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ABSTRACT
In this paper, we introduce a second-order masking of the AES using

the minimal number of shares and a total of 1268 bits of randomness

including the sharing of the plaintext and key. The masking of the S-

box is based on the tower field decomposition of the inversion over

bytes where the changing of the guards technique is used in order

to re-mask the middle branch of the decomposition. The sharing

of the S-box is carefully crafted such that it achieves first-order

probing security without the use of randomness and such that the

sharing of its output is uniform. Multi-round security is achieved

by re-masking the state where we use a theoretical analysis based

on the propagation of probed information to reduce the demand for

fresh randomness per round. The result is a second-order masked

AES which competes with the state-of-the-art in terms of latency

and area, but reduces the randomness complexity over eight times

over the previous known works. In addition to the corresponding

theoretical analysis and proofs for the security of ourmasked design,

it has been implemented on FPGA and evaluated via lab analysis.

KEYWORDS
AES, Hardware, Low Randomness, Masking, Side-Channel Analysis

1 INTRODUCTION
In 1999, Kocher et al. [31] published an article on side-channel

attacks where a device’s physical properties such as its power con-

sumption are used in order to retrieve the key from a block cipher.

The attack, known as Differential Power Analysis (DPA), consists

of taking several measurements of the power consumption of the

device and correlating it with a key guess under a power model such

as the Hamming weight function. In order to combat side-channel

attacks, Chari et al. [12] and Goubin and Patarin [23] indepen-

dently introduced Boolean masking. With masking, each secret

value 𝑥 ∈ F2 (for example values depending on the plaintext or

key of a block cipher) is split in multiple parts (𝑥0, ..., 𝑥𝑛) ∈ F𝑛
2

such that

∑𝑛
𝑖=0

𝑥𝑖 = 𝑥 . The essential idea of masking is based on

noise amplification. Observing multiple parts of the computation

at the same time exponentially increases the noise (in terms of

the number of parts) which was present due to measuring errors

or noise inherent to the device. This allows the industry to create

countermeasures where attackers would need several millions if

not billions of power samples in order to break it.

Threshold Implementation (TI) is the first strategy that provides

security against side-channel attacks in hardware platforms [38].

The approach has been extended in higher orders in [7], but fails
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to provide multivariate security due to the lack of fresh masks as

discussed in [39]. While TI defines the number of input shares based

on the algebraic degree of the target function as well as the desired

security order, it has been shown that the same level of security

can be achieved using the minimum number of shares, i.e., 𝑑 + 1

input shares [24, 40]. However, security flaws with higher-order

attacks have been reported in [34] due to insufficient refreshing,

highlighting the need for providing precise security claims.

Around the same time power analysis attacks were made pub-

lic, the National Institute of Standards and Technology’s (NIST)

competition had ended with the Rijndael cipher as its winner to

become the Advanced Encryption Standard (AES) [17]. Ever since,

the AES has become a key component in modern day’s industrial

cryptographic solutions. This includes solutions on embedded de-

vices which means they are vulnerable to side-channel attacks. As

a result, there is a practical need for maskings of the AES and, in

turn, this need requires the solutions to be efficient and industrially

viable. The academic community responded to this need causing

several innovations on tackling AES’s masking (which turned out

to be non-trivial due to the eight-bit high-degree S-box). In 2016,

De Cnudde et al. [18] proposed a first and second-order masking of

the AES using a tower field decomposition. This was improved in

2017 by Groß et al. [25] using domain-oriented masking. In 2018,

De Meyer et al. [19] further improved the area cost by considering

a multiplicative masking approach.

The solutions for masking the AES have significantly advanced

over the years. However, as time progressed, researchers noted a

hidden cost in the solutions. Namely, each masking required fresh

random bits in order to secure its computation. The cost for the gen-

eration of this randomness was not reported due to its dependence

on the generator present in the platform or due to the dependence

on the used pseudo-random number generator. However, it was

clear this generational cost was not trivial. In the work by De

Cnudde et al. [18], they reported using several unrolled implemen-

tations of the PRINCE cipher [8]. For second-order security, this

caused the randomness generation (the PRINCE implementations)

to take up a larger area than the masking itself. Considering the

masking was made with minimal area as the efficiency goal, this

was a significant additional overhead. As a result, the authors of

the work posed the open question to reduce the randomness cost

of their masking strategy. The result that randomness generation

would take up such a large part of the cost was not unique among

the masked solutions. In the work by De Meyer et al. [19], the Triv-
ium stream cipher [9] was used to generate the randomness which

would result in a 50% overhead on the area of the second-order

masking. Later, the authors of [28] constructed and synthesized
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different variants of Pseudo Random Number Generators (PRNGs),

including the Linear-Feedback Shift Register (LFSR) and random-

ness generation based on Keccak-𝑓 . They demonstrated that the

implementation costs required for the generation of mask bits is

high. Recently, several works addressed this issue and presented

some techniques to reduce the randomness complexity. In [22], a

new techniques has been proposed for masking algorithms to share

randomness over multiple gadgets, reducing the total number of

required fresh masks. Later, a technique provided in [46] which

amortizes the randomness costs of several parallel masked multipli-

cations in higher orders. In an independent work, the randomness

cost was reduced further for masked multiplications while the run-

ning time of pseudo-random number generation was improved in

software platforms [15]. All mentioned works mainly focused on

software platforms and their application to hardware platforms

is quite limited. In this paper, we focus on hardware platforms to

reduce randomness complexity while maintaining higher order

security which has gained only very little attention in the literature

so far.

Over the last few years, it has become clear that in order to

make efficient maskings their randomness cost must be reduced.

As a result, in 2018 Wegener and Moradi [48] made a first-order

secure AES that required no fresh randomness. But as a trade-

off, the masking needed four shares in order to operate, which

significantly increased the area of the masking itself. Moreover,

the latency of design in terms of the number of clock cycles was

considerably high. Later on, in 2019 Sugawara [45] made a three-

shared masked AES without the need for fresh randomness. Their

solution still has an increased area overhead compared to solutions

using fresh randomness as they require three shares, but the trade-

off already improved. In 2021, Beyne et al. [5] provided the first

second-order AES with low-randomness. Their result was based on

the sharing byWegener andMoradi and, again, required four shares

and a significant increase in area. To conclude, no solution has thus

far provided a masking of the AES with a reduced randomness

complexity using the minimal number of shares and with a fair

area trade-off.

Related Works. One of the first attempts to make a second-order

secure AES S-box is presented in 2015 [13]. Based on the Threshold

Implementation (TI) strategy, the authors provided amasked variant

of AES S-box using six input shares and 126 bits of fresh masks

per S-box. Later in 2016, based on “Consolidated Masking Schemes”

(presented in [40]), the authors of [18] provided a second-order

secure AES design using the minimum number of input shares, i.e.,

three shares. Although their design is more cost-effective in terms

of area overhead, the demand for fresh masks is higher as each S-

box needs 162 bits of fresh masks. A more compact implementation

was introduced in [25] with three shares using the Domain Oriented

Masking (DOM) scheme which reduced the randomness cost to

54 bits per S-box. While all aforementioned designs used Boolean

masking as the underlying scheme, in 2018 the authors of [19]

used multiplicative masking and demonstrated that it can be more

efficient in hardware. Their S-box construction uses 53 bits of fresh

masks while providing the same level of security with a lower area

overhead. Note that all the aforementioned fresh masks should be

updated every clock cycle to provide security. Generation of such a

high number of fresh masks can be even more costly than a masked

S-box or even more than the entire masked cipher. As a result, there

is a need to find a secure design with lower randomnesses cost with

the same area overhead and latency to make its applicability more

feasible in small embedded devices.

Contributions. Inspired by the open question posed byDeCnudde
et al. [18] and by the significant overheads on area cost of AES

implementations without fresh randomness [5, 45, 48], we investi-

gated masking schemes to protect the AES. We achieved to make

a second-order masking of the AES using the minimal number of

shares that has an over eight times reduction of the randomness

cost over the current state-of-the-art solutions.

To achieve this reduction, we needed a first-order probing se-

cure S-box with no randomness using three input shares. This was

created using the following components.

• A uniform three-share multiplier made by generalizing the

algorithm from Shahmirzadi and Moradi [44].

• A first-order probing secure 𝐺𝐹 (16) inverter using three

shares made via duplication of the square-scale-and-multiply

function.

• A uniform sharing for two parallel multipliers made by the

use of the changing of the guards technique paired with a

“two-stage shared Feistel” to allow the invertibility of the

construction.

The second-order security of a single round is achieved by adding

fresh masks to the S-box (with the upside that now we can use

the same randomness for every S-box). The probing security of

multiple rounds is then achieved by the following techniques.

• The chaining of the S-boxes over the columns using the

changing of the guards.

• The refreshing of the columns per round to ensure probed

information does not diffuse outside each column.

As the randomness generation in hardware platforms, e.g., ASIC,

can be very costly, we were able to reduce the fresh randomness

complexity of our designwith the abovementioned carefully crafted

masked functions while maintaining the area overhead and latency,

in terms of the number of clock cycles, in the same range compared

to the state-of-the-art. We support our claims with theory analyses,

confirmed the security of our S-box construction with a formal

verification tool, and conducted an experimental analysis on an

FPGA-based evaluation board. The full HDL codes are available in

GitHub.

2 PRELIMINARIES
In this section, we introduce the AES, the probing model, threshold

implementations, the changing of the guards construction, and 𝑑 +1

sharing.

