
Compact GF(2) systemizer and optimized
constant-time hardware sorters for Key

Generation in Classic McEliece
Yihong Zhu1, Wenping Zhu1, Chen Chen1, Min Zhu2, Zhengdong Li1,

Shaojun Wei1 and Leibo Liu1

1 Tsinghua University, China, zhuyihon18@mails.tsinghua.edu.cn
2 Wuxi Micro Innovation Integrated Circuit Design Co.Ltd

Abstract. Classic McEliece is a code-based quantum-resistant public-key scheme
characterized with relative high encapsulation/decapsulation speed and small cipher-
texts, with an in-depth analysis on its security. However, slow key generation with
large public key size make it hard for wider applications. Based on this observation,
a high-throughput key generator in hardware, is proposed to accelerate the key
generation in Classic McEliece based on algorithm-hardware co-design. Meanwhile
the storage overhead caused by large-size keys is also minimized. First, compact
large-size GF(2) Gauss elimination is presented by adopting naive processing array,
singular matrix detection-based early abort, and memory-friendly scheduling strategy.
Second, an optimized constant-time hardware sorter is proposed to support regular
memory accesses with less comparators and storage. Third, algorithm-level pipeline
is enabled for high-throughput processing, allowing for concurrent key generation
based on decoupling between data access and computation
Keywords: Post-quantum cryptography · McEliece · high-throughput · GF(2) ·
Gauss elimination · constant-time sort · FPGA

1 Introduction
McEliece is based on Goppa code, which is a well-studied construction proposed 40 years
ago with thorough security analysis up to now. In July 2022, McEliece has been selected
as a key encapsulation mechanism (KEM) finalist in fourth round [GAso22] of National
Institute of Standards and Technology (NIST) PQC standardization process. In the
3-round documentation of NIST, it was stated that "Classic McEliece has a very large
public key size and fairly slow key generation. This is likely to make Classic McEliece
undesirable in many common settings". As a result of its low key generation and large
public key, this algorithm is not directly considered to be standardized by NIST, but will
continue to be investigated in the fourth round. The focus of our work is to alleviate these
problems by hardware acceleration. We hope that our work can provide higher confidence
on the performance of Classic McEliece for further evaluation and inspire more insightful
work on hardware implementation. For certification authority or public-key infrastructure,
high-throughput and massively concurrent key generations are required. These are the
target scenarios of this work, where the throughput has the highest priority and memory
efficiency (throughput/area) is the second optimization objective.

Based on current performance analysis, more than two magnitudes higher cycles are
consumed by key generation than encapsulation or decapsulation [MRAso20]. Therefore,
key generation process is becoming the key bottleneck of McEliece, which limits its wider

mailto:zhuyihon18@mails.tsinghua.edu.cn

2

applications.Large-size GF(2) Gauss elimination process during key generation accounts
for the largest part, whose performance directly influence the whole latency. There
are multiple McEliece implementations already on various software platforms [BCS13,
Cho17, RKK21, CC21] or hardware platforms [SWM+10, WSN17, WSN18, KRGF+21].
[RKK21] presented LUP decomposition method to reduce the memory requirements of
large GF(2) Gauss elimination for embedding processors, which was improved further
in [CC21]. However, much additional resource usage need to be included if the software
method is straightforwardly implemented in hardware, because matrix multiplication and
matrix inversion are both involved in the LUP decomposition. Therefore, the memory
reduction method in hardware implementation needs to be reconsidered.

Meanwhile, [SWM+10] firstly implemented McEliece in hardware. But multiple
modules design was inconsistent with the McEliece specifications proposed later in NIST
3rd-round, including the irreducible polynomial generation, usage of pseudo-random number
generator (PRNG) and organization of secret key. A key generator in hardware was designed
in [WSN17], including serial hardware sorter, additive FFT hardware, Karatsuba-based
polynomial multiplication hardware and so on. Besides, large-size GF(2) Gauss elimination
hardware and GF(2m) matrix inverter were both based on the design [WSN16]. The
work [WSN18] extended the design [WSN17] to support the complete schemes including
encryption and decryption stages. The performance of encryption and decryption stages
achieved only 6k cycles per encryption and 14k cycles per decryption. By contrast, up
to 966k cycles are needed to generate the key pairs per attempt, not to mention that
at average 3.5 attempts are needed for each successful key-pair generation on average.
The work [CCD+22] introduced the early-abort design to optimize the overheads of failed
attempts. [KRGF+21] utilized high-level synthesis method to accelerate McEliece in
hardware-software co-design way. And the results revealed that the throughput is inferior
to full-hardware implementation [WSN17] due to the methodology limitations. In key
generation hardware [WSN18], GF(2) Gauss elimination occupies 76.4% cycles of key
generation. Besides, constant-time sorter occupies 15.2% cycles, assuming successful
operation for each attempt. Therefore, the GF(2) Gauss elimination and constant-time
sorter are two dominating functions to accelerate the key generation. This is also the
primary motivation of this work.

In this work, a high-throughput key generator for McEliece, is proposed based on
the multiple optimized modules and algorithm-level pipeline. The optimized large-size
GF(2) matrix systemizer reuses two small data memory during calculations and tailors the
instruction memory to half size through improving finite machine in each cell. On the basis
of reducing storage, various other strategies are adopted to save the cycle overheads. Many
optimization strategies are adopted, including a novel constant-time hardware sorter with
less comparators compared to existing work. The pipeline design enables our processor to
process multiple key generation through dividing and scheduling flow stages. The design
has been verified on the FPGA platforms.

Our Contributions. The key contributions of this work are summarized as follows:

1. Optimized GF(2) matrix systemizer. Novel architecture design and efficient
memory-reusage scheduling strategy, coupled with other full-pipeline method and
early-abort detection hardware, enable the hardware systemizer with only 31.8%
memory usage and less cycle overheads.

2. Efficient constant-time hardware sorter. Native sorting network design as
well as regular memory accesses is adopted to reduce half of comparators and most
storage with fewer cycle overhead costs compared to state-of-the-art work.

3. Algorithm-level pipeline design. Multiple key generation tasks are enabled to
execute in parallel in this work to achieve additional improvement.

Yihong Zhu, Wenping Zhu, Chen Chen, Min Zhu, Zhengdong Li, Shaojun Wei and Leibo
Liu 3

Algorithm 1 Key generation algorithm in Classic McEliece [MRAso20]
Input: seed; m,t,n,f(x): parameters; (mt = m × t)
Output: (g(x),(α0, α1, ..., αn−1)):secret key, T̂ :public key

1: (degree-t polynomial β, 2m 32-bit random prefixes, newseed) <- PRNG(seed);
2: Generate irreducible polynomial g through calculating minimal polynomial of β;
3: Generate a random full permutation (α0, α1, ..., αn−1) through sorting random pre-
fixes;
4: Generate the t × n matrix H calculated by g and (α0, α1, ..., αn−1);
5: Replace each entry in H with a column of bits to generate mt × n matrix T ;
6: Transform matrix T into its systematic form [Imt, T̂]. If matrix T is singular, restart;

2 Background
In this section, we briefly overview the key generation stage in McEliece algorithm. Then,
existing works on the large-size GF(2) matrix hardware systemization solutions are analyzed.
Finally, current constant-time hardware sorter are discussed.

2.1 Key generation of McEliece
The functions in key generation keep evolving along with the emergence of McEliece’s
variants [R.M79, BCS13, Cho17, MRAso20]. The latest procedure of key generation in
Classic McEliece’s specification is demonstrated in Algo. 1.

