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Abstract

A Bloom filter is a data structure that maintains a succinct and probabilistic
representation of a set S ⊆ U of elements from a universe U . It supports approximate
membership queries. The price of the succinctness is allowing some error, namely
false positives: for any x /∈ S, it might answer ‘Yes’ but with a small (non-negligible)
probability.

When dealing with such data structures in adversarial settings, we need to define
the correctness guarantee and formalize the requirement that bad events happen
infrequently and those false positives are appropriately distributed. Recently, several
papers investigated this topic, suggesting different robustness definitions.

In this work we unify this line of research and propose several robustness notions
for Bloom filters that allow the adaptivity of queries. The goal is that a robust
Bloom filter should behave like a random biased coin even against an adaptive
adversary. The robustness definitions are expressed by the type of test that the
Bloom filter should withstand. We explore the relationships between these notions
and highlight the notion of Bet-or-Pass as capturing the desired properties of such
a data structure.

1 Introduction

A Bloom filter is a data structure that maintains a succinct representation of a set S ⊆ U
of elements from a universe U . It supports an approximate version of membership queries:
for any x ∈ S, the Bloom filter must answer ‘Yes’ while for any x ∈ U \ S, it should
answer ‘No’, but is allowed to have a small error probability1 (at most ε), and answer
‘Yes’. That is, it admits false positives but not false negatives.

The small memory required by the construction of Bloom filters (as opposed to storing
S precisely) and the fast query time make Bloom filters extremely attractive in various
applications. This comes at the price of a certain rate of false positive - elements not in
the set declared as being in the set. False positives can affect performance, e.g., they can
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incur unnecessary disk access, lead to spam emails that are not marked as spam, and
allow misspelled words. Therefore, the false positive rate is the main correctness metric
that interests us. It is important to note that the false positive rate cannot be negligible
if we wish to save space2.

When we are dealing with a data structure such as Bloom filters, with a non-negligible
false-positive rate the question is how should we define the correctness guarantee: what
does it mean to see bad events infrequently, i.e., how can we claim the data structure
behaves “nicely”. (In contrast, in most of cryptography a “bad” event happens with only
negligible probability and the definition of security is that we aren’t likely to see it at all).
One way to define the correctness is by first fixing a sequence of inputs (equivalently, the
queries) and then show an upper bound on the false positive rate. However, this is not
sufficient in many scenarios, especially when the queries are chosen adaptively, based on
previous queries’ responses.

This work proposes several robustness notions for Bloom filters that allow adaptivity
and capture adversaries with different goals, using different evaluation metrics. The
robustness definitions are formalized as tests to the Bloom filter. We investigate the
relationships between these notions and propose one notion as the most desirable one to
define robust Bloom filters.

There are many variants of Bloom filters, for instance, where the Bloom filter is
initially empty and the set S is defined via insert queries, or where some extra information
is attached to each element and we wish to retrieve this information in case the element
is in the set. In this work we concentrate on the case where the set S is fixed and the
queries are adaptively chosen. Our definitions are relevant to the other variants as well,
and as far as we can see, so are the relationships we found. In addition, the question
of defining the resiliency of a data structure with non-negligible failure faced with an
adaptive adversary is relevant to other data structures, and our results may apply to
them as well.

Robust Bloom filters. The correctness of Bloom filters was mainly analyzed under
the assumption that we first fix a query x and then compute the error probability over the
internal randomness. We refer to this as the static analysis. One might ask what happens
when an adversary chooses the next query based on the response of previous ones? Does
the error probability remain the same? Those questions motivated the analysis of Bloom
filters in adversarial settings, where an adversary chooses her queries adaptively.

We refer to a Bloom filter as robust if it satisfies some correctness guarantee under
adaptive adversarial settings. Our wishful thinking is that a “robust” Bloom filter should
behave like a truly unpredictable biased coin; that is, each query is false positive with
probability at most ε regardless of the result of previous queries. Indeed, this is the
case in the static settings. However, it is not true and more complex to formalize when
considering a sequence of (mostly adaptively) chosen queries. One reason this is not true
is that seeing the response on previous inputs might leak some information about the

2The lower bound on memory requirements of a Bloom filter is n log 1/ε where n is the size of the set
S and ε is the error probability.
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internal state of the data structure or the random bits used. This, in turn, can be used
by an adversary that, for example, wants to increase the false-positive rate.

An example to demonstrate an adaptive attack is when using Bloom filters in Web
cache sharing (see [FCAB00]). When a proxy gets a request for a web page, it first
checks if the page is available in its cache, and only then does it search for the web
page on another proxy cache. As a final resort, it requests the web page from the Web.
Therefore, proxies must know the cache’s content of other proxies. For such a scheme
to be effective, proxies do not transfer the exact contents of their caches but instead
periodically broadcast Bloom filters that represent it. If a proxy wants to know if another
proxy has a page in its cache, it checks the corresponding Bloom filter. In case of false
positives, a proxy may request a page from another proxy, only to find that this proxy
does not have that page. In this case, a delay is caused. In the static analysis, one would
set the error to be small such that cache misses rarely happen. However, an adversary
requesting for web pages can time the result of the proxy, and learn the responses of the
Bloom filters. In turn, this might enable her to find false positives and cause unsuccessful
cache access, which leads to an overload. Note that the adversary cannot repeat a false
positive since the proxy will save it in its cache once a web page is requested. A similar
example was presented in [NY15].

1.1 Our Contributions

We explore old and new notions of robustness for Bloom filters and study the relationships
between them. The precise definitions are given in Section 3. Our definitions aim to
capture the idea that a robust Bloom filter should behave like a random biased coin
even for an adaptive adversary. We highlight the notion of Bet-or-Pass as capturing
the desired properties of such a data structure. First, as we shall see, it gives us the
strongest guarantee we can (currently) imagine. Second, it is not too strong: there is a
Bloom filter satisfying this notion (one based on a construction in [NY15]). Finally, it is
relatively convenient to check whether a suggested construction of a Bloom filter satisfies
the definition.

Following the work of Naor and Yogev [NY15] we define robustness tests in the form
of a game with an adversary. The adversary chooses the set S and adaptively queries the
Bloom filter. The goal of the adversary differs between tests. Naor and Yogev defined
that following the adaptive queries, the adversary must output a never-queried before
element x∗, which she thinks is a false positive. They said that an adversary wins if x∗ is
a false positive. They wanted the probability of an adversary to win (equivalently- make
the Bloom filter fail the test) to be at most ε. We refer to the security notion of Naor
and Yogev as the Always-Bet (AB) test.

We define a new test, extending the AB test. First, we allow the adversary to pass,
meaning she does not have to provide any output. This gives the adversary more flex-
ibility and defines a more robust test. In addition, we define an adversary’s profit: if
she outputs (bets on) an element x∗ which is indeed a false positive, she is rewarded;
otherwise, she “pays”. If she chooses to pass, her profit is zero. Our profit definition gives
rise to a new metric to evaluate Bloom filters: we set the payments so that a random
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guess with probability ε has an expected profit of 0. We say that an adversary makes the
Bloom filter fail in the Bet-or-Pass (BP) test if her expected profit is noticeably larger
than 0. In this case, the Bloom filter is not BP test resilient, (not robust under the BP
test).

The AB and the BP tests consider a one-time challenge, x∗. We also consider tests
with a “continuous” flavor; those tests examine the false positive rate in the entire se-
quence of adaptive queries and look for “anomalies”. We propose a new family of tests
following our original desire to require a robust Bloom filter to behave like a truly un-
predictable biased coin. Informally, it tests whether a sequence generated by the output
of a Bloom filter on adaptively selected queries “looks like” a biased random coin to any
efficient observer (that examines some property of the sequence). Since there can be
elements that are always true negatives and we are only interested in cases where an
adversary increases the false positive rate, we consider monotone observers only - ob-
servers that test a monotone property of the sequence. In other words, observers that
are sensitive to the addition of false positives and not the reduction of ones. If a Bloom
filter does not fail in all monotone tests, we say it is monotone test resilient. We then
analyze a special case of the monotone test: we look at the expected number of false
positives. We say that a Bloom filter is expected count test resilient if for all adversaries
the expected number of false positive in t queries is at most the expected number of ones
in a sequence of t independent biased coin tosses.

Finally, we emphasize why adaptive queries are interesting by introducing a test we
call the semi-adaptive prediction test. In this test, the adversary commits to a set of
queries Q (non-adaptive) before getting access to query the Bloom filter. The adversary
aims to find a false positive element from Q that was not queried yet (the adaptive part).
A Bloom filter is a semi-adaptive prediction resilient if no adversary can find a false
positive element from Q with a probability of at least ε.

Relationships. We explore the relationships between the different definitions (see Fig.
1). We prove that a Bloom filter that is BP test resilient is also AB test resilient. On the
other hand, we show that a Bloom filter that is AB test resilient is not necessarily BP
test resilient. This suggests that the BP test is a more robust notion than the AB test.
We support this idea by showing that BP test resilience implies monotone test resilience3

while a Bloom filter that is AB test resilient is not necessarily monotone test resilient.
However, we show that AB test resilience, in turn, implies expected count test and semi-
adaptive prediction resilience. We also demonstrate that the expected count test and
semi-adaptive prediction are weak notions: we construct Bloom filters that satisfy those
notions and fail the AB test. Finally, we show that monotone test resilience implies
expected count test resilience, supporting that the expected count is indeed a special
case of monotone test. We conclude that being resilient to the BP test guarantees the
desired robust properties and suggests it is the correct way to define a robust Bloom
filter.

3This is reminiscent of the fact that in pseudorandomness the next-bit-test implies all efficient tests.
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Figure 1: The relationships between the different definitions.

BP as a natural notion of robustness. Does the BP test capture the desired be-
havior of a Bloom filter as a random (biased) coin? At first glance, the skeptical reader
might think that the option of passing is strange4. However, given that BP test resilience
implies monotone test resilience, we can get some intuition why this is indeed the case.
The idea is that when a Bloom filter fails in the monotone test, we can use the monotone
distinguisher to know when to bet. This means that when a Bloom filter’s behavior
is distinguishable from a random coin, an adversary can exploit that to guess a false
positive element with a high probability (higher than a random guess).

