
Collusion-Resistant Functional Encryption for RAMs

Prabhanjan Ananth∗ Kai-Min Chung† Xiong Fan‡ Luowen Qian§

Abstract

In recent years, functional encryption (FE) has established itself as one of the fundamental
primitives in cryptography. The choice of model of computation to represent the functions
associated with the functional keys plays a critical role in the complexity of the algorithms of an
FE scheme. Historically, the functions are represented as circuits. However, this results in the
decryption time of the FE scheme growing proportional to not only the worst case running time
of the function but also the size of the input, which in many applications can be quite large.

In this work, we present the first construction of a public-key collusion-resistant FE scheme,
where the functions, associated with the keys, are represented as random access machines
(RAMs). We base the security of our construction on the existence of: (i) public-key collusion-
resistant FE for circuits and, (ii) public-key doubly-efficient private-information retrieval [Boyle
et al., Canetti et al., TCC 2017]. Our scheme enjoys many nice efficiency properties, including
input-specific decryption time.

We also show how to achieve FE for RAMs in the bounded-key setting with weaker efficiency
guarantees from laconic oblivious transfer, which can be based on standard cryptographic as-
sumptions. En route to achieving our result, we present conceptually simpler constructions of
succinct garbling for RAMs [Canetti et al., Chen et al., ITCS 2016] from weaker assumptions.

1 Introduction

Functional Encryption. In the recent years, several interesting cryptographic primitives have
been proposed in the domain of computing on encrypted data, with one such primitive being
functional encryption [SW05, O’N10, BSW11]. This notion allows for an entity to encrypt their
input x such that anyone in possession of secret keys associated with functions f1, . . . , fq, also
referred to as functional keys, can decrypt this ciphertext to obtain the values f1(x), . . . , fq(x) and
nothing else. The setting where q is not a priori bounded is called the collusion resistant setting
and will be the primary focus of this work.

Functional encryption (FE) has proven to be a useful abstraction for many theoretical appli-
cations, including constructing indistinguishability obfuscation [AJ15,BV18], succinct randomized
encodings [AL18,GS18b,AM18], watermarking schemes [GKM+19], proving lower bounds in dif-
ferential privacy [KMUW18], proving hardness of finding a Nash equilibrium [BPR15,GPS16] and
many more.

Model of Computation. A vast majority of FE constructions model the functions associated
with the functional keys as circuits. While circuits are easy to work with, when compared to other
models of computation, they come with many disadvantages. The parameters in the system tend to

∗UC Santa Barbara, Santa Barbara, CA, USA. Email: prabhanjan@cs.ucsb.edu.
†Academia Sinica, Taipei, Taiwan. Email: kmchung@iis.sinica.edu.tw.
‡Rutgers University, Piscataway, NJ, USA. Email: xiong.fan@rutgers.edu.
§Boston University, Boston, MA, USA. Email: luowenq@bu.edu.

1

mailto:prabhanjan@cs.ucsb.edu
mailto:kmchung@iis.sinica.edu.tw
mailto:xiong.fan@rutgers.edu
mailto:luowenq@bu.edu

grow polynomially in the worst-case time bound of the function; this includes the decryption time.
Even worse, for functions that take sub-linear runtime in the “big data” setting, the decryption
time would now take time proportional to the size of the entire data, which could be massive.

Designing FE for Alternate Models of Computation. These drawbacks prompt us to look
beyond circuits and construct FE for more general models of computation. One general model
of computation that we could hope to support is random access machines (RAMs). There are
many advantages to FE for RAMs, we will mention a couple of them now and defer more when we
formally define the primitive in the next section: firstly, the parameters of the scheme do not grow
with the worst-case time bound and moreover, the decryption time is input-specific.

Despite its utility, the feasibility of collusion-resistant FE for RAMs had not been explored in
prior works. Prior works did make partial progress in this direction by either considering weaker
models of computation such as finite automata [AS17], Turing machines [AS16,AL18,GS18b,AM18,
KNTY19] or in the single-key setting [GHRW14]∗. However, the problem of constructing FE for
RAMs was unanswered and has been one of the important open problems in this area.

1.1 Contributions

We resolve this open problem; we give the first feasibility result of functional encryption for RAMs.
Before stating our result, we first elaborate on the definition of FE for RAMs. A public-key
functional encryption for RAMs consists of the following algorithms:

• The setup algorithm Setup that produces a public key pk and a master secret key MSK.
The runtime of the setup algorithm is polynomial in λ (security parameter) and grows poly-
logarithmically in the worst-case runtime bound T .