As Algo. 1 shows, the PRNG in McEliece utilizes SHAKE-256 to generate the random
bits for degree-t random polynomial β, random prefixes and 256-bit new seed for possible
restart once it fails this time. The irreducible polynomial g is generated by calculating
the minimal polynomial of β, which requires t-1 degree-t polynomial multiplications over
f(x) and Gauss elimination are involved in the calculation of minimal polynomial, where
coefficients belongs to GF(2m). The random full-permutation α0, α1, ..., αn−1 is achieved
by adding random prefixes and sorting later, because sort process can be implemented in
constant-time way. If there are two same values during the process of sorting, or it fails to
generate the polynomial g, it will also restart. After generating secret key, t × n matrix
H is constituted through hij = aj

i/g(aj), where all the values of g(aj) are calculated
fast through additive FFT methodology. Then the matrix H is transformed into binary
parity check matrix T by replacing each entry with a column of m bits. Finally, Gauss
elimination process is executed on T to obtain the final T̂ .

2.2 Existing GF(2) Gauss elimination hardware solutions
As the most time-consuming function in key generation, GF(2) Gauss elimination has been
implemented in prior works [SWM+10,WSN16]. Two types of Gauss systolic arrays were
utilized in [SWM+10] for triangularization and systemization, respectively. That design
was optimized in [WSN16] by combining those two arrays into a single hybrid array. And
the implementation [WSN17,WSN18] directly adopted the design in [WSN16].

In that array, two types of processing elements are adopted: processor AB and processor
B. There is an 1-bit register in each processor cell. The processors AB are located at the
diagonal positions of array, which is responsible for finding the pivot row and sending
the instructions to the processors B at the same row. Pivot row means the first input
vector with a non-zero diagonal bit (pivot bit) for a processing line. There are three types
of instructions: ’pass’, ’swap’ and ’add’, which corresponds to operations with assigning
output with input, swapping values of the wires and register in cell, and adding the values
of the input and output. The processors B receive the instructions from processors AB
and execute the corresponding operations. Part of the finite state machine in processor

4

Table 1: State switching table in processor AB [WSN16]
Start In rAB state/Ins next rAB

1 d - x d
0 0 0 pass 0
0 0 1 pass 1
0 1 0 swap 1
0 1 1 add 1

mt

n

① ceil(mt/s) phases.

s

s

mt x n Target
matrix

②For i-th phase, ceil(n/s-i)steps.

mt+2s

s*2(2bits/ins)
s

Systolic array

③ For each step, cycles: mt(matrix
height) + 2s(pipeline stage).

Instruction
mem

First
step

Non-
First
step

For each step

AB

AB

AB

AB

AB

B

B

B B

B

B

B

B B

B

B

B

AB

B B

B

B

B B

B

B

B

B

B

B

B

B B

B B

B

B

B

AB

AB

AB

AB

AB

B

B

B B

B

B

B

B B

B

B

B

AB

B B

B

B

B B

B

B

B

B

B

B

B

B B

B B

B

B

B

s s s
Data mem

...

Figure 1: Calculating framework of GF(2) systemizer in [WSN16]

AB is depicted in Table 1. When the ’Start’ signal of each step is ’1’, then the input
bit is imported into register cell. When the input bit of processor AB is ’0’, then ’pass’
instruction is distributed. When the register cell in processor AB is ’0’ and the input bit
is ’1’, then the pivot row is found and ’swap’ instruction is distributed. When the register
cell and input bit in processor AB are both ’1’s, then ’add’ instruction is distributed.
Besides, there are ’start’ and ’finish’ instructions to initialize the square array and output
the register values at the end of each step. During the ’finish’ stage, the output of each row
still passes through lower rows and elimination effects in these rows are still active.

The calculating framework in [WSN16] is illustrated in Fig. 1. For a mt × n matrix,
coefficients data are buffered in a big data memory, which are divided into n-bit-wide
columns. The executions consists of ⌈mt/s⌉ phases, and calculations in each phase are
decomposed into multiple steps. And s denotes the size of systolic array. For i-th phase,
the i-th column block is reduced to identity matrix form during the first step, while
the activities of each processor cell are stored in instruction forms and those are loaded
into instruction memory. Then for the following steps in i-th phase, data in i + 1-th to
⌈n/s⌉-1-th column block are imported into the square array in succession to replay the
instructions stored in the first step. Therefore, the Gauss elimination effects are spreaded
to the whole row, which guarantees the correctness of results. The calculation flows are
summarized into Algo. 2.

For j-th step, each sub-row in j-th column block is imported into the square array per
cycle. Finally, the upper triangular matrix is eliminated into the form of identity matrix.
In addition to register in each cell, there are register lines between two adjacent processing
rows. Thus, 2s additional pipeline cycles are needed and there are mt + 2s cycles per step.
In sum, for mt × n input matrix, the total cycles consumed were calculated in [WSN16]
as

∑⌈mt/s−1⌉
i=0 (mt + 2s)(⌈n/s − i⌉). The memory consumed was not pointed out directly

in [WSN16], but it can be evaluated as the sum of data memory and instruction memory
in bits: mt × n + 2s × (mt + 2s).

Recently the work [CCD+22] was presented to improve the design [WSN16,WSN17,

Yihong Zhu, Wenping Zhu, Chen Chen, Min Zhu, Zhengdong Li, Shaojun Wei and Leibo
Liu 5

Algorithm 2 Calculation flows of GF(2) hardware systemizer in [WSN16]
Input: A: mt × n input matrix; systolic-array: s × s square array; ins-mem: (mt+2s) ×

2s storage space;
Output: Â: systemize(A);

Â = A;
for (phase=0; phase<=⌈mt/s⌉-1; phase++) do

for (step=phase; step<=⌈n/s⌉-1; step++) do
j = step;
if (step == phase) then

[Â(:, js : js + s − 1),ins-mem] <= systolic-array(Â(:, js : js + s − 1));
else

Â(:, js : js + s − 1) <= systolic-array(Â(:, js : js + s − 1),ins-mem);
end if

end for
end for
//Â(:, a : b) denotes the column bank of Â from a-th column to b-th column.

WSN18]. Although certain points, such as early abort and overlapped execution, were
proposed to achieve the similar goal, the methods and implementations are substantially
different. Furthermore, memory-efficient scheduling strategy is first proposed in this work
to enable higher utilization with further reduction on memory consumption. And the
work [CCD+22] did not cover the novel memory-efficient scheduling strategy proposed
in this paper, which is the most important technique proposed to reduce the memory
consumption significantly.

2.3 Existing constant-time hardware sorters

Sorting functions are required in multiple PQC schemes, including NTRU [CCso20] and
McEliece [MRAso20], because they help to achieve a random full permutation of a given
array in a constant-time way. Therefore, the sorter design is an indispensable part in PQC
schemes to introduce the location randomness. Besides high-speed, constant-time property
needs to be considered in cryptography hardware to avoid the potential timing attacks.

[WSN18] presented a scalar merge-sorter using only one comparator. However, it was
limited by its execution speed. [DVBK21] proposed the FIFO-based parallel merge sorter.
In that design, log2(l) stages are cascaded to sort l-length arrays, where there are two
comparators in each stage except the last stage. The inputs of each comparator are two
sorted lists and the output is a sorted result list with double input length. And each input
list is stored in a separate memory. Because not all storage spaces contain valid data, there
is waste of memory. About 3l cycles are needed in [DVBK21] to sort a l-element list. The
comparators number can be evaluated as 2 × log2(l) − 1. And the memory requirement
in elements are evaluated as 4(1 + 2 + 4 + ... + 2log2l−2) + 2(2log2l−1) ≈ 3l. [ZZZ+22]
implemented a constant-time design based on two revised Bitonic sorting networks, which
was based on feedback mechanism. That design was applicable to ASIC implementation,
however it was not applicable on FPGA because of its long critical path.

In traditional sorters design [CO14, SKLG16, MVCK17, SEC+18, PBL18, SQA+20],
merge-tree type [SQA+20] design was not constant-time. Among sorting networks de-
sign, irregular FIFO and memory accesses design also result in non-constant time execu-
tions [SKLG16]. Inspired by the idea in [PBL18], a constant-time sorter is proposed with
regular memory accesses and less sorters requirements.

