
Time-Memory tradeoffs for large-weight syndrome
decoding in ternary codes

Pierre Karpman1 and Charlotte Lefevre2

1 Université Grenoble Alpes, Grenoble, France
2 Radboud University, Nijmegen, The Netherlands

pierre.karpman@univ-grenoble-alpes.fr

charlotte.lefevre@ru.nl

Abstract. We propose new algorithms for solving a class of large-weight syndrome de-
coding problems in random ternary codes. This is the main generic problem underlying the
security of the recent Wave signature scheme (Debris-Alazard et al., 2019), and it has so
far received limited attention. At SAC 2019 Bricout et al. proposed a reduction to a binary
subset sum problem requiring many solutions, and used it to obtain the fastest known
algorithm. However —as is often the case in the coding theory literature— its memory
cost is proportional to its time cost, which makes it unattractive in most applications.

In this work we propose a range of memory-efficient algorithms for this problem, which
describe a near-continuous time-memory tradeoff curve. Those are obtained by using the
same reduction as Bricout et al. and carefully instantiating the derived subset sum problem
with exhaustive-search algorithms from the literature, in particular dissection (Dinur et
al., 2012) and dissection in tree (Dinur, 2019). We also spend significant effort adapting
those algorithms to decrease their granularity, thereby allowing them to be smoothly used
in a syndrome decoding context when not all the solutions to the subset sum problem
are required. For a proposed parameter set for Wave, one of our best instantiations is
estimated to cost 2177 bit operations and requiring 288.5 bits of storage, while we estimate
this to be 2152 and 2144 for the best algorithm from Bricout et al..

1 Introduction

At ASIACRYPT 2019, Debris-Alazard et al. proposed a new (conjecturally post-quantum se-
cure) code-based signature scheme called Wave [4]. Some of the more unusual and notable
features of this scheme are that it is based on ternary linear codes, i.e. codes whose alphabet is
F3, and that its security relies in part on the generic hardness of some large-weight syndrome de-
coding problems. Most of the existing cryptography and coding-theory literature does not quite
address either of those aspects as it tends to focus on binary codes (where low- and large-weight
problems are symmetric) and, in the few existing adaptations to q-ary codes, on low-weight
problems [2,13,10,17,12].

Shortly following the introduction of Wave, Bricout et al. introduced new dedicated algo-
rithms for solving the specific large-weight ternary syndrome decoding instances underlying
Wave’s security [1]. Their approach consists in exploiting the fact that a large-weight syndrome
may be found by: 1) finding a full -weight syndrome for a smaller derived sub-problem and; 2)
extending this smaller solution to one for the original problem, hoping that it satisfies the weight
constraint. While this overall strategy is quite typical of the family of information-set decoding
algorithms, the fact that the first step searches for full -weight syndromes over F3 leads to a
clean reduction to a {0,1}-subset sum problem. Furthermore, since the success probability of
the second step is typically small, one in fact needs to repeat the first one many times; the best
results are then obtained when many solutions for the latter can be obtained at a low (ideally
constant) amortised cost. Bricout et al. consider several algorithms for solving the subset sum
problem and obtain their best results by using Wagner’s k-tree algorithm [18] with an adapta-
tion of the so-called representation technique. For parameter sizes relevant to Wave’s security,
their best algorithm has an asymptotic time cost of O(20.0176n), where n is the length of the
code. However, the memory cost of this algorithm is also O(20.0176n); while this is a common
behaviour of the “fastest” algorithms from the cryptography and coding theory literature, this
is an unattractive feature for “real-life” implementations as (beyond a certain point) memory
is much more expensive than time in existing hardware, and certainly not on par as analyses
focusing on optimising time cost alone somewhat implicitly assume.

2 Pierre Karpman and Charlotte Lefevre

Our contribution. In this paper, we perform a detailed study of time-memory tradeoffs for the
large-weight ternary syndrome decoding problem, in the regime relevant to Wave’s security. We
use the same reduction to {0,1}-subset sum as Bricout et al., and the tradeoffs are obtained by
acting on one parameter used in the reduction and, more importantly, by carefully instantiating
the resolution of the subset sum problem with memory-efficient algorithms. For this task we rely
on the dissection [6] and dissection in tree [5] frameworks. One main hurdle in efficiently applying
both frameworks to the syndrome decoding setting is that they are designed to exhaustively
solve general-birthday (or subset sum-like) problems, which they do at a low (possibly constant)
amortised cost. The reduction by Bricout et al. only requires comparatively few solutions, and
providing more than necessary inevitably leads to a sub-optimal instantiation. We thus spend
a significant effort in adapting both frameworks to lower the granularity at which they return
solutions (i.e. the minimum number of solution that can be returned with constant amortised
cost), so that only the right amount is computed. This eventually leads to attractive time-
memory tradeoffs which significantly outperform the results of Bricout et al. when taking the
cost of memory into account. We however make no attempt at accurately modeling the cost of
memory access which we assume to be constant and only compute for our algorithms the cost of
memory storage. A summary of our results is shown in Table 1 in the asymptotic regime where
we include the product of time and memory costs as a primitive tool of comparison between
different tradeoffs.

Table 1: Asymptotic exponents (in base 2) of some algorithms for solving a ternary syndrome
decoding problem for a random code of length n, dimension 0.676n, and syndrome weight
0.948366n.

Time Memory Time × Memory Tradeoff Algorithm

0.0176n 0.0176n 0.0352n T = M
k-tree +

representations [1]

0.02014n 0.01007n 0.03021n T = M2 4,4-dissection (Section 5)

0.02256n 0.007521n 0.03008n T = M3 2,11-dissection (Section 5)

0.02335n 0.005838n 0.02919n T = M4 3,11-dissection (Section 5)

Structure of the paper. We recall some definitions and state our problem in Section 2. We
then present the framework of Bricout et al. in a detailed and self-contained way in Section 3,
while also emphasising the role played by the granularity. Section 4 recalls some classical frame-
works for the generalised birthday problem and applies them (sometimes with some tweaks) to
syndrome decoding, and Section 5 does the same with the more recent dissection-in-tree frame-
work. Finally Section 6 presents numerical results applied to the most recent parameter set for
Wave.

2 Preliminaries

2.1 Notation and definitions

Except specified otherwise, we assume to be in a ternary setting, i.e. with all structures defined
over F3.
Vectors (resp. matrices) names are written in a bold font and in lower (resp. upper) case, for
instance x (resp. M); vectors are row vectors. The ith coordinate of a vector x is written xi,
and indices start from 1. The (Hamming) weight wt(x) of an n-dimensional vector x is the size
of its support, i.e. #{i ∈ J1, nK |xi 6= 0}, where J1, nK = {1, 2, . . . , n}.
A (ternary) linear code of length n and dimension k is a k-dimensional linear subspace of Fn3 ;
any code with such parameters is said to be an [n, k] linear code. A parity-check matrix of an

[n, k] (ternary) linear code C is any full-rank matrix H ∈ F(n−k)×n
3 s.t. x ∈ C ⇔ xHT = 0,

where 0 ∈ Fn−k3 is the null vector.
We use x := y (resp x =: y) to define x as being equal to y (resp. y as being equal to x), and
x� S means that x has been drawn uniformly at random from the finite set S; except specified
otherwise, this drawing is supposed to be independent from any other.

Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 3

We say that an algorithm A returning S distinct (and a priori independent) outputs in time
O(ST) runs in amortised time O(T). Also, in order to simplify notation, we often drop the
“O(·)” when discussing the cost of algorithms. Finally, except specified otherwise, the logarithm
function log is in base 2.

2.2 The large-weight ternary syndrome decoding problem

We now define the ternary syndrome decoding problem (or “SDP” for short), which is the main
problem studied in this paper. We specialise the definition to the ternary case, i.e. with all un-
derlying structures with coefficients in F3, but generalizations to other fields are straightforward.

Problem 1 (Ternary syndrome decoding problem). Let H ∈ F(n−k)×n
3 be a parity-check matrix

for an [n, k] ternary linear code, w ∈ J1, nK, s ∈ Fn−k3 . The ternary syndrome decoding problem
with inputs H, s, w asks to find e ∈ Fn3 s.t.:

1. eHT = s;
2. wt(e) = w.

We may refer to s as the target syndrome, and to e as an error.

A natural variant of this problem, which we however do not consider here, is to constraint
the weight of e not to a single value w but only requiring that it be included in some interval.

In all of this work we only consider instances of Problem 1 with the following additional
restrictions:

1. We consider uniformly random linear codes:

H �
{
M ∈ F(n−k)×n

3 | rank(M) = n− k
}
.

2. We consider uniformly random syndromes: s� Fn−k3 .
3. The code parameters n and k and the target weight w are proportional, with the same ratios

as in the “updated” parameters for the Wave signature scheme given by Bricout et al. [1],
viz. k = 0.676n, w = 0.948366n. In the following we refer to this setting as the Wave regime
which, since w ≈ 0.95n is a particular instance of a large-weight regime.

Remark 2. The Wave regime as defined above corresponds to a setting for which no efficient (in
particular no polynomial-time) algorithm for solving the problem is known, yet one expects a
random instance to have a number of solution exponential in the length n of the code. We refer
to [4, §3] for more details on the topic and on parameter selection for Wave in general.

3 A framework for solving the ternary syndrome decoding problem

At SAC 2019 [1], Bricout et al. formalised a high-level framework to solve (hard) instances of
the ternary syndrome decoding problem They name this framework “PGE+SS”, standing for
partial Gaussian elimination + subset sum, and its structure closely follows the one used by
similar information set decoding (or ISD) algorithms used in the (more usual) binary setting.
Since our work fully adheres to this framework we wish to give here a self-contained description
of its main ideas and analysis, and refer to [1] for more details.

3.1 The PGE+SS framework

Let H ∈ F(n−k)×n
3 , s, w define an instance of Problem 1; the PGE+SS framework fixes two

additional parameters l ∈ J0, n− kK and p ∈ J0,min(w, k + l)K. One then does the following:

1. Partial information set selection. Pick P ∈ Fn×n3 uniformly at random among the permuta-
tion matrices that are s.t. the n− k − l first columns of HP are linearly independent.

2. Partial Gaussian elimination. Compute the reduced row-echelon form of HP , stopping after
the first n−k−l rows have been processed. This returns an invertible matrix S ∈ GL(n−k, 3)
s.t.:

SHP =:

(
In−k−l H1

0 H2

)
,

with H1 ∈ F(n−k−l)×(k+l)
3 , H2 ∈ Fl×(k+l)3 , and further let s′ =

(
s′1 s′2

)
:= sST , with

s′1 ∈ Fn−k−l3 , s′2 ∈ Fl3.
Remark then that if e′ is a solution to the syndrome decoding problem instance defined by
SHP , s′ and w then e′P T is a solution to the initial instance, as from e′P THTST = s′

one has (e′P T)HT = s.