2.1 Description of AES
We quickly introduce the AES-128 cipher [17]. AES-128 consists of

a 128-bit state and a 128-bit key divided into bytes. The cipher is

composed of 10 rounds each applying an addition of a subkey, a

bricklayer of S-boxes, a ShiftRows operation, and a MixColumns
operation. This is visually represented in Figure 1. The S-box con-

sists of an inversion over 𝐺𝐹 (256) (extended so zero is mapped

https://github.com/ChairImpSec/Low_Random_Second_Order_AES
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Figure 1: Representation of the AES.

to zero) and an affine map. The key schedule for AES-128, which

operates on 4 columns of 32 bits each, is depicted in Figure 2.

𝑆
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𝑆

𝐶𝑖

Figure 2: The AES-128 key schedule. The 𝑖th round constants
are denoted by 𝐶𝑖 .

2.2 Glitch-Extended Probing Security
The security model considered in this work is “glitch-extended

probing model” [40], which is a security model based on “probing

model” introduced by Ishai et al. [27]. This abstract but effective
model has been used in considerable scientific papers to prove the

security of their constructions.

Consider that a masked algorithm is represented as a circuit, a

directed acyclic graph where each wire represents a digital value

(typically a bit) and each vertex is a binary operation. In the 𝑑th-

order probing model, an adversary is able to observe 𝑑 intermediate

wires of the circuit during the execution of the algorithm. These 𝑑

wires should be simulatable by a simulator who is not given any

of the secret values (such as the key or plaintext of a cipher). As

a result, it suffices to show the probed values are random values

following some fixed distribution independent of the secret values.

While this security model is a good first step in the provable

security of side-channel countermeasures, it does not reflect all

realistic properties of hardware implementations. Specifically, the

probing model provides security under the assumption that there

is no data-dependent activation timing, which fits best on software

platforms. This is due to a common phenomenon in CMOS tech-

nologies called glitches. The inaccurate assumption of the probing

model not capturing the effect of glitches leads to insecure designs

as shown in [33, 36]. More precisely, the physical characteristics

such as transitions, coupling effects, or glitches are not considered

in the 𝑑-probing model [21]. Hence, an extended model is needed

for these unwanted effects.

One of the most promising models to capture the above men-

tioned effects is presented by Faust et al. [21] called the robust
probing model, this model covers the physical properties of hard-

ware platforms. For example, to cover the effect of glitches, a glitch-
extended probe is made where a probe on a combinatorial circuit

is extended to all signals (up to registers or primary inputs) that

involve in the computation of the probed wire. The introduction of

such a simple model enabled the relevant scientific communities to

develop formal verification tools to evaluate a small circuit [1, 29]

(small due to the limitations of the complexity of the method). Fur-

thermore, it helped to reduce the implementation cost of several

schemes while maintaining the same level of security [3, 43, 44].

2.3 Boolean Masking and Threshold
Implementations

Boolean masking is a technique based on splitting each secret vari-

able 𝑥 ∈ F2 in the circuit into shares 𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑠𝑥−1) such
that 𝑥 =

∑𝑠𝑥−1

𝑖=0
𝑥𝑖 over F2. A random Boolean masking of a fixed

secret is uniform if all sharings of that secret are equally likely.

There are several approaches to masking a circuit. In this work,

we make use of threshold implementations proposed by Nikova

et al. [38].
Let 𝐹 be a shared function in the threshold implementation

corresponding to the unshared function 𝐹 : F𝑛
2
→ F𝑚

2
. Then 𝐹 can

have the following properties.

Definition 2.1 (Threshold Implementations [7, 38]). Let 𝐹 : F𝑛
2
→

F𝑚
2

be a function and 𝐹 : F𝑛𝑠𝑥
2

→ F
𝑚𝑠𝑦
2

be a sharing of 𝐹 . The

sharing 𝐹 is said to be

(1) correct if
∑𝑠𝑦−1

𝑖=0
𝐹 𝑖 (𝑥0, . . . , 𝑥𝑠𝑥−1) = 𝐹 (𝑥) for all 𝑥 ∈ F𝑛

2
and

for all shares 𝑥0, . . . , 𝑥𝑠𝑥−1 ∈ F𝑛
2
such that

∑𝑠𝑥−1

𝑖=0
𝑥𝑖 = 𝑥 ,

(2) 𝑑th-order non-complete if any function in 𝑑 or fewer shares

𝐹 𝑖 depends on at most 𝑠𝑥 − 1 input shares,

(3) uniform if 𝐹 maps a uniform random sharing of any 𝑥 ∈ F𝑛
2

to a uniform random sharing of 𝐹 (𝑥) ∈ F𝑚
2
.

The property of uniformity is important to this work as it allows

for the design of first-order and higher-order secure designs using

minimal fresh random bits since the entropy from the input of

each shared function is preserved. Following the work by Dhooghe

et al. [20], in a second-order setting where the shared functions

are uniform, multivariate (multi-round) security is ensured by hav-

ing fresh masks be present after each possible probe position in

that round (which in [20] translates to the round function being

resilient-uniform). The security is guaranteed by the first probe’s

observed values being re-masked causing the second probe to view

independent information from the first one. Since the shared func-

tions are uniform, both probes view uniform random information

(which means both probes view information independent on the

secret). As a result, we can reduce the randomness required to

re-mask the round function. For example, instead of re-masking

the full state after the MixColumns layer, it suffices to re-mask the

columns where the same randomness is used for each column in

case the shared functions are uniform. Such added randomness is

depicted in Figure 8.

2.4 Changing of the Guards
The changing of the guards proposed by Daemen [16] is a technique

that transforms a non-complete sharing into a uniform and non-

complete sharing. The technique works by embedding the sharing

into a Feistel-like structure. We use the extension by Beyne et al. [5]
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Figure 3: The changing of the guards with additional ran-
domness as input for three shares. We note that in our
masked AES, we will change the way the guards are added
to the output of the shared function.

where a first-order probing secure sharing is considered instead

of a non-complete one. That implies that it is possible to use the

changing of the guards method on sharings using multiple regis-

ter stages and extra randomness to guarantee their security. The

changing of the guards method then allows for the uniformity of

the larger circuit, in turn, allowing for the re-use of the randomness

in the circuit.

We give the changing of the guards method formally and depict

the structure for three shares in Figure 3.

Definition 2.2. The changing of the guards method applied to a

shared map 𝑆 given inputs (𝑎0, ..., 𝑎𝑠 ), (𝑏0, ..., 𝑏𝑠 ), and randomness

𝑟 is calculated as follows

𝑟 ′ = 𝑟,

𝑎′0 = 𝑆0 (𝑎0, ..., 𝑎𝑠 , 𝑟 ) ⊕ 𝑏0, . . . , 𝑎′𝑠−1 = 𝑆𝑠−2 (𝑎0, ..., 𝑎𝑠 , 𝑟 ) ⊕ 𝑏𝑠−1,

𝑎′𝑠 = 𝑆𝑠 (𝑎0, ..., 𝑎𝑠 , 𝑟 ) ⊕ 𝑏0 ⊕ . . . ⊕ 𝑏𝑠−1,

𝑏 ′0 = 𝑎0, . . . , 𝑏 ′𝑠−1 = 𝑎𝑠−1 .

We refer to the (𝑏0, ..., 𝑏𝑠−1) as the guards of the shared S-box 𝑆 .

2.5 𝑑 + 1 Sharing
Threshold Implementations (TI) have been proven to be a reliable

solution as they are immune against glitches. However, the number

of input shares depends on the algebraic degree of the target func-

tion as well as on the desired security order which can make the

implementation cost of masked circuits unaffordable. It becomes

even more challenging when higher-order security is desired as

fresh masks should be introduced to achieve security against multi-

variate adversaries [13, 39].

By removing the dependency of the number of shares on the

algebraic degree, it has been shown that the minimum number of

𝑑 + 1 shares can be employed to realize a 𝑑th-order secure design.

The authors of [40] demonstrated that first-order security can be

achieved with no fresh mask using the minimum number of shares

for a certain group of quadratic functions. While it is limited to first-

order security and only quadratic functions, a methodology called

Domain Oriented Masking (DOM) has been introduced later in [24]

offering side-channel security in hardware platforms with arbitrary

protection order. As a side note, it has been shown that higher-

order variants using this scheme are affected by security flaws as

reported in [34]. The scheme uses fresh randomness to achieve

glitch-extended probing security and splits quadratic operations

into two parts by registers to avoid the propagation of glitches. The

fresh masks should be added right before register stage to assure

that the extended probe on the output of the register is independent

of the secret. For example, a two-share masked variant of a simple

two-input AND gate 𝑓 (𝑎, 𝑏) = 𝑥 , with input shares 𝑎0, 𝑎1, 𝑏0, 𝑏1
and

output shares 𝑥0, 𝑥1, can be implemented as follows

𝑓 0 (𝑎0, 𝑏0) = 𝑎0𝑏0 → 𝑥0

𝑓 1 (𝑎0, 𝑏1, 𝑟 ) = 𝑎0𝑏1 + 𝑟 → 𝑥1 𝑥0 + 𝑥1 = 𝑦0

𝑓 2 (𝑎1, 𝑏0, 𝑟 ) = 𝑎1𝑏0 + 𝑟 → 𝑥2 𝑥2 + 𝑥3 = 𝑦1

𝑓 3 (𝑎1, 𝑏1) = 𝑎1𝑏1 → 𝑥3

,

where 𝑟 is a bit of fresh randomness. The coordinate functions’ 𝑓 𝑖

output must be stored in registers. The phase that is dedicated to

the coordinate functions’ computation is known as the expansion
layer. These registered results are XORed to generate the output

shares and it is referred to as the compression layer.
The demand for fresh masks in 𝑑 + 1 sharing schemes has been

relaxed in [43]. They presented an algorithm enabling them to

find two-share first-order secure masked realizations of several

lightweight block ciphers with no fresh masks. In this paper, we are

dealing with second-order security meaning we use at least three

shares. Hence, we adjusted the algorithm to find first-order secure

solution of the target function where no fresh masks are used. We

then add fresh randomness before the compression layer to make

the previous found solution second-order secure. This enables us

to reuse the fresh masks in the expansion layer in other nonlinear

operations. As we use this algorithm for quadratic functions, we

explain our strategy to find a first-order glitch-extended probing

secure and uniform sharing of a constant-free arbitrary quadratic

function with two inputs 𝑦 = 𝑓 (𝑎, 𝑏) following the instructions

in [43]. Due to using three input shares, its shared variant has nine

quadratic terms, i.e., 𝑎𝑖𝑏 𝑗 where 𝑖, 𝑗 ∈ {0, 1, 2}. We have to use

nine coordinate functions 𝑓 3𝑖+𝑗 (𝑎𝑖 , 𝑏 𝑗 ) each of which contains the

corresponding quadratic term.

