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Abstract—Isogeny-based cryptography suffers from a long-
running time due to its requirement of a great amount of
large integer arithmetic. The Residue Number System (RNS)
can compensate for that drawback by making computation
more efficient via parallelism. However, performing a modular
reduction by a large prime which is not part of the RNS base is
very expensive. In this paper, we propose a new fast and efficient
modular reduction algorithm using RNS. Also, we evaluate our
modular reduction method by realizing a cryptoprocessor for
isogeny-based SIDH key exchange. On a Xilinx Ultrascale+
FPGA, the proposed cryptoprocessor consumes 151,009 LUTs,
143,171 FFs and 1,056 DSPs. It achieves 250 MHz clock frequency
and finishes the key exchange for SIDH in 3.8 and 4.9 ms.

Index Terms—Post-quantum cryptography, Isogeny, Residue
Number System

I. INTRODUCTION

Post-quantum Cryptography (PQC) focuses on developing
new cryptographic schemes that are resistant to attacks from
quantum computers. Isogeny-based cryptography is a class of
PQC algorithms that rely on the isogeny problem for secu-
rity. Various cryptographic constructs use the isogeny prob-
lem in different ways, SIDH (Supersingular Isogeny Diffie-
Hellman) [1] and its more efficient variant SIKE (Supersingu-
lar Isogeny Key Encapsulation) which is a 4th round candidate
in the PKE/KEM category. SQISiqn [2] is a new isogeny-
based signature algorithm. One of the main advantages of
isogeny-based cryptography over other PQC schemes is that
isogeny-based schemes tend to use much shorter keys than
the other PQC schemes. Various works exist in the literature
([3], [4], [5], [6]) that present optimized implementations of
isogeny cryptography in software, hardware and co-design.
One of the main drawbacks of isogeny cryptographic schemes
is that it is relatively slow compared to other PQC classes.
In the literature, the Residue Number System (RNS) which
is a number representation system, has been used to increase
the performance of multiple cryptographic schemes such as
Elliptic curves cryptography (ECC) [7] and RSA [8]. RNS
is a hardware-friendly numeral system as it allows parallel
computation of small numbers, which is very useful feature
for hardware acceleration.
Our contributions: Our goal is to explore the potential of
RNS to improve the performance of isogeny-based cryptogra-
phy. We make the following contributions towards this goal.

1) RNS is not friendly to modular reduction by a modulus
p different from the base. Such a modular reduction by
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a non-base modulus is very expensive to compute. We
propose a new and more efficient method for performing
such modular reductions in the RNS.

2) We develop all the finite field primitives for computing
isogeny-based cryptography fully in the RNS.

3) To experimentally evaluate the potential of RNS in
isogeny-cryptography, we design and construct an
instruction-set architecture for computing isogeny-based
key exchange protocol SIDH [1] as a case study. The
architecture uses the optimised finite field primitives
that perform computation in the RNS. To the best of
our knowledge, our work is the first to propose an
implementation of isogeny-based cryptography in the
RNS. Furthermore, our architecture achieves the fastest
SIDH in the literature.

The paper is organized as follows. Sec. II briefly describes
the mathematical background. Sec. III explains the algorithmic
improvement. Next, in Sec. IV, we presented our hardware
architecture. Area and performance results are presented in
Sec. V. Discussions on side-channel security and the conclu-
sion are presented in Sec. VI.

II. PRELIMINARIES

A. Notation

For an integer a, we will use |a|p to denote a mod p. In
our case, p is the prime modulus of the underlying prime field
Fp. The quadratic extension field Fp2 is constructed as Fp2 =
Fp(i) with i2 = 1. Let, Q =

∏n
i=1 qi be the product of n

co-primes qi. The RNS base with respect to the modulus Q
consists of all the n co-primes qi and it is denoted as B.
An integer a mod Q in the RNS base B is the vector A =
{a1, . . . , an−1} where ai = a mod qi for i ∈ [1, n]. We also
introduce the notations Q̃i = Q

qi
for all i ∈ [1, n]. In this

paper, all qi are co-primes of the same bit length s and with
the special structure qi = 2s − ci with ci < 2s/2. Note that qi
need not be a prime. The prime p of the base finite field is of
length e bits. For two integers b and c, we will use ∥b− c∥ as
the absolute difference between b and c.