4 Pierre Karpman and Charlotte Lefevre

3. Subset sum problem resolution. Solve the syndrome decoding problem instance defined by
H2, s′2 and weight p and return S distinct solutions {e′2 ∈ Fk+l3 }, where S is a parameter to
be determined later. For large-weight ternary syndrome decoding and well-chosen parameters
l and p, this in fact reduces to a {0,1}-subset sum problem (see Sections 3.2 and 4.1 and [1,
§2] for details).

4. Probabilistic reconstruction. For every solution e′2 returned at step 3 compute the unique
vector e′1 := s′1 − e′2H

T
1 s.t.

(
e′1 e′2

)
P THTST =

(
s′1 s′2

)
, and if wt(e′1) = w − p return(

e′1 e′2
)
P T as a solution to the initial problem. If none of the solutions satisfied the weight

constraint the algorithm fails.

Remark 3. Prange’s algorithm [14] corresponds to the setting l = 0. In that case the subset sum
problem from step 3 becomes trivial since the zero-dimensional s′2 imposes no constraint. Yet for
the same number of returned solutions S and for most target weights w the success probability
of step 4 is in this case typically smaller than for l > 0.

We now analyse some aspects of the PGE+SS framework, but only in the regime relevant to
us, i.e. when the target weight w is close to n (but lower than the Gilbert-Varshamov bound).
In particular we only consider the case where p = k + l, that is where the solutions for the
smaller syndrome decoding sub-problem at step 3 are required to be full-weight. This has two
consequences: 1) except for very large values of l, this maximises the probability that a solution
to the sub-problem extends to a solution to the initial problem in step 4; 2) since there are
exactly two non-zero elements in F3, this sub-problem can be solved by using an algorithm for
the (quite common) {0,1}-subset sum problem.

3.2 Required number of solution for the subset-sum problem

With the above constraint on the PGE+SS parameterization, the number S of returned solution
to the sub-problem required for the algorithm to succeed with constant probability becomes only
a function of n, l, k and w (or in fact only n and l inasmuch as k and w depend on n in the
Wave regime): assuming independence of the solutions, it precisely needs to be proportional to
the inverse probability that e′ as computed in step 4 has the right weight; we compute this
probability in Proposition 4, and often denote Sl its inverse in the remainder of this paper.

Proposition 4. Let H, s, w define a random instance of Problem 1 in the Wave regime, and
H1, H2, s′1, s′2 be as in Section 3.1. Then assuming that the syndrome decoding sub-problem
defined by H2, s′2, k + l has many solutions, and if e′2 is picked uniformly at random among
them, one has:

Pr[wt(e′1) = w − k − l] ≈
(
n−k−l
w−k−l

)
2w−k−l

3n−k−l
, (1)

where e′1 ∈ Fn−k−l3 is equal to s′1 − e′2H
T
1 .

Proof. Let P be as in Section 3.1 and S denote the set of solutions to the main decoding problem;
we have that wt(e′1) = w − k − l iff.

(
e′1 e′2

)
P T ∈ S. Thus Pr[wt(e′1) = w − k − l] = Pr[∃ e ∈

S, e =
(
∗ e′2

)
P T], i.e. the probability that there is a solution with the right structure.3

To compute this probability, we first assume that the elements of S are uniformly distributed
among the 2w

(
n
w

)
weight-w vectors of Fn3 . Also, since the Wave regime is such that w is far away

from the Gilbert-Varshamov bounds we approximate the expected size of S by S := 2w
(
n
w

)
/3n−k.

Similarly, the expected number of solution to the sub-problem is approximated by S2 := 2k+l/3l.
Now for e ∈ S to have the right structure, two conditions must be satisfied: 1) it must

have the right support, which happens with probability
(
n−k−l
w−k−l

)
/
(
n
w

)
; 2) it must be equal to

e′2 on the right part, which happens with probability S−12 conditioned on having the right
support (since by construction this part then constitutes a solution to the sub-problem). Finally,
equating the probability with the (approximated) expectancy, we get Pr[wt(e′1) = w − k − l] =
S× S−12 ×

(
n−k−l
w−k−l

)
/
(
n
w

)
. ut

In practice we sometimes rely in our cost computations on the same simpler asymptotic
estimate for Eq. (1) as [3, Lemma 1.2], which we provide in Appendix A for completeness.

Remark 5. In the Wave regime, Sl < 2k+l/3l, the number of solutions to the sub-problem, so
by properly choosing S at step 3 one can ensure that the algorithm succeeds w.h.p..
3 Note that since e′

1 is fully determined by e′
2 there can be at most one such solution.

Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 5

3.3 Parameterization of the subset-sum problem

The choice for the (unique) parameter l of the PGE+SS framework has a considerable influence
on the final cost of solving the problem. Some of the consequences are quite obvious: if l is small,
then the decoding sub-problem is easy to solve, but the required number of solution Sl is huge;
similarly, if l is large one requires much fewer solutions but solving the sub-problem becomes
much harder. A slightly less näıve observation is that although at first sight one is asking in
step 3 to solve a problem similar to the original (viz. a syndrome decoding problem), the fact
that many solutions are required (and not just one) opens the way to specific optimisations; in
particular one may aim at finding theses solutions at a low (ideally constant) amortised cost, so
that the total time cost be proportional to Sl. To reach this goal one has at its disposal a full
range of powerful algorithms for the subset sum problem. Yet those algorithms are not without
some limitations, and their (efficient) usage is often not straightforward. We now mention two
of those limitations at a high level, and explore their consequences systematically in Sections 4
and 5.

– The algorithms we consider have an intrinsic non-trivial granularity at which they return
solutions. This is the smallest number of solutions that an algorithm may return at its
nominal (usually constant) amortised cost, see Definition 6. In our case one incurs some loss
in using an algorithm if its granularity is larger than the number of required solutions Sl.

– They also all have a large memory cost, sometimes equal to their granularity.

Definition 6 (Granularity of an algorithm). Let A be an algorithm that returns S outputs
and runs in amortised time O(T). We define its granularity as the least positive integer S′ ≤ S
s.t. there exists a tweaked algorithm A′ for the same problem that returns S′ outputs in amortised
time O(T).

The above can be summarised as the following rough estimation for the cost of a PGE+SS
instantiation in our case: a subset sum algorithm that returns S solutions in amortised constant
time and with memory cost M and granularity S′ can be used to solve the decoding problem
with memory cost M ,4 and time cost max(Sl, S

′).

4 Fundamental algorithms for the generalised birthday problem

4.1 Subset sum as a generalised birthday problem

In this section we present and compare two families of algorithms that solve the generalised
birthday problem (whose definition we recall in Problem 7, in the specific case of Fn3): the k-tree
algorithm and its variants [18] and the dissection framework [6]. Both can be seen as a way to
generalise the meet-in-the-middle algorithm, which we recall in Appendix B for completeness.

Problem 7 (Generalised birthday problem or r-list problem). Let L1, . . . , Lr be r lists of vectors
uniformly sampled from Fn3 and s ∈ Fn3 be a target, the generalised birthday problem asks to
find (x1, . . . ,xr) ∈ L1 × · · · × Lr s.t.

∑r
i=1 xi = s.

Depending on the context where this problem arises, one may be content with finding one
solution, or on the contrary need to obtain many of them. This latter situation typically occurs
within the PGE+SS framework, where an algorithm solving Problem 7 can be used to address
the sub decoding problem in the full-weight regime.

Let us hereafter denote by H ∈ Fl×(k+l)3 and s ∈ Fl3 the matrix H2 and vector s′2 from
Section 3.1 respectively. Then finding a full-weight vector e s.t. eHT = s can be done by: 1)
building r lists Li = {xHT : x ∈ Wi}, where the elements of the sets Wi have full weight on
a set of indices Ii and weight zero on its complementary and I1, . . . , Ir forms a partition of
J0, k + lK; 2) solving a generalised-birthday problem with input L1, . . . , Lr and s.

This is a classical approach in general, and it was successfully applied to ternary syndrome
decoding by Bricout et al., who consider a number of variants of the k-tree algorithm [1]. We
recall their results and start exploring some related time-memory tradeoffs next.

4 If Sl > M , one would in practice interleave steps 3 and 4 so as to avoid storing all Sl solutions at the
same time.

6 Pierre Karpman and Charlotte Lefevre

4.2 Application of the k-tree algorithm to syndrome decoding

From now on assume that r =: 2a is a power of two. Recall that the basic k-tree algorithm [18]
works as follows: at the first step, subtract the target s to every element of Lr, then for each pair
of lists (L2i−1, L2i), i ∈ J1, 2a−1K, compute the merged list L′i := L2i−1 ./ϑ L2i := {xu + xv :
(xu,xv) ∈ L2i−1 × L2i,xu =ϑ −xv}, where ϑ is a parameter and x =ϑ y means that x and y
are equal on their last ϑ coordinates. This process is then repeated on the lists L′1, . . . , L

′
2a−1

with the equality constraint being imposed on the ϑ′ coordinates before the last ϑ ones, etc.;
after a iterations in total, and provided that ϑ+ ϑ′′ + · · · = l = dim(s), all the elements of the
last list (if non empty) are solutions to the problem.

In a classical and typical parameterization of the k-tree algorithm, one takes ϑ = ϑ′ = · · ·
and lists of initial size equal to the “entropy” of a size-ϑ constraint; in our case this is 3ϑ. This
ensures that on average the size of all lists (except possibly the last one) remains equal to 3ϑ at
every level of the tree and this also gives the memory cost of the algorithm (up to a factor 2a if
the lists cannot be generated on-the-fly). Then the two typical choices for ϑ are l/(a + 1) and
l/a; in the former case the expected size of the root list is 1, while it is 3ϑ = 3l/a in the latter.
This last parameterization is of particular interest in our context since it gives an algorithm with
time and memory cost O(2a3l/a) that on average returns 3l/a solutions. The amortised cost per
solution is then O(2a), or O(1) as a is in fact often a constant, and the granularity is 3l/a.

