
PPAD is as Hard as LWE and Iterated Squaring

Nir Bitansky∗ Arka Rai Choudhuri† Justin Holmgren‡ Chethan Kamath∗

Alex Lombardi§ Omer Paneth∗ Ron D. Rothblum¶

Abstract

One of the most fundamental results in game theory is that every finite strategic game has a
Nash equilibrium, an assignment of (randomized) strategies to players with the stability property
that no individual player can benefit from deviating from the assigned strategy. It is not known
how to efficiently compute such a Nash equilibrium — the computational complexity of this task
is characterized by the class PPAD, but the relation of PPAD to other problems and well-
known complexity classes is not precisely understood. In recent years there has been mounting
evidence, based on cryptographic tools and techniques, showing the hardness of PPAD.

We continue this line of research by showing that PPAD is as hard as learning with errors
(LWE) and the iterated squaring (IS) problem, two standard problems in cryptography. Our
work improves over prior hardness results that relied either on (1) sub-exponential assumptions,
or (2) relied on “obfustopia,” which can currently be based on a particular combination of three
assumptions. Our work additionally establishes public-coin hardness for PPAD (computational
hardness for a publicly sampleable distribution of instances) that seems out of reach of the
obfustopia approach.

Following the work of Choudhuri et al. (STOC 2019) and subsequent works, our hardness
result is obtained by constructing an unambiguous and incrementally-updatable succinct non-
interactive argument for IS, whose soundness relies on polynomial hardness of LWE. The result
also implies a verifiable delay function with unique proofs, which may be of independent interest.

∗Tel Aviv University. Email: nirbitan@tau.ac.il, ckamath@protonmail.com, omerpa@tauex.tau.ac.il
†UC Berkeley. Email: arkarc@berkeley.edu
‡NTT Research. Email: justin.holmgren@ntt-research.com
§MIT. Email: alexlombardi@alum.mit.edu
¶Technion. Email: rothblum@cs.technion.ac.il

1

mailto:nirbitan@tau.ac.il
mailto:ckamath@protonmail.com
mailto:omerpa@tauex.tau.ac.il
mailto:arkarc@berkeley.edu
mailto:justin.holmgren@ntt-research.com
mailto:alexjl@mit.edu
mailto:rothblum@cs.technion.ac.il

Contents
1 Introduction 3

1.1 Our Results . 4
1.2 Technical Overview . 5

1.2.1 Application to Unique VDFs . 9
1.2.2 Applications to PPAD-Hardness . 10

1.3 Organisation . 11

2 Preliminaries 11
2.1 Search Problems, TFNP, and Reductions . 12
2.2 Learning with Errors . 13
2.3 Correlation-Intractable Hash Families . 14
2.4 Interactive Proofs and the Fiat-Shamir Heuristic . 15

3 The Outline-and-Batch Protocol 17
3.1 Instantiations of Outline-and-Batch . 19

4 Non-Interactive Argument for Iterated Squaring in a Trapdoor Group of Un-
known Order 20
4.1 Iterated Squaring modulo 𝑁 . 20
4.2 Trapdoor Groups with Unknown Order . 22
4.3 Interactive Iterated Squaring Protocol . 23

5 PPAD Hardness 25
5.1 Construction . 25

5.1.1 An Implicit Description . 25
5.1.2 The Explicit Description . 27
5.1.3 Checking a State’s Validity . 32
5.1.4 Computing the Successor . 32

5.2 Analysis . 34

6 Unique VDF 38
6.1 Construction . 39
6.2 Analysis . 39

7 Conclusion and Open Problems 41

8 Acknowledgements 41

A TFNP Classes 46

B UEOPL Hardness 49
B.1 Class UEOPL . 49
B.2 Construction . 50
B.3 Analysis . 50

2

1 Introduction
The concept of a Nash equilibrium is fundamental to the modern understanding of games: given a
description of payoffs as a function of 𝑘 player strategies (which take value in a finite domain), what
are a collection of strategy distributions that cannot be locally improved? It is not a priori clear
that such mixed strategies should exist, but the seminal work of Nash [Nas51] shows that they do.
In the language of modern computational complexity, this implies that Nash equilibrium is a total
search problem, a search problem such that every instance of the problem is guaranteed to have
a solution. It turns out that computing (arbitrarily good approximate) solutions to this problem
is in fact in the complexity class TFNP [MP91], the class of total search problems with efficient
verification. In fact, it is complete for its subclass called PPAD [Pap94, DGP09, CDT09], for which
the existence of solution is guaranteed via “polynomial parity argument on directed graphs”. Thus,
understanding the computational complexity of PPAD exactly corresponds to understanding the
complexity of computing a Nash equilibrium.

Despite many decades of attention, we do not currently have polynomial-time algorithms for
Nash (or any PPAD-complete problem); indeed, it is widely believed that PPAD is computation-
ally intractable. Understanding to what extent this is the case, and why, has been a major line of
research at the intersection of game theory, computational complexity, and (perhaps surprisingly)
cryptography. In our work, we further explore this connection to cryptography and prove new
hardness results for PPAD under cryptographic assumptions.

Prior work. Before describing our results, we summarize the state of affairs prior to our work.
The goal of this line of work is to prove theorems of the form “if PPAD can be solved in polynomial-
time, then standard cryptography is broken.” The usual notion of “cryptography is broken” is
that there is a probabilistic polynomial-time (PPT) algorithm solving a problem fundamental to
cryptography with non-negligible advantage or success probability. As we will see, prior work,
which fall into the two categories described below, falls somewhat short of achieving this ideal.

• Specialized Proof Systems: Starting from [CHK+19a], there has been a sequence of works
obtaining hardness in PPAD by building unambiguous, incremental, succinct non-interactive
arguments [CHK+19a, CHK+19b, EFKP20, KPY20, LV20, JKKZ21], which in turn implies
the hardness of PPAD. These works build such proof systems (and therefby establish hard-
ness of PPAD) based on (1) the hardness of breaking the Fiat-Shamir heuristic [CHK+19a,
CHK+19b, EFKP20], (2) the subexponential hardness of both iterated squaring (IS) and
learning with errors (LWE) [LV20], (3) the subexponential hardness only of LWE [JKKZ21],
or (4) the superpolynomial hardness of a problem about bilinear groups [KPY20] along with
the exponential-time hypothesis (ETH).
Unfortunately, none of these results achieve what we required above: a polynomial-time
reduction from breaking cryptography (in polynomial time) to PPAD. In particular, these
results leave open the possibility that there is a polynomial-time algorithm for PPAD and
yet all of these problems are hard in the standard cryptographic sense.

• Obfustopia: Another sequence of works [BPR15, GPS16, HY17] show that PPAD is hard in
“obfustopia”, which is a world where indistinguishability obfuscation [BGI+01, GGH+13] and
functional encryption [BSW11, O’N10] exist. Unlike the previous approach, this line of work
is capable of relying on polynomial hardness: in particular, [GPS16] showed that if PPAD

3

is easy, then functional encryption cannot exist. Combined with the groundbreaking results
of [JLS21b, JLS21a], this in turn would imply that one of three seemingly hard problems1 in
cryptography must be easy.
While the results of [JLS21b, JLS21a] are based on well-founded assumptions, they have
received less scrutiny than other cryptographic assumptions. Even more fundamentally, we
do not want to base the hardness of such a central complexity class such as PPAD only on
the conjunction of three specific hardness assumptions.

In our work, we ask whether it is possible for the first line of work – basing PPAD-hardness on
unambiguous proof systems – to rely on standard, polynomial-time hardness assumptions.

1.1 Our Results

Our first result shows that (average-case) PPAD hardness follows from the polynomial-time hard-
ness of iterated squaring in RSA groups and LWE. In fact, as showed in [HY17], the same techniques
imply hardness in the sub-class CLS ⊆ PPAD introduced in [DP11]. In Appendix B, we further
strengthen these hardness results to the subclass UEOPL ⊆ CLS, which is one of the lowest
known sub-classes of TFNP [FGMS19].

Theorem 1.1 (Following Theorem 2.8 and Corollary 5.7, informally stated). If there exists a PPT
algorithm that solves PPAD with non-negligible probability, then there exists a PPT algorithm that
breaks either IS in RSA groups or LWE with non-negligible probability.

Slightly more formally, for a complete problem 𝑃 in PPAD, we construct a distribution 𝒟 on
instances of 𝑃 with the following property: if there is a polynomial-time algorithm A such that
A(𝑥) is a solution to 𝑃 (𝑥) with non-negligible probability when sampling 𝑥 ← 𝒟, then there is a
polynomial-time algorithm B that solves IS or solves LWE with non-negligible probability.

Public-coin PPAD hardness. Our hardness result is actually slightly stronger than what is
achieved by the obfustopia reductions. We show public-coin hardness of 𝑃 : there is a sampling
algorithm for 𝒟 such that the existence of such a B is guaranteed even if A is given the random
coins used in sampling 𝑥. To our knowledge, this is the first hardness result for publicly sampleable
distributions in PPAD. Moreover, previous hardness results that were based on polynomially
falsifiable assumptions [BPR15, GPS16, HY17] seem inherently limited to secret-coin hardness
because their instance distributions contain obfuscated circuits (or functional encryption ciphertexts
that simulate the functionality of an obfuscated circuit). We remark that our public-coin hardness
result may be somewhat surprising because the IS problem in an RSA modulus does not itself have
a public-coin sampler.

Unique VDFs from standard assumptions. Our techniques also yield new results for veri-
fiable delay functions (VDFs) [BBBF18]. We construct VDFs with unique proofs, which we call
unique VDFs, based on the standard LWE assumption and the standard sequential hardness as-
sumption regarding IS.

1The problems, roughly, are to break an SXDH assumption, to break a large-field LPN assumption, and to break
a low-depth PRG.

4

Theorem 1.2 (Theorem 6.3, informally stated). If IS in RSA group is sequentially-hard and LWE
is polynomially-hard, then there exists a unique VDF.

Ours is the first construction of unique VDFs that is based on a polynomial hardness assumption.
Recently, Freitag, Pass and Sirkin [FPS22], constructed VDFs from polynomial hardness of LWE
and any sequentially-hard function, but it does not satisfy uniqueness. We view it as an interesting
question whether such VDFs have applications in cryptography.

The building block. Along the way (as in previous work) we construct an unambiguous, incre-
mental, succinct non-interactive argument system for IS. This serves as the building block for all
our results stated above. The soundness of our argument system is based on LWE, and is estab-
lished by instantiating the Fiat-Shamir heuristic applied to a variant of Pietrzak’s interactive proof
system for IS. We also formulate an abstract protocol template (that we call “outline-and-batch”
protocols) that generically implies PPAD-hardness and captures essentially all existing results as
well as our new protocol.

1.2 Technical Overview

Toward the construction of hard PPAD instances, we resort to a common paradigm in the lit-
erature, that of constructing mergeable and unambiguous proofs [CHK+19a, CHK+19b, EFKP20,
KPY20, JKKZ21, LV20]. In this paradigm, we consider some underlying computation:

𝑥1 → 𝑥2 → · · · → 𝑥𝑇 ,

where each step 𝑥𝑡 → 𝑥𝑡+1, 1 ≤ 𝑡 < 𝑇 , is computable in fixed polynomial time, but computing the
last state 𝑥𝑇 cannot be done efficiently for large (super-polynomial) 𝑇 . For concreteness, the reader
may think of iterated squaring over the RSA group Z×𝑁 where, for a (randomly sampled) 𝑔 ∈ Z×𝑁 ,
𝑥𝑡 := 𝑔2𝑡 mod 𝑁 ; note that computing 𝑥𝑡 → 𝑥𝑡+1 can be carried out by one modular squaring,
but computing 𝑥𝑇 for a large 𝑇 is believed to be infeasible [RSW96]. For 1 ≤ 𝑡 < 𝑡′ ≤ 𝑇 , the
corresponding proof system should allow computing (non-interactive) proofs 𝜋𝑡→𝑡′ for statements
of the form 𝑥𝑡 → 𝑥𝑡′ (i.e., the state 𝑥𝑡′ is reachable from state 𝑥𝑡) and should satisfy the following
requirements:

1. Soundness: it should be computationally hard to prove false statements.

2. Unambiguity: for any (true) statement 𝑥𝑡 → 𝑥𝑡′ , it should be computationally hard to find
any accepting proof 𝜋*𝑡→𝑡′ other than the “prescribed” proof 𝜋𝑡→𝑡′ computed by the efficient
merging process.

3. Recursive proof-merging: given 𝑑 proofs 𝜋1→𝑡, 𝜋𝑡→2𝑡, . . . , 𝜋(𝑑−1)𝑡→𝑑𝑡, for statements

𝑥1 → 𝑥𝑡, 𝑥𝑡 → 𝑥2𝑡, . . . , 𝑥(𝑑−1)𝑡 → 𝑥𝑑𝑡,

computing a proof 𝜋1→𝑑𝑡 for the statement 𝑥1 → 𝑥𝑑𝑡, where 𝑑 ∈ N is some fixed merging
parameter, can be efficiently reduced to computing a single proof 𝜋′1→𝑡 for some related
statement 𝑥′1 → 𝑥′𝑡. In other words, the 𝑑 proofs for statements of “size” 𝑡 can be merged into
a proof for a statement of “size” 𝑑𝑡 via a recursive call to compute an additional (related)
proof of size 𝑡. In the concrete example of iterated squaring, the “size” of the statement
corresponds to the number of modular squaring operations required to go from 𝑥𝑡 := 𝑔2𝑡 to
𝑥𝑡′ := 𝑔2𝑡′

.

5

Mergeable, Unambigous Proofs from Iterated Squaring and Fiat-Shamir. As men-
tioned, the mergeable unambiguous proofs paradigm has by now several instantiations in the lit-
erature. Focusing on obtaining a polynomial reduction, we consider one particular instantiation,
based on Pietrzak’s protocol for the iterated squaring (IS) problem [Pie19]. The protocol is a
public-coin interactive proof for statements of the form “𝑔2𝑇 equals ℎ modulo 𝑁”, where 𝑁 is a
public modulus whose factorization is known to neither the prover nor the verifier – we denote such
a statement by 𝑔

𝑇−→ ℎ. At the heart of Pietrzak’s protocol is a technique for reducing a statement
𝑔

𝑇−→ ℎ to a related, new statement 𝑔′
𝑇/2−−→ ℎ′ that is half the size.2 This is done by having the

(honest) prover specify an integer 𝜇 such that the intermediate statements 𝑔
𝑇/2−−→ 𝜇 and 𝜇

𝑇/2−−→ ℎ
hold (i.e., 𝜇 is the “midpoint”), and then having the verifier reduce these two statements into one,
using its random challenge 𝑟 as follows:

𝑔′ := 𝑔𝑟𝜇 mod 𝑁 and ℎ′ := 𝜇𝑟ℎ mod 𝑁.

The above, “halving sub-protocol” is repeated for log(𝑇) rounds, at the end of which the verifier
ends up with a statement of the form 𝑔′′

2−→ ℎ′′, which it can, itself, check by modular squaring. To
make this proof system non-interactive, previous works turn to the Fiat-Shamir paradigm [FS87]
of applying an appropriate hash function to the statement to derive the verifier’s challenge.

Instantiating Fiat-Shamir. Since Pietrzak’s protocol has statistical soundness, the above ap-
proach already yields hard PPAD instances in the random oracle model [CHK+19b, EFKP20].
Our focus is of course on obtaining a construction without random oracles. Indeed, a recent
surge of results has successfully instantiated Fiat-Shamir without random oracles in various sce-
narios [KRR17, CCRR18, HL18, CCH+19, PS19, BKM20, CPV20, CKU20, LV20, JJ21, HLR21,
JKKZ21, CJJ21a, CJJ21b, HJKS22]. This has, in fact, also yielded hard PPAD instances, but
so far none based on polynomial hardness assumptions. Especially relevant to us is the work of
Lombardi and Vaikuntanathan [LV20] who instantiate the Fiat-Shamir transform for Pietrzak’s
protocol, based on sub-exponential hardness of LWE. At a high level, the sub-exponential loss in
[LV20] comes from the difficulty of computing (or successfully guessing) the so called bad verifier
challenges in the protocol — the precise quantitative complexity of this task turns out to crucially
affect Fiat-Shamir instantiability. For the particular case of Pietrzak’s protocol, a verifier challenge
is bad if either of the intermediate statements 𝑔

𝑇/2−−→ 𝜇 or 𝜇
𝑇/2−−→ ℎ is false, but the new randomized

statement 𝑔′
𝑇/2−−→ ℎ′ happens to be true. As a part of the soundness argument, it was demonstrated

in [Pie19] that the set of bad verifier challenges consists of at most a few elements, but it turns out
that computing them (even given the factorization of 𝑁) requires solving an intractable discrete-log
problem (see, e.g., [LV20] for a discussion).

Reduced Challenge Space and Soundness Amplification. A first observation toward elim-
inating the subexponential loss is that bad challenges in Pietrzak’s protocol are efficiently verifiable
given the factorization of 𝑁 . In particular, there is a straight-forward modification of Pietrzak’s
protocol that uses a polynomial size challenge space, which makes it trivial to find the bad chal-
lenges by enumerating and testing every possibility (which can be done efficiently given the above
observation). However, this modification causes the protocol to have inverse polynomial soundness
error, so the resulting protocol cannot be made interactive via Fiat-Shamir.

2Throughout this section, we assume for simplicity that the time parameter 𝑇 is a power of 2.

6

A natural attempt to resolve this is to repeat the small-challenge protocol many times in par-
allel to reduce the soundness error. Indeed parallel repetition reduces the soundness error and
importantly, using a recent work of Holmgren, Lombardi and Rothblum [HLR21], we can even in-
stantiate Fiat-Shamir for such a protocol based on (polynomially secure) LWE.3 Their instantiation
essentially works for any parallel-repeated three-message proof, as long as the bad challenges in
each individual copy of the protocol are efficiently verifiable. (It also works for protocols with more
rounds provided a certain round-by-round soundness requirement that is satisfied by Pietrzak’s
protocol, further discussed below). It turns out, however, that this approach falls short of our goal.
The issue is that the resulting proofs are not unambiguous. As noted in [RRR16], while parallel
repetition amplifies soundness, it does not amplify unambiguity. The reason is that a cheating
prover that breaks unambiguity in a single copy of the base protocol (out of many), can in partic-
ular obtain two accepting proofs for the same statement, breaking the unambiguity of the whole
protocol.

Amplifying Unambiguity. As described above, while parallel repetition has the desired effect
on soundness, unambiguity suffers from a single point of failure: that is, it suffices to cheat in a
single copy of the base protocol without affecting the other copies. Instead we would like to start
with a protocol that morally still works with many copies (as in parallel repetition) but mixes
these together so that any deviations propagate across the entire protocol. Indeed such a protocol
was constructed by Block et al. [BHR+21], who construct an interactive proof system for IS for
a completely different purpose than considered here.4 Specifically, for an arbitrary group G, they
consider 𝜆 (possibly-identical) statements(︁

𝑔1
𝑇−→ ℎ1, · · · , 𝑔𝜆

𝑇−→ ℎ𝜆

)︁
, (1)

where (in the honest case) ℎ𝑖 = 𝑔2𝑇

𝑖 over G for all 𝑖 ∈ [1, 𝜆]. As in Pietrzak’s protocol, the prover
sends over a tuple of midpoints (𝜇1, · · · , 𝜇𝜆), for claimed values 𝜇𝑖 = 𝑔2𝑇/2

𝑖 . This results in 2𝜆
intermediate statements of the form(︁

𝑔1
𝑇/2−−→ 𝜇1, 𝜇1

𝑇/2−−→ ℎ1, · · · , 𝑔𝜆
𝑇/2−−→ 𝜇𝜆, 𝜇𝜆

𝑇/2−−→ ℎ𝜆

)︁
,

which we rewrite as (︁̃︀𝑔1
𝑇/2−−→ ̃︀ℎ1, · · · , ̃︀𝑔2𝜆

𝑇/2−−→ ̃︀ℎ2𝜆

)︁
. (2)

To recurse, 𝜆 new statements are derived by a 2𝜆-to-𝜆 (batch) reduction, where the 𝑖-th new
statement 𝑔′𝑖

𝑇/2−−→ ℎ′𝑖 is constructed by choosing a random subset 𝑆𝑖 of the 2𝜆 statements as follows:

𝑔′𝑖 =
∏︁

𝑗∈𝑆𝑖

̃︀𝑔𝑗 and ℎ′𝑖 =
∏︁

𝑗∈𝑆𝑖

̃︀ℎ𝑗 . (3)

Even if a single original statement in Eq. (1) is false, it was shown in [BHR+21] that each new
statement in Eq. (3) is true with probability at most 1/2 (over the choice of 𝑆𝑖) : intuitively, in the

3In fact, this yields a (non-unique) VDF based on the standard hardness of IS and LWE. However, this is subsumed
by the result from [FPS22] mentioned in Section 1.1. In Section 1.2.1, we will construct unique VDF from same
assumptions.

4The goal in [BHR+21] (also see [HHK+22]) was to construct a statistically-sound proof of exponentiation that
works for IS in arbitrary groups. In comparison, Pietrzak’s protocol is statistically-sound only in groups that are
guaranteed to have no low-order elements, e.g., in the group of signed quadratic residues [FS00, HK09].

7

(worst) case that the 𝑗*-th statement is the only false statement in Eq. (1), then it is included in
Eq. (4) with probability 1/2, rendering the new statement false. Since there are 𝜆 new statements,
constructed using independent random subsets, the soundness of the resulting protocol is 1/2𝜆.
Unambiguity amplifies in an identical manner: a cheating prover deviating from the prescribed
honest prover strategy affects each new statement with probability roughly 1/2, “propagating” false
statements and, as a result, circumventing the issue of a single point of failure we had previously
discussed. By recursing, as above, log(𝑇) times, the statement reduces to a statement which can
be efficiently checked by the verifier.

Applying [HLR21]. Now that we have solved the issues with unambiguity in the interactive
protocol, we would like to make it non-interactive in the common reference string (CRS) model
by applying the Fiat-Shamir transform. Briefly, the Fiat-Shamir transform for any public-coin
interactive proof is defined with respect to some hash function family ℋ, where a single hash
function 𝐻 sampled from this family is set to be the CRS. The round-collapse is due to the fact
that the verifier’s message for each round is simply computed to be the output of 𝐻 applied to the
transcript of the protocol up to that point. The security of the instantiated transform relies on
correlation intractability of hash functions for bad challenges [CGH98]. This is, in particular, true
for random oracles when the bad challenges are “sparse”.

