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Abstract. Vehicle-to-everything (V2X) communication is the key en-
abler for emerging intelligent transportation systems. Applications built
on top of V2X require both authentication and privacy protection for
the vehicles. The common approach to meet both requirements is to use
pseudonyms which are short-term identities. However, both industrial
standards and state-of-the-art research are not designed for resource-
constrained environments. In addition, they make a strong assumption
about the security of the vehicle’s on-board computation units. In this pa-
per, we propose a lightweight auto-refreshing pseudonym protocol (LARP)
for V2X. LARP supports efficient operations for resource-constrained de-
vices, and provides security even when parts of the vehicle are com-
promised. We provide formal security proof showing that the protocol
is secure. We conduct experiments on a Raspberry Pi 4. The results
demonstrate that LARP is feasible and practical.

Keywords: V2X communication, Privacy, Digital signature, Chameleon hash
function, Pseudonym

1 Introduction

Vehicles are becoming computers on wheels. They are being equipped with com-
putation and networking units, which can communicate with other devices on
the roads or other remote services. Such vehicle-to-everything (V2X) communi-
cation underlies intelligent transportation systems (ITS) to enhance traffic safety
and efficiency. For example, one of the first ITS systems demonstrated 35% fewer
accidents [26]. It is estimated to reduce over 1 million collisions per year or an
equivalent of $25.6 billion dollars [27]. The V2X market is estimated to reach
25.72 billion by 2025 [19].

There are two challenges to the wide adoption of V2X. First, information
broadcast by a vehicle must be authenticated. In particular, safety-critical ap-
plications such as traffic control must trust that messages containing the vehicle

⋆ This is the full version of the paper presented at SACMAT 2022 [].
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location, speed, acceleration, and other safety-related information come from
the correct vehicles. These messages also provide a close-up view of vehicles in
close proximity, enabling enhanced situational awareness [29]. Second, disclosing
location information raises privacy concerns, as it subjects the vehicles to long-
term tracking [32]. An attacker can collect and correlate messages from a target
vehicle to track its owner’s habits since there is a strong relationship between
vehicles and the owners.

A common approach that addresses the two conflicting challenges above is
pseudonyms [11]. A pseudonym is a short-term identity that can provide authen-
tication. Also, by changing pseudonyms frequently, the vehicle can avoid long-
term tracking and identity linkage. The industry standards [15, 31] are based
on public key infrastructure (PKI) in which a number of CAs issue pseudonym
certificates and use CRL to revoke them. To address the performance limitation
of CRL (size of the revocation list, and latency), a recent work uses an approach
that delays activation of the certificates [29].
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To better illustrate the limitation of existing approaches for V2X pseudonyms,
Figure 1 shows the high-level system model. There are two identity authorities:
the enrolment authority (EA) and authorisation authority (AA). Both are certi-
fied by a root CA. The EA manages long-term identification and authentication
of vehicles. The AA manages the pseudonym authorisation. The separation of EA
and AA is to protect privacy, as both are assumed to be run by non-colluding
parties. In this model, each vehicle consists of an on-board computation unit
(OBU) and a trusted element (TE). The OBU performs most of the computation
and communication tasks, while TE is trusted for storing keys and performing
cryptographic operations. We notice that most of the recent commercial OBUs
(e.g., [7,28]) are integrated with (contactless) smart card interface, so that they
can provide personalized and versatile services (e.g., authentication and pay-
ments) for different drivers. Usually, the smart card is used as the TE, that is
well known to be resource-constrained. To enroll, the vehicle first registers at
EA for a unique identifier (uid) and a long-term certificate. It then periodically
requests pseudonym certificates related to the uid. To authenticate a message,
the TE signs it with the corresponding signing key of the pseudonym certificate.

One limitation of existing works is that they are based on standard signa-
ture schemes, for example, ECDSA [16], which is not well suited for resource-
constrained devices such as the TEs. Furthermore, they assume that OBU is
trusted. In particular, in IFAL [29], the AA sends the pseudonymous keys to
the OBU which uses the keys to randomize signatures generated by the TE. In
other words, OBU and TE jointly generate the signature. If the OBU is compro-
mised (either via software compromise or physical attacks during servicing), the
signatures can be linked back to the original certificate issued by EA, thereby
violating vehicle privacy.

Our goal is to design and implement an efficient, secure pseudonym protocol
that is suitable for resource-constrained TE and is secure against OBU compro-
mise. To this end, we use the state-of-the-art signature scheme called LiS [35] to
build a lightweight auto-refreshing pseudonym protocol called LARP. We choose
LiS because it is efficient and supports unlimited data signing without being in-
terrupted at the signer (unlike other lightweight signature schemes, e.g., [36,37]).
In LARP, the AA and TE shares a secret seed. We generate pseudonyms by re-
freshing the random keys that are used to re-randomize the pseudonymous public
key. As a result, the OBU in our scheme is not involved for the cryptographic
operations, so the protocol is secure even if OBU is compromised. Another bene-
fit of decoupling TE from the OBU is that the TE can be transferred to another
OBU without any additional setup.

We have to solve two challenges when designing LARP. First, AA is semi-
honest and tries to learn the signing key for the pseudonym. It is possible because
LiS uses a universal hash function (UHF) that generates randomness based on
a shared secret between AA and TE. To address this, we modify the computa-
tion at the AA to compute UHF on the exponent without affecting the signing
operations. Second, communication between TE and AA is intermittent, that
is, interrupted without warning. In this case, AA may keep updating the ran-
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domness and become out of sync with the vehicles, which requires TE to run a
synchronization protocol to keep the state consistent with the AA. This synchro-
nization can be costly, which we improve by having a multi-layered structure of
the randomness based on different time units, i.e., hour for the first layer, min-
utes for the second layer, and seconds for the third layer. Our evaluation shows
that in the extremely worst case, the TE only needs to run UHF evaluations
less than 24 times to sync up with the AA. We note that these two challenges
are unique to LARP due to our strong threat model and lightweight signature
schemes.

The contributions of this paper are summarized as follows:

– We construct a lightweight auto-refreshing pseudonym protocol named LARP
for V2X communications. LARP achieves the auto-refreshing capability via
a synchronization protocol. LARP is lightweight and significantly reduces
the computation overhead of signature generation and verification by using
chameleon hash functions. In addition, LARP supports fast sychronization
between the vehicle and the AA by using a three-layered universal hash
structure.

– We give a formal security proof that LARP satisfies the standard security
and privacy requirements for V2X, under malicious OBU.

– We implement LARP on a Raspberry Pi 4 and evaluate the performance. The
results show that it is practical for V2X. For instance, the signing latency in
LARP is at least 10× better than that of a state-of-the-art protocol.

The remainder of the paper is organized as follows. Section 2 introduces the
preliminaries. Section 3 describes the threat model and the security require-
ments. Section 4 provides the formal definitions. Section 5 details the design of
LARP. Section 6 gives the security proofs. Section 7 discuses the performance of
LARP. Section 8 presents related works, and we conclude in Section 9.

2 Preliminaries

This section describes the cryptographic primitives used in LARP.

General Notations. We let κ the security parameter, and [n] = {1, . . . , n} ⊂ N
be a set of integers ranging from 1 and n. We use a

$← A to denote the action
of sampling sampling a uniformly random element from a set A. Let ∥ be an
operation to concatenate two strings, | · | be an operation to get the bit-length
of a variable, and # be an operation to get the number of elements in a set.