As we have just described it, the k-tree algorithm only returns in the root lists solutions
which are highly structured which, put another way, means that it highly decimates the number
of possible solutions to be found among the initial lists. Yet if more than 3l/a solutions are
needed, two (non-exclusive) options exist: 1) restart the algorithm from new lists (if possible);
2) jointly change the merging condition for two pairs of lists at the same level, so that one
merges elements s.t. xu =ϑ −xv + t and the other elements s.t. xu =ϑ −xv − t; this is easily
implementable by simply adding (resp. subtracting) the right ϑ coordinates of t to one of the
two lists for each pair. This second option in fact lets one now exhaustively search for all the
possible solutions, something we will discuss again in Section 4.3. We illustrate this and the
general process of a typical k-tree instantiation in Fig. 1 for a = 3.

Remark 8. We defined here the k-tree algorithm with as input a number of lists which is a power
of two. It is possible to adapt the algorithm to a relaxed setting without this constraint, but
there is no added gain5 in doing it.

L1 L2 L3 L4 L5 L6 L7 L8

−t3 −t2+t3 −t4 s1 + t2
+t4

−t2

−t1

s1 + t2

s2 + t1

s

l/3

2l/3

l

Fig. 1: Illustration of the k-tree algorithm with M = 3l/3. For only one iteration of the tree, the
targets ti are all set to 0. For more than one iteration, the targets ti must be set to non-zero
values, and every distinct tuple of ti’s provides disjoint solutions.

Bricout et al. use the k-tree algorithm within the PGE+SS framework to solve hard instances
of the ternary syndrome decoding problem [1]. In a basic application, the only additional con-

5 In the next part, the gain is formally defined in Definition 10.

Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 7

straint to what has already been described above is that for a fixed l parameter, the depth of
the tree must be s.t. it is possible to build lists of size 3l/a at its leaves. When elements of those
initial lists are of the form {xHT : x ∈ Wi}, this list population constraint can be expressed as:

3l/a ≤ 2(k+l)/2
a

. (2)

This simply expresses the fact that there are 2a lists of full-weight vectors to build at the
leaves of the tree and one must then split the support of the domain Fk+l3 into that many
equally-sized disjoint sets.

For a fixed l parameter, the memory (and the granularity) of this application of the k-tree
algorithm is minimised by simply selecting the largest a for which this constraint is satisfied.

Smoothed k-tree algorithm. Smoothing the k-tree algorithm is a technique that allows to slightly
relax constraint (2) by adding one more level to the tree than what it dictates. This corresponds
to the extended k-tree algorithm of Minder and Sinclair [11, Theorem 3.1], and it was adapted
to the ternary case under this name by Bricout et al. [1].

In a nutshell the idea is the following: if one cannot build initial lists that are large enough,
the constraint size ϑ from the level 1 lists to level 2 is lowered so as to increase the size of the
latter; then this increased (expected) list size is preserved all the way up to the root of the tree.
Schematically this translates into a sequence of constraints sizes ϑ < ϑ′ = ϑ′′ = · · · which sum to
l; the memory cost is then equal to 3ϑ

′
, which is more than if one had had constraints of identical

sizes, i.e. one has to “pay” for the dissatisfaction of Eq. (2) with memory. Nonetheless, in the
case of the SDP, adding one more level to the tree to apply the smoothing technique is always
more beneficial, even if this is done at a less favourable time/memory ratio. We summarise the
consequences of smoothing as Proposition 9, which restates [1, Prop. 4].

Proposition 9. Let l, k, n be as above and a > 3 be a constant. If 3l/(a−1) ≤ 2(k+l)/2
a−1

, then
one can use a smoothed k-tree algorithm with a levels to obtain 2m solutions to the generalised
birthday problem in amortised constant time and memory cost 2m, where:

m =
1

a− 2

(
l log(3)− k + l

2a−1

)
.

Proof. We only prove this informally without showing optimality nor checking initial conditions,
our main goal here being to illustrate the inner workings of smoothing.

Let ς := l log(3) normalise in base 2 the size of the dimension-l ternary constraint that one
wishes to solve and τ := (k + l)/2a be the logarithm of the maximum size of 2a lists of full-
weight vectors partitioning the domain. We wish to find initial and subsequent constraints ϑ
and ϑ′ = ϑ′′ = · · · s.t.: 1) ϑ′ = 2τ − ϑ; 2) ϑ + (a − 1)ϑ′ = ς. The first condition expresses the
fact that the constraint of size ϑ ensures that the first level lists merge into lists of expected size
2ϑ
′
; the structure of the k-tree algorithm together with the second condition then ensure the

fact that the root list contains 2ϑ
′

solutions to the problem, and since ϑ < ϑ′ that the algorithm
runs in amortised constant time and with memory 2m := 2ϑ

′
.

To find the stated value of m, one simply substitutes 2τ −ϑ for ϑ′ into ϑ+ (a− 1)ϑ′ = ς and
solves the latter for ϑ, i.e.:

ϑ+ (a− 1)(2τ − ϑ) = ς

⇔ (a− 1)2τ − (a− 2)ϑ = ς

⇔ ϑ = ((a− 1)2τ − ς)/(a− 2)

Using again ϑ′ = 2τ − ϑ one then gets:

ϑ′ = [2(a− 2)τ − ((a− 1)2τ − ς)]/(a− 2)

⇔ ϑ′ = (ς − 2τ)/(a− 2) = (l log(3)− (k + l)/2a−1)/(a− 2).

ut

Using representations. Bricout et al. obtained their best result in the Wave regime by applying
the so-called representation technique [9] to their ternary k-tree algorithm, slightly beating their
instantiations that used smoothing. We do not detail this approach since we do not consider it
in our work, and refer to [1] for details. When optimised for time, this uses a tree with a = 7
levels and parameter l = 0.060835n and solves the decoding problem in asymptotic time and
memory O(20.0176n).

8 Pierre Karpman and Charlotte Lefevre

Time-memory tradeoffs from the k-tree algorithm. Recall that within the PGE+SS
framework, solving the sub decoding problem for parameter l in amortised constant time with
granularity and memory cost S′ allows to solve the initial problem with memory cost S′ and
time cost max(Sl, S

′). Since the (smoothed) k-tree algorithm may in principle be used for any
l one then naturally obtains a time-memory tradeoff by varying this parameter and using the
best variant of the k-tree algorithm to solve the derived sub-problem. Choosing this variant is a
rather straightforward consequence of what has been presented above and we give pseudocode
for this parameter selection in Appendix E for both “standard” and smoothed k-tree algorithms
as Algorithms 1 and 2 respectively. We show the resulting time-memory tradeoff curves in Fig. 2,
where we also include the best attack of Bricout et al. as a point of comparison. One may notice
there the natural discontinuity exhibited by the standard k-tree algorithm and the fact that the
smoothed variant is indeed always superior. The near monotonicity of the curves is consequence
of the fact that the granularity of the k-tree algorithm is low and thence does not limit the
performance of the algorithm, except for the relatively large l parameters used to draw the
bottom right part of the graph.

0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
log(M)/n

0.018

0.020

0.022

0.024

0.026

0.028

0.030

0.032

lo
g(
T)

/n

k-tree + representations [1]
k-tree
smoothed k-tree

Fig. 2: Time-Memory tradeoffs from the (smoothed) k-tree algorithm.

4.3 Solving generalised birthday problems with dissection

The dissection framework was introduced by Dinur et al. at CRYPTO 2012 to solve “composite”
problems in a memory-efficient way [6]. The main initial motivation was provided by the generic
key recovery attack of iterated block ciphers, but the framework adapts easily to an r-list problem
and was already used in this context by Esser et al. and Dinur [8,5], who also study it in some
non-exhaustive regimes. Dissection generalises the meet-in-the-middle algorithm in a different
way than the k-tree algorithm (with both techniques also being refinements of [15]). Its main
originality is that instead of merging lists along a (typically) balanced binary tree, it uses a
recursive asymmetric decomposition; the solutions of the smaller sub-problem resulting from
this decomposition are stored in memory and combined with solutions for the larger problem
that are generated on-the-fly. Altogether, this asymmetric decomposition and the structure of
the algorithm make dissection a memory-friendly family of algorithms.

An important notion to quantitatively analyse dissection algorithms (and algorithms for the
r-list problem in general) is the gain [6], which we state in Definition 10 in our specific ternary

Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 9

case. In there, and in all of the following, we let by definition the size of the r initial lists of
Problem 7 be equal to 3m, and often treat m as a parameter.

Definition 10. Let A be an algorithm that solves Problem 7 with r lists in F3 in time O(3mT)
and memory O(3mM) with m ∈ R. Then its gain is defined as gain(A) := r − (T +M).

This should be understood as a gain over the time-memory tradeoff offered by the meet-in-
the-middle algorithm, which always has gain 0. Any positive gain then gives a better tradeoff
than the latter. Hereafter we use gain(r) to denote the gain of an r-dissection that solves an
r-list problem (or sometimes simply g, when r is clear from the context).

We now illustrate the dissection framework with two examples and give a general description
in Appendix C.

Example 11 (4-dissection). The 4-dissection is simply the exhaustive variant of the k-tree al-
gorithm with two levels as described in Section 4.2, and it was in fact well-known before the
general formulation of the dissection framework. Unlike instantiations with a larger number of
lists, it also uses a symmetric decomposition. Starting from four lists L1,...,4 of size 3m and with
a target s of dimension l := 2m, one introduces an intermediate target t of dimension m. Then
for each value of t, one applies the k-tree algorithm to L1 + t := {x +

(
0 t
)

: x ∈ L1}, L2,
L3 − t, L4 − s, obtaining as a result a list of solutions with a unique structure (viz. x1,...,4 s.t.
x1 + x2 =m −t, x3 + x4 =m s + t), and enumerating all values for t yields all the solutions
to be found within L1,...,4. The memory cost and the granularity is 3m and the time cost 32m,
also equal to the expected number of returned solutions. The product of the time and memory
cost is then 33m, which is a factor 3m less than what one would get from meet-in-the-middle
algorithms, hence the gain is equal to 1.

Example 12 (7-dissection). The 7-dissection is the first instantiation of the framework with gain
2. It groups its 7 input lists into a group of three (resp. four) lists, for which a meet-in-the-middle
algorithm (resp. 4-dissection) will be used. Let again 3m be the size of the initial lists, and t1
and t2 be as in Fig. 3, which also illustrates the structure of the algorithm; to solve a 7-list
problem for a target s of size 3m one does the following for all values of t1 and t2:

1. Exhaustively search for all solutions to a 3-list problem for the 2m target
(
s2 − t2 s1 − t1

)
,

using a meet-in-the-middle algorithm with memory (resp. time) cost O(3m) (resp. O(32m)),
and store all solutions in a list L′.