(1) As the first step, for each 𝑖, 𝑗 ∈ {0, 1, 2}, wemake the set 𝐹3𝑖+𝑗 ,
containing all possible 2-input constant-free coordinate func-

tions for 𝑓 3𝑖+𝑗 (𝑎𝑖 , 𝑏 𝑗 ) whose Algebraic Normal Form (ANF)

must include 𝑎𝑖𝑏 𝑗 . As a result, we have nine different sets,

each of which has cardinality four.

(2) In the second step, without loss of generality, let us assume

that 𝑓 0 (.), 𝑓 1 (.), and 𝑓 2 (.) are XORed to make an output

share 𝑦0
. We search for tuples in 𝐹0 × 𝐹1 × 𝐹2 whose outputs

have an identical joint probability distribution which makes

them independent of the input 𝑎 and 𝑏, and consequently

first-order glitch-extended probing secure. Moreover, the re-

sult of the XOR, i.e.,𝑦0
, must be a balanced function meaning

that it yields as many zeros as ones over its input set. This

is a necessary condition to achieve uniformity, as discussed

in [30]. The tuples that fulfill both conditions make the set

𝐹 0,1,2
. The same procedure should be followed to make two

other sets 𝐹 3,4,5
and 𝐹 6,7,8

.
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(3) The last step is dedicated to find a correct sharing, i.e., 𝑦0 +
𝑦1 + 𝑦2 = 𝑦. In other words, we search for tuples in 𝐹 0,1,2 ×
𝐹 3,4,5 × 𝐹 6,7,8

whose XOR yields the unshared output value 𝑦.

If such a tuple exists, the found solution is a correct, uniform,

and glitch-extended probing secure sharing of 𝑥 = 𝑓 (𝑎, 𝑏).

It is noteworthy to mention that while we considered the case in

which 𝑓 0 (.), 𝑓 1 (.), and 𝑓 2 (.) are compressed as given above, there

are other configurations that can be taken into account in the search

process.

3 AES SHARING DETAILS
In this section, we detail the second-order sharing of the AES S-box,

the application of the changing of the guards method, the fresh

randomness injected in every round, and the masking of the key

schedule.

3.1 S-Box Sharing
The sharing of the S-box uses the tower field decomposition given

by Canright [10] and is shown in Figure 4. It is important to note

that the randomness which is used in the S-box can be re-used over

all the different shared S-boxes. The masking of the S-box follows

from the masking of each separate part in the design, namely the in-

put/output isomorphisms, the𝐺𝐹 (16) scale-and-multiply function,

the𝐺𝐹 (16) inverter, the addition of the changing of the guards, and

the final multipliers. We go over these components.

Input/Output Isomorphisms. We have used the same functions

that are used in the Canright’s design [10]. Since these functions

are linear, we instantiate them three times and apply them to each

shares individually. Note that, we should place a register layer

right before the output affine layer to achieve security under the

glitch-extended probing model.

𝐺𝐹 (16) Scale-and-Multiply. The first nonlinear operation in the

tower field decomposition consists of a linear scale function and a

𝐺𝐹 (16) multiplier between the most and least significant nibbles

of the input of the S-box. As the scale function is linear, its shar-

ing is done share-wise. For the sharing of the multiplier, we use

the technique presented by Shahmirzadi and Moradi [44] to find

first-order secure solutions. While the original algorithm in the

paper uses two shares, we extended it to three shares. We found

several uniform and glitch-extended probing secure constructions

for the 𝐺𝐹 (16) multiplier. We present the one used in this work

where the addition and multiplication are the field operations of

𝐺𝐹 (16) (see Equation (1)). Each coordinate function 𝑓 𝑖 (.) is second-
order non-complete. Under the glitch-extended probing security,

each probe in the compression layer is extended to at most three

coordinate functions. For example, the probe on 𝑦𝑖 is extended to

{𝑥3𝑖 , 𝑥3𝑖+1, 𝑥3𝑖+2}. This set of probed values has an identical joint

distribution for every choice of the input secrets. In addition, the

sharing is also uniform.

𝑓 0 (𝑎0, 𝑏0) = 𝑎0𝑏0 + 𝑏0 → 𝑥0

𝑓 1 (𝑎0, 𝑏1) = 𝑎0𝑏1 + 𝑏1 → 𝑥1 𝑥0 + 𝑥1 + 𝑥2 = 𝑦0

𝑓 2 (𝑎0, 𝑏2) = 𝑎0𝑏2 → 𝑥2

𝑓 3 (𝑎1, 𝑏0) = 𝑎1𝑏0 → 𝑥3

𝑓 4 (𝑎1, 𝑏1) = 𝑎1𝑏1 + 𝑏1 → 𝑥4 𝑥3 + 𝑥4 + 𝑥5 = 𝑦1

𝑓 5 (𝑎1, 𝑏2) = 𝑎1𝑏2 + 𝑏2 → 𝑥5

𝑓 6 (𝑎2, 𝑏0) = 𝑎2𝑏0 + 𝑏0 → 𝑥6

𝑓 7 (𝑎2, 𝑏1) = 𝑎2𝑏1 → 𝑥7 𝑥6 + 𝑥7 + 𝑥8 = 𝑦2

𝑓 8 (𝑎2, 𝑏2) = 𝑎2𝑏2 + 𝑏2 → 𝑥8

(1)

To achieve second-order security, we add fresh masks to our

first-order secure construction in a ring-refreshing construction

(i.e. the shared values (𝑥0, 𝑥1, ..., 𝑥8) are re-masked to (𝑥0 + 𝑟0 +
𝑟1, 𝑥1 + 𝑟1 + 𝑟2, ..., 𝑥8 + 𝑟8 + 𝑟0)). We should highlight that these

fresh masks can be reused in all other S-boxes in all rounds. Note

that all component functions are second-order non-complete and

fresh masks are added to make the subsequent compression layer

second-order glitch-extended probing secure.

𝐺𝐹 (16) Inverter. We provide a sharing of the 𝐺𝐹 (16) inverter
that is given by the lookup table 0132ED8AF67C495B. We make a

first-order secure construction with three shares using no fresh

masks and then add fresh randomness to achieve second-order se-

curity. To this end, we decompose the𝐺𝐹 (16) inverter into smaller

quadratic functions as introduced in [10](see Figure 5a). In this de-

composition, the only nonlinear part is the𝐺𝐹 (4) multiplier which

is a quadratic function. Since it is a quadratic function, we followed

the instructions stated in Section 2.5 to find a uniform and probing

secure sharing for the 𝐺𝐹 (4) multiplier. The search led to several

solutions, one of which is given in Appendix A. This sharing is

used in the masked variant of the last two 𝐺𝐹 (4) multipliers.

Looking at Figure 5a, the output of the 𝐺𝐹 (4) inverter should
be joint-uniform with the input to achieve a first-order secure con-

struction of the 𝐺𝐹 (16) inverter. Namely, the output of the 𝐺𝐹 (4)
inverter must be joint-uniform with the upper branch (which are

two bits of the input) as they are given to the subsequent upper

𝐺𝐹 (4) multiplier. The same holds true for the lower𝐺𝐹 (4) multi-

plier, where the output of the 𝐺𝐹 (4) inverter and the lower branch

(which are the two other bits of the input) are its input and must be

joint-uniform. We combine all functions in the gray dashed block

in Figure 5a including the first𝐺𝐹 (4) multiplier, the square-scale

function, and the 𝐺𝐹 (4) inverter to make a 4-bit to 2-bit function

denoted by “Square-Scale-Multiplier” in the figure. As a side note,

the 𝐺𝐹 (4) inverter is just a bit permutation, and the square-scale

function is linear, making the Square-Scale-Multiplier a quadratic

function. We examined all solutions for sharings of the 𝐺𝐹 (4) mul-

tiplier to make a first-order secure inverter. While most of them

were first-order secure, none of them led to a joint-uniform solution

with its input. As a result, we searched for uniform sharings of the

Square-Scale-Multiplier. We found several solutions which were ei-

ther joint-uniform with the upper branch or joint-uniform with the

lower branch but found no solutions which were joint-uniformwith

both. Hence, we used two different solutions in our construction as

shown in Figure 5b where one solution is used to feed the upper

𝐺𝐹 (4) multiplier and the other feeds the lower 𝐺𝐹 (4) multiplier.