Our work explores what it means to be a robust Bloom filter. When trying to suggest
a definition, we aim to achieve three requirements: First, the definition is sufficient, i.e.,
it captures the idea that a robust Bloom filter should behave like a random biased coin.
Second, it’s not too strong, i.e., there exists a construction of a Bloom filter satisfying
this property. Lastly, it is easy to use, i.e., it is formalized as a simple test for a Bloom
filter. The BP test resilience definition satisfies all these requirements, suggesting it is a
natural notion of robustness.

Finally, we give an example to directly motivate the BP definition. Consider a system
containing k different components, each using a Bloom filter to store some set (e.g., k
web proxies with a Bloom filter holding their cache content). Further, assume that
the system as a whole can withstand a certain false positive rate, denoted by epsilon.
Suppose that there exists an adversary that, with noticeable probability, can find a false
positive element with high probability (greater than epsilon) and knows to indicate when
it happens. We can use this adversary in all the k components simultaneously in the
following way: we locate k′ components with a corresponding false positive element. We
then query all those k′ elements at about the same time. This results in a short period
with a high false positive rate in the system, which can cause a denial of service. Note
that the other notions fail to capture this attack.

4An analogy is situation in the casino game of blackjack, where at a certain point in the game the
participants may have a small advantage over the house, as more cards are exposed (followed via “card
counting”), and may choose to start betting then or to increase their bets.
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The surprise exam and the AB and BP notions. We can demonstrate the dif-
ference between the AB and BP notions by thinking of these variants wrt the famous
surprise exam (or unexpected hanging) paradox [Ear21]. Suppose a teacher announces
that a “surprise exam” will occur sometime in the next six days and choose the date at
random. On the evening of each day, a student can bet whether the exam will happen
the next day. If the student is correct, then she wins 5 dollars; if she is wrong, she loses a
Dollar. In both settings the student can bet only once. In the AB setting, she must bet
in at least one day, and in the BP setting, she can decide not to bet at all. The expected
value in the AB setting is 0 (against a random day). In contrast, in the BP setting, the
student can wait until the last day and bet only if the exam did not take place before. In
this case, she knows the exam is on the last day and has a strictly positive expectation
(5/6). If the teacher does not chooses a day at random, but with some other distribution,
then we need a more sophisticated strategy, but it is doable.

Computational Assumptions and One-way Functions. Naor and Yogev [NY15]
proved existential equivalence between Bloom filters that are AB test resilient (against
a computationally bounded adversary) and one-way functions5. We refer to it as the
equivalence result. We ask whether this equivalence still holds given a Bloom filter that is
BP test resilient. The simpler direction shows that a Bloom filter that is BP test resilient
implies the existence of one way function (we get it immediately by the implication of
the BP test on the AB test). Showing the other direction is a little bit more challenging.
We show a modification of the construction of Bloom filter from [NY15] that is based on
the existence of one-way functions and prove it is BP test resilient. This, in turn, show
the desired equivalence.

We also ask whether weaker notions of robustness imply one-way functions. We
show that if one-way functions do not exist, then any non-trivial6 Bloom filter fails the
expected count test the semi-adaptive prediction test.

1.2 Related work

The first work to consider adaptive adversaries that choose queries based on the response
of the Bloom filter is by Naor and Yogev [NY15]. They defined an adversarial model
for Bloom filters through a game with an adversary. The adversary has only oracle
access to the Bloom filter and cannot see its internal randomness. She can adaptively
query the filter, and her goal is to find a never-queried-before false-positive element.
We continue this line of research by introducing new adversarial models, suggesting new
ways to evaluate the Bloom filter performance. Naor and Yogev also presented a tight
connection between Bloom filters in their model and one-way functions, which we extend
to our settings.

Following [NY15], Clayton, Patton, and Shrimpton [CPS19] analyzed Bloom filters,
as well as other data structures such as counting Bloom filters and count-min sketches, in

5One-way functions are functions that, informally speaking, are easy to compute but hard to invert.
6Non-trivial Bloom filters are Bloom filters that require less space than the amount of space required

to explicitly store the set.
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adversarial settings. They analyzed the probability of getting some predefined number of
false-positive elements in a sequence of adaptive queries (as opposed to the probability of
finding one never-queried before false-positive element). This type of analysis is similar
to our expected count test.

Another move towards adaptivity was made by Bender et al. [BFG+18]. Similarly
to [NY15], they indicated that the bound of false-positive probability only applies to a
single fixed query, and a sequence of queries can have a much larger false positive rate
(simply by repeating a false positive query). Their main concern was when an adversary
repeats a false positive query (unlike Naor and Yogev, which did not allow repeating
queries). To deal with this type of attack, they defined an adaptive filter : a filter that
adapts to false positives, which means that even for an element that was queried and
returned as a false positive, repeating it results in a false positive rate of at most ε. Their
analysis assumes that the adversary could not find a never-queried-before element that is
a false positive with probability greater than ε when using the result of previous queries.
Their assumption can be achieved using the constructions in [NY15]. Therefore, their
work is orthogonal to Naor and Yogev (and ours), since their concern is dealing with
repeated queries and does not handle the issue of using adaptivity to find never-queried
false positives. Repeated queries were also discussed by Mitzenmacher et al. [MPR20]
(adaptive cuckoo filter), and by Lee et al. [LMSS21] (telescoping adaptive filter (TAF)).

The problem of defining correctness in adaptive settings was also investigated in the
streaming algorithms literature, where there is a growing interest in adversarial streaming
algorithms. These algorithms preserve their efficiency and correctness even if the stream
is chosen adaptively by an adversary that observes the algorithm’s output (and therefore
can depend on the internal randomness of the algorithm). Hardt and Woodruff [HW13]
showed that linear sketches are inherently non-robust to adaptively chosen inputs and
cannot be used to compute the Euclidean norm of its input (while they are primarily used
for this reason in the static setting). Kaplan et al. [KMNS21] introduced a streaming
problem that shows a gap between adversarial and oblivious streaming in the space
complexity requirement. On the positive side, Ben-Eliezer et al. [BJWY21] presented
generic compilers that transform a non-robust streaming algorithm into a robust one in
various scenarios. Hassidim et al. [HKM+20] and Woodruff and Zhou [WZ20] continued
their work suggesting better overhead.

1.3 Open Problems

Our work leaves open several interesting directions. The direct one is whether Monotone
Test Resilience implies BP Test Resilience (recall that we show the other direction), or
whether the two notions are separable. Are the techniques of Bender et al. [BFG+18]
compatible with our results? Namely, can we have a robust BP secure Bloom filter
against repetition? Another interesting avenue concerns the idea of allowing to output
“don’t know” (pass). To better capture the bit-security of decision games, Micciancio
and Walter permitted an adversary to output a bot and redefined the advantage of the
adversary conditioning on not outputting a bot (Def. 9 in [MW18]). Outputting a bot
is very similar to pass in the BP test, and allowing pass and redefining the advantage
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gives a better notion. One wonders if there is a connection between these two definitions
and if our definition can be applied in a more general setting (e.g., defining better bit-
security for general decision games). It seems that knowing you don’t know is significant
in both cases. The definitions are related but not identical. For instance, in our case,
the probability of the "secret bit" being 0 or 1 does not equal 1/2 (the probability of it
being 1, a false positive element, is ε). In addition, our game is asymmetrical: there is a
difference between the bits 0 and 1 (we are only interested in the adversary outputting
1). We believe that it can be applied in a more general setting, but more work needs to
be done to determine that.

2 Model and Problem Definition

For a universe U = [u] we are given a subset S ⊂ U of n elements. The set can either
be fixed throughout the lifetime of the Bloom filter or can be formed via insert queries.
As mentioned, we consider in this work the case where the set S is fixed; however, our
results can be extended to other settings.

Following the work of [NY15], we model a Bloom filter B = (B1,B2) as a data
structure consisting of two parts: a setup algorithm B1 and a query algorithm B2.
The setup algorithm is randomized, gets a set S as input, and outputs a compressed
representation of S, denoted by M . The query algorithm B2, can be randomized, is
given a compressed representation of a set S, and answers membership queries. It gets
an element x ∈ U and outputs 0 or 1, indicating whether x belongs to S or not (and
may be wrong for x /∈ S). For simplicity of notation, we consider a probabilistic query
algorithm that cannot change the set representation. However, our results also apply to
Bloom filters that can change the set representation.

If x /∈ S and B2(B1(S), x) = 1 we say that x is a false positive. The main evaluation
metric of a Bloom filter is the false positive rate.

Definition 2.1 (Bloom filter). Let B = (B1,B2) be a pair of probabilistic polynomial
time algorithms such that B1 gets as input a set S and outputs a representation M , and
B2 gets as input a representation M and a query element x ∈ U and outputs a response
to the query. We say that B is an (n, ε)-Bloom filter if for all sets S of size n in a suitable
universe U it holds that:

1. Completeness: For any x ∈ S we have that Pr[B2(B1(S, x)) = 1] = 1

2. Soundness: For any x /∈ S we have that Pr[B2(B1(S, x)) = 1] ≤ ε,

where the probabilities are over the setup algorithm B1 and query algorithm B2.

From here on, we always assume that B has this format and sometimes write B(S, x)
instead of B2(B1(S), x).
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The Adaptive Game. Def. 2.1 considers a single fixed input element x, and the
probability is taken over the randomness of the Bloom filter (and not over the choice of
x, for example). This is a weak guarantee that we want to strengthen. We consider a
sequence of t inputs x1, . . . , xt that is not fixed but chosen adaptively by an adversary.

Defining adaptivity requires specifying what information is made available to the
adversary to adapt. Here, we allow the adversary to see the responses of previous queries
before choosing the next one. We formalize this by defining a game AdaptiveGameA,t(λ)
where λ is a security parameter (see below). In this game, we consider a polynomial-
time adversary A = (A1,A2) that consists of two parts: A1 chooses the set S, and A2

gets as input the set S and oracle access to the query algorithm (initialized with M)
and perform adaptive queries. A2 aims to achieve a different goal in each robustness
definition in order to make the Bloom filter fail the game (equivalently, the test). We
measure the ability of A to make the Bloom filter fail with respect to her and the Bloom
filter randomness.

To handle a computationally bounded adversary, we add a security parameter λ,
which is given to the setup phase of the Bloom filter and the adversary as an input
(acts as a key length). We now view the running time of the adversary, as well as her
probability to make the Bloom filter fail, as functions of λ. Moreover, it enables the
running time of the Bloom filter to be polynomial in λ and hence the false positive
probability ε can be a function of λ.

