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Abstract. The notion of distributed authenticated encryption was formally introduced by
Agrawal et al. in ACM CCS 2018. In their work, they propose the DiSE construction building
upon a distributed PRF (DPRF), a commitment scheme and a PRG. We show that most
of their constructions do not meet some of the claimed security guarantees. In fact, all the
concrete instantiations of DiSE, as well as multiple follow-up papers (one accepted at ACM
CCS 2021), fail to satisfy their strongly-secure definitions. We give simple fixes for these
constructions and prove their security. We also propose a new construction DiAE using an
encryptment instead of a commitment. This modification dispenses with the need to buffer
the entire message throughout the encryption protocol, which in turn enables implementations
with constant RAM footprint and online message encryption. This is particularly interesting
for constrained IoT devices. Finally, we implement and benchmark DiAE and show that it
performs similarly to the original DiSE construction.
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1 Introduction
One of the fundamental problems related to the use of cryptography is ensuring the protection of
keys, be it symmetric (e.g., for authenticated encryption schemes) or asymmetric (e.g., for digital
signature schemes). In numerous applications, simply storing the keys in the non-volatile memory of a
device does not suffice to meet the security requirements of the application. One established solution
to this problem relies on specialized secure hardware (HW), such as HW security modules or secure
elements. Yet, this is often cost-prohibitive and creates undesirable HW lock-in. An alternative,
HW-independent approach to reducing the risk related to compromised keys is to use threshold
cryptography. In a nutshell, a threshold “flavor” of a cryptographic primitive, such as a secret key
encryption scheme, uses a key split into shares and the algorithms of the primitive, such as the
encryption algorithm, become interactive protocols. The shares are distributed to 𝑛 ≥ 2 parties and
evaluation of the primitive requires interaction of a certain subset of these parties. This is often
simply any subset of size at least equal to a threshold 𝑡 ≤ 𝑛, such that the protocol execution does
not reveal information about other parties’ key shares.
Distributed encryption. The problem of distributing cryptographic primitives over multiple
parties has been studied for nearly three decades [14, 36]. Most of the effort focused on threshold
public key cryptography [6–9, 13, 19, 20, 22, 39]. This under-representation of secret key cryptogra-
phy was addressed by Naor, Pinkas and Reingold in 1999, who proposed several constructions of
a distributed pseudorandom function (DPRF) [28] and recently by Agrawal et al. in 2018 [2], who
provided a security definition for distributed authenticated encryption and a construction DiSE (for
Distributed Symmetric-key Encryption). Their definitions capture two levels of security. The first
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suffices if encryption only needs to be distributed. A stronger variant is required by most applica-
tions that also need a secure distributed decryption (or when re-encryption of a message cannot
be requested). Their construction builds on a DPRF, a commitment scheme and a pseudo-random
generator (PRG). In brief, a party 𝑗 wishing to encrypt a plaintext 𝑚 computes a commitment 𝛼 on
𝑚 with randomness 𝜌. Then, 𝑗||𝛼 is used as the input of an interactive evaluation of the DPRF. The
DPRF’s output 𝑧 is fed to the PRG to derive a keystream and encrypt 𝑚||𝜌 in a stream-cipher-like
fashion. The final ciphertext is output as (𝑃𝑅𝐺(𝑧)⊕ (𝑚||𝜌), 𝑗, 𝛼). The decryption works analogously
but verifies the integrity of the message by opening the commitment 𝛼 with the message 𝑚 and
the randomness 𝜌. Agrawal et al. provide two variants of DiSE, with weaker and stronger secu-
rity properties, complete with security proofs. They further provide multiple instances, based on a
DPRF construction of Naor et al. that relies on the hardness of the DDH assumption, as well as
a combinatorial DPRF based on AES, complete with performance benchmarks showing practical
computational and communication complexity.
Applications of threshold encryption. A distributed encryption with practical complexity
finds many real-world applications, as also hinted by NIST’s recent activity in this domain [31].
Threshold cryptography can improve security of various applications through distributing keys and
thus decreasing the risk related to their compromise in network authentication protocols like Ker-
beros [29], in secret management systems [21,35,40] or in Internet of Things (IoT) devices (consumer-
grade or otherwise). In particular in IoT, threshold cryptography represents a HW-independent
hardening of the so called Edge, i.e., the subset of an application consisting of the end-devices.
These are often cost sensitive (and thus poorly secured), but at the same time exposed, leading to
devastating attacks [34]. Threshold cryptography can compensate this and help protect data created
and encrypted in the Edge. For example, when a group of devices uses distributed encryption to
protect sensitive data (such as security camera footage) uploaded to cloud, an attacker that exfil-
trates all secrets from a single device does not get the ability to decrypt past data, nor to create
new, spoofed ciphertext, unless it can interact with the remaining devices using the local communi-
cation channels. In an analogous case, compromising a single device would not give perpetual access
to firmware updates secured with threshold encryption. Threshold encryption also lets a group of
devices act as a single entity, such as the devices in a smart household representing the household,
personal electronics representing their owner, or autonomous drones acting as a swarm being just a
few examples.
Threshold encryption for IoT. To be truly practical for (not only) IoT applications, a thresh-
old encryption scheme must decouple the local message encryption from the interactive part of the
protocol, such that the former can be completed before the latter, with only a constant-size state
being carried over. The same in reverse order must also apply for decryption. For example, in a
“smart dust” sensor mote [33] with as little as 4 KB of RAM [12] an implementation with a con-
stant RAM footprint is absolutely vital. The DiSE construction does not allow this; the message
must be committed to before the interactive DPRF evaluation and must be buffered to be encrypted
afterwards.

1.1 Our Contribution

We first show that the strongly secure DiSE construction in [2] fails to meet the claimed security
guaranty because their generic strongly secure DPRF construction does not meet the correctness
property. As a result, this issue affects all the concrete instantiations of DiSE DPRFs, as well as
recent follow-up papers [5, 11, 27]. Additionally, we show that the NIZK proof system in one of the
constructions is invalid (the proof’s verification always outputs 0) which renders the DPRF unusable.
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We propose simple fixes that restore the security of the DPRF constructions. We then propose
a new construction of distributed authenticated encryption using an encryptment [16] instead of
the commitment and prove security of our new construction. We call our construction DiAE. The
advantage of our solution is that the message encryption and DPRF protocol execution are no longer
tightly interlocked. The computation (and subsequent transmission) of most of the ciphertext can
take place without the need to wait for the completion of the protocol, such that only a constant-size
state (a binding tag) needs to be preserved. This is favorable for applications that cannot buffer
the entire message during the protocol. As our encryptment instance of choice allows online (a.k.a.
blockwise) processing, the entire DiAE can be implemented with a constant RAM footprint.
1.2 Related Work
Threshold Symmetric Encryption schemes. DiSE [2] initiated the work on threshold sym-
metric encryption schemes by formalizing definitions and providing practical constructions, as well
as benchmarks. Several works followed up recently, extending DiSE to the adaptive setting [27] and
improving the performance when encrypting a large group of messages [11].
DPRFs. Distributed PseudoRandom Functions were first described by Micali and Sidney [26]
and have then been used in constructions of other primitives [15, 28, 30] and various construc-
tions [1, 2, 5, 11]. Recently, Libert et al. provided an adaptively secure DPRF based on the Learning
With Errors (LWE) problem [25], which could give rise to post-quantum threshold authenticated
encryption. Mukherjee shows that the adaptive security of DiSE depends directly on the adap-
tive security of the underlying DPRF [27], indicating that improvements on DPRFs could lead to
straightforward improvements of DiSE.
1.3 Roadmap
Section 2 introduces notations and definitions from prior work. In Section 3, we present our attacks
on DiSE’s DPRF constructions. In Section 4, we fix the DPRFs and propose our new construction
using encryptment. We show our implementation results in Section 5 and conclude in Section 6.

2 Preliminaries
We first explain the notations used throughout the paper, then we present the main definitions used
by our construction. We provide references to additional definitions in Appendix B.
2.1 Notations
We let 𝑛 and 𝑡 respectively denote the number of key shares (or parties) and the threshold in secret
sharing or in a threshold primitive. Given an integer 𝑖 ∈ N, we use [𝑖] to represent the set {1, 2, . . . , 𝑖}.
We count the number of items in a set 𝑆 with |𝑆| or with #{1, 2} = 2 when building the set explicitly.
We let 𝑦 ← F(𝑥) denote assigning the output of an algorithm F to a variable 𝑦, while F(𝑥) → 𝑦
denotes the event that F outputs a value 𝑦. Sampling a variable 𝜌 uniformly from a finite set 𝑆 is
denoted by 𝜌←$ 𝑆. The Lagrange basis polynomial (or Lagrange coefficient) using the element 𝑖 of
the set 𝑆 is denoted as 𝜆0,𝑖,𝑆 . The concatenation of two byte strings 𝑎 and 𝑏 is indicated by 𝑎‖𝑏.
The length in bits of a byte string 𝑎 is obtained with len(𝑎). In a distributed protocol, [𝑗 : 𝑥] signifies
that the value 𝑥 is private to the party 𝑗. Similarly, J𝑠𝑘K[𝑛] signifies that each party 𝑖, 𝑖 ∈ [𝑛] owns
a private value 𝑠𝑘𝑖.

𝑓 : N −→ N is negligible if for all 𝑐 ∈ N there exists a 𝑛0 ∈ N such that for all integers 𝑛 ≥ 𝑛0,
we have 𝑓(𝑛) < 𝑛−𝑐. The abbreviation PPT stands for for probabilistic polynomial-time.
2.2 Distributed Pseudorandom Function [2]
We explain below the concept of distributed pseudorandom functions (DPRFs) using the definitions
from [2].
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A distributed pseudorandom function DPRF is a tuple of three algorithms (Setup, Eval, Combine):
Setup(1𝑘, 𝑛, 𝑡) → ({𝑠𝑘𝑖}𝑛

𝑖=1, 𝑝𝑝DPRF): Randomized algorithm that takes a security parameter 1𝑘,
a number of parties 𝑛 and a threshold 𝑡; outputs 𝑛 secret shares and public parameters.

Eval(𝑠𝑘𝑖, 𝑥, 𝑝𝑝DPRF) → 𝑧𝑖/⊥: Compute the partial output share 𝑧𝑖 for a DPRF input 𝑥 with the
secret share 𝑠𝑘𝑖 and the public parameters generated by Setup.

Combine({(𝑖, 𝑧𝑖)}𝑖∈𝑆 , 𝑝𝑝DPRF)→ 𝑧: Combine the DPRF output shares from parties 𝑖 ∈ 𝑆, |𝑆| ≥ 𝑡
to get the DPRF output 𝑧.

In a nutshell, a DPRF is a threshold variant of a keyed PRF where the output can only be
evaluated interactively by a set of 𝑡 parties.

Definition 1 (Consistency). DPRF is consistent if for all ({𝑠𝑘𝑖}𝑛
𝑖=1, 𝑝𝑝DPRF) output by Setup(1𝑘,

𝑛, 𝑡) and any 𝑥 ∈ {0, 1}*, any subsets 𝑆, 𝑆′ ⊆ [𝑛] of size at least 𝑡 used in Combine({(𝑖, 𝑧𝑖)}𝑖∈𝑆 , 𝑝𝑝DPRF)
output the same 𝑧.

Pr
[︀
Combine({(𝑖, 𝑧𝑖)}𝑖∈𝑆 , 𝑝𝑝DPRF) = Combine({(𝑗, 𝑧𝑗)}𝑗∈𝑆′ , 𝑝𝑝DPRF) ̸= ⊥

]︀
= 1

where 𝑧𝑖 ← Eval(𝑠𝑘𝑖, 𝑥, 𝑝𝑝DPRF) for 𝑖 ∈ 𝑆 and 𝑧𝑗 ← Eval(𝑠𝑘𝑗 , 𝑥, 𝑝𝑝DPRF) for 𝑗 ∈ 𝑆′.

Definition 2 (Pseudorandomness [2, Def. 5.3]). A DPRF is pseudorandom if the output of
Combine appears pseudorandom independently of the evaluations used, even if some evaluations
are corrupted. No information should be gained on the output without the knowledge of at least 𝑡
evaluations. DPRF is pseudorandom for all PPT adversaries if there exists a negligible function
such that: ⃒⃒⃒

Pr
[︀
PseudoRand𝒜

DPRF(1𝑘, 0) = 1
]︀
− Pr

[︀
PseudoRand𝒜

DPRF(1𝑘, 1) = 1
]︀⃒⃒⃒
≤ negl(𝑘)

where PseudoRand𝒜
DPRF(1𝑘, 𝑏) is the following:

Initialization. Run Setup(1𝑘, 𝑛, 𝑡) to get ({𝑠𝑘𝑖}𝑛
𝑖=1, 𝑝𝑝DPRF). Give 𝑝𝑝DPRF to 𝒜. Initialize a list

𝐿 := ∅ to record the set of values for which 𝒜 may know the PRF outputs.
Corruption. Receive the set of corrupt parties 𝐶 from 𝒜, where |𝐶| < 𝑡. Give the secret keys
{𝑠𝑘𝑖}𝑖∈𝐶 of these parties to 𝒜. Define the corruption gap as 𝛿 := 𝑡− |𝐶|.
Pre-challenge evaluation queries. In response to 𝒜’s evaluation query
(Eval, 𝑥, 𝑖) for some 𝑖 ∈ [𝑛] ∖ 𝐶, return Eval(𝑠𝑘𝑖, 𝑥, 𝑝𝑝DPRF) to 𝒜. Repeat this step as many times
as 𝒜 desires.
Build the list. Add an 𝑥 to 𝐿 if #{𝑖 | 𝒜 made a (Eval, 𝑥, 𝑖) query} ≥ 𝛿. In other words, if 𝒜 contacts
at least 𝛿 honest parties on a value 𝑥, it has enough information to compute the PRF output on 𝑥.
Challenge. 𝒜 outputs (Challenge, 𝑥⋆, 𝑆, {(𝑖, 𝑧⋆

𝑖 )}𝑖∈𝑈 ) such that |𝑆| ≥ 𝑡 and 𝑈 ⊆ 𝑆 ∩ 𝐶. If 𝑥⋆ ∈ 𝐿,
output 0 and stop. Let 𝑧𝑖 ← Eval(𝑠𝑘𝑖, 𝑥⋆, 𝑝𝑝DPRF) for 𝑖 ∈ 𝑆 ∖ 𝑈 and 𝑧⋆ ← Combine({(𝑖, 𝑧𝑖)}𝑖∈𝑆∖𝑈 ∪
{(𝑖, 𝑧⋆

𝑖 )}𝑖∈𝑈 ). If 𝑧⋆ = ⊥, return ⊥. Else, if 𝑏 = 0, return 𝑧⋆; otherwise, return a random uniform
value.
Post-challenge evaluation queries. Same as the pre-challenge phase except that if 𝒜 makes a
query of the form (Eval, 𝑥⋆, 𝑖) for some 𝑖 ∈ [𝑛] ∖𝐶 and 𝑖 is the 𝛿-th party it contacted, then output 0
and stop.
Guess. Finally, 𝒜 returns a guess 𝑏′. Output 𝑏′.