Note that we placed a register after the compression layer of the
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Figure 5: Inversion in 𝐺𝐹 (16)

multipliers. In this way, we constructed a first-order probing secure

𝐺𝐹 (16) inverter with three shares. The two solutions are given in

detail in Appendix B and Appendix C.

Nevertheless, the outputs of the last multipliers are not joint-

uniform even though each output is individually uniform. We

checked all solutions for the𝐺𝐹 (4) multiplier in the construction

and none of them led to a joint-uniform solution. So, we used the

changing of the guards technique to achieve uniformity at the out-

put of the masked 𝐺𝐹 (16) inverter. This is explained in detail in

Section 3.2.

Similar to the previous stages, we add fresh randomness before

the compression of the shares (using a domain-oriented masking

style of refreshing) to achieve second-order glitch-extended probing

security. Namely, the cross-domain terms are refreshed while other

terms with the same domain are left untouched.

Adding and Extracting the Guards. Unlike regular applications
of the changing of the guards method, in this sharing the guards

are added in the middle of the S-box. The guards consist of two nib-

bles (𝑤0,𝑤1) which are added to the output of the inversion over

𝐺𝐹 (16). Denoting the bits of the guards as 𝑤0 = (𝑤0

0
,𝑤0

1
,𝑤0

2
,𝑤0

3
)

and 𝑤1 = (𝑤1

0
,𝑤1

1
,𝑤1

2
,𝑤1

3
), they are transformed to the vectors

(𝑤𝑖
0
,𝑤𝑖

1
,𝑤𝑖

0
+𝑤𝑖

1
) and (𝑤𝑖

2
,𝑤𝑖

3
,𝑤𝑖

2
+𝑤𝑖

3
) for 𝑖 ∈ {0, 1}. This trans-

formation allows for a second-order probing secure conversation

to a zero-sharing.

The guards for the next S-box are extracted from the upper limb

of the tower field decomposition. We note that the guards should

not be taken from the lower limb as this would cause the S-box

to be non-uniform as explained in Section 5.3. The reason for this

difference is that the sharing for the upper multiplier is different

from the sharing of the lower multiplier in the next stage.

The Final Multipliers. Consider the two parallel 𝐺𝐹 (16) multi-

pliers before the output isomorphism. We follow the notation of

the different branches given in Figure 6. Namely, denote the shares

of the three input branches of the multipliers by 𝑎𝑖 for the upper

branch, 𝑏𝑖 for the lower branch, and 𝑐𝑖 for the middle branch (for

𝑖 ∈ {0, 1, 2}). After the addition of the guards, we denote the shares

of the middle branch by 𝑑𝑖 . Note that the three shared branches

(𝑎𝑖 , 𝑏𝑖 , 𝑑𝑖 ) are joint uniform.

The two parallel𝐺𝐹 (16) multipliers follow the same structure as

the multiplier in the𝐺𝐹 (16) scale-and-multiply function (including

the ring refreshing before the compression phase). The multipliers

are used such that, after compression, the upper multiplier returns

the shares 𝑒𝑖 = 𝑎𝑖𝑑 +𝑑𝑖 +𝑑𝑖+1
(where for ease we neglect the added

randomness before the compression). Similarly, after compression,
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Figure 6: View of the output shares of the final multipliers
in the shared AES S-box.

the lower multiplier calculates the shares 𝑓 𝑖 = 𝑑𝑖𝑏 + 𝑏𝑖 + 𝑏𝑖+1
. The

joint uniformity of the two last multipliers’ output is discussed

in Section 5.3.

3.2 Changing of the Guards Implemented
In order to guarantee the uniformity of the shared round function

and to allow for a first-order probing secure shared S-box without

the use of fresh randomness, the changing of the guards technique

is applied.

A straightforward application of the technique can cause an

overhead in randomness in order to achieve second-order security

over multiple rounds as noted by Beyne et al. [5]. This is due to
the method of chaining the S-boxes causing unwanted diffusion in

the shared cipher. For the AES sharing in this work, we chain the

S-boxes over the columns as shown in Figure 7. Meaning that we

instantiate four cells of guards in order to secure the round function.

In the computation of the final S-box of a chain, the guards from the

last S-box can be used in the chain of S-boxes in the next round. The

motivation for chaining the S-boxes in a column-wise fashion is

explained in the security analysis in Section 5.5. In the key schedule,

we use an additional cell of guards to chain the four S-boxes per

round of the schedule.

3.3 Fresh Randomness per Round
In the AES masking, we inject fresh randomness per round of the

state function and the key schedule. More specifically, the random-

ness is injected before the calculation of the MixColumns. To reduce
the overhead on the number of random bits used in the sharing, we

re-use the random bits over the columns of the state as depicted in

Figure 8. Every round, four half-words (𝑟0, 𝑟1, 𝑟2, 𝑟3) are generated
to refresh the S-boxes. The reason for this choice of re-masking

is explained in the security analysis of Section 5.5. Essentially, we

re-mask the diffusion caused by the changing of the guards and the

MixColumns operation.

SubBytes

Figure 7: The changing of the guards method over the state.
We denote the extra cells needed to store the guards for the
next round by gray dashed boxes.
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𝑟0

𝑟3

𝑟2

𝑟1
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Figure 8: The randomness which is injected at the input of
the MixColumns.

3.4 Key Schedule
Since the key schedule consists of linear functions and the same

S-box as the one used in the state function, its sharing can be copied

from the previous sections. In order to avoid leakage over many

rounds, the S-boxes in the key schedule are refreshed. However, to

reduce the randomness cost, the same randomness which was used

to refresh the state can be used in the key schedule of the same

round.

4 IMPLEMENTATION AND ARCHITECTURE
Our serialized AES encryption function requires 256 clock cycles

to perform a full encryption with the side note that the design can

be fed with a new key and plaintext at the same time the ciphertext

is produced byte-wise. As a result, the average needed clock cycles

for each encryption decreases if the inputs are fed back-to-back. An

overview of the data path of the design is depicted in Figure 9. The

state registers as well as the key registers are viewed as a 4×4 square

array of bytes, and the byte located at row 𝑖 and column 𝑗 is denoted

as byte 4 𝑗 + 𝑖 . In the first 16 clock cycles, the key and plaintext are

loaded byte-wise to the module. Meanwhile, the AddRoundKey is

performed and the result is fed into the S-box. Afterwards, four

bytes of the key are fed to the S-box in the subsequent four cycles.

At this point, the key registers are disabled for four clock cycles

waiting for the result of the first key-byte S-box. Once the result

of the S-box is ready for the key schedule, the next round’s key

byte is generated and is added to the corresponding state byte. The

corresponding key byte is stored in the key registers to be used

in the next round. The ShiftRows is applied when the last state

byte comes out of the S-box (this is not shown in Figure 9 to ease

the diagram). In the next clock cycle, the MixColumns operation

is performed in parallel to the refreshing. Namely, the input of the

MixColumns is refreshed by a total of 64-bits of fresh masks. The
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Figure 9: Our design of the serialized AES encryption.

same fresh masks can be used for the other columns in the round

(including the column of the key schedule). So, these 64-bit fresh

masks should be updated each round apart from the last round,

where the MixColumns operation is missing.

As stated in Section 3.2, each column is chained to apply the

changing of the guard technique. Since we have four columns for

the state registers and one column for the key registers, the AES

module needs 5 × 8 = 40 bits of fresh randomness for the guards.

They should be given to the module at the start of the encryption

and no extra costs are required to instantiate multiple rounds as

the required guard bits of the last byte of each column are stored

in registers to be used in the next round. So, in the corresponding

clock cycle, the guards are given to the S-box construction followed

by chaining the other three bytes in the column. Note that, apart

from 40 bits of randomness for the guards, 132 fresh masks should

be provided at the start of the encryption to be used in the S-box

calculations in all rounds.

As a result, our design requires a total of 1260 random bits per

encryption including the sharing of the plaintext and key. More

specifically, we require 256 bits for the sharing of the plaintext,

256 bits for the key, 40 bits for the instantiation of the guards, 132

to make the S-box second-order secure, and a total of 576 bits to

refresh the columns.

We refer to Table 1 for the comparison of our design to the state-

of-the-art. We synthesized our design using the Nangate 45nm

Library with the Synopsis Design Compiler tool to have a fair com-

parison. We also used a compile option avoiding any optimization

across modules for security reasons. Note that, the fresh masks

needed for sharing the plaintext and key are included in the table.

A second-order secure AES implementation is introduced in [13],

where six input shares are used with a high randomness cost. As a

result, the area overhead of the S-box is significant. Using Boolean

masking, the authors of [18] provided a second-order secure AES

with a high randomness complexity. The implementation costs are

reduced in [25] while using the same masking scheme. Later, the

area overhead has been reduced using multiplicative masking at the

cost of a slightly higher latency with roughly the same randomness

complexity [19]. Notably, our design requires significantly fewer

fresh masks per encryption (more than nine times less compared

to the best published design) with the same latency (# of clock cy-

cles) and roughly the same range of area overhead. Similar to other

works in the field, the area overhead for fresh mask generation is

excluded from the table.

Table 1: Implementation results for AES-128.