• The key generation algorithm KeyGen that takes as input MSK, a RAM program P and
outputs a functional key for P , denoted by skP . The running time of key generation is only
proportional to λ, the description size of P and grows poly-logarithmically in T .

• The encryption procedure Enc takes as input MSK, database D and outputs a ciphertext
CT. The running time of the encryption procedure grows polynomially in λ, |D| and poly-
logarithmically in T .

• The decryption procedure Dec, modeled as a RAM program, takes as input ciphertext CT,
functional key skP and produces the output PD(). The runtime of decryption should grow
proportional only to t and λ, where t is the time to execute PD.

The security notion† for the above notion can be appropriately defined along the same lines as
(collusion-resistant) FE for circuits.

In terms of efficiency, FE for RAMs schemes enjoy better efficiency guarantees than FE for
circuits schemes in terms of both the running time of the key generation algorithm as well as the
running time of the decryption algorithm. We clarify this in Figure 1.

∗Note that the work of [GHRW14] also construct an FE for RAMs scheme in the bounded-key setting: however,
the decryption time of the bounded-key FE scheme grows polynomially in the database size and thus doesn’t enjoy
the sublinear decryption runtime property that we desire.

†The security notion we consider in this work is indistinguishability-based (IND-based) selective security. We
delve more on this when we formally define FE for RAMs in the technical sections.

‡A well-known technique for decreasing the running time from T to t is to issue log T decryption keys, with the
i-th one running in time at most 2i.

2

FE for Circuits Our work

RunTime(Setup) poly(λ) poly(λ)

RunTime(KeyGen) poly(λ, |P |, |D|,T) poly(λ, |P |)
RunTime(Enc) poly(λ, |D|) poly(λ, |D|)
RunTime(Dec) poly(λ, |D|, t)‡ poly(λ, t)

Figure 1: Comparison of efficiency guarantees of FE for circuits via naively simulating RAM pro-
grams (that is, to issue a key for a program P and time bound T , generate a key for a circuit
that runs P for T time steps) and our work. We denote P to be the program input to the key
generation algorithm, D to be the database input to the encryption algorithm and T to be the
worst case running time of P . We denote t to be the running time of P on D. Since, the typical
setting of T is 2λ, we omit mentioning the dependence on poly-log factors in T .

Main Result: Collusion-resistant FE for RAMs. We show how to generically transform any
(collusion-resistant) FE for circuits scheme into a (collusion-resistant) FE for RAMs scheme. Our
transformation additionally assumes the existence of public-key doubly-efficient private information
retrieval (PK-DEPIR) scheme, introduced independently by the works of Boyle et al. [BIPW17]
and Canetti et al. [CHR17].

In more detail, we show the following.

Theorem 1.1 (Informal). There exists a collusion-resistant public-key FE scheme for RAMs as-
suming the existence of:

• collusion-resistant public-key FE for circuits and,

• public-key doubly efficient PIR [BIPW17,CHR17].

We note that the construction of public-key DEPIR is currently based on security of VBB
for specific class of circuits. However, we note that even demonstrating the feasibility of FE for
RAMs from any cryptographic assumption was wide open. Thus, we believe that our work takes
an important step towards establishing the feasibility of FE for RAMs. We point out that a related
primitive, FHE for RAMs [HHWW19], was also based on the assumption of public-key DEPIR.

Our construction involves a novel combination of pebbling techniques [GOS18], rewindable
ORAMs [HHWW19], and hybrid functional encryption techniques [ABSV15]. We only work in the
selective security setting, where the challenge message query needs to be declared by the adversary
even before looking at the public key.

Observe that the assumption of FE for circuits is inherent in Theorem 1.1 since FE for RAMs
imply FE for circuits. It is natural to ask whether the assumption of public-key DEPIR is inherent.
While we don’t answer this question, we still make a useful observation: an FE for RAMs scheme
implies a weaker notion, called secret-key DEPIR.

Theorem 1.2 (Informal). Assuming the existence of unbounded private-key FE for RAMs, there
exists a construction for unbounded secret-key DEPIR.

The works of Boyle et al, Canetti et al [BIPW17,CHR17] also proposed constructions for secret-key
doubly efficient PIR; while they are based on new cryptographic assumptions, a thorough study of
the assumptions was recently conducted by [BHW19].