2. Exhaustively search for all solutions to a 4-list problem for the 2m target
(
t2 t1

)
, using

4-dissection with memory and granularity (resp. time) cost O(3m) (resp. O(32m)), and for
every returned solution x =

(
∗ t2 t1

)
check on-the-fly if there is x′ ∈ L′ s.t. they sum to s.

The total memory cost is O(3m), the time cost and number of returned solutions is O(34m),
and the granularity is given by the size of the intermediate target

(
t2 t1

)
for the 4-dissection

and thence 32m.

In general an r-dissection of gain g is built from an (r − g − 1)-dissection and a meet-
in-the-middle algorithm with g + 1 lists. This leads to a magic sequence (Mn) of gains [6],
where Mg is the least r s.t. there is an r-dissection with gain g. Dinur et al. showed that

Mg = (g+1)(g+2)
2 + 1 ≈ g2/2, leading to the following approximation:

gain(r) ≈
√

2r (3)

One may also characterise an r-dissection with gain g from the fact that it returns all the
3m(r−g−1) solutions to an r-list problem with target size (g + 1)m in amortised constant time
and with memory cost O(3m). Since in this case the intermediate target t used in the recursion
is of size gm, it also follows that in this regime the granularity of the dissection is at most
3m(r−g−1)/3gm = 3m(r−2g−1). Remark that it is also straightforward to exhaustively solve for
target sizes smaller than (g + 1)m by running many times a dissection with dummy targets of
the latter size.

The above description concerns dissection with a memory cost equal to the size of the initial
lists, but the framework can be easily extended to use more memory [6]. For any integer µ > 1,
one increases the number µr of lists in the meet-in-the-middle step and returns a list L′ of
partial solutions of size 3µm while also allowing the recursive dissection to have memory cost
3µm. Denoting gain(r, µ) the gain of such an r-dissection with memory parameter µ, one has
the relation µr = gain(r, µ)+µ. A convenient consequence of generalising dissection in this way

10 Pierre Karpman and Charlotte Lefevre

L1 L2 L3 L4

t2

t1

Repeat for all t1, t2

2m

Exhaustive 4-dissection

L5 L6 L7

s2−t2
s1−t1

2m

Exhaustive
meet-in-the-middle

s 3m

Fig. 3: 7-dissection with initial lists of size 3m and a target s of size 3m. A list drawn with
dashed lines is not stored in memory and processed on-the-fly.

is that in some sense an r-dissection with µ = 1 and m = n is equivalent to an rN -dissection
with µ = N and m = n/N , where N ≥ 1 is an arbitrary integer. In our context where we have
considerable freedom in the choice for the initial number of lists, this remark simplifies the search
for good parameterization of the dissection to solve the problem at hand. Indeed, considering one
r-dissection with r large and allowing µ to vary is enough to reasonably represent all tradeoffs
offered by the dissection framework, as we do in Fig. 4. In the following description we however
let µ = 1 unless mentioned otherwise.

4.4 Application of the dissection framework to syndrome decoding

Since the dissection framework can be used to solve an r-list problem, it readily applies to the
full-weight sub decoding problem encountered in the PGE+SS framework, in exactly the same
way as the k-tree algorithm does. In principle this provides a range of memory-efficient tradeoffs
to solve the (full) decoding problem, yet the main hurdle in a straightforward application of
dissection to this context is that its granularity is quite coarse; in particular it is coarser than
the one of the k-tree algorithm. In this section we slightly adapt the dissection to decrease its
granularity and make it more easily applicable to the PGE+SS framework. We then compare
the results with instantiations based on the (smoothed) k-tree algorithm in the next Section 4.5.

Let n, l, r, m be as above; a straightforward adaptation of Eq. (2) to the use of dissection is:

3m ≤ 2(k+l)/r. (4)

By design, an r-dissection with gain g returns solutions to an r-list problem with target size
(at most) (g+1)m in amortised constant time. If used within the PGE+SS framework, one thus
ideally requires that l ≤ (g + 1)m. When the size l of the sub-problem increases, and since g
increases monotonically with r one may require to increase r at some point in order to remain in
the same regime. Yet since Sl decreases with l while the granularity of the dissection increases
with r, this eventually results in unattractive instantiations of the PGE+SS framework where
more solutions to the sub-problem are returned than needed. Essentially this quick analysis hints
at the fact that the dissection framework is mostly useful in the low-memory regime implied by
small values of l.

Improving the granularity of the dissection. Recall that at a high level, the granularity
of an r-dissection with gain g in the amortised constant time regime is equal to 3m(r−2g−1).

One may first remark that since such a dissection recursively decomposes into an (r−1−g)-
dissection and a meet-in-the-middle algorithm on g + 1 lists, and since the solutions returned
by the former are processed on-the-fly, one may possibly reduce the granularity by asking the

Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 11

former to return fewer solutions (i.e. not to be exhaustive in its resolution of the recursive
sub-problem). However this will only decrease the granularity if the lowered cost of this non-
exhaustive dissection does not become smaller than the one of the meet-in-the-middle, which
otherwise would dominate the running time. Yet if this condition is not met one may replace
this meet-in-the-middle algorithm by a (g + 1)-dissection to do the exact same work at a lower
cost,6 as already considered by Dinur [5]. We illustrate this in Example 13 and generalise the
process in Proposition 14.

Example 13 (11-dissection with lowered granularity). An 11-dissection has gain 3 and is com-
posed of a 7-dissection and a meet-in-the-middle algorithm. In the amortised constant time
regime the 7-dissection has granularity at most 32m but the meet-in-the-middle with 4 lists and
memory 3m has time cost 33m, so the granularity of the 11-dissection for a target of size 4m is
given by the latter and equal to 33m. Even though this is already smaller than what one would
obtain by asking the 7-dissection to exhaustively return the 34m solutions to its sub-problem
of size 3m, it is possible to do better: since a 4-dissection has gain 1, using one instead of a
meet-in-the-middle algorithm lets one building the list L′ in time 32m, thus lowering the overall
granularity to 32m.

Proposition 14. The granularity of an r-dissection with gain g, initial lists size 3m and target
size at most m(g + 1) is 3m(g−gain(g+1)).

Proof. It is enough to prove the statement for target sizes exactly m(g + 1), since lower sizes
can then be accommodated for by considering one or more larger dummy targets.

We prove this by induction on the gain g.

The base case g = 1 corresponds to a 4-, 5- or 6-dissection. We have already seen in Exam-
ple 11 that the granularity of the 4-dissection is 3m. The 5- and 6-dissection just add one or two
additional lists to a 4-dissection and thus cannot have a lower granularity. The fine-granularity
version of 5 and 6-dissections are performed using a slightly tweaked 4-dissection, let us describe
it:

– Take x5 ∈ L5 (resp. x5 ∈ L5, x6 ∈ L6).

– Replace the target s by s− x5 (resp. s− x5 − x6).

– Run the fine-granularity version of the 4-dissection with L1, L2, L3, L4 and with the full
target, and append to the solution x5 (resp. x5||x6).

Therefore, the three algorithms are able to return 3m solutions in amortised constant time.
Thus for r ∈ {4, 5, 6}, the induction property holds.

We now assume that the property holds for any dissection of gain g − 1 ≥ 1, and will prove
it for any dissection of gain g. Consider an r-dissection of gain g; by construction it is built from
an (r − g − 1)-dissection of gain g − 1 and (with our tweak) an exhaustive (g + 1)-dissection.
The time cost of the (g + 1)-dissection is O(3m(g−gain(g+1))) while it returns 3m intermediate
solutions, and by induction the granularity of the (r− g− 1)-dissection is 3m(g−1−gain(g)). Since
1 + gain(g) ≥ gain(g + 1), the latter dissection is more fine-grained than the former; it is
then possible to ask the (r − g − 1)-dissection to return only 3m(g−gain(g+1)) solutions with a
target size of mg in amortised constant time. The remaining target size required to merge the
solutions of the two sub dissections into solutions of the main one being m, one expects to
find 3m(g−gain(g+1)) of them and so the r-dissection is able to provide that many solutions in
amortised constant time. ut

Despite the improvement provided by Proposition 14, the granularity of the dissection re-
mains too high in our context for many values of l, as shown in Example 15.

Example 15. Let l = 0.04n, one has Sl ≈ 30.0148n. Solving the derived r-list problem using
dissection in the amortised constant time regime and with minimum memory gives the con-
straint m = l/(g + 1) and the granularity is thus 3m(g−gain(g+1)) = 3l(g−gain(g+1))/(g+1); this
latter quantity is lower-bounded by 30.02n for any g and therefore no suitable dissection has a
granularity less than Sl. This fact is illustrated in Fig. 4 where no instantiation reaches the grey
line representing a time cost of Sl.

6 Remark that there would be no point in doing this in an exhaustive dissection since in that case the
cost of the (exhaustive) (r−1−g)-dissection is always higher than the one of the meet-in-the-middle.

12 Pierre Karpman and Charlotte Lefevre

We conclude by proposing another tweak to the dissection framework to further reduce
its granularity. Recall that we let µ = 1 for simplicity, but the process generalises to other
values in the same way as the original dissection. Let us again consider an r-dissection of gain
g with initial lists of size 3m and denote by 3s the desired number of solution. Assume that
s < m(g − gain(g + 1)), so that the granularity guaranteed by Proposition 14 is too high.
The idea here is to reduce the dominating time cost of the exhaustive (g + 1)-dissection by
asking for fewer solutions, which mechanically means that the number of solutions that need
to be returned by the (r − g − 1)-dissection has to be increased. In some sense this consists in
balancing the cost of the two sub-problems in the (typically highly asymmetric) dissection, and
thus making it somewhat closer to a k-tree algorithm. A possible explanation as to why this
eventually leads to better results is that when only a very small fraction of the total number of
solutions is required, more symmetric algorithms (one of whose drawbacks is that they highly
decimate the solution space) tend to perform better. More formally one asks for 3s+c solutions
in the (r − g − 1)-dissection and 3m−c in the (g + 1)-dissection for some c ∈ R, and the overall
time cost is minimised under the equality constraint:

s+ c = m(g − gain(g + 1))− c,

which gives:

c =
m(g − gain(g + 1))− s

2

One must also satisfy the “granularity constraint” given by the (r − g − 1)-dissection, viz.:

s+ c ≥ m(g − 1− gain(g)).