Definition 3 (Correctness [2, Def. 5.4]). DPRF is correct if the output of Combine is the
expected output; either there are no corruptions and the true output is computed, or the corruption
is detected. This is true for all PPT adversaries if there exists a negligible function such that:

Pr
[︀
Correctness𝒜

DPRF(1𝑘) = 1
]︀
≥ 1− negl(𝑘)

where Correctness𝒜
DPRF(1𝑘) is the following:
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Initialization. Run Setup(1𝑘, 𝑛, 𝑡) to get ({𝑠𝑘𝑖}𝑛
𝑖=1, 𝑝𝑝DPRF). Give 𝑝𝑝DPRF to 𝒜.

Corruption. Receive the set of corrupt parties 𝐶 from 𝒜, where |𝐶| < 𝑡. Give the secret keys
{𝑠𝑘𝑖}𝑖∈𝐶 of these parties to 𝒜.
Evaluation. In response to 𝒜’s evaluation query (Eval, 𝑥, 𝑖) for some 𝑖 ∈ [𝑛] ∖𝐶, return Eval(𝑠𝑘𝑖, 𝑥,
𝑝𝑝DPRF) to 𝒜. Repeat this step as many times as 𝒜 desires.
Computation. Receive a set 𝑆 of size at least 𝑡, an input 𝑥⋆ and evaluations {(𝑖, 𝑧⋆

𝑖 )}𝑖∈𝑆∩𝐶 from
𝒜. Let 𝑧𝑗 ← Eval(𝑠𝑘𝑗 , 𝑥⋆, 𝑝𝑝DPRF) for 𝑗 ∈ 𝑆 and 𝑧′

𝑖 ← Eval(𝑠𝑘𝑖, 𝑥⋆, 𝑝𝑝DPRF) for 𝑖 ∈ 𝑆 ∖ 𝐶. Also, let
𝑧 ← Combine({(𝑗, 𝑧𝑗)}𝑗∈𝑆 , 𝑝𝑝DPRF) and 𝑧⋆ ← Combine({(𝑖, 𝑧′

𝑖)}𝑖∈𝑆∖𝐶 ∪ {(𝑖, 𝑧⋆
𝑖 )}𝑖∈𝑆∩𝐶). Output 1 if

𝑧⋆ ∈ {𝑧,⊥}; else, output 0.

Definition 4 (DPRF security). A DPRF is secure if it satisfies consistency (Def. 1) and pseudo-
randomness (Def. 2); it is strongly-secure if it also satisfies correctness (Def. 3). A strongly-secure
DPRF ensures that the output of Combine cannot be corrupted by adversaries.

2.3 Threshold Symmetric Encryption (TSE)
A TSE scheme makes use of two distributed protocols to interactively encrypt messages or decrypt
ciphertexts with the help of a threshold 𝑡 number of parties. It can be described as a tuple of three
algorithms (Setup, DistEnc, DistDec):

Setup(1𝑘, 𝑛, 𝑡)→ (J𝑠𝑘K[𝑛], 𝑝𝑝): Randomized algorithm that takes a security parameter 1𝑘, a num-
ber of parties 𝑛 and a threshold 𝑡; outputs 𝑛 secret shares and public parameters. The share 𝑠𝑘𝑖 is
given to party 𝑖 for all 𝑖 ∈ [𝑛].

DistEnc(J𝑠𝑘K[𝑛], [𝑗 : 𝑚, 𝑆], 𝑝𝑝) → [𝑗 : 𝑐/⊥]: Distributed protocol where an initiating party 𝑗

encrypts a message 𝑚 with the help of 𝑡 parties in 𝑆 (|𝑆| ≥ 𝑡) to generate an authenticated ciphertext
𝑐. Only the party 𝑗 knows the message 𝑚 and the set 𝑆. Similary, 𝑗 is the only party that learns the
output 𝑐/⊥.

DistDec(J𝑠𝑘K[𝑛], [𝑗 : 𝑐, 𝑆], 𝑝𝑝) → [𝑗 : 𝑚/⊥]: Distributed protocol where an initiating party 𝑗

decrypts an authenticated ciphertext 𝑐 with the help of 𝑡 parties in 𝑆 (|𝑆| ≥ 𝑡) to recover the
message 𝑚. Only the party 𝑗 knows the ciphertext 𝑐 and the set 𝑆. Similary, 𝑗 is the only party that
learns the message 𝑚 or ⊥.

In various definitions provided below, (indirect) encryption and (indirect) decryption queries are
represented as two separated steps to improve readability. However, the adversary is allowed to
alternate between encryption and decryption queries. Intuitively, the correctness definition follows
the standard authenticated encryption definition, message privacy can be seen as a distributed
variant of IND-CPA security while authenticity satisfies a variant of ciphertext integrity.

Definition 5 (Consistency). TSE is consistent if for any 𝑛, 𝑡 ∈ N, 𝑡 ≤ 𝑛 and all (J𝑠𝑘K[𝑛], 𝑝𝑝)
output by Setup, it holds that for any message 𝑚, any two sets 𝑆, 𝑆′ ⊆ [𝑛] of size at least 𝑡 and
any two parties 𝑗 ∈ 𝑆, 𝑗′ ∈ 𝑆′, can be used to execute a distributed encryption and a distributed
decryption with high probability when all parties behave honestly:

Pr
[︁
[𝑗′ : 𝑚]← DistDec(J𝑠𝑘K[𝑛], [𝑗′ : 𝑐, 𝑆′], 𝑝𝑝) |

[𝑗 : 𝑐]← DistEnc(J𝑠𝑘K[𝑛], [𝑗 : 𝑚, 𝑆], 𝑝𝑝)
]︁
≥ 1− negl(𝑘)

Definition 6 (Correctness [2, Def. 6.4]). TSE is correct if all ciphertexts 𝑐 output by DistEnc,
either result in the original message 𝑚 or in ⊥ when decrypted with DistDec. Formally, TSE is
correct if for all PPT adversaries 𝒜 there exists a negligible function such that:

Pr
[︀
Correctness𝒜

TSE(1𝑘) = 1
]︀
≥ 1− negl(𝑘)
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where Correctness𝒜
TSE(1𝑘) is the following:

Initialization. Run Setup(1𝑘, 𝑛, 𝑡) to get (J𝑠𝑘K[𝑛], 𝑝𝑝). Give 𝑝𝑝 to 𝒜.
Corruption. Receive the set of corrupt parties 𝐶 from 𝒜, where |𝐶| < 𝑡. Give the secret keys
{𝑠𝑘𝑖}𝑖∈𝐶 of these parties to 𝒜.
Encryption. Receive (Encrypt, 𝑗, 𝑚, 𝑆) from 𝒜 where 𝑗 ∈ 𝑆 ∖ 𝐶 and |𝑆| ≥ 𝑡. Initiate DistEnc from
party 𝑗 with inputs 𝑚, 𝑆 and 𝑝𝑝. If 𝑗 outputs 𝑐 = ⊥ at the end, output 1 and stop. Otherwise,
continue.
Decryption. Receive (Decrypt, 𝑗′, 𝑆′) from 𝒜 where 𝑗′ ∈ 𝑆′ ∖ 𝐶 and |𝑆′| ≥ 𝑡. Initiate DistDec from
party 𝑗′ with inputs 𝑐, 𝑆′, 𝑝𝑝. Let 𝑚⋆ be the output of 𝑗′. Note that 𝑗′ (resp. 𝑆′) may be equal to 𝑗
(resp. 𝑆).
Output. Output 1 if 𝑚⋆ ∈ {𝑚,⊥}, 0 otherwise.

TSE is a strongly correct scheme if it satisfies correctness, but with the following output step:
Output. If all the parties contacted during DistDec behaved honestly, output 1 iff 𝑚⋆ = 𝑚. Otherwise,
if some parties behaved maliciously, output 1 if 𝑚⋆ ∈ {𝑚,⊥}. Output 0 if all conditions are false.

Definition 7 (Message privacy [2, Def. 6.6]). TSE is message private if an adversary 𝒜 can-
not distinguish between the distributed encryption of two chosen messages. Formally, TSE satisfies
message privacy if for all PPT adversaries 𝒜 there exists a negligible function such that:⃒⃒⃒

Pr
[︀
MsgPriv𝒜

TSE(1𝑘, 0) = 1
]︀
− Pr

[︀
MsgPriv𝒜

TSE(1𝑘, 1) = 1
]︀⃒⃒⃒
≤ negl(𝑘)

where MsgPriv𝒜
TSE(1𝑘, 𝑏) is the following:

Initialization. Run Setup(1𝑘, 𝑛, 𝑡) to get (J𝑠𝑘K[𝑛], 𝑝𝑝). Give 𝑝𝑝 to 𝒜.
Corruption. Receive the set of corrupt parties 𝐶 from 𝒜, where |𝐶| < 𝑡. Give the secret keys
{𝑠𝑘𝑖}𝑖∈𝐶 of these parties to 𝒜.
Pre-challenge encryption queries. In reply to 𝒜’s encryption query (Encrypt, 𝑗, 𝑚, 𝑆) where
𝑗 ∈ 𝑆 and |𝑆| ≥ 𝑡, do the following. If 𝑗 ∈ 𝐶, run an instance of DistEnc with 𝒜. Otherwise, if
𝑗 ̸∈ 𝐶, initiate an instance of DistEnc from party 𝑗 with inputs 𝑚, 𝑆 and 𝑝𝑝; the output of 𝑗 is given
to 𝒜. Repeat this step as many times as requested.
Pre-challenge indirect decryption queries. In reply to 𝒜’s decryption query (Decrypt, 𝑗, 𝑐, 𝑆)
where 𝑗 ∈ 𝑆 ∖ 𝐶 and |𝑆| ≥ 𝑡, party 𝑗 initiates DistDec with inputs 𝑐, 𝑆 and 𝑝𝑝. Repeat this step as
many times as requested.
Challenge. 𝒜 outputs (Challenge, 𝑗⋆, 𝑚0, 𝑚1, 𝑆⋆) where len(𝑚0) = len(𝑚1), 𝑗 ∈ 𝑆⋆ ∖𝐶 and |𝑆⋆| ≥ 𝑡.
Initiate DistEnc from party 𝑗⋆ with inputs 𝑚𝑏, 𝑆⋆ and 𝑝𝑝. Let 𝑐⋆/⊥ be the output of 𝑗⋆ at the end of
DistDec. Give 𝑐⋆/⊥ to 𝒜.
Post-challenge encryption queries. Same as Pre-challenge encryption
queries.
Post-challenge indirect decryption queries. Same as Pre-challenge indirect decryption queries.
Guess. Finally, 𝒜 returns a guess 𝑏′. Output 𝑏′.

Definition 8 (Authenticity [2, Def. 6.8]). The standard notion of TSE authenticity ensures
that adversaries cannot forge a ciphertext when all parties behave honestly during the decryption. In
the game, the attacker learns 𝑙 ciphertexts via encryption/decryption queries and must output one
more ciphertext that decrypts into a message to win the authenticity game. Formally, TSE satisfies
authenticity if for all PPT adversaries 𝒜 there exists a negligible function such that:

Pr
[︀
Auth𝒜

TSE(1𝑘) = 1
]︀
≤ negl(𝑘)
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where Auth𝒜
TSE(1𝑘) is the following:

Initialization. Run Setup(1𝑘, 𝑛, 𝑡) to get (J𝑠𝑘K[𝑛], 𝑝𝑝). Give 𝑝𝑝 to 𝒜. Initialize a counter ct := 0
and an ordered list 𝐿ctxt := ∅.
Corruption. Receive the set of corrupt parties 𝐶 from 𝒜, where |𝐶| < 𝑡. Give the secret keys
{𝑠𝑘𝑖}𝑖∈𝐶 of these parties to 𝒜. Define the corruption gap as 𝛿 := 𝑡− |𝐶|.
Encryption queries. On receiving (Encrypt, 𝑗, 𝑚, 𝑆) from 𝒜 where 𝑗 ∈ 𝑆 and |𝑆| ≥ 𝑡, do the
following. If 𝑗 ∈ 𝐶, run an instance of DistEnc with 𝒜 and increment ct by |𝑆 ∖𝐶| (i.e. the number
of honest parties in set 𝑆). Otherwise, if 𝑗 ̸∈ 𝐶, initiate an instance of DistEnc from party 𝑗 with
inputs 𝑚, 𝑆, 𝑝𝑝 and append the ciphertext generated at the end to 𝐿ctxt.
Decryption queries. On receiving (Decrypt, 𝑗, 𝑐, 𝑆) from 𝒜 where 𝑗 ∈ 𝑆 and |𝑆| ≥ 𝑡, do the
following. If 𝑗 ∈ 𝐶, run an instance of DistDec with 𝒜 and increment ct by |𝑆 ∖𝐶| (i.e. the number
of honest parties in set 𝑆). Otherwise, if 𝑗 ̸∈ 𝐶, initiate an instance of DistEnc from party 𝑗 with
inputs 𝑐, 𝑆, 𝑝𝑝.
Targeted decryption queries. On receiving (TargetDecrypt, 𝑗, ℓ, 𝑆) from 𝒜 where 𝑗 ∈ 𝑆 ∖ 𝐶 and
|𝑆| ≥ 𝑡, initiate an instance of DistDec from party 𝑗 with inputs 𝑐, 𝑆, 𝑝𝑝. For this type of query, 𝑐
is the ℓ-th element of 𝐿ctxt.
Forgery. Let 𝑙 := ⌊ct/𝛿⌋. 𝒜 outputs ((𝑗1, 𝑆1, 𝑐1), . . . , (𝑗𝑙+1, 𝑆𝑙+1, 𝑐𝑙+1)) where 𝑗𝑖 ̸∈ 𝐶 and |𝑆𝑖| ≥ 𝑡 for
every 𝑖 ∈ [𝑙 + 1] and 𝑐𝑢 ̸= 𝑐𝑣 for any 𝑢 ̸= 𝑣 ∈ [𝑙 + 1] (i.e. ciphertexts are not repeated). For every
𝑖 ∈ [𝑙 + 1], party 𝑗 initiates DistDec with inputs 𝑐𝑖, 𝑆𝑖, 𝑝𝑝. In that instance, all parties in 𝑆𝑖 are
required to behave honestly. Output 0 if any 𝑗𝑖 outputs ⊥. Otherwise, output 1.

TSE satisfies strong authenticity if it satisfies authenticity with a modified forgery phase; the
parties are not required to behave honestly during the verification of the forgery. This ensures that
adversaries cannot forge ciphertexts when distributed decryption is used.

Definition 9 (TSE security). A TSE scheme is (strongly) secure if it is consistent (Def. 5),
satisfies (strong) correctness (Def. 6), message privacy (Def. 7) and (strong) authenticity (Def. 8).

A strongly secure TSE scheme is required in two different scenarios; either when distributed
decryption is necessary, or when the ciphertexts are not decrypted quickly. The former is to prevent
forgeries during the distributed decryption. The latter provides a guarantee that the ciphertext was
properly encrypted; otherwise, the generated ciphertext may be invalid due to corruptions during
the distributed encryption, and will never decrypt into the original message. Looking forward, a
strongly secure DPRF is sufficient to make both DiSE and DiAE strongly secure TSE schemes.