3

Intermediate Result: Succinct Garbled RAMs from Falsifiable Assumptions. Towards
proving our main result, we obtain a new construction¶ of succinct garbled RAMs [CHJV15,
BGL+15,KLW15,CH16,CCC+16]. A succinct garbling scheme for RAMs consists of the following
algorithms: (i) Database encoding algorithm that encodes a database D in time poly(λ, |D|), (ii)
RAM garbling algorithm garbles a program P in time poly(λ, |P |) and, (iii) Evaluation algorithm
that takes as input garbling of D, garbling of a program P and outputs PD(), in time polynomial
in (λ, |P |, |D|, t), where t is the running time of PD().

It has two advantages over prior constructions: (i) first, it is arguably simpler than existing con-
structions [CH16,CCC+16,CCHR16,ACC+16] and, (ii) second, it is based on polynomially secure
functional encryption scheme for circuits (a falsifiable assumption) as opposed to existing construc-
tions which are based on indistinguishability obfuscation‖ schemes (a non falsifiable assumption).

Formally, we prove the following.

Theorem 1.3 (Informal). There exists a succinct garbling scheme for RAMs assuming polynomi-
ally secure (collusion-resistant) public-key functional encryption for circuits.

Bounded-Key FE for RAMs. Our techniques also extend naturally to the bounded-key setting.
In this setting, the adversary can only query an a priori bounded number of functions in the security
experiment. We show how to construct a bounded-key FE for RAMs from standard assumptions;
unfortunately, the resulting FE for RAMs scheme does not enjoy the same efficiency properties
as before. In particular, the algorithms run in time polynomial in the worst case time bound.
Nonetheless, this still performs better than the bounded key FE for circuits scheme since the
decryption time only grows with the worst case time bound and in particular, does not explicitly
depend on the size of the database encrypted. Formally,

Theorem 1.4 (Informal). Assuming the existence of laconic oblivious transfer [CDG+17] and
public-key encryption, there exists a bounded-key public-key FE for RAMs scheme satisfying the
following efficiency properties:

• The time to compute setup is poly(λ,Q, |P |, T), where T is the worst case time bound and Q
is the collusion bound.

• The time to compute the key generation of a program P is poly(λ,Q, |P |, T).

• The time to compute the encryption of a database D is poly(λ,Q, |P |, |D|, T).

• The time to compute the decryption of a functional key associated with P and a ciphertext of
database D is poly(λ,Q, |P |, t), where t is the runtime of PD().

In comparison, a bounded key FE for circuits scheme has similar setup, key generation and
encryption runtimes except that the decryption time is polynomial in (λ,Q, |D|, |P |, t). When
t≪ |D|, our bounded key FE for RAMs scheme outperforms bounded key FE for circuits schemes.

The primitive of laconic oblivious transfer can be instantiated using a host of well studied
assumptions (for example, computational Diffie-Helman (CDH), learning with errors [CDG+17,
BLSV18]). Thus, we obtain different constructions of bounded-key FE for RAMs based on standard
assumptions.

¶In fact, we define a stronger version called succinct reusable garbled RAM; this notion implies succinct garbled
RAM.

‖In the technical sections, we use indistinguishability obfuscation for circuits with logarithmic inputs to construct
succinct reusable garbled RAMs. However, it has been shown [LZ17] that iO for logarithmic inputs is equivalent to
collusion-resistant functional encryption for circuits.

4

Corollary 1.5 (Informal). Assuming X ∈ {CDH,LWE,Factoring}, there exists a bounded-key
public-key encryption scheme for RAMs.

Related Work. Goldreich and Ostrovsky [GO96] initiated the area of building cryptographic
primitives for RAM programs and since then, several works have proposed cryptographic con-
structions for RAM computations: for example, garbling schemes [GLOS15, GLO15, BGL+15,
CHJV15,CH16,CCC+16,CCHR16,ACC+16], secure multiparty computation for RAMs [GGMP16,
KY18], doubly-efficient private-information retrieval [CHR17, BIPW17], private anonymous data
access [HOWW19] and fully homomorphic encryption for RAMs [HHWW19]. Of particular inter-
est to us is the work of Gentry et al. [GHRW14] which introduced and constructed (single-input)
functional encryption for RAMs in the single-key setting. We view our work as continuing this
exciting line of research.

2 Technical Overview

We present an overview of our construction.