B. Basics of Isogeny-based Cryptography

Let Ea and Eb be two elliptic curves on Fp2 . We define
an isogeny ϕ : Ea → Eb as a non-constant rational map
between two elliptic curves that preserves the identity O. Two
elliptic curves are isogenous if their order (number of points)
is identical. The search version of the isogeny problem refers
to the following: from two isogenous curves, Ea and Eb,
compute an isogeny ϕ between the two curves. The problem



is presumed to be computationally infeasible. Key-exchange
protocol like SIDH [1] uses this problem and performs a
random walk in the isogeny graph. Other PQC schemes,
such as the public key exchange CSIDH [9] or the signature
scheme SQISign [2] use the isogeny problem in other ways for
their scheme constructions. In July 2022, Castryck et al. [10]
proposed an attack that broke SIDH and SIKE in polynomial
time. The attack is SIKE/SIDH specific and uses the three
additional elements exchanged in the SIDH/SIKE protocol
to perform a successful key recovery. Other isogeny-based
schemes e.g., CSIDH [9], SQISign [2], etc., remain secure
from the above attack.

C. Residue Number System (RNS)

The RNS is a numeral system that uses a set of co-
primes moduli to represent a number. The base of the RNS
consists of all the moduli and is B = {q1, q2, . . . , qn−1, qn}.
An integer a is represented in the RNS base B as the
vector A = (|a|q1 , |a|q2 , . . . , |a|qn−1

, |a|qn). From a given
RNS representation A, we can obtain the integer a by
applying the Chinese Remainder Theorem (CRT) as a =∣∣∑n

i=1 |ai ∗ Q̃
−1
i |qi ∗ Q̃i

∣∣
Q

. With the application of RNS, a
long integer computation on a mod Q gets mapped into
several small integer computations on ai mod qi. On parallel
platforms these small integer operations can be performed in
parallel.

When RNS is used, Montgomery reduction is the common
method to perform a modular reduction in RNS. Transpos-
ing the classic Montgomery reduction algorithm into RNS
representation was first proposed in [11] and later improved
in [12], [13], [14]. The RNS variant of Montgomery reduction
requires base extension. Interested readers may follow the
original paper [11] for detailed description of the reduction
algorithm.

III. PROPOSED OPTIMIZATION TECHNIQUES

In isogeny-based cryptography, we need to perform modular
arithmetic in the prime field Fp where p is a several hundred
bits long prime. To perform the finite field operations in RNS,
we need a sufficiently large RNS base of a composite Q such
that Q > p2. Such a Q will ensure that, for elements a, b
∈ Fp, when their equivalent RNS representations Ā and B̄
respectively are multiplied, the result is never larger than Q
thus avoiding a true reduction by Q.

A. Modular addition and subtraction in RNS

To do finite field arithmetic over Fp using the RNS represen-
tation which work modulo Q, we need to perform a reduction
modulo p. When performing long integer representation addi-
tion or subtraction of a and b, the modular reduction becomes
an inequality test (a + b > p) or (a − b < 0) followed by
an conditional addition or subtraction of p, in order to put
the result in the range [0, p − 1]. However as we mentioned
earlier, testing these inequalities in RNS involves computing
the CRT which is extremely expensive. We avoid this problem
simply by not doing a reduction following an addition or a

subtraction and let the data leave the normal finite field range
[0, p − 1]. Such an overflow does not cause any harm as Q
is much larger than p. We perform modular reduction by p
only after multiplication because the result becomes double in
the size. This step is very costly and usually involves using
a special algorithm .Hence why we chose to design our own
novel approach for a reduction in RNS using features from
hardware implementation in Sec. III-B.