6

3 Optimized large-size GF(2) systemizer
As mentioned in Section 2.2, the works in [WSN16,WSN17,WSN18] divided the calculations
in phases and steps iterations, respectively. Its design has some limitations, including
high memory consumption, low processing-cell utilization rate and higher cycles, which
are the key issues to address in this work. The advantages of optimized large-scale GF(2)
systemizer are listed as followed:

1. Novel architecture design is based on processing lines with auxiliary padding bits,
which saves 50% instruction memory for each processing line compared to the previous
work.

2. Full-pipeline design is achieved. All processing lines are fully-pipelined once started,
which avoids consumed-cycles for pipeline initialization for each step.

3. Dynamic memory-reusage calculating-scheduling framework is proposed, which needs
only a quarter to a third memory compared to previous works. The advantage might
be more apparent for ASIC implementation due to single-port SRAM utilized.

4. Input and output hiding designs are introduced, which scheduling the data importing,
result exporting and elimination processing in parallel to save the cycle count.

5. Singular detection module is proposed to achieve early abortion, reducing unnecessary
clock overheads when the targeted matrix is singular.

3.1 Novel processing-line based architecture
Rather than processing cell-targeted finite state machine (FSM) design in [WSN16,WSN17,
WSN18], finite machine processing line (Pline)-oriented FSM design is proposed in this work.
Besides, auxiliary padding bits are appended to the input vectors for state identification
in Plines. The pad-bit padding bits are appended before the input vector enters the
processing array, and then follow the data flow in the array. The architecture of processing
array is shown in Fig. 2. Assuming the input vector is s-bit vector and the processing
array consists of s-level Plines. Moreover, the processing array is divided into Q systolic
stages and P -level Plines are included in each systolic stage. Between two adjacent systolic
stages, a level of pipeline register (Rpipe) is inserted to reduce the critical path in the
whole architecture, which is different from previous work [WSN16]. The register vectors
like Rline were inserted between any two adjacent systolic lines in [WSN16], rather than
systolic stages composed of P Plines. The idea of systolic stage is more general, because
the value of P or Q is configurable according to required working frequency.

For each level of Pline, three types of registers are involved: s-bit Rline, pad-bit rPads
and 1-bit rPivot. Among them, resulted data and auxiliary padding bits are stored in
Rline and rPads, respectively. And 1-bit flag bit, which indicates whether the pivot row is
stored in this Pline, is stored in rPivot.

As mentioned in Table 1, three types of states and instructions are utilized: ’pass’,
’add’ and ’swap’. Therefore, 2-bit instruction for each line is needed to encode these three
states. The state designs are followed in this work. However, only 1-bit instruction is
needed in this work with the help of rPivot. The original switching table in Plines is
depicted in Table 2. The start case in each step is encoded through padding bits, which is
illustrated further in Section 3.2. The bit in rPivot simulates the rAB in [WSN16] during
first step and non-first step in each phase. The switching pattern during first step is the
same as [WSN16] except the instructions generated. The instruction only indicates the
pivot bit of input vector, which provides the input information during fist step for non-first
step calculations. For non-first step, the corresponding states in first step can be replayed
through instructions read and rPivot, where rPivot acts as the same as in first step. At

Yihong Zhu, Wenping Zhu, Chen Chen, Min Zhu, Zhengdong Li, Shaojun Wei and Leibo
Liu 7

rPivotRline0 rPads
Plinep=0,q=0

rPivotRline0 rPads
Plinep=0,q=0

Rpipe

...

s-level
Rlines
(s=PQ)

rPivotRline1 rPads
Plinep=1,q=0

rPivotRline1 rPads
Plinep=1,q=0

rPivotRlineP-1 rPads
Plinep=P-1,q=0

rPivotRlineP-1 rPads
Plinep=P-1,q=0

rPivotRlineP rPads
Plinep=0,q=1

rPivotRlineP rPads
Plinep=0,q=1

Rpipe

...

rPivotRlineP+1 rPads
Plinep=1,q=1

rPivotRlineP+1 rPads
Plinep=1,q=1

rPivotRline2P-1 rPads
Plinep=P-1,q=1

rPivotRline2P-1 rPads
Plinep=P-1,q=1

rPivotRlines-1 rPads Plinep=P-1,q=Q-1
rPivotRlines-1 rPads Plinep=P-1,q=Q-1

……

input vector (s-bit) + padding bits (pad-bits)

s-bit output vector

Figure 2: Proposed processing array architecture for GF(2) matrix systemization

Table 2: Proposed switching table in Pline

FirstStep Non-
Firststep

Start
Case In rPivot InsWr State next

rPivot
Start
Case InsRd rPivot State next

rPivot
Yes d - d swap d Yes d - swap d
No 0 0 0 pass 0 No 0 0 pass 0
No 0 1 0 pass 1 No 0 1 pass 1
No 1 0 1 swap 1 No 1 0 swap 1
No 1 1 1 add 1 No 1 1 add 1

the cost of s 1-bit flag registers, the instruction size is reduced to half. And because more
instruction memory are needed in novel calculation scheduling framework proposed in
Section 3.3, the reduction effects are augmented further.

3.2 Complete FSM table and full-pipeline design
Table 2 is the core of the finite-machine adopted in this work, the complete finite-machine
design needs to cover other corner cases: including start and finish cases, phase or step
switching cases, low triangular data rows cases. The padding bits, assisting Plines in
covering all states switching involved, are generated after the data vector is read from
memory and flow in the processing array with the data vectors. And the critical path of
control signals are mitigated by this approach, because the length of control path is the
same as the data path.

’firststep’ padding bit is needed in Plines to tell whether the first step of one phase or not
as stated in Table 2. ’datavalid’ padding bit, indicating the data vector is valid, is utilized
to start up all the calculations through switching to ’swap’ state when ’d_datavalid’=’1’
and ’r_datavalid’=’0’, where ’d_’ denotes the padding bits from input and ’r_’ denotes the
corresponding bit in register rPads of Plines. ’finish’ padding bit helps to swap the valid
data out of the Plines and it is generated after all the data vectors are read. Additional

8

zeros-vector in s + Q cycles are needed after all the data vectors are read because ’finish’
bit is needed to spread all the Plines.

In [WSN16], individual 2s cycles are needed to restart the pipeline in each step, which
results in a relatively large cycle overheads, especially when s/mt is not negligible. For
achieving full-pipeline design, seamless switching is implemented between different steps or
phases. In other words, the final output of the previous step/phase and the input of the next
step/phase are performed simultaneously. Two padding bits, ’phasecheck’ and ’stepcheck’,
are utilized, where ’phasecheck’=phaseid%2, and ’stepcheck’=stepid%2. And Plines cal-
culate ’psaccord’=(’d_phasecheck’==’r_phasecheck’)&(’d_stepcheck’==’r_stepcheck’).
When ’psaccord’=’0’, it denotes that input data vector is from the next step/phase and
state is jumped to ’swap’. Therefore, the old data vector from the last step/phase outputs
from Plines and the new vector from the next step/phase is stored into Plines. Therefore,
the parallel pipeline is obtained. The whole GF(2) matrix elimination cycles are reduced
to s + Q +

∑⌈mt/s−1⌉
i=0 mt(⌈n/s − i⌉) benefited from full-pipeline design.

When mt is not divided by s, the data row number from lower triangular matrix is less
than the number of Plines. Therefore, data vectors from upper triangular part may be
stored in Plines during elimination in the last phase. And one flag bit is needed to denote
this case to allow the input vectors to directly ’pass’ the Plines. ’lowtriangular’ padding
bit is set to ’1’ when the input data vector is from the low triangular matrix.