There are then two possibilities:{
s ≥ m(g − gain(g + 1)) : gain(g + 1) = gain(g) + 1

s ≥ m(g − 2− gain(g + 1)) : gain(g + 1) = gain(g)

As it was initially assumed that s < m(g − gain(g + 1)), this technique is thus only useful
if gain(g + 1) = gain(g). In that case and under the above conditions, one can check that
the granularity constraint of the (g + 1)-dissection is satisfied and so the overall time cost is
given by O(3s+c) = O(3(m(g−gain(g+1))+s)/2). This is simply the middle point (in the exponent)
between the granularity of the original dissection and the number of required solutions. Here
the solutions are not obtained in amortised constant time any more, but one does not “waste”
any in the sense that only the desired number is returned.

In Fig. 4, the time-memory tradeoffs obtained by using this modified dissection are drawn
in black.

Finally one may somewhat further extend the above by using a u-dissection instead of a
(g + 1)-dissection for some parameter u, further balancing the cost of the two sub dissections.
This does not provide an added gain from the above but allows a finer control of the time/memory
ratio.

Results. We illustrate the time-memory tradeoffs offered by the dissection to solve the ternary
syndrome decoding problem in the Wave regime in Fig. 4. For simplicity, this graph illustrates
the tradeoffs obtained using only a fixed (sub-optimal) value of l = 0.04n; the best tradeoffs, all
using l < 0.034n, are shown in Fig. 5 in the next Section 4.5. The figure was obtained by using
the parameter selection Algorithm 3 in Appendix E, an implementation of which being available
at https://github.com/charlotte-lefevre/TM_tradeoffs_SDP. All the results come from a
single 400-dissection which, as remarked previously, allows to implicitly consider many dissec-
tions with fewer initial lists by simply varying µ. We do not consider r-dissections with r > 400,
since it would only improve the tradeoffs T ≈ Mm with m > 20. The figure reads as follows:
each line represents a different value for µ in ascending order from left to right, and each point
on a line represents a different value for m, the log3 of initial lists size. The additional tradeoffs
obtained with the last proposed tweak to improve its granularity are singled out as black crosses,
and provide here the best results.

Finally a notable aspect of the results shown in Fig. 4 (which also applies to Fig. 5) is that
there is very little interest in increasing the memory allocated to the dissection beyond a certain
point.

https://github.com/charlotte-lefevre/TM_tradeoffs_SDP

Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 13

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
log(M)/n

0.02

0.03

0.04

0.05

0.06

0.07

0.08

lo
g(
T)

/n

Sl

k-tree + representations [1]
400-dissection
400-dissection with reduced granularity

Fig. 4: Time-memory tradeoffs offered by the use of a 400-dissection within the PGE+SS frame-
work with l = 0.04n. The grey line represents the desired number of solution Sl for this particular
l.

4.5 Comparison of the k-tree & dissection frameworks

The k-tree and dissection frameworks may both be used to solve the same r-list problems. In this
short section we wish to compare these two options and show in which regimes they respectively
perform better. We again let by definition 3m be the initial lists size.

We start with an example, comparing a 16-dissection with a 16-tree algorithm. The 16-
dissection of gain g = 4 is split into an 11-dissection and a 5-dissection, with a total recursion
depth equal to 5; the maximal target size for which this dissection may provide solutions in
amortised constant time is thus equal to 5m = (g + 1)m. The 16-tree algorithm has a total
number of levels equal to 4, and the maximal target size for which it may provide solutions in
amortised constant time is 4m. Now considering a full-weight sub syndrome decoding problem
of target size l, setting m to l/5 (resp. l/4) minimises the memory cost and granularity of the
16-dissection (resp. 16-tree algorithm) while allowing to find solutions in amortised constant
time. In this case the dissection’s granularity is 33l/5 while the one of the k-tree is 3l/4. It is thus
mostly beneficial to use the more memory-efficient 16-dissection over a 16-tree algorithm when
Sl ≥ 33l/5, which asymptotically holds for l / 0.028n, while the granularity of the 16-tree itself
will not be a limiting factor until the much larger value of l ≈ 0.051n; since Sl is decreasing
with increasing l in this range, it means that a 16-tree is able to reach a lower time cost than a
16-dissection, but with a comparably higher memory cost.

More generally, we may compare a 2a-tree with a 2a-dissection: from Eq. (3) the gain of the
dissection is approximately 2(a+1)/2, and it follows from Proposition 14 that its granularity is

approximately 3m2a/2

, which is to be compared with the much lower 3m for the k-tree algorithm.
The maximum target size for which the dissection may provide solutions in amortised constant
time is then ≈ m2(a+1)/2, much larger than the k-tree algorithm at am. One may then again
remark that the dissection is much more memory-efficient than the k-tree algorithm as it allows
to return exponentially-more solutions in amortised constant time with the same memory usage,
but that its efficient usage may be limited by an exponentially-larger granularity.

We conclude this comparison by plotting in Fig. 5 the best time-memory tradeoffs we ob-
tained by applying the dissection & k-tree frameworks to ternary syndrome decoding in the Wave
regime. In consistency with the above analysis, dissection performs significantly better than the
k-tree algorithm in the low-memory regime where the total memory cost M / 30.0073n; there is
also little interest in using memory larger than ≈ 30.0025n since doing so only very moderately
decreases the time cost. All of those points correspond to small values for the l parameter for

14 Pierre Karpman and Charlotte Lefevre

which the dissection granularity matches the large number of required solutions. In the large-
memory regime the dissection looses its interest and it becomes significantly outperformed by
the k-tree algorithm whose fine granularity is not limiting until much larger values of l.

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
log(M)/n

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

lo
g(
T)

/n

k-tree + representations [1]
smoothed k-tree
400-dissection after minimization

Fig. 5: Time-memory tradeoffs for the ternary syndrome decoding problem in the Wave regime
from the k-tree & dissection frameworks. The results for the dissection are the best tradeoffs
obtained from a 400-dissection after minimisation with l, µ and m.

5 Dissection in tree for syndrome decoding

We now present the “hybrid” Multiple-Layer List Sum Algorithms (which we will call “dissection
in tree” for short) introduced by Dinur as a framework to solve generic generalised birthday
problems [5], and apply it to ternary syndrome decoding. Similarly to the algorithms of the
previous section, fully exploiting the framework in our particular case requires careful parameter
selection and some modifications in particular to improve the granularity.

5.1 The main algorithm of dissection in tree

The idea behind dissection in tree is in fact quite straightforward: it consists in replacing the
binary tree structure underlying the k-tree algorithm with an n-ary one and using (typically
exhaustive) n-dissection to implement the merging of lists at each level. Similarly as in the k-tree
framework, the merging is usually done w.r.t. targets whose sizes ensure that the expected list
size is maintained constant through the tree, except possibly at the root level.

We first illustrate this in our case with a tree of three levels of 4-dissection, which we denote
as a 3,4-dissection; Fig. 6 shows the structure of the resulting tree. This instance provides some
of the best tradeoffs we were able to obtain for syndrome decoding in the Wave regime.

Since in this case the number of leaves is equal to 43 = 64, and again letting 3m denote by
definition the cardinal of the lists, an immediate adaptation of the constraint from Eq. (2) gives
here:

3m ≤ 2
k+l
64 (5)

To keep a constant expected size for the lists of the first two levels, the target size is set
to 3m. At the last level, the remaining target size is equal to l − 6m, where l again denotes

Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 15

3l/8

3l/4

l

Fig. 6: Illustration of 4-dissection with three levels and M = 3l/8.

the total target size. The expected number of returned solutions S for a thusly parameterised
3,4-dissection is then given by:

S =
34m

3l−6m
=

310m

3l

Since the time cost of an exhaustive 4-dissection is O(32m), one obtains the following con-
straint for the solutions to be returned in amortised constant time:

310m

3l
≥ 32m ∴ m ≥ l

8
,

and one would typically use the minimal admissible value m = l
8 .

Comparison with a 64-tree. It is quite relevant to compare the performance of 3,4-dissection and
a k-tree instance with 6 levels, since both instantiations have a similar structure and use the
same number of lists. When applied to syndrome decoding and even without specific adaptation,
the 3,4-dissection performs systematically better: as shown above, it is able to provide solutions
to the sub decoding problem for a target of size l in amortised constant time with memory cost
O(3l/8), while the 64-tree requires a memory of size O(3l/6) to achieve the same. Informally
one effect at play here is that using a dissection allows to find solutions that are less structured
compared to a k-tree algorithm, and one thus does not require to increase the memory as much
as the latter does to compensate for a high decimation of the solution space. One beneficial
effect of a lower memory consumption is then that it leads to a wider range of target sizes:
the constraint from Eq. (5) is “easier” to satisfy than Eq. (2), thus allowing for lower time
cost for identical memory costs. There is however one downside to using dissection in tree: the
granularity of 3l/4 = 32m = 32(l/8) of the 3,4-dissection is coarser than the 3l/6 of the 64-tree,
which can be explained from the use of inherently coarser dissections to perform the merging.
While this never makes 3,4-dissection “worse” than a 64-tree, it does prevent exploiting its full
potential.

We summarise this comparison in Fig. 7, which plots the best time-memory tradeoffs obtained
from raw 3,4-dissection and 64-tree and various values of l (shown in false colour). Two regimes
are clearly observable for the 3,4-dissection whose coarse granularity makes it returning too
many solutions for somewhat large values of l.

The analysis of a general raw h, r-dissection tree is a straightforward extension of the above
example for the 3,4-dissection.

Letting again 3m be by definition the initial list size, enforcing equally-sized lists gives target
sizes of m(r − 1) at every level of the tree but the last, where it is l −m(r − 1)(h− 1). Then if
we let g = gain(r), the cost of one dissection is equal to O(3m(r−1−g)) and returning solutions
in amortised constant time translates into the following:

3mr

3l−m(r−1)(h−1) ≥ 3m(r−1−g) ∴ m ≥ l

(r − 1)(h− 1) + 1 + g
, (6)

16 Pierre Karpman and Charlotte Lefevre

0.002 0.004 0.006 0.008 0.010 0.012 0.014
log(M)/n

0.018

0.020

0.022

0.024

0.026

0.028

0.030

0.032

0.034
lo
g(
T)
/n

3,4 dissection
64-k-tree

0.01

0.02

0.03

0.04

0.05

Va
lu
e
of
 l
co

ef
fic

ie
nt

Fig. 7: Best time-memory tradeoff for the syndrome decoding problem in the Wave regime using
raw 3,4-dissection and 64-tree.

or simply m = l/((r − 1)(h− 1) + 1 + g) when minimising the memory.
Finally, the straightforward generalisation of Eq. (5) is given by:

3m ≤ 2
k+l

rh (7)

We summarise these constraints in the parameter selection in Algorithm 4, Appendix E,
an implementation of which being available at https://github.com/charlotte-lefevre/TM_
tradeoffs_SDP.