Table 1 lists the notations used in LARP.

Universal Hash Function. A universal hash function (UH) family [21]: K ×
A → B is a family of hash functions with a low number of collisions even in
expectation, where K, A and B denote key, message and output space of UH
respectively, and they are determined by the security parameter κ. To instantiate
UHF, let q be a large prime number. And we set K = A = B = Z∗

q . The instance
of UHF by multiply modular scheme in [4] is as following.
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Table 1. The Description of Notations

Notation Description

skX , pkX
The entity X’s long-term private key and public
key respectively.

uid The unique index mark for an entity.

pidjuid
The j-th pseudonym identity of the entity
whose unique index mark is uid.

ppkjuid
The j-th pseudonym public key of the entity
whose unique index mark is uid.

pskjuid
The j-th pseudonym secret key of the entity
whose unique index mark is uid.

pvkjuid
The j-th pseudonym verification key of the
entity whose unique index mark is uid.

M A secret parameter.

hk1, hk2, hk3

The universal hash function keys and each of
them composes of two sub-keys that are
hk1 = (hk10, hk11), hk2 = (hk20, hk11) and
hk3 = (hk30, hk11).

r1
The constantly refreshing secret parameter of
first UHF layer.

r2
The constantly refreshing secret parameter of
second UHF layer.

r3
The constantly refreshing secret parameter of
third UHF layer.

kj A constantly refreshing secret key.
H A cryptographic hash function.
sig A signature.

Tstart,Tend
The start and end time of AA publishing
pseudonym verification key, respectively.

Tpvk
The validity period of a pseudonym verification
key.

Tgap
The interval of vehicle running signature
generation in LARP.

Tt The life-span of the LARP scheme.
Ts The runtime of SignV2X

The UHF key hk = (hk0, hk1) composes of two group elements hk0 and hk1,
which are randomly chosen from Z∗

q . Given a message m, the hash value x is
generated through x = UHF(hk,m) = hk0 ·m+ hk1 (mod q).

Definition 1. We say that a set of hash functions UH is universal hash function
family if:

1. We uniformly choose a hash function UHF ∈ UH by sampling a random hash

key hk
$← K, and

2. ∀(x, y) ∈ A, we have the probability such that Pr[UHF(hk, x) = UHF(hk, y)] ≤
1

#A .
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Chameleon Hash Function. A chameleon hash function (CHF) consists of
three algorithms.

– CHKGen(1κ): Let p and q be two large prime numbers such that p = u · q+1
where u is a small integer. This algorithm samples random group generator
g of order q in Z∗

p and a random secret key skCH ← Z∗
q , and computes the

public key pkCH = gskCH (mod p).
– CHF(pkCH,m, r): This algorithm takes the public key pkCH, a message m ∈

Z∗
q , and a randomness r ∈ Z∗

q as input, and outputs a value y = gr · (pkCH)m
(mod p). Comparing with the chameleon hash function in [18], only the
positions of m and r are exchanged, and this change is only conceptual.

– CHColl(skCH, r
′,M,m): This algorithm takes the secret key skCH, and (r′,M,m) ∈

Z∗
q as input, outputs r = M · skCH+r′−m · skCH such that CHF(pkCH,m, r) =

CHF(pkCH,M, r′).

Given an adversary A and a chameleon function CH, the collision resistance
of CH is defined by the security game GameCRA,CH(κ) as follows.

GameCRA,CH(κ):
(sk, pk)← CHKGen(1κ);
(m, r,m′, r′)← A(κ, pk);

return 1 if m′ ̸= m and CHF(m′, r′) = CHF(m, r),
and 0 otherwise

Definition 2. Given pkCH,m, r, the probability of an adversary A in breaking
the security of chameleon hash function under the security parameter κ is defined
as AdvCRA,CH(κ) = Pr[GameCRA,CH(κ) = 1]. The chameleon hash function is secure

when AdvCRA,CH(κ) is negligible in κ.

Bloom Filter. Bloom Filter (BF) [3] is a probabilistic data structure that
provides space efficient storage of a set and that can efficiently test whether an
element is a member of the set. The algorithms of a bloom filter are defined as
follows.

– Init(N, ϵ) : The initialization algorithm takes a set size N to initiate the BF
of bit length 1.44ϵN with a false positive rate (FPR) of 2−ϵ.

– Insert(m) : This algorithm inserts the element m into BF.
– Check(m) : The check algorithm returns 1 if the element m is in BF, and 0

otherwise.

Here we need to the Bloom filter to provide the adversarial resilience prop-
erty [20] with steady representation. We define a security game (adapted from [20])
GameARA,BF(κ, T,N, ϵ) that is played between an adversary A = (A1,A2) and a
challenger based on a Bloom filter BF scheme and the parameters (κ, T,N, ϵ),
where T is the time of the Bloom filter being used. Note that the parameter
T restrict the running time of adversaries in the game. Let CurrentTime() be a
function to get the current system time of the game.
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GameARA,BF(T,N, ϵ):
BF.Init(N, ϵ);
Ts := CurrentTime();
IS, st← A1(T, Ts, N, ϵ);
BF.Insert(mi) for ∀ mi ∈ IS
m∗ ← A2(st,BF);

return 1 m∗ /∈ IS and CurrentTime()− Ts ≤ T ,
and 0 otherwise

Definition 3. The advantage of a PPT adversary A in breaking the security of a
Bloom filter BF under the security parameter κ is denoted by AdvARA,BF(κ, T,N, ϵ) :=

Pr[GameARA,BF(κ, T,N, ϵ) = 1]. We say BF is secure if no PPT adversary has non-

negligible advantage AdvARA,BF(κ, T,N, ϵ).

3 Overview

This section first presents the system and threat model of LARP. It then discusses
the high-level security goals and challenges in realizing these goals.

System model. Our system consists of the vehicle, the identity authorities, and
the service providers, as illustrated in Figure 1. The vehicle consists of a trusted
hardware element (TE) and an on-board computation unit (OBU). All commu-
nication between TE and other entities goes through the OBU. The enrolment
authority (EA) and authorisation authority (AA) are certified by a root CA.
The EA manages long-term identification and authentication of vehicles. The
AA manages the pseudonym authorisation. EA and AA are separated entities,
and are assumed to be run by non-colluding parties [14]. The service providers
verify the authentication of messages sent from the vehicle.

A pseudonym protocol in V2X consists of three steps.

1. TE registers with the EA, which returns a secret key and unique uid. EA
shares the TE’s uid with AA.

2. During initialization with AA, the TE sends its uid, secret parameters and
an enrollment certificate signed by EA.

3. TE then periodically sends requests to AA for a verification key. The vehicle
signs its messages with the key, which can then be checked by the verifier.

Threat model. TE is trusted to protect the device’s private keys and to per-
form cryptographic operations. TE also has an internal clock that is loosely
synchronized with those of other TEs. We assume no side-channel attacks and
operations within the TE are secure. The communication between TE and the
authorities is secure.