B. Novel RNS Modular Reduction for Multiplication Result

Let A = (a1, . . . , an) be the RNS representation of a which
is the result of a multiplication modulo Q. Our goal here is
to compute A (mod p). Starting from A, we obtain a using
CRT as follows:

a = |
∑n

i=1 |ai ∗ Q̃
−1
i |qi ∗ Q̃i|Q =

∑n
i=1 |ai ∗ Q̃

−1
i |qi ∗ Q̃i − k ∗Q (1)

with k = ⌊(
∑n

i=1 |ai ∗ Q̃
−1
i |qi ∗ Q̃i)/Q⌋. Eq. 1 uses very

expensive multi-precision arithmetic for processing the long
integer operations such as a multiplication by Q̃i and k ∗ Q
which we want to avoid at all cost. Our aim here is to break
down these large integer operations into smaller ones. We will
use vi = |ai ∗ Q̃−1

i |qi . So, now we take Eq. 1 mod p:

|a|p =(

n∑
i=1

vi ∗ Q̃i − k ∗Q) mod p (2)

=(

n∑
i=1

vi ∗ |Q̃i|p − |k ∗Q)|p) mod p (3)

We define Msum =
∑n

i=1 |ai ∗ Q̃
−1
i |qi ∗ |Q̃i|p − |k ∗Q|p and

then replace the reduction with a subtraction by r ∗ p where r
is defined as r = ⌊Msum/p⌋. The idea of replacing the Q̃i by
|Q̃i|p was first propose here [15] in order to compute a partial
reduction for modular exponentiation. In this work we aim for
a full modular reduction in RNS. Hence:

|a|p =

n∑
i=1

vi ∗ |Q̃i|p − |k ∗Q|p − r ∗ p (4)

We use a quotient r here to complete our reduction after Eq. 3.
Here, size(r) = s + size(n) is very close to the size of an
RNS moduli. Next, we take the modulo p reduced result from
Eq. 4 and then perform reductions mod qi for all the moduli
of the RNS base to bring the reduced result back into the RNS
domain (i.e., modulo Q).

|a|p (mod qi) = (Msum − r · p) mod qi (5)

=
∣∣ n∑
i=1

vi · ||Q̃i|p|qi − ||k ·Q|p|qi − |r · p|qi
∣∣
qi

That transforms all the long integer operations in Eq. 1 into
small s bit operations in the RNS. In Eq. 5, we have expressed
a mod p as a function of A (which is present in vi) and
others parameters. The constants (Q̃−1

i , ||Q̃i|p|qi , Q and p)
can be pre-computed, while the two variables k and r must be
computed during the reduction. In [14], the author mentions



an effective way to compute the first reduction factor k, by
approximating it with k:

k =

n∑
i=1

trunc(vi, l)/2
s + α (6)

The trunc function takes in a bit length l, an integer vi, and
returns the l most significant bits of the input integer. The
parameters α is a float that represents an error correction,
s is the bit length of the RNS moduli. The paper [14] also
explained the requirement for the parameters to guarantee that
k will be equal to k.

To find r, our approach is to approximate the values of
Msum and k ∗Q to compute the approximation r:

r =
1

p
∗

n∑
i=1

vi ∗ |Q̃i|p − |k ∗Q|p (7)

with |Q̃i|p = trunc(|Q̃i|p, u) and |k ∗Q|p = trunc(|k ∗
Q|p, u), u being our approximation accuracy. This method
works well because the size of r is very close to s; thus we
can select u to be either s or 2 ∗ s turning most operations
into s bits operations where s is the bit length of RNS moduli
qi. Therefore, our method effectively eliminates long integer
arithmetic.
Probability of incomplete reduction: Our approach intro-
duces approximation, which means that the reduction algo-
rithm will incompletely reduce an input value. There are two
sources of approximation: the value of k (Eq. 6) and r (Eq. 7).
We have carefully chosen our parameters to always get the
correct output for k. For the approximation r of r, the main
source of approximation error comes from the fact that we
only took into account the u most significant bits of |Q̃i|p and
|k ∗ Q|p, leading to the risk of missing a carry propagation
from the lower bits to the higher bits that would increase the
true value of r by one. We will now estimate the impact of the
approximation of r by calculating the distance δ(r) = ∥r−r∥
using Eq. 7:

δ(r) =
∥∥1
p
∗
( n∑
i=1

vi ∗ (|Q̃i|p−|Q̃i|p)−(|k∗Q|p−|k ∗Q|p)
)∥∥

δ(r) ≤ 1

p
∗ (

n∑
i=1

vi ∗ δ(|Q̃i|p) + δ(|k ∗Q|p)).

|Q̃i|p and |k ∗Q|p are an approximation of |Q̃i|p and |k ∗Q|p
respectively, by taking theirs most significant u bits. Since both
|Q̃i|p and |k ∗Q|p are e bits long, only their least significant
e−u bits will be different. Therefore,

∥∥|k ∗Q|p−|k∗Q|p∥∥ ≤
2e−u and

∥∥|Q̃i|p− |Q̃i|p
∥∥ ≤ 2e−u. Note that the prime p is e

bits long and therefore 2e−1 is smaller than p. Also note that
∀i ∈ [1, n] vi ≤ 2s since qi are s bits long moduli.