We use the notation negl for any function negl : N → R+ satisfying that for every
positive polynomial p(·) there is an N such that for all integers n > N it holds that
negl(n) < 1

p(n) . Such functions are called negligible.

Definition 2.2. The adaptive game AdaptiveGameA,t(λ):

1. The adversary A1 is given input 1λ+n log u and outputs a set S ⊂ U of size n.

2. B1 is given input
(
1λ+n log u, S

)
and builds a representation M .

3. The adversary A2 is given input
(
1λ+n log u, S

)
and oracle access to B2(M, ·) and

performs at most t adaptive queries x1, . . . , xt to B2(M, ·).

We assume wlog that xi /∈ S for all i ∈ [t], since Bloom filters admit false positives,
but not false negatives, and also, A2 is given as input the set S. Therefore a queried
element can be either false positive or true negative.

Definition 2.3 (A test for Bloom filters). Let B be an (n, ε)-Bloom filter. For a security
parameter λ, an (n, t, ε)-Test(λ)A,t start with an adaptive game AdaptiveGameA,t(λ) with
an adversary A. The test is defined by a function that given the transcript of the game
(including the set S) decides ‘succeed’ or ‘fail’.

We say that a Bloom filter is resilient for some test (or family of tests) if the prob-
ability that any adversary makes it fail the test is upper bounded by some value. This
term is formalized for each test in Section 3.
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The role of t. The parameter t indicates the number of queries the adversary performs.
When t is not known in advance and unbounded, the adversaries must be computationally
bounded given the equivalence result of [NY15] (see Section 1.1). However, when t is
known in advance, the adversary does not have to be computationally bounded: Naor
and Yogev presented a construction of a Bloom filter that is AB test resilient against
computationally unbounded adversary using O

(
n log 1

ε + t
)
bits of memory.

Inspired by Def. 2.5 in [NY15] we say that if B is resilient for any polynomial number
of queries, it is strongly resilient.

Definition 2.4 (Strongly resilient). For a security parameter λ, we say that B is an
(n, ε)-strongly Test(λ)A,t resilient, if for any polynomial p(·) and t ≤ p(λ, n) it holds that
B is an (n, t, ε)-Test(λ)A,t resilient.

An essential property of a Bloom filter is its memory size. Bloom filters are used
because their memory size is smaller than an explicit representation of the set. We say
that a Bloom filter uses m bits of memory if the largest representation for all sets S of
size n is at most m. Carter et al. [CFG+78] showed that in order to construct a Bloom
filter for sets of size n and error rate ε one must use (roughly) m ≥ n log 1

ε bits of memory
(as opposed to n log u bits needed to answer exact membership queries). We can write
this as ε ≥ 2−

m
n which leads us to the following definition:

Definition 2.5 (Minimal error (Def. 2.7 in [NY15])). Let B be an (n, ε)-Bloom filter
that uses m bits of memory. We say that ε0 = 2−

m
n is the minimal error of B.

A simple construction of a robust Bloom filter can be achieved by storing S precisely,
and then there are no false positives for an adversary to find. The disadvantage of this
solution is that it requires a large memory, while Bloom filters aim to reduce the memory
size. Similarly, a Bloom filter with a substantially low false-positives rate is robust.
We are interested in a robust non-trivial Bloom filter. Roughly speaking, a non-trivial
Bloom filter is a Bloom filter with ε substantially far from 0 and 1 and a large universe
(compared to the memory size, so it will not be possible to store the set explicitly). For
convenience, we use the definition of [NY15].

Definition 2.6 (Non-trivial Bloom filter (Def. 2.8 in [NY15])). Let B be an (n, ε)-
Bloom filter that uses m bits of memory and let ε0 be the minimal error of B. We say
that B is non-trivial if for all constants a > 0 it holds that u > a·m

ε20
and there exists

polynomials p1(·), p2(·) such that 1
p1(n)

< ε0 ≤ ε < 1− 1
p2(n)

.7

Let λ be the security parameter. It holds that n = poly(λ).8 Therefore we get that
ε0 cannot be too small and ε cannot be too large. I.e.

1

q1(λ)
≤ ε0 ≤ ε ≤ 1− 1

q2(λ)
, (1)

7If ε is negligible in n, then any polynomial-time adversary has only a negligible chance of finding
any false positive. In that case, we can transform any adaptive adversary into a non-adaptive adversary
since it knows the answers already. The same argument appears in [BLV19] as Lemma 4. A similar
claim applies to the requirement that ε will be substantially far from 1.

8Since we want the adversary to run in polynomial time in the security parameter.

10



for some polynomials q1(·) and q2(·).

2.1 Prediction and Pseudorandomness

Pseudorandomness captures the idea that an object can “look” completely random even
though it is far from random, since it was generated from a much shorter seed. One
approach to defining it formally is via indistinguishability: Let Dist be a distribution on
t-bit strings. We say that Dist is pseudorandom if it is infeasible for any polynomial-time
algorithm to distinguish (in a non negligibly better way than guessing) whether it is given
a string sampled according to Dist or whether it is given a uniform t-bit string. This
means that pseudorandomness is a computational relaxation of true randomness.

The definition above introduces many tests: each polynomial-time algorithm (distin-
guisher) serves as a single test. An example of such a test is an algorithm D that returns
‘1’ if the input string’s first bit is 0. Therefore, the first bit of a string sampled from
Dist should be equal to 0 with probability very close to 1/2, since the first bit of a string
sampled from a uniform distribution equals 0 with probability exactly 1/2. Otherwise,
D can distinguish between the two distributions.

An alternative approach to defining pseudorandomness is having a single type of
test, the next bit test. In this test, a probabilistic polynomial-time algorithm is given a
prefix of bits. It aims to predict the next bit of the source with a probability of success
significantly greater than 1/2 (this is the Blum-Micali definition [BM84]).

As Yao [Yao82] showed, these two definitions are equivalent and the infeasability
of predicting some bit of a given source can serve as a test for randomness. We show
something of a similar nature. Consider a Bloom filter, an attacker and the sequence
of bits representing whether a false positive occurred or not on a sequence of queries.
Since the probability of a false positive is at most ε, we deal with a non-uniform output
distribution. We want this distribution to be indistinguishable from a random indepen-
dent biased sequence. This means that the false positive events are random independent
events even in the case of adaptive queries. We formalize it in the monotone test.

Similar to the result in pseudorandomness, we want to define a prediction test that
implies the monotone test. Our starting point is the natural extension of the next bit
test for biased bits. This test requires that no observer succeeds in predicting the bits of
the source with a probability greater than the bias. However, Schrift and Shamir [SS90]
showed that the natural extension is no longer a universal test for independence. There-
fore, we choose a different approach that draws inspiration from the world of gambling.

There are tight connections between gambling and knowledge of a sequence. Cover
and Thomas ([CT06] Chapter 6) used gambling to express the ability to predict. They
investigated the relationship between information theory and gambling. They looked at
a horse race and presented two equivalent ways to describe the odds. We show one of
them, which is referred to as b−to−1: the gambler will pay 1 dollar after the race if his
horse loses, and pick up b dollars after the race if his horse wins. They looked at the
gambler’s wealth, which he wishes to maximize. We use their gambling methodology to
define a robust Bloom filter. We let an adversary bet on a false positive: she outputs
an element that she believes is a false positive. She gets rewarded if her output element
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is a false positive, while she is penalized if she outputs a true negative. We allow the
adversary to pass, meaning she does not have to bet. In this case, she does not gain
or lose any value. She wishes to maximize her wealth as well. We formalize it in the
Bet-or-Pass Test and show it implies the monotone test.

3 Defining Robust Bloom filters

3.1 Background

We have a data structure, Bloom filter, with a non-negligible rate of false positives,
denoted by ε. We want to claim it performs well. We can think of the Bloom filter
response to a sequence of queries as a sequence of independently biased coin tosses (with
bias ε to 1). This is mostly the case when an adversary performs non-adaptive queries; she
chooses her queries without seeing the response of the Bloom filter on previous queries.
In that case, she gets a false positive (equivalently, one as a response) with probability
at most ε in each query. Our wishful thinking is that a Bloom filter behaves like a truly
unpredictable biased coin even when an adversary sees the response of the Bloom filter on
previous queries. Meaning it performs well (robust) even in adaptive settings. However,
this wish is a bit complex to formalize. Still, we suggest robustness definitions that try
to capture this idea.

Our definition of robust Bloom filter comes in several flavors, depending on whether
the adversary aims to find a never-queried-before false-positive element or increase the
false-positive rate; what the evaluation metric is, and depending on the information
available to the adversary. We discuss each of these choices in turn.

Adaptive vs. Non-adaptive Queries. When discussing adaptivity, we refer to the
settings where an adversary can choose the next query based on the response of the
Bloom filter on previous ones.

Our wish that a robust Bloom filter behaves like a truly unpredictable biased coin
can be hard to meet, even in the non-adaptive case. False-positive elements are not
necessarily random independent events, e.g., if the universe is divided into pairs, and
both the elements in each pair are either positive or negatives. However, the problem
is more serious when discussing the adaptive case. In the above example, an adversary
can query one element in each pair and query the other only if the first one is positive,
resulting in a higher false-positive rate.

Therefore, we consider adaptive settings when defining robust Bloom filters: the
adversary can adaptively query the filter. Nevertheless, we also analyze the non-adaptive
settings and, more precisely, the ability of an adversary to predict a false positive element
in the case of non-adaptive queries. We analyze the non-adaptive settings to understand
the significance of seeing the responses of the Bloom filter.

One-Time Challenge vs. “Continuous” Challenge. We consider both a one-time
challenge and a continuous challenge; By one-time challenge, we refer to tests in which an
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Test Name Queries Adversary Goal
Always-Bet Adaptive Find a never-queried-before false positive el-

ement
Bet-or-Pass Adaptive Bet on a never-queried-before false positive

element or pass
Monotone Adaptive Find an event that happens more frequently

(non-negligibly) than a truly random coin
tosses

Expected Count Adaptive Find more than ε · t false positive in expecta-
tion

Semi-Adaptive
Prediction

Non-Adaptive Find a false positive among the queries chosen
beforehand

Table 1: A table comparing the settings and the adversary goal within different robustness
definitions.

adversary performs t adaptive queries, and her goal is to find one never-queried-before
false positive.

Some Bloom filter applications are sensitive to clusters of false positives, e.g. when
Bloom filters are used to hold the content of a cache. An adversary that finds many
false positives can cause unsuccessful cache access for almost every query, resulting in a
Denial of Service (DoS) attack. Motivated by this, we also consider “continuous” tests,
which examine the false-positive rate in a sequence of t adaptive queries.