(using Synopsis Design Compiler, and Nangate 45nm Library,

excluding RNGs)

Design

Security No. of Rand/ Area Latency

Order Shares Enc. [bits] [GE] [cycles]

[13]
𝑎

2 6 25 712 11 174 -

[18] 2 3 32 912 12 640 276

[25] 2 3 11 312 12 024 246

[19] 2 3 11 112 10 931 256

This work 2 3 1 268 12 880 256

𝑎
Just a single S-box

5 GLITCH-EXTENDED PROBING SECURITY
In this section, we show that the AES masking detailed in Section 3

is second-order glitch-extended probing secure as introduced in

Section 2.2. This is proven in several steps. First, by showing that the

S-box is itself second-order secure in Section 5.1. Then, by showing

that the round function is uniform in Section 5.3 and that a single

round is second-order secure (recall that if the round function is

both probing secure and uniform, the entire AES masking is already

first-order secure since it follows the threshold implementation

properties explained in Section 2.3). Finally, in Section 5.5, we show
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that the entire AES masking is second-order secure by including a

multi-round probing analysis.

5.1 S-Box Verification via SILVER
SILVER [30] is a formal verification tool, designed to evaluate a

given circuit under different security notions. Namely, it assesses

the security of a given design based on the models to avoid writ-

ing proofs for every design. It receives the netlist of the hardware

design and verifies it without any simplification. Consequently, its

results are reliable with no false negative or false positive consider-

ing the model. It performs an exhaustive analysis of the probability

distributions on each gate and wire of the netlist and proves the

statistical independence of subsets of the wires on the input se-

crets of this list. We evaluated our S-box construction under the

glitch-extended probing model dedicated to hardware platforms.

We synthesized our construction by Synopsis Design Compiler

using NanGate 45 ASIC standard cell library and generated the

netlist. We disabled any optimization across different module to

fulfill non-completeness property.

First-Order Probing Security Without Randomness. As the first
step, we removed all fresh masks from our S-box construction

and evaluated the design with SILVER. We confirmed the first-

order glitch-extended probing security of the design as well as the

uniformity of the output. It took around 20 minutes on a machine

with 16 CPU cores with 128 GB of RAM.

The reason behind this step is the fact that any fresh masks

required for first-order security of an intermediate variable cannot

be reused in a second-order secure design. In a second-order attack,

an adversary can probe two intermediate values. Therefore, in case

of reusing a freshmask needed for first-order security, the adversary

can observe the fresh mask with one probe and with the other probe

observes the intermediate value whose security depends on the

fresh masks. In this step, we demonstrated that our design needs no

fresh masks for first-order security and all fresh masks are needed

to achieve second-order security under glitch-extended probing

model. This enable us to reuse these randomness, reducing the total

number of required fresh masks.

Second-Order Probing Security With Randomness. SILVER cannot

handle a large design due to high number of individual statistical

test leading to unrealistic computational complexities. As a result,

we could not evaluate the entire S-box construction as the num-

ber of inputs increases with fresh masks. We first confirmed the

second-order security of the𝐺𝐹 (16)multiplier as well as the𝐺𝐹 (16)
inverter under glitch-extended probingmodel. Then, we split the de-

sign in two parts. The first part encompasses all operations from the

S-box’s input to the𝐺𝐹 (16) inverter. The second part encompasses

the two last multipliers. We confirmed the second-order security of

both parts. Since both parts are second-order secure and we placed

a register layer after the 𝐺𝐹 (16) inverter which is refreshed with

fresh masks, we can conclude that the entire design is second-order

secure. In other words, we introduced the fresh masks 𝑟1 to make

the first part second-order secure and evaluated its second-order

security with SILVER. Then, we added completely different fresh

masks 𝑟2 to the second part and confirmed its second-order security

with SILVER as well. We refreshed the output shares of the first

part with fresh masks 𝑟3 and stored the result in registers. These

registered values are given to the second-part. This refreshing im-

poses the independence of the composed elements as discussed

in [40], which can be seen as a naive method to make a composable

gadget. Hence, we claim the second-order security of our S-box

construction.

It took around 100 hours to verify the security of first part on the

same machine that was used for the first-order security evaluation.

The second part was done in around 60 hours. In the next subsec-

tion, we evaluate the entire S-box construction using a recently-

published simulation-based verification tool as well to support our

claim of second-order security of our masked S-box. Since no for-

mal verification tool can currently analyze the entire encryption

function, we include theoretical arguments for probing security

across several rounds as described in Section 5.5 and we conducted

experimental analyses on FPGA as described in Section 6.

5.2 S-Box Verification via PROLEAD
Since SILVER can at most evaluate subcircuits (for example small

S-boxes), particularly in higher orders, we also evaluated our S-

box construction with PROLEAD [37]. PROLEAD is an automated

simulation-based tool to analyze the statistical independence of

simulated intermediates probes under the robust probing model for

the given masked implementation. It can handle larger circuits and

similar to SILVER, it works directly on the given netlist performing

logic simulation and not on simulating power traces. As a result,

the security evaluation is not based on hypothetical power model.

Similar to SILVER verification, we used Synopsis Design Com-

piler and NanGate 45 ASIC standard cell library to generate the

netlist. We ran the evaluation under glitch-extended probing model

on a machine with an AMD EPYC 7352 with 48 hyper-threading

cores and 448 GB of memory. The tool performed fixed versus ran-

dom G-test, where the fixed input is zero vector. The required fresh

masks can be set to refreshed each clock cycle or do not change

during the execution. We used the latter option as the required fresh

masks for the S-box remain unchanged during the execution of the

cipher in our design. No leakage has been reported with 100 million

simulations neither in univariate nor in multivariate evaluation

including all probing sets, confirming second-order security of our

masked AES S-box. The evaluation took around 28 hours on the

aforementioned machine. The evaluation results reported by the

tool is also included in the supplementary materials attached to

this submission.

We should highlight that PROLEAD is based on simulations and

statistical hypothesis tests and it cannot prove the security of a

given design. As the number of simulations increases the evaluation

results would be more reliable. In other words, the probability that

existing leakage is not detected decreases when a higher number

of simulations are considered in the evaluations. We believe that

100 million simulations is large enough to provide high level of

confidence.

5.3 Uniformity of the Round Function
In Section 5.1, we have verified the uniformity of the masked S-box

using SILVER. However, to add to the motivation of the masked de-

sign, we also prove it by pen-and-paper methods. More specifically,
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we show that the function shown in Figure 6 is uniform (recall

that 𝑐𝑖 is a function of 𝑎𝑖 and 𝑏𝑖 ). Proving the uniformity of a con-

struction with the same number of inputs and outputs is equivalent

to showing the shared construction is invertible for every choice

of input secrets. Thus, we need to prove that the final multipliers

with the changing of the guards are invertible for every choice of

the input secrets. In other words, for every input secret (𝑎, 𝑏), the
shares of (𝑎, 𝑏,𝑤) are a function of the shares of (𝑣, 𝑒, 𝑓 ) (recall that
from the tower-field construction 𝑐 is a function of 𝑎 and 𝑏).

In a nutshell, the final multipliers form a “two-staged Feistel” con-

struction. The middle branch (𝑐) is multiplied by a secret and added

to the lower branch (𝑏). In turn, the upper branch (𝑎) is multiplied

by a secret and added to the middle branch. Since the construction

is an iterated Feistel construction, it is invertible making it uniform.

Pick arbitrary input secrets (𝑎, 𝑏) of the masked S-box. From the

secret 𝑎 and the output guards 𝑣 , we can reconstruct the shares of

𝑎, namely

𝑎0 = 𝑣0, 𝑎1 = 𝑣1, 𝑎2 = 𝑣0 + 𝑣1 + 𝑎 .

Given the shares of 𝑎, the shares of the output 𝑒 , and the secret 𝑑 ,

we can reconstruct the shares of 𝑑 , namely

𝑑𝑖 = 𝑒𝑖+2 + 𝑎𝑖+2𝑑 + 𝑑 .

From the shares of 𝑑 , the shares of the output 𝑓 , and the secret 𝑏,

we can reconstruct the shares of 𝑏, namely

𝑏𝑖 = 𝑓 𝑖+2 + 𝑑𝑖+2𝑏 + 𝑏 .

Recall that the shares of 𝑐 are a function of the shares of 𝑎, 𝑏 (because

of the tower-field construction). By summing the shares of 𝑐 and

𝑑 , we reconstruct the input guards 𝑤𝑖
. Thus, the construction is

invertible for any choice of input secrets (𝑎, 𝑏) which implies the

uniformity of the construction. As a result, the round function is

uniform.

5.4 Single Round Probing Analysis
We consider the second-order glitch-extended probing security of

a single round of the masked AES. From Section 5.3, we know that

the round function is uniform. As a result, the input state of each

round is a joint uniform masking.

We split the proof up in four cases.

• Case 1: both probes are placed in the same masked S-box. In

this case the security comes from the second-order probing

security of the S-box itself which was verified by SILVER in

Section 5.1.

• Case 2: the probes are placed in different masked S-boxes.

First, from Section 5.3, we know that both S-boxes have a

joint-uniform input. From Section 5.1, we know that each

S-box is first-order secure without any added randomness.

Thus, by removing the additional randomness, the two S-

boxes do not share joint information and, as a result, the

two probes provide independent information. Since each S-

box is first-order probing secure, the probe does not provide

information on a secret value. As a result, this case is also

secure.

• Case 3: the probes are placed in the linear layer and a masked

S-box. The probe on the linear layer provides one share of

the output of the S-box and views no added randomness. As

a result, the security comes from the first case. In addition,

the outputs of the other S-boxes viewed in the linear layer

act as uniform randomness since each S-box is itself uniform

(and thus provide a joint uniform output).

• Case 4: both probes are placed in the linear layer. Since this

layer works share-wise, this is evidently secure.

5.5 Multiple Round Probing Analysis
We now consider that two probes are placed in two different rounds

of the shared AES. Recall that since Section 5.4 already handled the

case where the two probes are placed in the same round, proving

this multi-round case proves the second-order probing security of

the entire AES masking as it is the last remaining case of placement

for the probes.

