t ∈ Zq and compute w1 := gt, w2 := ct
1

2. Compute a hash e = hash(pk, c1, u, c2, w1, w2)

3. Compute z = t+ e · sk mod q

Finally the NIZK proof is summarized in an output π = (w1, w2, z)

Here it is assumed that the verifier(recipient) already has pk, c1, c2 and u, and is
provided by the prover. The proof is then checked as follows:

1. Verifier computes e = hash(pk, c1, u, c2, w1, w2)

2. Checks the condition he · w1 = gz

3. Checks the condition ce
2 · w2 = cz

1

If the conditions from steps 2 and 3 hold, the proof is considered as passed, else the
proof has failed.

8.6 Key assembling procedure
Decryption procedure first starts with the recipient fetching the following data points from
the chain:

• ei - Ciphertext hiding the partial decryption solution from solver i

• NIZKi - Non-Interactive Zero Knowledge proof of data correctness from solver i

• PK - Global public key generated during the DKG procedure

• u - Ciphertext hiding the signing key

Then, the decryptor makes sure that the solver submitting the decryption solution has
at least 1 collateralized SLOT tokens in the Stakehouse universe (Core Assumption) and
is not resigned; also, no historic complaints exist are recorded against the MPC solver in
the SafeBox data. Although SafeBox has performed the checks, the decryptor re-checks to
tighten the security. Upon receiving the encrypted partial decryption pieces ei and the ZK
proofs proving the content validity, the recipient does the following.

First, the recipient decrypts the encrypted decryption solutions using their secret key
skr and the solver’s public key pki:

si = HE.decryptpki(ei, skr) (9)

11

Further, the decryptor verifies each NIZK proof to make sure that the partial decryption
solution is valid:

verifyNIZK(pks, pke, si, NIZKi) (10)

If the partial decryption solution is invalid, it is discarded, and if the remaining number
of pieces is bigger than the threshold T , we can apply the Shamir’s secret sharing principle
and assemble the hybrid key.

k = assembleHybridKey({si|verifyNIZK(pks, pke, si, NIZKi) = 1}) (11)

Finally, the recipient uses the assembled hybrid key k to decrypt the ciphertext u:

m = HE.decryptP K(u, k) (12)

In the case solvers failed to provide T valid partial decryption solutions or went offline
for a period of time the application can be filed again once the current application expires
(approximately 21 hours/6300 Ethereum Blocks), where the identical sequence of actions
will be performed.

9 SH-CIP DKG
9.1 Distributed Key Generation (DKG)
Distributed key generation (DKG) enables untrusted parties to collaborate for generating
and hold a shared secret without individually sufficient access. In a distributed setting,
the DKG protocol allows a set of nodes to collectively generate a secret with its shares
maintained among the participating nodes, such that a subset of defined quorum with a
threshold (T) can process requests. A quorum subset size greater than or equal to the
specified threshold would be able to use the shared secret, whilst the other members don’t
have any knowledge about it (in simpler terms, we don’t need the participation of all N
signers, just M out of N signers).

In dCommon, we use DKG for having shared credentials to operate a Multi-Party
Computation network and its solvers to compute NIZK proofs for requested work from a
CIP application via SafeBox contract.

9.2 DKG Actors

Table 4: Distributed Key Generation actor roles
ACTORS STAKEHOUSE MPC - ACTIONS

Applicant Collateralized SLOT token holder Register for DKG procedure to become an MPC solver for Stakehouse

MPC Solver A Registered SLOT token holder with CIP-DKG Serve decryption request for stakehouse users performing computation

DKG Member SLOT token holder who has shared private key of DKG public key Perform DKG process and validate the committee to acquire credential for MPC

The distributed key generation procedure happens in five rounds. The progress of each
participant is tracked via the status system, and is summarized in the table below (Tab.
5).

During the DKG process, the CIP “DkgRegistry” contract ensures the following:

• Holding DKG-related constants:

– threshold - Quorum required to successfully complete the DKG procedure. Also
describes the polynomial degree used in cryptography

12

Table 5: Distributed Key Generation lifecycle roles
STATUS ID DKG LIFE CYCLE STATUS NAME DESCRIPTION

0 NON_BOOTSTRAP_GUARDIAN Does not have a right to participate in the DKG procedure

1 NO_SUBMISSION Has a right to participate in the DKG procedure, but haven’t started yet

2 ROUND1_SUBMITTED Round 1 validation has been submitted to the SafeBox

3 ROUND2_COMPLAINT_PROCESSED Complaints pertained to Round 1 submitted or no complaints received

4 ROUND3_SUBMITTED Round 3 validations got accepted to the SafeBox

5 ROUND4_COMPLAINT_PROCESSED Complaints pertained to round 3 were processed or no complaints received

6 ROUND5_SUBMITTED Final Validations submitted to the SafeBox

– startBlock - Starting block of the DKG procedure, set future to deployment
block

– roundTime - Block intervals for participants to complete each round.
– initialParticipantCount - Total participant count at the start of the DKG

procedure

• Keeping track of DKG complaints

• Enforcing block-based time boundaries. Participants who failed to complete the
round within the stipulated time period will be disqualified for the succeeding round.