Recap: Garbled RAMs. Towards building FE for RAMs, we first start with a weaker but
similar notion of FE for RAMs, popularly referred to as garbled RAMs [GHL+14,GLO15,GLOS15]
in the literature. A garbled RAM allows for separately encoding a RAM program-database pair
(P,D) such that the encodings only leak the output PD() (here we assume the program input
is hardcoded in the program); computing both the encodings requires a private key that is not
revealed to the adversary. Notice that a garbled RAM scheme already implies a one-time, secret
key FE for RAM scheme; meaning that the adversary only gets to make a single ciphertext query
and a single functional key query in the security experiment.

Traditionally, the following two-step approach is employed to construct a garbled RAM scheme:

• First construct a garbled RAM scheme in the UMA (unrestricted memory access) setting;
the setting where the memory access pattern is not hidden.

• To hide the access pattern, generically combine any garbled RAM scheme satifying UMA
security with an oblivious RAM scheme [GO96].

The blueprint employed to construct a garbled RAM scheme in the UMA setting is the following:
to garble a RAM program P (associated with a step circuit C), database D, generate T garbled
circuits [Yao86], where T is an upper bound on the running time of P . The ith garbled circuit
performs the “CPU circuit” which evaluates the ith time step of P . The garbling of P consists of
all T garbled circuits.

To evaluate a garbling of P on a suitably encoded database D, perform the following operations
for i = 1, . . . , T − 1: evaluate the ith garbled circuit to obtain output encodings of the ith step of
execution of PD. Next, we compute the recoding step that converts the output encodings of the
ith step into the wire labels for the (i + 1)th garbled circuit; only the recoding step involves the
encoded database where we retrieve information and enforce honest evaluation. The resulting wire
labels will be used to evaluate the (i+ 1)th garbled circuit.

The output of the T th garbled circuit is the output of execution of PD.
Recall that in the UMA setting, we do not hide memory access pattern, memory content, or

intermediate states. In order to achieve full security, we additionally need to compile the original
program with additional protection, usually this involves a specially crafted oblivious RAM scheme
to hide the access pattern, and a suitable secret key encryption to hide the rest.

5

Towards FE for RAMs: Challenges. To leap from a toy case of FE for RAMs, a.k.a. garbled
RAMs, to building a full-fledged collusion-resistant public-key FE for RAMs involves many hurdles.
We start by highlighting two such challenges.

Challenge: Parallel∗∗ Reusability. Let the adversary receive as input, encryption of a chal-
lenge database D∗ and functional keys skP1 , . . . , skPq associated with RAM programs P1, . . . , Pq.
We can decrypt the same encryption of D∗ using the different functional keys skP1 , . . . , skPq to
obtain PD∗

1 , . . . , PD∗
q .

Typically, in the RAM setting, however, reusability has only been studied in the sequential
setting (also called persistent memory setting [GHL+14]) where P1 first acts on D∗ to obtain an
updated database; P2 then acts upon the updated database and so on. To construct FE for RAM,
the notion of parallel reusability is required, where different programs P1, . . . , Pq need to act upon
the same initial database D∗.

Prior results show that some of the existing garbled RAMs are insecure in the parallel reusabil-
ity setting [HOWW19]††.

Challenge: Succinctness. Recall that we enforce stringent efficiency requirements on FE for
RAMs schemes: the parameters should neither grow with the database length nor with the worst-
case time bound, the decryption time should only grow proportional to the input-specific running
time and so on. Even for simpler primitives such as randomized encodings, achieving succinct-
ness has proven to be very challenging; for instance, the constructions of succinct garbled RAMs
by [CH16,CCC+16] are quite complex and involve heavy tools.

Moreover, unlike weaker models, generic constructions of FE using succinct garbling do not
work in the RAM setting. For instance, in the setting of Turing machines, here is an approach
to obtain FE for Turing machines from FE for circuits: use FE for circuits to generate a succinct
garbling of the database encrypted and the TM associated with the functional key. Such solutions
would necessarily blow up the decryption time proportional to the size of the database encrypted,
even if the program only runs in sublinear time.

Known Tools. The above two challenges are not new and have presented themselves in different
contexts. We mention some of the relevant contexts below.

Succinct Garbling for RAMs [BGL+15,CHJV15,CH16,CCC+16]: Succinct garbling schemes
for RAMs do solve the problem of succinctness but does not satisfy the parallel reusability property.
They either only allow the evaluation of one garbled program, or only allow evaluating several pro-
grams sequentially in a stateful manner, while for functional encryption we would like the program
evaluation to be stateless.