We argue that the fresh randomness, which is injected every

round (as discussed in Section 3.3), offers themulti-round protection.

The proof is made by evaluating what an adversary can observe

by placing a probe in a masked S-box or the linear layer. We mark

(visually) what the adversary has observed via a probe in the state.

We call this a pattern. The observed values (or pattern) are then

propagated through the diffusion layers (including the diffusion

caused by the changing of the guards method). This causes the

pattern which the adversary has observed to change. We propagate

this until we reach the end of the ShiftRows operation where we

can overlap the resulting pattern with the randomness which is

added before the MixColumns operation as shown in Figure 8. From

there, we can show that the added randomness completely masks

all values which were observed by the probe, meaning the values

observed by the adversary are added with independent randomness

before the values are re-observed by the second probe.

Lemma 5.1. The activity patterns caused by a glitch-extended
probe (up to symmetry, the ones shown in Figure 10) are masked by
the randomness of the masked AES design (the randomness shown in
Figure 8).

Proof. We show that when one probe is placed in the round

function of themaskedAES, the randomness before the MixColumns
refreshes what is observed. We split the reasoning in two parts,

a probe is placed in the linear layer and a probe is placed in the

masked S-box.

• We consider the case where a probe is placed in the linear

layer. From the design of AES’s linear layer, this probe can

view at most one column of the state. The observed values

then pass the masked S-box layer which, due to the changing

of the guards method, spreads these values out to five cells

in a column of the state (an example is shown in Figure 10).

These cells then pass the ShiftRows operation. However,

only one cell per row remains active. As a result, the added

random bits (𝑟0, 𝑟1, 𝑟2, 𝑟3) refresh the activity pattern in the

state. But the refreshing leaves an unmasked cell containing

the guards for the next round. Note that these guards have

not passed a nonlinear layer, thus probing this cell in the

next round does not provide any additional information. The

remaining active cell is again diffused to a column of the state

where it is fully re-masked by that round’s fresh randomness.
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MixColumns SubBytes ShiftRows Randomness

MixColumns SubBytes ShiftRows Randomness

SubBytes ShiftRows Randomness

Figure 10: Three examples of the diffusion of observed val-
ues from probing. The “randomness” step denotes the addi-
tion of randomness following Figure 8.

• We consider the case where a probe is placed in the masked

S-box which results in the adversary viewing the input of

two S-boxes due to the changing of the guards method (an

example is shown in Figure 10). Again, this reverts to the

previous case where the randomness (𝑟0, 𝑟1, 𝑟2, 𝑟3) re-masks

the pattern over the following two rounds.

□

5.6 Second-Order Robust Probing Security
The previous subsections allow for the proof of second-order prob-

ing security.

Theorem 5.2. The masked AES design from Section 3 is second-
order glitch-extended probing secure.

Proof. Consider a second-order probing adversary. We split the

proof of security in cases based on where the probes are placed.

For the first case, we consider that both probes are placed in a

single round of the masked AES state function. The probing security

of this case is given by the analysis in Section 5.4.

For the second case, we consider that both probes are placed in

different rounds of the masked AES state function. From Lemma 5.1,

we find that the values observed by both probes are independently

distributed. From Section 5.4 and from the round function being

uniform (as shown in Section 5.3), we find that each separate probe

only observes uniform random distributed values or public values

(such as round constants). As a result, both probes jointly observe

uniform randomness or public values which proves the probing

security of this case.

Finally, the masked key schedule is also second-order probing

secure as all the non-linear operations are refreshed and the masked

S-box design has the same design as in the state function (shown

secure in Section 5.1). Similarly, if one probe is placed in the state

function and one in the key schedule. Since the values observed after

the S-box are refreshed, the probes view independent distributed

values and each separate probe only views uniform randomness or

public values.

Since all cases are proven secure, we conclude that the masked

AES design is second-order glitch-extended probing secure as given

in Section 2.2. □

6 EXPERIMENTAL VERIFICATION
As mentioned in Section 5.1, we evaluated the security of our S-

box construction using the formal verification tool SILVER [30]

under the glitch-extended probing model. As currently no tool

can verify the security of an entire encryption function, we have

conducted experimental analyses in addition to the theoretical

analyses. We use a byte-serial AES-128 implementation where 132

bits of fresh masks for the S-box and 40 bits for the guards are

required. These fresh masks stay constant during an execution of

the cipher. The relevant part of the circuit for the generation of

these fresh randomness is activated only one clock cycle at the start

of each encryption. Moreover, 64 bits of fresh masks are needed to

re-mask the columns, which are updated only per round.

We implemented this design on a Xilinx Spartan-6 FPGA of the

SAKURA-G evaluation board [? ]. As the source of the clock, a stable
6MHz oscillator was used. A Linear Feedback Shift Register (LFSR)

with the feedback polynomial 𝑥31 + 𝑥28 + 1 is instantiated for each

required fresh mask bit. It has been shown that the implementation

of the LFSR can be efficient in Xilinx FPGAs as only three 6-to-1

Look-Up Tables (LUTs) are needed [47]. In addition, our design

provides a single bit control signal indicating the end of each round

which we used to update those 64-bit fresh masks. Our design uses

no fresh masks at the last round of the cipher as the addition of

these fresh masks are integrated into the MixColumns operation.

The control FPGA provides a three-share masked plaintext and

a masked key for the target FPGA and observes the ciphertext in a

three-share masked form. Note that, it is a byte-serial implementa-

tion, and the control FPGA feeds the target FPGA byte-wise and

receives the ciphertext byte-wise as well.

The power consumption traces were collected by measuring the

voltage drop over a 1 Ω shunt resistor placed on the VDD path

of the target FPGA. A digital oscilloscope at a sampling rate of

500MS/s has been used to measure the voltage drop. Figure 11a

shows a sample power trace covering an entire encryption, where

a certain pattern can be observed indicating the cipher rounds.

Following the measurement strategy explained by Schneider and

Moradi in [42], we have conducted a fixed-versus-random t-test

using 100 million traces. Such an analysis is supposed to detect

SCA leakages without performing any key-recovery attack. In this

test, which is also known as TVLA [14], the key is fixed to a certain

value during the measurements while based on a single bit random

value, either a fixed or a random plaintext is given to the design.

The plaintext and the key are given to the design in a three-share

uniform masked form regardless of the decision, i.e., whether a

fixed plaintext or a random one should be given to the circuit.

We performed four different analyses to truly evaluate our de-

sign in practice. The first analysis is a first-order univariate test in
which a t-test is applied to each power consumption sample point

individually. To perform a second-order univariate test, we made

the power traces mean-free for each group of fixed and random
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(e) 2nd-order bivariate t-test

Figure 11: Experimental analysis of our masked AES using 100 million traces.

individually. Afterwards, we squared each mean-free sample point

and ran the ordinary t-test on the pre-processed traces. The same

procedure was followed for a third-order univariate test, where each
mean-free sample was cubed instead of squared.

For a bivariate second-order t-test, each combination of two mean-

free sample points should be multiplied followed by an individual

t-test. However, performing such a high number of individual tests

is not feasible in practice, particularly in our case where every

power trace has many sample points. Therefore, we also utilized the

downsampling trick that has been used in several other publications

including [4, 18, 44]. For each clock cycle, we took four samples that

are carefully selected such that they are spread over the start, middle,

and end of the cycle. This enables us to perform the analysis on all

clock cycles involved in the power traces covering full encryptions.

Note that, power consumption traces are low-pass filtered by the

Printed Circuit Board (PCB), shunt resistor, measurement facilities,

etc., as discussed in [32]. As a result, several neighboring samples

points at each clock cycle contain the same information about the

corresponding leakage. Considering only a few sample points per

clock cycle should be adequate for such a bivariate analysis. More

information and discussion can be found in [35].

The results of our experimental analyses are shown in Figure 11,

where we detected no univariate or bivariate first- and second-order

leakage. As presented in Figure 11d, the design exhibits third-order

leakage, as expected. This further confirms the validity of our setup.

Note that, we omitted the third-order multivariate analysis as the

third-order univariate t-test already showed detectable leakage.

7 CONCLUSIONS AND DISCUSSIONS
In this paper, we presented a second-order masking of the AES

which was implemented on FPGA and tested in practice. From the

lab analysis we find no first- or second-order leakage. The secu-

rity of the masking was also proven in the probing security model,

where the tool SILVER reported the second-order probing security

of the S-box design. Additionally, the tool and a pen-and-paper
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proof verified the uniformity of the construction revealing our mo-

tivation for the sharing. Lastly, a pen-and-paper proof was given to

argue why multi-round leakage is not possible as all probed infor-

mation are re-masked between the rounds. The result is a masking

which solves the open problem posed by De Cnudde et al. [18] of
reducing the randomness cost of a masked tower-field decomposed

AES S-box. It has been repeatedly demonstrated that the cost of

fresh masks generation is high in hardware platforms [9, 28]. In this

work, we have an over eight-fold reduction of the total randomness

cost including the cost of sharing the plaintext and key. This reduc-

tion comes at a cost of a slight increase of the area footprint. More

precisely, this increase is less than 20% when compared to the best

result reported in the state-of-the-art and less than 10% compared

to other masked designs based on the tower-field decomposition.