• Enforcing basic constraints on submitted data like length-checks and checking if the
status for each solver is increased monotonically

• Emitting submitted data in easy-to-query Ethereum events

Setup: A set of participants χ := {P1, ..., PN} each with its own index N := {1, ..., N}
and public hybrid key pki and a secret hybrid key ski.

9.2.1 Round 1: Initializing and Distributing credentials

Each participant Pi establishes the initial numerical credentials for himself and other
participants. As follows:

First, each participant Pi picks random elements {ai,0, ..., ai,t}, {bi,0, ..., bi,t} from the
prime integer field Zq and uses them to define 2 polynomials fi(x) := Σl∈{0,..,t}ai,lx

l and
f ′

i(x) := Σl∈{0,..,t}bi,lx
l. Here t := floor(N/2)− 1 is defined as the threshold number.

Further, each participant computes t+1 cryptographic reference points Ei,l := gai,lubi,l

and posts them to the SafeBox smart contract. Here g and u are generator point and a
common base respectively and are specified in the SafeBox smart contract.

Finally, for every participant excluding themselves Pj ∈ χ \ Pi, the participant Pi

evaluates both polynomials si,j := fi(j) and s′
i,j := f ′

i(j ∈ N) and posts the encrypted
result ei,j := HE.encryptpkj

([si,j , s
′
i,j], ski) to the SafeBox contract.

9.2.2 Round 2: Cryptographic Credential Validation

Now, each participant Pi fetches the cryptographic reference points {Ei,j} and individually
encrypted credentials {ej,i} ((j = i) credential can be obtained off-line) from the SafeBox
smart contract and will dedicate this round for the credential validation.

13

First, each participant Pi decrypts the personalized polynomial values sj,i, s
′
j,i =

decryptpkj
(ej,i, ski) and performs the following equation check involving the hybrid public

key h of Pi:

gsj,ihs′
j,i = Πl∈{0,...,t}(Ej,l)il

(13)

In the case when Equation (Eq. 13) is not satisfied, a Non-Interactive Zero Knowledge
complaint π := NIZK(sj,i, s

′
j,i, ski, ej,i) is formed and posted on the SafeBox together

with the polynomial evaluations sj,i and s′
j,i.

It is important to note, that if the NIZK proof π is verified successfully by all the
other participants except Pj , then the participant Pj is disqualified from the procedure,
otherwise the participant Pi is disqualified for false accusations.

9.2.3 Round 3: Obtaining the shared secret key

At this point each participant Pi defines a set of participants who passed the data checks
in the previous round Pj ∈ Ω and their indices ℑ := {i|Pi ∈ Ω}. Each participant Pi

dedicates this round to generate the shared secret key ski and set the ground for generating
the shared public key pki and the DKG public key PK.

The process for obtaining the shared public key pki and the DKG public key PK
is started by each participant posting reference points Ai,l := gai,l (l ∈ 0, ..., t) to the
blockchain and the shared private key is assembled by adding all the parts sj,i that were
deemed valid from the previous round ski := Σj∈ℑsj,i

9.2.4 Round 4: Secondary reference checks

In this round, each participant Pi validates secondary cryptographic credentials Aj,l (j ̸= l)
submitted by other participants Pj ∈ Ω \ Pi

In order to perform validation, each participant checks the following equation:

gsj,i = Πl∈{0,...,t}(Aj,l)il

(14)

If the equation (Eq. 14) is violated, then NIZK complaint π := NIZK(sj,i, s
′
j,i, ski, ej,i)

is revealed together with the sj,i and s′
j,i. Here same complaint check rules hold as in

Round 2.

9.2.5 Round 5: Deriving final distributed credentials

Round 5 is the final round for distributed key generation procedure and forming the DKG
public key PK.

Each remaining participant who has successfully performed validation for the Round 2
and Round 4 checks defines a set Θ which contains other participants who made it to round
5. Additionally, each participant defines a set of indices of the remaining participants
ℜ := {i|Pi ∈ Θ}.

14

To give more context based on the above mentioned setup, we arrive at the following
set relations Θ ⊆ Ω ⊆ χ, and ℜ ⊆ ℑ ⊆ N .

Further, every party excludes all the information received by solvers in the set Pi ∈ χ\Θ,
and reconstructs their zero’th coefficient aj,0 = Σi∈ℜsi,j · λi. Where λi = Πj∈ℜ\{i}

l
l−i is

the Lagrange coefficient.

Finally, each participant Pi can obtain the shared public key pki = Πj∈ℜΠl∈{0,...,t}(Aj,l)il

and their DKG public key PK = Πj∈ℜAj,0.

After 5-round DKG procedure, each participant Pi ∈ Θ will have a shared private key
ski, a shared public key pki together with 1 joint DKG public key PK.

The outcome of this 5-round procedure for each participant is the following:

• DKG public key - Every remaining DKG participant arrives at the same value
hence qualify for being a solver for MPC. This key will be used for both encrypted
backup and recovery requests of the Signing Key, and also for all related computation
requests with the MPC solver network for the Stakehouse protocol CIP application.