δ(r) ≤ 1
p ∗ (

∑n
i=1 vi ∗ 2e−u + 2e−u)

≤ 2e−u

2e−1 ∗ (
∑n

i=1 vi + 1) = 21−u ∗ (
∑n

i=1 vi + 1)

≤ 21−u ∗ (
∑n

i=1 2
s + 1) = 21−u ∗ (n ∗ 2s + 1)

Algorithm 1 Proposed Reduction Algorithm for RNS

Input: A in RNS base B
Input: Q̃−1 in B, ∀i, j

∣∣|Q̃i|p
∣∣
qj

, Q̃p = ([Q̃i]p)0<i≤n

Output: B in B, CRT (B) = |CRT (A)|p+u ∗ p, u ∈ {0, 1}
1: V ← A ∗ Q̃−1

2: k ← int(α ∗ 2l), r ← 0, Y ← [0, 0, ..., 0]
3: for (i = 1; i ≤ n; i++) do
4: k ← k + (V [i]≫ (s− l))

5: r ← r + V [i] ∗ (Q̃p[i]≫ (e− u))
6: for (j = 1; i ≤ n; i++) do
7: Z[i] = Z[i] + V [i] ∗

∣∣|Q̃i|p
∣∣
qj

8: end for
9: end for

10: k ← (k ≫ l)
11: r ← (r − |k ∗Q|p) ∗ ⌊2e+t/p⌋ ▷ t arbitrary chosen > 0
12: r ← (r ≫ t+ u)
13: for (i = 1; i ≤ n; i++) do
14: B[i] = Z[i]− ||k ∗Q|p|qi −

∣∣r ∗ |p|qi ∣∣qi
15: end for
16: return B

So supposing a uniform distribution of values, our approach
has a 21−u ∗ (n ∗ 2s +1) chance of not outputting the correct
value of r. This is not problematic at all, as r can only
take two values, either r or r − 1. When r = r − 1, an
incomplete reduction takes place, meaning the output will
be |d|p + p instead of |d|p for some d modulo p. Such an
incomplete reduction is harmless, as the RNS can hold much
bigger integers – and the impact of incomplete reduction gets
compensated during the next reduction operation. Algorithm 1
describes our approach for the reduction.
Example: For our use-case, we have selected the SIKE prime
SIKEp503 with the prime of size e = 503. We work
with following the RNS parameters s = 48 (size of qi),
u = 96 = 2∗s and n = 22. We chose this value of s, because
it is very friendly for hardware multiplication via the use of
DSPs. Similarly, we have also selected α = 0.5 and l = 18,
for the approximation of k. With the chosen parameters, the
probability of an incomplete reduction becomes

δ(r) ≤ 21−u ∗ (n ∗ 2s + 1) = 2−95 ∗ (22 ∗ 248 + 1) ≤ 2−42.

Here, our approach has less than 2−42 chance of generating
an incomplete approximation (which is harmless) of r.

In Alg. 1, Line 1 has one RNS vector multiplication requir-
ing n unit multiplications. Line 5 has ⌊u/s⌋ multiplications in
a for-loop and the total number becomes ⌊u/s⌋∗n unit multi-
plications. Line 7 has a multiplication in a double for-loop and
the total number becomes n2 unit multiplications. Line 14 has
a multiplication r ∗ |p|qi in a for loop, thereby requiring total
n unit multiplications. Summing all, our method of reduction
has a cost of n2 + (2 + ⌊u/s⌋) ∗ n unit multiplications.It
also uses mostly s bit arithmetic, except in the computation r
where we need one u bits subtraction and ⌊u/s− 1⌋ addition.
This method alsohas a small chance of computing a partial



reduction, meaning that the output will not always be within
[0, p− 1].