The OBU is malicious. It controls the communication between TE and other
entities, and therefore can intercept, inject, and tamper with the communication.
We do not consider denial of service attacks, as they can be detected by the user.
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We note that state-of-the-art solutions, namely IFAL, assume honest OBU, since
their protocols rely on both TE and OBU to generate signatures. When OBU is
compromised or just out of function, it may simply broadcast TE’s signatures
and its public key, allowing long-term tracking of the vehicle.

EA and AA are non-colluding authorities. Both can see all messages in the
network. EA is honest-but-curious and wants to link messages belonging to the
same vehicle. AA is also honest-but-curious. It follows the protocol, but it wants
to impersonate the vehicle by learning the signing keys. But EA and AA do not
collude with each other. The verifiers, including RSU, pedestrians, signal lights,
Internet services, etc., are malicious. They provide the correct safety services to
the vehicle but want to track and impersonate vehicles based on the messages.

Goals and Challenges. We mainly have the following security goals for LARP:

– Authentication. Messages generated by the vehicle are authenticated, that
is, the attacker cannot forge messages from a non-compromised vehicle (whose
signing key is not exposed to the attackers).

– Pseudonymity. A message generated by the vehicle does not reveal its
long-term identity.

We note that related works also support accountability property, which allows a
party to reveal the long-term identity of misbehaved vehicles [29]. However, this
property is only possible when EA and AA share more information than uid. We
consider this as a strong assumption and outside of our threat model.

To fit in the V2X environment, LARP is motivated to handle two challenges.

– Poor and unreliable network. V2X communication is not reliable, due to
interference, vehicle going out of range, or simply not running. As a conse-
quence, the shared state between the vehicle and authorities may go out of
sync. This precludes interactive protocols in which the vehicle communicates
with the authorities for every message.

– Resource constraint. The protocol must run on vehicle’s embedded units
with low CPU, memory, communication, and storage capability.

We address the first challenge by designing an efficient synchronization proto-
col allowing the vehicle and authorities to sync up their shared secret quickly.
The protocol is based on a multi-layer structure. Each layer corresponds to a
different time granularity (for instance, second, minute, hours, etc.). We address
the second challenge by building upon existing lightweight signature schemes. In
particular, we modify LiS [35] to use the three-layered structure, and to use an
auto-refreshing pseudonym key to randomize the signing keys.

4 V2X Formal Model

V2X Scheme. Here we review the notation of a V2X scheme that is adapted
from [29] (with the identical security properties). A V2X scheme Π consists of
the following efficient algorithms:
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– CreatePKI(1κ): This is a public parameter generation algorithm which takes
as input the security parameter 1κ, and outputs the private and public key
pair (sk, pk) of an authority (i.e., CA, EA, and AA). The public parameters
(PP ) include the public keys of the root CA, EA, and AA. The private
parameters (SP ) are the corresponding private keys.

– CreateVehicle(c): This is a key generation algorithm for a vehicle, which
takes as input a vehicle reference c, and outputs a unique identifier (uid)
in the V2X system, and the corresponding the secret key and public key
pair (skTE, pkTE) for TE. We assume that each vehicle is uniquely identified
by a unique reference ci for enrollment (See more discussion about vehicle
reference in [29]).

– CreatePSK(skTE, j): This is a pseudonym secret key generation algorithm for
a TE, which takes as input the secret key of a TE and the index j, and out-
puts the j-th pseudonym secret key pskjTE and the corresponding pseudonym

identity pidjuid. We assume that each pseudonym secret/verification key pair
is only valid for time Tpvk for privacy requirement. That is, the life-span Tt

of the V2X scheme should be divided into multiple time slots {Ti}i∈[Tt/Tpvk].
– CreatePPK(pkTE, j, aux): The pseudonym verification key generation algo-

rithm takes as input the public key of a TE pkTE, the index j, and some aux-
iliary input aux (e..g, cached state of AA), and outputs the j-th pseudonym
verification key pvkjuid and the corresponding pseudonym identity pidjuid.

– SignV2X(pskuid,m): This signing algorithm takes as input the pseudonym
signing key pskuid and a message m, and outputs a signature sig for m.

– VerifyV2X(sig, pvkuid,m): This verification algorithm takes input the pseudonym
verification key pvkuid, the message m and the signature sig, and outputs 1
if sig is a valid signature from the verification key pvk and 0 otherwise.

The V2X scheme Π would also run the following protocols based on the
above algorithms:

– EnrolVehicle protocol is an interactive protocol between a vehicle and EA
that is executed to register a vehicle. This protocol may run the algorithm
CreateVehicle to enroll a vehicle and generate uid and the secret and public
key pair of the vehicle.

– AuthoriseVehicle protocol is an interactive protocol between a vehicle and AA
that is used to generate the pseudonym public keys for vehicles. This protocol
may run the algorithms CreatePPK and CreatePSK to jointly generate the
pseudonym secret and verification key pair.

V2X Security. This subsection provides the security formalization of a V2X
scheme. To formalize the fundamental security property of V2X scheme, we
define the authentication game GameAuthA,Π in the following.

In the authentication game, A will interact with the V2X scheme Π involv-
ing Nv vehicle , and at most Np pseudonym pubic key for each vehicle. In the
game, the adversary can have access to two oracles OEV() and OAV(), which
allows to the (passive) adversary to execute the V2X protocols EnrolVehicle
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and AuthoriseVehicle respectively to get the protocol transcripts (which may
include the pseudonym public key related information). We shall use a list PSK
to record all pseudonym secret keys of vehicles generated during AuthoriseVehicle
oracle queries. Note that a psk can be retrieved in terms of pid. Moreover, we
let OS(PSK, pid,m) be a signing oracle which first finds out the corresponding
pseudonym secret key psk ∈ PSK by pid, and then runs SignV2X(psk,m) to gener-
ate a signature sig for the input message m. In the meantime, we use a list SL to
record the tuple (sig,m, pvkj) that corresponds to each signing oracle query. In
addition, we assume that the adversary can ask at most l = l(κ) signing oracle
queries, where l is defined by a function l(κ) in κ.

The goal of the adversary in the game is to forge a signature of a pseudonym
verification key. For simplicity, we let OV2X be a set of oracles {OEV(),OAV(),
OS(PSK, ·, ·)}. We will say that a pseudonym verification key pvk is valid if it is
generated by oracle OAV().

GameAuthA,Π(κ):
(PP, SP )← CreatePKI(1κ);
(sig∗,m∗, pvk∗)← AOV2X(PP );

return 1 if (sig∗,m∗, pvk∗) /∈ SL and pvk∗ is valid and
Verify(sig∗, pvk∗,m∗) = 1, and 0 otherwise

Definition 4 (V2X Security). The advantage of an efficient adversary A in
breaking the security of a V2X scheme Π under the security parameter κ is
defined as AdvAuthA,Π(κ) = Pr[GameAuthA,Π(κ) = 1]. The V2X scheme Π is secure,

which means that no efficient adversary has non-negligible advantage AdvAuthA,Π(κ).

V2X Privacy. We first discuss about the achievable privacy of a V2X scheme
and the limitations. The functional requirement that vehicles frequently broad-
cast highly unique location and trajectory data to receivers limited only by
communication distance [6] cannot be protected through cryptography. The com-
pletely unlinkable V2X signatures using a distinct pseudonym for each V2X mes-
sage are still vulnerable to attacks that utilize the connection between vehicle
speed and location at different time [2, 13].