• Shared private key - Each participant arrives at an individual value. This value is
used as a solver key for forming partial decryption pieces

• Shared public key - Individual to each owner and publicly known by the network.
This value is utilized for correctness proofs while providing decryption requests.
(Hybrid encryption key)

Transitions in the Distributed Key Generation can be seen below (Fig. 3):

Figure 3: CIP-DKG state transitions

10 Handover DKG - Solver Committee Expansion
The initial setup consists of the old committee members Pi ∈ P each with a pair of “old”
pair of hybrid credentials (ski, pki) and a set of new committee members Si ∈ S with a

15

new set of hybrid credentials (ŝki, p̂ki). Here we will denote the number of old solvers by
N and a number of new solvers by M .

10.1 Old solvers

Each old solver Pi sets up the ground for new solvers S by first picking a set of random
elements {ai,1...ai,k} ⊂ Zq and defining the zero’th element to be ai,0 := ski.

Further, each solver Pi defines a cryptographic reference point Ei,l := gai,l for
l ∈ {1, ..., k} and posts it to the SafeBox smart contract. Here k = floor(M/2) − 1
is the new decryption threshold.

And finally, similar to the DKG procedure, each solver defines a polynomial fi(x) =
Σl∈{0,..,k}ai,lx

l, and evaluates the polynomial for each solver except oneself si,j := fi(j)
(i ̸= j) and posts the encrypted result to the SafeBox ei,j := HE.encrypt p̂kj

(si,j , ski).

10.2 New solvers

Once the old solvers submitted at least t handover pieces, each new solver Si fetches the
encrypted polynomial values ej,i, and reference points Ej,l and obtains the personalized
polynomial values sj,i = HE.decrypt pkj

(ej,i, ŝki) by decrypting ej,i.

Further, each new solver evaluates the following equation with the adjusted reference
point Ej,0 = pkj :

gsj,i = Πl∈{0,..,k}(Ej,l)il

(15)

As in the handover procedure, in case the equation (Eq. 15) is violated, the NIZK
proof NIZK(sj,i, ej,i, ŝkj) together with the personalized polynomial value sj,i is posted
to the SafeBox smart contract. As before, a valid complaint against Pj will disqualify Pj ,
and an invalid complaint against Pj will disqualify Si.

After data filtering is completed, each new participant defines a set of solvers who
passed the previous checks Θ and a set of indices belonging to those solvers ℜ := {i|Pi ∈ Θ}.
The new solvers then have enough information to compute their shared credentials
s̃ki = Σl∈ℜsl,i · γl and p̃ki = Πl∈ℜΠp∈{0,...,k}(El,p)lp·γl , where λi = Πj∈ℜ\{i}

l
l−i is

the previously mentioned Lagrange coefficient.

The completed handover process finally yields an extended set of shared credentials
{(s̃ki, p̃ki)} without changing the DKG public key PK.

10.3 Solver Registration

Any SLOT token holder who holds 1 or more Collateralized SLOT tokens from a KNOT
on unique ECDSA can register to become a solver for SH-CIP application. Registration
can be performed with a DKGRegistry contract, however, until the user completes the
DKG procedure and obtain a shared key credential he/she cannot partake as a solver.

16

11 Economic analysis for Ad-hoc committee
Stakehouse CIP - MPC DKG committee selection and handover(expansion) are to be
performed in a decentralized and trustless manner, ensuring permissionless access to
become an MPC solver by any Stakehouse Validator who holds a minimum of 1 SLOT
token from a unique ECDSA address and is registered through DKGRegistry.

Like any ad-hoc network selection, SH-CIP DKG demands a strong entropy for can-
didate selection; Hence all candidates are required to go through a randomized selection
process using RANDAO [14] points and pseudo-stochastic bifurcations. The randomization
process will ensure any frontrunning, monopoly attacks; this process will strengthen the
DKG committee threshold requirement from coordinated attacks.

The table below summarizes the risk matrix of the DKG committee of 100 members
as MPC Solver from more than 100 candidates selected randomly. The DKG Committee
requires a minimum of 100 requests for candidacy, so in the below table, we assume the
number of requests s ≥ 100. Further, the initial committee number of candidates is fixed at
100. The committee size n satisfies n ≤ 100, also the threshold value t = floor(N/2)−1 sat-
isfies t ≤ 49. To compromise the committee, an attacker needs to control at least t+1 = 50
candidates, so we get f(sa, s) = 0 for the number of malicious candidates sa < 50. The
attacker needs to submit at least 50 requests for candidacy, and because each request
requires the requester to hold at least 1 collateralized SLOT from a KNOT(validator), it
requires the attacker to form at least 50 unique KNOTS (each 32 ETH).

The tables (Tab. 6a, Tab. 6b) summarize f(sa, s) for sa = 50 and sa = 60.

Table 6: Probabalistic committee takeover analysis for 50 and 60 malicious solvers
s f(50, s)

100 100.000%

105 3.603%

110 0.161%

115 0.009%

120 0.001%

125 0.000%

130 0.000%

135 0.000%

140 0.000%

(a) Attack success probabilities with 50 malicious
solvers

s f(60, s)

100 100.000%

105 100.000%

110 100.000%

115 93.230%

120 59.647%

125 25.162%

130 8.042%

135 2.180%

140 0.538%

(b) Attack success probabilities with 60 malicious
solvers

A security analysis of the Stakehouse CIP application for the initial ad-hoc committee
of 100 members can be seen in the audit report done by Runtime Verification [2].