In sum, the complete state transition formulas are:

swap_state =!psaccord || (d_firststep & d_pivot & !r_pivot & r_lowtriangle) ||...
(!d_firststep & InsRd & !r_pivot & !d_finish) ||...
(d_finish & r_valid) || (d_datavalid & !r_valid);

(1)

pass_state =(((r_valid & !r_lowtriangle) || (!d_pivot & d_firststep) ||...
(!d_firststep & !InsRd)) & psaccord & d_datavalid & r_valid) ||....
(d_finish & !r_valid);

(2)

add_state =((r_pivot & d_pivot & d_firststep) || (r_pivot & InsRd & !d_firststep))...
& r_lowtriangle & psaccord & d_datavalid;

(3)

idle_state =!d_datavalid & !d_finish; (4)

3.3 Dynamic memory-reusage calculating-scheduling framework
Besides processing array, an original dynamic memory-reusage calculating-scheduling
framework is also proposed. The improvement is based on the observation that: the data
memory can be re-utilized and the size requirement of mt × n can be reduced. A novel
calculating framework is proposed based on reusage of data memory.

In the nested loops adopted in [WSN16], the outer loop is phase-loop and the inner
loop is step-loop. The definitions of phase and step are illustrated earlier. Among different
steps in the same phase, the instruction memory is reused but the column blocks of data
memory are traversed to the last block. Therefore, it is hard to reuse the data memory in
this way because data memories are traversed to the last block in each phase.

The order in nested loop is reversed in this work: the outer loop is step-loop and the
inner loop is phase-loop. To avoid the confusion of narration, the "step" in this work is
called as "bigstep". The proposed calculating-scheduling framework is shown in Fig. 3.
For a certain column block of matrix, elimination processes are first repeated in "non first
step" way through the instruction memories recorded earlier, then elimination processes on
this column block continue in "first step" way and another instruction memory is recorded.
The calculation flow is illustrated in Algo. 3. In this method, only two mt-depth s-width

Yihong Zhu, Wenping Zhu, Chen Chen, Min Zhu, Zhengdong Li, Shaojun Wei and Leibo
Liu 9

n

① ceil(n/s) big steps

②For i-th big step,
 Min(i+1,ceil(mt/s)) phases

mt x
ceil(mt/s)
-(s+Q-2)

s(1bit/ins)

s

③ For each phase,
cycles: mt(matrix height).

InsMem_main

First
step

Non-
First
step

For
each phase

...

mt x n
Target matrix

mt ...mt ...

mt

...

Data
 mem

Processing
Array

Processing
Array

InsMem_help
s+Q-2

mt

s

Lower triangular
part for one phase

Rd_begin_addr

Wr_begin_addr
Rd_begin_addr=phase*s;
Wr_begin_addr=Rd_begin_addr + s;

Figure 3: Proposed Calculating-scheduling framework

Algorithm 3 Novel calculation flows of GF(2) hardware systemizer proposed
Input: A: mt × n input matrix; systolic-array: s × s square array; insmemj : mt × s

storage space, j=0,1,...⌈mt/s⌉-1.
Output: Â: systemize(A);

Â = A;
for (bigstep=0; bigstep<=⌈n/s⌉-1; bigstep++) do

j = bigstep;
Acolblock = Â(:, js : js + s − 1);
for (phase=0; phase<=min(⌈mt/s⌉-1,bigstep); phase++) do

step = bigstep - phase;
if (step == 0) then

[Acolblock,insmemj] <= systolic-array(Acolblock);
else

Acolblock <= systolic-array(Acolblock,insmemphase);
end if

end for
Â(:, js : js + s − 1) = Acolblock;

end for

data memories storing the column block of matrix in ping-pong way are needed. Two
relatively big instruction memories, InsMem_help and InsMem_main, stores instructions
from phase0 to phase⌈mt/s⌉−1.

For accesses of data memory in j-th phase, the begin address of reading is j × s. First
s data rows are stored in Plines, therefore the begin address of writing is j × s + s. The
write address is maintained by a dedicated counter, which is activated by the valid signal
of output. The counter returns to the first row when the address exceeds mt in each phase.
Data are not polluted within and between the phases, because the data at the address
written are all read out earlier, and the data required to read have been in the memory.
This satisfies the full-pipeline design.

Fig. 4 depicts the scheduling flow in the proposed framework and Read/Write cases
for instruction memories. A column block of target matrix corresponds to an individual
bigstep, as mentioned in Algo. 3. The arrow in the left half part of Fig. 4 illustrates the
execution order of phases and bigsteps. When all phases involved with a data column block
are executed done, the next bigstep just begins. Because an individual block of instruction
memory is utilized in each phase, the execution in one bigstep involve multiple blocks
of instruction memories. The phase/bigstep switching problem of instruction memory
needs to considered, especially when full-pipeline technique is adopted. InsMEm_main

10

InsMem_main

mt x n Target matrix

InsMem_help

......

... ...

...

...

...

...

bigstep

phase
Calculating scheduling flow

0 1 2

1

0

Ceil
(mt/s)-1

2

3

3 Ceil(mt/s)-1 Ceil(n/s)-1Ceil(mt/s) ...

...

...

final Flow

Insmem0

Insmem1

Insmem2

Insmem3

Insmemceil(mt/s)-1

first steps

f
aa b

e1d c

de1

e1

g

a

a

a

a

b

b b

b

b

c

c

d

Phase0

Phase1

Phase2

...

Rd:Casec

Rd:Caseb

Wr:Casea

Wr:Cased

Phase0

Wr:Casef
Phasei

Rd:Casee2

Wr:Casee1

Rd:Casee1

Rd:Caseg

Rd/Wr cases for instruction mem

Processing
 array

e2
e1 e2

Figure 4: Calculating-scheduling flow and Rd/Wr cases for instruction memories

stores main part of instructions and InsMem_help stores instructions at the switching
stage between two adjacent phases/bigsteps. Different cases of phases or phase/bigstep
switching are tagged in Fig. 4. Based on Section 3.2, switching stage consists of the first
s + Q − 2 cycles of each phase. Case a and case b denote the first step process and non-first
step process without switching, while the instruction vector is written into or read from
the InsMem_main. An instruction vector is formed from the instructions from all the
Plines in the same cycle, which is stored into one row of InsMem. Case f denotes the
start process of the phase0 and Plines pipeline are started, while the instruction are stored
in InsMem_help. Due to that only the first few Plines are activated during this start
process and the number of activated rows increases gradually, only the lower left corner
of InsMem_help is filled. Case e1 denotes the switching stage from first step to non-first
step, during which instructions from the last few Plines belonging to the first step are
written into the upper right corner. Meanwhile, instructions at the same row from phase0
are read for the upper Plines belonging to the non-first step. The upper right corner of
InsMem_help is read out in case d to lower Plines, which denotes the switching stage from
non-first step to first step, and written to InsMem_main merged with the newly-generated
instructions from the upper Plines. Case c or case e2 indicate the switching stage between
two non-first steps across bigsteps or not, while the instructions are from InsMem_main
or InsMem_help, respectively. Case g indicate the final process, when instructions are
from the upper right corner of Insmem_help.

Therefore, InsMem_main has a depth of mt×⌈n/s⌉−(s+Q−2). Benefited from the size
reduction of instruction described in Section 3.1, only 1 bit is needed for each instruction.
The total memory consumption in bits is assessed as 2 × mt × s + s × mt × ⌈mt/s⌉, which
is independent of the width of matrix, s. In Classical McEliece, the width of matrix, n, is
multiple times of the the height, mt. Thus, compared to the previous work [WSN16], most
memory is reduced. The theoretical comparison results among different parameters are
shown in Table 3, where s = 160. At least 68% of the memory in bits are saved adopting
the proposed scheduling framework. To make the things better, InsMem_main, occupying
the biggest portion of storage system, requires only single port for read or write each
cycle. This single-port design will amplify the benefits for implementation on ASIC. By
comparison, the data RAM in [WSN16], occupying the biggest portion of storage system,
needs one-read one-write ports, which consumes more area for the same amount of memory.