2.4 Encryptment scheme [16]

An encryptment scheme EC is a form of committing encryption where the ciphertext/tag is a commit-
ment to the encryption key (and optionally the authenticated data) in addition to the message. The
encryptment scheme described by Dodis et al. [16] is a tuple of algorithms EC := (EKg, EC, DO, EVer):

EKg → 𝐾EC: Takes no input and generates a key 𝐾EC at random.
EC(𝐾EC, 𝐴, 𝑚) → (𝑐EC, 𝜏EC): Committing encryption with the key 𝐾EC on the message 𝑚 and

the associated data (AD) 𝐴, where 𝑐EC is the ciphertext and 𝜏EC the binding tag. We refer to the
pair (𝑐EC, 𝜏EC) as an encryptment.

DO(𝐾EC, 𝐴, 𝑐EC, 𝜏EC) → 𝑚/⊥: Decryption with the key 𝐾EC on the encryptment (𝑐EC, 𝜏EC) and
the AD 𝐴.

EVer(𝐴, 𝑚, 𝐾EC, 𝜏EC) → 𝑏: Verification of a binding tag 𝜏EC for a AD/message pair (𝐴, 𝑚) with
the key 𝐾EC. If 𝑏 = 1, the verification succeeded, otherwise it failed.

Looking forward, a single call to DO is sufficient to decrypt and verify an encryptment.
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Definition 10 (Correctness). EC is correct if all honestly generated encryptments decrypt to the
original message and verify with probability 1, i.e.,

Pr
[︀
COREC(𝐴, 𝑚) = 1

]︀
= 1

where COREC is described in Fig. 1.

COREC(𝐴, 𝑚):
𝐾EC ←$ EKg
(𝑐EC, 𝜏EC)← EC(𝐾EC, 𝐴, 𝑚)
𝑚′ ← DO(𝐾EC, 𝐴, 𝑐EC, 𝜏EC)
𝑏← EVer(𝐴, 𝑚′, 𝐾EC, 𝜏EC)
Return (𝑚 = 𝑚′ ∧ 𝑏 = 1)

S-COREC(𝐾EC, 𝐴, 𝑐EC, 𝜏EC):
𝑚← DO(𝐾EC, 𝐴, 𝑐EC, 𝜏EC)
(𝑐′

EC, 𝜏 ′
EC)← EC(𝐾EC, 𝐴, 𝑚)

𝑏 := (𝑐EC, 𝜏EC) = (𝑐′
EC, 𝜏 ′

EC)
Return 𝑏

Fig. 1: COR and S-COR games

Definition 11 (Strong correctness). EC is strongly correct if for all AD, message, key pair
there is a unique encryptment (𝑐EC, 𝜏EC) such that 𝑚← DO(𝐾EC, 𝐴, 𝑐EC, 𝜏EC), i.e.,

Pr
[︀
S-COREC(𝐾EC, 𝐴, 𝑐EC, 𝜏EC) = 1

]︀
= 1

where S-COREC is described in Fig. 1.

Definition 12 (Confidentiality). EC is confidential if it satisfies one-time real-or-random (otROR)
security. Given a real encryptment (𝑐EC, 𝜏EC) under a chosen message/authenticated data pair and
an encryptment sampled uniformly at random, they must be indistinguishable to the adversary 𝒜.

Definition 13 (Second-ciphertext unforgeability). EC satisfies SCU if given a single encrypt-
ment (𝑐EC, 𝜏EC) for a chosen (𝑚, 𝐴) pair under a random key 𝐾EC, 𝒜 is unable to find a pair
(𝐴′, 𝑐′

EC) ̸= (𝐴, 𝑐EC) such that
DO(𝐾EC, 𝐴′, 𝑐′

EC, 𝜏EC) ̸= ⊥.

Definition 14 (Binding security). Two notions of binding security are required for EC schemes;
strong receiver binding sr-BIND and sender binding s-BIND. sr-BIND requires that an adversary 𝒜
cannot find a tag 𝜏EC and two distinct triplets (𝐴, 𝑚, 𝐾EC) ̸= (𝐴′, 𝑚′, 𝐾 ′

EC) that both pass verification
with 𝜏EC. The sr-BIND advantage of 𝒜 is:

Advsr-bind
EC (𝒜) = Pr

[︀
sr-BIND𝒜

EC = true
]︀

where sr-BIND𝒜
EC is described in Fig. 2.

s-BIND ensures that an adversary cannot generate a key, associated data, encryptment tuple (𝐾EC,
𝐴, 𝑐EC, 𝜏EC) that decrypts into a message 𝑚 but fails verification. The advantage of 𝒜 is:

Advs-bind
EC (𝒜) = Pr

[︀
s-BIND𝒜

EC = true
]︀

where s-BIND𝒜
EC is described in Fig. 2.

Definition 15 (Integrity). EC satisfies otCTXT (one-time ciphertext integrity) if an adversary
𝒜 is unable to forge an encryptment. I.e., given an encryptment (𝑐EC, 𝜏EC) for chosen (𝑚, 𝐴) under
the key 𝐾EC, 𝒜 cannot find a valid tuple (𝐴′, 𝑐′

EC, 𝜏 ′
EC) ̸= (𝐴, 𝑐EC, 𝜏EC) that decrypts correctly.
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sr-BIND𝒜
EC:

(𝑉1, 𝑉2, 𝜏EC)←$ 𝒜
(𝐴, 𝑚, 𝐾EC) := 𝑉1
(𝐴′, 𝑚′, 𝐾′

EC) := 𝑉2
𝑏← EVer(𝐴, 𝑚, 𝐾EC, 𝜏EC)
𝑏′ ← EVer(𝐴′, 𝑚′, 𝐾′

EC, 𝜏EC)
If 𝑉1 = 𝑉2 then

Return false
Return 𝑏 = 𝑏′ = 1

s-BIND𝒜
EC:

(𝐾EC, 𝐴, 𝑐EC, 𝜏EC)←$ 𝒜
𝑚′ ← DO(𝐾EC, 𝐴, 𝑐EC, 𝜏EC)
If 𝑚′ = ⊥ then

Return false
𝑏← EVer(𝐴, 𝑚′, 𝐾EC, 𝜏EC)
If 𝑏 = 0 then

Return true
Return false

Fig. 2: sr-BIND and s-BIND games

3 Flaws in DiSE
The DiSE construction by Agrawal et al. [2] is an instance of TSE (Sect. 2.3) combining a DPRF
(Sect. 2.2), a pseudorandom generator PRG and a commitment scheme Com (Def. B.18). We outline
the construction here and refer to the original publication for full details.

3.1 DiSE and DPRFs

DiSE.Setup runs DPRF.Setup and Setupcom and outputs the DPRF key shares {𝑠𝑘𝑖}𝑛
𝑖=1, as well as

the respective public parameters 𝑝𝑝DPRF, 𝑝𝑝com bundled together. The key shares are computed with
Shamir’s Secret Sharing [38] from a secret 𝑠, 𝑡 shares can be used to recompute the secret 𝑠.

The party 𝑗 initiating DiSE.DistEnc to encrypt 𝑚 with a set of parties 𝑆 first computes 𝛼 ←
Commit(𝑚, 𝑝𝑝com; 𝜌) with fresh coins 𝜌. Then each party 𝑖 ∈ 𝑆 (including 𝑗) runs 𝑧𝑖 ← Eval(𝑠𝑘𝑖, 𝑗‖𝛼,
𝑝𝑝DPRF) and sends 𝑧𝑖 to 𝑗. Finally, 𝑗 computes 𝑧 ← Combine({(𝑖, 𝑧𝑖)}𝑖∈𝑆 , 𝑝𝑝DPRF) and outputs the
ciphertext tuple (𝑗, 𝛼, PRG(𝑧)⊕ (𝑚‖𝜌)). The underlying PRF of the DPRF is 𝑓𝑠(𝑥) = ℋ(𝑥)𝑠.

DiSE.DistDec of a ciphertext tuple (𝑗, 𝛼, 𝑐) proceeds analogously, except that the decrypting
party extracts 𝑗 and 𝛼 from the ciphertext tuple, uses them as input to a DPRF evaluation. The
result 𝑧 of the latter is then used to decrypt 𝑐 as 𝑚‖𝜌 := PRG(𝑧) ⊕ 𝑐 and finally verify that 𝛼 =
Commit(𝑚, 𝑝𝑝Com; 𝜌) prior to releasing 𝑚.

DiSE can also be used in an “asymmetric” manner where the encryption (and/or the decryp-
tion) is executed by a single party, without using of the distributed protocol. This can be achieved
by storing the secret 𝑠 used to compute the DPRF key shares. This secret can then be used to
encrypt/decrypt without any interaction.

In their paper, Agrawal et al. [2] put forward multiple DPRFs, with two different security guar-
antees; secure DPRF (i.e. consistent and pseudorandom) and strongly-secure DPRF (i.e. consistent,
pseudorandom and correct). In this section, we revisit the security of the latter DPRFs. The pro-
posed strongly-secure DPRF, called ΠZK-DDH-DP, uses NIZK proofs in each evaluation to prove that
each party has computed the 𝑧 honestly alongside trapdoor commitments. During Combine, each
proof is verified; if all the proofs are valid, the output of Combine must be correct as well.

Agrawal et al. give two concrete instantiations of the generic ΠZK-DDH-DP, each with a different
NIZK construction and distinct properties: ΠZK-DDH-DP-Pub and ΠZK-DDH-DP-Pri. The former is publicly
verifiable, i.e., the verification only takes public parameters. Given the inputs/outputs, a third-party
can thus verify whether or not the output was computed honestly. The latter is privately verifiable,
i.e., not all NIZK parameters are public. The constructions are shown in Fig. 3. We show that both
these instantiations contain mistakes. The first one is present in the generic ΠZK-DDH-DP, and thus
also affects the two concrete instantiations, letting an attacker break the correctness of ΠZK-DDH-DP.
The second one, presumably a typo, is in the privately verifiable ΠZK-DDH-DP-Pri, where the used NIZK
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proof is broken (all NIZK evaluations fail to verify). ΠZK-DDH-DP-Pub uses Pedersen commitments [32]
and Schnorr-style proofs [37] as NIZK proof. Only the latter is required by ΠZK-DDH-DP-Pri.

Generic strongly-secure DPRF (ΠZK-DDH-DP)
Let 𝐺 = ⟨𝑔⟩ be a multiplicative cyclic group of prime order 𝑝 in which the DDH assumption holds,
ℋ : {0, 1}* → 𝐺 and ℋ′ : {0, 1}* → Z𝑝 be two hash functions modeled as random oracles. Let SSS be
Shamir’s secret sharing scheme (Def. B.17), TDC := (Setupcom, Commit) be a trapdoor commitment scheme
(Def. B.19) and NIZK := (Proveℋ′

, Verifyℋ′
) be a simulation-sound NIZK proof system (Def B.20).

– Setup(1𝑘, 𝑛, 𝑡) → ({𝑠𝑘𝑖}𝑛
𝑖=1, 𝑝𝑝DPRF). Sample 𝑠 ←$ Z𝑝 and get {𝑠𝑖}𝑛

𝑖=1 ← SSS(𝑛, 𝑡, 𝑝, 𝑠). Run
Setupcom(1𝑘) to get 𝑝𝑝com. Compute a commitment 𝛾𝑖 ← Commit(𝑠𝑖, 𝑝𝑝com; 𝑟𝑖) by picking 𝑟𝑖 at random.
Set 𝑝𝑝DPRF := (𝑝, 𝑔, 𝐺,ℋ,ℋ′, 𝛾1, . . . , 𝛾𝑛, 𝑝𝑝com), 𝑠𝑘𝑖 := (𝑠𝑖, 𝑟𝑖) and give 𝑠𝑘𝑖 to party 𝑖 for 𝑖 ∈ [𝑛].

– Eval(𝑠𝑘𝑖, 𝑥, 𝑝𝑝DPRF) → 𝑧𝑖. Compute 𝑤 := ℋ(𝑥) and ℎ𝑖 := 𝑤𝑠𝑖 . Run Proveℋ′
with the statement

stmt𝑖 : {∃𝑠, 𝑟 s.t. ℎ𝑖 = 𝑤𝑠 ∧ 𝛾𝑖 = Commit(𝑠, 𝑝𝑝com; 𝑟)} and witness (𝑠𝑖, 𝑟𝑖) to obtain a proof 𝜋𝑖. Output
((𝑤, ℎ𝑖), 𝜋𝑖).

– Combine({(𝑖, 𝑧𝑖)}𝑖∈𝑆 , 𝑝𝑝DPRF) → 𝑧/⊥. If |𝑆| < 𝑡, output ⊥. Else, parse 𝑧𝑖 as ((𝑤, ℎ𝑖), 𝜋𝑖) and check if
Verifyℋ′

(stmt𝑖, 𝜋𝑖) = 1 for all 𝑖 ∈ 𝑆. If check fails for any 𝑖, output ⊥. Else, output
∏︀

𝑖∈𝑆
ℎ

𝜆0,𝑖,𝑆

𝑖 .

Publicly verifiable DPRF (ΠZK-DDH-DP-Pub)

– Setupcom(1𝑘): Sample a generator ℎ←$ 𝐺 and output ℎ.
– Commit(𝑠, 𝑝𝑝com; 𝑟): Output 𝑔𝑠 · ℎ𝑟.
– Proveℋ′

(stmt𝑖, (𝑠𝑖, 𝑟𝑖)): Sample 𝑣𝑖, 𝑣′
𝑖 ←$ Z𝑝 and set 𝑡𝑖 := 𝑤𝑣𝑖 , 𝑡′

𝑖 := 𝑔𝑣𝑖 · ℎ𝑣′
𝑖 . Compute a hash 𝑐𝑖 ←

ℋ′(ℎ𝑖, 𝑤, 𝛾𝑖, 𝑔, ℎ, 𝑡𝑖, 𝑡′
𝑖) and the values 𝑢𝑖 := 𝑣𝑖−𝑐𝑖 ·𝑠𝑖 and 𝑢′

𝑖 := 𝑣′
𝑖−𝑐𝑖 ·𝑟𝑖. Output the proof (𝑐𝑖, 𝑢𝑖, 𝑢′

𝑖).
– Verifyℋ′

(stmt𝑖, (𝑐𝑖, 𝑢𝑖, 𝑢′
𝑖)): Compute 𝑡𝑖 := 𝑤𝑢𝑖 · ℎ𝑐𝑖

𝑖 and 𝑡′
𝑖 := 𝑔𝑢𝑖 · ℎ𝑢′

𝑖 · 𝛾𝑐𝑖
𝑖 . Output 1 if 𝑐𝑖 =

ℋ′(ℎ𝑖, 𝑤, 𝛾𝑖, 𝑔, ℎ, 𝑡𝑖, 𝑡′
𝑖). Output 0 otherwise.