Additionally to the above analysis, an empirical simulation with a committee size set
to 100 and the number of malicious applicants set to 49 was executed to confirm the

17

analytical calculations [19].

12 Initial DKG and MPC service
DKG gives a strong base for a trustless committee to operate a non-interactive MPC
network, regardless of its size and liveness in an adversarial environment. We believe
Stakehouse shall have a DKG-based ad-hoc MPC network that is derived from its own
stakeholders - SLOT tokens and able to expand the committee set and possibly bring
subcommittee for further modularization of the network. Like any permissionless network
having a Sybil-resistant self-governance is an evolving process with a cold start, we set to
begin the Stakehouse initially bootstrap with a 20-member DKG that will not be eligible
to participate in any future DKG committees. As soon as the Stakehouse will attain
enough validators to maintain the initial threshold of 100 members set participants from
its registered validators, the initial bootstrap committee will terminate and a new DKG
will be performed. The initial service phase will be more of an alpha phase with controlled
performance, during this time period CIP will be an "as is" service for Stakehouse facilitated
by Blockswap.

13 Reset DKG - Switching the SafeBox
dCommon allows to reset the committee ensuring robustness and secure continuity of the
system as a backstop, this could be done via social consensus of Stakehouse stakers anytime
abandon their exiting DKG set and re-encrypt signing Key with another DKG-PublicKey
for appointing new MPC solver set for decryption service. Reset also act as a healing
mechanism in case the existing committee falls below the quorum and consistently fails
to achieve the set threshold for decryption service, CIP application can switch to a new
committee with a new threshold and committee size.

The process is fairly straightforward by simply broadcasting the message to the
blockchain by specifying the new ciphertext c′ and the encryptor dCommon public key k.

14 Complexities
The below table summarizes the asymptotic complexities of each process in the CIP
application, the system design to handle a large set of actors.

Table 7: Asymptotic runtime complexities for core procedures
PROCESS ASYMPTOTIC COMPLEXITY SCALING CLASS

Distributing messages to other participants O(N) Linear

Key recovery request O(1) Constant

Key Recovery execution O(N) Linear

Distributed Key Generation O(N) Linear

Handover O(N) Linear

Proof size & Gas cost:

ZK proof size in bytes: 259 Bytes
Gas cost per decryption of 1 solver: 82684 gas

18

15 Solver Resignation
A solver in SH-CIP MPC can exit the system at their choice via submitting a request
by calling a SafeBox smart contract function refuseGuardianDuties(). Irrespective of the
phase (application, execution, or handover).

It is of paramount importance that RageQuit is available for all participants upholding
the permissionless principle. However once resigned from being a solver, it is permanent
and the user cannot rejoin in the process in the future both off-chain and on-chain elements
of dCommon - CIP

15.1 Solver Blacklist
Registries gives the ability to reconcile its data in isolation deterministically, and without
incurring on-chain transactions with its oUTXO. CIP leverages this construct for main-
taining a blacklist registry - an append only registry that gives the ability to reveal private
values submitted by the solver in combination with their AES key and NIZK proof that
verifies the correctness of revealed information and serves as a validation for an encryption
complaint.

CIP as it was named weighed on the common interest of the network and the partici-
pants, to maintain an optimal MPC network. The registry allows discarding any solver who
had a history of misbehavior complaints. The mechanism is highly useful for a on-chain
reputation for dCommon continuous hygiene on solver selection for CIP applications and
its users, to filter out solvers who have a record of submitting malicious information or
wrongly accusing other parties of misbehaviour.

16 CIP Monitoring
CIP is an auditable and publicly verifiable MPC scheme for Ethereum applications, hence
observability is very key for all user-driven actions for others to monitor. CIP uses the
widely used indexer service graph protocol to expose the application data in a queriable
manner as a dedicated subgraph for other protocols to utilize and bring more transparency
and accountability for Stakehouse assets and node performance.

Alternate to this, CIP application and its MPC operational data are always accessible
from any Ethereum execution node or any other indexing services of users’ choice.

16.1 The Graph
The graph [1] is an indexing service that works by being triggered by the Ethereum events.
The data points tracked by the CIP subgraph [4] are the following:

• totalNumberOfGuardianRegistrations - Number of users who signed up to be
solvers

• solverPass - The number of partial decryption solutions to be obtained for assembling
the private key necessary for decryption

• numberOfInitialGuardians - Number of initial Participants in the DKG procedure

19

• totalNumberOfDecryptionRequests - Total number of times a request been
made to compute the partial decryption solution for key recovery

Decryption Request:

• id - BLS public key and internal nonce concattenation to indicate the decryption
request target and how many times was recovery requested

• requesters - Array of addresses that requested decryption

• stakehouse - The stakehouse to which the recovered validator belongs

• blsPublicKey - The BLS public key of the validator

• nonce - Decryption request number

• recipientAesKey - Hybrid public key which will receive the information posted by
the committee (needed to establish private communication via public space)