FE for circuits [SW05,O’N10,BSW11]: As we mention in the introduction, FE schemes for
circuits do address the challenge of parallel reusability; functional keys associated with programs
P1, . . . , PQ can be used in parallel to decrypt an encryption of x. However they do not achieve
succinctness since the decryption time grows with the worst-case runtime of the computation.

Rewindable ORAMs [HOWW19]: A recently introduced primitive, rewindable ORAM, allows

††To be precise, [HOWW19] shows that traditional ORAM schemes are insecure in the parallel reusability setting.
This correspondingly means that the garbled RAMs schemes building upon these ORAM schemes would correspond-
ingly be insecure in the parallel setting.

6

for rewinding the encoded database of the ORAM scheme to an earlier state. The security property
states that the access patterns generated even after rewinding the encoded database should not
reveal any information about the underlying database. This primitive does address the challenge of
parallel reusability, succinctness (only a small amount of secret state needed to perform evaluation)
but in itself is not useful since this gives an interactive solution and hence needs to be used in
conjunction with other (possibly non-interactive) primitives.

2.1 Our Template

We show how to combine the techniques used to construct the above seemingly unrelated tools to
obtain a construction of FE for RAMs. As mentioned earlier, the current known constructions of
succinct garbling schemes for RAMs are difficult to work with. We will first simplify (and improve!)
these constructions before achieving our main result.

The template for the rest of the overview is as follows:

• We first tackle the challenge of succinctness. We present a new construction of a garbled RAM
(GRAM) scheme. This will serve as an alternative to existing schemes which are significantly
more complex and additionally assumes sub-exponentially secure FE for circuits . Our scheme
is simpler and only assumes polynomially-secure FE for circuits.

• We upgrade this succinct GRAM scheme to satisfy parallel reusability; the same garbled
database can be evaluated upon by multiple garbled programs. We call this succinct reusable
GRAM. This notion would imply a single-ciphertext collusion-resistant FE for RAMs in the
secret-key setting. The adversary can only make a single ciphertext query. One of the
important tools we use to achieve parallel reusability is rewindable ORAMs.
In the technical sections, we present the construction of succinct reusable GRAM directly,
instead of first presenting the non-reusable version and then upgrading it to the reusable
version. We present the upgrading step in this overview to explain the construction better to
the reader.

• Finally, we combine succinct reusable GRAMs with collusion-resistant FE for circuits to
obtain collusion-resistant FE for RAMs.

2.2 Starting Point: Simpler, Better and Modular Succinct GRAM

Our starting point is the following template introduced by [BGL+15] to construct succinct garbled
RAMs.

• We start with a non-succinct garbled RAM scheme, i.e. the parameters in the scheme could
grow proportional to the worst runtime bound T of the computation. However, we still
require that the evaluation runs in time proportional to the runtime of the computation and
in particular, could be independent of the database length. Such a garbled scheme can be
constructed from one-way functions [GLO15,GLOS15,GOS18], and these constructions follow
the two-step approach that we have outlined at the beginning of the section.

• To go from a non-succinct to a succinct garbled RAM scheme, we need to reduce the size of the
garbled program to be independent of the worst case bound T . We achieve this size reduction
using program obfuscation‡‡. Specifically, we use obfuscation to delegate the execution of

‡‡A program obfuscation is a compiler that transforms a program P into a functionally equivalent program that
hides all the implementation details of the original program. In the technical sections, we use a specific definition of
obfuscation, called indistinguishability obfuscation.

7

the non-succinct program garbling procedure to the time of evaluation. That is, to garble a
program P via a succinct garbling scheme, compute an obfuscated circuit that produces a
non-succinct garbling of P .

To make the above high level approach work, we need to nail down the precise properties that we
need from the underlying non-succinct garbled RAM scheme. For starters, just obfuscating the
non-succinct garbling procedure would not work: the size of the obfuscated circuit will be as large
as the size of the non-succinct garbled program and thus, we didn’t achieve size reduction.

Thus, we need to start with a non-succinct garbling scheme where the garbled program can be
decomposed into many components such that the obfuscated circuit produces one component at at
time. Even if we do this, arguing proof turns out to be tricky: a naive approach to reduce to the
security of the non-succinct garbling scheme involves hardwiring the entire garbled program inside
the obfuscated circuit but this again is not possible as it violates succinctness.