3.4 Input and output hiding design
Considering the large size of targeted matrix, the importing time of matrix and exporting
time of results can not be ignored. the exporting time is limited by the number of output
ports. If 8-Gbps output bandwidth is assumed, nearly 50% cycle are consumed to execute
importing and exporting compared to one successful elimination execution. Benefited from

Yihong Zhu, Wenping Zhu, Chen Chen, Min Zhu, Zhengdong Li, Shaojun Wei and Leibo
Liu 11

Table 3: Required memory size (bit) for different parameter sets. mt/n: the height/width of
matrix.

mt=768;
n=3488

mt=1248;
n=4608

mt=1664;
n=6688

mt=1547;
n=6960

mt=1664;
n=8192

[WSN16] 3.03× 106 6.25× 106 11.66× 106 11.76× 106 14.26× 106

Proposed 0.86× 106 2.00× 106 3.46× 106 2.97× 106 3.46× 106

Reduced
Ratio 71.6% 68.1% 70.6% 73.9% 75.7%

Bank 1Data
mem

Import

Export

Processing
ArrayBank 0

①

②
③

Calculation

③

① ①

③

① ①

③ ...

Calculation flow when bigstep < ceil(L/n)

③

①

...

Calculation flow when bigstep >= ceil(L/n)

L 2L 3L

②

③

① ②

Figure 5: Ping-pong data memory design and hiding calculation flow

the better blocking properties of scheduling framework proposed, it is better and easier to
hide the importing and exporting than [WSN16]. As the calculations on one column block
of matrix are continuous, the data exporting task can start after these calculations. While
one column block of matrix is calculated in iterations, the data exporting task of the last
column block if necessary and data importing task of the next column block are executed
in the another bank of data memory. It can directly stream out the partial public key
as [RKK21] or re-organized in the external memory as [CC21].

The hiding diagram is illustrated in Fig. 5. There are two hiding cases: bigstep < ⌈L/n⌉
and bigstep >= ⌈L/n⌉, because the identity matrix is not included in the final results.
In most bigsteps, the calculation latency is able to hide the data importing and data
exporting. This hiding design was not considered in [CCD+22], because its scheduling
framework follows the design [WSN16]. The cycle overheads of exporting data are not
explicitly provided in the final results listed [WSN16,WSN17,WSN18,CCD+22]. For a
fair comparison, all the results are involved in this article without taking into account the
data exporting if there is no special statement.

3.5 Singularity detection-based early abort

In the specification of McEliece [MRAso20], the key generation should be terminated if
the targeted GF(2) matrix is singular. Hence, unnecessary operations could be avoided,
and re-execution of key generation could also be started immediately once the matrix is
determined as singular.

When the matrix is singular, there are not enough pivot rows in some first step. In
the proposed full-pipeline framework, there are too many data rows that are calculated to
all-zeros and ’pass’ through all the Plines. Therefore, there exists Pline that is not able to
find its pivot row in this step while its register "r_pivot" still equals to zero. A padding bit,
named ’detect_sing’, flows in the Plines as the other padding bits mentioned in Section 3.2
to detect this situation: the data in Rline belongs to the first step and the pivot row has
not been found, but the input vector does not belong to the lower triangle part in this
first step or the input flag "d_detect_sing" is active. The output bit ’detect_sing’ of one

12

level of Plines is calculated as:
dout_detect_sing =!r_pivot & r_firststep & r_lowtriangle

(!d_lowtriangle || !psaccord) || d_detect_sing;
(5)

And this flag bit spreads through the Plines and output to the system controller, which
manipulates the restart of key generation.

Besides, the memory-efficient calculating-scheduling framework proposed is beneficial
to the singular detection. The latest detection of singular matrix occurs at ⌈mt/s⌉ − 1
bigstep, which is far less than the whole elimination task. In contrast, the corresponding
detection happens at the last phase in [WSN16, WSN17], which is near the end of the
whole GF(2) elimination.

The advantages relative to [CCD+22] comes from the combination of detecting singu-
larity and elimination process. The work [CCD+22] proposed three working mechanisms
to schedule the detection of singularity and the final elimination: HEA, SPEA and DPEA.
These three mechanisms all have their limitations. The singularity is first checked through
eliminating the leftmost mt × mt matrix in HEA mode individually, and then the elimina-
tions on the whole matrix are executed when this matrix is invertible. But the detection
cycles are wasted because the same tasks are repeated in subsequent elimination. The
instructions during checking are stored in SPEA and DPEA modes to replay on the
remaining part, which avoids the repeated executions. But it incurs more instruction
memories and additional control cycles. And the results show that the elimination cycles
of SPEA or DPEA are even higher than HEA when the size of systolic array is large (s ≥
128).

3.6 Performance comparison
Based on the trade-off between area and performance, the size of systolic array n is selected
as 160 or 128 for different parameters. Table 4 shows the implementation results of GF(2)
systemizers. For cycles data, data importing is included in the results of our work and not
in other works.

Compared to the latest work [CCD+22], only 31.8% memory space is needed. When
mt = 768, n = 3488, there is only one reversible matrix after an average of 3.46 attempts.
For [CCD+22], about 169.9k cycles are needed to eliminate a inversible matrix, while
161.7k cycles are consumed in this work. If data exporting is additional included and 32-bit
output width is used, at least half of cycles (86k) are extra needed. But benefited from
hiding design in Section 3.4, only additional 1.2k cycles are needed in this work(s=128)
because of the balanced design. Therefore, the benefits are amplified if data exporting is
included, which is not shown in Table 4. And compared to work [WSN18], only a quarter
memory space is needed in our design after device conversion.

4 Optimized constant-time sorter
The proposed optimized constant-time sorter is based on merge sorting algorithm, which is
the same as prior works. Different from the serial implementation in [WSN18], four-element
parallel implementation is utilized to accelerate the sorting process. Compared to the
FIFO-based parallel sorter [DVBK21], only small-size FIFOs are utilized in this proposed
design with full utilization of comparators. Considering that hundreds of or thousands of
need to be sorted in post-quantum cryptography to introduce the location randomness,
the proposed sorter is more suitable than the large-scale sorting network in [PBL18]. The
advantages of the proposed sorting hardware are listed as follows:

1. Full utilization of comparators. All comparators are active once started, including
the iteration switching stage.

Yihong Zhu, Wenping Zhu, Chen Chen, Min Zhu, Zhengdong Li, Shaojun Wei and Leibo
Liu 13

Table 4: Comparisons with the state-of-the-art GF(2) systemizers. mt=t×m, n: the width of
matrix T . (Implementations are based on Xilinx Ultrascale+ FPGA unless specified)

Cycles in
failed try

Cycles in
successful try BRAM LUT Flip-

Flops
Freq

(MHz)

mt=768
n=3488

[WSN18] a

(s=128) 157.8k 157.8k 149.5 26393 35267 175

[CCD+22] a

(s=128) 14.51k 135.1k 132 19538 35606 181

This Work a

(s=128,Q=128) 17.1k 119.8k 42 21494 35694 185

This Work
(s=128,Q=64) 17.0k 119.7k 28.5 22039 26931 284

This work
(s=160,Q=80) 12.6k 79.0k 29.5 32505 41279 278

mt=1248
n=4608

This Work
(s=160,Q=80) 46.4k 258.1k 67 32580 41448 262

mt=1664
n=6688

This Work
(s=160,Q=80) 111.9k 682.3k 103.5 32900 41445 259

mt=1547
n=6960

[WSN18] b

(s=160) 737.86k 737.86k 720(400) 40530 55675 290

This Work
(s=160,Q=80) 87.0k 615.9k 100.5 32630 41314 264

mt=1664
n=8192

This Work
(s=160,Q=80) 111.9k 865.8k 103.5 32892 41443 259

a Implementations are based on Xilinx Artix 7 FPGA.
b The implementation results are based on Altera Straix V FPGA. The memory consumed is the same as

that of 400 BRAMs.

2. Higher performance with less comparators is achieved compared with the previous
work due to a novel sorting mechanism.

3. Only small-size FIFO-based couplers are utilized to balance the memory accesses
and sorting consumption, while constant-time property is also guaranteed.

4. Feedback-less mechanism is followed to achieve higher operating frequency.

The merge sorting process of 2m elements is divided into m-iterations. In i-th iteration,
each group of 2i elements is taken as a sorted sub-array. The sorting processes between
each two sorted groups are executed in i-th iteration to obtain a longer sorted array of
2i+1 elements. Finally, 2m-length sorted array is obtained after m-iterations.