• totalNumberofPiecesReceived - Total number of partial decryption solutions
posted on the SafeBox

• blockNumber - Block Number during which the request was made

Decryption Piece:

• id - Transaction hash during which the partial decryption solution was submitted

• solver - The committee memeber who submitted the partial decryption solution

• recipientAesKey - Hybrid public key under which the partial decryption solution
is encrypted

• blsPublicKey - BLS public key for which the recovery is being assisted

• ciphertext - Ciphertext hiding the partial decryption solution

• zkProof - ZK proof for the user to verify that the solution was correct

• nonce - The number of recoveries assisting requests that were made for this BLS
public key

17 Disclaimer
This document is not final; hence the title "position paper," is for general information
purposes only. It does not constitute investment advice or a recommendation or solicitation
to buy or sell any investment and should not be used in the evaluation of the merits of
making any investment decision. The opinions and analysis reflected herein are subject
to change or update without being updated. This paper reflects the current opinions
of the authors and is not made on behalf of Blockswap Labs, or its affiliates, and does
not necessarily reflect the opinions of Blockswap Labs, Blockswap Foundation, or their
affiliates, or individuals associated with them. You may refer to Stakehouse and Common
Interest Protocol documentation for their latest published information.

20

Cryptographic Safe Box Specification
18.1 Building Blocks
18.1.1 Elliptic Curve Over Fp

The implementation of our scheme is based on elliptic curve groups for efficiency. Let
σ := (p, a, b, g, q, ζ) be the elliptic curve domain parameters over Fp, consisting of a prime
p specifying the finite field Fp, two elements a, b ∈ Fp specifying an elliptic curve E(Fp)
defined by E : y2 ≡ x3 + ax+ b (mod p), a base point g = (xg, yg) on E(Fp), a prime q
which is the order of g, and an integer ζ which is the cofactor ζ = #E(Fp)/q. We denote
the cyclic group generated by g by G, and it is assumed that the DDH assumption holds
over G, that is for all p.p.t. adversary A:

AdvDDH
G (A) =

∣∣∣∣Pr
[
x, y ← Zq; b← {0, 1} ;h0 = gxy;
h1 ← G : A(g, gx, gy, hb) = b

]
− 1

2

∣∣∣∣ ≤ ϵ(λ) ,

where ϵ(·) is a negligible function.

18.1.2 Hybrid Encryption

The hybrid encryption scheme consists of the following 4 PPT algorithms.

• Gengp(1λ): take input as security parameter λ ∈ N, and output a group parameter σ.

• HE.KeyGen(σ): pick random s← Z∗
q and set h := gs, and output (pk := (g, h), sk :=

s).

• HE.Encpk(σ;m): pick random r ← Zq; compute c1 := gr and c2 := hr; set k ←
hash(c2); compute u := AES-GCMk(m); output C = (c1, u).

• HE.Decsk(σ;C): compute c2 := (c1)sk; set k ← hash(c2); outputm := AES-GCM−1
k (u).

18.1.3 ZK Proof for Decryption

We construct a non-interactive zero-knowledge (NIZK) proof to show the correctness of
decryption w.r.t. the hybrid encryption scheme. Actually, the prover only needs to provide
c2 := (C1)sk and show its correctness. The verifier then computes k ← hash(c2) and checks
the decryption by m = AES-GCM−1

k (u). The NIZK protocol is depicted in (Fig. 4).

21

Statement: pk := (g, h), C := (c1, u) and c2

Witness: sk

Prove:
• Pick random t← Zq and compute w1 := gt and w2 := ct

1;
• Compute e← hash(pk, C, c2, w1, w2);
• Compute z := t + e · sk (mod q);
• Output π := (w1, w2, z);

Verify:

• Compute e← hash(pk, C, c2, w1, w2);
• Output 1 if and only if the following holds:

– he · w1 = gz ;
– ce

2 · w2 = cz
1;

NIZK proof for decryption correctness ΠHE.Dec
nizk (pk, sk)

Figure 4: NIZK proof for decryption correctness ΠHE.Dec
nizk

18.1.4 Distributed Key Generation

Distributed key generation (DKG) is a fundamental building block of the proposed
cryptographic safe box system. Ideally, the protocol termination should be guaranteed
when up to t = ⌈n

2 ⌉ − 1 out of n committee members are corrupted. We will adopt the
distributed key generation protocol proposed by Gennaro et al. [9]). Denote the committee
as P := {P1, . . . , Pn}. In a nutshell, the protocol lets the committee members Pi first
post a “commitment” of pki. After sharing the corresponding ski via (t+ 1, n)-threshold
VSS, the committee members Pi then reveal pki. We will use the blockchain to realize
the broadcast channel and peer-to-peer channels. Our distributed key generation protocol
Πt,n

DKG is depicted in (Fig. 5). It allows us to accommodate up to t < n/2 malicious players
in the protocol. That is, guaranteeing that with ⌊n

2 ⌋+ 1 honest players, all the players
should be able to agree on a uniformly random public key pk such that no malicious players
can influence the distribution of the generated public key. The corresponding secret key is
shared among all committee members.