Local Simulatability: These issues are not unique to our setting and have already been encoun-
tered while designing succinct garbled RAMs with bounded space [BGL+15] or succinct garbled
Turing machines [AL18, GS18a]. They identified two main properties that are necessary for the
underlying non-succinct garbling scheme to satisfy.

• The program being garbled can be broken down into small components (say, of size poly(λ, log T))
and each of these components can be garbled independently. This property also helps in prov-
ing security of the succinct garbled Turing machine without having to hardwire the entire
garbled circuit inside the obfuscated circuit.

• The security proof of the non-succinct scheme should be argued in such a way that only a
“small” (say, poly(λ, log T)) subset of the garbled program components need to be changed
from one hybrid to the next hybrid.

We now revisit the template mentioned above and change the circuit being obfuscated to output
the (non-succinct) garbled program, one component at a time. On input i, the obfuscated circuit
outputs the ith component of the garbled program, instead of producing the whole garbled program
at once. To argue security, we carry out the hybrids of the non-succinct garbling scheme by only
hardwiring a small subset of components at a time. By local simulatability, we are guaranteed that
in each hybrid, the amount of hardwired information is never too large and therefore we achieve
succinctness.

Therefore, we have reduced the problem of constructing succinct GRAM to identify and in-
stantiate an appropriate non-succinct garbling scheme satisfying the above two properties. This
is where previous works fall short. Their instantiations yielded succinct garbling schemes only for
Turing machines [AL18,GS18a] or succinct garbled RAMs with bounded space [BGL+15].

Non-Succinct Garbled RAMs with Local Simulatability§§: To construct (non-succinct)
garbled RAM satisfying the local simulatability property, we split the construction into two parts:
in the first part we construct a succinct garbled RAM with unprotected memory access (UMA),
where we forget about protecting memory contents, access patterns and intermediate CPU states;
in the second part, we bootstrap UMA-GRAM to fully secure GRAM.

For the first step, we observe that the UMA-secure adaptive garbled RAM construction of [GOS18]
already satisfies the local simulatability property. For the second part, previous schemes usually

§§The terminology of local simulation is only introduced for the benefit of describing our techniques and will be
implicit in our security proof.

8

employ an ORAM to hide the memory access pattern and an encryption scheme to hide the mem-
ory content. However, these tools are not quite compatible with the local simulatability property,
therefore, their compatible versions of ORAM with strong localized randomness, and timed en-
cryption scheme – originally introduced by the same paper [GOS18] to construct adaptive garbled
RAMs – are needed for the proof.

Timed encryption, at a high level, is an encryption scheme that allows issuing encryption/decryption
keys with growing power as the evaluation goes on, i.e. a key issued at time t can decrypt anything
that was encrypted under time t′ ≤ t, but any message encrypted at a later time remains hidden.
Using the tool of timed encryption allows us to use a sequence of hybrids to remove the timed
encryption keys one by one (and hence allowing us to simulate each evaluation step locally), from
the strongest (which is one hardwired in the last step circuit) to the weakest (which is the one
hardwired in the first step circuit).

Looking ahead, there is another more subtle issue for constructing succinct GRAM that is not
captured by local simulatability: in the succinct garbling scheme, we can only use a very small
amount of randomness in the simulator, as otherwise the size of the simulated circuit will blow
up and break succinctness. In particular, this means that we cannot simply hardcode the timed
encryption of 0. For this issue, we develop timed encryption with pseudorandom ciphertexts, which
is a timed encryption whose ciphertext is indistinguishable from uniformly random bitstrings; and
construct it from one-way functions. Once we have that, we can simply use a PRF to generate all
the simulated ciphertexts in a succinct way.

We now move on to hiding access pattern in a local simulatable way. Strong localized random-
ness property for ORAM, at a high level, simply requires that the randomness used by ORAM is
equipped with some structural properties that will allow us to equivocate (and change) the random-
ness in a local way. For now, the ORAM with strong localized randomness constructed in [GOS18]
suffices for succinct (non-resuable) garbled RAM.

2.3 Succinct Garbled RAM: Achieving Reusability

Succinct GRAM alone itself is not going to be sufficient to construct FE for RAMs. Instead, it
turns out to require the reusability property: given an encoding of a database D and multiple
garbled programs P̃1, . . . , P̃q, the adversary can recover the outputs PD

1 (), . . . , PD
q () and moreover,

the database encoding and the garbled programs do not leak any information about D beyond the
outputs that can be recovered. We call this notion succinct reusable garbled RAM.