For the proposed parallel sorter, four elements, which are defined as a vector in this
work, are read from and written to the data memory in parallel. The structure of proposed
sorter is shown as Fig. 6. The sorter mainly consists of three parts: ping-pong data
memory, FIFO-based couplers and odd-even based sorting network. FIFO-A or FIFO-B,
which belongs to coupler, are splitted into four individual FIFOs and each is one-element
wide. Four FIFOs in FIFO-A or FIFO-B manage the pop operations and reading addresses
individually. However, these four FIFOs share a common writing address because the data
vector from sort memory is written into the same address of FIFOs. Besides, registers
counting the vector index, groups or iterations and judging logic hardware for enqueue or
dequeue signals of FIFOs are also included in the design.

Random elements are distributed in the input bank of data memory before sorting. The
executions begin at the first pass, while the vectors are continuously read from the input
bank, pass through the sorting network and written into the output bank. Because sorting
network is an odd-even based network to sort any four elements in parallel. Therefore,
the output results at the first pass is 4-length sorted vectors. In the following m − 2
passes, the input bank is divided into groups A and groups B as Fig. 6 shows. During one
pass, one group from groups A and another group from groups B are sorted into longer
arrays. At the beginning, vectors from groups A or groups B are firstly pre-filled into

14

FIFO-B

FIFO-A detect

Enqueue
Judge

Index
Counters

Dequeue
Judge

Hold
Regs

Write
Counter

Sorting network

ReadVec

WriteVec

FIFO-validdepth-A/B

Sorting
memory

a0

a1

a2

a3

b0

b1

b2

b3

c0

c1

c2

c3

RdGroups
A

RdGroups
B

WrGroups
A

WrGroups
B

Compare
and

swap

Compare
and

controlled
swap

Read
Counter

Figure 6: 4-parallel sorter architecture

FIFO-A and FIFO-B through enqueue judging logic. When the actual depth of FIFO-A
and FIFO-B exceeds the pre-defined threshold, the sorting network begins to run. During
the comparison between two groups, four comparators next to FIFOs compare the top eight
elements of FIFO-A and FIFO-B and the connections are as Fig. 6 shows. The comparison
results are passed to the dequeue judging logic to determine which four elements should
be popped from the FIFOs. And four smallest elements among the remaining elements of
these two groups are selected for sorting network. Finally, the sorted groups are written
into the output bank. After each iteration, the input bank and output bank are swapped.

The reading addresses are generated by the read counter. The counter manages the
addresses of groups A and groups B, which increases by 1 correspondingly while reading.
Write counters manage the write indexes of vector, group and iteration individually,
which generates the write addresses in groups A and groups B alternately of output bank.
The groups to be read in the next iteration have been written in advance, therefore the
full-utilization is able to achieve during the iteration switching stage.

The correctness of sorting two sorted groups is guaranteed by the connections of 4
comparators as similar in [PBL18]. Four smaller elements are selected to pop after the
comparison of these eight elements from the two groups. Besides, it is also guaranteed
that the maximum difference of valid depth among four FIFOs in FIFO-A or FIFO-B is
1. The proofs are shown as follows. Assuming in each cycle four top elements a0, a1, a2,
a3 of FIFO-A and b0, b1, b2, b3 of FIFO-B satisfy the relation as follows, where i,j are
integers ranging from [0,3].

ai ≤ ai+1 mod 4 ≤ ai+2 mod 4 ≤ ai+3 mod 4;
bj ≤ bj+1 mod 4 ≤ bj+2 mod 4 ≤ bj+3 mod 4;
i + j = 0 mod 4;

(6)

It is naturally established for the first cycle of each group comparisons, because i, j =
0. And it can be proved that the output vector ci consists of four smallest elements
among the remaining vectors and Eq. (6) still satisfies in the next cycle. The function
ai+k mod 4 − bj+3−k mod 4 is constructed to denote connection of comparators, where k
ranges from [0,3]. When the value of function is not bigger than zero, then ai+k mod 4 is
popped. It is easy to see that this function is increasing monotonically as k increases. If
k1 elements from FIFO-A and k2 elements from FIFO-B are popped in this cycle, then ai,
ai+1 mod 4, ... ai+k1−1 mod 4 and bj , bj+1 mod 4, ... bj+k2−1 mod 4 in continuous locations are
popped. And these top pointers are shifted to the next positions. The remaining ai+k1 mod 4,
ai+1+k1 mod 4, ... ai+3+k1 mod 4 on the top in the next cycle are also sorted. They are
all bigger than the output ai because of the input sorted list.And the smallest element

Yihong Zhu, Wenping Zhu, Chen Chen, Min Zhu, Zhengdong Li, Shaojun Wei and Leibo
Liu 15

Table 5: Comparison of the hardware sorter’s resource usage (sorting 8192 elements; random
prefixes:32-bit; satellite: 13-bit)

LUTs Flip-Flops BRAMS Cycles Frequency
[WSN18] 583 411 20 147505 250M

[DVBK21] 2533 1589 33 26646 250M
Proposed 2510 3887 20 24598 300M

remained in FIFO-A ai+k1 mod 4 of next cycle is bigger than b3−(i+k1) mod 4=bj+k2−1 mod 4
because for the comparison results. It is the same for b. Thus, the four output elements
are all smaller than ai+k1 mod 4 and aj+k2 mod 4. Then the output vector ci in this cycle
are the smallest 4 elements.

There are hold registers and dequeue logic to ensure that elements of next group will
not be popped in advance. When elements belonging to this group in some FIFO are
emptied, then holding registers are active to prevent continuing to pop. Other sets of
counters, indexes of vector, group and iteration, are maintained for holding register. When
holding signal of FIFO-B is not active and values in FIFO-A will be emptied in this cycle,
then hold register of FIFO-A is triggered. When holding register of FIFO-B is already
active and values in FIFO-A will be emptied in this cycle, or FIFO-A/FIFO-B will be
both emptied in this cycle, then holding register of FIFO-A is released to continue the
comparison in the next group. It is the same for FIFO-B. Consequently, no stall happens
during the comparison in two groups to enable full utilization.

The actual depth of FIFO-A and FIFO-B is maintained through the number of valid
elements in FIFO-A3 and FIFO-B3, which indicates that a column of data are emptied
because the elements popped are continuously. Enqueue logic hardware detects whether
the valid depth is lower than the threshold and determines read vectors from groups A or
groups B. However, the response path, from popping the elements in FIFO-A3 or FIFO-B3
to supplementing vectors by enqueuing, includes dequeuing, valid depth updating, enqueue
judging, reading and final enqueueing. 4 cycles are needed in this work, therefore FIFO’s
threshold is 5 with its depth as 10. Before the execution of sorting network, there are
already 5 elements in each FIFO-Ai/FIFO-Bi. During executions, it is guaranteed that
there is no overflow or excessive consumption in data FIFOs for constant-time sorting.

Only 9 comparators are utilized in this design. The width of element in comparison is
32-bit, besides 12/13-bit constants (satellite) are moved along with the random prefixes.
When the comparators detect that two random prefixes are equal, an output flag is
activated and passed to the system controller for restarting. The cycle overhead to sort
2m elements is (m − 2) × 2m/4. And the resource consumption is listed in Table 5. The
additional storage space is reduced to 80 coefficients (the total size in FIFOs) from several
thousand, which must be stored in BRAMs. In contrast, only flip-flops are used to afford
the storage of these elements.

It is noted that the proposed sorter is also applicable to the hardware of other PQC
algorithms, such as the hardware implementation of NTRU [DVBK21], as long as that
sorting is used to introduce location randomness.