Privately verifiable DPRF (ΠZK-DDH-DP-Pri)

– Setup(1𝑘, 𝑛, 𝑡) → ({𝑠𝑘𝑖}𝑛
𝑖=1, 𝑝𝑝DPRF). Sample 𝑠 ←$ Z𝑝 and get {𝑠𝑖}𝑛

𝑖=1 ← SSS(𝑛, 𝑡, 𝑝, 𝑠). Set 𝑝𝑝com :=
(𝑝, 𝑔, 𝐺,ℋ,ℋ′) and 𝑠𝑘𝑖 := (𝑠𝑖, {𝑔𝑠𝑗}𝑛

𝑗=1) for 𝑖 ∈ [𝑛].a

– Eval(𝑠𝑘𝑖, 𝑥, 𝑝𝑝DPRF) → 𝑧𝑖. Compute 𝑤 ← ℋ(𝑥) and ℎ𝑖 := 𝑤𝑠𝑖 . Sample 𝑣𝑖 ←$ Z𝑝 and set 𝑡𝑖 := 𝑔𝑣𝑖 .
Compute a hash 𝑐𝑖 ← ℋ′(ℎ𝑖, 𝑤, 𝑔𝑠𝑖 , 𝑔, 𝑡𝑖) and the value 𝑢𝑖 := 𝑣𝑖 − 𝑐𝑖 · 𝑠𝑖. Set (𝑐𝑖, 𝑢𝑖) as the proof 𝜋𝑖.
Output ((𝑤, ℎ𝑖), 𝜋𝑖).

– Verifyℋ′
(stmt𝑖, (𝑐𝑖, 𝑢𝑖)): Compute 𝑡𝑖 := 𝑤𝑢𝑖 · ℎ𝑐𝑖

𝑖 . Output 1 if 𝑐𝑖 = ℋ′(ℎ𝑖, 𝑤, 𝑔𝑠𝑖 , 𝑔, 𝑡𝑖). Output 0 other-
wise.

a We include the commitments in the key shares similarly to the latest version of the DiSE paper [4]

Fig. 3: DPRF constructions by Agrawal et al. [2]. The fixed generic ΠZK-DDH-DP and fixed privately verifiable
ΠZK-DDH-DP-Pri constructions are obtained by replacing the gray boxes with the content of Figures 4 and 5,
respectively.

3.2 Attack on the generic construction ΠZK-DDH-DP

The generic DPRF called ΠZK-DDH-DP (see Fig. 3) suffers from a flaw in the application of the NIZK
proof. This allows a malicious attacker to break the correctness property with a probability of 1. In
short, the value 𝑤 used in the computation of the proof is not validated during the verification. An
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adversary may output a corrupt value 𝑤, such that the NIZK proof verifies but an incorrect value is
output by Combine nonetheless.

For example, say an adversary outputs the following partial evaluation with a corrupt 𝑤: ((𝑤⋆, ℎ⋆
𝑖 ), 𝜋𝑖)

where 𝑤⋆ ̸= ℋ(𝑥), ℎ⋆
𝑖 = 𝑤⋆𝑠𝑖 . The proof 𝜋𝑖 is created by building the statement stmt𝑖 : {∃ 𝑠, 𝑟 s.t. ℎ⋆

𝑖 =
𝑤⋆𝑠∧𝛾𝑖 = Commit(𝑠, 𝑝𝑝com; 𝑟)} and witnessing (𝑠𝑖, 𝑟𝑖). One can see that (𝑠, 𝑟) are verified in Combine
using the public parameter 𝛾𝑖; thus an attacker must use a valid share. However, the validity of ℎ⋆

𝑖

involves an extra parameter, 𝑤⋆, which is not verified. In other words, outputting a corrupt 𝑤, but
computing ℎ𝑖 with a valid share is enough to pass the verification of the proof and output an invalid
value at the end of Combine. This breaks the correctness property of ΠZK-DDH-DP.

The same issue is present in ΠZK-DDH-DP-Pub and (presumably, see below) ΠZK-DDH-DP-Pri. A TSE
scheme instantiated with a DPRF that does not satisfy correctness fails to satisfy the strongly secure
definition. As indicated in Sect. 2.3, this may lead to forgeries during the distributed decryption and
can corrupt the distributed encryption, rendering ciphertexts “undecryptable”.

Definition 16. Agrawal et al. [2] parses the evaluations as ((𝑤, ℎ𝑖), (𝑐𝑖, 𝑢𝑖)), it should be noted that
the same 𝑤 is obtained from all the evaluations. This could be seen as suggesting implicitly that the
implementations verify the correctness of 𝑤. However, with no explicit check present, implementa-
tions of the protocol faithfully following the original pseudocode would be vulnerable.

3.3 Flaw in the concrete construction ΠZK-DDH-DP-Pri

A closer scrutiny of ΠZK-DDH-DP-Pri (see Fig. 3) reveals another issue: the generation and the verifi-
cation of the NIZK proof are incompatible. The proof, as defined in Eval, computes 𝜋𝑖 = (𝑐𝑖, 𝑢𝑖) =
(ℋ′(ℎ𝑖, 𝑤, 𝑔𝑠𝑖 , 𝑔, 𝑡𝑖), 𝑣𝑖− 𝑐𝑖 · 𝑠𝑖) where 𝑣𝑖 ←$ Z𝑝 and 𝑡𝑖 := 𝑔𝑣𝑖 . Later in Combine, the proof is verified
by computing 𝑡𝑖 := 𝑤𝑢𝑖 · ℎ𝑐𝑖

𝑖 = 𝑤𝑣𝑖−𝑐𝑖·𝑠𝑖 · 𝑤𝑐𝑖·𝑠𝑖 = 𝑤𝑣𝑖 . Seeing that the variable 𝑡𝑖 = 𝑤𝑣𝑖 computed
here is statistically independent of 𝑡𝑖 = 𝑔𝑣𝑖 computed in Eval, the proof is considered invalid with
overwhelming probability and virtually every honest DPRF evaluation will be considered invalid and
fail.

We believe that this was likely the result of a typo.3 As the mistake was not spotted, it is safe
to assume it has been an inconspicuous one. A likely candidate is an accidental replacement of 𝑤 by
𝑔 in Eval, yielding 𝑡𝑖 := 𝑔𝑣𝑖 instead of 𝑡𝑖 := 𝑤𝑣𝑖 . Indeed, substituting the former term by the latter
in Eval lets us validate the proofs in Combine. However, upon analysis of this construction, we show
this construction is also broken even assuming a typo; see next section.
3.4 A non-fix of ΠZK-DDH-DP-Pri

We turn our attention to a variant of ΠZK-DDH-DP-Pri that we believe to be the likeliest intention of
Agrawal et al., named ΠZK-DDH-DP-Pri⋆ . As introduced beforehand, this is the same as ΠZK-DDH-DP-Pri
except for one small change in Eval highlighted below:

– Eval(𝑠𝑘𝑖, 𝑥, 𝑝𝑝DPRF)→ 𝑧𝑖. Compute 𝑤 ← ℋ(𝑥) and ℎ𝑖 := 𝑤𝑠𝑖 . Sample 𝑣𝑖 ←$ Z𝑝 and set 𝑡𝑖 := 𝑤𝑣𝑖 .
Compute a hash 𝑐𝑖 ← ℋ′(ℎ𝑖, 𝑤, 𝑔𝑠𝑖 , 𝑔, 𝑡𝑖) and the value 𝑢𝑖 := 𝑣𝑖 − 𝑐𝑖 · 𝑠𝑖. Set (𝑐𝑖, 𝑢𝑖) as the proof
𝜋𝑖. Output ((𝑤, ℎ𝑖), 𝜋𝑖).

While this modification allows to verify the proof and compute the output of the DPRF, the re-
sulting construction fails to satisfy the DPRF correctness property and is not strongly-secure as a
consequence.

A proof 𝜋𝑖 now consists of (𝑐𝑖 = ℋ′(ℎ𝑖, 𝑤, 𝑔𝑠𝑖 , 𝑔, 𝑡𝑖), 𝑢𝑖 = 𝑣𝑖−𝑐𝑖 ·𝑠𝑖) where 𝑣𝑖 ←$ Z𝑝 and 𝑡𝑖 := 𝑤𝑣𝑖 .
The proof is verified by recovering 𝑡𝑖 = 𝑤𝑢𝑖 · ℎ𝑐𝑖

𝑖 = 𝑤𝑣𝑖−𝑐𝑖·𝑠𝑖 · 𝑤𝑐𝑖·𝑠𝑖 = 𝑤𝑣𝑖 and checking that 𝑐𝑖 is
3 We were not able to find an updated version where this mistake is corrected, it appears to be present in

all 3 versions [2–4] published so far.
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equal to the hash. Unlike before, the same 𝑡𝑖 is recovered, thus the proof verifies. However, one can
see that this proof does not enforce the usage of the correct secret 𝑠𝑖 as no public parameters are
involved during the verification. In fact, the proof only enforces that the exponent used in computing
ℎ𝑖 = 𝑤𝑠𝑖 is equal to the one used to compute 𝑢𝑖 = 𝑣𝑖 − 𝑐𝑖 · 𝑠𝑖. An attacker can therefore break the
correctness of this DPRF by using any value instead of the true 𝑠𝑖.
3.5 Other vulnerable constructions
Due to the problem in the generic DPRF described above, some recent papers [5,11,27] suffer from a
similar issue in their modified distributed pseudorandom functions. For instance, in the Amortized
Threshold Symmetric-key Encryption scheme by Christodorescu et al. [11], the issue is present in
their strongly-secure FTKD construction. The notion of correctness can be attacked using a similar
method as the one described in Sect. 3.2.

4 DiAE: DiSE reloaded
In this section we first fix the DPRF constructions and then propose our new DiAE construction.
4.1 Fixing the DPRFs
We start by fixing the flaws presented in Section 3.
4.1.1 Generic construction. To fix the problems in the generic ΠZK-DDH-DP construction, the
variable 𝑤 must be validated across all output shares. This can be ensured either by making the
“correct” 𝑤 an input argument to Combine, or by checking inside Combine that the 𝑤 in every
output share is the same prior to releasing the output. We chose the latter for the sake of backwards
compatibility, as this allows a black-box reuse of existing implementations of Combine. As the security
model of DPRF requires at least one party to behave honestly, at least one 𝑤 is valid and DPRF
evaluations with malicious 𝑤⋆ ̸= 𝑤 will be detected. However, we cannot detect which parties
output a corrupted value. If a corruption is detected, the protocol has to be executed again with a
different set of parties. The changes in Combine from ΠZK-DDH-DP are defined in Fig. 4, we name this
construction ΠDDH-Gen.

– Combine({(𝑖, 𝑧𝑖)}𝑖∈𝑆 , 𝑝𝑝DPRF) → 𝑧/⊥. If |𝑆| < 𝑡, output ⊥. Else, parse 𝑧𝑖 as ((𝑤𝑖, ℎ𝑖), 𝜋𝑖). Check if
𝑤𝑖 = 𝑤𝑗 for all 𝑖, 𝑗 ∈ 𝑆, 𝑖 ̸= 𝑗. If check fails for any 𝑖, 𝑗, output ⊥. Check if Verifyℋ′

(stmt𝑖, 𝜋𝑖) = 1 for
all 𝑖 ∈ 𝑆. If check fails for any 𝑖, output ⊥. Else, output

∏︀
𝑖∈𝑆

ℎ
𝜆0,𝑖,𝑆

𝑖 .

Fig. 4: Updated Combine algorithm of ΠZK-DDH-DP

Theorem 1. ΠDDH-Gen is a strongly-secure DPRF under the DDH assumption in the programmable
random oracle model.

Proof. The proof consists of proving that ΠDDH-Gen is consistent (Lemma 1), pseudorandom (Lemma
2) and correct (Lemma 3). ⊓⊔

Lemma 1 (Consistency). ΠDDH-Gen satisfies the consistency property.

Proof. Consistency is straightforward as it is a property of Shamir’s Secret Sharing. ⊓⊔

Lemma 2 (Pseudorandomness). ΠDDH-Gen satisfies the pseudorandomness property.
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Proof. We only provide a short explanation on the additions to DiSE’s proof [3, Appendix C.5] to
reflect the changes in the construction. Essentially, the proof is the same, except for the addition of
an extra step in the challenge queries. Before the verification of the proofs, we add a new step that
outputs 0 if any 𝑤𝑖 ̸= ℋ(𝑥⋆) for 𝑖 ∈ [𝑢] where 𝑤𝑖 is provided by the adversary. While it differs from
the actual construction, this is allowed because 𝑥⋆ is a challenge query parameter that we use to
compute the honest evaluations; thus the two methods are equivalent.

⊓⊔

Lemma 3 (Correctness). ΠDDH-Gen satisfies the correctness property.

Proof. The proof is adapted from DiSE’s [3, Appendix C.5]. To prove correctness of ΠDDH-Gen, we will
exploit the extractability property of proofs and the binding property of commitments. We describe
the last step of the Correctness𝒜

DPRF(1𝑘) game in detail (the substitutions of generic pseudocode by
computations from the construction are highlighted in blue), the first three steps are the same as
PseudoRand′

𝒜(𝑏) (Lemma 2):

4. On the challenge query (Challenge, 𝑥⋆, 𝑆, ((𝑤1, ℎ⋆
1), 𝜋1), . . . , ((𝑤𝑢, ℎ⋆

𝑢), 𝜋𝑢)) for 𝑢 ≤ ℓ (without loss
of generality assume that 𝑆 ∩ 𝐶 = [𝑢]):
(a) If |𝑆| < 𝑡 or any ℋ(𝑥⋆) ̸= 𝑤𝑖, 𝑖 ∈ [𝑢] or any 𝜋1, . . . , 𝜋𝑢 do not verify, output 1.
(b) Else, compute ℎ𝑗 := ℋ(𝑥⋆)𝑠𝑗 for 𝑗 ∈ 𝑆, ℎ⋆

𝑖 := ℋ(𝑥⋆)𝑠𝑖 for 𝑖 ∈ 𝑆 ∖ 𝐶, 𝑧 :=
∏︀

𝑖∈𝑆 ℎ
𝜆0,𝑖,𝑆

𝑖 and
𝑧⋆ :=

∏︀
𝑖∈𝑆 ℎ

⋆𝜆0,𝑖,𝑆

𝑖 . If 𝑧⋆ = 𝑧, output 1.
(c) Else, output 0.

Suppose there exists an adversary 𝒜 s.t. the correctness game reaches the very last step (4c),
leading the challenger to output 0, with non-negligible probability. We will show that this leads to
a contradiction. Towards this, we define a few intermediate hybrid games. In the first hybrid game,
the hash function ℋ′ is replaced with the simulator 𝒮1 guaranteed by the zero-knowledge property
of NIZK.
In the second hybrid, instead of producing a zero in the very last step (4c), the challenger:

– finds an 𝑖⋆ ∈ [𝑢] s.t. ℎ⋆
𝑖⋆ ̸= ℎ𝑖⋆ (such an 𝑖⋆ exists because 𝑧⋆ ̸= 𝑧);

– invokes the extractor ℰ guaranteed by the argument of knowledge property on the adversary
with inputs (stmt𝑖⋆ , 𝜋𝑖⋆ , 𝑄) (𝑄 is the list of queries made to 𝒮1 and their responses); and,

– outputs whatever the extractor does.

If the first hybrid game reaches the very last step, it means that all 𝑤𝑖, 𝑖 ∈ [𝑢] and the proofs
provided by 𝒜 were valid. Thus, if the game outputs 0 with non-negligible probability, the challenger
will output a witness (𝑠′

𝑖⋆ , 𝑟′
𝑖⋆) for (stmti⋆ with non-negligible probability.