22

Setup: Each party Pi ∈ P is associated with a long-term public key pki, and Pi holds the
corresponding secret key ski, i ∈ [n].
CRS: The commitment key u ∈ G.

Round 1: Each party Pi ∈ P does the following:
• Pick random ai,0, ai,1, . . . , ai,t, bi,0, bi,1, . . . , bi,t ← Zq .

• Define two polynomials fi(x) :=
∑t

ℓ=0 ai,ℓxℓ and f ′
i(x) :=

∑t

ℓ=0 bi,ℓxℓ.

• For ℓ ∈ {0, . . . , t}, post Ei,ℓ := gai,ℓ ubi,ℓ on the blockchain.
• For every other Pj ∈ P, j ̸= i, compute si,j := fi(j) and s′

i,j := f ′
i(j);

Post ei,j ← HE.Encpkj
(si,j , s′

i,j) on the blockchain.
Round 2: Each party Pi ∈ P does the following:

• Fetch {ej,i}j∈[n],j ̸=i from the blockchain, and use ski to decrypt them, obtaining the
corresponding shares {(sj,i, s′

j,i)}j∈[n],j ̸=i.

• For j ∈ [n], j ̸= i, check if gsj,i h
s′

j,i =
∏t

ℓ=0(Ej,ℓ)iℓ . If not, post complain against Pj

by revealing the evidence: (sj,i, s′
j,i) and

π ← NIZK
{

((sj,i, s′
j,i, pki, ej,i), (ski)) : (sj,i, s′

j,i) = HE.Decski
(ej,i) ∧ (pki, ski) ∈ RPKE

}
• (One valid complain against Pj ∈ P will disqualify Pj .)

Round 3: Define the indices of the qualified set of parties as J . Each qualified party Pi

does:
• For ℓ ∈ [t], post Ai,ℓ := gai,ℓ to the blockchain.

• Return its secret key share as ski :=
∑

j∈J sj,i.

Round 4: Each qualified party Pi does the following:

• For j ∈ J , j ̸= i, check if gsj,i =
∏t

ℓ=0(Aj,ℓ)iℓ . If not, post complain against Pj

together with the evidence (sj,i, s′
j,i) on the blockchain. Such that

gsj,i h
s′

j,i =
∏t

ℓ=0(Ej,ℓ)iℓ and gsj,i ̸=
∏t

ℓ=0(Aj,ℓ)iℓ .
Round 5: Each qualified party Pi do the following:

• If there is a valid complain against Pj , j ∈ J , then post the share sj,i on the
blockchain.
(Everyone can reconstruct aj,0 :=

∑
i∈J si,j · λi and re-define Aj,0 := gaj,0 , where

λi :=
∏

ℓ∈J \{i}
ℓ

ℓ−i
are the Lagrange coefficients.)

• For m ∈ J , compute Pm’s partial public key pkm :=
∏

j∈J

∏t

ℓ=0(Aj,ℓ)iℓ

• Return the election public key as pk :=
∏

j∈J Aj,0 and partial public keys {pkm}m∈J .

Distributed key generation Πt,n
DKG

Figure 5: Distributed key generation Πt,n
DKG

18.1.5 Threshold Decryption

The threshold decryption protocol Πt,n
TDec is executed among a set of parties P :=

{P1, . . . , Pn}. The adversary is allowed to corrupt up to t = ⌈n
2 ⌉ − 1 parties, and the

remaining parties can still compute a sufficient amount of partial decryption solutions. As
depicted in (Fig. 6), the protocol uses blockchain as the broadcast channel. In a nutshell,
we let the committee members to compute partial decryption solutions and encrypt the
partial decryption solutions under the recipient’s public key pk. Subsequently, the recipient
can use its secret key sk to decrypt them and assemble the key that allows to decrypt the
message. To ensure partial decryption solution correctness, the committee members are

23

also required to submit a NIZK proof.

Setup: Each party Pi has a partial decryption key pair (pki, ski).

Input: Encryption hybrid public key c1 and the recipient’s public key pk.

Multi-Party computation: Each party Pi ∈ P does the following:

• Compute Di := (c1)ski and encrypt ei ← HE.Encpk(Di).

• Compute the corresponding NIZK proof ΠHE.Dec
nizk (pki, ski) (cf. Fig. 4):

σi ← NIZK
{

(g, pki, c1, Di), (ski) : Di = (c1)ski ∧ pki := gski

}
• Post (ei, σi) on the blockchain.

Multi-Party Computation Πt,n
TDec

Figure 6: Multi-Party Computation Πt,n
TDec

The following algorithm describes the decryption procedure performed by the recipient
(Fig. 7).

Setup: Each party Pi has a partial decryption key pair (pki, ski), recipient has a public and
private hybrid keys sk and pk

Input: Encryption hybrid public key c1 and the recipient’s public key pk.