3.2 Robustness in All Shapes and Forms

We will describe five definitions of robustness for Bloom filters capturing various aspects
of robustness. For each definition we outline a test for the Bloom filter. If the Bloom
filter is resilient wrt the test against all adversaries, then we say that it is robust under
the corresponding definition. In each of these tests, the adversary performs t queries
with a different challenge to achieve, which gives rise to a different type of robust Bloom
filter. The difference between the definitions is the goal of the adversary and what she
has access to, summarized in Table 1.

The conclusion of this investigation into the various notions of robustness is that the
most desired notion is Bet-or-Pass.

3.2.1 The Always-Bet (AB) Test

Our starting point is the definition of [NY15]: the adversary participates in an adaptive
game AdaptiveGameA,t(λ) and then outputs an element x∗ that was not queried before
(and does not belong to S), which she believes is a false positive. The robustness is
defined by the probability that the element is indeed a false positive.

The AB Test ABTestA,t(λ)
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1. A participate in AdaptiveGameA,t(λ) (Def. 2.2).

2. A outputs x∗.

3. The result of the test is 1 if x∗ /∈ S ∪ {x1, . . . , xt} and B2(M,x∗) = 1, and 0
otherwise. If ABTestA,t(λ) = 1, we say that A made the Bloom filter fail.

Definition 3.1 (Always-Bet (AB) Test9). Let B = (B1,B2) be an (n, ε)-Bloom fil-
ter. We say that B is an (n, t, ε)-Always-Bet (AB) test resilient if for any probabilistic
polynomial-time adversary A = (A1,A2) there exists a negligible function negl such that:

Pr[ABTestA,t(λ) = 1] ≤ ε+ negl(λ),

where the probabilities are taken over the internal randomness of B and A.

3.2.2 The Bet-or-Pass (BP) Test

The the adversary in the AB-test (Def. 3.1) must output a challenge element x∗. We
suggest a definition that allows the adversary to pass; the adversary does not have to
output an element. We define an adversary’s profit : she gets rewarded if her output
element is a false positive, while she is penalized if she outputs a true negative. She
does not gain or lose any value when she chooses to pass. We use the expected profit to
define the robustness: we want the expected profit to be 0. More formally, the adversary
participate in an AdaptiveGameA,t(λ). She outputs (b, x∗) where x∗ /∈ S ∪ {x1, . . . , xt}
is the challenge and b ∈ {0, 1} indicates whether she chooses to bet (b = 1) or to pass
(b = 0). If she passes, x∗ is ignored and can be a random element.

The BP Test BPTestA,t(λ)

1. A participate in AdaptiveGameA,t(λ) (Def. 2.2).

2. A outputs (b, x∗).

3. A’s profit CA is defined as:

CA =


1
ε , if x∗ is a false positive and b = 1,

− 1
1−ε , if x∗ is not a false positive and b = 1,

0, if b = 0.

Definition 3.2 (Bet-or-Pass (BP) Test). Let B = (B1,B2) be an (n, ε)-Bloom filter.
We say that B is an (n, t, ε)-Bet-or-Pass (BP) test resilient if for every probabilistic
polynomial-time adversary A = (A1,A2) participating in BPTestA,t(λ), there exits a
negligible function negl such that:

E[CA] ≤ negl(λ).

The expectation is taken over the internal randomness of B and A.
9In [NY15] resilience to this test is simply referred to as adversarial resilient Bloom filter.
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Note that the expected profit of an adversary outputting a random guess with prob-
ability at most ε to be a false positive is at most 0:

E[CA] = Pr[x∗ is FP ∧ b = 1]︸ ︷︷ ︸
≤ε

·1
ε
− Pr[x∗ is not FP ∧ b = 1]︸ ︷︷ ︸

≥1−ε

· 1

1− ε
≤ 0

The BP test allows an adversary to pass (although if she wants any chance to make
the Bloom filter fail, the probability she passes must be noticeably far from 1). Adding
the pass option suggests that the BP test is a stronger requirement and more robust
notion than the AB test: consider a Bloom filter that behaves “nicely” in most cases
except for a few bad cases. The probability of occurrence of the bad cases is negligible.
Then this Bloom filter is AB test resilient. However, it is not BP test resilient. For the
BP test, an adversary can become “active” (bets) only when she observes the occurrence
of some bad cases. Given such bad cases, her success probability is not negligible.

We support this intuition by showing that BP test resilience implies AB test resilience,
while the other direction does not necessarily hold. In addition, we consider another
family of tests: the monotone tests, which resilience to them is implied by the BP test
but not by the AB test.

One may note two differences between the AB and BP tests: the adversary must
always provide a candidate false positive in the AB test, while it is optional in the BP
test. In addition, they differ in the robustness metric: the probability of outputting a
false positive vs. the expected profit. However, for the adversaries that always output
an element with b = 1 we show that the robustness metric is equivalent (in Claim 3.3
below), meaning that allowing the adversary the option to pass is the actual difference
between the two.

Let A be an adversary performing ABTestA,t(λ) (Def. 3.1). We can think of it as an
adversary performing BPTestA,t(λ) (Def. 3.2) with b = 1 always. Therefore her expected
profit is:

E[CA] = Pr[x∗ is FP] · 1
ε
− Pr[x∗ is not FP] · 1

1− ε

Claim 3.3. Let A be an adversary in BPTestA,t(λ) game that always sets b = 1. Then
there exists a negligible function negl1 such that Pr[x∗ is FP] ≤ ε + negl1(λ) iff there
exists a negligible function negl2 such that E[CA] ≤ 0 + negl2(λ).

Proof. Let A be an adversary in the BPTestA,t(λ) game that always sets b = 1. Assume
that there exists a negligible function negl1 such that

Pr[x∗ is FP] ≤ ε+ negl1(λ).
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Then,

E[CA] = Pr[x∗ is FP] · 1
ε
− Pr[x∗ is not FP] · 1

1− ε

≤ (ε+ negl1(λ)) ·
1

ε(1− ε)
− 1

1− ε

=
negl1(λ)

ε(1− ε)
≤ negl2(λ),

for some negligible function negl2. The last inequality follows from Inequality (1). Now,
assume that there exists a negligible function negl2 such that

E[CA] ≤ negl2(λ).

Therefore,

E[CA] = Pr[x∗ is FP] · 1
ε
− Pr[x∗ is not FP] · 1

1− ε
≤ negl2(λ)

Pr[x∗ is FP] · 1

ε(1− ε)
≤ 1

1− ε
+ negl2(λ)

Pr[x∗ is FP] ≤ ε+ ε(1− ε)︸ ︷︷ ︸
≤0.5

·negl2(λ) ≤ ε+ negl1(λ) ,

for some negligible function negl1, as desired. �

3.2.3 Monotone Efficient Tests

Recall our desire (“wishful thinking") that a “robust” Bloom filter should behave like a
truly unpredictable biased coin; It is not clear for both the AB and BP tests whether they
satisfy this wish. To treat it more formally we consider monotone tests. A monotone test
consists of AdaptiveGameA,t(λ) as before, but now we are not interested in any specific
output element. The test examines the response of the Bloom filter on t adaptive queries
performed by an adversary A. Continuing the idea of biased coin tosses, we would like
to think of false positives as random independent events with a probability smaller or
equal to ε. We compare the Bloom filter response on a sequence of t adaptive queries to
a sequence of independent biased bits of length t with bias ε (probability of 1 is ε).

In this test, we consider monotone functions. Informally, a monotone function is a
function that can only increase when we flip a 0 in the input string to 1:

Definition 3.4 (Monotone Function). Let t ∈ N. We say that a function f : {0, 1}t →
{0, 1} is monotone if for every pair of neighboring strings x, x′ ∈ {0, 1}t that are equal
in all locations except in one index 1 ≤ i ≤ t, i.e. xj = x′j for all j 6= i and xi = 0 and
x′i = 1, we have that f(x) = 1 implies that f(x′) = 1.
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The probability of a false positive can be less than ε, though this is hardly damaging.
We are interested in clusters of false positives. This is what the monotone property
aims to model.

Let f : {0, 1}t → {0, 1} be a monotone function and Df a polynomial time algorithm
computing f . We consider distinguishers of the form Df .

We now present the formal definition. The fundamental realization is that a robust
Bloom filter should be resilient to all (efficient) monotone tests. That is, for any efficient
monotone test (or distinguisher) D, the probability that D returns 1, when given the
Bloom filter responses on a sequence of adaptively selected queries, should be close (from
below) to the probability that D returns 1 when given an independent biased sequence
of the same length and with bias ε.

Definition 3.5 (Monotone Test Resilient). Let B = (B1,B2) be an (n, ε)-Bloom filter.
We say that B is (n, t, ε)-monotone test resilient if for every monotone probabilistic
polynomial-time algorithm (distinguisher) D : {0, 1}t → {0, 1} and every probabilistic
polynomial-time adversary A = (A1,A2) participating in an AdaptiveGameA,t(λ) there
exits a negligible function negl such that:

Pr
S∈GA

[D(S) = 1]− Pr
Sε∈Bε

[D(Sε) = 1] ≤ negl(λ)

where GA is the distribution of the Bloom filter outcomes on A’s t queries and Bε is a
distribution of independent biased sequence of length t with bias ε.

Note the similarity and differences with the notion of cryptographic pseudorandom-
ness (see Goldreich [Gol01]). In our setting we consider only monotone polynomial-time
tests (whereas in the notion of cryptographic pseudorandomness all polynomial-time
tests are considered) and we look at the difference between the probabilities without an
absolute value (whereas there the absolute value should be negligible).

We give examples for relevant monotone tests. The first one is the FP’s count
distinguisher, denoted by Dw for some w < t. Let s ∈ {0, 1}t. We define,

Dw(s) =

{
1, if #1 in s is greater than w,
0, otherwise.

Dw outputs 1 iff the number of ones (equivalently, false-positive elements) is greater than
w. D is monotone. Another example is a Cluster distinguisher that outputs 1 iff the
sequence contains w consecutive ones. Indeed, this definition captures if a cluster of false
positives is found in a Bloom filter response since the probability of finding a cluster of
“1” is negligible in a bias coin tosses.