Unlike the above, the contents of the broadcast V2X messages and their
digital signatures are considered respectively in the V2X scheme. This allows
the privacy leakage of the V2X system in a way that does not depend on human
behavior or vendor-specific implementations to be quantified.

We define the V2X privacy from the perspective of pseudonymity and sep-
arate it from the functional content of collaborative awareness messages. The
captured realistic adversaries only have a partial overview of the entire environ-
ment, which will lead to that the adversaries will experience uncertain periods
during which the target vehicle does not appear to broadcast its position or tra-
jectory. If there is enough noise in other vehicle forms, the adversary will not be
sure whether the target vehicle can be re-identified.
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V2X Pseudonymity. It is defined as whether a pseudonym can be linked to
the canonical identity of a vehicle. The contents of the V2X messages are not
allowed to provide adversaries with a non-negligible advantage on pseudonymity
breach. Each vehicle corresponds to a unique vehicle reference. Vehicles broad-
cast V2X messages using the methods and the pseudonym scheme specified in
the underlying V2X scheme. In the following, we define an pseudonymity game
GamePseudA,V2X that is played with an adversary A = (A0,A1).

In the game, there are two phases. Firstly, the game simulator creates the
system parameters and secret and public keys of the vehicles, and then provides
the all public information to the adversary A0. After a polynomial number of
queries given by OV2X, A0 must output two target vehicle references c∗0 and c∗1,
which must have never been input to the EnrolVehicle oracle. Then, the simulator
randomly samples a random bit b, and create the public and secret key pair
for c∗b by running CreateVehicle(PP, SP, c∗b) and returns pk∗TE∗

b
as the challenge,

where TE∗
b is referenced by c∗b . Both vehicle references c∗0 and c∗1 would become

invalid, i.e., they will never be handled by OEV oracle. After time Tpvk (i.e., the
pseudonym verification key of c∗b starts working), the adversary A1 keeps asking
oracles in OV2X at the second phase based on pkTE∗

b
. Eventually, A1 outputs a

guess bit b′. The adversary wins the game if b′ = b.

GamePseudA,V2X(κ):
(PP, SP )← CreatePKI(1κ);

b
$← {0, 1};

(st, c∗0, c
∗
1)← AOV2X

0 (PP );
(sk∗TE∗

b
, pk∗TE∗

b
)← CreateVehicle(c∗b);

invalidate (c∗0, c
∗
1) and wait for time Tpvk;

b′ ← AOV2X
1 (PP, st, c∗b , pk

∗
TE∗

b
);

return 1 if b′ = b, and 0 otherwise

Definition 5 (V2X Pseudonymity). The advantage of an efficient adversary
A = (A0,A1) in breaking the privacy of a V2X scheme V2X under the security
parameter κ is defined as AdvPseudA,V2X(κ) = |Pr[GamePseudA,V2X(κ) = 1]−1/2|. The V2X
scheme V2X is pseudonymity conscious, which means that no efficient adversary
has a non-negligible advantage AdvPseudA,V2X(κ).

5 LARP

In this section, we introduce a lightweight auto-refreshing pseudonym scheme
LARP for V2X communication. We stress that LARP conforms to ETSI ITS
standards as the system architecture remains unchanged.
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5.1 Overview

There are three important system parameters. An instance of LARP has a lifetime
specified by Tstart and Tend. We use Tpvk to denote the validity period of a
verification key (or epoch). The ETSI standard recommends setting Tpvk to five
minutes. Tgap is the period between runs. For example, if the vehicle stops at
time ti and starts again at time tj , then Tgap = (tj − ti). Fig. 2 illustrates how
LARP is divided into consecutive Tpvk intervals. The vehicle may be active (i.e.,
running) over many intervals. However, when Tgap > 0, the vehicle runs the key
generation algorithm to generate the latest verification key.

pvk0

Tstart Tend

Tpvk

pvk12

2 hour 59 min

pvk100

Run1 Run2

Tgap
Run0

Tgap

Update Update

pvk136

Fig. 2. Overview of LARP Usage Time.

LARP adapts the lightweight signature scheme LiS2 [35] to construct the
LARP scheme. A signature of LARP is generated entirely by the TE without
input from the OBU. In LARP, the unique uid is bound to TE instead of OBU in
IFAL, so it can fit in a more flexible real-world scenario in which many distinct
drivers share the vehicle (e.g., a family). Since TE (e.g., smart cards) can be
replaced, we need the OBU to serve as a card reader to authenticate a TE. To
generate the pseudonym verification keys, we let TE and AA share a symmetric
key k0 from which they can independently create more pseudonym verification
keys.

LiS2 uses pre-computation to generate verification points. A verification point
is the output of the chameleon hash function over a dummy message M and a
random value r′i, i.e., CHF(pkCH,M, r′i). More specifically, a UHF function is used
as a pseudo-random sequence generator to update the random values, that is,
r′i := UHF(hk, r′i−1) = hk0 · r′i−1 + hk1 mod q, where q is a big prime number
and hk = (hk0, hk1) is a hash key of UHF. These randomnesses should be kept
privately by a fully trusted key generation center (KGC) in LiS2. Otherwise, an
attacker can extract the signing key from the randomnesses. However, in the
V2X setting, the AA might be curious about signing keys of TE, so it cannot
have access to these values. Our scheme addresses this by letting AA compute
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the UHF on the exponent only, i.e., ghk0·r
′
i−1+hk1 where g is a group generator.

Note that the AA can only have gr
′
i−1 and cannot know hk0 in plaintext (for the

above security reason). So we further split the first sub-key of UHF hk0, into
two secret shares, i.e., hk0 · α and 1/α (such that the hk0 can be reconstructed
from them), and distribute them to the EA and AA, respectively, where α is a
random value. That is, with these shares, EA and AA can jointly compute the
secret exponentiation without knowing hk0.

Fig. 3. Three-layered UHF Tree Diagram.

Unlike LiS2, which assumes uninterrupted communication (for continuous
message authentication), LARP needs to handle the unpredictable stopping of a
vehicle (e.g., at lunchtime) as shown in Figure 2. A stop causes the TE’s ran-
domness ri to be out of date. To catch up, the TE could update the randomness
by computing the value for every epoch, as in LiS2. This approach is inefficient.
For example, a one-hour stop may result in thousands of UHF computations
(or more than 30 seconds on Raspberry Pi 4 platform). Instead, we propose a
three-layered UHF approach that quickly skips over expired values. These layers
are divided in terms of hours (first layer), pseudonym verification key valid time
Tpvk (second layer), and the signature generation (third layer). Each layer uses
a different UHF key. The initial input of the second or the third layer is from
the upper layer. Suppose the vehicle stops for 1 hour and 50 minutes. To sync
up the randomness, the TE needs to compute one UHF (i.e., determined by 1
hour) at the first layer, then use the output to compute 50/Tpvk UHFs at the
second layer and compute one final UHF at the third layer. We show a high-level
overview of the three-layered UHF approach in Fig. 3. This approach results in
a significant reduction in UHF computation.