In the work, we encountered several challenges which seem

highly interesting for future works. The bulk increase in area over-

head comes from a “duplication method” used in the 𝐺𝐹 (16) in-
verter. We thus pose the open problem to find a more efficient

first-order probing secure sharing of the inverter without using ran-

domness. As a second line of future works to improve the sharing,

we found from the works by Beyne et al. [4, 6] that it is possible to
achieve second-order secure sharing without adding fresh random-

ness per round of the cipher. However, for this technique to work,

the S-box sharing requires a high nonlinearity and the diffusion

caused by the changing of the guards method must be taken into

account. Our sharing of the AES S-box has a trivial shared nonlin-

earity which was necessary to ensure its uniformity. As a result,

a nonlinear uniform sharing of the tower-field decomposed S-box

would be an interesting future work further decreasing the cost of

randomness.

Finally, it is noteworthy to mention that reducing the random-

ness complexity of a design may decrease the level of noise on

the actual leakage. This may increase the risk of horizontal at-

tacks [2, 26], where the information of multiple target intermediate

values are combined to reduce the noise of the actual leakages mea-

sured by an adversary. However, it has been shown that it is quite

challenging to apply horizontal attacks in a close-source setting,

where an adversary has no information about implementation de-

tails [11]. Further, horizontal attacks are relevant as soon as the

implementation is secure at a high order (typically for sixth-order

secure designs and higher) as discussed in [11]. Nevertheless, it

would interesting to analyze the security of the construction in this

paper against horizontal attacks as future work.
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Second-Order Low-Randomness 𝑑 + 1 Hardware Sharing of the AES

A 3-SHARE 𝑮𝑭 (4) MULTIPLIER USING 6 BITS OF FRESH MASKS
𝐹 (𝑎, 𝑏, 𝑐, 𝑑) = (𝑥, 𝑦)
𝑥 = 𝑓 (𝑎,𝑏, 𝑐,𝑑) = 𝑏𝑐 + 𝑎𝑑 + 𝑏𝑑
𝑦 = 𝑔 (𝑎,𝑏, 𝑐,𝑑) = 𝑎𝑐 + 𝑏𝑐 + 𝑎𝑑

The construction is first-order secure without fresh masks.

𝑓 0 (𝑎0, 𝑏0, 𝑐0, 𝑑0) = 𝑎0 + 𝑑0 + 𝑏0𝑐0 + 𝑎0𝑑0 + 𝑏0𝑑0 → 𝑥 ′0

𝑓 1 (𝑎1, 𝑏1, 𝑐0, 𝑑0) = 𝑏1 + 𝑐0 + 𝑏1𝑐0 + 𝑎1𝑑0 + 𝑏1𝑑0 + 𝑐0𝑑0 + 𝑟 0 → 𝑥 ′1 𝑥 ′0 + 𝑥 ′1 + 𝑥 ′2 = 𝑥0

𝑓 2 (𝑎2, 𝑏2, 𝑐0, 𝑑0) = 𝑎2 + 𝑏2 + 𝑐0 + 𝑑0 + 𝑏2𝑐0 + 𝑎1𝑑0 + 𝑏2𝑑0 + 𝑐0𝑑0 + 𝑟 1 → 𝑥 ′2

𝑓 3 (𝑎0, 𝑏0, 𝑐1, 𝑑1) = 𝑏0 + 𝑏0𝑐1 + 𝑎0𝑑1 + 𝑏0𝑑1 + 𝑟 0 → 𝑥 ′3

𝑓 4 (𝑎1, 𝑏1, 𝑐1, 𝑑1) = 𝑏1𝑐1 + 𝑎1𝑑1 + 𝑏1𝑑1 → 𝑥 ′4 𝑥 ′3 + 𝑥 ′4 + 𝑥 ′5 = 𝑥1

𝑓 5 (𝑎2, 𝑏2, 𝑐1, 𝑑1) = 𝑎2 + 𝑏2 + 𝑏2𝑐1 + 𝑎2𝑑1 + 𝑏2𝑑1 + 𝑟 2 → 𝑥 ′5

𝑓 6 (𝑎0, 𝑏0, 𝑐2, 𝑑2) = 𝑎0 + 𝑏0 + 𝑏0𝑐1 + 𝑎0𝑑2 + 𝑏0𝑑2 + 𝑟 1 → 𝑥 ′6

𝑓 7 (𝑎1, 𝑏1, 𝑐2, 𝑑2) = 𝑏1 + 𝑏1𝑐2 + 𝑎1𝑑2 + 𝑏1𝑑2 + 𝑟 2 → 𝑥 ′7 𝑥 ′6 + 𝑥 ′7 + 𝑥 ′8 = 𝑥2

𝑓 8 (𝑎2, 𝑏2, 𝑐2, 𝑑2) = 𝑏2𝑐2 + 𝑎2𝑑2 + 𝑏2𝑑2 → 𝑥 ′8

𝑔0 (𝑎0, 𝑏0, 𝑐0, 𝑑0) = 𝑎0 + 𝑐0 + 𝑑0 + 𝑎0𝑐0 + 𝑏0𝑐0 + 𝑎0𝑑0 + 𝑐0𝑑0 → 𝑦′0

𝑔1 (𝑎1, 𝑏1, 𝑐0, 𝑑0) = 𝑎1 + 𝑏1 + 𝑎1𝑐0 + 𝑏0𝑐0 + 𝑎1𝑑0 + 𝑟 3 → 𝑦′1 𝑦′0 + 𝑦′1 + 𝑦′2 = 𝑦0

𝑔2 (𝑎2, 𝑏2, 𝑐0, 𝑑0) = 𝑏2 + 𝑐0 + 𝑑0 + 𝑎2𝑐0 + 𝑏2𝑐0 + 𝑎2𝑑0 + 𝑐0𝑑0 + 𝑟 4 → 𝑦′2

𝑔3 (𝑎0, 𝑏0, 𝑐1, 𝑑1) = 𝑎0 + 𝑎0𝑐1 + 𝑏0𝑐1 + 𝑎0𝑑1 + 𝑟 3 → 𝑦′3

𝑔4 (𝑎1, 𝑏1, 𝑐1, 𝑑1) = 𝑎1𝑐1 + 𝑏1𝑐1 + 𝑎1𝑑1 → 𝑦′4 𝑦′3 + 𝑦′4 + 𝑦′5 = 𝑦1

𝑔5 (𝑎2, 𝑏2, 𝑐1, 𝑑1) = 𝑎2 + 𝑏2 + 𝑎2𝑐1 + 𝑏2𝑐1 + 𝑎2𝑑1 + 𝑟 5 → 𝑦′5

𝑔6 (𝑎0, 𝑏0, 𝑐2, 𝑑2) = 𝑎0𝑐2 + 𝑏0𝑐2 + 𝑎0𝑑2 + 𝑐2𝑑2 + 𝑟 4 → 𝑥 ′6

𝑔7 (𝑎1, 𝑏1, 𝑐2, 𝑑2) = 𝑎1 + 𝑏1 + 𝑎1𝑐2 + 𝑏1𝑐2 + 𝑎1𝑑2 + 𝑟 5 → 𝑦′7 𝑦′6 + 𝑦′7 + 𝑦′8 = 𝑦2

𝑔8 (𝑎2, 𝑏2, 𝑐2, 𝑑2) = 𝑎2 + 𝑎2𝑐2 + 𝑏2𝑐2 + 𝑎2𝑑2 + 𝑐2𝑑2 → 𝑦′8

B 3-SHARE SQUARE-SCALE-MULTIPLIER USING 6 BITS OF FRESH MASKS
𝐹 (𝑎, 𝑏, 𝑐, 𝑑) = (𝑥, 𝑦)
𝑥 = 𝑓 (𝑎,𝑏, 𝑐,𝑑) = 𝑏 + 𝑎𝑐 + 𝑏𝑐 + 𝑑 + 𝑎𝑑

𝑦 = 𝑔 (𝑎,𝑏, 𝑐,𝑑) = 𝑎 + 𝑏 + 𝑐 + 𝑏𝑐 + 𝑑 + 𝑎𝑑 + 𝑏𝑑
The construction is first-order secure without fresh masks.

The outputs 𝑥 and 𝑦 are uniform with the input variables 𝑎 and 𝑏 without fresh masks.

𝑓 0 (𝑎0, 𝑏0, 𝑐0, 𝑑0) = 𝑎0 + 𝑐0 + 𝑎0𝑐0 + 𝑏0𝑐0 + 𝑎0𝑑0 → 𝑥 ′0

𝑓 1 (𝑎0, 𝑏0, 𝑐1, 𝑑1) = 𝑏0 + 𝑐1 + 𝑑1 + 𝑎0𝑐1 + 𝑏0𝑐1 + 𝑎0𝑑1 + 𝑟 0 → 𝑥 ′1 𝑥 ′0 + 𝑥 ′1 + 𝑥 ′2 = 𝑥0

𝑓 2 (𝑎0, 𝑏0, 𝑐2, 𝑑2) = 𝑎0 + 𝑑2 + 𝑎0𝑐2 + 𝑏0𝑐2 + 𝑎0𝑑2 + 𝑟 1 → 𝑥 ′2

𝑓 3 (𝑎1, 𝑏1, 𝑐0, 𝑑0) = 𝑎1 + 𝑐0 + 𝑎1𝑐0 + 𝑏1𝑐0 + 𝑎1𝑑0 + 𝑟 0 → 𝑥 ′3

𝑓 4 (𝑎1, 𝑏1, 𝑐1, 𝑑1) = 𝑎1𝑐1 + 𝑏1𝑐1 + 𝑎1𝑑1 → 𝑥 ′4 𝑥 ′3 + 𝑥 ′4 + 𝑥 ′5 = 𝑥1

𝑓 5 (𝑎1, 𝑏1, 𝑐2, 𝑑2) = 𝑎1 + 𝑏1 + 𝑐2 + 𝑑2 + 𝑎1𝑐2 + 𝑏1𝑐2 + 𝑎1𝑑2 + 𝑟 2 → 𝑥 ′5

𝑓 6 (𝑎2, 𝑏2, 𝑐0, 𝑑0) = 𝑎2 + 𝑑0 + 𝑎2𝑐0 + 𝑏2𝑐0 + 𝑎2𝑑0 + 𝑟 1 → 𝑥 ′6

𝑓 7 (𝑎2, 𝑏2, 𝑐1, 𝑑1) = 𝑐1 + 𝑎2𝑐1 + 𝑏2𝑐1 + 𝑎2𝑑1 + 𝑟 2 → 𝑥 ′7 𝑥 ′6 + 𝑥 ′7 + 𝑥 ′8 = 𝑥2