In the last hybrid, the challenger outputs (𝑠𝑖⋆ , 𝑟𝑖⋆) along with the extracted witness. Since ℎ⋆
𝑖⋆ ̸=

ℎ𝑖⋆ and 𝑤𝑖⋆ = ℋ(𝑥⋆), 𝑠′
𝑖⋆ ̸= 𝑠𝑖⋆ . Therefore, the challenger finds two distinct pairs (𝑠𝑖⋆ , 𝑟𝑖⋆) and

(𝑠′
𝑖⋆ , 𝑟′

𝑖⋆) that produce the same commitment (with non-negligible probability). This breaks the
binding property of TDC. ⊓⊔

4.1.2 Privately verifiable DPRF. For the privately verifiable DPRF, we start from the generic
strongly-secure ΠDDH-Gen (Fig. 4), use a trapdoor-less commitment and apply Schnorr style proofs [37]
to prove the equality of discrete logarithms. This leads to a proof system similar to those used and
proven secure in multiple papers [10,18,23]. We call this construction ΠDDH-Pri.

The modifications needed to obtain the updated privately verifiable DPRF from ΠZK-DDH-DP are
shown in Fig. 5.
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– Setup(1𝑘, 𝑛, 𝑡) → ({𝑠𝑘𝑖}𝑛
𝑖=1, 𝑝𝑝DPRF). Sample 𝑠 ←$ Z𝑝 and get {𝑠𝑖}𝑛

𝑖=1 ← SSS(𝑛, 𝑡, 𝑝, 𝑠). Set 𝑝𝑝com :=
(𝑝, 𝑔, 𝐺,ℋ,ℋ′), 𝑠𝑘𝑖 := (𝑠𝑖, {pk𝑗}𝑛

𝑗=1) where pk𝑗 = 𝑔𝑠𝑗 .
– Eval(𝑠𝑘𝑖, 𝑥, 𝑝𝑝DPRF) → 𝑧𝑖. Compute 𝑤𝑖 ← ℋ(𝑥) and ℎ𝑖 := 𝑤𝑠𝑖

𝑖 . Sample 𝑣𝑖 ←$ Z𝑝, set 𝑡𝑖 := 𝑔𝑣𝑖 and
𝑡′
𝑖 := 𝑤𝑣𝑖

𝑖 . Compute a hash 𝑐𝑖 ← ℋ′(ℎ𝑖, 𝑤𝑖, pk𝑖, 𝑔, 𝑡𝑖, 𝑡′
𝑖) and the value 𝑢𝑖 := 𝑣𝑖 − 𝑐𝑖 · 𝑠𝑖. Set (𝑐𝑖, 𝑢𝑖) as

the proof 𝜋𝑖. Output ((𝑤𝑖, ℎ𝑖), 𝜋𝑖).
– Verifyℋ′

(stmt𝑖, (𝑐𝑖, 𝑢𝑖)): Compute 𝑡𝑖 := 𝑔𝑢𝑖 · pk𝑐𝑖
𝑖 and 𝑡′

𝑖 := 𝑤𝑢𝑖
𝑖 · ℎ𝑐𝑖

𝑖 . Output 1 if 𝑐𝑖 =
ℋ′(ℎ𝑖, 𝑤𝑖, pk𝑖, 𝑔, 𝑡𝑖, 𝑡′

𝑖). Output 0 otherwise.

Fig. 5: Updated privately verifiable DPRF (ΠDDH-Pri)

Theorem 2. ΠDDH-Pri is a strongly-secure DPRF under the DDH assumption in the programmable
random oracle model.

Proof. The proof is obtained by combining Lemmas 4 to 6. ⊓⊔

Lemma 4 (Consistency). ΠDDH-Pri satisfies the consistency property.

Proof. Consistency is straightforward as it is a property of Shamir’s Secret Sharing. ⊓⊔

Lemma 5 (Pseudorandomness). ΠDDH-Pri satisfies the pseudorandomness property.

Proof. To prove pseudorandomness of ΠDDH-Pri, we will exploit the extractability property of proofs
and the binding property of commitments. We first describe the pseudorandomness game in detail.

Let PseudoRand′′
𝒜(𝑏) (shorthand for PseudoRand𝒜

ΠDDH-Pri
(𝑏), Def. 2) be the following:

1. Let 𝐺 be a cyclic group of order 𝑝 and 𝑔 a generator of 𝐺. Sample 𝑠 ←$ Z𝑝 and get {𝑠𝑖}𝑛
𝑖=1 ←

SSS(𝑛, 𝑡, 𝑝, 𝑠). Send public parameters 𝑝𝑝DPRF := (𝑝, 𝑔, 𝐺,ℋ,ℋ′) to 𝒜.
2. Get the set of corrupt parties 𝐶 from 𝒜. WLOG assume that 𝐶 = {1, . . . , ℓ}. Set the corruption

gap as 𝛿 := 𝑡−|𝐶|. Send the corresponding secret keys {(𝑠𝑖, {pk𝑗}𝑛
𝑗=1)}𝑖∈𝐶 to 𝒜 where pk𝑗 := 𝑔𝑠𝑗

is a commitment to the secret 𝑗.
3. On an evaluation query (Eval, 𝑥, 𝑖) for an honest 𝑖, compute 𝑤𝑖 ← ℋ(𝑥) and ℎ𝑖 := 𝑤𝑠𝑖

𝑖 . Run
Proveℋ′

with the statement stmti : {∃𝑠 s.t. ℎ𝑖 = 𝑤𝑠
𝑖 ∧ pk𝑖 = 𝑔𝑠} and witness 𝑠𝑖 to obtain the

proof 𝜋𝑖. Return ((𝑤𝑖, ℎ𝑖), 𝜋𝑖) to 𝒜.
4. On the challenge query (Challenge, 𝑥⋆, 𝑆, ((𝑤1, ℎ⋆

1), 𝜋1), . . . , ((𝑤𝑢, ℎ⋆
𝑢), 𝜋𝑢)) for 𝑢 ≤ ℓ (without loss

of generality assume that 𝑆 ∩ 𝐶 = [𝑢]):
(a) If 𝒜 has already made at least 𝛿 queries of the form (Eval, 𝑥⋆, *), then output 0 and stop.
(b) Otherwise do as follows:

i. If 𝑤𝑖 ̸= ℋ(𝑥⋆) for any 𝑖 ∈ [𝑢] or Verifyℋ′
(stmt𝑖, 𝜋𝑖) ̸= 1 for any 𝑖 ∈ [𝑢], output 0 and

stop.
ii. Set ℎ⋆

𝑖 := ℋ(𝑥⋆)𝑠𝑖 for 𝑖 ∈ 𝑆 ∖ 𝐶.
iii. If 𝑏 = 0, compute 𝑧 :=

∏︀
𝑖∈𝑆 ℎ𝑖

⋆𝜆0,𝑖,𝑆 . Otherwise, choose a random 𝑧 ←$ 𝐺.
(c) Send 𝑧 to 𝒜.

5. Continue answering evaluation queries as before, but if 𝒜 makes a query of the form (Eval, 𝑥⋆, 𝑖)
for some 𝑖 ∈ [𝑛] ∖ 𝐶 and 𝑖 is the 𝛿-th party it contacted, then output 0 and stop.

6. Receive a guess 𝑏′ from 𝒜; output 𝑏′.

First hybrid. Define a hybrid Hyb(zk)
𝒜 (𝑏) which is similar to PseudoRand′′

𝒜(𝑏) except that the real
proofs 𝜋𝑖 in Step 3 and 5 are replaced with simulated proofs; thus the witness 𝑠𝑖 is not needed.
PseudoRand′′

𝒜(𝑏) is indistinguishable from Hyb(zk)
𝒜 (𝑏) for any PPT adversary 𝒜 where 𝑏 ∈ {0, 1} due

to the zero-knowledge property of NIZK (Def. B.20).
Second hybrid. Define a hybrid Hyb(com)

𝒜 (𝑏) which is similar to the first hybrid, except in Step 2:
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– Set pk𝑗 := 𝑔𝑠𝑗 for 𝑗 ∈ 𝐶 and pk𝑗′ := 𝑔𝑟𝑗′ for 𝑗′ ∈ [𝑛] ∖ 𝐶 where 𝑟𝑗′ ←$ Z𝑝. I.e., output a real
commitment for the corrupt parties and a commitment to a random value for the honest parties.

One can see that Hyb(zk)
𝒜 (𝑏) is indistinguishable from Hyb(com)

𝒜 (𝑏) for any PPT adversary 𝒜 where
𝑏 ∈ {0, 1} under the DLOG problem and the information-theoretic security of Shamir’s Secret
Sharing.

Reduction. We now show that if a PPT adversary 𝒜 can distinguish between the 𝑏 = 0 and
𝑏 = 1 cases in the hybrid game above with a non-negligible probability, then one can build a
PPT adversary 𝒜′ to break the pseudorandomness property of the scheme ΠDDH-DP (DiSE [3, Sec-
tion 8.1]), which would be in contradiction to DiSE [3, Theorem 8.1]. Let Chal denote the challenger
in PseudoRand𝒜′(𝑏) shown in DiSE [3, Appendix C.4]. We construct 𝒜′ as follows:

– Get group parameters (𝑝, 𝑔, 𝐺,ℋ) from Chal. Send (𝑝, 𝑔, 𝐺,ℋ,ℋ′) to 𝒜.
– Get the set of corrupt parties 𝐶 = {1, . . . , ℓ} from 𝒜. Pass it along to Chal and get shares {𝑠𝑖}ℓ

𝑖=1.
Set the corruption gap as 𝛿 := 𝑡− |𝐶|. Set pk𝑗 := 𝑔𝑠𝑗 for 𝑗 ∈ 𝐶 and pk𝑗′ := 𝑔𝑟𝑗′ for 𝑗′ ∈ [𝑛] ∖ 𝐶
where 𝑟𝑗′ ←$ Z𝑝. Send {(𝑠1, {pk𝑗}𝑛

𝑗=1), . . . , (𝑠ℓ, {pk𝑗}𝑛
𝑗=1)} to 𝒜.

– On an evaluation query (Eval, 𝑥, 𝑖) for an honest 𝑖 from 𝒜, send the same query to Chal and get
back ℎ𝑖. Compute 𝑤𝑖 ← ℋ(𝑥) and a simulated proof 𝜋′

𝑖. Return ((𝑤𝑖, ℎ𝑖), 𝜋′
𝑖) to 𝒜.

– On the challenge query (Challenge, 𝑥⋆, 𝑆, ((𝑤1, ℎ⋆
1), 𝜋1), . . . , ((𝑤𝑢, ℎ⋆

𝑢), 𝜋𝑢)) from𝒜, first verify if𝒜
has already made at least 𝛿 queries of the form (Eval, 𝑥⋆, *) or 𝑤𝑖 ̸= ℋ(𝑥⋆) for any 𝑖 ∈ [𝑢] or one of
the proofs does not verify, then output 0 and stop. Query Chal with (Challenge, 𝑥⋆, 𝑆, ℎ⋆

1, . . . , ℎ⋆
𝑢)

and get back 𝑧. Return 𝑧 to 𝒜.
– Continue answering evaluation queries as before, but if 𝒜 makes a query of the form (Eval, 𝑥⋆, 𝑖)

for some 𝑖 ∈ [𝑛] ∖ 𝐶 and 𝑖 is the 𝛿-th party it contacted, then output 0 and stop.
– Receive a guess 𝑏′ from 𝒜; output 𝑏′.

Observe that for 𝑏 ∈ {0, 1}, when 𝒜′ is in the game PseudoRand𝒜′(𝑏), the view of 𝒜 in the reduc-
tion is exactly the same as in Hyb(com)

𝒜 (𝑏). Thus, if the output of Hyb(com)
𝒜 (0) is computationally dis-

tinguishable from Hyb(com)
𝒜 (1), the output of PseudoRand𝒜′(0) would also be from PseudoRand𝒜′(1).

⊓⊔

Lemma 6 (Correctness). ΠDDH-Pri satisfies the correctness property.

Proof. The proof below is based on the generic DPRF’s proof, but adapted to our privately verifiable
DPRF.

To prove correctness of ΠDDH-Pri, we will exploit the extractability property of proofs. We de-
scribe the last step of the Correctness𝒜

DPRF(1𝑘) game in detail, the first three steps are the same as
PseudoRand′′

𝒜(𝑏) (Lemma 5):
4. On the challenge query (Challenge, 𝑥⋆, 𝑆, ((𝑤1, ℎ⋆

1), 𝜋1), . . . , ((𝑤𝑢, ℎ⋆
𝑢), 𝜋𝑢)) for 𝑢 ≤ ℓ (without loss

of generality assume that 𝑆 ∩ 𝐶 = [𝑢]):
(a) If |𝑆| < 𝑡 or any ℋ(𝑥⋆) ̸= 𝑤𝑖, 𝑖 ∈ [𝑢] or any 𝜋1, . . . , 𝜋𝑢 do not verify, output 1.
(b) Else, compute ℎ𝑗 := ℋ(𝑥⋆)𝑠𝑗 for 𝑗 ∈ 𝑆, ℎ⋆

𝑖 := ℋ(𝑥⋆)𝑠𝑖 for 𝑖 ∈ 𝑆 ∖ 𝐶, 𝑧 :=
∏︀

𝑖∈𝑆 ℎ
𝜆0,𝑖,𝑆

𝑖 and
𝑧⋆ :=

∏︀
𝑖∈𝑆 ℎ

⋆𝜆0,𝑖,𝑆

𝑖 . If 𝑧⋆ = 𝑧, output 1.
(c) Else, output 0.
Suppose there exists an adversary 𝒜 s.t. the correctness game reaches the very last step (4c),

leading the challenger to output 0, with non-negligible probability. We will show that this leads to
a contradiction. Towards this, we define a few intermediate hybrid games. In the first hybrid game,
the hash function ℋ′ is replaced with the simulator 𝒮1 guaranteed by the zero-knowledge property
of NIZK.
In the second hybrid, instead of producing a zero in the very last step (4c), the challenger:
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– finds an 𝑖⋆ ∈ [𝑢] s.t. ℎ⋆
𝑖⋆ ̸= ℎ𝑖⋆ (such an 𝑖⋆ exists because 𝑧⋆ ̸= 𝑧);

– invokes the extractor ℰ guaranteed by the argument of knowledge property on the adversary
with inputs (stmt𝑖⋆ , 𝜋𝑖⋆ , 𝑄) (𝑄 is the list of queries made to 𝒮1 and their responses); and,

– outputs whatever the extractor does.

If the first hybrid game reaches the very last step, it means that all 𝑤𝑖 = ℋ(𝑥⋆) and proofs 𝜋𝑖

were valid for 𝑖 ∈ [𝑢]. Thus, if the game outputs 0 with non-negligible probability, the challenger
will output a witness 𝑠′

𝑖⋆ for stmti⋆ with non-negligible probability.
In the last hybrid, the challenger outputs 𝑠𝑖⋆ along with the extracted witness. Since ℎ⋆

𝑖⋆ ̸= ℎ𝑖⋆

and 𝑤𝑖⋆ = ℋ(𝑥⋆), 𝑠′
𝑖⋆ ̸= 𝑠𝑖⋆ . Therefore, the challenger finds two distinct values 𝑠𝑖⋆ and 𝑠′

𝑖⋆ that
produce the same commitment. This leads to a contradiction as the commitment is perfectly binding
(𝑔𝑠𝑖⋆ = 𝑔𝑠′

𝑖⋆ ⇐⇒ 𝑠𝑖⋆ = 𝑠′
𝑖⋆). ⊓⊔

Remark 1. It is crucial to instantiate ℋ with a proper hash function (e.g., [17] for elliptic curves) and
to verify that all 𝑤𝑖 are equal. For instance, a bad instantiation on elliptic curves could implement
ℋ(𝑥) as PRG(𝑥) ·𝐺 and not verify the correctness of 𝑤𝑖. Those two mistakes, could lead to a powerful
attack that breaks the pseudorandomness of DPRF; and thus the security of DiSE (and DiAE).