C. Handling of Negative Numbers

In the RNS representation, any arithmetic operation between
two integers implicitly perform a modular reduction by Q.
This reduction is actually problematic for negative numbers.
E.g., let us consider the RNS base B = [31, 32, 33] for Q =
32, 736. Let two integers be a = 1, 052 and b = 18, 976 with
the RNS representations A = [29, 28, 29] and B = [4, 0, 1]
respectively in B. When we perform the normal subtraction
directly on the long integers a and b then we first obtain a−
b = −17, 924. Next, the result is reduced modulo p. On the
other hand, when the subtraction a − b is performed in the
RNS, the result is [25, 28, 28]. Combining them using the CRT
gives CRT(A − B) = 14, 812 = −17, 924 + Q. Note that
our goal is to correctly compute a − b (mod p). However,
the automatic reduction of a negative result modulo Q in the
RNS will add the term Q mod p to the result. To solve this
problem, we chose to represent integers in the central domain.
We change the range of our field arithmetic from [0, p − 1]
to [−(p − 1)/2, (p − 1)/2], and then translated that into the
RNS changing our effective range to [0, (p−1)/2] for positive
integers and [Q− (p− 1)/2, Q− 1] for negatives integers.

IV. HARDWARE ARCHITECTURE

In this section, we present a highly parallel hardware archi-
tecture for implementing isogeny-based cryptography in the
RNS. As a case study, we optimize the hardware architecture
for SIDH, which enables fair comparisons since there are
several hardware implementations of SIDH in the literature.
We would like to remark that the proposed algorithmic
optimization techniques are applicable to any cryptographic
scheme that uses long integer prime field arithmetic, e.g.,
isogeny-based signature schemes and CSIDH.

For the overall cryptoprocessor, we choose an instruction-
set architecture (ISA) framework. In this framework, the Fp2

operations are the ‘instructions’. The high-level block diagram
of the cryptoprocessor architecture is shown in Fig. 1. The
arithmetic core compute the Fp2 and Fp arithmetic. Note that
any arithmetic in Fp2 essentially gets transformed into several
arithmetic operations in Fp. The memory unit stores all the
data during the protocol computation (e.g., SIDH). It consists
of registers and multiplexers. The control unit generates the
control signals during the protocol for performing the arith-
metic operations and accessing the register. In the following
part of this section, we describe internal architectures of the
main arithmetic core. We use 503-bit prime SIKEp503 to
describe the design decisions for the architecture.

A. Fp2 Addition/Subtraction/Multiplication Unit

Size of the coprimes in the RNS base is an important design
parameter. We choose the size s = 48 bits for each coprime so
that the DSP units in the FPGA can be utilized optimally. For
the e = 503 bit prime SIKEp503, the composite modulus
Q has to be larger than (e + 5) ∗ 2 bits. Therefore, the RNS

Fig. 1. Block diagram of cryptoprocessor architecture.

Fig. 2. High-level architecture diagram of the reduction unit. Block with {}
symbol represents concatenation operation.

basis of Q consists of 22 coprimes in this case. Each coprime
qi = 2s − c has a sparse ‘Mersenne prime’ like structure so
that a modular reduction by qi can be performed following
cheap additions and subtractions. In RNS, standard arithmetic
operations such as addition (ADD), subtraction (SUB) and
multiplication (MUL) are done independently for every RNS
moduli. We translate that in our architecture as doing 22 oper-
ations in parallel. As there is no data dependency, we choose
to instantiate 22 parallel 48 bits adder/subtractor circuits for
computing ADD and SUB in one cycle. Similarly, 22 parallel
48 bit multipliers are used to perform any multiplication in
the RNS base. One 48-bit multiplier is composed of six DSP
units in the Xilinx FPGA. As each qi has a reduction friendly
sparse structure, reducing the result of an integer multiplication
modulo qi takes only two cycles.