5.2 Improvements for syndrome decoding

We now present (and ultimately combine) two improvements to the dissection in tree: the first
aims at reducing its granularity while the second is a straightforward adaptation of the smooth-
ing technique. The price to pay for both are exponentially larger memory costs and thus less
favourable tradeoffs.

Improving the granularity of the dissection in tree. In a raw dissection tree, the dissec-
tions performed at every level are exhaustive. To decrease the overall granularity, one idea would
then be to consider non-exhaustive dissections so that fewer solutions are eventually returned.
This however also requires to decrease the target sizes at every level to compensate, and thus
also to increase the initial list sizes if one wishes to return solutions in amortised constant time.

Let α be a new parameter s.t. the r-dissection now enumerates only 3m(r−α) candidates from
the product of the r input lists. Enforcing equally-sized lists gives target sizes of m(r − 1 − α)
at every level of the tree but the last, where it is l−m(h− 1)(r− 1−α). The expected number
of returned solutions is then equal to:

S =
3m(r−α)

3l−m(h−1)(r−1−α) (8)

Each dissection now costs O(3m(r−g−1−α)) (provided that this is not lower than their gran-
ularity), and returning solutions in amortised constant time translates into the following:

https://github.com/charlotte-lefevre/TM_tradeoffs_SDP
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP

Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 17

3m(r−α)

3l−m×(h−1)(r−1−α)
≥ 3m(r−g−1−α)

∴ m ≥ l

(h− 1)(r − 1) + 1 + g − α(h− 1)
(9)

The memory increase for positive values of α is then visible by comparing Eq. (6) and Eq. (9).
It remains to determine the optimal α, which in the amortised constant time regime is

constrained by two phenomena:

1. The number of returned solutions must not be greater than necessary, i.e. S ≤ Sl. Letting
s = log3(Sl) and injecting the minimal value for m given by Eq. (9) into Eq. (8) gives (after
a tedious computation):

[l − (h− 1)s]× α ≥ [l(r − g − 1)− s(g + 1 + (h− 1)(r − 1))] (10)

2. The required number of solution at every level must not be lower than the granularity of
the dissection. From Proposition 14 this gives:

r − g − 1− α > g − gain(g + 1) (11)

One would then pick the smallest value of α satisfying both constraints to minimise the
overall memory cost. We summarise this in the parameter selection Algorithms 6 and 7 from
Appendix E, implementations being available at https://github.com/charlotte-lefevre/

TM_tradeoffs_SDP.

Smoothing the dissection tree. Since the dissection tree features a population constraint
similar to the k-tree algorithm, we may adapt to it the smoothing technique from Proposition 9.
This leads to the following:

Proposition 16. Let l, r, h be fixed, g := gain(r). If 3l > 2(k+l)/(r
h−1) and 3l/(g+1+(r−1)(h−2)) <

2(k+l)/(r
h−1) , then one can use a smoothed tree with h levels of r-dissections to obtain 2m(r−g−1)

solutions to the generalised birthday problem with r lists in amortised constant time, where:

m =
1

(h− 2)(r − 1) + g

(
l log2(3)− k + l

rh−1

)
.

The proof is similar to the one of Proposition 9 and given in Appendix D. The parameter
selection with smoothing is given by Algorithm 5, Appendix E.

Combination of the improvements. There are settings where both previous improvements
may be jointly necessary. This can be done by using a two-step process: the bottom level of
the tree is used to satisfy a constraint of size t, which becomes a parameter, in a possibly non-
exhaustive way as controlled by a parameter β. As in a smoothed tree, the goal is to produce
intermediate lists of size 3m (where m is another parameter), starting from ones of size 3m̃,

m̃ := log3(2
k+l

rh). Then the h − 1 remaining levels are required to satisfy a target of size l − t
with input lists of size 3m, in a possibly non-exhaustive way as controlled by a parameter α.

Parameters leading to valid instances in amortised constant time must then satisfy the fol-
lowing constraints:

1. The expected list size is larger than 3m after the first level:

3m̃×(r−β)

3t
≥ 3m ∴ β ≤ r − m+ t

m̃

2. The parameter α is constrained by Eqs. (10) and (11).
3. The parameter β is constrained by Eq. (11).
4. The cost is dominated by the upper part of the tree:

3m̃×(c−β) ≤ 3m(c−α) ∴ β ≥ c− m

m̃
(c− α),

where c := r − g − 1.

https://github.com/charlotte-lefevre/TM_tradeoffs_SDP
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP

18 Pierre Karpman and Charlotte Lefevre

When searching for valid parameterizations, it is best to first select the value for t and to
take it as large as possible as this minimises the memory cost. This makes sense, intuitively,
since in that case the tree is as close as possible to a balanced (non-smoothed) one.

The full parameter selection algorithm is given in Algorithm 8, Appendix E, and an imple-
mentation is provided at https://github.com/charlotte-lefevre/TM_tradeoffs_SDP. The
impact of the granularity improvements, also combined with smoothing, are illustrated for the
3,4-dissection in Fig. 8. Thanks to these improvements, the 3,4-dissection is now applicable to
larger memory regimes but at the cost of less favourable tradeoffs (clearly observable from the
changes of the slopes).

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
log(M)/n

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

lo
g(
T)

/n

k-tree + representations [1]
3,4 dissection
3,4 dissection with improved granularity
3,4 dissection with combination of the improvements

Fig. 8: Best time-memory tradeoff for the syndrome decoding problem in the Wave regime using
3,4-dissection. From M ≈ 20.01n, the granularity of the 3,4-dissection becomes too coarse, so
that non-exhaustive dissections are henceforth considered. Then at M ≈ 20.0112n, Eq. (7) is no
more satisfied, leading thus to the use of the smoothing technique.

5.3 Experimental results

As a proof of concept, we implemented the 3,4-dissection algorithm using Sage. The main aim
here is to check that the practical number of iterations of the Subset sum step before finding a
solution to the SDP coincides with the theoretical prediction. This implementation is not fully
optimised and relies on a general-purpose finite-field linear algebra software packaged within
Sage. This restricts its usage to relatively small parameters and we only considered instances
up to n = 875, which in the Wave regime translates to k = 591, l = 48. With this instantiation,
one iteration of the Subset sum step combined with the Probabilistic reconstruction step takes
on average 800 seconds on a (virtualised) i386 processor.7 With 10 runs of the full algorithm,
5.7 iterations of the Subset sum step were necessary on average before finding a solution, which
is somewhat consistent with the theoretically expected 2.9, especially given the small number of
runs. Moreover, with the instantiation n = 560, k = 379, l = 34, the average number of iterations
with 110 runs is 12.05, which comes very close to the 12.3 expected number of iterations.

The code of this proof-of-concept implementation is available at https://github.com/

charlotte-lefevre/TM_tradeoffs_SDP.

7 The computer used for the tests has an Apple M1 processor, but Sage uses Apple’s Intel emulator.

https://github.com/charlotte-lefevre/TM_tradeoffs_SDP
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP

Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 19

6 Application to Wave

We summarise our best time-memory tradeoffs for solving the syndrome decoding problem
in the Wave regime in Fig. 9. We do this in two settings: in Fig. 9b we use asymptotic es-
timates similar to the ones used in the previous sections, while Fig. 9a is an estimate in
bit complexity for concrete proposed security parameters. The plots were all drawn using
the parameter selection algorithms presented in Appendix E, and the code is available at
https://github.com/charlotte-lefevre/TM_tradeoffs_SDP.

From these figures it is notable that dissection in tree always outperforms k-tree instan-
tiations (except in the regime where time and memory are about equal) and almost always
outperforms dissection (it is about equivalent in the very low memory regime). For instance,
the bit complexity estimate for the 3,4-dissection at M ≈ 290 is about 225 times less than using
a smoothed k-tree algorithm with the same amount of memory. For low-memory regimes, the
best instances use layered dissections with 2 levels, while from M ≈ 20.009n, the best tradeoffs
are obtained with 4, 4 or 3, 4-dissections.

Table 2: Bit cost estimates for various tradeoffs for solving the generic syndrome decoding
problem, n = 7236, k = 4892, w = 6862.

Time Memory Target tradeoff Algorithm

2152 2144 T = M k-tree + representations [1]
2162 2130 T = M5/4 3,4-dissection
2177 288.5 T = M2 3,4-dissection
2194 264.8 T = M3 2,11-dissection
2213 242.6 T = M5 2,16-dissection
2247 224.6 T = M10 2,29-dissection

The bit costs of Fig. 9a correspond to Wave’s “new” parameters n = 7236, k = 4892,
w = 6862 [1], and were computed using the following assumptions or simplifications:

– Elements of F3 are stored on 2 bits, and elementary operations in Fn3 cost 2n bit operations.
– Polynomial factors of the algorithms are taken into account.
– Polynomial factors in the estimate for Sl are taken into account.
– Computing L1 ./ϑ L2 for some lists L1, L2 of elements of Fn3 and some ϑ costs 2n(#L1+#L2)

as long as the size of the result is not larger than one of the input lists.

The last simplification implies a constant cost for memory access, which is an unrealistic
underestimation for most of the considered memory sizes. The provided costs should thus not
be interpreted as precise estimates but rather as intermediate points between asymptotic com-
putations and a full and accurate modelling of an attack, which is out of the scope of this
paper.

Finally, we list some of the most notable tradeoffs for concrete parameters in Table 2.

Acknowledgements

The first author was partially supported by the French National Research Agency in the frame-
work of the Investissements d’avenir programme (ANR-15-IDEX-02). The second author is in
part supported by the Netherlands Organisation for Scientific Research (NWO) under grant
OCENW.KLEIN.435. Part of this work was done when the second author was with Université
Grenoble Alpes, and was partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-
0025-01) in the framework of the Investissement d’avenir programme. Finally we wish to thank
the reviewers for all their comments.

https://github.com/charlotte-lefevre/TM_tradeoffs_SDP

20 Pierre Karpman and Charlotte Lefevre

0 20 40 60 80 100 120 140 160
log(M)

140

160

180

200

220

240

260

280

lo
g(
T)

T=
M⁴

T=
M³

T=
M²

smoothed k-tree
k-tree + representations [1]
r = 4 h = 3
r = 11 h = 2

r = 16 h = 2
r = 22 h = 2
r = 29 h = 2

(a) Bit cost for fixed parameters.