A malicious adversary can forge an evaluation to output an arbitrary value at the end of combine
with probability 1/

(︀
𝑛−2
𝑡−2

)︀
(guessing which parties are contacted). This is done by leveraging the

malleability of the commitments (PK 𝑖 = 𝑠𝑖 ·𝐺) and the discrete log relation of the hash to 𝐺. WLOG
we assume below that 𝑆 = {1, 2, . . . , 𝑡} (i.e. the first 𝑡 parties are contacted). The attacker 𝑖 = 1
computes 𝑊 ⋆

1 , the partial eval 𝐻1 := 𝑠1·𝑊 ⋆
1 and the proof 𝜋1. Both 𝐻1 and 𝜋1 are computed honestly,

while 𝑊 ⋆
1 is computed maliciously as 𝑊 ⋆

1 := 𝜆−1
0,1,𝑆 ·𝑠

−1
1 ·𝑎 ·𝐺−

∑︀𝑡
𝑖=2 𝜆−1

0,1,𝑆 ·𝑠
−1
1 ·𝜆0,𝑖,𝑆 ·PRG(𝑥) ·PK 𝑖.

Then, in Combine, the proof verification passes as it was computed honestly and the final output
is obtained by the honest initiating party as

∑︀𝑡
𝑖=1 𝜆0,𝑖,𝑆 ·𝐻𝑖 = 𝜆0,1,𝑆 ·𝑠1 ·𝑊 ⋆

1 +
∑︀𝑡

𝑖=2 𝜆0,𝑖,𝑆 ·𝑠𝑖 ·𝑊𝑖 =
𝑎 ·𝐺−

∑︀𝑡
𝑖=2 𝜆0,𝑖,𝑆 · PRG(𝑥) · 𝑠𝑖 ·𝐺 +

∑︀𝑡
𝑖=2 𝜆0,𝑖,𝑆 · 𝑠𝑖 · PRG(𝑥) ·𝐺 = 𝑎 ·𝐺, which corresponds to the

arbitrary output chosen by the adversary.
4.2 From commitment to encryptment
We propose a new construction that we call Distributed Authenticated Encryption (DiAE), see Fig. 6.
This construction replaces the combination of commitment and (stream cipher-like) encryption in
DiSE by a more specialized primitive called encryptment (Sect. 2.4). The encryptment allows us
to replace both the commitment and the encryption in DiSE by a single primitive that provides
similar security guarantees. This yields interesting results as it enables our construction to execute
the encryption of the message prior to the distributed part of the protocol. As such, implementations
can start transmitting ciphertexts immediately after the message encryption. This can also be done
in a streaming fashion by encrypting and transmitting the messages block-by-block; thus only a
constant-size block must be stored during the encryption. With our construction, once the message
has been encrypted and (optionally) transmitted, only a constant-size state, a binding tag, must be
stored to execute the end of the distributed encryption.

In short, our construction works as follows. For the distributed encryption, we first sample an
encryption key 𝐾EC uniformly at random which is used to encrypt the message, resulting in a
ciphertext and a binding tag. This tag, is then sent to 𝑡− 1 other parties to obtain the output 𝑧 of
the DPRF based on the tag (and encryption initiator). Finally, 𝑧 is used with a KDF to encrypt 𝐾EC.
The distributed decryption is executed by first recovering 𝐾EC using the binding tag as the DPRF
input. The ciphertext is then decrypted into the message with 𝐾EC.

Theorem 3. DiAE is a (strongly) secure TSE if DPRF is (strongly) secure.
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Ingredients:
A (strongly) secure DPRF := (DPRF.Setup, DPRF.Eval, DPRF.Combine) (Sect. 2.2).
A KDF (Sect. B.21).
A strongly correct EC scheme EC := (EKg, EC, DO) (Sect. 2.4).
Setup(1𝑘, 𝑛, 𝑡)→ ({𝑠𝑘𝑖}𝑛

𝑖=1, 𝑝𝑝):

– Execute DPRF.Setup(1𝑘, 𝑛, 𝑡) to get ({𝑠𝑘𝑖}𝑛
𝑖=1, 𝑝𝑝DPRF).

– Set 𝑝𝑝 := 𝑝𝑝DPRF and output ({𝑠𝑘𝑖}𝑛
𝑖=1, 𝑝𝑝).

DistEnc(𝑗, 𝑚, 𝑆, 𝑝𝑝)→ 𝑐/⊥:

– The encryption initiator 𝑗 samples an encryption key 𝐾EC ←$ EKg and computes the encryptment
(𝑐EC, 𝜏EC)← EC(𝐾EC, 𝑗, 𝑚).

– Sends 𝑥 := 𝑗 || 𝜏EC to all parties 𝑖 ∈ 𝑆. Each party 𝑖 first verifies that 𝑥 is of the form 𝑗⋆ || 𝜏⋆
EC where

𝑗⋆ matches the identity of the sender, then executes DPRF.Eval(𝑠𝑘𝑖, 𝑥, 𝑝𝑝DPRF) to get 𝑧𝑖 and sends it
to the encryption initiator.

– Once 𝑡 evals have been gathered, executes DPRF.Combine({𝑖, 𝑧𝑖}𝑖∈𝑆 , 𝑝𝑝DPRF) to get 𝑧 or ⊥. Finally, 𝑗
computes 𝑒 := KDF(𝑧)⊕𝐾EC and outputs the ciphertext 𝑐 := (𝑗, 𝑐EC, 𝜏EC, 𝑒).

DistDec(𝑐, 𝑆, 𝑝𝑝)→ 𝑚/⊥:

– The decryption initiator 𝑗′ first parses the ciphertext 𝑐 into (𝑗, 𝑐EC, 𝜏EC, 𝑒).
– Sends 𝑥 := 𝑗 || 𝜏EC to all parties 𝑖 ∈ 𝑆. Each party 𝑖 first verifies that 𝑥 is of the form 𝑗⋆ || 𝜏⋆

EC where
𝑗⋆ ∈ [𝑛], then executes DPRF.Eval(𝑠𝑘𝑖, 𝑥, 𝑝𝑝DPRF) to get 𝑧𝑖 and sends it to the decryption initiator.

– Once 𝑡 evals have been gathered, 𝑗′ executes DPRF.Combine({𝑖, 𝑧𝑖}𝑖∈𝑆 , 𝑝𝑝DPRF) to get 𝑧 or ⊥. Then,
𝑗′ computes 𝐾EC := KDF(𝑧) ⊕ 𝑒 and decrypts the ciphertext to get 𝑚/⊥ ← DO(𝐾EC, 𝑗, 𝑐EC, 𝜏EC) and
output the result.

Fig. 6: DiAE protocol

Proof. The proof is obtained by combining the Lemmas 7 to 12. ⊓⊔

Lemma 7 (Consistency). DiAE is a consistent TSE scheme.

Proof. As consistency of TSE requires parties to behave honestly, this property follows easily from
the consistency of DPRF. ⊓⊔

Lemma 8 (Correctness). DiAE is a correct TSE scheme.

Proof. DiAE is a correct TSE scheme if for all ciphertexts 𝑐 generated by an honest party 𝑗 in DistEnc,
any honest party 𝑗′ recovers the original message 𝑚 or ⊥ at the end of DistDec. On the contrary,
suppose that party 𝑗′ outputs the message 𝑚⋆ /∈ {𝑚,⊥} where 𝑚⋆ ← DO(𝐾⋆

EC, 𝑗′, 𝑐EC, 𝜏EC). Note
that 𝐾⋆

EC used in DistDec may be different than 𝐾EC in DistEnc due to corruptions. In other words,
there are two distinct tuples (𝑗′, 𝑚, 𝐾EC), (𝑗′, 𝑚⋆, 𝐾⋆

EC) that decrypt under the same tag 𝜏EC. This
either breaks the sender binding4 or the strong receiver binding5 security of EC (Definition 14). ⊓⊔

Lemma 9 (Strong correctness). If DPRF is a strongly-secure DPRF, DiAE is a strongly correct
TSE scheme.
4 Cannot find an encryptment that decrypts correctly, but for which verification fails.
5 Cannot find two tuples (𝐴, 𝑚, 𝐾EC), (𝐴′, 𝑚′, 𝐾′

EC) that verify successfully under the same tag 𝜏EC.
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Proof. DiAE is a correct TSE scheme if for all ciphertexts 𝑐 generated by an honest party 𝑗 in DistEnc,
any honest party 𝑗′ recovers the original message 𝑚 at the end of DistDec with high probability. On
the contrary, suppose that 𝑗′ recovers ⊥. If all parties behave honestly, party 𝑗′ obtains the value 𝑧
during DistDec and recovers the key 𝐾⋆

EC := KDF(𝑧)⊕ 𝑒. As 𝑗, 𝑐EC, 𝜏EC are the same parameters used
during the encryption, the decryption fails iff 𝐾⋆

EC ̸= 𝐾EC ⇐⇒ KDF(𝑧⋆) ̸= KDF(𝑧) ⇐⇒ 𝑧⋆ ̸= 𝑧
due to the correctness of EC (Def. 10). This leads to a contradiction as it breaks the correctness
property of DPRF (Def. 3). The case where the parties behave maliciously during DistDec is covered
by Lemma 8. ⊓⊔

Lemma 10 (Message private). DiAE is a message private TSE scheme.

Proof. We defer the complete proof to Appendix A.1 and provide only a sketch of the proof here.
In the message privacy game (Def. 7), the adversary receives a ciphertext 𝑐⋆ := (𝑗⋆, 𝑐⋆

EC, 𝜏⋆
EC, 𝑒⋆)

where 𝑗⋆ is an honest party, (𝑐⋆
EC, 𝜏⋆

EC)← EC(𝐾⋆
EC, 𝑗⋆, 𝑚𝑏) and 𝑒⋆ := KDF(𝑧⋆)⊕𝐾⋆

EC; the adversary
wins by distinguishing the bit 𝑏. The proof consists of proving that the output of the encryptment
(𝑐⋆

EC, 𝜏⋆
EC) and the output of the DPRF (𝑧⋆) appear pseudorandom to the adversary. The former is

straightforward due to the properties of encryptment. For the latter, we are left to prove that the
adversary never learns the output of the DPRF on the input 𝑗⋆||𝜏⋆

EC as otherwise the output appears
pseudorandom to PPT adversaries. The adversary can initiate an encryption on the input 𝑗||𝜏⋆

EC for
any corrupt 𝑗 ̸= 𝑗⋆ since 𝑗⋆ is honest. The adversary can also request the honest party 𝑗⋆ to initiate
the encryption on 𝑗⋆||𝜏EC, but due to the binding property of EC since 𝑗⋆ is honest, 𝜏EC ̸= 𝜏⋆

EC.
Thus, as the adversary cannot learn the DPRF output, the security relies on the pseudorandomness
of DPRF. ⊓⊔

Lemma 11 (Authenticity). If DPRF is a secure DPRF, DiAE satisfies authenticity.

Proof. We only provide a proof sketch and defer the complete proof to Appendix A.2. A successful
forgery output by the adversary consists of a 𝑟 + 1 tuple ((𝑗1, 𝑆1, 𝑐1), . . . , (𝑗𝑟+1, 𝑆𝑟+1, 𝑐𝑟+1)) where
𝑐ℓ = (𝑗ℓ, 𝑐ℓEC , 𝜏ℓEC , 𝑒ℓ). Suppose that there exists a 𝑢 ̸= 𝑣 such that 𝑗𝑢 = 𝑗𝑣, 𝜏𝑢EC = 𝜏𝑣EC and 𝑐𝑢 ̸= 𝑐𝑣.
We can prove the contrary with the binding property (Def. 14) and the strong correctness (Def. 10)
of EC. As such, the ciphertexts output by the adversary all have different (𝑗, 𝜏EC). As the DPRF
inputs are unique and the number of DPRF outputs learned by the adversary is counted (the value
𝑟), the adversary wins the game by computing a DPRF output without contacting at least one honest
party. This breaks the pseudorandomness of DPRF. ⊓⊔

Lemma 12 (Strong authenticity). If DPRF is strongly-secure, DiAE satisfies strong authentic-
ity.

Proof. We only provide a proof sketch here as proving strong authenticity relies heavily on the
correctness of the DPRF and only slightly on the TSE protocol itself; the proof is therefore very
similar to DiSE’s [3, Appendix C.3] proof. For authenticity, we relies on the consistency property
of the DPRF. This was possible because all the parties are required to behave honestly during the
verification of the forgery. However, for strong authenticity, this requirement is removed and the
adversary can behave in a malicious way; thus consistency is not sufficient. DiSE’s proof relies on
both consistency and correctness. Thanks to correctness, we can assume with high probability that
we either recover the same 𝑧𝑢 and 𝑧𝑣 (as 𝑢 ̸= 𝑣, 𝑗𝑢 = 𝑗𝑣 and 𝜏𝑢EC = 𝜏𝑣EC , the same input is given
to the DPRF) or ⊥. In the former case, the proof is similar to the one described above, while in the
latter case, Auth𝒜

DiAE outputs 0. ⊓⊔
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5 Benchmarks
This section contains performance benchmarks on our implementation of DiAE (and DiSE). The
implementation was done in C99 using standard libraries, as well as the mbedtls library for the
various cryptographic primitives and the arithmetic.

We implemented and benchmarked both the DiSE and the DiAE protocols, with the basic DPRF
(ΠDDH-DP) [2, Sect. 8.1] and the updated privately verifiable DPRF (ΠDDH-Pri). The implementation
relies on elliptic curve cryptography over the curve secp256r1. The hash functions ℋ, ℋ′ were
implemented based on the IRTF’s Hash to Curve draft [17] (which produces a distribution on the
curve that is indistinguishable from uniform), the KDF based on HKDF. For DiAE, the encryptment
scheme EC was implemented based on the HFC (Hash Function Chaining) construction described
in [16] instantiated with the SHA-256 compression function. For DiSE, we used a hash commitment
scheme instantiated with SHA-256; the PRG was implemented with AES-CTR.

In Table 1, we summarize the number of operations required by ΠDDH-DP compared to ΠDDH-Pri.
We can see that Eval with the privately verifiable DPRF (ΠDDH-Pri) has a complexity of about 3 times
the basic DPRF (ΠDDH-DP). Combine, requires about 4 times more operations.

Table 1: Complexity of ΠDDH-DP and ΠDDH-Pri. The operations inside the hash to elliptic curve are not
included in the summary.