B. Fp Reduction Unit

This section describes the design decisions we made for
implementing our RNS reduction unit. We will consider A,
the RNS representation of an integer a as our unit input. We
use the method described in Sect. III-B and Fig. 2 shows a
high-level description of the reduction unit. The first step is to
compute the multiplication V ← A ∗ Q̃−1 (Line 1 of Alg. 1).
As shown in Fig. 2, we use 22 RNS modular multipliers
in parallel for computing A ∗ Q̃−1. We split the remaining
computations into four parts, two blocks to compute the two
variables k and r, one block to calculate Msum, and the last
one combining all results for the final reduction.
Computation of k̄: The computation of k is based upon the
approximation method proposed by [14] and given in Eq. 6
for the following parameters: α = 0.5 and l = 18. We select
those parameters in the example part of Sec. III-B to guarantee
the correctness of the approximation. We start by right-shifting
the s − l = 30 bits of the input. As established in Eq. 6, the
main operation of this step is to compute a large sum. We
use a carry-save adder tree to perform the large sum in one
cycle. We finish this step by another 18 bits right shift of the
sum to get k. Right-shifting the bits before and after the CSA



Fig. 3. r computation module.

tree replaces the trunc( ) function and the division by 248. It
also allows us to avoid using floating point arithmetic as we
convert them into 18 bits integers.
Computation of r̄: We have expressed how we compute r
in Eq. 6 and Fig. 3 shows the high level diagram of our
block. The first step here is the multiplication of vi ∗ |Q̃i|p
∀i ∈ [1, 22]. |Q̃i|p is a 96-bit integer, so we split it up into
a high and low bits part to change the large multiplication
into two 48 bits ones. We use 44 multipliers to compute
this step. We then use a large CSA tree to add all the terms
together. The next step is to subtract the previous accumulation
by trunc(k ∗ Q (mod p), 96). We compute k parallel to this
whole block in Fig. 2, its value becomes available before
the trunc(k ∗ Q (mod p), 96) computation. As k can only
take a value between [0, 22], we use a small table (ROM) to
store all the possible combination of trunc(k∗Q (mod p), 96)
and select the correct value accordingly. We use a 151-bit
subtractor circuit to calculate that ‘large’ subtraction. The
fourth step is the division by p. We change this operation to
multiplication by the inverse of p. We pre-computed the value
of ⌊1/p ∗ 2503+t⌋ with t = 47 which is a 47-bit integer. We
use a constant multiplier circuit with the constant value being
the 47-bit inverse of p on to the output of our subtraction. The
result is then right shifted by t + 96 = 143 bits to get r, see
Fig. 3. The choice for t is arbitrary, but we recommend it to
be near 48 to fit with RNS arithmetic.
Computation of Msum and final reduction: This module
computes Msum (Eq. 4) on every RNS moduli. This block is
the most expensive part of our reduction module (we perform
n2 unit multiplications). Fig. 4 shows our architecture for this
part. To compute Msum for one moduli, we use an RNS
multiplication followed by a CSA tree to add all the 22
integers out of the RNS multiplication. Lastly, we perform
a modulo reduction by qi. We instantiate four of these in
parallel (see Fig. 4) to calculate four results per clock cycle.
This choice is a compromise between performance and area
consumption, as adding more parallel multiplication and CSA
tree will decrease the latency of this block. But it would also
significantly increases the area consumption, i.e., adding an

Fig. 4. Msum computation module. Each input/output signal is 48-bit long.

TABLE I
PERFORMANCE COMPARISONS FOR THE MODULAR MULTIPLICATION

Work Freq. Lat. for 751-bit Lat. for 503-bit
(MHz) (in cc/µs) (in cc/µs)

[16] 109 176 / 2.147 90 / 0.532
[3] 193 101 / 0.523 -
[4] 167.4 69 / 0.412 -
[5] 294 90 / 0.306 -
[6] 182.3 54 / 0.296 -

Our Work 250 28 / 0.112 26 / 0.104

RNS multiplication increases the DSP count of design by 132.
The final reduction is the block which computes the RNS