5.2 Algorithms of LARP

In this section, we describe the algorithms and protocols of LARP. Our construc-
tion leverages on a hash function H : {0, 1}∗ → Z∗

q , a universal hash function
family, and a chameleon hash function. In the following, we ignore CreatePKI
algorithm which is implemented with standard digital signature schemes (e.g.,
ECDSA). We assume the output of this algorithm at the EA and the AA are
(skEA, pkEA) and (skAA, pkAA), respectively.

We describe the signing procedure of EA and AA without mentioning the
specific signature schemes.
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CreateVehicle(c). This algorithm is run by the vehicle during registration with
the EA, and involves the following steps.

1. Generate a key pair by running the key generation function of chameleon
hash function (skCH, pkCH)← CHKGen(1κ).

2. Sample three random keys (hk1, hk2, hk3)
$← K for the the universal hash

function family UHF. Each key corresponds to a layer in the multi-layer UHF
structure.

3. Sample a random message M
$← Z∗

q .

4. Sample an initial random value r1
$← Z∗

q of the first UHF layer, a pseudonym

seed k0
$← Z∗

q , and a random value α
$← Z∗

q for blinding the hash key of UHF.
5. Generate the second layer and the third layer randomnesses as r2 = UHF(hk1, r1)

and r3 = UHF(hk2, r2).
6. Compute secret/public key pair skTE := (skCH, hk1, hk2, hk3, r1, r2, r3,M ·

skCH, k0, α) and pkTE := (pkCH, (pkCH)
M, hk10, hk20, g

hk11 , ghk21 , ghk31 , gr1 , gr2 , gr3)
for TE.

7. Keep the index of pseudonym epoch j as a mutable state, which can be
determined by the current time.

8. Share k0 and uk∗ = α · hk30 (mod q) with AA over a secure channel (e.g.,
Transport Layer Security (TLS) protocol [5, 23]).

CreatePSK(psk′uid, j). We change the input secret key here for efficiency concerns.
It is easy to see that psk′uid can be computed from skTE. The TE of the vehicle
runs this algorithm to generate pseudonym secret key for the j-th epoch, pskjuid,
based on the stored, most recently used pseudonym secret key psk′uid and the
time Tl when it is last used. This algorithm involves the following steps:

1. Get a vehicle stop time Tgap based on current time Tc as Tgap = Tc − Tl.
Note that the main difference between two pseudonym secret keys are the
random values r1, r2 and r3. So we mainly update the pseudonym key and
randomness in psk′uid to yield the up-to-date pseudonym secret key pskjuid.

2. Call Algorithm 1 to synchronize the parameters with AA based on the
most recently used pseudonym secret key psk′uid and the vehicle stop time
Tgap, and generate the updated pseudonym secret key pskjuid and pseudonym

identity pidjuid. The algorithm first gets the hours in Tgap and the number
of pseudonym epochs in the remainder of Tgap that is less than an hour,

which are denoted as n1 =
Tgap

1hr and n2 =
Tgap−n1·1hr

Tpvk
, respectively. We let Ts

be the maximum time cost for computing a signature at TE. Then, we can
further obtain n3 :=

Tgap−n1·1hr−n2·Tpvk

Ts
that is the number of UHF evaluations

in the third layer of the UHF tree. All the time values in the paper will
be implicitly converted to the same unit in different calculations unless the
calculations are specifically defined. The algorithm will execute ni times UHF
to skip the randomness used in the i-th layer. Totally, there are n1 + n2 + n3
UHF operations executed to update the random values r1, r2 and r3 in the
pseudonym secret key pskjuid. To update the pseudonym identity pidjuid for
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the j-th epoch, it firstly generates the j-th seed kj = H(k0||uid||j) and then

compute pidjuid = H(kj ||uid).

Algorithm 1 Update(psk′uid,Tgap, j)

1: n1 =
Tgap

1hr
\\ Number of UHF evaluations in the first layer

2: n2 = (Tgap − n1 · 1hr)/Tpvk \\ Number of UHF evaluations in the second layer

3: n3 :=
Tgap−n1·1hr−n2·Tpvk

Ts
\\ Number of UHF evaluations in the third layer

4: for x = 1 to n1 do
5: r1 = hk10 · r1 + hk11 \\ Update first UHF layer
6: end for
7: if n1 ̸= 0 then
8: r2 = hk20 · r1 + hk21 \\ Switch to a new branch
9: end if
10: for x = 1 to n2 do
11: r2 = hk20 · r2 + hk21 \\ Update second UHF layer
12: end for
13: if n1 ̸= 0 or n2 ̸= 0 then
14: r3 = hk30 · r2 + hk31 \\ Switch to a new branch
15: end if
16: for x = 0 to n3 do
17: r3 = hk30 · r3 + hk31 \\ Update the third UHF layer
18: end for
19: kj = H(k0||uid||j);
20: pidjuid = H(kj ||uid) \\ Update the pseudonym identity
21: pskjuid = (kj , r1, r2, r3, skTE)
22: return pskjuid, pid

j
uid

CreatePPK(pkAA
TE , j, aux): This algorithm is run by AA. Let pkAA

TE be the pub-
lic key of TE kept by AA, which encompasses the updated public randomness
gr1 , gr2 , gr3 , and the parameters (pkCH)

M, ghk31 and a mutable j. Here we specif-
ically define the auxiliary value aux = (kj , uid, uk

∗). The algorithm has the fol-
lowing steps.

1. Compute the pseudonym identity and pseudonym public key for the vehicle
through pidjuid = H(kj ||uid) and ppkjuid = (pkCH)

kj .

2. Initialize a new Bloom filter instance BFj by BFj .Init(ls, ϵ), where ls = ⌈Tpvk

Ts
⌉;

3. For i ∈ [ls], AA does the following:
– Send gr3 to EA who will compute a response U = gr3·uk for AA, where

uk = 1/α (mod q) is a secret share (which is used to remove the secret
α from uk∗ on the exponent of a value) obtained from the corresponding
vehicle in the EnrolVehicle protocol (described later);

– Refresh gr3 as gr3 = (U)uk
∗ · ghk31 ;

– Compute a verification point vpi = (pkCH)
M · gr3 , and insert vpi into the

j-th Bloom filter instance as BFj .Insert(vpi).
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4. Return the pseudonym identity pidjuid and the pseudonym verification key

pvkjuid = (ppkjuid,BFj) with its signature which can be downloaded from AA
by the public.

SignV2X(psk
′
uid,m): This algorithm is run by the vehicle (the TE) to generate

signatures for V2X messages. To sign a message m, it does the following steps:

1. Run CreatePSK(psk′uid, j) to get the pseudonym secret key pskjuid based on
the most recently used pseudonym secret key psk′uid.

2. Execute Algorithm 2 to generate the signature sig.

Algorithm 2 Sign(pskjuid,m)

1: R
$← Z∗

q

2: h = H(m||R)
3: s = M · skCH + r3 − kj · h · skCH \\ Signature generation
4: sig = (s,R)
5: return sig

VerifyV2X(sig, pvk
j
uid,m): To verify a sig = (s,R) for a message m, the verifier does

the following steps:

1. Compute a hash h = H(m||R).
2. Verify the point vr = (ppkjuid)

h · gs, where ppkjuid ∈ pvkjuid.

3. Return BFj .Check(vr) for BFj ∈ pvkjuid.

Protocols. The end-to-end protocols of LARP are described below.