3.2.4 The Expected Count Test

We use AdaptiveGameA,t(λ). Similar to the monotone test, we are not interested in any
output. Inspired by Clayton et al. [CPS19], and as a special case of the monotone test,
we look at the number of false positive elements that an adversary finds during her t
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adaptive queries. Let A be an adversary participating in AdaptiveGameA,t(λ) (Def. 2.2).
Let Q = {x1, . . . , xt} be the queries performed by A. Denote the number of false positive
queries by #FPt := |{xi | B2(M,xi) = 1 and xi ∈ Q \ S}|.10 We want to upper bound
the expected number of false positives queries. Formally,

Definition 3.6 (Expected Count Test). Let B = (B1,B2) be an (n, ε)-Bloom filter.
We say that B is (n, t, ε)-expected count test resilient if for any probabilistic polynomial-
time adversaryA = (A1,A2) participating in AdaptiveGameA,t(λ) there exists a negligible
function negl such that:

E[#FPt] ≤ ε · t+ negl(λ),

where the expectation is taken over the internal randomness of B and A.

3.2.5 The Semi-Adaptive Prediction Test

Finally, we define a semi-adaptive test: the adversary chooses the queries in advance (non-
adaptively) and needs to find a false positive element using oracle access to the Bloom
filter (adaptively). This test allows us to evaluate the “power” of adaptive queries.

We formalize this by defining a game, SemiAdaptiveGameA,t(λ). This is done in a
fashion similar to AdaptiveGameA,t(λ): we consider a polynomial-time adversary A =
(A1,A2) that consists of two parts: A1 chooses the set S and commits to t distinct
queries x1, . . . , xt, and A2 gets as input the set S, the queries x1, . . . , xt and oracle access
to the query algorithm (initialized with M). A2 aims to find a false positive element
among the t queries without querying this element explicitly.

The semi-adaptive game SemiAdaptiveGameA,t(λ):

1. The adversary A1 is given input 1λ+n log u and outputs a set S ⊂ U of size n and t
distinct queries x1, . . . , xt .11

2. B1 is given input
(
1λ+n log u, S

)
and builds a representation M .

3. The adversary A2 is given input
(
1λ+n log u, S, (x1, . . . , xt)

)
and oracle access to

B2(M, ·). For i ∈ [t]:

(a) A2 chooses one of the following: bet on xi to be a false positive or query
B2(M,xi). If A2 choose to bet, then x∗ ← xi and the game is stopped. Else,
she continues.

4. x∗ ← xt

5. The result of the game is 1 if x∗ /∈ S and B2(M,x∗) = 1, and 0 otherwise.

If SemiAdaptiveGameA,t(λ) = 1, we say that A made the Bloom filter fail.
10Note that we count the number of false positives without duplicates to not over-credit the adversary.
11For convenience, we treat the set of queries as an ordered set. The order can be determined by the

adversary when she queries B2.
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Figure 2: Tests’ Implications

Definition 3.7 (Semi-Adaptive Prediction Resilient). Let B = (B1,B2) be an (n, ε)-
Bloom filter. We say that B is an (n, t, ε)-semi adaptive prediction resilient Bloom filter
if for every probabilistic polynomial-time adversary A = (A1,A2) there exits a negligible
function negl such that:

Pr
[
SemiAdaptiveGameA,t(λ) = 1

]
≤ ε+ negl(λ).

Note that we allow the adversary to repeat queries in all the mentioned above def-
initions, though repeated queries are not counted. We are only interested in its ability
to find “fresh” false positive elements, as opposed to [BFG+18] where the Bloom filter
false-positive rate has to be at most ε even if an adversary repeat the same query t times.
The latter guarantee forces the Bloom filter to update its internal state after each query,
while in our case, it is unnecessary but allowed.

4 Relationships Between the Various Notions of Robustness

In Section 3 we defined five different robustness tests. This section shows the relationships
between them: which test gives us the most robust Bloom filter and which are the weakest
tests. As we shall see, the most desirable notion for a robust Bloom filter is that of
Bet-or-Pass. This notion satisfies our desired three requirements: first, it is sufficient,
meaning it satisfies the security requirements. Second, it is not too strong: we present a
construction of a Bloom filter satisfying the Bet-or-Pass definition. Finally, it is easy to
use: it is formalized as a simple test for a Bloom filter.

4.1 Implications

We begin by showing which definition implies which (see Fig. 2). All the implications are
true in the strong way; that is if Test1 implies Test2 then a Bloom filter is strongly Test1
resilient is also strongly Test2 resilient. We present our results considering a polynomial-
time adversary; however, they also apply against unbounded adversaries if t is known in
advance.
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4.1.1 The BP Test

Theorem 4.1. Let 0 < ε < 1 and n ∈ N. Let B be an (n, ε)-strongly BP test resilient
Bloom filter. Then B is an (n, ε)-strongly AB test resilient Bloom filter.

Proof. Appears in the proof of Claim 3.3. �

Theorem 4.2. Let 0 < ε < 1 and n ∈ N. Let B be an (n, ε)-strongly BP test resilient
Bloom filter. Then B is also (n, ε)-strongly monotone test resilient. .

Proof. Suppose, towards contradiction, that B is not an (n, ε)-strongly monotone test
resilient Bloom filter. There exists a monotone probabilistic polynomial-time test D and
probabilistic polynomial-time adversary A performing t ≤ poly(λ, n) queries such that
D distinguish GA, the vector indicating whether a false positive occurred or not, from
the biased independent sequence Bε; that is, for some polynomial p and infinitely many
λ’s,

Pr
S∈GA

[D(S) = 1]− Pr
Sε∈Bε

[D(Sε) = 1] ≥ 1

p(λ)
(2)

For each λ satisfying Eq.(2), recall that t ≤ q(λ) for some polynomial q. We define t+ 1
hybrids. The i-th hybrid (i = 0, 1, . . . , t), denoted H i

λ, consists of the i-bit long prefix of
GA followed by the (t− i)-bit long suffix of Bε.

Claim 4.3. There exists i∗ ∈ {1, . . . , t} such that

Pr
S∈Hi∗

λ

[D(S) = 1]− Pr
S∈Hi∗−1

λ

[D(S) = 1] ≥ 1

p(λ) · t
. (3)

Proof. The proof is immediate by Eq. (2), the pigeonhole principle and the definition of
the hybrids. In particular, we use the fact that Ht

λ = GA and H0
λ = Bε. �

We now define an adversary ABP for the BP test. For simplicity of the analysis, we
assume that ABP knows i∗. The idea is that monotonicity implies that an adversary
can know when to bet. ABP produce a (i∗ − 1)-bit long prefix using A’s queries and
a (t − i∗ − 1)-bit long suffix that contains random biased bits. Then, she gives the
distinguisher the concatenated sequence twice: one time when there is 0 in the i∗-th
index and one time where there is 1. If the distinguisher is sensitive to this change, then
ABP chooses to bet on xi∗ . Otherwise, she passes.

Adversary ABP

1. Set i = i∗

2. Run A for i− 1 queries x1, . . . , xi−1. For each j ∈ [i− 1] let yj = B(S, xj).

3. Select ri+1, . . . , rt independently with bias ε in {0, 1} (Pr[rj = 1] = ε).

4. If D(y1, . . . , yi−1, 1, ri+1, . . . , rt) 6= D(y1, . . . , yi−1, 0, ri+1, . . . , rt), then bet b = 1
and output A’s ith query xi.
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5. Else, pass: b = 0 (meaning, the adversary does not bet in any round)

To analyze the success of ABP define two sets of sequences from {0, 1}t−1. The first
one is BETi which is defined as

{y1, . . . , yi−1, ri+1, . . . , rt|D(y1, . . . , yi−1, 1, ri+1, . . . , rt) 6= D(y1, . . . , yi−1, 0, ri+1, . . . , rt)}

and the second one is ONEi which is defined as

{y1, . . . , yi−1, ri+1, . . . , rt|D(y1, . . . , yi−1, 1, ri+1, . . . , rt) = D(y1, . . . , yi−1, 0, ri+1, . . . , rt) = 1}.

By the monotonicity of D we have that if

D(y1, . . . , yi−1, 1, ri+1, . . . , rt) 6= D(y1, . . . , yi−1, 0, ri+1, . . . , rt),

then D(y1, . . . , yi−1, 1, ri+1, . . . , rt) = 1 and D(y1, . . . , yi−1, 0, ri+1, . . . , rt) = 0. Using
this notation we have:

Pr
S∈Hi∗

λ

[D(S) = 1] = Pr[y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ BETi∗ ∧ xi∗ is FP]

+ Pr[y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ ONEi∗ ]

and,

Pr
S∈Hi∗−1

λ

[D(S) = 1] = ε · Pr[y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ BETi∗ ]

+ Pr[y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ ONEi∗ ],

where the probabilities are over the internal randomness of B and A and the biased coin
flips. Combining the above with Eq.(3) we get:

1

p(λ) · t
≤ Pr

S∈Hi∗
λ

[D(S) = 1]− Pr
S∈Hi∗−1

λ

[D(S) = 1]

= Pr[y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ BETi∗ ∧ xi∗ is FP]
− ε · Pr[y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ BETi∗ ].

Hence we get that the probability that ABP bets is non-negligible:

Pr[b = 1] = Pr[y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ BETi∗ ] ≥
1

p(λ) · t · (1− ε)
,

and the probability that ABP outputs a false positive element, when she bets, is notice-
ably greater than ε:

Pr[xi∗ is FP | b = 1] = Pr[xi∗ is FP | y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ BETi∗ ]

=
Pr[xi∗ is FP ∧ y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ BETi∗ ]

Pr[y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ BETi∗ ]

≥ 1

p(λ) · t
+ ε.

Therefore the expected profit of ABP is noticeably greater then 0, as desired. �
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4.1.2 The AB Test

Theorem 4.4. Let 0 < ε < 1 and n ∈ N. Let B be an (n, ε)-strongly AB test resilient
Bloom filter. Then B is also (n, ε)-expected count test resilient.

Proof. Let 0 < ε < 1, n ∈ N and let B be an (n, ε)-strongly AB test resilient Bloom
filter. Assume, for contradiction, that B is not an (n, ε)-strongly expected count test
resilient. Meaning there exists a PPT adversary A that makes at most t ≤ poly(λ, n)
queries, a polynomial p(·) such that for infinitely many λ’s

E[#FPt] ≥ ε · t+
1

p(λ)
.

For convenience we assume that the queries were distinct. We use A to build an adversary
A′ that causes B to fail in the (n, t, ε)-AB test.