modular reduction. It takes r and k as inputs from the other
blocks. It then uses those two values to compute ∀i ∈ [1, n]
k ∗ Q (mod qi) and r ∗ p (mod qi). As k can only take 23
values, we use 22 (one for each moduli) small tables (ROM)
to store all the possible combinations of k ∗Q (mod qi) and
select the correct value accordingly. For r ∗ p (mod qi), we
use 22 constant multiplier circuits to compute r ∗ (p mod qi)
mod qi (one circuit for one moduli). Then, we use one RNS
addition unit to add k ∗ Q (mod qi) and r ∗ p (mod qi)
together. The last step is to subtract, using an RNS subtraction
unit, our previous result and the output of the Msum block.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results of the
first RNS-based hardware implementation of isogeny-based
cryptography. As a case study, we implemented the full
SIDH protocol in the Zynq Ultrascale+ ZCU102 FPGA with
a performance-optimized implementation strategy in the Vi-
vado 2019.1 tool suite. For the 503-bit prime SIKEp503,
the implementation achieves 250 MHz clock frequency and
consumes 151,009 LUTs (55%), 143,171 DFFs (26%), 1,056
DSPs (41%) in the FPGA. We computed the latency for
SIKEp503 through simulation. Alice’s public-key generation
takes 478,318 cycles (1.913 ms), and the shared key gener-
ation takes 467,695 cycles (1.87 ms) only. Bob’s public-key
generation takes 657,650 cycles (2.631 ms), and the shared
key generation takes 547,793 cycles (2.191 ms) only.

Modular multiplication is the most time consuming finite
field primitive in isogeny-based cryptography. The proposed
RNS modular reduction unit for the prime SIKEp503 uses
86,129 LUTs, 51,629 DFFs and 924 DSPs. Table I shows the
timing comparisons between modular multipliers proposed in



TABLE II
COMPARISON TO OTHER SIDH IMPLEMENTATIONS FOR SIKEP503

Work Freq. Total Area
(MHz) (in µs) (in LUTs/FFs/DSPs/BRAMS)

[16] 109 49.9 21,321 / 13,756 / 162 / 39
[3] 207 14.2 45,615 / 33,969 / 384 / 40

[17] 177.1 33.7 30,031 / 24,499 / 192 / 27
[4] 165.9 14.1 27,609 / 23,746 / 264 / 33.5

Our Work 250 8.6 151,009 / 143,171 / 1,056 / 0

our work and previous works for the two primes SIKEp751
and SIKEp503. We can see that our proposed modular
multiplication is by far the fastest due to the use of both
RNS and our new modular reduction technique. However,
such a significant speed up comes at the cost of a higher
resource usage due to parallel RNS arithmetic. In this work, we
prioritized speed over resource consumption to make isogeny
cryptography faster targeting high-end platforms e.g., servers.

In Table II, we compare our SIDH implementation for
SIKEp503 with other works in the literature. Our work is
faster than other works in the literature, but we use more
resources. In the RNS there is no data dependency between the
coprime moduli. Hence, to fully benefit from this property, we
instantiate every moduli in parallel in the hardware to achieve
maximum parallel processing. The other key point is that most
works in non-RNS representation use an architecture based
on the Radix Montgomery multiplication approach for large
integer modular reduction [3], [4], [16], [17]. This approach
results in an architecture with a high performance to area
ratio. However, for very-fast implementations, this approach
becomes less efficient due to the data dependencies within
the algorithm becoming the performance bottleneck. Meaning
adding more multipliers will decrease the latency but at a
diminishing return.

VI. DISCUSSION AND CONCLUSION

Several works exist in the literature that propose attacks
SIKE implementations using side-channels [18], [19]. RNS
arithmetic can be considered as a countermeasure against
certain types of power analysis attacks because it behaves
similarly to how arithmetic shares work in masking. However,
side-channel attacks are still possible on RNS, particularly
during the computation of the three-point ladder. In both
isogeny cryptography and ECC, the biggest side-channel vul-
nerability is the three-point ladder algorithm, P + [sk] ∗ Q
operation. [18] analysis leakage from this operation for its
attack on SIKE/SIDH. The discussed countermeasure is adding
randomness to the algorithm by using a special point of the
starting elliptic curve, the infinite point O. This countermea-
sure slightly increases the latency of the implementation.

In this paper, we propose a new modular reduction technique
using RNS for large finite field arithmetic. We also present
its high-performance hardware architecture and utilize it for
implementing a hardware architecture for full SIDH protocol
as a case study. Also, its hardware implementation achieves
very low latency. Similarly, the SIDH implementation presents
the fastest performance in the literature. We hope that our work
contributes to the use of RNS for large finite field arithmetic

by tackling one of its main challenges, modular reduction. Ex-
ploring side-channel security of RNS-based implementations
is left as future work.
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