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
log(M)/n

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

lo
g(
T)
/n

T=
M⁴

T=
M³

T=
M²

dissection
smoothed k-tree
k-tree + representations [1]
r = 11 h = 2
r = 16 h = 2

r = 22 h = 2
r = 29 h = 2
r = 4 h = 3
r = 11 h = 3
r = 4 h = 4

(b) Asymptotic cost.

Fig. 9: Summary of obtained time-memory tradeoffs. For the dissection in tree, r denotes the
dissection used and h the number of levels.

Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 21

References

1. Rémi Bricout, André Chailloux, Thomas Debris-Alazard, and Matthieu Lequesne. Ternary Syn-
drome Decoding with Large Weight. In Kenneth G. Paterson and Douglas Stebila, editors, SAC
2019, volume 11959 of Lecture Notes in Computer Science, pages 437–466. Springer, 2019.

2. John T. Coffey and Rodney M. Goodman. The complexity of information set decoding. IEEE
Trans. Inf. Theory, 36(5):1031–1037, 1990.

3. Thomas Debris-Alazard. Cryptographie fondée sur les codes : nouvelles approches pour constructions
et preuves ; contribution en cryptanalyse. (Code-based Cryptography: New Approaches for Design
and Proof ; Contribution to Cryptanalysis). PhD thesis, Pierre and Marie Curie University, Paris,
France, 2019.

4. Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. Wave: A New Family of Trapdoor
One-Way Preimage Sampleable Functions Based on Codes. In Steven D. Galbraith and Shiho
Moriai, editors, ASIACRYPT 2019, volume 11921 of Lecture Notes in Computer Science, pages
21–51. Springer, 2019.

5. Itai Dinur. An algorithmic framework for the generalized birthday problem. Des. Codes Cryptogr.,
87(8):1897–1926, 2019.

6. Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Efficient Dissection of Composite
Problems, with Applications to Cryptanalysis, Knapsacks, and Combinatorial Search Problems. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of Lecture Notes in
Computer Science, pages 719–740. Springer, 2012.

7. Ilya Dumer. On minimum distance decoding of linear codes. In Proc. 5th Joint Soviet-Swedish Int.
Workshop Inform. Theory, pages 50–52, 1991.

8. Andre Esser, Felix Heuer, Robert Kübler, Alexander May, and Christian Sohler. Dissection-BKW.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, volume 10992 of Lecture
Notes in Computer Science, pages 638–666. Springer, 2018.

9. Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In Henri
Gilbert, editor, EUROCRYPT 2010, volume 6110, pages 235–256. Springer, 2010.

10. Alexander Meurer. A coding-theoretic approach to cryptanalysis. PhD thesis, Ruhr University
Bochum, 2013.

11. Lorenz Minder and Alistair Sinclair. The Extended k-tree Algorithm. J. Cryptol., 25(2):349–382,
2012.

12. Robert Niebuhr, Pierre-Louis Cayrel, Stanislav Bulygin, and Johannes Buchmann. On lower bounds
for information set decoding over Fq. In SCC 2010, volume 10, pages 143–157, 2010.

13. Christiane Peters. Information-Set Decoding for Linear Codes over Fq . In Nicolas Sendrier, editor,
PQCrypto 2010, volume 6061 of Lecture Notes in Computer Science, pages 81–94. Springer, 2010.

14. Eugene Prange. The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory,
8(5):5–9, 1962.

15. Richard Schroeppel and Adi Shamir. A T = O(2n/2), S = O(2n/4) algorithm for certain NP-
complete problems. SIAM J. Comput., 10(3):456–464, 1981.

16. Jacques Stern. A method for finding codewords of small weight. In Gérard D. Cohen and Jacques
Wolfmann, editors, Coding Theory and Applications, 3rd International Colloquium, Toulon, France,
November 2-4, 1988, Proceedings, volume 388 of Lecture Notes in Computer Science, pages 106–113.
Springer, 1988.

17. Rodolfo Canto Torres. Asymptotic analysis of ISD algorithms for the q-ary case. In Proceedings of
the Tenth International Workshop on Coding and Cryptography WCC 2017, 2017.

18. David A. Wagner. A Generalized Birthday Problem. In Moti Yung, editor, CRYPTO 2002, volume
2442 of Lecture Notes in Computer Science, pages 288–303. Springer, 2002.

A Approximation of the number of required solution

Eq. (1) from Proposition 4 contains binomial coefficients which can be complex to evaluate.
Here, we aim at approximating the former to obtain a simple and reasonable approximation.
The corresponding formula is given in Proposition 18. In particular, this shows that the time
cost of Subset Sum step is expected to be exponential.

Lemma 17 ([3, Lemma 1.2]). Let n,w ∈ N with w < n. Then one has(
n

w

)
2w ∼

n→ +∞
w = O(n)

1√
2πw(1− w/n)

3nh3(w/n),

where h3 is the ternary entropy function, defined over]0, 1[by:

h3(x) = −(1− x) log3(1− x)− x log3

(x
2

)
.

22 Pierre Karpman and Charlotte Lefevre

Proposition 18. Let H1, H2, s′1, s′2, e
′
1, n, w, k, l as defined in Proposition 4. Then one has:

Pr[wt(e′1) = w − k − l] ≈
n→+∞

3(n−k−l)×h3(w−k−l
n−k−l)+l−n+k.

This proposition is a consequence of Lemma 17 applied to the two binomial coefficients appearing
in Proposition 4. The polynomial factor in Lemma 17 has been ignored, hence the approximation
symbol. This formula is used in practice to compute the value of Sl when the code length is not
fixed.

B The meet-in-the-middle algorithm and its application

The meet-in-the-middle is a basic building block for time-memory trade-offs. In this section we
describe this algorithm embedded in the PGE+SS framework to solve the Subset sum problem.
This combination is also known under the name of Stern/Dumer algorithm [16,7]. The meet-in-
the-middle requires two lists denoted by L1, L2. In the context of the SDP, the way to build the

lists is described in Section 4.1, where W1 :=
{(

x 0(k+l
2)
)∣∣∣x ∈ F

k+l
2

3 ,wt(x) = k+l
2

}
, and W2 :={(

0(k+l
2) x

)∣∣∣x ∈ F
k+l
2

3 ,wt(x) = k+l
2

}
. Moreover, any element l1 in L1 (resp. l2 in L2) must be

associated to the vector e′ inW1 (resp. e′′ inW2) such that e′HT = l1 (resp. e′′HT−s = l2). We
denote this link by e′ =: associated(l1). The meet-in-the-middle algorithm is then described
as follows:

For every l2 ∈ L2:
If there exists l1 ∈ L1 s.t l1 = −l2:
• e′ ← associated(l1)
• e′′ ← associated(l2)
• process e′ + e′′ in the Probabilistic reconstruction step

In practice, searching for a colliding element within a list can be done in a constant time,
and this makes the meet-in-the-middle much more efficient than a memoryless exhaustive search
in terms of time cost.

As the parity-check matrix H is sampled uniformly at random, an heuristic hypothesis made
here is that the lists L1 and L2 contain random uniform vectors. Therefore, the expected numbers
of colliding elements is approximated by:

#L1#L2

3l
(12)

Under the constraint that solutions must be returned in amortised constant time, the minimal
memory usage is given when #L1 = #L2 = 3l, and this also minimises the granularity of the
algorithm. Thus the memory and time costs are given by M = 3l, T = 3l ·max

(
1, Sl

3l

)
.

Remark 19. It is also possible to consider a meet-in-the-middle with r lists L1, L2, · · · , Lr for
any r ≥ 2 by searching an element in L1 equal to −l2−l3−· · ·−lr for every tuple (l1, l2, · · · , lr) ∈
L1 × L2 × · · · × Lr.

C Recursive construction of the exhaustive dissection

All statements presented in this section have already been proved by Dinur et al. [6]. Here we
wish to provide a self-contained description of the exhaustive r-dissection framework for any
r ≥ 4 . We will see that an r-dissection of gain g is split into an (r − g − 1)-dissection of gain
g − 1 and a (g + 1)-meet-in-the middle. However, in order to understand the construction of
the dissection, we rather start from the r-dissection of gain equal to g − 1 ≥ 0 (by definition),
then build from it the (r + g + 1)-dissection. We then show by induction on the gain that the
newly-built dissection has a gain equal to g and show a few properties about the amortised time
and the memory cost. In the last paragraph, we give advice about how to find concretely the
gain (thus the cutting) of an r-dissection for any r ≥ 4.

Let m be s.t the size of the list Li is equal to 3m for any i. The base case,i.e. the 4-dissection
(where g = 1) has already been investigated in Section 4.3. Let then g > 1 be such that the

Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 23

r-dissection has a gain equal to g−1. Assume by induction that the former is able to output all of
the 3m(r−g) solutions with a target size equal to mg in amortised constant time; with a memory

cost equal to 3m. Now, we can describe the (r + g + 1)-dissection with a target s ∈ Fm(g+1)
3

8.
We will show that the latter has a gain equal to g and that solutions are returned in amortised
constant time with a memory cost of 3m. Figure 10 illustrates the following description of the
(r + g + 1)-dissection:

For every intermediate target t ∈ Fmg3 :
(i) Run a (g+1) exhaustive meet-in-the-middle with the lists L1, · · ·Lg+1, available memory

3m and target equal to s1 − t ∈ Fmg3 , where s1 comprises the gm last coordinates of s.
The 3m (expected) solutions are stored in a list called L. The time cost of this step is
equal to 3gm.

(ii) Run an r-dissection with the lists Lg+2, · · ·Lr+g+1 and the target t ∈ Fmg3 . By induction,
its memory cost is equal to 3m, the time cost is given by 3m(r−g), and the solutions are
returned in amortised constant time.

(iii) Every solution returned by the r-dissection has shape
(
y t
)

with y ∈ Fm3 . The final step

consists in searching in L an element equal to
(
s2 − y s1 − t

)
, where s2 comprises the

m first coordinates of s. This step can be done in a constant time per solution.

The solutions returned by the r-dissection are generated on-the-fly, so that no extra-memory
in step (iii) is required to store them. One can check by induction that r − g ≥ g, so that the
time cost of the r-dissection dominates the one the (g + 1)-meet-in-the middle. An immediate
consequence is that solutions to the (r+ g + 1)-list problem are returned in amortised constant
time, so that T = 3mr: the gain of the (r+ g + 1)-dissection is thus equal to g. Finally, one can
easily check that the memory cost is M = 3m.