Adversary A′

1. Choose a random number j ∈ [t].

2. Runs A for j − 1 queries using oracle access to B.

3. Output xj .

Observe that

E[#FPt] = E

[
t∑
i=1

1{xi is FP}

]
=

t∑
i=1

Pr[xi is FP].

Then,

Pr
[
ABTestA′,t(λ) = 1

]
=

∑t
i=1 Pr[xi is FP]

t
≥ ε+ 1

p(λ)t
≥ ε+ 1

q(λ)
,

for some polynomial q(·), where in the last inequality we used the fact that t ≤ poly(λ, n).
�

Theorem 4.5. Let 0 < ε < 1 and n ∈ N. Let B be an (n, ε)-strongly AB test resilient
Bloom filter. Then B is an (n, ε)-strongly semi-adaptive prediction resilient.

Proof. Immediate by definition: semi-adaptive prediction resilience is a special case of
the AB test with non-adaptive queries. �

4.1.3 Monotone Tests

Theorem 4.6. Let 0 < ε < 1 and n ∈ N. Let B be an (n, ε)-strongly monotone test
resilient Bloom filter. Then B is an (n, ε)-strongly expected count test resilient.
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Figure 3: Tests’ Separations

Proof. Let 0 < ε < 1, n ∈ N and let B be an (n, ε)-strongly monotone test resilient
Bloom filter. Assume, for contradiction, that B is not an (n, ε)-strongly expected count
test resilient. Meaning there exists a PPT adversary A that makes at most t ≤ poly(λ, n)
queries , a polynomial p(·) such that for infinitely many λ’s

E[#FPt] ≥ ε · t+
1

p(λ)
.

Therefore, there must exist 1 ≤ j ≤ t s.t. for infinitely many λ’s

Pr[xj is FP] ≥ ε+
1

p(λ)t
≥ ε+ 1

q(λ)
.

where in the right inequality we used the fact that t ≤ poly(λ, n). For every j ∈ [t], we
define a monotone test,

Dj =

{
1, if the j-th index in the sequence is 1,
0, else.

We show that B fails the test Dj , meaning it is not an (n, ε)-strongly monotone test
resilient Bloom filter. Indeed,

Pr
S∈GA

[Dj(S) = 1]− Pr
Sε∈Bε

[Dj(Sε) = 1] ≥ ε+ 1

q(λ)
− ε = 1

q(λ)
,

as desired. �

4.2 Separations

We now show the separations between the various notions, as described in Fig. 3; that
is, to show a separation between Test1 and Test2 we present a construction of a Bloom
filter that is strongly Test1 resilient but is not strongly Test2 resilient.
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4.2.1 AB Test

Theorem 4.7. Let 0 < ε < 1 and n ∈ N, then for any 0 < δ < 1 and for large enough
u:

1. Assuming the existence of one-way functions, then there exists a non-trivial Bloom
filter B that is an (n, ε)-strongly AB test resilient and is not an (n, δ)-strongly BP
test resilient.

2. If t is known in advance, then there exists a non-trivial Bloom filter B that is an
(n, t, ε)-AB test resilient and is not an (n, t, δ)-BP test resilient.

Proof. Let 0 < ε < 1, 0 < ε1 < ε, n ∈ N. First, assume that t is unknown and
unbounded. To have an (n, ε1)-strongly AB test resilient Bloom filter, we need to use
Naor and Yogev construction that uses one-way functions—using that, and we have a
Bloom filter B that is an (n, ε1)-strongly AB test resilient. Let ε2 = ε−ε1

1−ε1 . We consider
the following Bloom filter B′:

B′(S, ·) ≡

{
1, w.p. ε2,
B(S, ·), w.p. 1− ε2.

That is, in the setup phase B′ flips a coin with bias ε2 to decide whether it always answers
1 (regardless of the input) or always answers as B. We use the notation “≡” to denote
the result of that coin toss. Let ε = ε2 + (1 − ε2) · ε1. The probability of false positive
in B′ equals ε; meaning B′ is an (n, ε)-Bloom filter. Moreover, for all t ≤ poly(λ, n), B′
is resilient to the (n, t, ε)-AB test:

Pr[ABTestA,t(λ) = 1] = Pr[x∗ is false positive]
= Pr

[
B′(S, ·) ≡ 1 ∨B′(S, x∗) ≡ B(S, x∗) = 1

]
≤ ε2 + ε1 · (1− ε2) = ε,

where in the inequality we used the fact that B is an (n, ε1)-strongly AB test resilient.
We show that B is not an (n, δ)-strongly BP test resilient for any 0 < δ < 1. Let
t ≤ poly(λ, n) and 0 < δ < 1. We describe an adversary A that causes B′ to fail in the
(n, t, δ)-BP test. A queries random elements in U \ S to check whether we are in the
“all 1” case where all the elements are false positive. If all the queries are indeed false
positives, then with high probability, we are in the “all 1” case and A bets on a random
element. Otherwise, she passes. Formally,

Adversary A

1. Choose a random set S ⊂ U of size n.

2. For i ∈ [t]:

(a) Query independent random elements xi ∈ U \ S.
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3. If for all i ∈ [t]: B′(S, xi) = 1 (i.e., all the queried elements are false positive),
choose a random element x∗ and output (b = 1, x∗) (bet).

4. Otherwise, set b = 0 (pass).

First, note that the probability that A bets is non-negligible:

Pr[A bets] ≥ Pr
[
A bets | B′ ≡ 1

]
· Pr
[
B′ ≡ 1

]
≥ 1 · ε2.

Now, assume that A chooses to bet (i.e., all the queries in step 2 are false-positive
elements). Consider the following three cases:

1. We are in the “all 1” case. In this case, the profit is 1/δ.

2. We are not in the “all 1” case, and the false positive rate is greater or equal to δ.
In this case, the profit is non-negative.

3. Otherwise, the profit is negative, but this happens with probability at most δt

(which is a very small probability for sufficiently large t)12.

Summing up the above cases, we get that the expected profit of A is noticeably greater
than zero13, meaning B is not an (n, δ)-strongly BP test resilient.

If t is known in advance, we use Naor and Yogev construction of Bloom filter that is
resilient to the (n, t, ε1)-AB test against unbounded adversaries. The above proof holds
for this specific t.

�

Theorem 4.8. Let 0 < ε < 1 and n ∈ N, then for any 0 < δ < 1 and for large enough
u:

1. Assuming the existence of one-way functions, then there exists a non-trivial Bloom
filter B that is an (n, ε)-strongly AB test resilient and is not an (n, δ)-strongly
monotone test resilient.

2. If t is known in advance, then there exists a non-trivial Bloom filter B that is an
(n, t, ε)-AB test resilient and is not an (n, t, δ)-monotone test resilient.

Proof. Let 0 < ε < 1, 0 < ε1 < ε and n ∈ N. We use the Bloom filter B′ defined in the
proof of Theorem 4.7. We show that B′ is not monotone test resilient for any 0 < δ < 1
by proving it fails the FP’s count distinguisher, denoted by Dw (for some w < t).
Recall,

Dw =

{
1, if #1 in the input sequence is greater than w,
0, otherwise.

We define the adversary A as follow:
12Any (n, ε) Bloom filter is robust when the number of queries is small: if t is much less than 1/ε

then we do not expect the adversary to see any false positives, and hence we can consider the queries as
chosen in advance. Therefore, if t is not large enough, it is not interesting.

13We want δt < ε2 leading to u > t > logδ ε2.
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Adversary A

1. Choose a random set S ⊂ U of size n.

2. For i ∈ [t]:

(a) Query independent random elements xi ∈ U \ S.

Observe that with probability at least ε2 A can achieve as many false positives as she
wants (w.p. ε2 all the queries are false positives). Meaning for any t ≤ poly(λ, n) we
have

Pr
S∈GA

[Dt−1(S) = 1] = Pr[#FPt > t− 1] ≥ ε2.

On the other hand, for any 0 < δ < 1:

Pr
Sδ∈Bδ

[Dt−1(Sδ) = 1] = δt

Therefore,

Pr
S∈GA

[Dt−1(S) = 1]− Pr
Sδ∈Bδ

[Dt−1(Sδ) = 1] ≥ ε2 − δt ≥
1

p(λ)
,

for some polynomial p(·) and sufficiently large t.
�

4.2.2 Expected Count Test

Theorem 4.9. Let 0 < ε < 1 and n ∈ N, then for any 0 < δ < 1 and for large enough
u: There exists a Bloom filter B that is an (n, ε)-strongly expected count test resilient,
and is not an (n, δ)-strongly semi-adaptive prediction resilient.

Proof. Let 0 < ε < 1, n ∈ N and a set S of size n. Let ε1 ≤ ε
2−ε s.t.

1
ε1
∈ N. We partition

the universe into disjoint blocks of size b := 1
ε1
. Let B be a Bloom filter that stores the

set S explicitly (we can modify the construction to work for non-trivial Bloom filters as
well). We add “synthetic” false-positive elements to B in the following way: each block
has exactly one false positive element (resulting in a false positive probability of ε1 for
random queries). In order to determine which element is positive in each set, we use a
pseudorandom function14 PRF. The PRF gets as input the block name and outputs the
positive element in the block.

As we shall see, the resulting Bloom filter B is an (n, ε)-strongly expected count test
resilient. We first claim that the best strategy for an adversary in order to increase the
expected number of false positives is querying each block until she finds the false positive.
Consider an adversary A following this strategy and focus on one block. The expected

14A pseudorandom function (PRF) is a keyed function F such that Fk (for key k chosen uniformly at
random) is indistinguishable from a truly random function given only oracle access to the function. See
Goldreich [Gol01].
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number of queried elements until finding the false positive is b+1
2 . Assume A queries t′

blocks (where t′ � b). The false positive rate in this sequence is (with high probability):

t′

t′ · b+1
2

=
2

b+ 1
=

2ε1
1 + ε1

= ε.

Now, consider an adversary A′ that uses a different strategy, i.e., she queries blocks
and might move on to another block before finding the false positive. Let A′′ be an
adversary that follows A′’s strategy with a slight change: every time A′ moves on to
another block before finding the false-positive, A′′ continues querying this block until she
finds the false positive. Intuitively, it is better to keep querying an “open” block since
we are left with fewer elements. Formally, let us look at all the queries A′′ added when
continuing querying a block. They are divided into blocks of size at most b− 1. Hence,
the false-positive rate in these added queries, similarly to the above computation, is at
least 2ε1 > ε. Now, consider the rest of A′’s queries. They either contain blocks that a
false positive was found in them or blocks with no false positive. As shown above, the
expected number of queried elements before finding a false positive is b+1

2 . Assume that
there are t1 blocks that a false positive was found in them and t2 blocks with no false
positive. In each block, we query at least one element hence the false positive rate in
these queries is at most

t1

t1 · b+1
2 + t2

<
t1

t1 · b+1
2

= ε.