Note that this definition is different from the persistent memory setting [GHL+14]; the programs
sequentially evaluate on the databases as against the parallel execution that we desire. In addition,
we also require that the reusable GRAM also satisfies succinctness properties as defined in a succinct
GRAM scheme.

From Succinct GRAM to Succinct Reusable GRAM. To construct a succinct reusable
garbled RAM, again it is helpful to split things into two part: in the first part we construct a
succinct reusable garbled RAM with unprotected memory access (UMA), and in the second part
we use this UMA primitive to construct fully secure succinct reusable garbled RAM. Note that in
UMA setting, essentially all we are protecting is the program execution, and we do not face much
trouble in adapting the scheme above into the reusable setting. Therefore, we focus on the full
security setting and highlight the new challenges in the reusability setting.

Challenges in Protecting Memory Content: To protect the content of the memory, we
need to include the encryption key into our garbled program. However, once we have given out one

9

garbled program, we can no longer invoke the security of the encryption scheme to say that the
adversary has no information about the underlying database, as the garbled program contains a
hardwired secret key. Indeed, the adversary can simply read from the encrypted database by simply
reading the output of the garbled program. Therefore we need to remove the encryption keys in
the hybrids very carefully. In the non-reusable setting, it has been shown in prior work [GOS18]
that using timed encryption fixes this issue. On a high level, their idea is to remove the encryption
key one by one in each hybrid, in particular, they would remove the encryption key from the last
garbled program (and write junk to the database instead) indistinguishably in the first hybrid,
and then move forward and remove the encryption key in the second last garbled program, and so
on. Essentially, timed encryption allows us to encrypt messages under a different key in each time
step, while the decryption key can only decrypt messages before the current timestep but not after,
which allows the hybrid argument to go through. However, this security proof does not work in the
reusable case: when we try to equivocate the output/database writes and remove the encryption
key, the adversary could in principle still be able to distinguish the two distributions as the same
timed encryption key still appears in other garbled programs.

In order to tackle this issue, we employ a different time step labeling and also a different hybrid
strategy. In particular, instead of the time steps increasing in each garbled program, each garbled
program will use a shared global time counter. Note that this also makes sense from the reusability
point of view, as the evaluator can in principle evaluate garbled programs on the garbled database
in any order that he wishes.

Now suppose we want to remove the strongest encryption key in the last step circuit. We can
employ the following hybrid sequence: first, we use the security of UMA-GRAM to change each
last step circuit into a dummy circuit that directly outputs the output in all garbled programs in
parallel (to do it more carefully, we replace each garbled program one by one and argue each change
is indistinguishable) – this effectively removes all the timed encryption keys that are used in the
last time step; this allows us to do the next step which is to change the encrypted CPU states and
write data into garbage in parallel ; finally, we reverse the change of dummy circuit again in parallel.
By doing so, we remove the strongest timed encryption key in all garbled programs at once. We
can repeat this process for each remaining encryption keys until all encryption keys are removed
from garbled program, at which point we can replace the database with an empty database and
arrive at the simulated distribution.

Challenges in Protecting Memory Access Pattern: Another issue is that we need to pro-
tect the database read/write patterns in a way that is compatible with succinct UMA GRAM.
Basically, we need to change each database read/write pattern without hardwiring too much addi-
tional information, which would blow up the size of the garbled program and break succinctness.
This is further complicated by the fact that the adversary can evaluate different programs on the
same database in parallel and compare the results to acquire additional information.

To resolve both these issues, we design a rewindable ORAM scheme satisfying strong localized
randomness property. The starting point of the construction is the plain rewindable ORAM scheme
given in [HHWW19], which consists of two parts: a read-only rewindable ORAM and a read-write
non-rewindable ORAM. The idea of the construction is that the read-write ORAM will act as a
read-write cache to the underlying database, which is encoded in the read-only ORAM.

Given this beautiful construction, it is straightforward to construct a rewindable ORAM scheme
with strong localized randomness. In particular, we simply instantiate the read-write ORAM with
the ORAM with strong localized randomness property. The access pattern in read-only ORAM is

10

by definition locally sampled, and we can simulate the access pattern in read-write ORAM locally
by using the strong localized randomness property of the read-write ORAM that we use.

2.4 Bootstrapping Step: From FE for Circuits to FE for RAMs

Once we construct a succinct reusable garbled RAM scheme, we show how to bootstrap a FE
for circuits scheme into a FE for RAMs scheme. Our transformation is inspired by a similar
transformation described in [GGHR14].