EnrolVehicle: A vehicle interacts with the EA as follows:

1. The vehicle c first runs CreateVehicle(c) algorithm to create its secret and
public key pair (skTE, pkTE) for its TE.

2. The vehicle sends an authRequest, which contains pkTE, uk = 1/α (mod q),
and its canonical identity reference c to EA through a secure channel.

3. Upon receiving authRequest, EA waits for the out-of-band document to as-
sert the vehicle registrant. Then, EA generates a unique uid as a shared
pseudonymous reference between the EA and AA.

4. EA signs a enrollFile which contains uid and pkTE, and returns the signed
enrollFile to TE.

5. Finally, EA maintains a database storing the tuples in the form (uid, c, pkTE, uk)
regarding a vehicle.

AuthoriseVehicle: A vehicle may run this protocol with AA to book pseudonym
certificates as follows:
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1. A vehicle submits its enrollFile (obtained from EnrolVehicle protocol) and uk∗

to AA to request pseudonym certificates from the start time Tstart and end
time Tend for requesting pvk. Note that Tstart and Tend are fixed (e.g., Tstart=
00:00:00 and Tend = 23:59:59) for privacy concerns.

2. AA computes n1 = Tt

1hr and n2 = 1hr
Tpvk

, where Tt = Tend − Tstart.

3. For j ∈ [ Tt

Tpvk
], AA does the following:

– If (j mod n2) = 0 (meaning the next hour starts), then update the first
layer’s randomness n1 = Tend−Tstart

1hr and the second layer’s randomness
gr2 = (gr1)hk20 · ghk21 ; Otherwise, update the second layer’s randomness
gr2 = (gr2)hk20 · ghk21 ;

– Send gr2 to EA and receive back U = gr2·uk;

– Compute gr3 = (U)uk
∗ · ghk31 which is the first randomness of the corre-

sponding branch in the third layer;

– Compute the j-th seed kj = H(k0||uid||j);
– Call (pidjuid, pvk

j
uid) = CreatePPK(pkTE, j, aux) to get the j-th pseudonym

identity and pseudonym verification key, where aux = (kj , uid,U, uk
∗).

4. Eventually, AA can obtain a set of pseudonym identities and pseudonym
verification keys {pidiuid, pvk

i
uid}i∈[Tt/Tpvk].

Comparison with LiS2. Only the algorithms Algorithm 2 and VerifyV2X in
LARP are identical to the corresponding components of LiS2. Furthermore, in
LiS2, the public key replenishment is outsourced to a fully trusted key generation
center (KGC). However, the drawback of LiS2 is that the KGC needs to keep
some critical states (e.g., randomness r′) that can enable it to extract the signing
key of a client. That is, the KGC can subtract two signatures (as shown by
Step 3 of Algorithm 2) to extract the signing key with the knowledge of the
randomness and message. Hence, we have to prevent the semi-honest AA from
obtaining the signing key in the construction of LARP. Our idea for achieving
this is to let AA have a secret share of the UHF Key and compute the UHF on
the exponent. So the AA in LARP does not know any randomness in plaintext.

Conditional Tracing and Revocation. Optionally, a V2X scheme may need
to either punish or expel malicious vehicles. e.g., which intentionally injected
fake data using its signing key. Once such vehicle is identified, the corresponding
pseudonym certificates of the malicious vehicle should be revoked.

Specifically, we assume there is a trustworthy auditor (e.g., a government
authority) which can get information from both AA and EA. The auditor can
send the dishonest message-signature tuple (m,R, s) to AA which can first com-
pute h = H(m||R) and check the specific BF whether x = CHF(ppkjuid, h, s) =

(ppkjuid)
h · gs is in it. Then the auditor signs and publishes a message to notify

of invalid the pvkjuid and ask AA to stop generating verification key for it. In
addition, the auditor sends the uid to EA to notify the misbehavior of uid. EA
considers the re-enrolment of the uid’s vehicle depending upon the reasons for
deactivation and existing regional vehicle registration laws.
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6 Security Analysis

In this section, we present the security results of LARP. LARP provides the
security properties defined in Section 4. Let Ts be the runtime of SignV2X. And
we can have a bound of the query number of signing oracle as l ≤ Tt/Ts. Let lr
be the bit-length of Zq.

We show the security results of LARP via the following theorems. Here we
only give the high-level ideas of the proofs. We present the full proofs of the
these theorems in Appendix A and B, respectively.

Theorem 1. Suppose that the chameleon hash function and the Bloom filter are
secure, and the hash function H is modeled as a random oracle. Then LARP is a
secure V2X scheme with advantage AdvAuthA,LARP(κ) ≤ Nv · (AdvCRA,CH(κ) + l2/2lr +

AdvARA,BF(κ,Tt, N, ϵ), where l ≤ Tt/Ts.

The proof of this theorem is given by a sequence of games following [25]. The
first game is the real V2X security experiment. We gradually change the game
until the adversary’s advantage in the final game is zero. The challenger first
guesses (in advance) which vehicle will be successfully attacked by the adversary.
Since there are Nv vehicles, the probability that the challenger guesses correctly
is lower-bounded by 1/Nv. Next, the challenger replaces each output of the UHF
of the guessed victim vehicle with uniform random values. Due to the security of
UHF, the adversary cannot distinguish this modification. Then, we change the
game by letting the challenger randomly generate a signature for each message of
the victim vehicle instead of running the collision calculation algorithm CHColl.
So that we can reduce the security to that of the chameleon hash function.
Furthermore, we further reduce the security to the false positive error of BF.
Finally, the challenger can reject any signatures which are generated by herself,
so the adversary has zero advantage in the last game.

Theorem 2. If the hash function H is modeled as random oracle, the proposed
LARP is a pseudonymity conscious V2X scheme with advantage AdvPseudA,LARP(κ) ≤
Nv·qH
2lr

, where qH is the number of oracle queries of H, and lr is the bit-length of
the output of H.

In the proof, we mainly show that the adversary only has a negligible advan-
tage to ask a random oracle query k∗j = H(k∗0 ||uid||j) with a pseudonym key k∗0
of a vehicle since the seed k0 is randomly chosen and not corrupted. So the ad-
versary cannot remove k∗j from the corresponding pseudonym public key ppkjuid
to break the pseudonymity of the vehicle.

7 Performance Evaluation

In this section, we evaluate the computation and communication overhead of
LARP. The results show that LARP is practical for V2X. Table 2 shows the cost
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of a UHF operation with different parameters (for reference), the signature and
verification overhead.

Setup. We implement LARP on a Raspberry Pi 4 with 8 GB RAM. The de-
vice simulates a TE onboard a vehicle. The verifier is implemented in a more
powerful device, namely a desktop PC with Intel (R) Xeon (R) E3-1230 v2 3.30
GHz, running Window 10 operating system. Moreover, we use the cryptographic
library Miracl [1] to realize the algorithms in LARP. The hash function used by
LARP is instantiated with SHA-256.

Computation overhead of Algorithm 1. The epoch time Tpvk is set to 5
minutes as recommended by ETSI standard.