Since 2ε1 > ε, we get that A can only improve the expected number of false positives of
A′, as desired.

We conclude that the expected number of false positives in t queries is at most εt, as
desired.

On the other hand, B is not an (n, ε)-strongly semi-adaptive prediction resilient. Let
A be an adversary querying p(λ) blocks, for some polynomial p(·); that is, she performs
t = p(λ) · 1

ε1
queries. She acts as follows: she queries each block separately. When she

gets the response of the Bloom filter on an entire block except for one element and does
not see any false positive, she bets on the remaining element. Therefore,

Pr
[
SemiAdaptiveGameA,t(λ) = 1

]
= 1− (1− ε1)t ≥ 1− 1

q(λ)
≥ δ + 1

s(λ)
,

for any 0 < δ < 1, sufficiently large λ and some polynomials q(·), s(·).
�

Theorem 4.10. Let 0 < ε < 1 and n ∈ N, then for any 0 < δ < 1 and for large enough
u: There exists a Bloom filter B that is an (n, ε)-strongly expected count test resilient ,
and is not an (n, δ)-strongly AB test resilient.

Proof. Follows from the proof of Theorem 4.9.
�
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4.2.3 Semi-adaptive Prediction Resilient

Theorem 4.11. Let 0 < ε < 1 and n ∈ N, then for any 0 < δ < 1 and for large enough
u:

1. Assuming the existence of one-way functions, there exists a non-trivial Bloom filter
B that is an (n, ε)-strongly semi-adaptive prediction resilient and is not an (n, δ)-
strongly AB test resilient.

2. If t is known in advance and sufficiently large, there exists a non-trivial Bloom filter
B that is an (n, t, ε)-semi-adaptive prediction resilient and is not an (n, t, δ)-AB test
resilient.

Proof. We construct a Bloom filter B that can only be broken using adaptive queries. B
stores one element xFP to be a false positive. We want to be able to recover xFP using
adaptive queries. We do this in the following way. First, partition the universe into
blocks of size b = b(ε) > 4n/ε; we define a block by its b elements x1, . . . , xb (the blocks
are ordered). We assume the partition is public. Each block encodes a bit in {0, 1} and
we want some log u blocks to encode xFP. We make sure that adaptivity only can help
with finding xFP.

Let 0 < ε < 1 and n ∈ N. Let B̂ be a Bloom filter that is an (n, ε/2)-strongly
AB test resilient (and by Theorem 4.5 is also an (n, ε/2)-strongly semi-adaptive pre-
diction resilient), using the appropriate [NY15] construction. We build a new Bloom
filter B using B̂. Let S ⊂ U , |S| = n and let α = {x1, . . . , xb} be a block. We look
at B̂(S, x1), . . . , B̂(S, xb) and count the number of positives (ones). We define that the
block α encodes 1 or 0 according to the number of positives in it: if

ε/2 · b ≤ #1’s in α ≤ 3ε/4 · b

then it encodes 1 and 0 otherwise.
We look at the first log u blocks. We choose an element xFP /∈ S that does not belong

to these first blocks. We store it in B to be a false positive. We want the first log u
blocks to encode xFP. In order to do that, we add “synthetic” false-positive elements:
we change some of the true negatives to be false positives. We need to make sure that
a block contains at most 3ε/4 · b ones with high probability (to make it possible to
change a block that encodes 0 to encode 1). This holds (with high probability) since
4n/ε < b⇐⇒ n < ε/4 · b. We store the modified output of the synthetic noise added in
the first log u blocks.

For the query algorithm, on input x, we first check if x belongs to the first log u
blocks. If it does not, then we output B̂(S, x). Otherwise, we check if it was part of the
synthetic noise we added (this must be stored) and we output the value accordingly.

Notice that the only additional memory we need is storing the output on the elements
in the first log u blocks which takes at most ε/2 · b · log u bits15 and to store xFP which
takes log u bits. B is an (n, ε)-Bloom filter (in each block we changed at most ε/2 · b

15Using pseudorandomness we can shrink it even further.
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elements.). With t = b · log u an adversary can find the element xFP that is known to be
a false positive before querying: she simply queries the first log u blocks that encode xFP
and outputs xFP. Meaning, B is not resilient to the (n, t, δ)-AB test for any 0 < δ < 1.
However, B is an (n, ε)-strongly semi-adaptive prediction resilient since, in that case, the
adversary chooses the queries non-adaptively, so it will not know the encoding of xFP.

�

4.3 Conclusions

We showed that if a Bloom filter is resilient to the BP test, it is resilient to all monotone
tests. At the same time, this does not necessarily hold for a Bloom filter that is resilient
to the AB test, demonstrating that the AB test can miss “bad” events such as clusters
of false positives. We also proved that the BP test implies the AB test. Altogether we
highlight the notion of Bet-or-Pass as capturing the desired properties of a robust Bloom
filter.

5 Computational Assumptions and One-way Functions

5.1 Constructions of BP Resilient Filters using One-way Functions

What we know so far:

BP Test Resilience AB Test Resilience OWF
We showed [NY15]

/

The black arrows are existential equivalence and the blue arrows are definition impli-
cation (with the same parameters) or separation. Therefore, if one-way functions do
not exist, any non-trivial Bloom filter fails the BP test. We show that the existence
of one-way functions also implies BP test resilient Bloom filters. For that, we show a
construction of a Bloom filter that is strongly BP test resilient using one-way functions.

Pseudorandom Functions. A pseudorandom function (PRF) is an efficiently com-
putable, keyed function F that is indistinguishable from a truly random function (given
only oracle access to the function). A pseudorandom permutation (PRP) is a pseudo-
random function such that F is a permutation and can be both efficiently computable
and efficiently invertible.

We can construct pseudorandom function from any (length-doubling) pseudorandom
generators ([GGM86]), which in turn can be based on one-way functions. In addition,
we can obtain a pseudorandom permutations from pseudorandom functions (i.e., using
Luby-Rackoff construction [LR88], [NR99]).

Constructing BP Test Resilient Bloom Filters. Our starting point is the trans-
formation presented by Naor and Yogev. Assuming the existence of one-way functions
they showed that any Bloom filter could be efficiently transformed into an (n, ε)-strongly

29



AB test resilient Bloom filter using approximately the same amount of memory. The
idea is simple: adding a layer of a pseudorandom permutation. That is, on input x, we
compute a pseudorandom permutation of x and send it to the original Bloom filter. The
main idea is that we make the queries look random by applying a pseudorandom per-
mutation. Therefore an adversary has no significant advantage in choosing the queries
adaptively. Note that the correctness properties remain when using the permutation.
We ask if the above transformation also yields an (n, ε)-strongly BP test resilient Bloom
filter. However, unlike the AB test, the BP test allows an adversary to pass. This gives
rise to two potential attacks:

1. Assume that with some non-negligible probability, all the elements in the universe
(excluding the set S) are false positives (e.g., the Bloom filter presented in sep-
aration 4.7). Applying a pseudorandom permutation, in that case, will make no
difference; the adversary presented in separation 4.7 can still make this Bloom filter
to fail the BP test even after adding the PRP layer.

2. The universe is of polynomial size, i.e., |u| = poly(λ) and there exists an attacker
that knows the exact number of false positives in the universe (this is not an
unreasonable property of some constructions). In this case, the attack includes the
adversary querying the entire universe U except for one element x∗. Based on the
number of false positives she has seen so far, she knows with high probability if x∗

is a false positive or not and chooses to bet or pass accordingly.

Therefore, we cannot use the transformation of Naor and Yogev when constructing a BP
test resilient Bloom filter.16

Apart from the above mentioned transformation, Naor and Yogev presented a con-
struction of a Bloom filter B that is an (n, t, ε)-AB test resilient against an unbounded
adversary and a given number t of queries, for any n, t ∈ N and 0 < ε < 1/2. As we shall
see, this construction is actually also good for the BP-test (when the adversary is limited
to t queries), i.e. B is also an (n, t, ε)-BP test resilient for any n, t ∈ N and 0 < ε < 1/2.

We use this construction with a slight change to yield a Bloom filter B′ against a
computationally bounded adversary when t is not necessarily known and can be unbounded.

We start by presenting Naor and Yogev’s construction (which in turn builds on Carter
et al. [CFG+78]). They suggested to use a Cuckoo Hashing implementation of dictio-
nary ([PR04], [Pag08]) to store the set. Roughly speaking, Cuckoo Hashing consists of
two tables T1 and T2 and two hash functions h1 and h2. Each element x is stored in
either T1[h1(x)] or T2[h2(x)]. Instead of storing x in those locations, the value of an
unpredictable (in the sense described below) function g at point x (i.e. g(x)) is stored at
either T1[h1(x)] or T2[h2(x)] (see Fig. 4). When doing a lookup of x the values stored in
T1[h1(x)] and T2[h2(x)] are retrieved and compared to g(x) and a yes is returned iff at
least one of them is equal to g(x). The range of g should be about 2

ε .

16It may be possible to modify the transformation to yield a BP test resilient Bloom filter; for instance,
we can test if we are in case 1 and reselect the random bits or combat case 2 by adding as noise false
positives. We will explore it in future work.
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Figure 4: Bloom Filter via Cuckoo Hashing

For the function g : U 7→ V , they used a very high independence function. More
formally, they used a family G of hash functions satisfying that on any set of k inputs,
it behaves like a truly random function with high probability (based on the work of
[PP08], and [DW03]). Note that the guarantee of the function still holds even when the
set of queries is chosen adaptively, as shown by Berman et al. [BHKN19]. To reduce
the memory size further, they use the family G slightly differently. Let ` = O

(
log 1

ε

)
,

and set k = O
(
t
`

)
. They chose a family G of functions gi that outputs a single bit (i.e.,

V = {0, 1}) and defined g to be the concatenation of ` independent gi functions. Given
a query x, they compare g(x) to the appropriate entries, bit by bit. If the first two
bits are equal, they continue to the next bit in a cyclic order. Consider an adversary
performing t queries. Naor and Yogev showed that even though the adversary performs
t queries, each of the ` different functions gi takes part in at most O(t/`) = k queries
(with high probability). Hence, each function gi still “looks” random on the queried
elements. Therefore, we get a Bloom filter B that is AB test resilient for t queries and
uses O

(
n log 1

ε + t
)
bits of memory.