5 System architecture and algorithm-level pipeline design
5.1 Overall architecture
The overall architecture is shown in Fig. 7. First, random prefixes and random polynomial
generated by Keccak module are imported to constant-time sorter and irreducible polyno-
mial generation module, respectively. Then the evaluation process of irreducible polynomial
on 2m points is executed in additive FFT. And the generation of H module collects the
data from sorter module and additive FFT module for further processing in GF(2) Gauss

16

Keccak

Irreducible
polynomial
generation

Sorter

Additive
FFT

System
Controller

Lookup
&

inverse
RAM-H

RAM-
Sortreduce

GF(2)
Gauss

elimination
hardware

Seed

Generation of matrix H

Vectorized Multipliers
(81-width)

Part-BPart-A
Reg group 0

Reg group 1

Reg group 2
...

Transpose

Vectorized
Multipliers
(32-width)

Figure 7: The overall architecture

elimination module. Data from sorting memory are first loaded in memory RamSortreduce,
where only satellite bits need to be stored and prefix bits do not need. Then elements are
read from RamSortreduce as addresses to look up the memory in additive FFT module.
After reading, inversion operation and writing to RamH are executed subsequently. The
depths of RamH and RamSortreduce are (n/32) and 2m/32 respectively, while the data
width of both is 32bit.

During the look-up processes, an additional optimization technique is adopted to
achieve earlier abort. If the elements indexed in first mt elements are detected as zeros,
then the final matrix can be judged as singular. Thus, the earlier abort can be achieved
by just checking the results of the first mt look-ups. The probability of this case is around
17% based on experimental analysis. At average 0.6 attempts for successful key generation
are reduced.

During the interaction with GF(2) systemizer, one s-bit width column block is written
per execution. The s/32 32-coefficients vectors in RamH are read to register groups, and
then are transposed to s-bit vectors through shifting. Meanwhile, the vectors that read
from RamH multiply with the vectors from RamSortreduce in vectorized multipliers, and
then the results are written back to RamH for next iterations. When the input bank of
GF(2) Gauss elimination module is empty again, then the filling logic is re-activated to fill
the next data column block.

5.2 Other modules design
Besides GF(2) Gauss systemizer and constant-time sorter, some other modules involved
are also optimized, including irreducible polynomial generation module and additive FFT
module.

The principle of irreducible polynomial generation is based on calculating the minimal
polynomial of the random polynomial as specified in [MRAso20]. The calculation of
minimal polynomial is divided into two steps: first, continuous polynomial multiplications
with modular polynomial f(x) are executed to generate the t × (t + 1) GF (2m) matrix.
Second, t × (t + 1) GF (2m) matrix is eliminated to solve the linear equations. The
reductions on modular polynomial f(x) are needed to realize by a series of shift and XOR
operations. Besides, the matrix transpose operation is executed to change the form in
column-first order, which is applicable to linear equations solving on GF (2m).

The diagram of irreducible polynomial generation hardware is depicted in Fig. 8. The
input polynomial is imported into ramA, ramB and ramresults in a coefficient-wise manner
from the PRNG(Keccak). Two input polynomials for polynomial multiplication are stored
in ramA and ramB . Then polynomial multiplication is executed and the results are loaded
to ramresults. The corresponding polynomial multiplication hardware is based on 6-level
Karatsuba recursive design, which followed the design [ZZY+21]. The transform mechanism,

Yihong Zhu, Wenping Zhu, Chen Chen, Min Zhu, Zhengdong Li, Shaojun Wei and Leibo
Liu 17

RAM-A

Karatsuba-processing
(deg-64 to deg-16 transform;

deg-16 pre/post-process)

Vectorized-multipliers

RAM
results

Gauss
elimination

Reduction

Transpose

In

RAM-B

Figure 8: Diagram of random irreducible polynomial generation

including circuits and finite-state machine, from degree-64 to degree-16 sub-polynomials
are similar in this work, which adopts 2-level Karatsuba algorithm. And degree-16
sub-polynomial multiplication is executed in parallel each cycle, which adopts four-level
Karatsuba algorithm. Through pre-/post-processing of four-level Karatsuba algorithm,
degree-16 polynomial multiplication is reduced to 81 coefficient multiplications, which are
executed in the vectorized multipliers. Furthermore, plenty of adders in [ZZY+21] are
replaced by XOR gates, because all coefficients in McEliece belong to GF(2m). As a result,
the critical path has been greatly shortened. The degree-t polynomial multiplications are
disassembled into ⌈t/64⌉2 degree-64 polynomial multiplications. The results and immediate
values are stored into ramresults.

After each polynomial multiplication, the modular or reduction operations are executed.
The reduction is done in a customized module, which supports continuous shift and XOR
operations required by the modular polynomial in the specification. Then, polynomial
multiplication and reductions in the next iteration are started. Matrix transpose module
inverts the row/column order of matrix after t polynomial multiplications.

Gauss elimination hardware is based on vectorized operations, which is different
from [WSN17]. The principle is to simplify the elimination task to vector operations by
reusing the vectorized multipliers. The matrix is divided into multiple 32-element width
column blocks. For each column block, all the rows are traversed 32 times to eliminate
32 element-column sequentially. For a certain traversal, the pivot row is selected through
finding the first row with the corresponding element non-zero. And it is stored in the
additional registers. Then the scaling and XOR operations are executed between the pivot
row in registers and other rows from memory to eliminate. The scaling factors are from
the inversion of pivot element, element in pivot location of input row or scaling factors
stored during elimination on previous column blocks. When a column block is eliminated,
then the following column blocks repeat the processes through reading the scaling factors
stored and the row index of pivot row marked. Therefore, the elimination effects spread to
the whole rows. The elimination task is done when all column blocks belonging to the left
square matrix are eliminated and the effects spreads to the whole rows of target matrix.

Additive FFT module follows the design in [WSN18], which is depicted in Fig. 9.
Differently, the twisting operations in Taylor expansion and additive-FFT butterflies share
the vectorized multipliers in Fig. 8.

5.3 Algorithm-level pipeline design
The utilization of RamH and RamSortreduce divides the whole key generation into two
parts: Part-A and Part-B, which are scheduled independently by the system controller.
When GF(2) elimination task in Part-B is calculated, tasks in Part-A are able to restart to

18

RAM-
Coeffs

Taylor expansion

RAM-
Points

Additive FFT

Vectorized-multipliers

Irreducible
polynomial

Lookup
output

Sorter
output

Figure 9: Hardware of additive FFT

Part-A

Part-B
(succeed)

Part-A

Part-B
(fail)

Part-A Part-A
(fail) Part-A

Part-B
(fail)

Part-B
(succeed)

...

...

Wait for Part-B to load

First key generation Second key generation Third...

Figure 10: Algorithm-level pipeline design (Batching mode)

execute in parallel with Part-B to save the cycle overheads. There are two cases in general:
first if the matrix is detected singular later, starts of Part-A in advance can reduce the
cycles for retrying. Second, if the matrix is detected invertible later, starts in advance can
reduce Part-A cycles for next key generation.

And there are two ways. The first way (Batching mode) is to set the total number
(N) of key generation and supply every seed from outside. This is also benefited from
parallel execution between two adjacent key generation, which maximizes the effect of
hiding. The disadvantage is that more seeds are needed. This method is applicable to
batching application, such as on the server. The second way (Single mode) is to execute
only one key generation, and subsequent seeds after failed attempts in this key generation
come from Keccak. Within each key generation, parallel execution can still reduce the
delay because Part-A after failed attempts is hidden. This method is applicable to single
application, such as in edge side. The diagram of parallel execution in batching way is
illustrated in Fig. 10. For each successful key generation, the latency of Part-B is much
longer than that of Part-A. Therefore, the latency of Part-A is able to be effectively hidden
to improve the overall throughput.

The system controller manages the start signals of Part-A and Part-B. There are two
sets of flag registers, including ready flag and request flag. A_ready flag denotes that the
Part-A module is already idle, which might have finished or failed the previous calculation.
A_request flag denotes that the results of Part-A are not valid for Part-B, due to failure
in Part-A or previous results have been loaded into Part-B. Similarly, A_out_ready flag
denotes that the results of Part-A is valid for Part-B to load. A_out_request flag indicates
that the calculations of Part-B have done, including a successful attempt or a failed
attempt. When ready flags and out flags are both valid, start signals are then activated.