Eval Combine

Operation ΠDDH-DP ΠDDH-Pri ΠDDH-DP ΠDDH-Pri

# of multiplications by 𝐺 0 1 0 𝑡− 1
# of multiplications by 𝑃 ̸= 𝐺 1 2 𝑡 3 · (𝑡− 1) + 𝑡
# of point additions 0 0 𝑡− 1 3 · (𝑡− 1)
# of hash to elliptic curve 1 1 0 0

The benchmarks in Table 2 were performed on a machine with an AMD Ryzen 5900x 12 cores
CPU at 3.70GHz. The time is measured in milliseconds and represent the average of one complete
execution of the distributed encryption protocol. For a threshold 𝑡 ≤ 12, each partial evalutation
was computed on a different core to better represent the distributed part of the protocol. The
experimental evaluation, shows that using DiAE versus DiSE does not impact the performance; the
execution time is about the same with either protocol. This is expected as the main bottleneck of
the two protocols is the execution of the underlying DPRF.

While the performance of both constructions is similar, the memory requirements of DiSE can
be substantially higher when working with big messages. This is because DiSE stores a commitment
to the message at the start and encrypts the message at the end; thus the entire message must be
stored until the end of the distributed protocol. DiAE, on the other hand, only needs to store one
binding tag until the end of the protocol as the ciphertext can be transmitted early. In other words,
this means that the minimal memory usage of DiSE is linear in the length of the message, while DiAE
can have a memory usage that is independent of the message (with a streaming implementation).
We summarize the memory requirements of DiSE and DiAE in Table 3. The minimal memory is
computed assuming that the variables are discarded immediately when they are not needed.

6 Conclusion
As an enabler for HW-independent key protection, as well as a cryptographic representation of a
group of devices, threshold cryptography has been gaining new momentum [31]. Practically tractable
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Table 2: Average performance of 1000 distributed encryptions for randomly generated 32 bytes messages
in milliseconds.

ΠDDH-DP ΠDDH-Pri

𝑡 𝑛 DiSE DiAE DiSE DiAE

𝑛/4

8 3.4 3.4 10.0 10.5
12 5.3 5.4 15.5 15.8
24 11.4 11.3 31.9 32.5
40 21.0 20.7 55.9 55.5

𝑛/3

9 5.3 5.5 15.6 15.4
12 7.3 7.5 20.7 21.2
21 13.7 13.6 37.3 37.5
33 24.0 23.1 60.8 60.7

2𝑛/3

9 11.4 11.7 32.4 32.4
12 16.2 15.8 44.0 44.2
21 33.4 33.0 86.7 85.6
33 62.2 60.8 150.3 150.7

𝑛

8 15.4 15.5 43.8 43.9
12 25.7 25.7 72.4 70.6
16 38.4 38.6 102.1 100.9
24 66.1 66.4 167.8 167.2
32 89.4 89.7 222.3 225.5
40 118.1 118.1 282.8 284.5

Table 3: Memory requirements of DiSE and DiAE using ΠDDH-DP in bytes. DiAE uses streaming to obtain
a message / ciphertext of one block each. Values in blue indicate the usage of ΠDDH-Pri. len(𝑚) denotes the
length of 𝑚 in bytes.

Algorithm Variable DiSE DiAE

Setup 𝑝𝑝 192 192
𝑠𝑘𝑖 32 + 64𝑛 32 + 64𝑛

DistEnc

𝑚 len(𝑚) 32
𝜌/𝐾EC 32 64
𝛼/𝜏EC 32 32
𝑐EC - 32
{𝑧𝑖}𝑖∈𝑆 64𝑡 + 128𝑡 64𝑡 + 128𝑡
𝑧 64 64
𝑒 len(𝑚) + 32 64
Minimal memory len(𝑚) + 64 + 64𝑡 + 128𝑡 128 + 64𝑡 + 128𝑡

constructions such as DiSE are thus bound to see real-world deployment, e.g., in IoT. Asserting the
security of such constructions is of utmost importance. Our contribution in this vein is the identifica-
tion of security flaws in DiSE’s underlying DPRF. Complementing this, our constructive contribution
are simple fixes for these flaws, complete with security proofs, as well as a new TSE construction
dubbed DiAE. Unlike DiSE, it allows for constant-memory implementations. Our implementation
benchmarks show that this new feature comes at no expense at performance.
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A Deferred proofs
A.1 Proof of Lemma 4.4 (DiAE Message Privacy)

Proof. First we write the challenge phase of MsgPriv𝒜
DiAE(1𝑘, 𝑏) (Def. 7) in detail:

1. 𝒜 outputs (Challenge, 𝑗⋆, 𝑚0, 𝑚1, 𝑆⋆) where len(𝑚0) = len(𝑚1), 𝑗⋆ ∈ 𝑆⋆ ∖ 𝐶 and |𝑆⋆| ≥ 𝑡.
2. Generate the key 𝐾⋆

EC ←$ EKg and compute the encryptment (𝑐⋆
EC, 𝜏⋆

EC) ← EC(𝐾⋆
EC, 𝑗⋆, 𝑚𝑏).

Compute 𝑧⋆
𝑖 ← DPRF.Eval(𝑠𝑘𝑖, 𝑗⋆ || 𝜏⋆

EC, 𝑝𝑝DPRF) for 𝑖 ∈ 𝑆⋆ ∖ 𝐶.
3. Send the binding tag 𝜏⋆

EC to 𝒜 and get back 𝑧𝑖 for 𝑖 ∈ 𝑆⋆ ∩ 𝐶.
4. Compute 𝑧⋆ ← Combine({(𝑖, 𝑧⋆

𝑖 )}𝑖∈𝑆⋆∖𝐶 ∪ {(𝑖, 𝑧𝑖)}𝑖∈𝑆⋆∩𝐶 , 𝑝𝑝DPRF). If 𝑧⋆ = ⊥, output ⊥ to 𝒜.
Else, compute 𝑒⋆ := KDF(𝑧⋆)⊕𝐾⋆

EC. Send 𝑐⋆ := (𝑗⋆, 𝑐⋆
EC, 𝜏⋆

EC, 𝑒⋆) to 𝒜.
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We use a sequence of hybrid to prove TSE satisfies message privacy. In the hybrids below, only
the changes from the previous hybrid are shown.

– Hyb1: If a non-unique binding tag 𝜏⋆
EC is output by EC, notify the adversary and end the challenge.

– Hyb2: Replace the input of KDF by a random string of same length.
– Hyb3: Replace the output of KDF by a random string of same length.
– Hyb4: Replace 𝑒⋆ by a random string of length len(𝐾⋆

EC).
– Hyb5: Replace (𝑐⋆

EC, 𝜏⋆
EC) by an encryptment to a random message.

In DistEnc, the key 𝐾EC is sampled uniformly at random and the encryptment scheme is binding
which ensures that an adversary cannot find two triplets (𝑗, 𝑚, 𝐾EC) ̸= (𝑗′, 𝑚′, 𝐾 ′

EC) that output
the same tag 𝜏EC. Therefore, as 𝐾⋆

EC is sampled uniformly at random, MsgPriv is indistinguishable
from Hyb1. Hyb3 is indistinguishable from Hyb2 as the output of KDF appears pseudorandom to
adversaries. Similarly, Hyb4 is indistinguishable from Hyb3. As EC is otROR secure, Hyb5 is indistin-
guishable from Hyb4.

We are left to prove indistinguishability of Hyb2 from Hyb1. On the contrary, suppose that
there exists PPT adversary 𝒜 that can distinguish between those two hybrids with non-negligible
probability. We use 𝒜 to build another PPT adversary ℬ who succeeds in the PseudoRand game of
DPRF (Def. 2) with the same probability:

– Initialization. Get 𝑝𝑝DPRF from Chal (Chal is used as the challenger in PseudoRand) and give it
to 𝒜.

– Corruption. Receive the set of corrupt parties 𝐶 from 𝒜, where |𝐶| < 𝑡. Forward it to Chal to
get {𝑠𝑘𝑖}𝑖∈𝐶 and send it to 𝒜.

– Pre-challenge encryption queries. Suppose 𝒜 outputs an encryption query (Encrypt, 𝑗, 𝑚, 𝑆)
where 𝑗 ∈ 𝑆 and |𝑆| ≥ 𝑡. There are two scenarios based on the value of 𝑗:
∙ If 𝑗 is honest (i.e. 𝑗 ∈ 𝑆 ∖ 𝐶), a distributed encryption is executed. First, compute the

encryptment (𝑐EC, 𝜏EC) ← EC(𝐾EC, 𝑗, 𝑚) where 𝐾EC ←$ EKg. If the binding tag 𝜏EC was
already generated in a previous query, notify 𝒜 and stop. Otherwise, request the values
𝑧𝑖, 𝑖 ∈ 𝑆∩𝐶 from 𝒜. Send (Eval, 𝑗 || 𝜏EC, 𝑖) to Chal to get the honest evals 𝑧𝑖, 𝑖 ∈ 𝑆 ∖𝐶. Run
Combine({(𝑖, 𝑧𝑖)}𝑖∈𝑆 , 𝑝𝑝DPRF) to get 𝑧/⊥. If ⊥ is output, send it to 𝒜 and stop. Otherwise,
compute 𝑒 := KDF(𝑧)⊕𝐾EC and send 𝑐 := (𝑗, 𝑐EC, 𝜏EC, 𝑒) to 𝒜.

∙ if 𝑗 is corrupt (i.e. 𝑗 ∈ 𝑆∩𝐶), 𝒜 expects the honest parties in 𝑆 to help compute a DPRF.Eval.
Upon reception of a message 𝑥 sent to an honest party 𝑗′ from 𝒜, verify that 𝑥 is of the form
𝑗⋆ || 𝜏⋆

EC where 𝑗⋆ = 𝑗. If not, return ⊥, otherwise send (Eval, 𝑥, 𝑗′) to Chal and forward the
response to 𝒜.

– Pre-challenge indirect decryption queries. Suppose𝒜 outputs a decryption query (Decrypt, 𝑗, 𝑐, 𝑆)
where 𝑗 ∈ 𝑆 ∖ 𝐶 and |𝑆| ≥ 𝑡. Parse 𝑐 as (𝑗′, 𝑐EC, 𝜏EC, 𝑒) and send 𝑗′ || 𝜏EC to 𝒜.

– Challenge. 𝒜 outputs (Challenge, 𝑗⋆, 𝑚0, 𝑚1, 𝑆⋆) where len(𝑚0) = len(𝑚1), 𝑗⋆ ∈ 𝑆⋆∖𝐶 and |𝑆⋆| ≥
𝑡. Generate the key 𝐾⋆

EC ←$ EKg and compute the encryptment (𝑐⋆
EC, 𝜏⋆

EC)← EC(𝐾⋆
EC, 𝑗⋆, 𝑚𝑏). If

the binding tag 𝜏EC had been already generated in a previous query, notify𝒜 and stop. Otherwise,
request the values 𝑧⋆

𝑖 , 𝑖 ∈ 𝑆⋆ ∩𝐶 from 𝒜. Send (Challenge, 𝑗⋆ || 𝜏⋆
EC, 𝑆⋆, {(𝑖, 𝑧⋆

𝑖 )}𝑖∈𝑆⋆∩𝐶) to Chal.
If Chal outputs 𝑧⋆ = ⊥, send it to 𝒜. Otherwise, compute 𝑒⋆ := KDF(𝑧⋆) ⊕ 𝐾EC⋆ and send
𝑐⋆ := (𝑗⋆, 𝑐⋆

EC, 𝜏⋆
EC, 𝑒⋆) to 𝒜.

– Post-challenge encryption queries. Same as Pre-challenge encryption queries.
– Post-challenge indirect decryption queries. Same as Pre-challenge indirect decryption queries.
– Guess. Finally, 𝒜 returns a guess 𝑏′. Output 𝑏′.

ℬ requests a DPRF.Eval only in the pre/post-challenge encryption query. In the first scenario, as 𝑗
is honest, the protocol aborts if 𝜏EC is not unique. The second scenario, when 𝑗 is corrupt, 𝑗⋆ || 𝜏⋆

EC
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can never be requested because 𝑗⋆ is honest; thus ℬ never requests an Eval on 𝑗⋆ || 𝜏⋆
EC. Because

of that, the challenge sent to Chal is valid. Therefore, it perfectly simulates Hyb1 when Combine
is computed normally and it perfectly simulates Hyb2 when the result of Combine is replaced by a
random string. ⊓⊔

A.2 Proof of Lemma 4.5 (DiAE Authenticity)
Proof. The proof below is based on DiSE’s proof but adapted to DiAE.

We describe the forgery step of the authentication game (Auth𝒜
DiAE) in detail. ct denotes the

number of honest parties contacted by the adversary, 𝛿 is the minimum number of honest parties
that must be contacted to generate a valid ciphertext. 𝑟 := ⌊ct/𝛿⌋ is the number of ciphertexts
learned by the adversary.

1. 𝒜 outputs ((𝑗1, 𝑆1, 𝑐1), . . . , (𝑗𝑟+1, 𝑆𝑟+1, 𝑐𝑟+1)) where 𝑗ℓ ∈ 𝑆ℓ ∖ 𝐶, |𝑆ℓ| ≥ 𝑡 for all ℓ ∈ [𝑟 + 1] and
𝑐𝑢 ̸= 𝑐𝑣 for any 𝑢 ̸= 𝑣 ∈ [𝑟 + 1]. Let 𝑐ℓ = (𝑗ℓ, 𝑐ℓEC , 𝜏ℓEC , 𝑒ℓ).

2. For ℓ ∈ [𝑟 + 1], compute 𝑧ℓ,𝑖 ← Eval(𝑠𝑘𝑖, 𝑗ℓ || 𝜏ℓEC , 𝑝𝑝DPRF) for 𝑖 ∈ 𝑆ℓ.
3. Compute 𝑧ℓ ← Combine({𝑖, 𝑧ℓ,𝑖}𝑖∈𝑆ℓ

, 𝑝𝑝DPRF) for ℓ ∈ [𝑟 + 1]. If any 𝑧ℓ = ⊥ for ℓ ∈ [𝑟 + 1],
output 0. Otherwise, compute 𝐾ℓEC := KDF(𝑧ℓ) ⊕ 𝑒ℓ and decrypt the message by computing
𝑚ℓ ← DO(𝐾ℓEC , 𝑗ℓ, 𝑐ℓEC , 𝜏ℓEC). Output 0 if 𝑚ℓ = ⊥ for any ℓ. Output 1 otherwise.