The security of the scheme is based on the randomness properties of g. Even if all
the values in the tables that have ever been used are known to the adversary (including
the functions h1 and h2), the value of g(x) is unknown and is uniform in its range.
Therefore the probability that it is equal to the value stored in T1[h1(x)] or T2[h2(x)] is
at most 2 · (1/2)` ≤ ε/2. Transforming from exact k-wise independence to almost k-wise
independence adds an error probability of ε/2. Thus, the probability that x is a false
positive is at most ε. This proves that the construction is AB test resilient.

But this also means that there is no hint that a success is coming, i.e. that for the
queried x the value g(x) is going to be equal to the values stored in locations h1(x) and
h2(x). The only possible problem could be that more than O(t/`) = k queries involve
some gi, but this happens with probability exponentially small in k. So we conclude that
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we can use this for the BP-test as well. Therefore, we get the following corollary:

Corollary 5.1. For any n, t ∈ N, universe of size u ∈ N and 0 < ε < 1/2 there
exists an (n, t, ε)-BP test resilient Bloom filter (against unbounded adversaries and t
known in advance) that uses O

(
n log 1

ε + t
)
bits of memory. In fact, let B be a Bloom

filter as described above. Then for any constant 0 < ε < 1/2, B is an (n, t, ε)-BP test
resilient Bloom filter against unbounded adversaries, that uses m bits of memory where
m = O

(
n log 1

ε + t
)
.

Note that t needs to be known in advance in this construction (to set k and choose
appropriate G).

To get a Bloom filter B′ that is an (n, ε)-strongly BP test resilient, we will modify
this construction a bit. The idea is simple: for the function g, we use a family of
pseudorandom functions. Now, we do not need to set k and the view of g remains
random and unpredictable on any set of queried elements (of any size). If the resulting
Bloom filter is not a BP-test resilient, then this test can be used to distinguish the PRF
from a truly random function. We conclude with the following theorem that we have
just proved:

Theorem 5.2. Assuming the existence of one-way functions, then for any n ∈ N, uni-
verse of size n < u ∈ N, and 0 < ε < 1/2 there exists a Bloom filter that is an (n, ε)-
strongly BP test resilient and uses O

(
n log 1

ε + λ
)
bits of memory. In fact, let B′ be

a Bloom filter as constructed above. Then for any constant 0 < ε < 1/2, B′ is an
(n, ε)-strongly BP test resilient and uses O

(
n log 1

ε + λ
)
bits of memory.

Note that it is not known whether replacing the hash functions with a PRF in the
standard construction of Bloom filters (i.e. the one in the style of Bloom’s original
one [Blo70]) results in a Bloom filter that is BP test resilient.

5.2 Robust Bloom filters Imply the Existence of One-way Functions

Naor and Yogev showed that the existence of strongly AB test resilient Bloom filter
implies the existence of one-way functions. Specifically, they showed that if one-way
functions do not exist, then any Bloom filter can be successfully attacked (i.e. fail in the
AB test) with high probability. We ask whether weaker notions of robustness imply the
existence (and usage) of one-way functions. We show that even the weaker notions of
the expected count test and semi-adaptive prediction test imply one-way functions. Our
proofs rely on the proof in [NY15] (Theorem 4.1).

The main idea of the proof is that even though an adversary is given only oracle
access to the Bloom filter, she is able to construct an (approximate) simulation of it and
find a false positive element.

Let B = (B1,B2) be an AB test resilient Bloom filter that uses m bits of memory,
initialized with a randomly chosen set S ⊂ U of size n, and let M = B1(S) be its
representation. Assume that there are no one-way functions. Naor and Yogev constructed
an adversary that can attack the Bloom filter in AB test resilience way. They defined
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Algorithm AttackAB

1. For i ∈ [t] sample xi ∈ U uniformly at random and query yi = B2(M,xi).

2. Run A on (x1, . . . , xt, y1, . . . , yt) and 1λ to get an inverse (S′, r′, x1, . . . , xt).

3. Compute M ′ = B1(S
′, r′).

4. Do k = 200
ε0

times:

(a) Sample x∗ ∈ U \ {x1, . . . , xt} ∪ S uniformly at random.

(b) If B2(M
′, x∗) = 1 outputs x∗ and HALT.

5. Output an arbitrary x ∈ U .

Figure 5: Algorithm AttackAB for attacking according to the AB definition.

a function f to be a function that gets a set S, random bits r, and elements x1, . . . , xt,
computes M = B1(S; r) and outputs x1, . . . , xt along with their evaluation on B2(M, ).
Formally,

f(S, r, x1, . . . , xt) = x1, . . . , xt,B2(M
S
r , x1), . . . ,B2(M

S
r , xt),

where MS
r = B1(S; r). Since one-way function do not exist (under the assumption), f is

not even a weak one-way function and there is an efficient algorithm A that can invert
f with high probability. That is A is given a random set of elements along with their
evaluation on the Bloom filter and outputs a set S′ and random bits r′. Naor and Yogev
showed that for large enough set of queries for M ′ = B1(S

′; r′) the function B2(M
′, ·) is

a good approximation of B2(M, ·). Then they used B2(M
′, ·) to find an element x∗ /∈ S

satisfying B2(M
′, x∗) = 1 and showed that B2(M,x∗) = 1 as well (w.h.p.).

In fact, they used A to construct an algorithm AttackAB that finds a false positive
element x∗ /∈ S using

t = 1000m/ε0

queries with probability greater than ε.17 More precisely, they showed

Pr[AttackAB fails] ≤ 4/100 + 2−n <︸︷︷︸
n≥2

1/3 ≤ 1− ε,

The description of the algorithm is given in Figure 5.
In order to prove that the expected count test and semi-adaptive prediction test

imply one-way functions, we make a few changes to the algorithm AttackAB. With these
changes, no Bloom filter is resilient to expected count test and semi-adaptive prediction
test. The changes are marked in blue. (The changes are different for each case.)

17For the simplicity of presentation, Naor and Yogev assumed ε ≤ 2/3.
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Algorithm Attackexp (Expected Count Test Resilience)
Proof. 1. For i ∈ [t] sample xi ∈ U uniformly at random and query yi = B2(M,xi).

2. Run A on (x1, . . . , xt, y1, . . . , yt) and 1λ to get an inverse (S′, r′, x1, . . . , xt).

3. Compute M ′ = B1(S
′, r′).

4. Do s = 10( 2
3
−ε0)t

19
20
− 2

3

times:

(a) Do k = 200
ε0

times:

i. Sample x ∈ U \ {x1, . . . , xt} ∪ S uniformly at random.
ii. If B2(M

′, x) = 1 query x and END LOOP (a).

(b) Query an arbitrary x ∈ U \ {x1, . . . , xt} ∪ S.

Figure 6: Algorithm Attackexp for attacking according to the expected count definition.

Theorem 5.3. Let B = (B1,B2) be any non-trivial Bloom filter of n ≥ 7 elements from
a universe of size u that uses m bits of memory and let ε0 be the minimal error of B. If
one-way functions do not exist, then for any constant ε < 1, B is not an (n, t, ε)-expected
count test resilient for t = O(m/ε0).

The attack starts by performing t queries to compute M ′. We then want to repeat
the process of finding a false positive element. Let

s =

(
10

(
2

3
− ε0

)
t

)
/

(
19

20
− 2

3

)
.

We repeat s times the loop described in Step 4 of algorithm AttackAB aiming to find s
false positive elements. In each iteration, we loop until we find a false positive element
and query it (and if we do not find any, we query an arbitrary element). The description
of the edited algorithm is given in Figure 6.

We need to show that the expected number of false positive elements in t+ s queries
is greater than ε · (s+ t). Indeed,

E
[
#FP(t+s)

]
≥ε0 · t+ s · 19

20
>

2

3
· (s+ t) > ε · (s+ t)

The first inequality follows from
Pr[x is not FP] = Pr[AttackAB fails] ≤ 4

100 +2−n ≤︸︷︷︸
n≥7

1
20 and linearity of expectation.

The second inequality holds since

ε0 · t+ s · 19
20

>
2

3
· (s+ t)⇐⇒

(
ε0 −

2

3

)
· t+

(
19

20
− 2

3

)
· s > 0⇐⇒ s >

(
2
3 − ε0

)
· t

19
20 −

2
3

�
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Algorithm Attacksa (Semi-Adaptive Prediction Resilient)
Proof. 1. For i ∈ [t+ 200

ε0
] sample xi ∈ U uniformly at random. For i ∈ [t], query

yi = B2(M,xi).

2. Run A on (x1, . . . , xt, y1, . . . , yt) and 1λ to get an inverse (S′, r′, x1, . . . , xt).

3. Compute M ′ = B1(S
′, r′).

4. For k = 1, . . . , 200ε0 :

(a) If B2(M
′, xt+k) = 1 output t+ k and HALT.

5. Output an arbitrary i ∈
[
t+ 1, t+ 200

ε0

]
.

Figure 7: Algorithm Attacksa for attacking according to the semi-adaptive prediction
definition.

Theorem 5.4. Let B = (B1,B2) be any non-trivial Bloom filter of n elements from a
universe of size u that uses m bits of memory and let ε0 be the minimal error of B. If
one-way functions do not exist, then for any constant ε < 1, B is not an (n, t, ε)-semi
adaptive prediction resilient for t = O(m/ε0).

First, we commit to t+200/ε0 query elements. We query only t of them to compute
M ′. Then, we check if one of the 200/ε0 non-queried elements is a false positive according
to M ′. If so, we output it. Otherwise, we output an arbitrary element among the non-
queried elements. The description of the edited algorithm is given in Figure 7.

One may notice that Attacksa resembles AttackAB: In both cases we sample uniformly
at random 200/ε0 elements from which we need to find a false positive element. The
only difference is that in the semi-adaptive case this is done before computing M ′ and in
the AB case this is done after the computation. However since those elements are chosen
regardless of the computation it does not affect the analysis and we get

Pr[Attacksa fails] = Pr[AttackAB fails] < 1/3 ≤ 1− ε,

as desired.
�
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