As already stated, the Fiat-Shamir transform has been successfully instantiated based on stan-
dard assumptions for several protocols. Of particular interest to our work is a recent work of
Holmgren, Lombardi and Rothblum [HLR21]. We illustrate their idea directly for the [BHR+21]
protocol. Consider the 2𝜆 intermediate statements from Eq. (2) and let 𝑗* ∈ [1, 2𝜆] be an index
such that ̃︀𝑔2𝑇/2

𝑗* ̸= ̃︀ℎ𝑗* . This can occur either due to the fact that one of the initial 𝜆 statements
was incorrect, or a cheating prover deviated from the prescribed prover strategy. Then, the 𝑖-th
new statement 𝑔′𝑖

𝑇/2−−→ ℎ′𝑖 is true if and only if∏︁
𝑗∈𝑆𝑖

(̃︀𝑔𝑗)2𝑇/2 =
∏︁

𝑗∈𝑆𝑖

̃︀ℎ𝑗 . (4)

Recall that the above only happens with probability at most 1/2 and, consequently, the probability
that at least one of the 𝜆 new statements is false is 1 − 1/2𝜆. We can now define the set of bad
challenges, i.e., the bad set ℬ, that results in all 𝜆 new statements to be true. To be precise,

ℬ = ℬ(𝑔1,··· ,𝑔2𝜆),(ℎ̃1,··· ,ℎ̃2𝜆),𝑇/2 :=

⎧⎨⎩𝑆1, · · · , 𝑆𝜆 ⊆ [1, 2𝜆]
⃒⃒⃒⃒
⃒ ∏︁

𝑗∈𝑆𝑖

(𝑔𝑗)2𝑇/2 =
∏︁

𝑗∈𝑆𝑖

ℎ̃𝑗 for all 𝑖 ∈ [1, 𝜆]

⎫⎬⎭ .

Note that ℬ5 can be represented as the product of 𝜆 sets, i.e.

ℬ = ℬ1 × · · · × ℬ𝜆, (5)

where each
ℬ𝑖 := {𝑆𝑖 ⊆ [1, 2𝜆] |

∏︁
𝑗∈𝑆𝑖

(̃︀𝑔𝑗)2𝑇/2 =
∏︁

𝑗∈𝑆𝑖

̃︀ℎ𝑗}. (6)

This product structure of ℬ shown in Eq. (5) is crucial for us to invoke [HLR21] who show, assuming
polynomial hardness of LWE, that there exists a hash function family ℋ such that the Fiat-Shamir

5We drop the subscript for the ℬ set for clarity when the subscript is clear from the context.

8

transform is sound whenever ℬ is a product set such that each ℬ𝑖 is efficiently verifiable.6 Here
the set ℬ𝑖 is said to be efficiently verifiable if there is a polynomial-sized circuit C that on input
((𝑔1, · · · , 𝑔2𝜆), (ℎ̃1, · · · , ℎ̃2𝜆), 𝑖, 𝑆𝑖) that decides whether 𝑆𝑖 ∈ ℬ𝑖. In our setting, C needs to check
whether Eq. (4) holds, which can be done efficiently if C could compute the product

∏︀
𝑗∈𝑆𝑖

(̃︀𝑔𝑗)2𝑇/2

in Eq. (6), even for super-polynomial 𝑇 . This is possible, for instance, in any group of the form Z×𝑁
(including RSA groups) if C has a trapdoor, viz., the factorization of the modulus 𝑁 , hardcoded in its
description: C can first compute the intermediate value 𝑒 := 2𝑇/2 mod 𝜑(𝑁) using the trapdoor and
then compute 𝑔𝑒 mod 𝑁 by a single modular exponentiation. Thus, as long as we work in groups
where one can efficiently verify each ℬ𝑖 (with the help of a trapdoor), the Fiat-Shamir transform
applied to the [BHR+21] protocol is a secure non-interactive argument in the CRS model.

Additionally, in order for the resulting non-interactive argument to preserve properties of the
multi-round unambiguous interactive proof, the protocol needs to satisfy the stronger property
[CCH+18, LV20] of unambiguous round-by-round soundness. In the technical section, we show
that the soundness and unambiguity discussion of [BHR+21] earlier easily extend to satisfy this
property.

1.2.1 Application to Unique VDFs

Having constructed an unambiguous (succinct) non-interactive argument system for IS, we essen-
tially immediately obtain a VDF family with unique proofs based on (1) the polynomial hardness
of LWE, and (2) the assumption that IS is an inherently sequential function. The only detail that
needs to be verified is that the computational complexity of the prover is 𝑇 · (1 + 𝑜(1)) for 𝑇 se-
quential squarings. This can be proved following an analogous argument in [Pie19]: after applying
𝑇 + 1 sequential squaring operations

𝑔0 = 𝑔, 𝑔1 = 𝑔2, . . . , 𝑔𝑇 = 𝑔2𝑇
,

it is possible to compute all prover messages with poly(𝜆) ·
√

𝑇 additional group operations as
follows.

• Compute all prover messages from round 1
2 log(𝑇) onwards with the naive prover algorithm,

incurring an additive computational overhead of poly(𝜆) ·
√

𝑇 , and

• Compute all prover messages in the first 1
2 log(𝑇) rounds by storing

√
𝑇 of the computed

𝑔𝑖s, where each prover message is computed as product-combinations of a (pre-determined)
subset of these stored values. This incurs a total additive overhead of poly(𝜆) ·

√
𝑇 .

Remark 1 (Comparison to the [LV20] VDF). The [LV20] VDF uses complexity leveraging in a
way so that the honest prover is only efficient (relative to the squaring computation) when the
squaring parameter 𝑇 is subexponentially large in the description of the RSA modulus. Relatedly,
the protocol then only achieves a slightly superpolynomial gap between the complexity of the
honest prover and the complexity of the cheating provers ruled out by soundness. In contrast, our
construction does not require complexity leveraging, resulting in a VDF with far more standard
efficiency parameters.

6We refer the reader to the technical section for full details on invoking [HLR21].

9

1.2.2 Applications to PPAD-Hardness

For establishing hardness of PPAD, we have to show that the non-interactive argument obtained
above satisfies the third requirement, i.e., recursive proof-merging. The two sets of intermediate
statements from Eq. (2) can be succinctly denoted as

(𝑔1, · · · , 𝑔𝜆) 𝑇/2−−→ (𝜇1, · · · , 𝜇𝜆) and (𝜇1, · · · , 𝜇𝜆) 𝑇/2−−→ (ℎ1, · · · , ℎ𝜆) (7)

with corresponding [BHR+21] proofs

𝜋((𝑔1, · · · , 𝑔𝜆) 𝑇/2−−→ (𝜇1, · · · , 𝜇𝜆)) and 𝜋((𝜇1, · · · , 𝜇𝜆) 𝑇/2−−→ (ℎ1, · · · , ℎ𝜆)).

The proof for (𝑔1, · · · , 𝑔𝜆) 𝑇−→ (ℎ1, · · · , ℎ𝜆) can be computed as

𝜋((𝑔1, · · · , 𝑔𝜆) 𝑇−→ (ℎ1, · · · , ℎ𝜆)) :=
(︁
(𝜇1, · · · , 𝜇𝜆), 𝜋((𝑔′1, · · · , 𝑔′𝜆) 𝑇/2−−→ (ℎ′1, · · · , ℎ′𝜆))

)︁
where (𝑔′1, · · · , 𝑔′𝜆) 𝑇/2−−→ (ℎ′1, · · · , ℎ′𝜆) is derived via the 2𝜆-to-𝜆 (batch) reduction from the statements
in Eq. (7). Furthermore, the proof

𝜋((𝑔′1, · · · , 𝑔′𝜆) 𝑇/2−−→ (ℎ′1, · · · , ℎ′𝜆))

is generated by recursing on the statement (𝑔′1, · · · , 𝑔′𝜆) 𝑇/2−−→ (ℎ′1, · · · , ℎ′𝜆) to compute its proof.
Since the reduction is efficient, the non-interactive argument satisfies recursive proof merging as
desired. As shown in [CHK+19a], this actually implies hardness of the sub-class CLS ⊆ PPAD.
We strengthen this result further in Appendix B to show hardness in UEOPL ⊆ CLS, one of the
lowest-lying sub-classes of TFNP [FGMS19].
Remark 2 (Abstract protocol). While we have limited our discussion specifically to the case of IS,
in the technical sections (Sections 3 and 5) we describe an abstract protocol template that we call
“outline and batch.” We show that any problem family admitting a downward self-reduction and a
(randomized) batching reduction (reducing 𝑘′ instances of the problem to sufficiently fewer 𝑘 < 𝑘′

instances) admits an unambiguous and incremental non-interactive argument system that suffices
for our hardness results. We refer the reader to the technical sections for details.

Obtaining Public-Coin Hardness in PPAD. Finally, we discuss how to obtain hard distribu-
tions of PPAD instances that are publicly samplable under the same computational assumptions
as before: the polynomial hardness of LWE and IS over RSA group. It is a priori unclear why
one should expect to obtain public-coin hardness under these assumptions, since we don’t know a
public-coin algorithm for sampling an RSA modulus! Nevertheless, we obtain the result via the
following two ideas.

First, we observe that our Fiat-Shamir hash function ℋ can be sampled from a public-coin dis-
tribution. In [HLR21], the hash functions have a computationally pseudorandom (and private-coin)
description, but they can be switched to uniformly random because even the adaptive unambigu-
ous soundness of the protocol considered in our work is an efficiently verifiable property (given the
group order as a trapdoor). Put another way, the adaptive soundness of the protocol follows from an
efficiently falsifiable form of correlation intractability, which is thus preserved under computational
indistinguishability.

10

The more serious issue is how to handle the group (and group element) description. We handle
this by working over Z×𝑁 for a different value of 𝑁 (rather than an RSA modulus). A naive idea
would be to work over a uniformly random modulus 𝑁 ; unfortunately, the squaring problem mod a
uniformly random 𝑁 is not hard, because 𝑁 will be prime with inverse polynomial probability (by
the prime number theorem), in which case the group order 𝜑(𝑁) = 𝑁 − 1 is efficiently computable.
Our actual solution is as follows: consider 𝑁 = 𝑁1 · . . . · 𝑁poly(𝜆) for a sufficiently large poly(𝜆),
where all integers 𝑁𝑖 are public and uniformly random in the range [1, 2𝜆]. First of all, we note
that our techniques for constructing hard PPAD instances from iterated squaring apply to this
choice of modulus as well: all that is required is that there is a way to efficiently sample (necessarily
using secret coins) the squaring problem description along with a trapdoor containing the group
order |Z×𝑁 | = 𝜑(𝑁) (this is captured by our generic construction). This is possible using efficient
algorithms for generating random factored integers [Bac88, Kal03].

This tells us that public-coin hardness in PPAD follows from the hardness of LWE along with
the polynomial hardness of IS modulo 𝑁 (given the coins for sampling the IS instance). To complete
the proof, we show that this follows from the polynomial hardness of (secret-coin) IS in an RSA
modulus. We prove this (see Lemma 4.5) by a direct reduction that embeds an RSA modulus IS
problem instance into a public-coin instance of this new IS problem; crucially, we use the fact that
with all but negligible probability over 𝑁1, . . . , 𝑁poly(𝜆), at least one 𝑁𝑖 is an RSA modulus.

1.3 Organisation

We state definitions and provide background relevant to our paper in Section 2. In Section 3, we
describe the abstract “outline-and-batch” interactive protocol, prove that it is an unambiguously
sound proof system and then explain how existing protocols fit this abstraction. We also show that,
under certain conditions, applying the Fiat-Shamir transform results in a unambiguous sound non-
interactive argument system. In Section 4, we describe the unambiguous non-interactive argument
for IS that forms the basis of the results in Sections 5 and 6. We show hardness of the class PPAD
in Section 5 by constructing hard distribution of a search problem called RSVL. In Section 6,
we construct unique VDFs. The definitions of TFNP classes relevant to the paper are given in
Appendix A. Finally, in Appendix B, we extend the results in Section 5 to show hardness of the
class UEOPL ⊆ PPAD.

2 Preliminaries
Notation. First, we list the notation that will be used throughout this paper.

1. For 𝑎, 𝑏 ∈ N, 𝑎 < 𝑏, by [𝑎, 𝑏] we denote the sequence of integers {𝑎, 𝑎 + 1, · · · , 𝑏}.

2. For an alphabet Σ and 𝑛 ∈ N, we write Σ𝑛, Σ<𝑛 and Σ≤𝑛 to denote, respectively, strings over
Σ with length equal to, less than, and less than or equal to 𝑛. We use 𝜀 to denote the empty
string. For strings 𝑎 and 𝑏 we use 𝑎𝑏 to denote string concatenation.

3. Vectors and tuples are in bold face. We parse a vector or a tuple 𝑥 ∈ 𝒳 𝑘 as 𝑥 =: (𝑥0, · · · , 𝑥𝑘−1);
𝑥 is said to be a 𝑘-vector. A subscripted vector 𝑥𝑣 ∈ 𝒳 𝑘 is parsed as 𝑥𝑣 =: (𝑥𝑣,0, · · · , 𝑥𝑣,𝑘−1).

4. For 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴 and a function 𝑓 : 𝒳 → 𝒴, we write 𝑥
𝑓−→ 𝑦 to denote the (true or

false) statement “𝑦 equals 𝑓(𝑥)”. Sometimes, when the context is clear, we will simplify the

11

notation: e.g., for ℎ := 𝑔2𝑇 mod 𝑁 , we simply write 𝑔
𝑇−→ ℎ to denote

𝑔
(·)2𝑇

mod 𝑁−−−−−−−→ ℎ.

We extend this notation to vectors: for 𝑥 ∈ 𝒳 𝑘 and 𝑦 ∈ 𝒴𝑘, we define 𝑓 = 𝑓𝑘 : 𝒳 𝑘 → 𝒴𝑘 as
(𝑓(𝑥0), · · · , 𝑓(𝑥𝑘−1)) and therefore 𝑥

𝑓−→ 𝑦 denotes statement that 𝑥𝑖
𝑓−→ 𝑦𝑖 for all 𝑖 ∈ [0, 𝑘 − 1].

5. For a statement 𝑥, we denote 𝜋(𝑥) to denote a non-interactive proof for 𝑥. For example, for 𝑥,
𝑦 and 𝑓 as in Item 4, we write 𝜋(𝑥 𝑓−→ 𝑦) to denote a non-interactive proof for the statement
𝑥

𝑓−→ 𝑦.

6. For 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴, we write 𝑦 := A(𝑥) (resp., 𝑦 ← A(𝑥)) to denote the execution of a
deterministic (resp., randomised) algorithm A on input 𝑥 to output 𝑦. For 𝑘 ∈ N, vectors
𝑥 ∈ 𝒳 𝑘 and 𝑦 ∈ 𝒴𝑘, we denote repeated parallel execution of A by 𝑦 := A(𝑥), i.e., 𝑦𝑖 := A(𝑥𝑖)
for all 𝑖 ∈ [0, 𝑘 − 1].

2.1 Search Problems, TFNP, and Reductions

We define below search problems, and the relevant complexity classes needed for our work. We
start by defining search problems.

Definition 2.1 (Search Problems [AB09]). A search problem is a relation ℛ ⊆ {0, 1}* × {0, 1}*.
Let ℛ(𝑥) denote {𝑦 : (𝑥, 𝑦) ∈ ℛ}. A function 𝑓 : {0, 1}* → {0, 1}* ∪ {⊥} is said to solve ℛ if for
every 𝑥 ∈ {0, 1}* satisfying ℛ(𝑥) ̸= ∅, it holds that 𝑓(𝑥) ∈ ℛ(𝑥); and for all other 𝑥, 𝑓(𝑥) = ⊥.

Definition 2.2 (Total Relations). A relation ℛ is said to be total if for all 𝑥 ∈ {0, 1}*, there exists
𝑦 such that (𝑥, 𝑦) ∈ ℛ.

Definition 2.3 (Polynomially Balanced). A relation ℛ is said to be polynomially balanced if there
is a polynomial 𝑝 such that for any strings 𝑥, 𝑦 ∈ {0, 1}*, if (𝑥, 𝑦) ∈ ℛ then |𝑦| ≤ 𝑝

(︀
|𝑥|

)︀
.

Definition 2.4 (FNP). The complexity class FNP consists of all polynomially balanced search
problems ℛ for which there is a polynomial-time algorithm that on input (𝑥, 𝑦) outputs whether
or not (𝑥, 𝑦) ∈ ℛ.

Definition 2.5 (TFNP). The complexity class TFNP consists of all total search problems in
FNP.

The sub-classes of TFNP that are relevant to the paper are defined in Appendices A and B.

Definition 2.6 (Reductions). If 𝑃 and 𝑄 are search problems, a randomized Karp reduction from
𝑃 to 𝑄 with error 𝜖(·) is a pair of p.p.t. machines (M, N) such that if 𝑓 is a function that solves 𝑄,
then for any 𝑥 ∈ {0, 1}𝑛 with 𝑃 (𝑥) ̸= ∅, we have

Pr
[︀
(𝑥, 𝑦) ∈ 𝑃

]︀
≥ 1− 𝜖(𝑛)

when sampling 𝑥′ ← M(𝑥), 𝑦 ← N (𝑓(𝑥′)).

Next, we consider the search problem RelaxedSinkOfVerifiableLine (RSVL), which is
relevant to the main result of this paper. We point out that RSVL not a total problem since,
looking ahead, there is no way to syntactically guarantee that the successor and verifier circuits are
well-behaved (see Remark 3).

12

Definition 2.7 ([CHK+19a]). RelaxedSinkOfVerifiableLine (RSVL)

• Instance.

1. Boolean circuit S : {0, 1}𝑚 → {0, 1}𝑚

2. Boolean circuit V : {0, 1}𝑚 × [0, 2𝑚 − 1]→ {accept, reject}
3. Integer 𝐿 ∈ [0, 2𝑚 − 1]
4. String 𝑣0 ∈ {0, 1}𝑚

• Promise. For every 𝑣 ∈ {0, 1}𝑚 and 𝑖 ∈ [0, 2𝑚 − 1], V(𝑣, 𝑖) = 1 if 𝑖 ≤ 𝐿 and 𝑣 = S𝑖(𝑣0).

• Solution. One of the following:

1. The sink: a vertex 𝑣 ∈ {0, 1}𝑚 such that V(𝑣, 𝐿) = 1; or
2. False positive: a pair (𝑣, 𝑖) ∈ {0, 1}𝑚× [0, 2𝑚 − 1] such that 𝑣 ̸= S𝑖(𝑣0) and V(𝑣, 𝑖) = 1.

Remark 3. It seems likely that RSVL is not in FNP, let alone in PPAD (Definition A.2). Specif-
ically, checking that a pair (𝑣, 𝑖) constitutes a false positive is difficult because 𝑖 may be super-
polynomial in the instance size.

Nevertheless, [CHK+19a] constructed a (randomized) reduction from RSVL to EOML (which
is a search problem complete for CLS ⊆ PPAD, see Appendix A) with error that is inversely
polynomially bounded away from 1. This error is somewhat large, and allows for the possibility
EOML is “slightly” easier than RSVL.

Still, the reduction suffices for establishing the standard cryptographic hardness of EOML
(i.e. that no polynomially bounded algorithm can succeed with any non-negligible probability)
based on analogous hardness for RSVL. In turn, we establish the latter hardness based on LWE
(Assumption 2.10) and the iterated squaring assumption (Assumption 4.3).

Theorem 2.8 ([CHK+19a]). There is a randomized Karp reduction from RSVL to EOML with
error probability 𝜖(𝑛) = 1− 𝑛−𝑂(1).

2.2 Learning with Errors

The following standard preliminaries about the Learning with Errors (LWE) problem are based on
[Pei16, LV20].

Definition 2.9 (LWE Distribution). For any s ∈ Z𝑛
𝑞 and any distribution 𝜒 ⊆ Z𝑞, the LWE

distribution 𝐴s,𝜒 ∈ Z𝑛
𝑞 × Z𝑞 is sampled by choosing a ∈ Z𝑛

𝑞 uniformly at random, sampling 𝑒 ← 𝜒,
and outputting (a, 𝑏 = ⟨s, a⟩+ 𝑒).

Assumption 2.10 (Decision LWE). Let 𝑚 = 𝑚(𝑛) ≥ 1, 𝑞 = 𝑞(𝑛) ≥ 2 be integers, and let
𝜒(𝑛) be a probability distribution on Z𝑞(𝑛). The LWE𝑛,𝑚,𝑞,𝜒 problem, parameterized by 𝑛, is to
distinguish whether 𝑚(𝑛) independent samples are drawn from 𝐴s,𝜒 (for s that is sampled uniformly
at random) or are drawn from the uniform distribution. The hardness assumption is that is hard
for poly(𝑛)-sized adversaries to decide the LWE𝑛,𝑚,𝑞,𝜒 problem.

13

2.3 Correlation-Intractable Hash Families

The following preliminaries are partially taken from [LV20, HLR21].

Definition 2.11 (Hash family). For a pair of efficiently-computable functions (𝑛(·), 𝑚(·)), a hash
family with input length 𝑛 and output length 𝑚 is a collection ℋ = {𝐻𝜆 : {0, 1}𝑠(𝜆) × {0, 1}𝑛(𝜆) →
{0, 1}𝑚(𝜆)}𝜆∈N of keyed hash functions, along with a pair of p.p.t. algorithms:

• ℋ.Gen(1𝜆) outputs a hash key 𝑘 ∈ {0, 1}𝑠(𝜆).

• ℋ.Hash(𝑘, 𝑥) computes the function 𝐻𝜆(𝑘, 𝑥). We may use the notation 𝐻(𝑘, 𝑥) to denote
hash evaluation when the hash family is clear from context.

As in prior works [CCH+19, PS19] we consider the security notion of correlation intractability
[CGH98] for single-input relations and its restriction to (single-input) functions.

Definition 2.12 (Correlation Intractability). For a given relation ensembleℛ = {ℛ𝜆 ⊆ {0, 1}𝑛(𝜆)×
{0, 1}𝑚(𝜆)}, a hash family ℋ = {𝐻𝜆 : {0, 1}𝑠(𝜆)×{0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆)} is said to be ℛ-correlation
intractable with security (𝑠, 𝛿) if for every 𝑠-size A = {A𝜆},

Pr
𝑘←ℋ.Gen(1𝜆)

𝑥←A(𝑘)

[︁(︀
𝑥, 𝐻(𝑘, 𝑥)

)︀
∈ ℛ

]︁
= 𝑂(𝛿(𝜆)).

We say that ℋ is ℛ-correlation intractable with security 𝛿 if it is (𝜆𝑐, 𝛿)-correlation intractable for all
𝑐 > 1. Finally, we say that ℋ is ℛ-correlation intractable if it is (𝜆𝑐, 1/𝜆𝑐)-correlation intractable
for all 𝑐 > 1.

We will use the recent result of [HLR21] on correlation intractability for product relations.

Definition 2.13 (Product Relation). We say that ℛ ⊆ 𝒳 × 𝒴𝑡 is a product relation if for every
𝑥 ∈ 𝒳 , the set ℛ(𝑥) = {𝑦 : (𝑥, 𝑦) ∈ ℛ} ⊆ 𝒴𝑡 has a decomposition

ℛ(𝑥) := ℬ1(𝑥)× ℬ2(𝑥)× . . .ℬ𝑡(𝑥)

(where each ℬ𝑖(𝑥) is a subset of 𝒴). We say that such an ℛ is efficiently product verifiable if for
some such choice of ℬ𝑖, there is a poly-size circuit C(𝑥, 𝑖, 𝑦𝑖) that decides whether 𝑦𝑖 ∈ ℬ𝑖(𝑥).

Theorem 2.14 ([HLR21]). Assume the hardness of LWE. Then, for every size bound 𝑆(𝜆) =
poly(𝜆), input length 𝑛(𝜆), and output length 𝑚(𝜆) · 𝑡(𝜆) such that 𝑡(𝜆) ≥ 𝜆Ω(1), there exists a
correlation intractable hash family ℋ for product relations ℛ that are (1) product verifiable by size
𝑆(𝜆) circuits, and (2) sparse in the sense that for every 𝑥, 𝑖, we have that |ℬ𝑖(𝑥)| ≤ 1

2 · 2
𝑚(𝜆).

Remark 4. In [HLR21], hash function keys have a computationally pseudorandom distribution.
However, for the purposes of Theorem 2.14, hash function keys may be taken to be uniformly
random strings (by invoking the pseudorandomness property), because the security property in
Theorem 2.14 is efficiently falsifiable.

14

2.4 Interactive Proofs and the Fiat-Shamir Heuristic

The following preliminaries are partially taken from [LV20, HLR21]. We begin by recalling the
definitions of interactive proofs and arguments.

Definition 2.15 (Interactive proof and argument system). An interactive proof (resp., interac-
tive argument) for a promise problem ℒ = (ℒYES,ℒNO) is a pair (P, V) of interactive algorithms
satisfying:

• Completeness. For any 𝑥 ∈ ℒYES, when P and V interact on common input 𝑥, the verifier
V outputs 1 with probability 1.

• Soundness. For any 𝑥 ∈ ℒNO ∩{0, 1}𝑛 and any unbounded (resp., polynomial-time) interac-
tive P*, when P* and V(𝑥) interact, the probability that V outputs 1 is a negligible function
of 𝑛.

The protocol is public-coin if each of V’s messages is an independent uniformly random string of
some length (and the verifier’s decision to accept or reject does not use any secret state). In this
setting, we will denote prover messages by (𝛼1, . . . , 𝛼ℓ) and verifier messages by (𝛽1, . . . , 𝛽ℓ−1) in a
2ℓ− 1-round protocol.

Definition 2.16 (Non-interactive argument system). A non-interactive argument scheme (in the
CRS model) for a promise problem ℒ = (ℒYES,ℒNO) is a triple (Setup, P, V) of non-interactive
algorithms with the following properties:

• Setup(1𝑛) outputs a common reference string CRS.

• P(CRS, 𝑥) outputs a proof 𝜋.

• V(CRS, 𝑥, 𝜋) outputs a bit 𝑏 ∈ {0, 1}

It satisfies the notions of completeness and (computational) soundness as above.

We next define the notion of unambiguous soundness [RRR16]. For non-interactive arguments,
the soundness notion we consider is adaptive in that we allow the prover P* to adaptively choose
the statement 𝑥 after seeing the CRS.

Definition 2.17 (Unambiguous Soundness [RRR16, CHK+19a]). A public-coin interactive proof
system Π is unambiguously sound if (1) it is sound, and (2) for every 𝑥 ∈ ℒ and every (complete)
collection of verifier messages (𝛽1, . . . , 𝛽ℓ−1), there exists a distinguished proof 𝜋*(𝑥, 𝛽1, . . . , 𝛽ℓ−1)
such that the following soundness condition holds: For all 𝑥 ∈ ℒ and all cheating provers P*,
the probability that the transcript ⟨P*(𝑥), V(𝑥)⟩ contains a proof 𝜋 such that V(𝑥, 𝜋) = 1 and
𝜋 ̸= 𝜋*(𝑥, 𝛽1, . . . , 𝛽ℓ−1) is negligible.

Definition 2.18 (Adaptive Unambiguous Soundness). A non-interactive argument system Π =
(Setup, P, V) is adaptively unambiguously sound against (uniform or non-uniform) time 𝑇 adver-
saries if for all instances 𝑥 ∈ ℒ and all common reference strings CRS, there exists a “distinguished
proof” 𝜋*(CRS, 𝑥) such that the following soundness condition holds: For all time 𝑇 cheating provers
P*, the probability that P*(CRS) = (𝑥, 𝜋) where V(𝑥, 𝜋) = 1 and either 𝑥 ̸∈ ℒ or 𝜋 ̸= 𝜋*(CRS, 𝑥) is
negligible.

15

Our results proceed by constructing (unambiguously sound) interactive proof systems and com-
piling them into non-interactive argument systems using the Fiat-Shamir transform, which we
describe next.

Definition 2.19 (Fiat-Shamir Transform). Let Π denote a public coin interactive proof (or argu-
ment) system Π that has ℓ prover messages and ℓ− 1 verifier messages of length 𝑚 = 𝑚(𝜆). Then,
for a hash family

ℋ =
{︂{︁

𝐻𝑘 : {0, 1}* → {0, 1}𝑚(𝜆)
}︁

𝑘∈{0,1}𝜆

}︂
𝜆

,

we define the Fiat-Shamir non-interactive protocol ΠFS,ℋ = (Setup, PFS, VFS) as follows:

• Setup(1𝜆): sample a hash key 𝑘 ← ℋ.Gen(1𝜆).

• PFS(𝑥): for 𝑖 ∈ {1, . . . , ℓ}, recursively compute the following pairs (𝛼𝑖, 𝛽𝑖):

– Compute 𝛼𝑖 = P(𝜏𝑖) for 𝜏𝑖 = (𝑥, 𝛼1, 𝛽1, . . . , 𝛼𝑖−1, 𝛽𝑖−1).
– Compute 𝛽𝑖 = 𝐻𝑘(𝜏𝑖−1, 𝛼𝑖).

Then, PFS(𝑥) outputs 𝜋 = (𝛼1, 𝛽1, . . . , 𝛼ℓ).

• VFS(CRS, 𝑥, 𝜋) parses 𝜋 = (𝛼1, 𝛽1, . . . , 𝛼ℓ) and verifies that:

– 𝛽𝑖 = 𝐻𝑘(𝜏𝑖−1, 𝛼𝑖) for all 1 ≤ 𝑖 ≤ ℓ− 1, and
– V(𝑥, 𝜋) = 1.

We note the following facts about ΠFS,ℋ

1. The honest prover complexity of ΠFS,ℋ is equal to the honest prover complexity of Π with an
additive overhead of computing ℓ− 1 hash values.

2. The verifier complexity of ΠFS,ℋ is equal to the verifier complexity of Π with the same hashing
additive overhead.

3. The protocol ΠFS,ℋ is not necessarily sound, even if Π is sound and ℋ is a “strong crypto-
graphic hash function”. As we will discuss later, soundness is guaranteed when Π satisfies
what is called “round-by-round soundness”, defined next.

Round-by-Round (Unambiguous) Soundness and Fiat-Shamir. Following [CCH+18, CCH+19,
CHK+19a, LV20], we consider the notion of round-by-round (unambiguous) soundness to capture
a particular kind of soundness analysis for super-constant round interactive proofs. For these proof
systems, it has been shown that correlation intractability for an appropriate relation suffices for
a hash family to instantiate the Fiat-Shamir heuristic for unambiguously round-by-round sound
interactive proofs.

Definition 2.20 (Unambiguous Round-by-Round Soundness [CCH+18, CHK+19a, LV20]). Let
Π = (P, V) be a 2ℓ − 1-message public coin interactive proof system for a language ℒ. We say
that Π has unambiguous round-by-round soundness error 𝜖(·) if there exist functions (State, NextMsg)
with the following syntax.

16

• State is a deterministic (not necessarily efficiently computable) function that takes as input
an instance 𝑥 and a transcript prefix 𝜏 and outputs either accept or reject.

• NextMsg is a deterministic (not necessarily efficiently computable) function that takes as input
an instance 𝑥 and a transcript prefix 𝜏 and outputs a (possibly aborting) prover message
𝛼 ∈ {0, 1}* ∪ {⊥}.

We additionally require that the following properties hold.

1. If 𝑥 ̸∈ ℒ, then State(𝑥, ∅) = reject, where ∅ denotes the empty transcript.

2. If State(𝑥, 𝜏) = reject for a transcript prefix 𝜏 , then NextMsg(𝑥, 𝜏) = ⊥. That is, NextMsg(𝑥, 𝜏)
is only defined on accepting states.

3. For every input 𝑥 and partial transcript 𝜏 = 𝜏𝑖, then for every potential prover message
𝛼𝑖+1 ̸= NextMsg(𝑥, 𝜏), it holds that

Pr
𝛽𝑖+1

[︁
State

(︀
𝑥, 𝜏 |𝛼𝑖+1|𝛽𝑖+1

)︀
= accept

]︁
≤ 𝜖(𝑛)

4. For any full7 transcript 𝜏 , if State(𝑥, 𝜏) = reject then V(𝑥, 𝜏) = 0.

We say that Π is unambiguously round-by-round sound if it has unambiguous round-by-round sound-
ness error 𝜖 for some 𝜖(𝑛) = negl(𝑛).

Next, we restate the result that specific forms of correlation intractability suffice to instantiate
the Fiat-Shamir transform for protocols satisfying unambiguous round-by-round soundness.

Theorem 2.21 ([CCH+18, LV20]). Suppose that Π = (P, V) is a 2ℓ− 1-message public-coin inter-
active proof for a language ℒ with perfect completeness and unambiguous round-by-round soundness
with corresponding functions (State, NextMsg). Let 𝒳𝑛 denote the set of partial transcripts (includ-
ing the input and all messages sent) and let 𝒴𝑛 denote the set of verifier messages when Π is
executed on an input of length 𝑛.

Finally, define the relation ensemble ℛ = ℛState,NextMsg as follows:

ℛ(𝑛)
State,NextMsg :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︁(︀

𝑥, 𝜏 |𝛼
)︀
, 𝛽

)︁
:

𝑥 ∈ {0, 1}𝑛,
𝛼 ̸= NextMsg(𝑥, 𝜏)

and
State(𝑥, 𝜏 |𝛼|𝛽) = accept

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

If a hash family ℋ = {ℋ𝑛 : 𝒳𝑛 → 𝒴𝑛} is correlation intractable for ℛ, then the round-reduced
protocol ΠFS,ℋ is an adaptively unambiguously sound argument system for ℒ.

3 The Outline-and-Batch Protocol
For 𝒳 ,𝒴 ⊆ {0, 1}*, let 𝑓 : 𝒳 → 𝒴 be a function and ‖ · ‖ : 𝒳 → N denote a “size measure” for
inputs to 𝑓 . Let 𝒳𝑛 denote {𝑥 ∈ 𝒳 : ‖𝑥‖ = 𝑛}, and let 𝑓𝑛 : 𝒳𝑛 → 𝒴 denote the restriction of 𝑓
to 𝒳𝑛. Recall from Section 2 that 𝑓𝑘

𝑛 : 𝒳 𝑘
𝑛 → 𝒴𝑘 denotes the function mapping (𝑥1, . . . , 𝑥𝑘) to

(𝑓𝑛(𝑥1), . . . , 𝑓𝑛(𝑥𝑘)).
7By a full transcript, we mean a transcript for which the verifier halts.

17

Definition 3.1 (Downwards self-reduction). A downwards self-reduction for 𝑓 is a deterministic ora-
cle algorithm D such that for any 𝑛 and 𝑥 ∈ 𝒳𝑛, D𝑓𝑛−1(𝑥) = 𝑓(𝑥). If on input 𝑥, D queries 𝑞1, . . . , 𝑞𝑑,
then we say that D is a 𝑑-query downwards self-reduction and we refer to ((𝑞1, 𝑓(𝑞1)) , . . . , (𝑞𝑘, 𝑓(𝑞𝑑)))
as an outline of the evaluation of 𝑓 on 𝑥.

Definition 3.2 (Batching reduction). A 𝑘′-to-𝑘 batching reduction for 𝑓 with soundness error 𝜖 is a
probabilistic algorithm B that on input {(𝑥′𝑖, 𝑦′𝑖) ∈ 𝒳𝑛 × 𝒴}𝑖∈[1,𝑘′] outputs {(𝑥𝑖, 𝑦𝑖) ∈ 𝒳𝑛 × 𝒴}𝑖∈[1,𝑘]
such that:

• (Completeness) If 𝑦′𝑖 = 𝑓(𝑥′𝑖) for all 𝑖 ∈ [1, 𝑘′], then with probability 1, 𝑦𝑖 = 𝑓(𝑥𝑖) for all
𝑖 ∈ [1, 𝑘].

• (Soundness) If 𝑦′𝑖 ̸= 𝑓(𝑥′𝑖) for some 𝑖 ∈ [1, 𝑘′], then with all but 𝜖 probability over the ran-
domness of B, 𝑦𝑖 ̸= 𝑓(𝑥𝑖) for some 𝑖 ∈ [1, 𝑘].

We remark that it may be useful to consider batching reductions that are interactive, but for
our purposes, non-interactive batching reductions suffice for our instantiations. We leave discussion
of abstract interactive batching reductions to future work.

Theorem 3.3. If 𝑓 has a 𝑑-query downwards self reduction D and a 𝑑𝑘-to-𝑘-batching reduction B
with error 𝜖, then there is a public-coin interactive proof for the language

ℒ𝑘
𝑓𝑛

:= {((𝑥1, · · · , 𝑥𝑛), (𝑦1, , · · · , 𝑦𝑛)) ∈ 𝒳 𝑘 × 𝒴𝑘 : 𝑓𝑛(𝑥𝑖) = 𝑦𝑖 for all 𝑖 ∈ [1, 𝑘]}

with 𝑛− 1 rounds of interaction and with unambiguous round-by-round soundness error 𝜖.

Remark 5. We remark that the hypotheses of Theorem 3.3 can be relaxed to only require complete-
ness and soundness for B when applied to inputs that correspond to the queries of an evaluation
of D. This relaxation captures the classical sumcheck protocol [LFKN90] as a special case.

Proof of Theorem 3.3. The prover P and verifier V both take as input a statement ((𝑥1, . . . , 𝑥𝑘), (𝑦1, . . . , 𝑦𝑘)) ∈
𝒳 𝑘

𝑛 × 𝒴𝑘
𝑛, and the protocol is defined recursively.

Base Case: If 𝑛 = 1, then no messages are sent (P does nothing), and V accepts only if 𝑓1(𝑥𝑖) = 𝑦𝑖

for all 𝑖 ∈ [1, 𝑘].

Recursive Case: If 𝑛 > 1, then:

1. P computes D𝑓𝑛−1(𝑥𝑖) for each 𝑖 ∈ [1, 𝑘], recording the queries made by D and answering
queries according to 𝑓𝑛−1. Then P sends all 𝑘 corresponding 𝑑-tuples of query-answer pairs
to V. Let ((𝑥̃′1, 𝑦′1), . . . , (𝑥̃′𝑑𝑘, 𝑦′𝑑𝑘)) denote the concatenation of all 𝑘 𝑑-tuples of query-answer
pairs received by V.

2. When V receives 𝑘 𝑑-tuples of query-answer pairs, V checks for each 𝑖 that the 𝑖-th tuple
is consistent with an execution of D8 on input 𝑥𝑖 (if not, then V rejects). V then samples
randomness 𝑟 for B and sends it to P.

8That is, V emulates an execution of D on each 𝑥𝑖, checking that for every 𝑗, the 𝑗th oracle call in the sequence
of 𝑘 executions is to 𝑥̃′

𝑗 ; it then uses 𝑦′
𝑗 as the oracle’s output in its emulation.

18

3. Let ((𝑥̃′′1, 𝑦′′1), . . . , (𝑥̃′′𝑘, 𝑦′′𝑘)) denote B ((𝑥̃′1, 𝑦′1), . . . , (𝑥̃′𝑑𝑘, 𝑦′𝑑𝑘); 𝑟). P and V recursively invoke the
interactive proof for 𝑓𝑘 on ((𝑥̃′1, . . . , 𝑥̃′𝑘), (𝑦′1, . . . , 𝑦′𝑘)).

We next describe how to give Π the structure of an unambiguous round-by-round sound protocol.

• At any step in the recursion, we have “current inputs” 𝑥1, . . . , 𝑥𝑘 as well as outputs 𝑦1, . . . , 𝑦𝑘

claimed in the previous recursive step. At this execution point, we define State to be accept
if and only if 𝑓(𝑥𝑖) = 𝑦𝑖 for all 𝑖.

• After Step 1 in a recursive call, we define State to be accept iff 𝒱 has not rejected and
𝑓(𝑥̃′) = 𝑦′ for every pair (𝑥̃′, 𝑦′) in the lists sent by the prover.

We define NextMsg(𝜏) to be the output of the honest prover algorithm in the description of the
recursion above, which means to:

• Compute B on its previous message and the verifier’s challenge 𝑟, and

• Compute the downwards self-reduction on the resulting tuple of inputs.

Given this description of (State, NextMsg), unambiguous round-by-round soundness follows from
the correctness of the downwards self-reduction and the soundness of the batching reduction.

Finally, we discuss instantiating the Fiat-Shamir transform for the protocol Π in Theorem 3.3
by appealing to Theorem 2.21. Since the round-by-round State function is fairly simple for our
protocol Π (in that it does not depend on the entire protocol history), we can rely on correlation
intractability for relations with a fairly simple description. By invoking Theorem 2.21, we obtain
the following corollary.

Corollary 3.4. Under the hypotheses of Theorem 3.3 and additionally assuming the existence of
a hash family ℋ that is correlation intractable for the following relation ℛ:

ℛ(𝑛)
State,NextMsg :=

⎧⎪⎨⎪⎩
(︁
𝛼 = (𝑛, 𝑥̃′1, 𝑦′1, . . . , 𝑥̃′𝑑𝑘, 𝑦′𝑑𝑘), 𝑟

)︁
:

𝑦′𝑗 ̸= 𝑓𝑛−1(𝑥̃′𝑗) for some 𝑗

and
𝑦′′𝑖 = 𝑓𝑛−1(𝑥̃′′𝑖) for all 𝑖

⎫⎪⎬⎪⎭ ,

where {(𝑥̃′′𝑖 , 𝑦′′𝑖)}𝑖∈[1,𝑘] is the output of B on input {(𝑥̃′𝑗 , 𝑦′𝑗)}𝑗∈[1,𝑑𝑘] and random coins 𝑟, there is a
non-interactive argument system for ℒ𝑘

𝑓𝑛
with adaptive unambiguous soundness.

3.1 Instantiations of Outline-and-Batch

Appropriate instantiations of our outline-and-batch protocol (Theorem 3.3, Corollary 3.4) can re-
cover the interactive proof systems or non-interactive argument systems constructed in the following
works:

1. The [LFKN90] interactive proof system for #SAT and its Fiat-Shamir instantiations [CHK+19a,
JKKZ21]. The sumcheck protocol can be viewed as a composition of

(a) a (𝑑+1)-query downward self-reduction that reduces a statement about the sum
∑︀

𝑥1,...,𝑥𝑛∈{0,1} 𝑝(𝑥1, . . . , 𝑥𝑛)
of a 𝑑-degree, 𝑛-variate polynomial 𝑝 (over some finite field) to 𝑑 + 1 statements of the
form

∑︀
𝑥2,...,𝑥𝑛

𝑝(𝛼, 𝑥2, . . . , 𝑥𝑛) (for hard-coded values of 𝛼); and

19

(b) a (𝑑 + 1)-to-1 batching reduction reducing these (𝑑 + 1) statements to a single statement
about

∑︀
𝑥2,...,𝑥𝑛

𝑝(𝑟, 𝑥2, . . . , 𝑥𝑛) for a uniformly random 𝑟.

2. The [Pie19, CHK+19b] interactive proof system for IS over the signed quadratic residue
group QR+

𝑁 and its Fiat-Shamir instantiation in the standard model [LV20]. Let 𝑥
𝑇−→ 𝑦

(now) denote the statement “𝑥2𝑇 equals 𝑦 over QR+
𝑁 ”. These protocols consist of a 2-query

downward self-reduction from a statement 𝑥
𝑇−→ 𝑦 to two statements of the form 𝑥𝑖

𝑇/2−−→ 𝑦𝑖 and
a 2-to-1 batching reduction that combines these two statements to a single such statement
using a random linear combination.

3. The [EFKP20] continuous VDF adapted to QR+
𝑁 . This protocol consists of a 𝑑-query down-

ward self-reduction from a statement 𝑥
𝑇−→ 𝑦 to 𝑑 statements of the form 𝑥𝑖

𝑇/𝑑−−→ 𝑦𝑖 and a
𝑑-to-1 batching reduction from these 𝑑 statements to a single such statement using, again,
a random linear combination. The parameter 𝑑 is set in their construction to 𝑂(𝜆), for the
security parameter 𝜆.

4. The [BHR+21] interactive proof system for IS. In Section 4.3, we describe how this protocol
fits the “outline-and-batch” framework and then show how to instantiate Fiat-Shamir for this
protocol in the standard model.

4 Non-Interactive Argument for Iterated Squaring in a Trapdoor
Group of Unknown Order

We first recall the iterated squaring (IS) problem modulo an integer 𝑁 and discuss the hardness of
IS. This includes a new hardness reduction showing that certain public-coin variants of IS are as
hard as the “traditional” IS problem in the RSA group. Next, we consider a general IS problem
over an arbitrary group of unknown order and construct our unambiguous “outline-and-batch”
argument system in this setting.

4.1 Iterated Squaring modulo 𝑁

We first define IS and then recall the assumption of [RSW96] on its sequential hardness that our
VDF is based on. Our hardness assumption on IS required for PPAD hardness is a relaxation of
this assumption.

Definition 4.1 ([RSW96, CLSY93]). IteratedSquaring (IS)

• Instance.

1. Integers 𝑁, 𝑇 ∈ N
2. Group element 𝑔 ∈ Z*𝑁

• Solution. 𝑓(𝑁, 𝑔, 𝑇) := 𝑔2𝑇 mod 𝑁

Assumption 4.2 (Sequential hardness of IS [RSW96]). For a security parameter 𝜆 ∈ N, let
𝑅𝑆𝐴 ∈ 𝜆𝑂(1) denote the size of RSA modulus that corresponds to 𝜆 bits of security. Sample 𝑁 = 𝑝𝑞
as the product of two random 𝜆𝑅𝑆𝐴/2-bit primes and 𝑔 ← Z*𝑁 . Consider any time parameter

20

𝑇 = 2𝑜(𝜆). Any A that uses 2𝑜(𝜆) amount of parallelism and computes 𝑓(𝑁, 𝑔, 𝑇) with a probability
that is non-negligible in 𝜆 requires sequential time 𝑇 (1− 𝑜(1)) group operations.

Assumption 4.3 (Polynomial hardness of IS [CHK+19b]). For a security parameter 𝜆 ∈ N, let
𝑁 and 𝑔 be sampled as in Assumption 4.2. There exists an efficiently computable function 𝑇 (1𝜆),
such that no 𝜆𝑂(1)-time algorithm can compute 𝑓(𝑁, 𝑔, 𝑇) with a non-negligible probability.

Remark 6 (Assumption 4.3 vs. assumption in [CHK+19b, Pie19]). The hardness assumption in
[CHK+19b, Pie19] is slightly different from Assumption 4.3. Firstly, the modulus 𝑁 in [CHK+19b,
Pie19] is sampled a product of two random 𝜆𝑅𝑆𝐴/2-bit safe primes – the statistical soundness
of Pietrzak’s proof-of-exponentiation (PoE) is guaranteed only in such moduli. Secondly, to at-
tain unambiguity, [CHK+19b, Pie19] switch to the algebraic setting of signed quadratic residues
[FS00, HK09]. In comparison, our assumption is made on the conventional RSA modulus and this
suffices since we rely the PoE from [BHR+21] which achieves statistical soundness and (as we show)
unambiguity for arbitrary groups.

Sampling using public coins. Finally, for our results on public-coin PPAD hardness, we
assume the hardness of IS over a public-coin modulus 𝑁 . In our work, we choose a particular public-
coin distribution on 𝑁 and prove that the resulting IS assumption follows from Assumption 4.3.

Assumption 4.4. For a security parameter ∈ N, let 𝑁1, 𝑁2, . . . , 𝑁𝜆3 be i.i.d. uniformly random
integers in the range [1, 2𝜆], let 𝑁 =

∏︀𝜆3
𝑖=1 𝑁𝑖, and let 𝑔 ← Z×𝑁 be sampled uniformly at random9

from the unit group modulo 𝑁 . There exists an efficiently computable function 𝑇 (1𝜆), such that no
𝜆𝑂(1)-time algorithm (given as input (𝑁1, . . . , 𝑁𝜆3 , coins(𝑔), 𝑇)), where coins(𝑔) denotes the public
coins used to sample 𝑔, can compute 𝑓(𝑁, 𝑔, 𝑇) with a non-negligible probability.

Lemma 4.5. Assumption 4.4 follows from Assumption 4.3.

Proof. We give a reduction from breaking Assumption 4.3 to breaking Assumption 4.4. For some
efficiently-computable function 𝑇 (𝜆) and 𝑁 :=

∏︀
𝑁𝑖. suppose that A(𝑁1, . . . , 𝑁𝜆3 , coins(𝑔), 𝑇) =

𝑔2𝑇 mod 𝑁 with non-negligible probability over (𝑁1, . . . , 𝑁𝜆3 , coins(𝑔)). Let 𝑁RSA = 𝑝𝑞 be a
randomly sampled RSA modulus (for 𝑝, 𝑞 ∈ {0, 1}𝜆/2) and let 𝑔RSA be a given uniformly random
element of Z×𝑁RSA

. We embed the (𝑁RSA, 𝑔RSA, 𝑇) problem into A via the following procedure.

1. Sample 𝜆3 random integers 𝑁 ′1, . . . , 𝑁 ′𝜆3 along with their factorizations [Bac88, Kal03].

2. Compute the first index 𝑖 such that 𝑁 ′𝑖 is an RSA modulus; if no such index exists, set 𝑖 = ⊥
and abort.

3. Set 𝑁𝑗 = 𝑁 ′𝑗 for all 𝑗 ̸= 𝑖 and 𝑁𝑖 = 𝑁RSA.

4. Sample a uniformly random element 𝑔 ← Z×̃︀𝑁 for ̃︀𝑁 =
∏︀

𝑗 ̸=𝑖 𝑁𝑗 . Define 𝑔 ∈ Z×𝑁 to be the
unique group element (efficiently computable via the Chinese Remainder Theorem10) such
that 𝑔 ≡ 𝑔RSA (mod 𝑁RSA) and 𝑔 ≡ 𝑔 (mod ̃︀𝑁).

9To make this problem public coin, we need to specify a public-coin efficient procedure for sampling 𝑔. To do this,
we repeatedly execute the following process: sample a uniformly random element 𝑎 of Z𝑁 , and compute gcd(𝑎, 𝑁). If
the GCD is equal to 1, we are done; if not, we factor 𝑁 into a product of (> 1) relatively prime integers and recursively
run the procedure on all of the factors simultaneously (implicitly applying the Chinese Remainder Theorem).

10With negligible probability we will have that 𝑁RSA is not relatively prime to ̃︀𝑁 , in which case we will abort for
simplicity.

21

5. Simulate random coins coins(𝑔) for generating 𝑔 modulo 𝑁 .11

6. Call A(𝑁1, . . . , 𝑁𝜆3 , coins(𝑔), 𝑇) and reduce the output modulo 𝑁RSA. Output this group
element.

To see that this reduction is valid, we note that the reduction aborts with only negligible probability;
this is because Step (2) of the reduction only aborts if 𝑁 ′1, . . . , 𝑁 ′𝜆3 are all not RSA moduli. But
each 𝑁 ′𝑖 is an RSA modulus with probability Ω(1/𝜆2) by the prime number theorem, and thus there
is only a negligible probability that all 𝜆3 of them are not.

Moreover, conditioned on this non-aborting event, the distribution of (𝑁1, . . . , 𝑁𝜆) is identical
to the distribution of (𝑁 ′1, . . . , 𝑁 ′𝜆), and thus the distribution of (𝑁1, . . . , 𝑁𝜆) is statistically close
to the correct input distribution for A. The group element 𝑔 (and its random coins coins(𝑔)) is
also sampled correctly by the Chinese Remainder Theorem, so the call to A will succeed with
non-negligible probability, solving the IS problem modulo 𝑁 (and therefore modulo 𝑁RSA).

4.2 Trapdoor Groups with Unknown Order

Definition 4.6 (Group of unknown order). A group sampler for a group of unknown order consists
of the following two functionalities:

• A setup algorithm Setup(1𝜆) that samples the description of a group G𝜆 of order at most 2𝜆.
For our purposes, a group description consists of a distinguished identity element idG and
efficient membership testing algorithm that takes as input an arbitrary string and decides
whether the string is a valid element of G𝜆.

• Efficient poly(𝜆)-time algorithms, given a description of G𝜆, for:

– Sampling a uniformly random group element,
– Computing the group law (𝑔, ℎ) ↦→ 𝑔ℎ ∈ G𝜆, and
– Computing the inverse map 𝑔 ↦→ 𝑔−1 ∈ G𝜆.

Remark 7. These efficient group operations generically imply that one can compute exponentiations
𝑔 ↦→ 𝑔𝑥 in time poly(𝜆) · log(𝑥) by repeated squaring. For example, this implies that 𝑔 ↦→ 𝑔2𝑇 can
be computed in time 𝑇 · poly(𝜆) (or 𝑇 group operations).

Note that if the order of G𝜆 is known, then the map 𝑔2𝑇 can actually be computed in time
poly(𝜆, log 𝑇) by first reducing 2𝑇 modulo the order of the group. However, when the order of
the group is unknown, it is plausible that this map requires time roughly 𝑇 group operations, as
originally proposed by [RSW96]. We formulate two flavors of this assumption, matching Assump-
tions 4.2 and 4.3 in the case of RSA groups.

Assumption 4.7 ((𝑇, 𝑝)-Sequential Hardness). Given the description of G𝜆 and a random group
element 𝑔, any algorithm running in sequential time 𝑇 (1− 𝑜(1)) with 𝑝(𝜆) parallelism outputs 𝑔2𝑇

with only negligible probability.
11This is done by generating coins for a fresh uniformly random element of Z×

𝑁 . Then, during the successful step
(where units 𝑎1, . . . 𝑎𝑘 modulo some factors of 𝑁 are generated), we replace the coins with the unique set of coins
that would result in an output of 𝑔 in this step.

22

Assumption 4.8 (Polynomial Hardness of Iterated Squaring). There exists an efficiently com-
putable function 𝑇 (1𝜆) such that, given the description of G𝜆 and a random group element 𝑔, no
algorithm running in time 𝜆𝑂(1) can output 𝑔2𝑇 with non-negligible probability.

In order to prove the unambiguous soundness of our non-interactive argument system for IS, we
will make use of groups satisfying Assumption 4.8 that have trapdoors allowing for efficient iterated
squaring. We formalize this by requiring that the group distribution G𝜆 could be sampled along
with its order (using secret coins).

Definition 4.9 (Trapdoor group with unknown order). A trapdoor group with unknown order
is a group with unknown order (Definition 4.6) equipped with an additional setup algorithm
TrapSetup(1𝜆) that outputs the description of a group G𝜆 along with its order 𝑀 . We require
that the distribution of groups output by Setup(1𝜆) is statistically indistinguishable from the dis-
tribution of groups output by TrapSetup(1𝜆) (where the order information is dropped).

RSA groups Z×𝑝𝑞 are naturally equipped with the required trapdoor structure, because if 𝑁 = 𝑝𝑞

is sampled as the product of two known primes, then the order of Z×𝑁 is equal to 𝜑(𝑝𝑞) = (𝑝−1)(𝑞−1).
Similarly, groups of the form Z×𝑁 for 𝑁 = 𝑁1 × . . . ×𝑁𝑘 (as in Assumption 4.4) can be given the
desired trapdoor structure via the algorithm TrapSetup that samples each 𝑁𝑖 along with its prime
factorization [Bac88, Kal03] and uses these prime factorizations to compute 𝜑(𝑁).

4.3 Interactive Iterated Squaring Protocol

In this section, we recall the interactive proof system Π of [BHR+21] for IS and analyze the Fiat-
Shamir heuristic applied to Π using an appropriate correlation-intractable hash family. Since the
groups output by Setup(1𝜆) and TrapSetup(1𝜆) are statistically indistinguishable, we assume that
TrapSetup(1𝜆) is used for the purposes of both the construction and its analysis.

Let G𝜆 ← Setup(1𝜆) denote a group (distribution) with unknown order and associated generator
𝑔. For simplicity, we only consider 𝑇 of the form 𝑇 = 2𝑡.12 For 𝑇 of this form, we construct an
interactive proof system for IS by having the prover invoke the “outline and batch” protocol (The-
orem 3.3) on 𝜆 identical computations of 𝑔2𝑇 , i.e., ((𝑔, · · · , 𝑔), (𝑔2𝑇

, · · · , 𝑔2𝑇)). By Theorem 3.3,
it suffices to show that the function 𝑓 : 𝑔 ↦→ 𝑔2𝑇 has a 2-query downwards self reduction (Defini-
tion 3.1) and a 2𝜆-to-𝜆 batching reduction (Definition 3.2).

• 2-Downwards Self-Reduction: Given an instance of the 𝑇 -IS problem 𝑓(𝑔, 𝑇), we can
query 𝑓(𝑔, 𝑇/2) to obtain an intermediate group element 𝜇, and then call 𝑓(𝜇, 𝑇/2) to obtain
𝜇2𝑇/2 = 𝑔2𝑇 .

• 2𝜆-to-𝜆 Batching Reduction: Given 2𝜆 instances 𝑔1, . . . , 𝑔2𝜆 for 𝑓(·, 𝑇) and 2𝜆 candidate
outputs ℎ1, . . . , ℎ2𝜆, the batching reduction samples 𝜆 i.i.d. vectors 𝑟1, . . . , 𝑟𝜆 ← {0, 1}2𝜆.
The reduction then outputs 𝜆 statements about 𝑓(·, 𝑇):⎛⎝ 2𝜆∏︁

𝑗=1
𝑔

𝑟1,𝑗

𝑗
𝑇−→

2𝜆∏︁
𝑗=1

ℎ
𝑟1,𝑗

𝑗 , . . . ,
2𝜆∏︁

𝑗=1
𝑔

𝑟𝜆,𝑗

𝑗
𝑇−→

2𝜆∏︁
𝑗=1

ℎ
𝑟𝜆,𝑗

𝑗

⎞⎠ .

12A protocol for general 𝑇 can be obtained by dividing 𝑇 by computing a binary decomposition of the resulting
integer, and sequentially composing squaring protocols for integers of the form 2𝑡.

23

Completeness of the batching reduction is immediate by group axioms. For soundness, sup-
pose that 𝑔2𝑇

𝑗 ̸= ℎ𝑗 for some 𝑗. The 𝑖-th statement output by the reduction is true if and only
if

2𝜆∏︁
𝑗=1

(𝑔2𝑇

𝑗)𝑟𝑖,𝑗 =
2𝜆∏︁

𝑗=1
ℎ

𝑟𝑖,𝑗

𝑗 ,

which is equivalent to the equation

2𝜆∏︁
𝑗=1

(𝑔2𝑇

𝑗 ℎ−1
𝑗)𝑟𝑖,𝑗 = idG𝜆

.

For 𝑟𝑖 ← {0, 1}2𝜆, 𝑖 ∈ [1, 𝜆], this event occurs with probability at most 1/2 (see [BHR+21,
Fact 8.1]). Thus, at least one of the 𝜆 resulting statements is false except with probability 2−𝜆.
In fact, this analysis gives a product set description for the “bad challenges” of the batching
reduction. For a fixed 𝛼 = ((𝑔1, ℎ1), . . . , (𝑔2𝜆, ℎ2𝜆)), the bad set ℛ𝛼 = ℬ(1)

𝛼 × . . . × ℬ(𝜆)
𝛼 ⊂

({0, 1}2𝜆)𝜆, where

ℬ(𝑖)
𝛼 =

⎧⎨⎩𝑟 ∈ {0, 1}2𝜆 :
2𝜆∏︁

𝑗=1
(𝑔2𝑇

𝑗)𝑟𝑗 =
2𝜆∏︁

𝑗=1
ℎ

𝑟𝑗

𝑗

⎫⎬⎭
(in fact, we have that each ℬ(𝑖)

𝛼 = ℬ𝛼 for a fixed set ℬ𝛼). As mentioned above, we have
that |ℬ(𝑖)

𝛼 | ≤ 22𝜆/2 for every 𝑗 and every false 𝛼. Thus, the bad-challenge relation ℛ is
a product relation with the appropriate sparsity, where ℛ is defined as the set of pairs(︀
𝛼, 𝛽 = (𝑟1, . . . , 𝑟𝜆)

)︀
for which at least one of the 2𝜆 statements defined by 𝛼 is false but all

of the 𝜆 statements output by the reduction are true.
Finally, we observe that for (G𝜆, 𝑀)← TrapSetup(1𝜆), the relationℛ is also efficiently product
verifiable: to verify that 𝑣 ∈ ℬ(𝑖)

𝛼 , it suffices to check the equation

2𝜆∏︁
𝑗=1

(𝑔2𝑇

𝑗)𝑟𝑗 =
2𝜆∏︁

𝑗=1
ℎ

𝑟𝑗

𝑗 .

This can be checked in time poly(𝜆, log 𝑇) given the order 𝑀 of G𝜆, by first computing 2𝑇

modulo 𝑀 and then checking the equation above using the group law and repeated squaring.

Thus, by Theorem 3.3 we conclude that there is a 𝑡 = log(𝑇)-round unambiguous interactive
proof system for the 𝑇 -IS problem with poly(𝜆) communication. Moreover, by Corollary 3.4 this
protocol can be round-collapsed to a computationally unambiguous non-interactive argument sys-
tem using a hash function family that is correlation-intractable for the relation 𝑅 above (where we
consider 𝑇 as part of the input to the relation). Finally, by Theorem 2.14, such hash functions can
be built under the learning with errors assumption. This is captured by the following corollary.

Corollary 4.10. For a security parameter 𝜆 ∈ N, let G𝜆 be a trapdoor group of unknown defined in
Definition 4.9. Assuming polynomial hardness of LWE (Assumption 2.10), ΠFS,ℋ is an adaptively
unambiguously-sound non-interactive argument for the language

ℒ𝜆
G𝜆

:= {((𝑔1, · · · , 𝑔𝜆), (ℎ1, · · · , ℎ𝜆), 𝑇) ∈ G𝜆
𝜆 ×G𝜆

𝜆 × N : ℎ𝑖 = 𝑔2𝑇 for all 𝑖 ∈ [1, 𝜆]}.

24

5 PPAD Hardness
In this section, we construct a hard distribution of RSVL from any hard 𝑓 that is downward
self-reducible and batch-reducible, additionally assuming the unambiguous soundness of ΠFS,ℋ, the
non-interactive “outline-and-batch” argument system for ℒ𝑘

𝑓𝑛
(Corollary 3.4). By Theorem 2.8, this

implies hardness of EOML, which is complete for CLS (Definition A.4); since CLS ⊆ PPAD,
PPAD-hardness follows. Furthermore, we show in Appendix B how to strengthen this result to
show hardness for class UEOPL ⊆ CLS by constructing a hard distribution of a (total) search
problem called UniqueForwardEOML (Definition B.1). The construction of our RSVL instance
is given in Section 5.1 and its hardness is then shown in Section 5.2.

5.1 Construction

We follow the blueprint from [CHK+19a, CHK+19b] of first giving an implicit, easy-to-understand
description of the RSVL instance (Section 5.1.1) and then “simulating” it to obtain the description
of successor and verifier circuits (Section 5.1.2). Since our construction works with any 𝑓 that is
downward self-reducible and batch-reducible, it generalises the constructions of RSVL instance in
[CHK+19a, CHK+19b] and the continuous VDF in [EFKP20]. Indeed, as we saw in Section 3,
both iterated squaring and the sumcheck problem satisfy downward self-reducibility and batch-
reducibility.

5.1.1 An Implicit Description

An implicit description of our RSVL instance RSVL is given in Algorithm 1 (see Algorithm 5 for a
version of Algorithm 1 with explicit subscripts). It describes a recursive procedure F that verifiably
computes 𝑓 by exploiting the structure of the outline-and-batch protocol Π from Section 3. The
explicit description, given in Section 5.1.2, is obtained by simulating F’s computation one step at a
time, which yields an incrementally-verifiable procedure that computes 𝑓 . Since F is non-interactive,
we rely on ΠFS,ℋ, the non-interactive outline-and-batch protocol from Corollary 3.4.

Conventions on batching and downward self-reducing. Before describing F, we establish
some conventions for the batching algorithm B and the downward self-reducing algorithm D that
F will rely on.

• The 𝑘′-to-𝑘 batching reduction B as defined in Definition 3.2 reduces 𝑘′ = 𝑘 · 𝑑 statements to
𝑘 statements. Since we work with parallel repetitions and use vectors of statements, it will
be convenient to define a batching reduction ̃︀B that takes 𝑑-many 𝑘-vectors of statements
and outputs a 𝑘-vector of statements. That is, ̃︀B takes an input

(︀
(𝑥0, 𝑦0), · · · , (𝑥𝑑−1, 𝑦𝑑−1)

)︀
,

serialises it to

((𝑥0,0, 𝑦0,0), · · · , (𝑥0,𝑑−1, 𝑦0,𝑑−1), (𝑥1,0, 𝑦1,0), · · · , (𝑥𝑘−1,𝑑−1, 𝑦𝑘−1,𝑑−1)) ,

invokes B on this (using same random coins it received) to obtain

((𝑥𝑑,0, 𝑦𝑑,0), · · · , (𝑥𝑑,𝑘−1, 𝑦𝑑,𝑘−1)) ,

which it assembles into (𝑥𝑑, 𝑦𝑑), its output.

25

• F will be required to partially simulate D𝑓𝑛−1 , where the output of the (𝑖 − 1)-query partial
simulation of D𝑓𝑛−1(𝑥) on (𝑦0, · · · , 𝑦𝑖−1) is 𝑞𝑖, with the response to query 𝑞𝑗 , 𝑗 ∈ [0, 𝑖− 1], set
to be 𝑦𝑗 . Similarly, for its parallel execution D𝑓𝑛−1(𝑥), the output of the (𝑖− 1)-query partial
simulation on

(︀
𝑦0, · · · , 𝑦𝑖−1

)︀
is denoted by the 𝑘-vector 𝑞𝑖:

𝑥
D−→ 𝑞0

𝑓𝑛−1−−−→ 𝑦0
D−→ 𝑞1

𝑓𝑛−1−−−→ 𝑦1
D−→ · · · D−→ 𝑞𝑖−1

𝑓𝑛−1−−−→ 𝑦𝑖−1
D−→ 𝑞𝑖. (8)

Here, for convenience, D−→ denotes one step of this partial simulation, using 𝑦s that have been
already obtained as answers

Overview of F. It is a recursive procedure that takes as input a vector 𝑥 ∈ 𝒳 𝑘
𝑛 (let’s ignore the

transcript 𝜏 for now) and outputs 𝑦 = 𝑓𝑛(𝑥) and proof 𝜋 = 𝜋(𝑥 𝑓𝑛−→ 𝑦). F does this as follows.

1. Recursive outlining. Recursively compute (Line 3 to Line 7) the outline

𝜇 :=
(︀
(𝑞0, 𝑦0), · · · , (𝑞𝑑−1, 𝑦𝑑−1)

)︀
for the evaluation of 𝑓𝑛(𝑥) along with proofs (𝜋0, · · · , 𝜋𝑑−1) where 𝜋(𝑞𝑖

𝑓𝑛−1−−−→ 𝑦𝑖) for all
𝑖 ∈ [0, 𝑑− 1]. In more details, F does the following:

(a) Invoke D(𝑥) to obtain a 𝑘-vector of queries 𝑞0.
Assume that the partial outline (𝑞0, 𝑦0), · · · , (𝑞𝑖−1, 𝑦𝑖−1), 𝑞𝑖 as in Eq. (8) and proofs
(𝜋0, · · · , 𝜋𝑖−1), where

𝜋𝑗 := 𝜋(𝑞𝑗

𝑓𝑛−1−−−→ 𝑦𝑗), 𝑗 ∈ [0, 𝑖− 1] ,

are available at this point.

(b) Recursively invoke F(𝑞𝑖) to obtain (𝑦𝑖, 𝜋𝑖), where 𝜋𝑖 = 𝜋(𝑞𝑖

𝑓𝑛−1−−−→ 𝑦𝑖). Then partially
simulate D(𝑥) using (𝑦0, · · · , 𝑦𝑖) to obtain the next query 𝑞𝑖+1.

(c) Repeat Item 1b 𝑑 times to obtain the outline 𝜇 :=
(︀
(𝑞0, 𝑦0), · · · , (𝑞𝑑−1, 𝑦𝑑−1)

)︀
and

output 𝑦.

2. Batching. Batch-reduce 𝜇 to obtain a 𝑘-vector of new statements (Line 8 to Line 10)

𝑥𝑑
𝑓𝑛−1−−−→ 𝑦𝑑. (9)

The hash-input required to compute the challenge 𝑟 that is used as randomness in ̃︀B is
obtained from the transcript 𝜏 , an auxiliary input maintained for this sole purpose.

3. Recursive proof-merging. Recursively invoke F(𝑥𝑑) to compute proof 𝜋𝑑 for Eq. (9) (Line 11).
Assemble the final proof 𝜋 by appending 𝜇 to 𝜋𝑑 and return (𝑦, 𝜋).

Note that the computation of F on inputs of size 𝑛 is reduced to 𝑑 + 1 recursive calls of F on inputs
of size (𝑛 − 1). This downward-self-reducing structure will allow – as we show in Section 5.1.2
– the computation of F to be carried out in incremental manner. Moreover, since every step of
the recursion is accompanied by appropriate proofs, the resulting incremental procedure is also
verifiable. Below we prove that F is a verifiable function. More specifically, we show that

26

• F(𝑥, 𝜀) outputs a value 𝑦 such that 𝑥
𝑓𝑛−→ 𝑦; and

• the proof 𝜋 output by F will be identical to the prescribed proof produced by ΠFS,ℋ.

We first recall the definition of verifiable functions from [EFKP20].

Definition 5.1 (Verifiable functions [EFKP20]). A verifiable function is a tuple of algorithms
(Setup, Eval, Verify), where Setup is probabilistic polynomial-time that defines a domain 𝒳 and
range 𝒴, Eval is deterministic and Verify is deterministic polynomial-time, satisfying the following
properties:

• Completeness. A verifiable function is complete if for every 𝜆 ∈ N and 𝑥 ∈ 𝒳

Pr
𝐻←Setup(1𝜆)

[Verify(1𝜆, 𝐻, 𝑥, Eval(1𝜆, 𝐻, 𝑥) = 1] = 1.

• Soundness. A verifiable function is (𝑠(𝜆), 𝜖(𝜆))-sound if for every size-𝑠(𝜆) algorithm A =
{A𝜆}𝜆∈N

Pr
𝐻←Setup(1𝜆)
(𝑥,𝑦)←A(𝐻)

[Verify(1𝜆, 𝐻, 𝑥, 𝑦) = 1, Eval(1𝜆, 𝐻, 𝑥) ̸= 𝑦] = 𝑂(𝜖(𝜆).

Claim 5.2. Let ΠFS,ℋ = (Setup, P, V) be the non-interactive outline-and-batch argument for ℒ𝑘
𝑓𝑛

from Corollary 3.4.Then (ΠFS,ℋ.Setup, F, V), where F is defined as in Algorithm 5 and hardwired
with 𝐻 sampled using ΠFS,ℋ.Setup, is a verifiable function.

Proof. For a CRS 𝐻 sampled using ΠFS,ℋ.Setup and a true statement 𝑥
𝑓𝑛−→ 𝑦, let 𝜋 := P(𝐻, 𝑥

𝑓𝑛−→
𝑦) denote the prescribed proof. We argue below that (𝑦, 𝜋) = F(𝑥, 𝜀), where F is hardcoded with
𝐻. This implies correctness; soundness then follows the (adaptive) soundness of ΠFS,ℋ since the
proofs produced by P and F are identical.

We proceed inductively in the size of the input 𝑥 =: (𝑥0, · · · , 𝑥𝑘−1). In the base case of
|𝑥0| = · · · = |𝑥𝑘−1| = 1, the claim is trivially true since (i) the proof returned is empty in both P and
F, and (ii) 𝑦 = (𝑓(𝑥0), · · · , 𝑓(𝑥𝑘−1)). Suppose that the claim is true for |𝑥0| = · · · = |𝑥𝑘−1| = 𝑛−1.
By applying the induction hypothesis to the 𝑑 recursive outlining calls (Line 5), we first infer that
the outline for evaluation of 𝑓𝑛 on 𝑥 – and therefore the final output 𝑦 – is correctly computed
by F (recall that D is deterministic). This also implies that the challenge 𝑟 in Line 9 is computed
correctly since it depends only on the statement and outline, and is computed exactly as by the
non-interactive prover. This, in turn, implies that the statement that the prover and verifier recurse
down to is exactly Eq. (9) in both cases. Finally, we apply the induction hypothesis again to infer
that the proof 𝜋𝑑 returned by F is correct and identical, and as a result the final proof 𝜋 is also
correct because of the way it is assembled from 𝜋𝑑 and the outline in Line 12.

5.1.2 The Explicit Description

First we provide some definitions pertaining to 𝑇𝑛,𝑑+1, the perfect directed (𝑑+1)-ary tree of depth
𝑛, with the root 𝜀 on level 𝑛 and leaves on level 0, i.e,

𝑉 (𝑇𝑛,𝑑+1) = [0, 𝑑]≤𝑛 and 𝐸(𝑇𝑛,𝑑+1) = {(𝑣𝑗, 𝑣)}𝑣∈[0,𝑑]<𝑛,𝑗∈[0,𝑑].

27

Algorithm 1 Recursive description of the RSVL instance (cf. Algorithm 5 for subscripted version).
1: procedure F(𝑥, 𝜏)

hardwired Descriptions of:
1. the function 𝑓 : 𝒳 → 𝒴
2. a hash 𝐻 : {0, 1}* → {0, 1}𝜆 sampled using ΠFS,ℋ.Setup(1𝜆)
3. the 𝑑-query downwards self-reduction algorithm D𝑓

4. the 𝑘′-to-𝑘 batching reduction ̃︀B where 𝑘′ = 𝑘 · 𝑑
input Problem instances 𝑥 ∈ 𝒳 𝑘

𝑛 and transcript 𝜏 ∈ 𝒳 𝑘 × 𝒴𝑘 × (𝒳 × 𝒴)≤𝑑·𝑛

output 𝑦 ∈ 𝒴𝑘 and 𝜋 = 𝜋(𝑥 𝑓𝑛−→ 𝑦)
2: if |𝑥0| = · · · = |𝑥𝑘−1| = 1 then return ((𝑓1(𝑥0), · · · , 𝑓1(𝑥𝑘−1)) , 𝜀)

◁ Recursive outlining
3: Invoke D𝑓𝑛−1(𝑥) to obtain query 𝑞0
4: for 𝑗 ∈ [1, 𝑑− 1] do
5: (𝑦𝑗 , 𝜋𝑗) := F(𝑞𝑗−1, 𝜀)
6: Partially simulate D𝑓𝑛−1 on

(︁
(𝑞0, 𝑦0), · · · , (𝑞𝑗−1, 𝑦𝑗−1)

)︁
to obtain 𝑞𝑗

◁ Batching
7: Simulate D𝑓𝑛−1 on 𝜇 :=

(︀
(𝑞0, 𝑦0), · · · , (𝑞𝑑−1, 𝑦𝑑−1)

)︀
to obtain 𝑦

8: if 𝜏 = 𝜀 then 𝜏 := 𝑥𝑦𝜇 else 𝜏 := 𝜏𝜇
9: Compute challenge 𝑟 := 𝐻(𝜏)

10: Compute (𝑥𝑑, 𝑦𝑑) := ̃︀B(𝜇; 𝑟)
◁ Recursive proof-merging

11: (𝑦𝑑, 𝜋𝑑) := F(𝑥𝑑, 𝜏)
12: return 𝜋 := (𝑦, (𝜇, 𝜋𝑑))

28

121 222

𝜀

2

Figure 1: Inclusive ancestor, frontier and rooted frontier in a perfect 3-ary tree of depth 3. The
inclusive ancestors of the leaf 121 ({𝜀, 1, 12, 121}) is shown in the path from 121 to root (shaded red).
Its frontier is coloured red (frontier(121) = {0, 10, 11, 120, 121}). The path from the leaf 222 to an
ancestor 2 is shaded green; its rooted frontier till 2 is coloured green (frontier*(222, 2) = {222, 22, 2}).

Definition 5.3 (left siblings, inclusive ancestor, frontier and rooted frontier).

1. The left siblings of a vertex 𝑣 =: 𝑣0 · · · 𝑣ℓ−1𝑣ℓ ∈ [0, 𝑑]≤𝑛 is the tuple of vertices

(𝑣0 · · · 𝑣ℓ−10, · · · , 𝑣0 · · · 𝑣ℓ−1(𝑣ℓ − 1)) .

2. The inclusive ancestors (see Fig. 1) of a vertex 𝑣 =: 𝑣0 · · · 𝑣ℓ ∈ [0, 𝑑]≤𝑛 consists of a tuple of
vertices with (i) the ancestors of 𝑣 and (ii) 𝑣 itself, i.e.:

(𝑣0, 𝑣0𝑣1, · · · , 𝑣0𝑣1 · · · 𝑣ℓ−1, 𝑣0 · · · 𝑣ℓ = 𝑣) .

3. The frontier of a vertex 𝑣 =: 𝑣0 · · · 𝑣ℓ ∈ [0, 𝑑]≤𝑛 (see Fig. 1) is the tuple of vertices consisting
of (i) the left siblings of each inclusive ancestor of 𝑣 and (ii) 𝑣 itself (in that order).13 We
denote it by frontier(𝑣).

4. More generally, the rooted frontier of 𝑣 =: 𝑣0 · · · 𝑣ℓ ∈ [0, 𝑑]≤𝑛 till an ancestor 𝑣* := 𝑣0 · · · 𝑣ℓ′ ,
ℓ′ < ℓ, is the frontier of 𝑣 restricted to the sub-tree rooted at 𝑣* (see Fig. 1). We denote it by
frontier*(𝑣, 𝑣*). Note that for any 𝑣 and its ancestor 𝑣*, frontier*(𝑣, 𝑣*) ⊆ frontier(𝑣).

Overview of RSVL. Recall that the explicit description of our RSVL instance RSVL is obtained
by simulating F (Algorithm 1) incrementally, which yields an incrementally-verifiable computation
(IVC).14 To this end, the standard line in RSVL maintains a one-to-one correspondence with the
steps of the IVC – in particular, its 𝑖-th vertex is the state of IVC on step 𝑖. As we will see, the
successor S increments the state of IVC by one step, whereas the verifier V simply validates that

13We use a slightly different definition from [EFKP20]. In [EFKP20], the frontier of 𝑣 is defined simply as the tuple
of vertices consisting of the left siblings of each inclusive ancestor of 𝑣.

14To be precise, it is a special-purpose IVC where the underlying computation, itself, is the computation of a ΠFS,ℋ
proof. It does not qualify as an IVC for computation of 𝑓 since the efficiency criteria from [Val08] are not met.

29

(a) (b)

Figure 2: A perfect 3-ary tree of depth 2 and its traversals: (a) the depth-first search (in blue) and
(b) the restricted depth-first search (in red); the left children in the tree are highlighted in green.

the contents of a state are valid for that step. To explain this correspondence15 more formally, it
is useful to first define the recursion tree16 of F, denoted 𝑇 = 𝑇F,𝑥 for a parameter 𝑥 ∈ 𝒳𝑛, which
has the following characteristics:

• It is a labelled tree with topology 𝑇𝑛,𝑑+1, where 𝑛 = |𝑥| and 𝑓 is 𝑑-downward self-reducible.

• Each vertex 𝑣 ∈ 𝑉 (𝑇) represents a call to F on 𝑥𝑣 that resulted in output (𝑦𝑣, 𝜋𝑣) and can
be therefore associated with the label (𝑣, 𝑥𝑣, 𝑦𝑣, 𝜋𝑣), where

𝜋𝑣 = 𝜋(𝑥𝑣

𝑓𝑛−|𝑣|−−−−→ 𝑦𝑣).

In particular the root 𝜀 represents the initial call F(𝑥𝜀), where 𝑥𝜀 = (𝑥, · · · , 𝑥) ∈ 𝒳 𝑘
𝑛 . This

connection is made explicit in Algorithm 5, which can be found in the appendix.

• The 𝑑 left children 𝑣0, · · · , 𝑣(𝑑 − 1) of an internal vertex 𝑣 ∈ 𝑉 (𝑇) represent the 𝑑-many
recursive outlining calls (Line 5); its rightmost child 𝑣𝑑 represents the recursive proof-merging
call (Line 11).

• Note that the proof in the label of a rightmost child 𝑣 in 𝑇 is partial in the sense that the
merging of the ΠFS,ℋ proof is only completed upstream at one of 𝑣’s ancestor.17

The standard line now corresponds to the depth-first search (DFS) of 𝑇 restricted to its left children
𝑉 (𝑇) ∖ [0, 𝑑]<𝑛 𝑑 which, recall, contain final ΠFS,ℋ proofs (see Fig. 2.(b)):

0𝑛 → · · · → 0𝑛−1(𝑑− 1)→ 0𝑛−21→ · · · → 𝑑𝑛−1(𝑑− 1)→ 𝜀. (10)

In particular, it is the sequence of states

𝑠0𝑛 → · · · → 𝑠0𝑛−1(𝑑−1) → 𝑠0𝑛−21 → · · · → 𝑠𝑑𝑛−1(𝑑−1) → 𝑠𝜀, (11)
15There is a slight difference in this correspondence in [EFKP20] and [CHK+19a, CHK+19b]. In [CHK+19a,

CHK+19b], the one-to-one correspondence is with (all) vertices of the recursion tree and therefore some of the
labels will contain partial proofs (which, however, can be checked for consistency). In [EFKP20], the one-to-one
correspondence is with the leaves of the recursion tree (or equivalently, with its left children as we use) and it is
ensured that there are only complete proofs in the labels. We prefer to use the [EFKP20] approach.

16[EFKP20] use the term puzzle tree to refer to a similar object.
17To be precise, the merging is completed at 𝑣*, the nearest ancestor of 𝑣 that is not a rightmost child. That is, if

𝑣 =: 𝑣0 · · · 𝑣ℓ′ 𝑑 · · · 𝑑𝑣ℓ, ℓ′ < ℓ ≤ 𝑛 − 1 and 𝑣ℓ′ ̸= 𝑑, then 𝑣* := 𝑣0 · · · 𝑣ℓ′ .

30

where 𝑠𝑣 ∈ {0, 1}𝑚, 𝑣 ∈ 𝑉 (𝑇) ∖ [0, 𝑑]<𝑛 𝑑, consists of label of 𝑣’s frontier vertices, i.e.,

𝑠𝑣 := {(𝑢, 𝑥𝑢, 𝑦𝑢, 𝜋𝑢)}𝑢∈frontier(𝑣). (12)

Recall, here, that the label (𝑢, 𝑥𝑢, 𝑦𝑢, 𝜋𝑢) encodes the outlining step (𝑥𝑢, 𝑦𝑢) at the vertex 𝑢 ∈ 𝑉 (𝑇)
and 𝜋𝑢 certifies this step. Note that when F’s computation is at 𝑣 ∈ 𝑉 (𝑇), the (recursive) calls
corresponding frontier vertices of 𝑣 are exactly the ones that are in its ‘stack trace’. Therefore
Eq. (11) captures the evolution of computation of F starting from input to output (where we
assume that partial proofs are merged all the way). In particular, if 𝑖 is the index of 𝑣 in the
restricted DFS over 𝑇 – by which we mean that 𝑣 is the 𝑖-th vertex visited in the traversal – then
𝑠𝑣 is the state of 𝑖-th step of the IVC. Note that the length of the computation – and hence, the
standard line – is

𝐿 := 𝐿(𝑛, 𝑑) :=
𝑛∑︁

𝑙=0
(𝑑 + 1)𝑙 −

𝑛−1∑︁
𝑙=0

(𝑑 + 1)𝑙 = (𝑑 + 1)𝑛. (13)

In the next two sections (Sections 5.1.3 and 5.1.4) we will explain how the verifier and successor
circuits operate on such an RSVL instance. As in [CHK+19a], we resort to a description using
helper circuits {(S𝑙, V𝑙)}𝑙∈[0,𝑛] (Algorithms 3 and 4). (S𝑙, V𝑙), implements succession and verifica-
tion, respectively, for inputs of size 𝑙 and these are described recursively using (S𝑙−1, V𝑙−1). The
description of RSVL := (S, V, 𝐿, 𝑠0𝑛) is given in Algorithm 2.

Algorithm 2 The RSVL instance RSVL = (S, V, 𝐿 = (𝑑 + 1)𝑛). The descriptions of S𝑛 and V𝑛

can be found in Algorithms 3 and 4, respectively.
1: procedure S(𝑠)

hardwired Same items as in Algorithm 1 and additionally
1. an element 𝑥 ∈ 𝒳𝑛

2. description of the verifier ΠFS,ℋ.V
input State 𝑠 ∈ {0, 1}𝑚 parsed as in Eq. (14)
output Next state 𝑠′ ∈ {0, 1}𝑚

2: Let 𝑖 ∈ [0, 2𝑚 − 1] denote the index of the 𝑣ℓ ∈ 𝑣 in restricted DFS on 𝑇
3: if V(𝑠, 𝑖) rejects then return 𝑠 and halt
4: else return 𝑠′ := S𝑛(𝜀, 𝑠, (𝑥, · · · , 𝑥) , 𝜀) and halt

5: procedure V(𝑠, 𝑖)
hardwired Same items as in S
input State 𝑠 ∈ {0, 1}𝑚 parsed as in Eq. (14) and an index 𝑖 ∈ [0, 2𝑚 − 1]

6: if 𝑖 > 𝐿 then reject and halt
◁ Check well-formedness

7: if the index of 𝑣ℓ in restricted DFS on 𝑇 is not 𝑖 then reject and halt
8: if frontier(𝑣ℓ) ̸= 𝑣 then reject and halt

◁ Verify recursively
9: if V𝑛((𝑥, · · · , 𝑥) , 𝜀, 𝜀), hardwired with 𝑠, rejects then reject and halt

10: else accept and halt

31

121

𝜀

Figure 3: Checking a state’s validity. The state of the IVC when F’s recursion is at 121 (i.e., 17-th
step) is 𝑠121 := {(𝑣, 𝑥𝑣, 𝑦𝑣, 𝜋𝑣)}𝑣∈{0,10,11,120,121}. The label (0, 𝑥0, 𝑦0, 𝜋0) is final for level 2 and is,
hence, verified by V3 using ΠFS,ℋ.V. The sub-state 𝑠𝑎 := 𝑠121 ∖ {(0, 𝑥0, 𝑦0, 𝜋0)} corresponds to the
active outline computation at 1 and its verification is hence, delegated to V2. Further one level
down, the sub-state ((120, 𝑥120, 𝑦120, 𝜋120), (121, 𝑥121, 𝑦121, 𝜋121)) classifies for V2 as active proof-
merging at 12.

5.1.3 Checking a State’s Validity

A formal description of V and {V𝑙}𝑙∈[0,𝑛] is given in Algorithms 2 and 3, respectively; next, we give
an informal overview (refer to Fig. 3). The verifier circuit V takes as input a state 𝑠 ∈ {0, 1}𝑚 and
an index 𝑖 ∈ [0, 𝐿] (since V rejects every 𝑖 > 𝐿) and accepts only if 𝑠 passes as a state in the 𝑖-th
step of the IVC. It carries this out essentially by retracing the computation of F(𝑥𝜀, 𝜀) till step 𝑖
using the certified (possibly partial) outlines present in 𝑠. To this end, for 𝑣 =: (𝑣0, · · · , 𝑣ℓ) with
ℓ < 𝑛 · 𝑑, V first parses 𝑠 as as a tuple of labels

𝑠 =: {(𝑣, 𝑥𝑣, 𝑦𝑣, 𝜋𝑣)}𝑣∈𝑣, where (𝑣, 𝑥𝑣, 𝑦𝑣, 𝜋𝑣) ∈ 𝑉 (𝑇)×𝒳 𝑘 × 𝒴𝑘 × (𝒳 × 𝒴)≤𝑑·𝑛 (14)

As noted earlier, for a well-formed state it must be the case – as in states belonging to Eq. (11)
– that 𝑣 = frontier(𝑣ℓ) (check on Line 8). Moreover, if 𝑠 indeed corresponds to 𝑖-th state of the
IVC then 𝑣ℓ must have index 𝑖 in the restricted DFS (check on Line 7). Next, it delegates the
verification of 𝑠’s contents to the recursive helper procedure V𝑛 (Line 9).

For a level 𝑙 ∈ [0, 𝑛], the labels in 𝑠 can correspond to either a final level-(𝑙 − 1) outlining step
(Line 6), an active level-(𝑙 − 1) outlining step (Line 9) or an active proof-merging step (Line 15).
V𝑙 verifies the final outlines using ΠFS,ℋ’s verifier; on the other hand, it uses V𝑙−1 to recursively
verify the ‘sub-state’ 𝑠𝑎 ⊆ 𝑠 that corresponds to active outline or proof-merging. The reason that
the verification in the latter case has to be carried out recursively is that a single proof (for level
𝑙 − 1) becomes available only upon completion of the active call.

5.1.4 Computing the Successor

A formal description of S and S𝑛 is given in Algorithms 2 and 4, respectively; next we give an
informal overview (refer to Fig. 4). The input state 𝑠 ∈ {0, 1}𝑚 to the successor circuit S is parsed
as in Eq. (14). Suppose that 𝑣ℓ has index 𝑖 in the restricted DFS of 𝑇 . On a high level, after

32

Algorithm 3 Recursive description of helper verifier circuits {V𝑙}𝑙∈[0,𝑛]

hardwired Same items as in Algorithm 2 and a state 𝑠 ∈ {0, 1}𝑚 parsed as in Eq. (14)
input

1. Vertex 𝑣 ∈ [0, 𝑑]𝑛−𝑙

2. Current input 𝑥𝑣 ∈ 𝒳 𝑘
𝑙

3. Transcript 𝜏𝑣 ∈ 𝒳 𝑘 × 𝒴𝑘 × (𝒳 × 𝒴)≤𝑑·𝑛

1: procedure V𝑙(𝑣, 𝑥𝑣, 𝜏𝑣)
◁ Verify final outlines

2: Invoke D𝑓𝑙−1 on input 𝑥𝑣 to obtain 𝑞𝑣0
3: Set 𝑗 := 0
4: while 𝑣𝑗 ∈ 𝑣 do
5: if 𝑞𝑣𝑗 ̸= 𝑥𝑣𝑗 then reject and return
6: if ΠFS,ℋ.V(𝑥𝑣𝑗

𝑓𝑙−1−−−→ 𝑦𝑣𝑗 , 𝜋𝑣𝑗) rejects then reject and return
7: Partially simulate D𝑓𝑙−1 on

(︁
(𝑥𝑣0, 𝑦𝑣0), · · · , (𝑥𝑣𝑗 , 𝑦𝑣𝑗)

)︁
to obtain 𝑞𝑣(𝑗+1)

8: Increment 𝑗 := 𝑗 + 1
◁ Recursively verify active outline

9: if 𝑗 < 𝑑 and V𝑙−1(𝑠, 𝑣𝑗, 𝑥𝑣𝑗 , 𝜀) rejects then reject and return
◁ Recursively verify active proof-merging

10: Simulate D𝑓𝑙−1 on 𝜇𝑣 :=
(︁
(𝑞𝑣0, 𝑦𝑣0), · · · , (𝑞𝑣(𝑑−1), 𝑦𝑣(𝑑−1))

)︁
to obtain 𝑦𝑣

11: Set 𝜇𝑣 :=
(︁
(𝑥𝑣0, 𝑦𝑣0), · · · , (𝑥𝑣(𝑑−1), 𝑦𝑣(𝑑−1)

)︁
12: if 𝜏𝑣 = 𝜀 then 𝜏𝑣𝑑 := 𝑥𝑣𝑦𝑣𝜇 else 𝜏𝑣𝑑 := 𝜏𝑣𝜇𝑣

13: Compute challenge 𝑟 := 𝐻(𝜏𝑣𝑑)
14: Compute (𝑥𝑣𝑑, 𝑦𝑣𝑑) := ̃︀B(𝜇𝑣; 𝑟)
15: if V𝑙−1(𝑠, 𝑣𝑑, 𝑥𝑣𝑑, 𝜏𝑣𝑑) rejects then reject and return
16: Accept and return

17: procedure V0(𝑣, 𝑥𝑣, 𝜏𝑣) ◁ Base case
18: if 𝑦𝑣 ̸= 𝑓(𝑥𝑣) then reject and return
19: else accept and return

33

121

𝜀

Figure 4: Computing the successor. The state of the IVC when the state 𝑠121 (see Fig. 3) is
incremented is 𝑠1 := ((0, 𝑥0, 𝑦0, 𝜋0), (1, 𝑥1, 𝑦1, 𝜋1)). The labels 𝑠𝑎 := {(𝑣, 𝑥𝑣, 𝑦𝑣, 𝜋𝑣)}𝑣∈{10,11,120,121}
in 𝑠121 correspond to the active outline computation at 1. Hence S3 delegates its succession to S2.
For S2, the labels ((120, 𝑥120, 𝑦120, 𝜋120), (121, 𝑥121, 𝑦121, 𝜋121)) classify as active proof-merging at
12. Upon its increment by S1, this proof merging at 12 is complete and hence S2 merges to produce
the label 𝑠′𝑎 := (1, 𝑥1, 𝑦1, 𝜋1). The new state is now obtained by replacing 𝑠𝑎 with 𝑠′𝑎 in 𝑠121, which
yields 𝑠1.

validating using V that 𝑠 passes as a state in the 𝑖-th step of the IVC, S increments to the state
corresponding to 𝑖 + 1-th step, denoted 𝑠′, using the helper circuit S𝑛. The circuit S𝑛 first invokes
S𝑛−1 to recursively increment the sub-state 𝑠𝑎 ⊆ 𝑠 belonging to the sole active recursion on step
𝑛 − 1 . The sub-state 𝑠𝑎 belongs either to the active outlining step (Line 6) or the active proof-
merging step (Line 13). Finally, in case that the active proof-merging step culminates, it merges
the resulting proof upstream (Line 15).

5.2 Analysis

We first claim in Claim 5.4 that S faithfully simulates F. We then prove the hardness of the RSVL
instance in Theorem 5.6 assuming hardness of 𝑓 (Assumption 5.5).

Claim 5.4 (Correctness of RSVL). S correctly simulates F using the restricted DFS on 𝑇 : i.e.,
S𝑖(𝑠0𝑛) = 𝑠𝑣 for every 𝑖 ∈ [1, 𝐿], where 𝑣 ∈ 𝑉 (𝑇) ∖ [0, 𝑑]<𝑛 𝑑 denotes the vertex with index 𝑖 in the
restricted DFS and 𝑠0𝑛 and 𝑠𝑣 are as defined in Eq. (12).

Proof. By construction of S in Algorithm 2, the claim reduces to showing S𝑖
𝑛(𝜀, 𝑠0𝑛 , 𝜀) = 𝑠𝑣. We

prove something stronger: for every 𝑗 ∈ [0, 𝑑] and 𝜏 ∈ {0, 1}*

S𝑖
𝑛(𝑗, 𝑠0𝑛 , 𝜏) = 𝑠𝑣, (15)

where 𝑠𝑣 is now defined as in Eq. (12) but with respect to the computation of F(𝑗, 𝑥, 𝜏) (see
Algorithm 5). We proceed inductively on {S𝑙}𝑙∈[0,𝑛]. For induction hypothesis, let’s assume that
Eq. (15) holds for S𝑛−1. We now prove Eq. (15) by appealing to the induction hypothesis 𝑑 + 1
times, once for each interval[︂

1,
𝐿

𝑑 + 1

]︂
,

[︂
𝐿

𝑑 + 1 + 1,
2𝐿

𝑑 + 1

]︂
, · · · ,

[︂
𝑑𝐿

𝑑 + 1 , 𝐿

]︂
,

34

Algorithm 4 Recursive description of helper successor circuits {S𝑙}𝑙∈[0,𝑙]

1: procedure S𝑙(𝑣, 𝑠, 𝜏𝑣)
hardwired Same as Algorithm 2
input Same as Algorithm 3 and a state 𝑠 ∈ {0, 1}𝑚 parsed as in Eq. (14)
output Incremented state 𝑠′ ∈ {0, 1}𝑚

2: Set 𝑗 := 0
3: while 𝑣𝑗 ∈ 𝑣 do increment 𝑗 := 𝑗 + 1
4: Parse 𝑠 =: (𝑠𝑓 , 𝑠𝑎) where 𝑠𝑎 =

(︁
(𝑣𝑗, 𝑥𝑣𝑗 , 𝑦𝑣𝑗 , 𝜋𝑣𝑗), · · · , (𝑣ℓ, 𝑥𝑣ℓ

, 𝑦𝑣ℓ
, 𝜋𝑣ℓ

)
)︁

◁ Increment active outline
5: if 𝑗 < 𝑑 then
6: Recursively compute 𝑠′𝑎 := S𝑙−1(𝑣𝑗, 𝑠𝑎, 𝜀)
7: Return 𝑠′ := (𝑠𝑓 , 𝑠′𝑎)

◁ Increment active proof-merging
8: Simulate D𝑓𝑙−1 on 𝜇𝑣 :=

(︁
(𝑥𝑣0, 𝑦𝑣0), · · · , (𝑥𝑣(𝑑−1), 𝑦𝑣(𝑑−1))

)︁
to obtain 𝑦𝑣

9: Set 𝜇𝑣 :=
(︁
(𝑥𝑣0, 𝑦𝑣0), · · · , (𝑥𝑣(𝑑−1), 𝑦𝑣(𝑑−1)

)︁
10: if 𝜏𝑣 = 𝜀 then 𝜏𝑣𝑑 := 𝑥𝑣𝑦𝑣𝜇 else 𝜏𝑣𝑑 := 𝜏𝑣𝜇𝑣

11: Compute challenge 𝑟 := 𝐻(𝜏𝑣𝑑)
12: Compute (𝑥𝑣𝑑, 𝑦𝑣𝑑) := ̃︀B(𝜇𝑣; 𝑟)
13: Recursively compute 𝑠′𝑎 := S𝑙−1(𝑣𝑑, 𝑠𝑎, 𝜏𝑣𝑑)

◁ Merge if proof complete
14: if 𝑠′𝑎 parses as (𝑣𝑑, 𝑥𝑣𝑑, 𝑦𝑣𝑑, 𝜋𝑣𝑑) then
15: return 𝑠′ := (𝑣, 𝑥𝑣, 𝑦𝑣, 𝜋𝑣), where 𝜋𝑣 := (((𝑥𝑣0, 𝑦𝑣0), · · · , (𝑥𝑣𝑑, 𝑦𝑣𝑑)) , 𝜋𝑣𝑑)
16: else return 𝑠′ := (𝑠𝑓 , 𝑠′𝑎)

17: procedure S0(𝑣, 𝑠, 𝜏𝑣) ◁ Base case
18: Return 𝑠

35

in that order. The claims for the first 𝑑 intervals follow by applying the induction hypothesis to the
computation F(𝑗, 𝑞𝑗 , 𝜀), where 𝑗 ∈ [0, 𝑑− 1] and 𝑞𝑗 is the 𝑗-th query made by D𝑓𝑙−1 in its partial
simulation on input 𝑥𝜀, and by observing that (i) the restricted DFS on 𝑇 in the invocation 𝑗 only
affects the labels in the subtree rooted at 𝑗 and (ii) the final labels are left unaffected by the S𝑛−1
(Lines 7 and 16). The claim follows by a final invocation of the induction hypothesis to F(𝑑, 𝑥𝑑, 𝜏),
where 𝑥𝑑 results from the batch reduction and 𝜏 is the current transcript, and observing that the
label assembled and returned by S𝑛 (Line 15) corresponds exactly to 𝑠𝜀.

Assumption 5.5 (Hardness of 𝑓). Let 𝑓 : 𝒳 → 𝒴 be a function as defined in Section 3 and let X
denote a sampler for 𝒳 . The function 𝑓 is (𝑠(𝜆), 𝜖(𝜆))-hard with respect to X if for every 𝑠(𝜆)-sized
adversary A = {A𝜆}𝜆∈N

Pr
𝑥←X(1𝜆)
𝑦←A(𝑥)

[𝑦 = 𝑓(𝑥)] = 𝑂(𝜖(𝜆)).

Theorem 5.6 (Hardness of RSVL from 𝑓 and ΠFS,ℋ). Let 𝑘, 𝑑 ∈ N be parameters and 𝜆 ∈ N be a
security parameter. Let

• 𝑓 : 𝒳 → 𝒴 be a 𝑑-query downwards self-reducible and 𝑑𝑘-to-𝑘 batch-reducible function with
sampler X; and

• ΠFS,ℋ = (Setup, P, V) denote the non-interactive outline-and-batch protocol for ℒ𝑘
𝑓𝑛

from
Corollary 3.4.

Furthermore, for 𝐻 ← ΠFS,ℋ.Setup(1𝜆) and 𝑥← X(1𝜆), with 𝑛 := |𝑥|, define

𝑚 = 𝑚(𝑑, 𝑘, |𝑥|) ∈ poly(𝑑, 𝑘, |𝑥|) and 𝐿 = 𝐿(𝑑, 𝑘) := (𝑑 + 1)𝑛, (16)

and let
S : {0, 1}𝑚 → {0, 1}𝑚 and V : {0, 1}𝑚 × [0, 2𝑚 − 1]→ {accept, reject} (17)

be as defined as in Algorithm 2, hardwired with (𝑓, 𝐻, D, ̃︀B, 𝑥, ΠFS,ℋ.V). If 𝑓 is hard with respect to
X and ΠFS,ℋ is (adaptively) unambiguously sound argument, then RSVL := (S, V, 𝐿, 𝑠0𝑛) constitutes
a hard distribution of RSVL.

On instantiating 𝑓 with IS as sampled in Assumption 4.3 and ΠFS,ℋ with non-interactive
argument from Corollary 4.10, we get the following corollary to Theorem 5.6.

Corollary 5.7 (Hardness of RSVL from IS and LWE). For a security parameter 𝜆 ∈ N, let
(G𝜆, 𝑔, 𝑇) be sampled as in Assumption 4.8, which defines 𝑓𝑛(𝑔, 𝑇) := 𝑔2𝑇 for 𝑛 := log(𝑇). Also,
let ΠFS,ℋ = (Setup, P, V) denote the non-interactive protocol for ℒ𝑘

G𝜆
from Corollary 4.10, which

implies 𝑘 ∈ 𝜆𝑂(1) and 𝑑 = 2. Furthermore, for 𝐻 ← ΠFS,ℋ.Setup(1𝜆), define

𝑚 = 𝑚(𝑛, 𝑘, 𝜆) := 𝑛2𝑘 · poly(𝜆) and 𝐿 = 𝐿(𝑛) = 3𝑛, (18)

and let
S : {0, 1}𝑚 → {0, 1}𝑚 and V : {0, 1}𝑚 × [0, 2𝑚 − 1]→ {accept, reject} (19)

be defined as in Algorithm 2, hardwired with ((G𝜆, 𝑔, 𝑇), 𝐻, D, ̃︀B, ΠFS,ℋ.V). If Assumptions 2.10
and 4.8 hold then RSVL := (S, V, 𝐿, 𝑠0𝑛) constitutes a hard distribution of RSVL.

36

Proof (of Theorem 5.6). Suppose for contradiction that there exists a poly(𝜆)-sized algorithm A =
{A𝜆}𝜆∈N and a polynomial 𝑝(·) such that A solves RSVL for infinitely-many security parameters
𝜆 ∈ N with probability at least 1/𝑝(·); fix such a 𝜆. This implies by an averaging argument
that A finds either the sink or a false positive (see Definition 2.7) for 𝜆 with probability at least
1/2𝑝(𝜆) (which is also non-negligible). Given an adversary that finds the standard sink, we show
in Claim 5.8 that it is possible to break the hardness of 𝑓 ; given an adversary that finds a false
positive, we show in Claim 5.9 how to break ΠFS,ℋ’s unambiguous soundness.

Claim 5.8 (Reduction from hardness of 𝑓). Given an adversary A1 that finds the standard sink in
RSVL with probability at least 𝑝′(𝜆), one can break the hardness of 𝑓 with same probability.

Proof. Given a challenge input 𝑥 ∈ 𝒳 , the reduction samples a CRS 𝐻 ← ΠFS,ℋ.Setup(1𝜆) and
sends (S, V, 𝐿, 𝑠0𝑛) hardwired with (𝑓, 𝐻, D, ̃︀B, 𝑥, ΠFS,ℋ.V) to A1. A1 returns a state 𝑠 such that
RSVL.V(𝑠, 𝐿) = 1. By completeness, this node can be parsed as

((𝜀, (𝑥, · · · , 𝑥) , (𝑦, · · · , 𝑦) , 𝜋))

with 𝑦 = 𝑓(𝑥). The reduction simply outputs 𝑦 as the solution to its challenge.

Claim 5.9 (Reduction from unambiguous soundness of ΠFS,ℋ). Given an adversary A2 that finds a
false positive in RSVL with probability at least 𝑝′(𝜆), one can break ΠFS,ℋ’s unambiguous soundness
with probability at least 𝑝′(𝜆)/(𝑑𝑛).

Proof. Given a challenge CRS 𝐻, the reduction samples 𝑥 ← X(1𝜆) and sends (S, V, 𝐿, 𝑠0𝑛) hard-
wired with (𝑓, 𝐻, D, ̃︀B, 𝑥, ΠFS,ℋ.V) to A2. A2 returns (𝑠*, 𝑖*), 𝑖* ∈ [0, 𝐿], such that RSVL.V(𝑠*, 𝑖*) =
1 but 𝑠* ̸= RSVL.S𝑖*(0𝑚) =: 𝑠, where 𝑠 denotes the 𝑖-th vertex on the prescribed line. (It is not
necessary for the reduction to be able to efficiently compute 𝑠.) Let’s parse 𝑠* as

((𝑣*0, 𝑥*0, 𝑦*0, 𝜋*0), · · · , (𝑣*ℓ , 𝑥*ℓ , 𝑦*ℓ , 𝜋*ℓ)) , (20)

and 𝑠 as in Eq. (14). In order to prove the claim, we make a case distinction. In both cases, we first
show that there exists an index 𝑗 ∈ [0, ℓ] such that the proof and statement in the 𝑗-th label breaks
unambiguity or soundness of ΠFS,ℋ – the reduction then simply guesses this index at random and
outputs the constituent proof and statement.

• All the statements in 𝑠 and 𝑠* match. In this case, since 𝑠 ̸= 𝑠*, there exists at least one
index 𝑗 ∈ [0, ℓ] such that 𝜋*𝑗 ̸= 𝜋𝑗 but (𝑥*𝑗 , 𝑦*𝑗) = (𝑥𝑗 , 𝑦𝑗) is a true statement. Therefore 𝜋*𝑗
breaks unambiguity of ΠFS,ℋ. The reduction guesses this index 𝑗 and returns

(𝜋*𝑗 , 𝑥𝑗

𝑓
𝑛−|𝑣𝑗|−−−−−→ 𝑦𝑗).

• Some statements are different and 𝑗 ∈ [0, ℓ] is the first such index. In this case, we claim that

𝑥*𝑗

𝑓
𝑛−

⃒⃒
𝑣*

𝑗

⃒⃒
−−−−−→ 𝑦*𝑗 . (21)

is false, but since ΠFS,ℋ.V accepts 𝜋*𝑗 , soundness of ΠFS,ℋ is broken. To see this, first note
that (by assumption) the statements in labels less than 𝑗 in both 𝑠 and 𝑠* are same and
therefore the verifier ends up recomputing 𝑥*𝑗 = 𝑥𝑗 . Therefore, if 𝑥*𝑗 ̸= 𝑥𝑗 then V outright

37

rejects the proof 𝜋*𝑗 . Moreover, since 𝑣𝑗 = 𝑣*𝑗 (if (𝑣0, · · · , 𝑣ℓ) ̸= (𝑣*0, · · · , 𝑣*ℓ) then V rejects)
and 𝑦* ̸= 𝑦, the statement in Eq. (21) is false but 𝜋*𝑗 accepts. Therefore the reduction guesses
this index 𝑗 and returns 𝜋*𝑗 and the statement in Eq. (21).

In both cases, the reduction incurs a loss of 1/(𝑑𝑛), which is the probability with which it correctly
guesses 𝑗.

Remark 8 (On loss in tightness). In case ΠFS,ℋ satisfies the property the prescribed proofs can
be efficiently computed given some trapdoor information –as is the case in [Pie19, BHR+21] when
instantiated in trapdoor groups of unknown order (Definition 4.9)– it is possible to avoid the 1/(𝑑𝑛)
loss in security since the trapdoor allows efficiently computing the index 𝑗. Thus Corollary 5.7 does
not incur the 1/(𝑑𝑛) loss.

6 Unique VDF
In this section, we present our construction of unique VDFs based on the non-interactive argument
for iterated squaring from Section 4.3. We first define unique VDFs; the definition is adapted from
[BBBF18] to account for uniqueness of proofs, which we capture by requiring it to be hard for an
adversary to come up with a output-proof pair that is different from the “prescribed” pair output
by the evaluation algorithm.

Definition 6.1 (Verifiable delay functions [BBBF18]). A VDF is a triple of algorithms (Setup, Eval,
Verify), where Setup is probabilistic, whereas Eval and Verify are deterministic.

• Setup(1𝜆, 𝑇) → pp. On input a statistical security parameter 𝜆 ∈ N (in unary) and a time
parameter 𝑇 ∈ N, the setup algorithm outputs public parameters pp. The public parameters
define the domain 𝒳 and range 𝒴 of the VDF.

• Eval(pp, 𝑥) → (𝑦, 𝜋). On input 𝑥 ∈ 𝒳 , the evaluation algorithm outputs (𝑦, 𝜋), where 𝜋 is a
proof that the output 𝑦 ∈ 𝒴 has been correctly computed.

• Verify(pp, 𝑥, 𝑦, 𝜋) → {accept, reject}. Given as input a tuple (𝑥, 𝑦, 𝜋) consisting of an input,
an output and a proof, the verification algorithm outputs either accept or reject.

A unique VDF must satisfy the following four properties:

• Efficiency. Setup and Verify run in time poly(log(𝑇), 𝜆). Eval should be able to compute the
output 𝑦 and its proof 𝜋 in (sequential) time 𝑇 (1 + 𝑜(1)).

• Completeness. Correctly-generated proofs must always accept, i.e., for any 𝜆, 𝑇 ∈ N and
𝑥 ∈ 𝒳

Pr
pp←Setup(1𝜆,𝑇)

[Verify(pp, 𝑥, Eval(pp, 𝑥)) = accept] = 1

• Unambiguous soundness. A VDF is (𝑠(𝜆), 𝜖(𝜆))-unambiguosly sound if for all 𝑇 ∈ N and
𝑠(𝜆)-sized adversaries A = {A𝜆}𝜆∈N

Pr
pp←Setup(1𝜆,𝑇)

(𝑥,𝑦*,𝜋*)←A(1𝜆,𝑇,pp)

[Verify(pp, 𝑥, 𝑦*, 𝜋*) = accept, (𝑦*, 𝜋*) ̸= Eval(pp, 𝑥)] = 𝑂(𝜖(𝜆)).

38

• Sequentiality. Let’s consider a two-part adversary A = (A1, A2), where A1 is a poly(𝑇, 𝜆)-
size, randomised (pre-processing) algorithm and A2 is a 𝜎(𝑇)-sequential time, 𝑝(𝑇)-parallel
algorithm. A VDF is (𝜎, 𝑝)-sequential if for all 𝑇 ∈ N

Pr
pp←Setup(1𝜆,𝑇)
state←A1(𝜆,𝑇,pp)

𝑥←𝒳 ,𝑦*←A2(state,𝑥)

[(𝑦, 𝜋) := Eval(pp, 𝑥), 𝑦* = 𝑦] = negl(𝜆).

Remark 9 (Comparison with [BBBF18]). In [BBBF18] Eval can be a randomised and parallel
algorithm; for us it suffices that it is deterministic and sequential. In addition, we don’t have to
separate public parameters into evaluation and verification keys.

6.1 Construction

Let ΠFS,ℋ = (Setup, P, V) denote the non-interactive protocol obtained by applying the Fiat-Shamir
transform the interactive protocol from [BHR+21] (Section 4.3). The construction of our VDF
VDF = (Setup, Eval, Verify) follows similar template to [Pie19]. That is:

• The public parameters consist of the description of a group G𝜆 of unknown order sampled
using Setup(1𝜆) (Section 4.2) and a CRS 𝐻 sampled using ΠFS,ℋ.Setup.

• The evaluation algorithm, on input a group element 𝑔 ∈ G𝜆, returns (i) ℎ = 𝑔2𝑇 by repeated
squaring over G𝜆 and (ii) a proof 𝜋 for the statement (𝑔, ℎ, 𝑇) computed as in ΠFS,ℋ.P. We
will explain in Claim 6.2 how ℎ and 𝜋 can be computed jointly in 𝑇 (1+𝑜(1)) group operations.

• The verification algorithm simply invokes ΠFS,ℋ.V.

6.2 Analysis

Completeness, unambiguous soundness, and sequentiality of this construction follow either by direct
assumption or invoking Corollary 4.10. The efficiency of Setup and Verify are also immediate from
the definition of the protocol. To prove that our protocol is a unique VDF, what remains is to
analyze its prover efficiency.

First, we address a technical point: in order to obtain a VDF with prover efficiency 𝑇 (1 + 𝑜(1))
group operations, the prover must generate the outputs 𝑔2𝑇 and proof 𝜋 together, rather than first
computing 𝑔2𝑇 and then computing 𝜋. We show that this is indeed possible by analyzing the
Section 4 prover algorithm when it is given access to the 𝑇 + 1 group elements 𝑔, 𝑔2, . . . , 𝑔2𝑇 (or
possibly some subset of them). In this setting, we show that the prover can generate 𝜋 with 𝑜(𝑇)
additional group operations.

Note that the naive prover algorithm, even given 𝑔, 𝑔2, . . . , 𝑔2𝑇 , requires roughly 𝑇 additional
group operations (because it must recursively run the 2-round reduction log(𝑇) − 1 additional
times), but (following [Pie19]) a more efficient proving algorithm exists.

Claim 6.2. The Eval algorithm in VDF can be implemented in 𝑇 (1+𝑜(1)) time and 𝑂(
√

𝑇 ·poly(𝜆))
space.

Proof. This can be proved following an analogous argument in [Pie19]: given all 𝑇 + 1 sequential
squaring group elements 𝑔0 = 𝑔, 𝑔1 = 𝑔2, . . . , 𝑔𝑇 = 𝑔2𝑇 , it is possible to compute all prover messages
with poly(𝜆)

√
𝑇 additional group operations by:

39

1. Computing all prover messages from round 1
2 log(𝑇) onwards with the naive prover algorithm,

incurring an additive computational overhead of poly(𝜆)
√

𝑇 , and

2. Computing all prover messages in the first 1
2 log(𝑇) rounds as product-combinations of 𝜆 ·√︀

𝑇/𝜆 of the 𝑔𝑖, also incurring an additive overhead of poly(𝜆)
√

𝑇 .

Property 1 follows directly from the description of the protocol: for these messages, the prover
simply has to compute the “current” statements 𝑔𝑖

𝑇 ′
−→ ℎ̃𝑖 (for 𝑇 ′ = 𝑇/2𝑐 after 𝑐 recursive steps) and

then compute 𝑔2𝑇 ′/2
𝑖 for each 𝑖. The statements themselves can be computed in time poly(𝜆, log 𝑇),

so the overall prover runtime for these steps is poly(𝜆, log 𝑇) + 𝜆 · 𝑇 ′/2 ≤ poly(𝜆) ·
√

𝑇 .
To prove Property 2, we have to understand the structure of the (honest) prover messages in

round 𝑖 ∈ [0, log(𝑇)/2] of ΠFS,ℋ. Note that each prover message in the first round is of the form(︁
𝑔2𝑇/2

, · · · , 𝑔2𝑇/2)︁
.

Now recall how the batching reduction is carried out: given 2𝜆 instances 𝑔1, . . . , 𝑔2𝜆 for 𝑓(·, 𝑇)
and 2𝜆 candidate outputs ℎ̃1, . . . , ℎ̃2𝜆, the batching reduction samples 𝜆 i.i.d. vectors 𝑟1, . . . , 𝑟𝜆 ←
{0, 1}2𝜆. The reduction then outputs 𝜆 statements about 𝑓(·, 𝑇):⎛⎝ 2𝜆∏︁

𝑗=1
𝑔

𝑟1,𝑗

𝑗
𝑇−→

2𝜆∏︁
𝑗=1

ℎ̃
𝑟1,𝑗

𝑗 , . . . ,
2𝜆∏︁

𝑗=1
𝑔

𝑟𝜆,𝑗

𝑗
𝑇−→

2𝜆∏︁
𝑗=1

ℎ̃
𝑟𝜆,𝑗

𝑗

⎞⎠ .

As a result, the prover message in the second round is of the form(︁
𝑔𝑎1,1+𝑎1,22𝑇/2

, · · · , 𝑔𝑎1,𝜆+𝑎2,𝜆2𝑇/2)︁
,

where 𝑎𝑗,ℓ, 𝑗 ∈ [1, 2] and ℓ ∈ [1, 𝜆], can be efficiently computed given the vectors 𝑟1, . . . , 𝑟𝜆. Now,
as in [Pie19], it can be inductively argued that each element in the prover message in round 𝑖 can
be computed using (at most) 2𝑖 elements {𝑔2𝑇 ·𝑗/2𝑖

}𝑗∈[1,2𝑖]. That is, the ℓ-th element is of the form

𝑔

∑︀
𝑗∈[1,2𝑖] 𝑎𝑗,ℓ2𝑇 ·𝑗/2𝑠

,

where the 𝑎𝑗,ℓ, 𝑗 ∈
[︀
1, 2𝑖

]︀
and ℓ ∈ [1, 𝜆], can be efficiently computed given 𝑎𝑗,ℓ and 𝑟ℓ from the

previous round. The overall computational cost of generating these group elements is then (up to
poly(𝜆) factors) that of generating the coefficients {𝑎𝑗,ℓ}. By inspection, these coefficients can be
generated in time linear (up to poly(𝜆) factors) in the number of such coefficients, which is

∑︀
𝑖′≤𝑖 2𝑖′ .

Property (2) then follows by setting 𝑖 = log(𝑇)/2.

Theorem 6.3 (VDF from IS and LWE). Assuming that IS is (𝑇, 𝑝)-sequentially hard (Assump-
tion 4.7) and LWE is polynomially-hard (Assumption 2.10), VDF is a (𝑇 (1 − 𝑜(1), 𝑝)-sequential,
unambiguosly-sound VDF.

Proof. Since evaluating the VDF requires solving IS, its sequentiality follows from that of IS.
Unambiguous soundness follows unambiguous soundness of ΠFS,ℋ, which itself is based on As-
sumption 2.10, the polynomial hardness of LWE (Corollary 4.10).

Remark 10. Note that it is possible to apply the ideas in [EFKP20] – i.e., (i) use 𝑂()-query down-
wards self-reducibility (instead of 2-query downwards self-reducibility) and (ii) prune the recursion
tree for a few levels – to obtain continuous VDFs.

40

7 Conclusion and Open Problems
In this work, we demonstrated hardness in the class PPAD assuming the polynomial hardness
of iterated squaring and LWE. Moreover, we (1) strengthened this result to show hardness in
UEOPL ⊆ PPAD (which is first cryptographic hardness shown for that class) and (2) constructed
a unique VDF based on similar assumptions.

We briefly mention two interesting open questions that are closely related to this work:

• Can the iterated squaring hardness assumption be replaced by a weaker assumption such as
the hardness of factoring? This seems plausible since to achieve PPAD hardness, it suffices for
iterated squaring to be polynomially hard for some efficiently computable iteration parameter.
This question was also posed in [CHK+19b].

• Can we show PPAD-hardness solely from polynomial hardness of LWE, and thus establish
a (polynomially) tight hardness result for quantum algorithms? Currently, only [JKKZ21]
demonstrates post-quantum hardness of PPAD (under sub-exponential LWE).

8 Acknowledgements
Nir Bitansky is a member of the checkpoint institute of information security and is supported by
the European Research Council (ERC) under the European Union’s Horizon Europe research and
innovation programme (grant agreement No. 101042417, acronym SPP), and by Len Blavatnik and
the Blavatnik Family Foundation.

Arka Rai Choudhuri is supported in part by DARPA under Agreement No. HR00112020026,
AFOSR Award FA9550-19-1-0200, NSF CNS Award 1936826, and research grants by the Sloan
Foundation, and Visa Inc. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the United
States Government or DARPA.

Chethan Kamath is supported by Azrieli International Postdoctoral Fellowship and ISF grants
484/18 and 1789/19. He thanks Alexandros Hollender and Ninad Rajagopal for discussions on the
class UEOPL and Krzysztof Pietrzak for clarifications about unique VDFs.

Alex Lombardi is supported in part by DARPA under Agreement No. HR00112020023, a grant
from MIT-IBM Watson AI, a grant from Analog Devices, a Microsoft Trustworthy AI grant, the
Thornton Family Faculty Research Innovation Fellowship and a Charles M. Vest fellowship. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Government or DARPA.

Omer Paneth is a member of the Checkpoint Institute of Information Security and is supported
by an Azrieli Faculty Fellowship, Len Blavatnik and the Blavatnik Foundation, the Blavatnik
Interdisciplinary Cyber Research Center at Tel Aviv University, and ISF grant 1789/19.

Ron Rothblum was funded by the European Union. Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those of the European Union or the
European Research Council. Neither the European Union nor the granting authority can be held
responsible for them.

41

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.

Cambridge University Press, 2009. 12

[Bac88] Eric Bach. How to generate factored random numbers. SIAM Journal on Computing,
17(2):179–193, 1988. 11, 21, 23

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay func-
tions. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I,
volume 10991 of LNCS, pages 757–788. Springer, Heidelberg, August 2018. 4, 38, 39

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kil-
ian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg,
August 2001. 3

[BHR+21] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik
Soni. Time- and space-efficient arguments from groups of unknown order. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS,
pages 123–152, Virtual Event, August 2021. Springer, Heidelberg. 7, 8, 9, 10, 20, 21,
23, 24, 38, 39

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. NIZK from LPN and trapdoor
hash via correlation intractability for approximable relations. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS,
pages 738–767. Springer, Heidelberg, August 2020. 6

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding
a Nash equilibrium. In Venkatesan Guruswami, editor, 56th FOCS, pages 1480–1498.
IEEE Computer Society Press, October 2015. 3, 4

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273.
Springer, Heidelberg, March 2011. 3

[CCH+18] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, and
Ron D. Rothblum. Fiat-Shamir from simpler assumptions. Cryptology ePrint Archive,
Report 2018/1004, 2018. https://eprint.iacr.org/2018/1004. 9, 16, 17

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, 51st ACM STOC, pages 1082–1090. ACM Press, June 2019.
6, 14, 16

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir and
correlation intractability from strong KDM-secure encryption. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS,
pages 91–122. Springer, Heidelberg, April / May 2018. 6

42

https://eprint.iacr.org/2018/1004

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing
two-player nash equilibria. Journal of the ACM (JACM), 56(3):1–57, 2009. 3

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited (preliminary version). In 30th ACM STOC, pages 209–218. ACM Press, May
1998. 8, 14

[CHK+19a] Arka Rai Choudhuri, Pavel Hubácek, Chethan Kamath, Krzysztof Pietrzak, Alon
Rosen, and Guy N. Rothblum. Finding a nash equilibrium is no easier than breaking
Fiat-Shamir. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages
1103–1114. ACM Press, June 2019. 3, 5, 10, 13, 15, 16, 19, 25, 30, 31

[CHK+19b] Arka Rai Choudhuri, Pavel Hubacek, Chethan Kamath, Krzysztof Pietrzak, Alon
Rosen, and Guy N. Rothblum. PPAD-hardness via iterated squaring modulo a com-
posite. Cryptology ePrint Archive, Report 2019/667, 2019. https://eprint.iacr.
org/2019/667. 3, 5, 6, 20, 21, 25, 30, 41

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch ar-
guments for NP from standard assumptions. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 394–423, Virtual Event, Au-
gust 2021. Springer, Heidelberg. 6

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE.
In FOCS, pages 68–79. IEEE, 2021. 6

[CKU20] Geoffroy Couteau, Shuichi Katsumata, and Bogdan Ursu. Non-interactive zero-
knowledge in pairing-free groups from weaker assumptions. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages
442–471. Springer, Heidelberg, May 2020. 6

[CLSY93] J. Y. Cai, R. J. Lipton, R. Sedgewick, and A. C. Yao. Towards uncheatable bench-
marks. In [1993] Proceedings of the Eigth Annual Structure in Complexity Theory
Conference, pages 2–11, May 1993. 20

[CPV20] Michele Ciampi, Roberto Parisella, and Daniele Venturi. On adaptive security of
delayed-input sigma protocols and fiat-shamir NIZKs. In Clemente Galdi and Vladimir
Kolesnikov, editors, SCN 20, volume 12238 of LNCS, pages 670–690. Springer, Heidel-
berg, September 2020. 6

[DGP09] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The com-
plexity of computing a nash equilibrium. SIAM Journal on Computing, 39(1):195–259,
2009. 3

[DP11] Constantinos Daskalakis and Christos H. Papadimitriou. Continuous local search. In
Dana Randall, editor, 22nd SODA, pages 790–804. ACM-SIAM, January 2011. 4, 48

[EFKP20] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous verifi-
able delay functions. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part III, volume 12107 of LNCS, pages 125–154. Springer, Heidelberg, May 2020. 3,
5, 6, 20, 25, 27, 29, 30, 40

43

https://eprint.iacr.org/2019/667
https://eprint.iacr.org/2019/667

[FGHS21] John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani. The
complexity of gradient descent: CLS = PPAD ∩ PLS. In STOC, pages 46–59. ACM,
2021. 48

[FGMS19] John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique end of po-
tential line. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Ste-
fano Leonardi, editors, ICALP 2019, volume 132 of LIPIcs, pages 56:1–56:15. Schloss
Dagstuhl, July 2019. 4, 10, 48, 49, 50

[FPS22] Cody Freitag, Rafael Pass, and Naomi Sirkin. Parallelizable delegation from LWE.
Cryptology ePrint Archive, Report 2022/1025, 2022. https://eprint.iacr.org/
2022/1025. 5, 7

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194. Springer, Heidelberg, August 1987. 6

[FS00] Roger Fischlin and Claus-Peter Schnorr. Stronger security proofs for RSA and Rabin
bits. Journal of Cryptology, 13(2):221–244, March 2000. 7, 21

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013. 3

[GHJ+22] Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires,
Robert Robere, and Ran Tao. Further collapses in TFNP. CoRR, abs/2202.07761,
2022. 48

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a nash equilibrium. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 579–604. Springer,
Heidelberg, August 2016. 3, 4

[HHK+22] Charlotte Hoffmann, Pavel Hubáček, Chethan Kamath, Karen Klein, and Krzysztof
Pietrzak. Practical statistically-sound proofs of exponentiation in any group. Cryptol-
ogy ePrint Archive, Report 2022/1021, 2022. https://eprint.iacr.org/2022/1021.
7

[HJKS22] James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan. SNARGs
for P from sub-exponential DDH and QR. In EUROCRYPT 2022, Part II, LNCS,
pages 520–549. Springer, Heidelberg, June 2022. 6

[HK09] Dennis Hofheinz and Eike Kiltz. The group of signed quadratic residues and applica-
tions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 637–653.
Springer, Heidelberg, August 2009. 7, 21

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-way
functions (or: One-way product functions and their applications). In Mikkel Thorup,
editor, 59th FOCS, pages 850–858. IEEE Computer Society Press, October 2018. 6

44

https://eprint.iacr.org/2022/1025
https://eprint.iacr.org/2022/1025
https://eprint.iacr.org/2022/1021

[HLR21] Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. Fiat-shamir via list-
recoverable codes (or: parallel repetition of GMW is not zero-knowledge). In STOC,
pages 750–760. ACM, 2021. 6, 7, 8, 9, 10, 14, 15

[HY17] Pavel Hubácek and Eylon Yogev. Hardness of continuous local search: Query com-
plexity and cryptographic lower bounds. In Philip N. Klein, editor, 28th SODA, pages
1352–1371. ACM-SIAM, January 2017. 3, 4, 48

[JJ21] Abhishek Jain and Zhengzhong Jin. Non-interactive zero knowledge from sub-
exponential DDH. In Anne Canteaut and François-Xavier Standaert, editors, EU-
ROCRYPT 2021, Part I, volume 12696 of LNCS, pages 3–32. Springer, Heidelberg,
October 2021. 6

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang. Snargs
for bounded depth computations and PPAD hardness from sub-exponential LWE. In
STOC, pages 708–721. ACM, 2021. 3, 5, 6, 19, 41

[JLS21a] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN
over 𝐹𝑝, DLIN, and PRGs in NC0. Cryptology ePrint Archive, Report 2021/1334,
2021. https://eprint.iacr.org/2021/1334. 4

[JLS21b] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pages 60–73, 2021. 4

[JPY88] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is
local search? Journal of Computer and System Sciences, 37(1):79 – 100, 1988. 48

[Kal03] Adam Kalai. Generating random factored numbers, easily. Journal of Cryptology,
16(4):287–289, September 2003. 11, 21, 23

[KPY20] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. Delegation with updatable unam-
biguous proofs and PPAD-hardness. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 652–673. Springer,
Heidelberg, August 2020. 3, 5

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to
the security of Fiat-Shamir for proofs. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part II, volume 10402 of LNCS, pages 224–251. Springer, Heidelberg,
August 2017. 6

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. In 31st FOCS, pages 2–10. IEEE Computer Society Press,
October 1990. 18, 19

[LV20] Alex Lombardi and Vinod Vaikuntanathan. Fiat-shamir for repeated squaring with
applications to PPAD-hardness and VDFs. In Daniele Micciancio and Thomas Ris-
tenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 632–651.
Springer, Heidelberg, August 2020. 3, 5, 6, 9, 13, 14, 15, 16, 17, 20

45

https://eprint.iacr.org/2021/1334

[MP91] Nimrod Megiddo and Christos H Papadimitriou. On total functions, existence the-
orems and computational complexity. Theoretical Computer Science, 81(2):317–324,
1991. 3

[Nas51] John Nash. Non-cooperative games. Annals of mathematics, pages 286–295, 1951. 3

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010. https://eprint.iacr.org/2010/556. 3

[Pap94] Christos H. Papadimitriou. On the complexity of the parity argument and other
inefficient proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994. 3, 46, 48

[Pei16] Chris Peikert. A decade of lattice cryptography. Foundations and Trends® in Theo-
retical Computer Science, 10(4):283–424, 2016. 13

[Pie19] Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, editor, ITCS
2019, volume 124, pages 60:1–60:15. LIPIcs, January 2019. 6, 9, 20, 21, 38, 39, 40

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part I, volume 11692 of LNCS, pages 89–114. Springer, Heidelberg,
August 2019. 6, 14

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Daniel Wichs and Yishay Mansour, editors, 48th
ACM STOC, pages 49–62. ACM Press, June 2016. 7, 15

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, Cambridge, MA, USA, 1996. 5, 20, 22

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages
1–18. Springer, Heidelberg, March 2008. 29

A TFNP Classes
Here we recall the definition of TFNP classes that are relevant to our paper. In Fig. 5 the
relationship between these classes is illustrated.

Definition A.1 ([Pap94]). EndOfLine (EOL)

• Instance.

1. Boolean circuits S, P : {0, 1}𝑚 → {0, 1}𝑚

2. String 𝑣0 ∈ {0, 1}𝑚

• Guarantee.18 𝑣0 is unbalanced: P(𝑣0) = 𝑣0 and S(𝑣0) ̸= 𝑣0

18Unlike a promise, e.g., as in RSVL (Definition 2.7), a guarantee is locally checkable and, therefore, in case it does
not hold the convention is to output this violation itself as a solution in order to maintain totality of the problem.

46

https://eprint.iacr.org/2010/556

Algorithm 5 Recursive description of the RSVL instance. This is the version of Algorithm 1 with
explicit subscripts.