Table 2. Runtimes of evaluation

Scheme |q| = 128bits |q| = 192bits |q| = 384bits

A UHF 0.177 ms 0.227 ms 0.457 ms

LARP Signature 20.629 ms 21.719 ms 23.527 ms

LARP Verification 23.024 ms 24.943 ms 27.41 ms
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Fig. 4. Computation Overhead under Typical Tgap

We now examine the number of UHF computation under different Tgap when
the vehicle starts. If Tgap < Tpvk, the TE does not need to execute the UHF
operation, and it can update from the start of Tvk. If Tpvk ≤ Tgap < 1hr, it needs

to execute
Tgap

Tpvk
UHF operations. If 1hr ≤ Tgap, there will be

Tgap

1hr +
Tgap mod 1hr

Tpvk

UHF operations. For example, if Tgap = 5 min, or Tgap = 1hr, only one UHF
operation is needed. When Tgap = 36 min, 1hr36 min, or 1hr57 min, there are
UHF opreations in the third layer extending the computation overhead.

Fig. 4 shows the computation overhead with varying Tgap, and Table 3 shows
the number of operations in three layers for each Tgap. It can be seen that the
cost does not increase linearly with Tgap. In particular, the cost with Tgap = 1hr
or Tgap = 2hr is less than that of Tgap = 1hr36 min or Tgap = 36 min. When
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Tgap is not divisible by Tpvk, the computation overhead is much higher because
there are many UHF operations at the third layer. We note that in this case,
the vehicle can choose Tgap value as a higher value nearest to the one that is
divisible by Tpvk, which significantly reduces the cost. To speed up the update
process, the TE can also pre-compute and cache results of some intermediate
UHF operations in advance during idle time.

Table 3. The number of operations

Tgap n1 n2 n3

5 min 0 1 0

36 min 0 7 60

1hr 1 0 0

1hr36 min 1 7 60

1hr57 min 1 1 120

2hr 2 0 0

Signature overhead. In Table 2, we show the cost of signature generation
(i.e., Algorithm 2) of LARP under three parameters |q| = 128 bits, |q| = 192
bits, |q| = 384 bits.

Verification overhead. In Table 2, we show the cost of signature verification.
Although this is not the performance bottleneck in V2X, it can be seen that
LARP supports efficient verification, about 23 ms for |q| = 128 bits.

Comparison with IFAL. In Table 4, we summerize the compareison between
IFAL and LARP from the perspectives of security properties and performance
of a vehicle. We let ‘M-OBU’ denote the security property on the resilience of
malicious OBU. Let ‘Add’ and ’Mul’ dente the addition and scalar multiplication
in a group, respectively. Let ‘EMul’ denote the point multiplication in ECC, and
‘H’ be a hash operation.

Table 4. Comparison

Security Properties Performace
Auth Pseudo M-OBU Signature Verification

IFAL
√ √

× 2H+ 1EMul +1Add+4Mul 1H+2EMul

LARP
√ √ √

1H+2Add+2Mul 1H+2EMul+1BF

According to the benchmark results from [8], the cost of an EMul is roughly
300 times of the cost of a hash operation H. So the signing procedure of IFAL
is much less efficient than LARP. For high-speed moving vehicles, it is always
better to have a faster signing procedure. Moreover, LARP does not require the
OBU to be honest.
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In LARP, the main communication overhead consists of the cost of the enroll-
ment of a vehicle, in which TE shares some values with EA and AA. After that,
TE only needs to periodically send an activation request to AA. In contrast, in
IFAL, a vehicle needs to communicate regularly with EA for activation codes,
and with AA to obtain many pseudonym certificates. As a result, LARP has a
lower communication overhead.

8 Related Work

In this section, we review the most recent standards and literature relating to
security and privacy for vehicular networks.

Zarki et al. [38] first considered the security challenges of vehicular networks
and proposed to utilize PKI-based digital signatures for authentication of vehic-
ular messages. Shortly afterward, based on an extensive requirements analysis,
the European SeVeCom project [17] harmonised many existing technologies to
develop a complete security architecture for V2X. The design principles, secu-
rity mechanisms, and reference architecture components of the SeVeCom project
have been adopted by the leading V2X security architecture standards such as
the ETSI standard [15] and the USDOT standard [31]. However, the digital sig-
natures recommended in those standards are not lightweight, so they might not
be suitable for some constrained devices used in a vehicle (e.g., smart card).

Beyond the standards, Petit et al. [22] investigated the broader literature
on cryptographic schemes for vehicular communications and identified a lot of
alternative technologies. Decentralising the roles of certificate generation and
revocation to the vehicles is one of the techniques. Afterward, a revocation pro-
tocol without the need for pseudonym resolution (REWIRE) was designed by
Förster et al. [10]. But Whitefield et al. pointed that the REWIRE protocol ex-
its some security flaws and thus proposed an improved obscure token (O-Token)
protocol, which can provide a powerful and verifiable guarantee for vehicle revo-
cation without revealing the long-term identity of vehicles. To further enhance
privacy against dishonest or colluding certificate authorities, Förster et al. [9]
also introduced a scheme that can protect vehicles against colluding certificate
authorities. Based on pseudonym certificates, Whitefield et al. [30] utilized di-
rect anonymous attestation to propose a pseudonym certificate management
scheme. What’s more, Hicks et al. [12] also put forward a new V2X architecture
and key management solution based on direct anonymous attestation (VDAA).
Although VDAA adopted efficient standards-compliant ECDSA signatures on
broadcast messages, the efficiency of signature generation and verification is still
not friendly to the resource-constrained vehicles and devices.

In [34], Yant et al. proposed a new cryptographic primitive called group time-
based one-time passwords (GTOTP), which can satisfy anonymity and traceabil-
ity. Although GTOTP can be used for message authentication, it may suffer a
long latency for verification (as shown in their application in the construction of
privacy-preserving proof of location). It is an open question to use GTOTP to
realize instant message authentication like a digital signature scheme.
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Recently, the most influential pseudonym scheme is IFAL proposed by Ver-
heul et al. [29]. Based on the ETSI standard PKI architecture, IFAL provides
an improvement to the ETSI ITS security architecture and is ready to be in-
tegrated to the ETSI standard. Although IFAL avoids the need for certificate
revocation by introducing pre-issued pseudonym certificates that are only usable
upon receiving small activation codes (e.g., via SMS), there are still some weak-
nesses in IFAL. Firstly, IFAL is still not friendly to resource-constrained vehicles
or other devices in terms of signature generation and verification. Secondly, the
generation of a pseudonymous public key in IFAL relies on the authorisation
authority. In addition, if a vehicle OBU is corrupted in IFAL, there is still the
risk of leaking the privacy of the vehicle. Therefore, to avoid the above issues,
we propose a lightweight auto-refreshing pseudonym (LARP) scheme for V2X in
this paper.

9 Conclusion

In this paper, we introduced a lightweight auto-refreshing pseudonym scheme for
V2X communications named LARP. LARP has very fast signing algorithm which
is particularly suitable for embedded devices of the vehicles. We also showed
the practicality of our scheme through implementing it on a Raspberry Pi 4. In
addition, LARP realizes non-interactive pseudonym auto-refreshing and reduces
risks of vehicle OBU being corrupted.