Recipient: The recipient holds C = (c1, u) and does the following:
• Fetch {(ei, σi)}i∈[n] from the blockchain, and decrypt Di ← HE.Decsk(ei), i ∈ [n];
• For i ∈ [n], check the correctness of Di by verifying the NIZK proofs σi.
• Compute D :=

∏
i∈I(Di)γi and k ← hash(D), where I ⊆ [n], |I| = t + 1 and

γi :=
∏

ℓ∈I\{i}
ℓ

ℓ−i
;

• Decrypt m := AES-GCM−1
k

(u);

Decryption by Recipient

Figure 7: Decryption by Recipient Πt,n
TDec

18.1.6 Handover Protocol

Suppose a committee P := {P1, . . . , Pn} jointly hold the secret key sk for the public key
pk in the (t+ 1, n)-Shamir secret sharing form. They want to handover the secret key sk
to the new committee S := {S1, . . . , Sm} in the (k + 1,m)-Shamir secret sharing form for
any k < m. As described in (Fig. 8), the handover protocol let each committee member
Pi ∈ P to share its secret key share to everyone in committee S using Feldman’s VSS.
Each new committee member then combines the received shares to obtain its final secret
key share.

24

Setup: Each old committee member Pi ∈ P holds a partial decryption key pair (pki, ski).
Each new committee member Sj ∈ S holds a pair of public key for PKE (p̂kj , ŝkj). Here,
{pki}i∈[n] and {p̂kj}j∈[m] are publicly known.

Old committee members: Each party Pi ∈ P does the following:
• Pick random ai,1, . . . , ai,k ← Zq and set ai,0 := ski.

• Define a polynomial fi(x) :=
∑k

ℓ=0 ai,ℓxℓ.

• For ℓ ∈ {1, . . . , k}, post Ei,ℓ := gai,ℓ on the blockchain.
• For every Sj ∈ S:

– Compute si,j := fi(j);
– Post ei,j ← HE.Encp̂kj

(si,j) on the blockchain.

New committee members: Each party Sj ∈ S does the following:
• Fetch {ei,j}i∈[n] from the blockchain, and use ŝkj to decrypt them, obtaining the

corresponding shares {si,j}i∈[n].

• For i ∈ [n], check if gsi,j =
∏k

ℓ=0(Ei,ℓ)iℓ , where Ei,0 = pki. If not, post complain
against Pi by revealing the evidence: si,j and

π ← NIZK
{

((si,j , p̂kj , ei,j), (ŝkj)) : si,j = HE.Decŝkj
(ei,j) ∧ (p̂kj , ŝkj) ∈ RPKE

}
(cf. Fig. 4)

• (One valid complain against Pi ∈ P will disqualify Pi.)

• Set the new partial public key as p̃kj :=
∏

i∈I

∏k

ℓ=0(Ei,ℓ)iℓ·γi , where I ⊆ [n],
|I| = t + 1 and γi :=

∏
ℓ∈I\{i}

ℓ
ℓ−i

;

• Set the new partial secret key as s̃kj :=
∑

i∈I si,j · γi, where I ⊆ [n], |I| = t + 1 and
γi :=

∏
ℓ∈I\{i}

ℓ
ℓ−i

;

• Return (p̃kj , s̃kj).

The Handover Protocol Πt,n,k,m
handover

Figure 8: The handover protocol Πt,n,k,m
handover

25

Appendix

Figure 9: Signing key recovery using CIP MPC

19.2 Subgraph queries

{
c ipGloba lValues (f i r s t : 5) {

id
SafeBox
so lv e rPas s
numberOfInit ia lGuardians
totalNumberOfEncryptions

26

totalNumberOfDecryptionRequests
}

}

Guaridan q u e r i e s :

{
guard ians (f i r s t : 10) {

id
aesPublicKey
guard ianIndexPointer
r e l i n q u i s h e d
i n i t i a l
sharedPublicKey

}
}

Encryptions :

{
enc rypt i ons (f i r s t : 10) {

id
c i p h e r t e x t
encryptorAesKey
encryptor
nat ive

}
}

19.3 Glossary
The following table (Tab. 8) summarizes the notation used for cryptographic credentials
used in the CIP operations:

Table 8: Description for notation used in the CIP procedures
Symbol Description Actor

ski Shared hybrid secret belonging to the solver i MPC Solver

pki Shared hybrid public key belonging to the solver i MPC Solver

PK Master public key resulting from the DKG procedure Recovery requester

ski Personal hybrid secret key belonging to the solver i MPC Solver

pki Personal hybrid public key of the solver belonging to the solver i MPC Solver

u Ciphertext hiding the BLS signing key Recovery requester

h Hybrid public key used to create the ciphertext of the BLS signing key MPC solver

τ Hybrid secret key used to create the ciphertext of the BLS signing key MPC solver

k Hybrid secret key assembled from Shamir secret sharing that is used to unlock the ciphertext u Recovery requester

m BLS signing key Recovery requester

skr Personal requester hybrid secret key Recovery requester

pkr Personal requester hybrid public key Recovery Requester

27

References
[1] APIs for a vibrant decentralized future. url: https://thegraph.com/en/.
[2] Blockswap Stakehouse 2nd audit by Runtime Verification. url: https://github.

com/runtimeverification/publications/blob/main/reports/smart-contracts/
Blockswap_Stakehouse_2nd_Audit.pdf.

[3] Dan Boneh et al. Bls signature scheme. Tech. rep. Technical Report draft-boneh-bls-
signature-00, Internet Engineering Task Force, 2019.