A_start = A_ready&A_request

B_start = A_out_ready&A_out_request
(7)

Whether the calculation in Part-A fails or not is decided by elim_singu bit from
irreducible polynomial generation module and sort_equal bit from constant-time sorter.
The success of calculation in Part-B is decided by the singularity of matrix. Singular bit
comes from the check_zero bit in H generation module and detect_sing bit in GF(2)
Gauss module. If GF(2) Gauss module ends successfully, then the number of successful
key generation is increased once. When the number reaches N, then state returns to the

Yihong Zhu, Wenping Zhu, Chen Chen, Min Zhu, Zhengdong Li, Shaojun Wei and Leibo
Liu 19

initial idle state.

6 Conclusion
This paper proposes a high-performance key generation accelerator for Classic McEliece,
which is specifically designed for high-throughput concurrent key generation on high-end
platforms, such as data centers or servers. Based on the performance profile, GF(2) Gauss
systematization and constant-time sorter, which are the most expensive functions are
optimized primarily based on algorithm-hardware co-design. Meanwhile, algorithm-specific
pipeline coupled with dedicated implementations of other auxiliary function blocks is
also presented to achieve further improvement on the throughput with higher resource
utilization. We hope that this work could improve Classic McEliece’s competitiveness
in high-end application scenarios, and provide solid reference for further performance
evaluation in 4-th round of PQC standardization.

References
[BCS13] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. Mcbits: Fast constant-

time code-based cryptography. In Guido Bertoni and Jean-Sébastien Coron,
editors, Cryptographic Hardware and Embedded Systems - CHES 2013, pages
250–272, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[CC21] Ming-Shing Chen and Tung Chou. Classic mceliece on the arm cortex-
m4. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(3):125–148, Jul. 2021.

[CCD+22] Po-Jen Chen, Tung Chou, Sanjay Deshpande, Norman Lahr, Ruben Nieder-
hagen, Jakub Szefer, and Wen Wang. Complete and improved fpga imple-
mentation of classic mceliece. In International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2022.

[CCso20] Jeffrey Hoffstein Cong Chen, Oussama Danba and so on. Ntru: Algorithm
specifications and supporting documentation. Technical report, NIST, 2020.
’https://ntru.org/’.

[Cho17] Tung Chou. Mcbits revisited. In Wieland Fischer and Naofumi Homma,
editors, Cryptographic Hardware and Embedded Systems – CHES 2017, pages
213–231, Cham, 2017. Springer International Publishing.

[CO14] Jared Casper and Kunle Olukotun. Hardware acceleration of database opera-
tions. In Proceedings of the 2014 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’14, page 151–160, New York, NY,
USA, 2014. Association for Computing Machinery.

[DVBK21] Mohajerani Kamyar Dang Viet Ba and Gaj Kris. High-speed hardware
architectures and fair fpga benchmarking of crystals-kyber ntru and saber.
In Third PQC Standardization Conference, 2021.

[GAso22] David Cooper Gorjan Alagic, Daniel Apon and so on. Status report on the
second round of the nist post-quantum cryptography standardization process.
Technical report, NIST, 2022.

[KRGF+21] Vatistas Kostalabros, Jordi Ribes-González, Oriol Farràs, Miquel Moretó,
and Carles Hernandez. Hls-based hw/sw co-design of the post-quantum

20

classic mceliece cryptosystem. In 2021 31st International Conference on
Field-Programmable Logic and Applications (FPL), pages 52–59, 2021.

[MRAso20] Daniel J. Bernstein Martin R. Albrecht and so on. Classic mceliece:
conservative code-based cryptography. Technical report, NIST, 2020.
’https://classic.mceliece.org/nist/mceliece-20201010.pdf’.

[MVCK17] Susumu Mashimo, Thiem Van Chu, and Kenji Kise. High-performance
hardware merge sorter. In 2017 IEEE 25th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages 1–8,
2017.

[PBL18] Philippos Papaphilippou, Chris Brooks, and Wayne Luk. Flims: Fast
lightweight merge sorter. In 2018 International Conference on Field-
Programmable Technology (FPT), pages 78–85, 2018.

[RKK21] Johannes Roth, Evangelos Karatsiolis, and Juliane Krämer. Classic mceliece
implementation with low memory footprint. In Pierre-Yvan Liardet and Nele
Mentens, editors, Smart Card Research and Advanced Applications, pages
34–49, Cham, 2021. Springer International Publishing.

[R.M79] R.McEliece. A public-key cryptosystem based on algebraic coding theory.
pages 42–44, 1979.

[SEC+18] Makoto Saitoh, Elsayed A. Elsayed, Thiem Van Chu, Susumu Mashimo,
and Kenji Kise. A high-performance and cost-effective hardware merge
sorter without feedback datapath. In 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM),
pages 197–204, 2018.

[SKLG16] Wei Song, Dirk Koch, Mikel Luján, and Jim Garside. Parallel hardware
merge sorter. In 2016 IEEE 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 95–102, 2016.

[SQA+20] Nikola Samardzic, Weikang Qiao, Vaibhav Aggarwal, Mau-Chung Frank
Chang, and Jason Cong. Bonsai: High-performance adaptive merge tree
sorting. In 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pages 282–294, 2020.

[SWM+10] Abdulhadi Shoufan, Thorsten Wink, H. Gregor Molter, Sorin A. Huss, and
Eike Kohnert. A novel cryptoprocessor architecture for the mceliece public-key
cryptosystem. IEEE Transactions on Computers, 59(11):1533–1546, 2010.

[WSN16] Wen Wang, Jakub Szefer, and Ruben Niederhagen. Solving large systems of
linear equations over gf(2) on fpgas. In 2016 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), pages 1–7, 2016.

[WSN17] Wen Wang, Jakub Szefer, and Ruben Niederhagen. Fpga-based key generator
for the niederreiter cryptosystem using binary goppa codes. In Wieland
Fischer and Naofumi Homma, editors, Cryptographic Hardware and Embedded
Systems – CHES 2017, pages 253–274, Cham, 2017. Springer International
Publishing.

[WSN18] Wen Wang, Jakub Szefer, and Ruben Niederhagen. Fpga-based niederreiter
cryptosystem using binary goppa codes. In PQCrypto, volume 10786, 2018.

Yihong Zhu, Wenping Zhu, Chen Chen, Min Zhu, Zhengdong Li, Shaojun Wei and Leibo
Liu 21

[ZZY+21] Yihong Zhu, Min Zhu, Bohan Yang, Wenping Zhu, Chenchen Deng, Chen
Chen, Shaojun Wei, and Leibo Liu. Lwrpro: An energy-efficient configurable
crypto-processor for module-lwr. IEEE Transactions on Circuits and Systems
I: Regular Papers, 68(3):1146–1159, 2021.

[ZZZ+22] Yihong Zhu, Wenping Zhu, Min Zhu, Chongyang Li, Chenchen Deng, Chen
Chen, Shuying Yin, Shouyi Yin, Shaojun Wei, and Leibo Liu. A 28nm 48kops
3.4µj/op agile crypto-processor for post-quantum cryptography on multi-
mathematical problems. In 2022 IEEE International Solid- State Circuits
Conference (ISSCC), volume 65, pages 514–516, 2022.

	Introduction
	Background
	Key generation of McEliece
	Existing GF(2) Gauss elimination hardware solutions
	Existing constant-time hardware sorters

	Optimized large-size GF(2) systemizer
	Novel processing-line based architecture
	Complete FSM table and full-pipeline design
	Dynamic memory-reusage calculating-scheduling framework
	Input and output hiding design
	Singularity detection-based early abort
	Performance comparison

	Optimized constant-time sorter
	System architecture and algorithm-level pipeline design
	Overall architecture
	Other modules design
	Algorithm-level pipeline design

	Conclusion