In the future, the readers are encouraged to further improve our scheme.
Moreover, we will explore the introduction of blockchain technology to fur-
ther reduce the reliance on trusted authorities and achieve more efficient use of
road capacity. Since LARP is lightweight, it may have potential applications in
Cyber-physical Systems (CPS). However, the implementation of cryptographic
algorithms on a CPS device (e.g., programmable logic controller [33]) might be
challenging.
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10. Förster, D., Löhr, H., Zibuschka, J., Kargl, F.: Rewire–revocation without res-
olution: A privacy-friendly revocation mechanism for vehicular ad-hoc networks.
In: International Conference on Trust and Trustworthy Computing. pp. 193–208.
Springer, Springer (2015)

11. Giannetsos, T., Krontiris, I.: Securing v2x communications for the future: Can pki
systems offer the answer? In: Proceedings of the 14th International Conference on
Availability, Reliability and Security. pp. 1–8 (2019)

12. Hicks, C., Garcia, F.D.: A vehicular DAA scheme for unlinkable ECDSA
pseudonyms in V2X. In: EuroS&P. pp. 460–473. IEEE (2020)

13. Huang, L., Matsuura, K., Yamane, H., Sezaki, K.: Enhancing wireless location
privacy using silent period. In: IEEE Wireless Communications and Networking
Conference, 2005. vol. 2, pp. 1187–1192. IEEE (2005)

14. Institute, E.T.S.: Etsi ts 102 731. intelligent transport systems (its); security; se-
curity services and architecture. Tech. Rep. (September 2010)

15. Institute, E.T.S.: Etsi ts 102 940. intelligent transportation systems (its); security;
its communications security architecture and security management. Tech. Rep.
(April 2018)

16. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ecdsa). International Journal of Information Security 1(1) (2001)

17. Kargl, F., Papadimitratos, P., Buttyan, L., Müter, M., Schoch, E., Wiedersheim,
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A Proof of Theorem 1

We present the proofs in a sequence of games following [25]. Let Ei be an event
that an adversary A wins in Game i, i.e., A succeeds in forging a signature. The
games are adapted from [35].
Game 0. This is the original security experiment. In Game0, all oracle queries
are answered honestly according to the specification of LARP. Thus, we have

Pr[E0] = AdvAuthA,LARP(κ).
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Game 1. This game proceeds with exactly as the previous game, but the
simulator would abort if fails to guess the victim vehicle that the adversary
succeeds in forging its signature. Since there are Nv vehicles at all, the probability
of a correct guess is at least 1/Nv. Thus, we have

Pr[E0] = Nv · Pr[E1].

Game 2. In this game, the simulator C proceeds exactly like the previous
game, but each output of universal hash function UHF running by the TE of the
guessed victim vehicle is replaced with a uniform randomness to generate the
verification key instead of using the universal hash function UHF. Since the hash
keys of UHF (of all three layers) are chosen uniformly at random, the output of
UHF is distributed uniformly as well by the security of UHF. Hence, our change
does not modify the distribution of the dummy random values. Therefore, we
have that

Pr[E1] = Pr[E2].

Game 3. This game proceeds like before, but the challenger changes the game
for the guessed victim vehicle uid∗ as follows. The simulator first generate l
dummy random messages and random values {(hi, r

′
i)}i∈[l]. To map a message

m∗ chosen by the adversary to the pre-sampled hi, we attach each message
m∗

i with a random value Ri (by design). So the hash input string m∗
i ||Ri is

unique unless a collision happens with a collision probability l2/2lr . As a result,
we can establish a unique connection between each string m∗

i ||Ri and hi as
H(m∗

i ||Ri) = hi. Moreover, the verification key is then generated using the real

signature and message pairs, i.e., {(pskjuid∗ , hi)}i∈[l], where psk
j
uid∗ = kj ·skuid∗ and

kj = H(k0||uid||j). Note that si := M ·skuid∗ +r′i−hi ·kj ·skuid∗ (mod q). We can

rewrite si as si := r′i+h̃i (mod q) where h̃i = M ·skuid∗−hi ·kj ·skuid∗ . Since each
hi is unique, so is h̃i. We claim that each signature value si is statistically close
to a uniform random value with distance 0 due to the security results regarding
combing function in [24, Lemma 1]. Thus, we have that

Pr[E2] ≤ Pr[E3] + l2/2lr .

The changes in this game enable us to reduce the security of LARP to that of
the chameleon hash function in the next game.
Game 4. In this game, the simulator C proceeds exactly like the previous
game but adds an abort rule. Namely, C aborts if the adversary submits a
tuple (m∗, sig∗, pvkjuid∗) which leads to a collision to one of those hash values

recorded in BF of the guess victim vehicle, i.e., CHF(pvkjuid∗ ,H(m
∗||R∗), s∗) =

CHF(pk∗TE,M, r′i) for some r′i and sig∗ = (s∗, R∗). If this event occurs with a
non-negligible probability, then there must exist an efficient algorithm F which
can break the security of the chameleon hash function by using A.

Specifically, F could simulate the game for A while receiving a challenge pub-
lic key pk∗CH from the chameleon hash simulator. F can generate each pseudonym

verification key as ppkjuid∗ := (pk∗CH)
kj using the knowledge of kj . Then F uses
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the corresponding pvkjuid∗ and the real signatures randomly chosen as in the
previous game to generate the verification key rather than using dummy mes-
sage/randomness pairs.

Due to the security of the chameleon hash function, we have that

Pr[E3] ≤ Pr[E4] + AdvCRA,CH(κ).

Game 5. In this game, C proceeds as before, but aborts if the adversary A
submits a tuple (m∗, sig∗, pvkjuid∗) such that

Check(CHF(pvkjuid∗ ,H(m
∗||R∗), s∗)) = 1, and (m∗, sig∗) has not been queried by

the adversary before in any signing oracle, i.e., A finds a false positive error of
BF. By applying the false positive probability of BF, we have that

Pr[E4] ≤ Pr[E5] + AdvARA,BF(κ,Tt, N, ϵ).

Put together with all probabilities in the above games, and we obtain the result
of this theorem.

B Proof of Theorem 2

The proof proceeds in the following sequence of games. Let Ei be an event that
an adversary A wins in Game i.
Game 0. This game is the original security experiment following original al-
gorithms in LARP. In this game, all queries are answered honestly according to
the specification of LARP. Thus, we have

Pr[E0] = AdvPseudA,LARP(κ).

Game 1. This game proceeds exactly as the previous game, but the simulator
aborts if the adversary ask a random oracle query with a pseudonym key k∗0 of
a vehicle, i.e., k∗j = H(k∗0 ||uid||j). Note that if the adversary knows the k∗0 , then
it must be able to compute an inversion to the pseudonym verification key as
pvk1/k

∗
0 to get the public key of a vehicle. Since the H is a random oracle, the

distribution of the output of H is uniformly distributed in Zq. This implies that
all pseudonym keys are uniform random as well. Since the challenged vehicles and
the AA are not corrupted, the only way for the adversary to get a pseudonym key
is to make a random guess. The probability of a correct guess on a pseudonym
key is at most 1/2lr . As there are Nv vehicles that the adversary can attack. The
abort probability of simulator in this game is Pr[abort] = Nv·qH

2lr
. Thus we have

Pr[E0] = Pr[E1] + Pr[abort] ≤ Pr[E1] +
Nv · qH
2lr

.

As the adversary cannot get the pseudonym keys in this game, an adversary
can only win the game by randomly guessing the bit b. So we have the winning
probability of this game Pr[E1] = 0, which is the result of this theorem.
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