[4] Common Interest Protocol Subgraph. url: https://thegraph.com/hosted-service/
subgraph/stakehouse-dev/common-interest-protocol.

[5] Vincent Almeida Derek Rickert Matt Shams. Stakehouse Protocol and Multichain ETH.
https://github.com/stakehouse- dev/papers/blob/main/position_paper.
pdf. Blockswap Labs, 2022.

[6] Ethereum. Ethereum Improvement Proposal 1559. May 2022. url: https://github.
com/ethereum/EIPs/blob/master/EIPS/eip-1559.md.

[7] Extended overview of Ethereum 2.0 keys. url: https://kb.beaconcha.in/ethereum-
2-keys.

[8] Ethereum Foundation. Consensus Specification Ethereum. May 2022. url: https:
//github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-
chain.md.

[9] Rosario Gennaro et al. “Secure distributed key generation for discrete-log based
cryptosystems”. In: Journal of Cryptology 20.1 (2007), pp. 51–83.

[10] Yulin Liu et al. “Empirical Analysis of EIP-1559: Transaction Fees, Waiting Time,
and Consensus Security”. In: arXiv preprint arXiv:2201.05574 (2022).

[11] Daejun Park, Yi Zhang, and Grigore Rosu. “End-to-end formal verification of
Ethereum 2.0 deposit smart contract”. In: International Conference on Computer Aided Verification.
Springer. 2020, pp. 151–164.

[12] Torben Pryds Pedersen. “Non-interactive and information-theoretic secure verifi-
able secret sharing”. In: Annual international cryptology conference. Springer. 1991,
pp. 129–140.

[13] Proof of stake FAQ. url: https://vitalik.ca/general/2017/12/31/pos_faq.
html.

[14] RANDAO. url: https://eth2.incessant.ink/book/06__building-blocks/02_
_randomness.html#enter-randao.

[15] Leonid Logvinov (@LogvinovLeon) Remco Bloemen (@Recmo). EIP-712: Typed structured data hashing and signing.
Sept. 2017. url: https://eips.ethereum.org/EIPS/eip-712.

[16] Tim Roughgarden. “Intrinsic robustness of the price of anarchy”. In: Journal of the ACM (JACM)
62.5 (2015), pp. 1–42.

[17] Tim Roughgarden. “Transaction fee mechanism design for the Ethereum blockchain:
An economic analysis of EIP-1559”. In: arXiv preprint arXiv:2012.00854 (2020).

[18] Standard curve database (P-256). url: https://neuromancer.sk/std/nist/P-
256#.

[19] Justin Zal. Numerical Malicious Committee Takeover Simulation. url: https://
gist.github.com/JustinZal/08b8d216a131090f22d2b5378e7abd53.

28

https://thegraph.com/en/
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Blockswap_Stakehouse_2nd_Audit.pdf
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Blockswap_Stakehouse_2nd_Audit.pdf
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Blockswap_Stakehouse_2nd_Audit.pdf
https://thegraph.com/hosted-service/subgraph/stakehouse-dev/common-interest-protocol
https://thegraph.com/hosted-service/subgraph/stakehouse-dev/common-interest-protocol
https://github.com/stakehouse-dev/papers/blob/main/position_paper.pdf
https://github.com/stakehouse-dev/papers/blob/main/position_paper.pdf
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://kb.beaconcha.in/ethereum-2-keys
https://kb.beaconcha.in/ethereum-2-keys
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md
https://vitalik.ca/general/2017/12/31/pos_faq.html
https://vitalik.ca/general/2017/12/31/pos_faq.html
https://eth2.incessant.ink/book/06__building-blocks/02__randomness.html#enter-randao
https://eth2.incessant.ink/book/06__building-blocks/02__randomness.html#enter-randao
https://eips.ethereum.org/EIPS/eip-712
https://neuromancer.sk/std/nist/P-256#
https://neuromancer.sk/std/nist/P-256#
https://gist.github.com/JustinZal/08b8d216a131090f22d2b5378e7abd53
https://gist.github.com/JustinZal/08b8d216a131090f22d2b5378e7abd53

	Introduction & Rationale
	Stakehouse and Ethereum Consensus
	Ethereum Staking Keys

	Stakehouse - CIP
	Key building blocks
	Cryptographic Primitives

	Multi-Party Computation (MPC)
	Stakehouse CIP MPC

	SH-CIP Configuration
	Role Matrix
	Architecture

	MPC Operation
	Core Assumptions
	SH-CIP MPC operation overview
	Helper functions
	Signing Key Encryption on Ethereum
	Signing Key Decryption MPC
	Decryption procedure
	NIZK Proof
	Key assembling procedure

	SH-CIP DKG
	Distributed Key Generation (DKG)
	DKG Actors

	Handover DKG - Solver Committee Expansion
	Old solvers
	New solvers
	Solver Registration

	Economic analysis for Ad-hoc committee
	Initial DKG and MPC service
	Reset DKG - Switching the SafeBox
	Complexities
	Solver Resignation
	Solver Blacklist

	CIP Monitoring
	The Graph

	Disclaimer
	Building Blocks
	Subgraph queries
	Glossary