First, we define a new hybrid, Auth-U𝒜
DiAE, that ensures the input of Eval is unique. The delta

from the previous game is highlighted in blue:

1. 𝒜 outputs ((𝑗1, 𝑆1, 𝑐1), . . . , (𝑗𝑟+1, 𝑆𝑟+1, 𝑐𝑟+1)) where 𝑗ℓ ∈ 𝑆ℓ ∖ 𝐶, |𝑆ℓ| ≥ 𝑡 for all ℓ ∈ [𝑟 + 1] and
𝑐𝑢 ̸= 𝑐𝑣 for any 𝑢 ̸= 𝑣, 𝑢, 𝑣 ∈ [𝑟+1]. Let 𝑐ℓ = (𝑗ℓ, 𝑐ℓEC , 𝜏ℓEC , 𝑒ℓ). Output 0 if for any 𝑢 ̸= 𝑣, 𝑗𝑢 = 𝑗𝑣

and 𝜏𝑢EC = 𝜏𝑣EC

To prove indistinguishability of Auth-U𝒜
DiAE from Auth𝒜

DiAE we need to show that Auth𝒜
DiAE also

outputs 0 when the added condition is satisfied. Suppose 𝒜 outputs 𝑟 + 1 distinct ciphertexts where
two ciphertexts 𝑐𝑢 and 𝑐𝑣 satisfy 𝑗𝑢 = 𝑗𝑣 and 𝜏𝑢EC = 𝜏𝑣EC . As the parties have to behave honestly and
due to the consistency property of DPRF, we know that 𝑧𝑢 = 𝑧𝑣; thus, (𝑐𝑢EC , 𝐾𝑢EC) ̸= (𝑐𝑣EC , 𝐾𝑣EC).
After the decryption, we obtain the pairs (𝑚𝑢, 𝐾𝑢EC), (𝑚𝑣, 𝐾𝑣EC). If the pairs are different, this leads
to a contradiction as there cannot be two distinct header/message/key pair that validate under the
same tag 𝜏EC due to the binding security of EC (Def. 14). Thus, either 𝑚𝑢 = ⊥ and/or 𝑚𝑣 = ⊥.
If the pairs are equal and 𝑚𝑢 = 𝑚𝑣 ̸= ⊥, 𝐾𝑢EC = 𝐾𝑣EC =⇒ 𝑒𝑢 = 𝑒𝑣 =⇒ 𝑐𝑢EC ̸= 𝑐𝑣EC , which breaks
strong correctness6 of EC (Def. 11).

We showed that Auth-U𝒜
DiAE is indistinguishable from Auth𝒜

DiAE. Now, we show that if there exists
a PPT adversary 𝒜 where Auth-U𝒜

DiAE outputs 1 with probability at least 𝜀, we use 𝒜 to build
another adversary ℬ that has an advantage of a least 𝜀−negl(𝑘) in the game PseudoRand𝒜

DPRF (Def.
2). Chal is the challenger in the aforementioned game, ℬ acts as follow:

– Initialization. Get 𝑝𝑝DPRF from Chal and give it to 𝒜. Initialize an ordered list 𝐿p-ctxt := ∅ and
a counter ct𝑗,𝜏EC := 0 for every (𝑗, 𝜏EC).

– Corruption. Receive the set of corrupt parties 𝐶 from 𝒜, where |𝐶| < 𝑡. Forward it to Chal to
get {𝑠𝑘𝑖}𝑖∈𝐶 and send it to 𝒜. Set 𝑔 := 𝑡− |𝐶|.

– Encryption queries. Suppose 𝒜 outputs an encryption query (Encrypt, 𝑗, 𝑚, 𝑆) where 𝑗 ∈ 𝑆 and
|𝑆| ≥ 𝑡. There are two scenarios based on the value of 𝑗:
∙ if 𝑗 is honest (i.e. 𝑗 ∈ 𝑆 ∖ 𝐶), first compute the encryptment (𝑐EC, 𝜏EC) ← EC(𝐾EC, 𝑗, 𝑚)

where 𝐾EC ←$ EKg. Send 𝑗 || 𝜏EC to 𝒜. Append (𝑗, 𝜏EC) to 𝐿p-ctxt.
6 There is a unique encryptment (𝑐EC, 𝜏EC) for all (𝑗, 𝑚, 𝐾EC) pairs.
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∙ if 𝑗 is corrupt (i.e. 𝑗 ∈ 𝑆∩𝐶), 𝒜 expects the honest parties in 𝑆 to help compute a DPRF.Eval.
Upon reception of a message 𝑥 sent to an honest party 𝑗′ from 𝒜, verify that 𝑥 is of the form
𝑗⋆ || 𝜏⋆

EC where 𝑗⋆ = 𝑗. If not, return ⊥, otherwise send (Eval, 𝑥, 𝑗′) to Chal and forward the
response to 𝒜. Increment ct𝑗⋆,𝜏⋆

EC
by 1.

– Decryption queries. Suppose 𝒜 outputs a decryption query (Decrypt, 𝑗′, 𝑐, 𝑆) where 𝑗′ ∈ 𝑆 and
|𝑆| ≥ 𝑡. Parse 𝑐 into (𝑗, 𝜏EC, 𝑐EC, 𝑒). There are two scenarios based on the value of 𝑗′:
∙ if 𝑗′ is honest (i.e. 𝑗′ ∈ 𝑆 ∖ 𝐶), send 𝑗 || 𝜏EC.
∙ if 𝑗′ is corrupt (i.e. 𝑗′ ∈ 𝑆 ∩ 𝐶), 𝒜 expects the honest parties in 𝑆 to help compute a

DPRF.Eval. Upon reception of a message 𝑥 sent to an honest party 𝑗′′ from 𝒜, verify that 𝑥
is of the form 𝑗⋆ || 𝜏⋆

EC where 𝑗⋆ ∈ [𝑛]. If not, return ⊥, otherwise send (Eval, 𝑥, 𝑗′′) to Chal
and forward the response to 𝒜. Increment ct𝑗⋆,𝜏⋆

EC
by 1.

– Targeted decryption queries. Suppose𝒜 outputs a targeted decryption query (TargetDecrypt, 𝑗′, ℓ, 𝑆)
where 𝑗′ ∈ 𝑆 ∖ 𝐶 and |𝑆| ≥ 𝑡. Let (𝑗, 𝜏EC) be the ℓ-th entry of 𝐿p-ctxt. Send 𝑗 || 𝜏EC to 𝒜.

– Forgery. 𝒜 outputs ((𝑗1, 𝑆1, 𝑐1), . . . , (𝑗𝜔, 𝑆𝜔, 𝑐𝜔)) where 𝑗ℓ ∈ 𝑆 ∖ 𝐶, |𝑆ℓ| ≥ 𝑡 for all ℓ ∈ [𝜔] and
𝑐𝑢 ̸= 𝑐𝑣 for any 𝑢 ̸= 𝑣, 𝑢, 𝑣 ∈ [𝜔]. Let 𝑐ℓ = (𝑗ℓ, 𝑐ℓEC , 𝜏ℓEC , 𝑒ℓ) for ℓ ∈ [𝜔].
∙ if for any 𝑢 ̸= 𝑣, 𝑗𝑢 = 𝑗𝑣 and 𝜏𝑢EC = 𝜏𝑣EC , output 1 as the guess to Chal and stop.
∙ Pick a ciphertext 𝑐ℓ⋆ such that ct𝑗ℓ⋆ ,𝜏ℓ⋆

EC
< 𝑔. Send (Challenge, 𝑗ℓ⋆ || 𝜏ℓ⋆

EC
, 𝑆ℓ⋆ ,∅) to Chal. Let

𝑧⋆ be the response of Chal, if 𝑧⋆ = ⊥, output 1; otherwise compute 𝐾ℓ⋆
EC

:= KDF(𝑧⋆) ⊕ 𝑒ℓ⋆

and compute the message 𝑚ℓ⋆ ← DO(𝐾ℓ⋆
EC

, 𝑗ℓ⋆ , 𝑐ℓ⋆
EC

, 𝜏ℓ⋆
EC

). If 𝑚ℓ⋆ = ⊥ output 1, otherwise
output 0.

The sum of ct𝑗,𝜏EC for all (𝑗, 𝜏EC) is at most ct, the variable in Auth-U𝒜
DiAE that counts the number

of contacted honest parties. In turn ct must be less than 𝜔 · 𝑔 (as 𝑟 := ⌊ct/𝑔⌋); thus there is a
ciphertext 𝑐ℓ⋆ such that ct𝑗ℓ⋆ ,𝜏ℓ⋆ < 𝑔. This ensures that 𝑗ℓ⋆ || 𝜏ℓ⋆

EC
is not in the 𝐿 list maintained by

Chal (otherwise ⊥ is output as a response to ℬ’s challenge query).
From 𝒜’s perspective, ℬ perfectly simulates Auth-U𝒜

DiAE. Let 𝑏′ denote the bit output by ℬ at the end.
First, suppose the bit 𝑏 in PseudoRand𝒜

DPRF is 0. Looking at Auth-U𝒜
DiAE, one can see that 1 is output

only if 𝑧ℓ ̸= ⊥ and 𝑚ℓ ̸= ⊥ for all ℓ. As we assumed that Auth-U𝒜
DiAE outputs 1 with probability at

least 𝜀, Pr[𝑏′ = 1 | 𝑏 = 0] ≤ 1− 𝜀. Now, suppose the bit 𝑏 in PseudoRand𝒜
DPRF is 1. In this case, 𝑧⋆ is

picked randomly so in turn 𝐾ℓ⋆
EC

is pseudorandom. The probability that DO(𝐾ℓ⋆
EC

, 𝑗ℓ⋆ , 𝑐ℓ⋆
EC

, 𝜏ℓ⋆
EC

) ̸= ⊥
is negligible (sr-BIND security of EC). Thus, Pr[𝑏′ = 1 | 𝑏 = 0] ≥ 1 − negl(𝑘). Putting both
probabilities together: ⃒⃒⃒

Pr
[︀
𝑏′ = 1 | 𝑏 = 0]− Pr

[︀
𝑏′ = 1 | 𝑏 = 1]

⃒⃒⃒
≥ 𝜀− negl(𝑘)

⊓⊔

B Missing definitions
Definition B.17 (Shamir’s Secret Sharing). Shamir’s Secret Sharing [38] is an algorithm SSS
that generates shares based on the inputs 𝑛, 𝑡, 𝑝, 𝑠. 𝑛 is the number of shares to be generated, 𝑡 is the
threshold (“the number of shares required to reconstruct 𝑠”), 𝑝 is a prime number and 𝑠 is the secret.

SSS is information theoretic secure; no information is learned on 𝑠 until at least 𝑡 shares are
learned.

Definition B.18 (Commitment scheme). A commitment scheme Com is a pair of algorithms
(Setupcom, Commit).

Setupcom(1𝑘)→ 𝑝𝑝com: Takes the security parameter and outputs public parameters.
Commit(𝑚, 𝑝𝑝com; 𝜌) → 𝛼: Outputs a commitment 𝛼 based on a message, public parameters and

some randomness.
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Binding. The commitment scheme is (𝑡, 𝜀)-binding if for any 𝑡-time adversary 𝒜, the following is
true:

Pr
[︀
Commit(𝑚, 𝑝𝑝com; 𝜌) = Commit(𝑚′, 𝑝𝑝com; 𝜌′) | (𝑚, 𝑚′, 𝜌, 𝜌′)←$ 𝒜, 𝑚 ̸= 𝑚′]︀ ≤ 𝜀

Hiding. The commitment scheme is (𝑡, 𝜀)-hiding if for any 𝑡-time adversary 𝒜, the following is
true: ⃒⃒⃒⃒

Pr
[︀
𝒜(𝑝𝑝com, Commit(𝑚, 𝑝𝑝com; 𝜌)) = 1

]︀
− Pr

[︀
𝒜(𝑝𝑝com, Commit(𝑚′, 𝑝𝑝com; 𝜌′)) = 1

]︀⃒⃒⃒⃒
≤ 𝜀

where 𝑝𝑝com ← Setupcom(1𝑘), 𝑚 ̸= 𝑚′.

Definition B.19 (Trapdoor Commitment scheme (TDC)). A trapdoor commitment scheme
TDC is composed of a commitment scheme Com := (Setupcom, Commit) and two additional algorithms
(SimSetup, SimOpen).

SimSetup(1𝑘) → (𝑝𝑝com, 𝜏TDC): Takes the security parameter and outputs public parameters and
a trapdoor.

SimOpen(𝑝𝑝com, 𝜏TDC, 𝑚′, (𝑚, 𝜌)) → 𝜌′: Takes the parameters generated by SimSetup, a message
𝑚′ and a message-randomness pair. Outputs a randomness 𝜌′.

For all (𝑚, 𝜌) and 𝑚′, there exists a negligible function such that:

𝑝𝑝com and 𝑝𝑝′
com are statistically close, and,

Pr
[︀
Commit(𝑚, 𝑝𝑝′

com; 𝜌) = Commit(𝑚′, 𝑝𝑝′
com; 𝜌′)⃒⃒
𝜌′ ← SimOpen(𝑝𝑝′

com, 𝜏TDC, 𝑚′, (𝑚, 𝜌))
]︀
≥ 1− negl(𝑘)

where 𝑝𝑝com ← Setupcom(1𝑘) and (𝑝𝑝′
com, 𝜏TDC)← SimSetup(1𝑘).

Definition B.20 (Non-Interactive Zero Knowledge (NIZK)). The definition below is taken
from [3]. Let ℋ : {0, 1}* → {0, 1}poly(𝑘) be a hash function modeled as a random oracle. A NIZK for
a binary relation 𝑅 consists of two PPT algorithms Prove and Verify with oracle access to ℋ.

Proveℋ(𝑠, 𝑤) takes a statement 𝑠 and a witness 𝑤 as input; outputs a proof 𝜋 if (𝑠, 𝑤) ∈ 𝑅 and
⊥ otherwise.

Verifyℋ(𝑠, 𝜋) takes a statement 𝑠 and a proof 𝜋; outputs 𝑏 = 1 if the proof is valid, 𝑏 = 0 otherwise.
Perfect completeness. For any (𝑠, 𝑤) ∈ 𝑅,

Pr
[︀
Verifyℋ(𝑠, 𝜋) = 1 | 𝜋 ← Proveℋ(𝑠, 𝑤)

]︀
= 1

Zero-knowledge. There exists a pair of PPT simulators (𝒮1,𝒮2) such that for all PPT adversary
𝒜 there is a negligible function:⃒⃒⃒

Pr
[︀
𝒜ℋ,Proveℋ

(1𝑘) = 1
]︀
− Pr

[︀
𝒜𝒮1,𝒮′

2(1𝑘) = 1
]︀⃒⃒⃒
≤ negl(𝑘)

where 𝒮1 simulates the random oracle ℋ, 𝒮 ′
2 returns a simulated proof 𝜋 ← 𝒮2(𝑠) on input (𝑠, 𝑤) if

(𝑠, 𝑤) ∈ 𝑅, ⊥ otherwise. 𝒮1 and 𝒮2 share states.
Argument of knowledge. There exists a PPT simulator 𝒮1 such that for all PPT adversary 𝒜,
there is a PPT extractor ℰ𝒜 such that:

Pr
[︀
(𝑠, 𝑤) ∈ 𝑅 and Verifyℋ(𝑠, 𝜋) = 1 | (𝑠, 𝜋)←$ 𝒜𝒮1(1𝑘); 𝑤 ← ℰ𝒜(𝑠, 𝜋, 𝑄)

]︀
≤ negl(𝑘)

where 𝒮1 simulates the random oracle ℋ, 𝑄 is the list of (query, response) pairs obtained from 𝒮1.
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Definition B.21 (Key Derivation Function (KDF) [24]). A key derivation function as a
deterministic function that takes as input four arguments; a value from a source of keying material
𝑥, an output length ℓ, a salt and a context. For simplicity’s sake, we only include the first argument
in the paper; we assume the salt and the context are either constant or null and that ℓ is of the
correct length (i.e. KDF(𝑥)⊕𝑚 =⇒ ℓ = len(𝑚)).
Pseudorandomness. Informally, a KDF is (𝑡, 𝑞, 𝜀)-secure with respect to a source of keying material
if no attacker 𝒜 running in time 𝑡, making at most 𝑞 queries, can distinguish between the output
of KDF with a chosen input and a random byte string of same length with probability greater than
1/2 + 𝜀.


	DiAE: Re-rolling the DiSE