𝑓 8 (𝑎2, 𝑏2, 𝑐2, 𝑑2) = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 + 𝑎2𝑐2 + 𝑏2𝑐2 + 𝑎2𝑑2 → 𝑥 ′8

𝑔0 (𝑎0, 𝑏0, 𝑐0, 𝑑0) = 𝑐0 + 𝑏0𝑐0 + 𝑎0𝑑0 + 𝑏0𝑑0 → 𝑦′0

𝑔1 (𝑎0, 𝑏0, 𝑐1, 𝑑1) = 𝑎0 + 𝑏0 + 𝑑1 + 𝑏0𝑐1 + 𝑎0𝑑1 + 𝑏0𝑑1 + 𝑟 3 → 𝑦′1 𝑦′0 + 𝑦′1 + 𝑦′2 = 𝑦0

𝑔2 (𝑎0, 𝑏0, 𝑐2, 𝑑2) = 𝑐2 + 𝑑2 + 𝑏0𝑐2 + 𝑎0𝑑2 + 𝑏0𝑑2 + 𝑟 4 → 𝑦′2

𝑔3 (𝑎1, 𝑏1, 𝑐0, 𝑑0) = 𝑑0 + 𝑏1𝑐0 + 𝑎1𝑑0 + 𝑏1𝑑0 + 𝑟 3 → 𝑦′3

𝑔4 (𝑎1, 𝑏1, 𝑐1, 𝑑1) = 𝑏1𝑐1 + 𝑎1𝑑1 + 𝑏1𝑑1 → 𝑦′4 𝑦′3 + 𝑦′4 + 𝑦′5 = 𝑦1

𝑔5 (𝑎1, 𝑏1, 𝑐2, 𝑑2) = 𝑎1 + 𝑏1 + 𝑐2 + 𝑑2 + 𝑏1𝑐2 + 𝑎1𝑑2 + 𝑏1𝑑2 + 𝑟 5 → 𝑦′5

𝑔6 (𝑎2, 𝑏2, 𝑐0, 𝑑0) = 𝑏2 + 𝑎2𝑏2 + 𝑏2𝑐0 + 𝑎2𝑑0 + 𝑏2𝑑0 + 𝑟 4 → 𝑥 ′6

𝑔7 (𝑎2, 𝑏2, 𝑐1, 𝑑1) = 𝑐1 + 𝑏2𝑐1 + 𝑎2𝑑1 + 𝑏2𝑑1 + 𝑟 5 → 𝑦′7 𝑦′6 + 𝑦′7 + 𝑦′8 = 𝑦2

𝑔8 (𝑎2, 𝑏2, 𝑐2, 𝑑2) = 𝑎2 + 𝑐2 + 𝑑2 + 𝑎2𝑏2 + 𝑏2𝑐2 + 𝑎2𝑑2 + 𝑏2𝑑2 → 𝑦′8
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C 3-SHARE SQUARE-SCALE-MULTIPLIER USING 6 BITS OF FRESH MASKS
𝐹 (𝑎, 𝑏, 𝑐, 𝑑) = (𝑥, 𝑦)
𝑥 = 𝑓 (𝑎,𝑏, 𝑐,𝑑) = 𝑏 + 𝑎𝑐 + 𝑏𝑐 + 𝑑 + 𝑎𝑑

𝑦 = 𝑔 (𝑎,𝑏, 𝑐,𝑑) = 𝑎 + 𝑏 + 𝑐 + 𝑏𝑐 + 𝑑 + 𝑎𝑑 + 𝑏𝑑
The construction is first-order secure without fresh masks.

The outputs 𝑥 and 𝑦 are uniform with the input variables 𝑐 and 𝑑 without fresh masks.

𝑓 0 (𝑎0, 𝑏0, 𝑐0, 𝑑0) = 𝑎0 + 𝑎0𝑐0 + 𝑏0𝑐0 + 𝑎0𝑑0 + 𝑐0𝑑0 → 𝑥′0

𝑓 1 (𝑎0, 𝑏0, 𝑐1, 𝑑1) = 𝑐0 + 𝑎1𝑐0 + 𝑏1𝑐0 + 𝑎1𝑑0 + 𝑐0𝑑0 + 𝑟 0 → 𝑥′1 𝑥′0 + 𝑥′1 + 𝑥′2 = 𝑥0

𝑓 2 (𝑎0, 𝑏0, 𝑐2, 𝑑2) = 𝑎2 + 𝑏2 + 𝑐0 + 𝑑0 + 𝑎2𝑐0 + 𝑏2𝑐0 + 𝑎2𝑑0 + 𝑟 1 → 𝑥′2

𝑓 3 (𝑎1, 𝑏1, 𝑐0, 𝑑0) = 𝑏0 + 𝑎0𝑐1 + 𝑏0𝑐1 + 𝑎0𝑑1 + 𝑟 0 → 𝑥′3

𝑓 4 (𝑎1, 𝑏1, 𝑐1, 𝑑1) = 𝑎1𝑐1 + 𝑏1𝑐1 + 𝑎1𝑑1 → 𝑥′4 𝑥′3 + 𝑥′4 + 𝑥′5 = 𝑥1

𝑓 5 (𝑎1, 𝑏1, 𝑐2, 𝑑2) = 𝑎2 + 𝑑1 + 𝑎2𝑐1 + 𝑏2𝑐1 + 𝑎2𝑑1 + 𝑟 2 → 𝑥′5

𝑓 6 (𝑎2, 𝑏2, 𝑐0, 𝑑0) = 𝑎0 + 𝑐2 + 𝑎0𝑐2 + 𝑏0𝑐2 + 𝑎0𝑑2 + 𝑟 1 → 𝑥′6

𝑓 7 (𝑎2, 𝑏2, 𝑐1, 𝑑1) = 𝑏1 + 𝑎1𝑐2 + 𝑏1𝑐2 + 𝑎1𝑑2 + 𝑟 2 → 𝑥′7 𝑥′6 + 𝑥′7 + 𝑥′8 = 𝑥2

𝑓 8 (𝑎2, 𝑏2, 𝑐2, 𝑑2) = 𝑐2 + 𝑑2 + 𝑎2𝑐2 + 𝑏2𝑐2 + 𝑎2𝑑2 → 𝑥′8

𝑔0 (𝑎0, 𝑏0, 𝑐0, 𝑑0) = 𝑏0 + 𝑐0 + 𝑑0 + 𝑏0𝑐0 + 𝑎0𝑑0 + 𝑏0𝑑0 → 𝑦′0

𝑔1 (𝑎0, 𝑏0, 𝑐1, 𝑑1) = 𝑎1 + 𝑐0 + 𝑑0 + 𝑏1𝑐0 + 𝑎1𝑑0 + 𝑏1𝑑0 + 𝑟 3 → 𝑦′1 𝑦′0 + 𝑦′1 + 𝑦′2 = 𝑦0

𝑔2 (𝑎0, 𝑏0, 𝑐2, 𝑑2) = 𝑐0 + 𝑑0 + 𝑏2𝑐0 + 𝑎2𝑑0 + 𝑏2𝑑0 + 𝑟 4 → 𝑦′2

𝑔3 (𝑎1, 𝑏1, 𝑐0, 𝑑0) = 𝑏0 + 𝑐1 + 𝑑1 + 𝑏0𝑐1 + 𝑎0𝑑1 + 𝑏0𝑑1 + 𝑟 3 → 𝑦′3

𝑔4 (𝑎1, 𝑏1, 𝑐1, 𝑑1) = 𝑏1𝑐1 + 𝑎1𝑑1 + 𝑏1𝑑1 → 𝑦′4 𝑦′3 + 𝑦′4 + 𝑦′5 = 𝑦1

𝑔5 (𝑎1, 𝑏1, 𝑐2, 𝑑2) = 𝑎2 + 𝑏2 + 𝑏2𝑐1 + 𝑎2𝑑1 + 𝑏2𝑑1 + 𝑟 5 → 𝑦′5

𝑔6 (𝑎2, 𝑏2, 𝑐0, 𝑑0) = 𝑎0 + 𝑏0 + 𝑐2 + 𝑑2 + 𝑏0𝑐2 + 𝑎0𝑑2 + 𝑏1𝑑2 + 𝑟 4 → 𝑥′6

𝑔7 (𝑎2, 𝑏2, 𝑐2, 𝑑1) = 𝑏1 + 𝑏1𝑐2 + 𝑎2𝑑2 + 𝑏1𝑑2 + 𝑟 5 → 𝑦′7 𝑦′6 + 𝑦′7 + 𝑦′8 = 𝑦2

𝑔8 (𝑎2, 𝑏2, 𝑐2, 𝑑2) = 𝑏2𝑐2 + 𝑎2𝑑2 + 𝑏2𝑑2 → 𝑦′8
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