Remark 20. The previous description does not tell how to build the r-dissection for any r ≥ 4
(e.g. with r = 5). Starting from the r-dissection of gain g, it is possible to define the (r + a)-
dissection for any a < g + 2. The idea is to run an r-dissection with lists La+1, · · · , La+r
and target s − l1 − l2 − · · · − la; and repeat the procedure for every tuple (l1, l2, · · · la) ∈
L1 × L2 × · · · × La. The gain of this dissection is also equal to g, and one can show that the
properties previously shown are still true. Therefore the r-dissection is well defined for any r ≥ 4.

In practice, to find the gain of a r-dissection for a fixed r ≥ 4, one can use the magic
sequence (Mg)g∈N introduced by Dinur et al. which is by construction such that ∀g ∈ N,Mg =

min{r| gain(r) = g}. Is has been proven that Mg = (g+1)(g+2)
2 + 1 [6]. Finally, one can remark

that gain(r) = max{g|Mg ≤ r} so that the splitting of an r-dissection into a (r− gain(r)− 1)-
dissection and a (gain(r) + 1)-meet-in-the-middle is easy to determine.

D Proof of Proposition 16

The aim here is to prove Proposition 16. The proof is very close to the case of the smoothing of
the k-tree algorithm (see [1, Proposition 4] and Proposition 9).

Proposition 16. Let l, r, h be fixed, g := gain(r). If 3l > 2(k+l)/(r
h−1) and 3l/(g+1+(r−1)(h−2)) <

2(k+l)/(r
h−1) , then one can use a smoothed tree with h levels of r-dissections to obtain 2m(r−g−1)

solutions to the generalised birthday problem with r lists in amortised constant time and memory
cost 2m, where:

m =
1

(h− 2)(r − 1) + g

(
l log2(3)− k + l

rh−1

)
.

Proof. The idea is exactly the same as the one in Section 4.2: the constraint size w from level
1 to 2 is reduced, and this allows the list size on level 2 to be larger than the one on level 1.
Then from level 2, a (non-smoothed) dissection in tree is run to obtain solutions in amortised
constant time.

Let ς := l log(3) normalise in base 2 the size of the dimension-l ternary constraint that one
wishes to solve and τ := (k + l)/rh be the logarithm of the maximum size of r lists of full-
weight vectors partitioning the domain. We aim at finding initial and subsequent constraints w,
w′ = w′′ = · · · = w(h−1) and w(h) s.t the following constraints are satisfied:

8 Larger targets can be considered, but in this case the amortised time increases exponentially in the
overhead of the target size .

24 Pierre Karpman and Charlotte Lefevre

1. The first level dissections return lists with an expected size of 2m: m = rτ − w.
2. The list cardinal is preserved from level 2 to level h-1: rm− w′ = m.
3. The constraints sum to ς: w + (h− 2)w′ + w(h) = ς.
4. Solutions are returned in amortised constant time: rm− w(h) ≥ m(r − g − 1).

As we want to minimise the memory usage, the inequality in constraint 4 becomes an equality.
By using respectively constraints 3,1,2 to substitute respectively w(h), w and w′ in constraint

4, one can obtain the m of the proposition. If 3l > 2
k+l

rh−1 and 3
l

g+1+(r−1)(h−2) < 2
k+l

rh−1 , one can
check that w ≥ 0 and m ≥ 0.

ut

L1

· · ·

Lr−g−2 Lr−g−1

· · ·

Lr

t

Repeat for all t

gm

r-dissection

Lr+1

· · ·

Lr+g+1

gms1 − t

Exhaustive
meet-in-the-middle

s (g + 1)m

Fig. 10: Recursive dissection construction where the leaves list cardinal is defined to be equal to
3m. A list drawn with dashed lines is not stored in memory and processed on-the-fly.

Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 25

E Algorithms

We present here algorithms useful to evaluate the memory usage and time cost of the algorithms
described in this paper.

E.1 From Section 4.2

Algorithm 1: find param kTree(n, l, k, w)

Input: n: code length, l: size of the sub-problem, k: code dimension, w: target weight of
SDP

Output: (M , T , a) required memory, time and number of levels or ⊥ if algorithm fails
1 Sl ← Nb required sol(n, l, k, w) // see Proposition 4

2 a← 1

3 if 3l/a > 2
k+l
2a then

4 return ⊥
5 end

6 while 3l/a ≤ 2
k+l
2a do

7 a← a+ 1
8 end
9 a← a− 1

10 return (3l/a,max(Sl, 3
l/a), a)

Algorithm 2: find param SmoothedkTree(n, l, k, w)

Input: n: code length, l: size of the sub-problem, k: code dimension, w: target weight
of SDP

Output: (M , T , a) required memory, time and number of levels or ⊥ if algorithm fails
1 Sl ← Nb required sol(n, l, k, w) // see Proposition 4

2 a← 3

3 if 3
l

a−1 > 2
k+l

2a−1 then
4 return ⊥
5 end

6 while 3
l

a−1 ≤ 2
k+l

2a−1 do
7 a← a+ 1
8 end
9 a← a− 1

10 m← 1
a−2

(
l · log2(3)− k+l

2a−1

)
11 return (2m,max(Sl, 2

m), a)

26 Pierre Karpman and Charlotte Lefevre

E.2 From Section 4.3

Algorithm 3: find param Dissection(r, n, l, k, w,m, µ)

Input: r: number of lists, n: code length, l: size of the sub-problem, k: code dimension,
w: target weight of SDP, m: log3 of base lists size, µ s.t memory cost is 3mµ

Output: (M , T) memory and time or ⊥ if algorithm fails
1 g ← gain(r, µ)
2 Sl ← Nb required sol(n, l, k, w) // see Proposition 4

3 if m > log3(2
k+l
r) then

4 return ⊥
5 end
/* s is the log3 of required solutions in the large sub-dissection divided

by m */

6 s← log3(Sl)
m + max(0,−g + l

m − µ)
/* If no granularity issues */

7 if s > max(µ, (g − gain(g + µ, µ))) then
8 return (3mµ, 3ms)
9 end
/* Else, try to reduce granularity by tweaking the dissection */

10 else if s ≥ max[g − 2µ− 2 gain(g, µ) + gain(g + µ, µ), µ] then
11 return (3mµ, 3m[s+g−gain(g+µ,µ)]/2)
12 end

/* Else, the dissection granularity could not be lowered */

13 else
14 return (3mµ, 3m(g−gain(g+µ,µ)))
15 end

E.3 From Section 5

Algorithm 4: find param DissecTree(r, h, l, n, k, w)

Input: r: number of lists, h: number of levels,
l: size of the sub-problem, n: code length, k: code dimension,
w: target weight of SDP
Output: (M , T) memory and time using h, r-dissection tree or ⊥ if algorithm fails

1 g ← gain(r)
2 Sl ← Nb required sol(n, l, k, w) // see Proposition 4

3 m← l
(r−1)(h−1)+g+1

4 if log2(3) ·m > k+l
rh

then // constraint (7)

5 return ⊥
6 end

7 return (3m,max(Sl, 3
(r−g−1)m))

Algorithm 5: find param SmoothedAlgo(r, h, l, n, k, w)

Input: r: number of lists, h: number of levels,
l: size of the sub-problem, n: code length, k: code dimension,
w: target weight of SDP
Output: (M , T) memory and time using smoothed h, r-dissection tree or ⊥ if

algorithm fails
1 g ← gain(r)
2 Sl ← Nb required sol(n, l, k, w) // see Proposition 4

3 if log2(3)× l
g+1+(r−1)(h−2) <

k+l
rh−1 and log2(3)× l > k+l

rh−1 then

4 m← 1
(h−2)(r−1)+g

(
log2(3) · l − k+l

rh−1

)
5 return (2m,max(Sl, 2

(r−g−1)m))

6 end
7 return ⊥ // can not apply smoothing technique

Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes 27

Algorithm 6: find param DissecTree betterGranularity(r, h, l, n, k, w)

Input: r: number of lists, h: number of levels,
l: size of the sub-problem , n: code length, k: code dimension,
w: target weight of SDP
Output: (M , T) memory and time using h, r-dissection tree with improved granularity

or ⊥ if algorithm fails
1 g ← gain(r)
2 Sl ← Nb required sol(n, l, k, w) // see Proposition 4

3 α← ChooseBestAlpha(r, h, l, Sl) // Algorithm 7

4 if α = ⊥ then // cannot find suitable α
5 return ⊥
6 end

7 m← l
(r−1)(h−1)+1+g−α(h−1)

8 if log2(3) ·m > k+l
rh

then // constraint (7)

9 return ⊥
10 end
11 return (3m, Sl)

Algorithm 7: ChooseBestAlpha(r, h, t, S)

Input: r: number of lists, h: number of levels,
t: size of the target , S: number of wanted solutions
Output: α minimal possible parameter or ⊥ if algorithm fails
/* minimise alpha according to Eq. (10) */

1 g ← gain(r)
2 Left ← t− log3(S)(h− 1)
3 Right ← − log3(S)[g + 1 + (h− 1)(r − 1)] + t(r − g − 1)
4 if Left ≥ 0 then

5 α← max
(

0, Right
Left

)
6 end
7 else if Right ≥ 0 then
8 return ⊥
9 end

10 else
11 α← 0
12 end

/* check if there are granularity problems (Eq. (11)) */

13 if α > r − 2g − 1 + gain(g + 1) then
14 return ⊥
15 end
16 return α

28 Pierre Karpman and Charlotte Lefevre

Algorithm 8: find param CombinedAlgo(r, h, l, n, k, w, step)

Input: r: number of lists, h: number of levels,
l: size of the sub-problem, n: code length, k: code dimension,
w: target weight of SDP, step: a precision parameter
Output: (M , T) memory and time using the combined h, r-dissection tree or ⊥ if

algorithm fails

1 m̃← log3

(
2

k+l

rh

)
2 g ← gain(r)

3 Sl ← Nb required sol(n, l, k, w) // see Proposition 4

/* target max corresponds to find param DissecTree */

4 t← (r − 1)× l
(h−1)(r−1)+g+1

5 while t > 0 do
6 α← ChooseBestAlpha(r, h− 1, l − t, Sl)
7 if α = ⊥ then
8 continue
9 end

10 maxβ ← min(r − 2g − 1 + gain(g + 1), r − m+t
m̃)

11 minβ ← r − g − 1− m
m̃ (r − g − 1− α)

12 if maxβ < minβ or maxβ < 0 then // UNSAT constraints

13 t← t− step
14 continue

15 end

/* similar to find param DissecTree betterGranularity */

16 m← l−t
(r−1)(h−2)+g+1−α(h−2)

17 return (3m, Sl)

18 end

19 return ⊥ // no suitable target has been found

	Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes

