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Abstract: Modern Singular Value Decomposition (SVD) computation dates back to the 1960s when the 1

basis for the eigensystem package and linear algebra package routines was created [1,2]. Since then, 2

SVD has gained attraction and been widely applied in various scenarios, such as recommendation 3

systems and principal component analyses. Federated SVD has recently emerged, where different 4

parties could collaboratively compute SVD without exchanging raw data. Besides its inherited 5

privacy protection, noise injection could be utilized to further increase the privacy guarantee of 6

this privacy-friendly technique. This paper advances the state-of-science by improving an existing 7

Federated SVD scheme [3] with two-fold contributions. First, we revise its privacy guarantee in 8

terms of Differential Privacy, the de-facto data privacy standard of the 21st century. Second, we 9

increase its utility by reducing the added noise, which is achieved by employing Secure Aggregation, 10

a cryptographic technique to prevent information leakage. Using a recommendation system use-case 11

with real-world data, we demonstrate that our scheme outperforms the state-of-the-art Federated 12

SVD solution. 13

Keywords: Singular Value Decomposition; Federated Learning; Secure Aggregation; Differential 14

Privacy 15

1. Introduction 16

Advances in networking and hardware technology have made the design and deploy- 17

ment of the Internet of Things (IoTs) and decentralized applications a trend. For example, 18

the FoG computing concept and its associated edge computing technologies push compu- 19

tations to the node devices so that data aggregation can be avoided. This naturally brings 20

benefits such as efficiency and privacy, but on the other hand, it forces data analysis tasks 21

to be carried out in a distributed manner. To this end, Federated Learning (FL) has become 22

a promising solution direction where raw data is not required to be exchanged among 23

different parties. Instead, each party locally processes and trains its model and only shares 24

intermediate results with an aggregator server [4]. Compared with other settings such as 25

centralized training, FL is clearly a privacy friendly solution. 26

Among many data analysis methods, this paper focuses on Singular Value Decompo- 27

sition (SVD). Plainly, SVD factorizes a matrix into three new matrices. Originating from 28

linear algebra, SVD has several interesting properties and conveys crucial insights about the 29

underlying matrix. Hence, SVD has essential applications in data science, such as in recom- 30

mendation system [5,6], Principal Component Analysis [7], Latent Semantic Analysis [8], 31

noise filtering [9,10], dimension reduction [11], clustering [12], matrix completion [13], etc. 32

Among all, Federated SVD has emerged as an interesting topic recently. Existing solu- 33

tions fall into two categories: SVD over horizontally and vertically partitioned dataset [14]. 34

In real-world applications, the former is much more common [3,15]; therefore, in this paper, 35

we also focus on the horizontal setting. 36
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Protects The individual updates The aggregate
Secure Aggregation ✓ ✗

Central DP ✗ ✓
Local DP ✓ ✓

Table 1. Comparing Secure Aggregation with Local and Central Differential Privacy.

Despite this seemingly privacy-friendly setup, a long line of research has shown that 37

sensitive information can be inferred about the underlying datasets [16–18]. To mitigate 38

such information leakages, FL can be aided with other privacy-enhancing technologies, 39

such as Secure Aggregation (SA) [19] and Differential Privacy (DP) [20]. SA hides the 40

individual contributions from the aggregator server in each intermediate step in a way 41

that does not affect the trained model’s utility. In other words, the standalone updates are 42

masked such that the masks cancel out during aggregation, therefore the aggregated results 43

remain intact. The masks could be seen as temporary noise; hence, the privacy protection 44

does not extend to the aggregated data. In contrast, DP adds persistent noise to the model, 45

i.e., it provides broader privacy protection but with an inevitable utility loss (due to the 46

permanent noise). We differentiate between two DP settings depending on where the noise 47

is injected. In Local DP (LDP), the participants add noise to their updates, while in Central 48

DP (CDP), the server applies noise to the aggregate. A comparison of LDP, CDP and SA is 49

summarized in Table 1. 50

Related Work. The utilized algorithms to compute SVD are mostly iterative, such as 51

the power iteration method [21]. Recently, these algorithms were adopted to a distributed 52

setting to solve large-scale problems [22,23]. While these works tackle important issues and 53

advance the field, they all disregard privacy issues: we are only aware of two Federated 54

SVD solutions in the literature explicitly providing a privacy analysis [3,15]. 55

Hartebrodt et al. [15] proposed a Federated SVD algorithm with a star-like architecture 56

for high-dimensional data such that the aggregator cannot access the complete eigenvector 57

matrix of SVD results. Instead, each node device has access, but only to its share part of 58

the eigenvector matrix. In contrast, Guo et al. [3] proposed a Federated SVD algorithm 59

based on the distributed power method where both the server and all the participants learn 60

the entire eigenvector matrix. Their solution incorporated additional privacy-preserving 61

features, such as participant and aggregator server noise injection. We improve upon this 62

solution by pointing out an error in its privacy analysis and by providing a tighter privacy 63

protection with less utilized noise. 64

Contribution. This work focuses on a setting similar to Guo et al. [3], i.e., when the 65

server and all the participants are expected to learn the final eigenvector matrix. Our main 66

contribution is improving the FedPower algorithm suggested by [3]. Firstly, we point out 67

several inefficiencies and shortcomings of the original protocol, such as the avoidable noise 68

injection steps and the unclear and confusing privacy guarantee. Secondly, we propose two 69

enhanced solutions (with focus on utility and privacy, respectively), where the added noise 70

is reduced due to the introduction of SA. Finally, we provide empirical results to measure 71

the privacy-utility trade-off using a real-world dataset. 72

Organisation. The rest of the paper is organized as follows. In Section 2, we list the 73

fundamental definitions of the relevant techniques used throughout the paper. In Section 3, 74

we recap the scheme proposed by Guo et al. [3], while in Section 4 and 5, we propose two 75

improved schemes focusing on utility and privacy, respectively. In Section 6 we empirically 76

compare the proposed schemes with the original work. Finally, in Section 7, we conclude 77

the paper. 78

2. Preliminary 79

Singular Value Decomposition. Let M be a s× d matrix with assumption of s ≤ d. 80

As shown in Figure 1, the full SVD of M is a factorisation of the form UΣVT , where T means 81

conjugate transpose. The left-singular vectors are U = [u1, u2, . . . , us] ∈ Rs×s, the right- 82
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Figure 1. Singular Value Decomposition.

singular vectors are V = [v1, v2, . . . , vd] ∈ Rd×d, and the diagonal matrix with the singular 83

values in decreasing order in its diagonal is Σ = diag{σ1, σ1, . . . , σd} ∈ Rs×d. The partial or 84

truncated SVD [24,25] is used to find the top k (k ≤ d) singular vectors U = [u1, u2, . . . , uk], 85

V = [v1, v2, . . . , vk] and singular values Σ = diag{σ1, σ1, . . . , σk} . 86

If M′ = 1
sM

TM ∈ Rd×d, then the Power Method [21] could be used to compute the 87

top k right singular vector of M and the top k eigenvectors of M′. It works by iterating 88

Y = M′Z and Z = orth(Y), where both Y and Z are d × k matrices and orth(·) is the 89

orthogonalization of the columns with QR factorization. 90

Moreover, if M is the composition of n matrices, then computation of the Power 91

Method can be distributed. So if MT = [MT
1 ,MT

2 , . . . ,MT
n ] ∈ Rs×d with s = ∑n

i=1 si, where 92

Mi ∈ Rsi×d and M′i = 1
si
MT

i Mi, then Equation (1) holds. Thereby, Y can be written as 93

Y = ∑n
i=1

si
s M
′
iZ ∈ Rd×k, which indicates that the Power Method can be processed in 94

parallel by each data holder [3,26]. 95

M′ = 1
s
MTM =

n

∑
i=1

1
s
MT

i Mi =
n

∑
i=1

si
s
M′i =

d

∑
i=1

piM′i (1)

Secure Aggregation. In simple terms, with SA, the original data of each node device 96

are locally masked in a particular way and shared with the server, so when the masked 97

data is aggregated on the server, the masks are canceled and offset. In contrast, the server 98

does not know all individual node devices’ original unmasked intermediate results. In the 99

FL literature, many solutions have widely used the SA protocol of Bonawitz et al. [27]. We 100

recap this protocol in Appendix A and use it in Section 4 to benchmark our enhanced SVD 101

solution. 102

Differential Privacy. Besides SA, DP is also exhaustively utilized in the FL literature. 103

DP was introduced by Dwork et al. [28], which ensures that the addition, removal, or modi- 104

fication of a single data point does not substantially affect the outcome of the data-based 105

analysis. One of the core strengths of DP comes from its properties, called composition and 106

post-processing, which we also utilize in this paper. The former ensures that the output 107

of two DP mechanisms still satisfies DP but with a parameter change. The latter ensures 108

that a transformation of the results of a DP mechanism does not affect the corresponding 109

privacy guarantees. Typically, DP is enforced by injecting calibrated noise (e.g., Laplacian 110

or Gaussian) into the computation. 111

Definition 1 ((ε, δ)-Differential Privacy). A randomised mechanismM : X → R with domain 112

X and rangeR satisfies ε-differential privacy if for any two adjacent inputs x, x′ ∈ X and for any 113

subset of output S ⊆ R it holds that 114

Pr(M(x) ∈ S) ≤ eε · Pr(M(x′) ∈ S) (2)

The variable ε is called the privacy budget, which measures the privacy loss. It captures 115

the trade-off between privacy and utility: the lower its value, the more noise is required 116

to satisfy Equation (2), resulting in higher utility loss. Another widely used DP notion is 117

Approximate DP, where a small additive term δ is added to the right side of Equation (2). 118

Typically, we are interested in values of δ that are smaller than the inverse of the database 119
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size. Although DP has been adopted to many domains [20] such as recommend systems [29], 120

we are not aware of any work besides [3] which adopts DP for SVD computation. Thus, as 121

we show later a flaw in that work, we are the first to provide a distributed SVD computation 122

with DP guarantees. 123

3. The FedPower Algorithm 124

Following Guo et al. [3], we assume there are n node devices, and each device i holds 125

an independent dataset, an si-by-d matrix Mi. Each row represents a record item, while 126

the columns of each matrix correspond to the same feature space. Besides, M denotes the 127

composition of matrices Mi such that MT = [MT
1 ,MT

2 , . . . ,MT
n ] ∈ Rs×d, with s = ∑n

i=1 si. 128

The solution proposed by Guo et al. [3] is presented in Algorithm 1 with the following 129

parameters. 130

• T: the number of local computations performed by each node device. 131

• I p
T : the rounds where the node devices and the server communicate, 132

i.e., I p
T = {0, p, 2p, . . . , p⌊T/p⌋}. 133

• (ε, δ): the privacy budget. 134

• (σ, σ′): the variance of noises added by the clients and the server, respectively: 135

σ = ⌊T/p⌋
ε·mini(si)

√
2 log

(
1.25⌊T/p⌋

δ

)
σ′ = ⌊T/p⌋maxi(pi)

ε·mini(si)

√
2 log

(
1.25⌊T/p⌋

δ

)
In the proposed solution, each node device holds its raw data and processes the SVD 136

locally, its eigenvectors are aggregated on the server by Orthogonal Procrustes Transforma- 137

tion (OPT) mechanism, and the aggregation result is sent back for further iterations. More 138

details (e.g., the computation of D(i)
t ) are given in [3]. 139

Algorithm 1 Fully Participation Protocol of FedPower by Guo et al. [3]
Input: Datasets {Mi}n

i=1, target rank k, iteration rank r ≥ k, number of iteration T,
synchronous set I p

T , and the variance of noises (σ, σ′)

Output: Approximated eigenspace ZT

1: initialise Z(i)
0 = Z0 ∈ Rd×r ∼ N(0, 1)d×r

2: for t = 1 to T do
3: each node device i computes Y(i)

t = M′iZ
(i)
t−1, where M′i =

1
si
MT

i Mi

4: if t ∈ I p
T then

5: each node device i computes Ŷ(i)
t = Y(i)

t D(i)
t (orthogonal transformation)

6: each node device i adds the Gaussian noise:
Y′(i)t = Ŷ(i)

t +N(i) ∼ N(0, ||Z(i)
t−1||2maxσ2)d×r

7: each node device i sends Y′(i)t to the server
8: the server performs perturbed aggregation with an extra Gaussian noise:

Yt = ∑n
i=1

si
s Y

(i)
t +N ∼ N(0, maxi ||Z

(i)
t−1D

(i)
t ||2maxσ′2)d×r

9: the server broadcasts Yt to all node devices
10: each node device i sets Y(i)

t = Yt
11: end if
12: each node device i performs orthgonalization: Z(i)

t = orth(Y(i)
t )

13: end for
14: return approximated eigenspace

ZT =

{
∑n

i=1
si
s Z

(i)
T D(i)

T+1 if T /∈ I p
T

∑n
i=1

si
s Z

(i)
T otherwise.
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4. Enhancing the Utility of FedPower 140

Adversary Model. Throughout the paper we consider a semi-honest setup, i.e., where 141

the clients and the server are honest but curious. This means that they follow the protocol 142

truthfully, but in the meantime, they try to learn as much as possible about the dataset of 143

other participants. We also assume that the server and the clients cannot collude, so the 144

server cannot control node devices. 145

Utility Analysis of FedPower. It is not a surprise that adding Gaussian noise twice 146

(i.e., the local and the central noise in Step 6 and 8 in Algorithm 1) severely affects the 147

accuracy of the final result. A straightforward way to increase the utility is to eliminate 148

some of this noise. As highlighted in Table 1, the local noise protects the individual clients 149

from the server. Besides, it also protects the aggregate from other clients and from external 150

attackers. On the other hand, the central noise merely covers the aggregate. Hence, if the 151

protection level against the server is sufficient against other clients and external attackers, 152

the central noise becomes obsolete. 153

Moreover, all the locally added noise accumulates during aggregation, which also 154

effects negatively the utility of the final result. Loosely speaking, as shown in Table 1, CDP 155

combined with SA could provide the same protection as LDP. Consequently, by utilizing 156

cryptographic techniques with a single local noise, we can hide the individual updates, 157

and protect the aggregate as well. 158

Utility Enhanced FedPower. We improve on FedPower [3] from two aspects: 1) we 159

apply a SA protocol to hide the individual intermediate results of the node devices from 160

the server, and 2) we use a secure multi-party computation (SMPC) protocol to enforce the 161

CDP in an oblivious manner to the server. We supplement the assumptions, and the setup 162

of Guo et al. [3] with a homomorphic encryption key pair generated by the server. The 163

server holds the private key and shares the public key with all node devices. The remaining 164

part of our solution is shown in Algorithm 2. To ease understanding, the pseudo code is 165

simplified. The actual implementation is more optimized, e.g., the encrypted results are 166

aggregated before decryption in Step 11, and in Step 7, the ciphertexts are re-randomized 167

rather than generate from scratch. We will describe all these tricks in Section 6. 168

By performing SA in Step 7, the server obtains the aggregated result with Gaussian 169

noises from all node devices. With the simple SMPC procedure (Steps 8-12), the server 170

receives all Gaussian noises apart from the one (i.e., node device j) it randomly selected 171

(which is hidden from the node devices). Then, in Step 13 it removes them from the output 172

of the SA protocol. Compared to FedPower [3], our intermediate aggregation result only 173

contains a single instance of Gaussian noise from the randomly chosen node device instead 174

of n. Consequently, via SA and SMPC, the proposed utility enhancing protocol reduced the 175

locally added noise n-fold and completely eliminated the central noise. 176

Computational Complexity. Regarding computational complexity, we compare the 177

proposed scheme with the original solution in Table 2. The major difference is that we 178

have integrated SA to facilitate our new privacy protection strategy. Let SAe and SAs be 179

the asymptotic computational complexities of SA on each node device and server side, 180

respectively. 181

Addition Multiplication Noise Encryption Decryption Secure
Gen. Agg.

[3]
Node T × (k2 − k)+ T × k2 ⌊T/p⌋×

⌊T/p⌋ × k2 k2

Server (⌊T/p⌋+ 1)× (⌊T/p⌋+ 1)× d× k2 ⌊T/p⌋×
k2 × (d− 1) + ⌊T/p⌋ +⌊T/p⌋ × d + 1 k2

Ours
Node T × (k2 − k)+ T × k2+ ⌊T/p⌋× ⌊T/p⌋×

⌊T/p⌋ × k2 ⌊T/p⌋ × k2 k2 SAe

Server ⌊T/p⌋ × k2 × d+ d× (k2 + 1) ⌊T/p⌋× ⌊T/p⌋× ⌊T/p⌋×
k2 × (d− 1) k2 ×m k2 ×m SAs

Table 2. Complexity Comparison between FedPower [3] andAlgorithm 2.
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Algorithm 2 Utility Enhanced FedPower
Input: Datasets {Mi}n

i=1, target rank k, iteration rank r, number of iteration T,
synchronous trigger p, the variance of noise σ, and key pair (skhm, pkhm)

Output: Approximated eigenspace ZT

1: initialise Z(i)
0 = Z0 ∈ Rd×r ∼ N(0, 1)d×r with orthonormal columns and

generate an r× r zero matrix P and another all-ones matrix P′ of the same size
2: for t = 1 to T do
3: each node device i computes Y(i)

t = M′iZ
(i)
t−1, where M′i =

1
si
MT

i Mi

4: if t ≡ 0 (mod p) then
5: each node device i computes Ŷ(i)

t = Y(i)
t D(i)

t (orthogonal transformation)

6: each node device i adds Gaussian noise: Y′(i)t = Ŷ(i)
t +N(i) ∼ N(0, σ)d×r

7: SA protocol is executed among the server and all node devices,
with inputs Y′(i)t and output Yt

8: the server chooses one random index j ∈ [1, n] and encrypts P′ and P′:
C(j) = Encpkh

(P) and C(j′) = Encpkh
(P′) for j′ ∈ [1, n] \ {j}

9: the server sends value C(j) and C(j′) to the appropriate node devices
10: each node device i computes C′(i) = N(i) ·C(i) which is

Encpkh
(N(i) · P′) if i = j and Encpkh

(N(i) · P) otherwise
11: each node device i sends C′(i) back to the server
12: for all i ∈ [1, n] \ {j}, the server decrypts the receiving messages C′(i)

to obtain N(i) ≡ N(i) · P′ = Decskh
(C′(i))

13: the server updates aggregation result as Y′′t = Y′t −∑i∈[1,n]\{j} N(i)

14: the server performs orthogonalisation Zt = orth(Y′′t )
15: the server broadcasts Zt to all node devices
16: each node device i sets Z(i)

t = Zt
17: else
18: each node device i calculates the latest Z(i)

t = orth(Y(i)
t )

19: end if
20: end for
21: return approximated eigenspace

ZT =

{
∑n

i=1
si
s Z

(i)
T D(i)

T+1 if T /∈ I p
T

∑n
i=1

si
s Z

(i)
T otherwise.

Although we have added more operations as seen in Table 2, we have distributed some 182

computations to individual node devices. Most importantly, we no longer add secondary 183

server-side Gaussian noise to the final aggregation result and only retain the Gaussian 184

noise from one node device. 185

Analysis. As we mentioned in our adversarial model, the semi-honest server cannot 186

collude with any of the node devices, which are also semi-honest. Thus, the server cannot 187

eliminate the remaining noise from the final result. In terms of the node device, since no 188

one except the server is aware of the random index in Step 8, apart from its data, an node 189

device only knows the aggregation result with the added noise, even if the retained noise 190

comes from itself. 191

Compared to the original solution by Guo et al. [3], we have improved the utility of 192

the aggregation result by keeping the added noise from only one node device. As a side 193

effect, the complexity has grown due to the SA protocol. This is a trade-off between result 194

accuracy and solution efficiency. 195
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5. Differentially Private Federated SVD Solution 196

Privacy Analysis of FedPower. Algorithm 1 injects noise both on the local (Step 6) and 197

the global (Step 8) level. Consequently, the claimed privacy protection of Algorithm 1 is 198

(2ε, 2δ)-DP, which originates from (ε, δ)-LDP and (ε, δ)-CDP [3]. Firstly, as we highlighted 199

in Table 1, LDP and CDP provide different privacy protections; hence, merely combining 200

them is inappropriate, so the claim must be more precise. Instead, Algorithm 1 seems 201

to provide (ε, δ)-DP for the clients from the server and stronger protection (due to the 202

additional central noise) from other clients and external attackers. 203

Yet, this is still not entirely sound, as not all computations were included in the sensi- 204

tivity calculation; hence, the noise scaling is incorrect. Indeed, the authors only considered 205

the sensitivity of the multiplication with Z in Step 3 when determining the variance of the 206

Gaussian noise in Step 6; however, the noise is only added after the multiplication with D 207

in Step 5. Thus, the sensitivity of the orthogonalization is discarded. 208

Privacy Enhanced FedPower. We improve on FedPower [3] from two aspects: 1) 209

we incorporate clipping in the protocol to bound the sensitivity of the local operations 210

performed by the clients and 2) we use SA with DP to obtain a strong privacy guarantee. For 211

this reason, similar to FedPower [3], we assume that for all i the elements of M′i =
1
si
MT

i Mi 212

are bounded with m̂. In Algorithm 1, the computations the nodes undertake (beside noise 213

injection at Step 6) are in Steps 3, 5, and 12, where the last two could be either discarded for 214

the sensitivity computation or removed entirely, as explained below. 215

• Step 12: Orthogonalization is intricate, so its sensitivity is not necessarily traceable. To 216

tackle this, we propose to apply the noise before, in which case it would not affect the 217

privacy guarantee, as it would count as post-processing. 218

• Step 5: We remove this client-side operation from our privacy enhanced solution, as it 219

is not essential; only the convergence speed would be affected slightly. 220

The FedPower protocol with enhanced privacy is present in Algorithm 3, where 221

besides the orthogonalization clipping is also performed with ẑ. The only client operation 222

which must be considered for the sensitivity computation (i.e., before noise injection) is 223

Step 3. We calculate its sensitivity in Theorem 1. 224

Theorem 1. If we assume |m′ij| ≤ m̂ for all i, j ∈ [1, d], then the sensitivity (calculated via 225

the Eucledian distance) of the client side operations (i.e., Step 3 in Algorithm 3 is bounded by 226

2 ·
√

r · m̂ · ẑ. 227

Proof. To make the proof easier to follow, we remove the subscript round counter from the 228

notation. Let us define M′ and M̃′ such that they are equal except at position 1 ≤ i, j ≤ d. 229

Now, multiplying these with Z from the left results in Y and Ỹ respectively which are the 230

same except in row i: 231

[m′i1 · z11 + · · ·

abs(·)≤m̂·ẑ︷ ︸︸ ︷
+m′ij · zj1+ · · ·+ m′id · zd1, . . . , m′i1 · z1r + · · ·

abs(·)≤m̂·ẑ︷ ︸︸ ︷
+m′ij · zjr+ · · ·+ m′id · zdr] for Y′

[m′i1 · z11 + · · ·+m̃′ij · zj1+︸ ︷︷ ︸
abs(·)≤m̂·ẑ

· · ·+ m′id · zd1, . . . , m′i1 · z1r + · · ·+m̃′ij · zjr+︸ ︷︷ ︸
abs(·)≤m̂·ẑ

· · ·+ m′id · zdr] for Ỹ′

Hence, the Euclidean distance of Y and Ỹ boils down to this row i: 232

dist(Y, Ỹ) =

√√√√ d

∑
k=1

r

∑
l=1

(ykl − ỹkl)
2 =

√
r

∑
l=1

(yil − ỹil)
2 =

√
r

∑
l=1

(
m′ij · zjl − m̃′ij · zjl

)2

As a direct corollary of abs(m · z) ≤ m̂ · ẑ, we know that each of the r squared element 233

is bounded by 2 · m̂ · ẑ. Therefore, dist(Y, Ỹ) ≤
√

r · 4 · m̂2 · ẑ2. 234
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Algorithm 3 Privacy Enhanced FedPower
Input: Datasets {Mi}n

i=1, target rank k, iteration rank r, number of iteration T,
the clipping bound ẑ, the variance of noise σ

Output: Approximated eigenspace ZT

1: initialise Z(i)
0 = Z0 ∈ Rd×r ∼ N(0, 1)d×r with orthonormal columns

2: for t = 1 to T do
3: each node device i computes Y(i)

t = M′iZ
(i)
t−1, where M′i =

1
si
MT

i Mi

4: each node device i adds Gaussian noise: Y′(i)t = Y(i)
t +N(i) ∼ N(0, σ)d×r

5: if t ≡ 0 (mod p) then
6: SA protocol is executed among the server and all node devices,

with inputs Y′(i)t and output Yt
7: the server performs orthogonalisation and clipping Zt = clip(orth(Y′t), ẑ)
8: the server broadcasts Zt to all node devices
9: each node device i sets Z(i)

t = Zt
10: else
11: each node device i calculates the latest Z(i)

t = clip(orth(Y′(i)t ), ẑ)
12: end if
13: end for
14: return approximated eigenspace

ZT =

{
∑n

i=1
si
s Z

(i)
T D(i)

T+1 if T /∈ I p
T

∑n
i=1

si
s Z

(i)
T otherwise.

It is known that adding Gaussian noise with σ2 =
2·s2 log (1.25/δ)

ε2 (where s is the 235

sensitivity) results in (ε, δ)-DP. As a corollary, we can state in Theorem 2 that a single 236

round in Algorithm 3 is differentially private. An even tighter result was presented in [30], 237

we leave the exploration of this as future work. The best practice is to set δ as the inverse of 238

the size of the underlying dataset, so there is a direct connection between the variance σ 239

and the privacy parameter ε. 240

Theorem 2. If T = 1, then Algorithm 3 provides (ε, δ)-DP where

ϵ =

√
8 · r · log (1.25/δ) · m̂ · ẑ

σ

Proof. Can be verified by combining the provided formula with the appropriate sensitiv- 241

ity. 242

One can easily extend this result for T ≥ 1 with the composition property of DP: 243

Algorithm 3 satisfies (T · ε, T · δ)-DP. Besides this basic loose composition, one can obtain 244

better results by utilizing more involved composition theorems such as in [31]. We leave 245

this for future work. 246

Analysis. Similarly to Section 4, we protect the individual intermediate results 247

with SA. On the other hand, it is equivalent to generate n Gaussian noise with variance 248

σ and select one, or generate n Gaussian noise with variance σ
n and sum them all up. 249

Consequently, instead of relying on an SMPC protocol to eliminate most of the local noise, 250

we could merely scale them down. combining SA with such a downsized local noise is, in 251

fact, a common practice in FL: this is what Distributed Differential Privacy (DDP) [32] does, 252

i.e., DDP combined with SA provides LDP but with n times smaller noise where n is the 253

number of participants. 254
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6. Empirical Comparison 255

In order to compare our proposed schemes with FedPower, we implement the schemes 256

in Python1. As we only encrypt 0 and 1 in Section 4, we optimize the performance and 257

take advantage of the utilized Paillier cryptosystem. In more details, we re-randomize the 258

corresponding ciphertexts to obtain new ciphertexts. In addition, we also exploit the homo- 259

morphic property, and instead of decrypting each value (d× r× |number o f node devices| 260

times), we first calculate the product of all the ciphertexts (elementary matrix multiplica- 261

tion) and then perform the decryption on a signal matrix. This way, we obtain the sum of 262

all Gaussian noises more efficiently. The decryption result is the sum of noise which will be 263

cancelled in Algorithm 2. Furthermore, we prepare the M′i =
1
si
MT

i Mi, Z
(i)
0 and all keys of 264

SA offline for each node device i. 265

Metric. We use Euclidean distance to represent the similarity of two m× n matrix 266

A = (aij) and B = (bij), i.e., dist(A,B) =
√

∑m
i=1 ∑n

j=1
(
aij − bij

)2. Let Z denote the true 267

eigenspace computed without any noise, let Zg(σ, σ′) denote the eigenspace generated 268

with Algorithm 1, let Zu(σ) denote the eigenspace generated with Algorithm 2, and let 269

Zp(σ) denote the eigenspace generated with Algorithm 3. 270

Setup. For our experiments we used the well-known NETFLIX rating dataset [33], 271

and we pre-process it similarly to [34]2. It consists of 96.310.835 ratings corresponding to 272

17.711 movies from 324.468 users. We split them horizontally into 100 random blocks to 273

simulate node devices. Besides, we set the security parameter to 128, thus, we adopt 3072 274

bits for N in Paillier cryptosystem3. The number of iteration rank and top eigenvectors 275

is set to r = k = 10 and we keep the same synchronous trigger p = 4 as [3]. To compare 276

FedPower with our enhanced solutions, we set the noise size for these algorithms as 277

σ = σ′ = 0.1. Besides, for Algorithm 3 we bounded M′i with 0.05 and Z(i)
t with 0.2 for all 278

possible i and t. Using Theorem 2, we can calculate that a single round corresponds to 279

privacy budget ε = 30.6 with δ = 10−5. 280

In order to determine the number of global rounds T, we set up a small experiment. 281

We built a data matrix M of size 3000× 100 filled with integers in [0, 5], and randomly 282

divided it for 100 node devices (each has at least 10 rows). We executed Algorithm 1 for 200 283

rounds and compared the distance between the aggregation result Z and the real singular 284

values of M. From the result in Figure 2 we can see that convergence happens around 285

round 92, since the subsequent results vary only slightly (< 1%). Thus, we set T = 92 for 286

our experiments. 287

The experiment is implemented in a Docker container of 40-core Intel(R) Xeon(R) 288

Silver 4210 CPU @ 2.20GHz and 755G RAM. We run our experiments 10-fold and take the 289

average execution time. 290

1 https://github.com/MoienBowen/Privacy-preserving-Federated-Singular-Value-Decomposition
2 Instead of 10, we removed users and movies with less than 50 ratings.
3 This is equivalent to RSA-3072, which provides a 128-bit security level [35]

Figure 2. Determining T with Algorithm 1.

https://github.com/MoienBowen/Privacy-preserving-Federated-Singular-Value-Decomposition
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Name Device Computation time Running
Aggr. SMPC Rest time4

FedPower Node 164 - 18768
2.698 · 106

Server 37 - 127449

Utility Enhanced Node 15829 7.182 · 105 17259
9.203 · 107

Server 20647 7.247 · 105 143145

Privacy Enhanced Node 15742 - 17291
4.477 · 106

Server 20581 - 128903
Table 3. Running time comparison of Algorithm 1, 2, and 3 in miliseconds.

Results. Firstly, we compare the efficiency of our enhanced schemes and the original 291

algorithm. The computation times are presented in Table 3. Compared to FedPower the 292

overall computation burden of the devices increased with a factor of ×39.68 for the Utility 293

Enhanced solution in Section 4 and only ×1.74 and Privacy Enhanced solution in Section 5. 294

Concerning the server, the increase is ×6.97 and ×1.17, respectively. 295

The rise in computational demand comes with benefits. Concerning Algorithm 2, 296

significant progress is achieved on the utility while it offers a similar privacy guarantee as 297

FedPower. Concerning Algorithm 3, the privacy guarantee is more robust, as it provides a 298

formal DDP protection (while FedPower fails to satisfy DP). Moreover, it obtains a higher 299

utility, which could make this solution preferable despite its computational appeal. The 300

details are shown in Figure 3. 301

Our utility-enhanced solution significantly outperforms FedPower: after 92 rounds, 302

the obtained error of our scheme is almost three times (2.74×) smaller than for FedPower. 303

The final error of Algorithm 2 is dist(Z,Zu(σ)) = 6.72, while this value for Algorithm 1 304

is dist(Z,Zg(σ, σ′)) = 18.42. Note that this level of accuracy (∼ 18.5) was obtained by 305

our method in the 32nd round, i.e., almost three times (2.88×) faster. Hence, the superior 306

convergence speed can compensate for most of the computational increase caused by SA 307

and SMPC. 308

Let’s shift our attention to our privacy-enhanced solution. In that case, we can see 309

that besides more robust privacy protection, our solution offers better utility: Algorithm 1 310

and Algorithm 3 obtains dist(Z,Zg(σ, σ′)) = 18.42 and dist(Z,Zp(σ)) = 13.94 RMSE 311

values respectively, i.e., we acquired a 24% error reduction. Our method (with actual DP 312

guarantees) achieved the same level of accuracy (∼ 18.5) only after 65 rounds, which is a 313

29% convergence speed increase. 314

Finally, we compare our two proposed schemes, in a way, that the size of the accumu- 315

lated noises is equal. Besides the nature of noise injection (many small vs one large), the 316

only factor that differentiates the results is the clipping bounds. As expected, the error is 317

1.65× larger with clipping, i.e., dist(Z,Zp(
σ
10 )) = 11.11 compared to dist(Z,Zu(σ)) = 6.72. 318

Concerning the convergence speed, the utility enhanced solution is 1.7× faster, reaching 319

4 Due to the large volume of memory required for matrix calculations, we had to access data by reading and
writing local files, which caused the longer overall execution time.

Figure 3. Comparison of Eigenspaces Calculated by Algorithm 1, 2, and 3.
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similar accuracy (∼ 11) in round 54. Note though, that this result still vastly outperform 320

FedPower: the accuracy and the convergence speed are increased with 40% and 43% 321

respectively. 322

7. Conclusion 323

Motivated by Guo et al.’s distributed privacy-preserving SVD algorithm based on 324

federated power method [3], we have proposed two enhanced federated SVD schemes, 325

focusing on utility and privacy, respectively. Both are using secure aggregation to reduce 326

the added noise, which reverts to the initial design intent and interest. Yet, the added 327

cryptographic operations trade efficiency for superior performance (×10 better results) 328

while providing either similar or superior privacy guarantee. 329
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Appendix A Practical secure aggregation 408

The practical secure aggregation by Bonawitz et al. [27] is summarised as below. First and foremost, the following 409

parameters are generated during the setup phase and sent to relevant node devices. 410

• Pseudorandom Generator (PRG) [36,37]: PRG which takes a fixed length seed as input and outputs in space [0, R), 411

where R is a prefixed value. 412

• Secret Sharing [38]: SS.share(s, t,U )→ {(u, su)}u∈U , it takes a secret s, a set of user IDs (e.g. integers), a threshold 413

s ≤ |U| as input, and outputs a set of shares su associated with the user u ∈ U ; and a reconstruction algorithm 414

SS.recon({(u, su)}v∈V , t) → s takes the following values as input: threshold t and shares corresponding to a user 415

subset V ⊆ U such that |V| ≥ t, and outputs a field element s. 416

• Key Agreement [39]: KA.param(k) → pp takes a security parameter k and returns some public parameters; 417

KA.gen(pp) → (sSK, sPK) generates a secret/public key pair; KA.agree(sSK
u , sPK

v ) → su,v allows a user u to com- 418

bine its private key with the public key of another user v into a private shared key between them. 419

• Authenticated Encryption [40]: AE.enc and AE.dec are algorithms for encrypting a plaintext with a public key and 420

for decrypting a ciphertext with a secret key. 421

• Signature Scheme [41]: SIG.gen takes a security parameter k and outputs a secret/public key pair; SIG.sign signs a 422

message with a secret key and returns the relevant signature; SIG.ver verifies the signature of the relevant message 423

and returns a boolean bit indicating whether the signature is valid. 424

425

• Number of node devices m. 426

• Security parameter k. 427

• Public parameter of key agreement pp← KA.param(k). 428

• Threshold value t, where t < n and n is the number of node devices. 429

https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
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• Input space ZR. 430

• Secrets sharing field F. 431

• Signature key pairs (dSK
u , dPK

u ) of each node device, where u ∈ [1, m]. 432

433

The complete execution of the protocol between node devices and the server is provided in the following. 434

• Round 0 (AdvertiseKeys): 435

0.1. each node device u generates secret/public key pairs of encryption and sharing algorithm (cSK
u , cPK

u ) and 436

(sSK
u , sPK

u ) 437

0.2. each node device u signs cPK
u and sPK

u into σu ← SIG.sign(dSK
u , cPK

u ||sPK
u ) 438

0.3. the two public keys and all n signatures (cPK
u ||sPK

u ||σu) are sent to the server 439

0.4. if the server receives at least t messages from individual node devices (denote by U1 this set of node devices), 440

then broadcasts {(v, cPK
v , sPK

v , σv)}v∈U1 to all node devices in U1 441

• Round 1 (ShareKeys): 442

1.1. once an node device u in U1 receives the messages from the server, it verifies if all signatures are valid with 443

SIG.ver(dPK
u , cPK

u ||sPK
u , σu), where u ∈ U1 444

1.2. the node device u sample a random element bu ← F as a seed for a PRG 445

1.3. the node device u generates two t-out-of-|U1| shares of sSK
u : {(v, sSK

u,v)}v∈U1 ← SS.share(sSK
u , t,U1) and 446

bu : {(v, bu,v)}v∈U1 ← SS.share(bu, t,U1) 447

1.4. for each node device v ∈ U1 \ {u}, u computes eu,v ← AE.enc(KA.agree(cSK
u , cPK

v ), u||v||sSK
u,v||bu,v) and sends 448

them to the server 449

1.5. if the server receives at least t messages from individual node devices (denoted by U2 ⊆ U1 this set of node 450

devices), then it shares to each node device u ∈ U2 all ciphertexts for it {eu,v}v∈U2 451

• Round 2 (MaskedInputCollection): 452

2.1. for the node device u ∈ U2, once the ciphertexts are received, it computes su,v ← KA.agree(sSK
u , sPK

v ), where 453

v ∈ U2 \ {u} 454

2.2. su,v is expanded using PRG into a random vector pu,v = ∆u,v · PRG(su,v), where ∆u,v = 1 when u > v and 455

∆u,v = −1 when u < v, besides, define pu,u = 0 456

2.3. the node device u computes its own private mask vector pu = PRG(bu) and the masked input vector xu into 457

yu ← xu + pu + ∑v∈U2
pu,v (mod R), then yu is sent to the server 458

2.4. if the server receives at least t messages (denote with U3 ⊆ U2 this set of node devices), and share the node 459

device set U3 with all node devices in U3 460

• Round 3 (ConsistencyCheck): 461

3.1. once the node device u ∈ U3 receives the message, it returns the signature σ′u ← SIG.sign(dSK
u ,U3) 462

3.2. if the server receives at least t messages (denoted by U4 ⊆ U3 this set of node devices) and shares the set 463

{u′, σ′u′}u′∈U4
464

• Round 4 (Unmasking): 465

4.1. each node device u verifies SIG.ver(dPK
v ,U3, σ′v) for all v ∈ U4 466

4.2. for each node device v ∈ U2 \ {u}, u decrypts the ciphertext (received in the MaskedInputCollection round) 467

v′||u′||sv,u||bv,u ← AE.dec(KA.agree(cSK
u , cPK

v ), ev,u) and asserts that u′ = u ∧ v′ = v 468

4.3. each node device u sends the shares sSK
v,u for node devices v ∈ U2 \ U3 and bv,u for node devices in v ∈ U3 to 469

the server 470

4.4. if the server receives at least t messages (denote with U5 this set of node devices), it re-constructs, for each 471

node device u ∈ U2 \ U3, sSK
u ← SS.recon({sSK

u,v}v∈U5 , t) and re-computes pv,u using PRG for all v ∈ U3 472

4.5. the server also re-constructs, for all node devices u ∈ U3, bu ← SS.recon({bu,v}v∈U5 , t) and re-computes pv,u 473

using the PRG 474

4.6. finally, the server outputs z = ∑u∈U3
xu = ∑u∈U3

yu −∑u∈U3
pu + ∑u∈U3,v∈U2\U3

pv,u 475

We summarise the asymptotic computational complexity of each node device and the server in Table A1. For 476

simplicity of description, we assume that all devices participate in the protocol, that is, t = m. Since some operations can 477

be considered as offline pre-configuration, we focus on online operations starting from masking messages in Step 2.3. 478
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Vector Add SIG.sign SIG.vef KA.agree AE.dec SS.recon PRG

Node m + 1 1 m− 1 m− 1 m− 1 1
Server 2m− 1 m m

Table A1. Asymptotic Computational Complexity of Online Operations.
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