1: procedure F(𝑣, 𝑥𝑣, 𝜏𝑣)
hardwired Descriptions of:

1. the function 𝑓 : 𝒳 → 𝒴
2. a hash 𝐻 : {0, 1}* → {0, 1}𝜆 sampled using ΠFS,ℋ.Setup(1)

3. the 𝑑-query downwards self-reduction algorithm D𝑓

4. the (𝑘′, 𝑘) batching reduction ̃︀B where 𝑘′ = 𝑘 · 𝑑
input

1. Vertex 𝑣 ∈ 𝑉 (𝑇)
2. Problem instances 𝑥𝑣 := (𝑥𝑣,0, · · · , 𝑥𝑣,𝑘−1) ∈ 𝒳 𝑘

𝑛

3. Transcript 𝜏𝑣 ∈ 𝒳 𝑘 × 𝒴𝑘 × (𝒳 × 𝒴)≤𝑑·𝑛

output 𝑦𝑣 ∈ 𝒴𝑘 and 𝜋𝑣, a proof for 𝑥𝑣
𝑓𝑛−→ 𝑦𝑣

2: if |𝑥𝑣,0| = · · · = |𝑥𝑣,𝑘−1| = 1 then return ((𝑓1(𝑥𝑣,0), · · · , 𝑓1(𝑥𝑣,𝑘−1)) ,⊥)
◁ Outlining

3: Invoke D𝑓𝑛−1(𝑥𝑣) to obtain query 𝑞𝑣0
4: for 𝑗 ∈ [1, 𝑑− 1] do
5: (𝑦𝑣𝑗 , 𝜋𝑣𝑗) := F(𝑣(𝑗 − 1), 𝑞𝑣(𝑗−1), 𝜀)
6: Simulate D𝑓𝑛−1 on

(︁
(𝑞𝑣0, 𝑦𝑣0), · · · , (𝑞𝑣(𝑗−1), 𝑦𝑣(𝑗−1))

)︁
to obtain 𝑞𝑣𝑗

◁ Batching
7: Simulate D𝑓𝑛−1 on 𝜇𝑣 :=

(︁
(𝑞𝑣0, 𝑦𝑣0), · · · , (𝑞𝑣(𝑑−1), 𝑦𝑣(𝑑−1))

)︁
to obtain 𝑦𝑣

8: if 𝜏𝑣 = 𝜀 then 𝜏𝑣𝑑 := 𝑥𝑣𝑦𝑣𝜇𝑣 else 𝜏𝑣𝑑 := 𝜏𝑣𝜇𝑣𝑑

9: Compute challenge 𝑟𝑣𝑑 := 𝐻(𝜏𝑣𝑑)
10: Compute (𝑥𝑣𝑑, 𝑦𝑣𝑑) := ̃︀B(𝜇𝑣𝑑; 𝑟𝑣𝑑)

◁ Recursive proof-merging
11: (𝑦𝑣𝑑, 𝜋𝑣𝑑) := F(𝑣𝑑, 𝑥𝑣𝑑, 𝜏)
12: return (𝑦𝑣(𝑑−1), 𝜇𝑣𝑑𝜋𝑣𝑑)

47

• Solution. An unbalanced vertex 𝑣 ∈ {0, 1}𝑚: P(S(𝑣)) ̸= 𝑣 or S(P(𝑣)) ̸= 𝑣 ̸= 𝑣0

The successor and predecessor circuits implicitly define a directed graph of degree at most one on
{0, 1}𝑚, in which an edge (𝑢, 𝑣) ∈ {0, 1}2𝑚 exists if and only if S(𝑢) = 𝑣 and P(𝑣) = 𝑢. Since 𝑣0 is
guaranteed to unbalanced (a source) in this implicit graph handshaking lemma on directed graphs
guarantees the existence of another unbalanced vertex (a sink), which is the (locally-checkable)
solution to the instance.

Definition A.2 ([Pap94]). PPAD is defined as the set of all total problems that are Karp-reducible
to EOL.

Definition A.3 ([HY17]). EndOfMeteredLine (EOML)

• Instance.

1. A successor circuit S : {0, 1}𝑚 → {0, 1}𝑚

2. A predecessor circuit P : {0, 1}𝑚 → {0, 1}𝑚

3. A meter circuit M : {0, 1}𝑚 → [0, 2𝑚]
4. String 𝑣0 ∈ {0, 1}𝑚

• Guarantee.

1. 𝑣0 is unbalanced: P(𝑣0) = 𝑣0 and S(𝑣0) ̸= 𝑣0

2. 𝑣0 is the first vertex: M(𝑣0) = 1

• Solution. A vertex 𝑣 ∈ {0, 1}𝑚 satisfying one of the following:

1. End of line: either P(S(𝑣)) ̸= 𝑣 or S(P(𝑣)) ̸= 𝑣 ̸= 𝑣0,
2. False source: 𝑣 ̸= 𝑣0 and M(𝑣) = 1,
3. Miscount: either M(𝑣) > 0 and M(S(𝑣))−M(𝑣) ̸= 1 or M(𝑣) > 1 and M(𝑣)−M(P(𝑣)) ̸=

1.

The successor, predecessor and meter circuits implicitly define a directed acyclic graph (DAG)
of degree at most one on {0, 1}𝑚, in which an edge (𝑢, 𝑣) ∈ {0, 1}2𝑚 exists if and only if S(𝑢) = 𝑣,
P(𝑣) = 𝑢 and the meter is consistent with this, i.e., M(𝑣) = M(𝑢) + 1. Any deviation from valid
meter behaviour is accepted as solutions of types 2 and 3. Since 𝑣0 is guaranteed to be a source,
handshaking lemma on directed graphs guarantees the existence of a solution of type 1, i.e., a sink.

Definition A.4 ([DP11]). CLS is defined as the set of all total problems that are Karp-reducible
to EOML.

Remark 11. CLS was originally defined by Daskalakis and Papadimitrou [DP11] using a total
problem called ContinuousLocalOptimum. Subsequent works have improved our understanding
of this class. Firstly, Fearnley et al. [FGHS21] showed that CLS = PPAD ∩PLS, where PLS is
a subclass of TFNP [JPY88] that captures local search problems. Secondly, in a series of works
[FGMS19, GHJ+22] it was shown that EOML, known to lie in CLS [HY17], is CLS-complete.
Definition A.4 is as a result of these sequence of works.

48

FP UEOPL CLS PPAD TFNP FNP

Figure 5: The TFNP landscape relevant to this paper (arrows indicate containment). FP and
FNP are the function equivalent of the decision classes P and NP, respectively. The class UEOPL
is defined in Appendix B.

B UEOPL Hardness
In this section, we show hardness of UEOPL ⊆ CLS [FGMS19], which is one of the lowest-lying
class in TFNP. Since it is a sub-class of CLS, the hardness results in Section 5 will be subsumed
by ones presented in this section. We begin with the definition of the class.

B.1 Class UEOPL

Definition B.1 ([FGMS19]19). UniqueForwardEOML (UFEOML)

• Instance.

1. Boolean circuit S : {0, 1}𝑚 → {0, 1}𝑚

2. Boolean circuit M : {0, 1}𝑚 → [0, 2𝑚 − 1]
3. String 𝑣0 ∈ {0, 1}𝑚

• Guarantee.

1. 𝑣0 is unbalanced: S(𝑣0) ̸= 𝑣0

2. M(𝑣0) = 0

• Solution. One of the following:

1. Sink: A vertex 𝑣 ∈ {0, 1}𝑚 such that S(𝑣) ̸= 𝑣 and S(S(𝑣)) = S(𝑣)
2. Violation of meter: A vertex 𝑣 ∈ {0, 1}𝑚 such that S(𝑣) ̸= 𝑣 and M(S(𝑣)) ̸= M(𝑣) + 1
3. Collision of meter: Two vertices 𝑢 ̸= 𝑣 ∈ {0, 1}𝑚 such that 𝑢 ̸= S(𝑢), 𝑣 ̸= S(𝑣) and

M(𝑢) = M(𝑣).

Intuitively, S and M implicitly define a DAG on {0, 1}𝑚, where an edge (𝑢, 𝑣) ∈ {0, 1}2𝑚 exists
if and only if S(𝑢) = 𝑣 and the meter is consistent with this, i.e., M(𝑣) = M(𝑢) + 1. Any violation
of meter counts as a type 2 solution. A type 1 solution is now guaranteed by the principle that
any non-empty DAG has a sink and to ensure that the DAG is non-empty, an outgoing edge is
guaranteed from 𝑣0. Moreover, any witness to the non-uniqueness of the path from 𝑣0 also qualifies
as additional solutions of type 3 (these solutions are not necessary for totality).
Remark 12. Note that in the type 1 solution, we ask for a predecessor of the sink and not the
sink itself. This is to distinguish actual sinks from isolated vertices, i.e., 𝑣 such that S(𝑣) = 𝑣, but
∄𝑢 ∈ {0, 1}𝑚 : S(𝑢) = 𝑣, since these are not the vertices guaranteed by the existence principle.
Moreover, since there is no predecessor circuit in UFEOML, there is no way to locally check
whether or not a vertex is isolated.

19In [FGMS19], this problem is called UniqueForwardEOPL + 1; we prefer the name UniqueForwardEOML.

49

Definition B.2 ([FGMS19]). UEOPL is defined as the set of all total problems that are Karp-
reducible to UFEOML.

Remark 13. Instead of UFEOML, Fearnley et al. [FGMS19] define UEOPL using another total
problem called UniqueEndOfPotentialLine. These two problems are equivalent with respect
to Karp reductions [FGMS19]. The advantage of working with UFEOML is that we do not have
to deal with predecessor circuit (this is taken care of in the reduction from UFEOML to UEOPL).

B.2 Construction

The construction of our UFEOML instance UFEOML = (S, M, 𝑠0𝑛) is given in Algorithm 6. It is
similar to the RSVL construction RSVL = (S, V, 𝐿, 𝑠0𝑛) from Section 5.1. In particular, UFEOML.S
the same as RSVL.S (except that it is hardwired with the length parameter 𝐿 = (𝑑 + 1)𝑛). The
meter circuit UFEOML.M simply returns the index of vertex 𝑣ℓ in the restricted DFS of 𝑇 .

Algorithm 6 The UFEOML instance UFEOML = (S, M, 𝑠0𝑛). The descriptions of S𝑛 and V can
be found in Algorithms 3 and 4, respectively.

1: procedure S(𝑠)
hardwired Same items as in Algorithm 2 and additionally 𝐿 := (𝑑 + 1)𝑛

input State 𝑠 ∈ {0, 1}𝑚 parsed as in Eq. (14)
output Next state 𝑠′ ∈ {0, 1}𝑚

2: Let 𝑖 ∈ [0, 2𝑚 − 1] denote the index of the 𝑣ℓ ∈ 𝑣 in restricted DFS on 𝑇
3: if V(𝑠, 𝑖) rejects then return 𝑠 and halt
4: else return 𝑠′ := S𝑛(𝜀, 𝑠, (𝑥, · · · , 𝑥) , 𝜀) and halt

5: procedure M(𝑠)
hardwired Same items as in S
input State 𝑠 ∈ {0, 1}𝑚 parsed as in Eq. (14)

6: Let 𝑖 ∈ [0, 2𝑚 − 1] denote the index of the 𝑣ℓ ∈ 𝑣 in restricted DFS on 𝑇
7: Return 𝑖 and halt

B.3 Analysis

Theorem B.3 (Hardness of UFEOML from 𝑓 and ΠFS,ℋ). Let 𝑘, 𝑑 ∈ N be parameters and 𝜆 ∈ N
be a security parameter. Suppose that

• 𝑓 : 𝒳 → 𝒴 is a 𝑑-query downwards self-reducible and 𝑑𝑘-to-𝑘 batch-reducible function with
sampler X; and

• ΠFS,ℋ = (Setup, P, V) is the non-interactive protocol for ℒ𝑘
𝑓𝑛

from Corollary 3.4.

Furthermore, for 𝐻 ← ΠFS,ℋ.Setup(1𝜆) and 𝑥← X(1𝜆), define

𝑚 = 𝑚(𝑑, 𝑘, |𝑥|) ∈ poly(𝑑, 𝑘, |𝑥|) and 𝐿 = 𝐿(𝑑, 𝑘) := (𝑑 + 1)𝑛, (22)

and let
S : {0, 1}𝑚 → {0, 1}𝑚 and M : {0, 1}𝑚 → [0, 𝑑𝑛 − 1] (23)

50

be as defined as in Algorithm 6, hardwired with (𝑓, 𝐻, D, ̃︀B, 𝑥, ΠFS,ℋ.V, 𝐿). If 𝑓 is hard with respect
to X and ΠFS,ℋ is (adaptively) unambiguously sound argument, 1then UFEOML = (S, M, 𝑠0𝑛),
constitutes a hard distribution of UFEOML.

On instantiating 𝑓 with IS as sampled in Assumption 4.8 and ΠFS,ℋ with non-interactive
protocol from Corollary 4.10, we get the following corollary to Theorem B.3.

Corollary B.4 (Hardness of UFEOML from IS and LWE). For a security parameter 𝜆 ∈ N, let
(G𝜆, 𝑔, 𝑇) be sampled as in Assumption 4.8, which defines 𝑓𝑛(𝑔, 𝑇) := 𝑔2𝑇 for 𝑛 := log(𝑇). Also,
let ΠFS,ℋ = (Setup, P, V) denote the non-interactive protocol for ℒ𝑘

G from Corollary 4.10, which
implies 𝑘 ∈ 𝜆𝑂(1) and 𝑑 = 2. Furthermore, for 𝐻 ← ΠFS,ℋ.Setup(1𝜆), define

𝑚 = 𝑚(𝑛, 𝑘, 𝜆) := 𝑛2𝑘 · poly(𝜆) and 𝐿 = 𝐿(𝑛) = 3𝑛, (24)

and let
S : {0, 1}𝑚 → {0, 1}𝑚 and M : {0, 1}𝑚 → [0, 2𝑚 − 1] (25)

be defined as in Algorithm 6, hardwired with ((G𝜆, 𝑔, 𝑇), 𝐻, D, ̃︀B, ΠFS,ℋ.V, 𝐿). If Assumptions 2.10
and 4.8 hold then UFEOML = (S, M, 𝑠0𝑛) constitutes a hard distribution of UFEOML.

Proof (of Theorem B.3). First, we claim that UFEOML does not (by construction) contain viola-
tions of meter by showing that for any valid state 𝑠 ∈ {0, 1}𝑚, M(S(𝑠)) = M(𝑠) + 1 holds. To see
this, first recall that

• the meter of a valid state 𝑠 parsed as in Eq. (14) depends solely on (𝑣0, · · · , 𝑣ℓ) and is, in
particular, defined as the index of 𝑣ℓ in the restricted DFS; and

• S is defined in Algorithm 6 (Line 3) to self-loop at an invalid state 𝑠, i.e., S(𝑠) = 𝑠 if V(𝑠) = 0.

Since 𝑠 is valid, we have 𝑠 ̸= 𝑠′ := S(𝑠) (unless it is the sink of the standard line). By construction
of S, the tuple (𝑣′0, · · · , 𝑣′ℓ) corresponding to 𝑠′ (when parsed as in Eq. (14)) is such that 𝑣′ℓ is the
vertex visited immediately after 𝑣ℓ in the restricted DFS and therefore has index one more than
𝑣ℓ’s.

Now, suppose for contradiction that there exists a poly(𝜆)-sized algorithm A = {A𝜆}𝜆∈N and
a polynomial 𝑝(·) such that A solves UFEOML for infinitely-many security parameters 𝜆 ∈ N with
probability at least 1/𝑝(·); fix one such 𝜆. This implies by an averaging argument that A finds
either the standard sink, a non-standard sink or a collision of meter for 𝜆 with probability at least
1/3𝑝(𝜆). Given an adversary that finds the standard sink, we show in Claim B.5 that it is possible
to break hardness of 𝑓 (Assumption 5.5); given an adversary that finds a non-standard sink or a
false positive, we show in Claims B.6 and B.7, respectively, how to break unambiguous soundness.

Claim B.5 (Reduction from hardness of 𝑓). Given an adversary A1 that finds the standard sink
in UFEOML with probability at least 𝑝′(𝜆), one can break the hardness of 𝑓 with same probability.

Proof. Given a challenge input 𝑥 ∈ 𝒳 , the reduction samples a CRS 𝐻 ← ΠFS,ℋ.Setup(1𝜆) and
sends (S, M, 𝑠0𝑛) hardwired with (𝑓, 𝐻, D, ̃︀B, 𝑥, ΠFS,ℋ.V, 𝐿) to A1. A1 returns the state 𝑠1𝑛 :=
S𝐿−1(𝑠0𝑛) such that S(𝑠1𝑛) = 𝑠𝜀 and therefore S(S(𝑠1𝑛)) = S(𝑠𝜀) = 𝑠𝜀. By applying S once to
this node the reduction can compute 𝑠𝜀 =: ((𝜀, (𝑥, · · · , 𝑥) , (𝑦, · · · , 𝑦) , 𝜋)) with 𝑦 = 𝑓𝑛(𝑥). The
reduction simply returns 𝑦.

51

Claim B.6 (Reduction from unambiguous soundness of ΠFS,ℋ). Given an adversary A2 that finds
a non-standard sink in UFEOML with probability at least 𝑝′(𝜆), one can break ΠFS,ℋ’s unambiguous
soundness with same probability.

Proof. Given a challenge CRS 𝐻, the reduction samples 𝑥← X(1𝜆) and sends (S, M, 𝑠0𝑛) hardwired
with (𝑓, 𝐻, D, ̃︀B, 𝑥, ΠFS,ℋ.V, 𝐿) to A2. A2 returns 𝑠* ∈ {0, 1}𝑚 such that S(S(𝑠*)) = S(𝑠*). Suppose
that M(𝑠*) = 𝑖 and let 𝑣 be the vertex in 𝑇 with index 𝑖. Moreover, let 𝑠𝑣 denote the 𝑖-th state on
the standard line. (As in Claim 5.9, it is not necessary for the reduction to be able to efficiently
compute 𝑠𝑣.) The proof now is similar to Claim 5.9. Let’s parse 𝑠* as

((𝑣*0, 𝑥*0, 𝑦*0, 𝜋*0), · · · , (𝑣*ℓ , 𝑥*ℓ , 𝑦*ℓ , 𝜋*ℓ)) , (26)

and 𝑠𝑣 as in Eq. (14). In order to prove the claim, we make a case distinction.

• All the statements in 𝑠𝑣 and 𝑠* match. In this case, since 𝑠𝑣 ̸= 𝑠*, there exists at least one
index 𝑗 ∈ [0, ℓ] such that 𝜋*𝑗 ̸= 𝜋𝑗 but (𝑥*𝑗 , 𝑦*𝑗) = (𝑥𝑗 , 𝑦𝑗) is a true statement. Therefore 𝜋*𝑗
breaks unambiguity of ΠFS,ℋ and the reduction returns

(𝜋*𝑗 , 𝑥𝑗

𝑓
𝑛−|𝑣𝑗|−−−−−→ 𝑦𝑗).

• Some statements are different and 𝑗 ∈ [0, ℓ] is the first such index. In this case, we argue that

𝑥*𝑗

𝑓
𝑛−

⃒⃒
𝑣*

𝑗

⃒⃒
−−−−−→ 𝑦*𝑗 . (27)

is false, but since 𝜋*𝑗 is accepted it breaks soundness of ΠFS,ℋ. To see this, first note that (by
assumption) the statements in labels less than 𝑗 in both 𝑠𝑣 and 𝑠* are same and therefore the
verifier ends up recomputing 𝑥*𝑗 = 𝑥𝑗 as in Claim 5.9. Therefore, if 𝑥*𝑗 ̸= 𝑥𝑗 then the state is
invalid and the verifier would have rejected (which results in S(𝑠*) = 𝑠*). Moreover, since V
rejects if (𝑣0, · · · , 𝑣ℓ) ̸= (𝑣*0, · · · , 𝑣*ℓ), we have 𝑣𝑗 = 𝑣*𝑗 but 𝑦* ̸= 𝑦 and therefore the statement
in Eq. (27) is false (since 𝑓 is a function) but 𝜋*𝑗 accepts. Therefore the reduction can return
𝜋*𝑗 and the statement in Eq. (27).

Claim B.7 (Reduction from unambiguous soundness of ΠFS,ℋ). Given an adversary A3 that finds
a collision of meter in UFEOML with probability at least 𝑝′(𝜆), one can break ΠFS,ℋ’s unambiguous
soundness with same probability.

Proof. Given a challenge CRS 𝐻, the reduction samples 𝑥← X(1𝜆) and sends (S, M, 𝑠0𝑛) hardwired
with (𝑓, 𝐻, D, ̃︀B, 𝑥, ΠFS,ℋ.V, 𝐿) to A3. A3 returns 𝑠, 𝑠′ ∈ {0, 1}𝑚 such that 𝑠 ̸= 𝑠′, S(𝑠) ̸= 𝑠,
𝑠′ ̸= S(𝑠′) and M(𝑠) = M(𝑠′) =: 𝑖. Suppose that 𝑣 is the vertex in 𝑇 with index 𝑖 and 𝑠𝑣 be the
𝑖-th state on the standard line, which can be efficiently computed using (𝑝, 𝑞). Fix 𝑠* ∈ {𝑠, 𝑠′} such
that 𝑠* ̸= 𝑠𝑣 – this must exist since 𝑠 ̸= 𝑠′. From here the proof proceeds exactly as in Claim B.6.

52

	Introduction
	Our Results
	Technical Overview
	Application to Unique VDFs
	Applications to PPAD-Hardness

	Organisation

	Preliminaries
	Search Problems, TFNP , and Reductions
	Learning with Errors
	Correlation-Intractable Hash Families
	Interactive Proofs and the Fiat-Shamir Heuristic

	The Outline-and-Batch Protocol
	Instantiations of Outline-and-Batch

	Non-Interactive Argument for Iterated Squaring in a Trapdoor Group of Unknown Order
	Iterated Squaring modulo N
	Trapdoor Groups with Unknown Order
	Interactive Iterated Squaring Protocol

	PPAD Hardness
	Construction
	An Implicit Description
	The Explicit Description
	Checking a State's Validity
	Computing the Successor

	Analysis

	Unique VDF
	Construction
	Analysis

	Conclusion and Open Problems
	Acknowledgements
	TFNP Classes
	UEOPL Hardness
	Class UEOPL
	Construction
	Analysis