• To encrypt a database D, encode D using a succinct reusable GRAM scheme. Denote the
output by (D̃, sk). Encrypt sk using an FE for circuits scheme; call the resulting ciphertext
ct. Output the ciphertext of the FE for RAMs scheme, CT = (D̃, ct).

• To generate a functional key for a program P , generate a FE key for a circuit G that takes
as input a secret key sk and produces a garbling of the program P with respect to sk; call
the FE key SKG. Set the functional key for the FE for RAMs scheme to be SKG.

• The decryption algorithm first recovers the garbled program P̃ by running the FE decryption
algorithm. It then runs the succinct GRAM evaluation of P̃ on D̃ to obtain PD.

To argue security, we can use the hybrid functional encryption technique of [CIJ+13,ABSV15] to
first hardwire the garbled programs in the function keys and then invoke the reusable security of
the GRAM scheme to prove the indistinguishability security of the FE scheme.

2.5 Organization

We organize the technical sections of our paper as follows:

• In Section 3, we introduce our notations and preliminaries.

• In Section 4, we present a construction of succinct reusable garbled RAM.

First, we present the definition of succinct reusable garbled RAM in section 5.1. Next, in
Section 5.2, we present a construction of succinct garbled RAM in the UMA setting. In
this step, we use pebbling techniques in conjunction with indistinguishability obfuscation
for inputs of logarithmic length (implied by functional encryption). Finally, in Section 5.3,
we show how to transform UMA-secure garbled RAM to fully secure garbled RAM in the
reusability setting. As a result, we obtain the construction of succinct reusable garbled RAM.
We use the tool of rewindable ORAM in this step.

• In Section 6, we show how to combine (collusion-resistant) FE for circuits with succinct
reusable garbled RAM to achieve (collusion-resistant) FE for RAMs. At last, we show impli-
cation of FE for RAMs to secret-key DEPIR in Section 7.

3 Preliminaries

We denote λ to be the security parameter. We denote the computational indistinguishability of
two distributions D1 and D2 by D1 ≈ D2. We use the abbreviation PPT to denote probabilistic
polynomial time algorithms.

11

RAM model of computation. We recall the definition of RAM computations. A RAM compu-
tation consists of a RAM program P and a database D. The representation size of P is independent
of the length of the database D. The program P has random access to the database D. We denote
the output to be PD In more detail, the computation proceeds as follows.

The RAM program P is represented as a step-circuit C. It takes as input internal state from
the previous step, location to be read, value at that location and it outputs the new state, location
to be written into, value to be written and the next location to be read. More formally, for every
τ ∈ T , where T is an upper bound on the running time,

(stτ , rdτ ,wtτ ,wbτ)← C(stτ−1, rdτ−1, bτ)

where we have the following:

• stτ−1 denotes the state in the (τ − 1)th step and stτ denotes the state in the τ th step.

• rdτ−1 denotes the location to be read from, as output by the (τ − 1)th step.

• bτ denotes the bit at the location rdτ−1.

• rdτ denotes the location to be read from, in the τ th step.

• wtτ denotes the location to be written into in the τ th step.

• wbτ denotes the value to be written at τ -th step at the location wtτ .

Remark 3.1. (Additional Input) In the literature, when defining RAM programs, we also addi-
tionally define an input x and the program in addition to having random access to D, takes as input
x, and outputs PD. Without loss of generality, we assume that the input x is part of the database
and hence we omit including this as an explicit input to P .

Remark 3.2. (Outputs) In this work, we only consider RAM programs with boolean outputs. We
can suitably extend the schemes we construct to handle multiple outputs at the cost of blowing up
the parameters proportional to the output length.

3.1 Garbled Circuits

Below we recall the definition of garbling scheme for circuits [Yao82,AIK06a,AIK06b] with selective
security [LP09,BHR12]. A garbling scheme for circuits is a pair of ppt algorithms (GarbleCkt,EvalCkt)
described as follows:

• C̃ ← GarbleCkt
(
1λ, C, {labw,b}w∈n,b∈{0,1}

)
: GarbleCkt takes as input a security parameter λ,

a circuit C and input labels labw,b, where w ∈ n (n is the set of input wires to the circuit C)
and b ∈ {0, 1}. This procedure outputs a garbled circuit C̃. We assume that for each w, b,
label labw,b is chosen uniformly from {0, 1}λ.

• y ← EvalCkt
(
C̃, {labw,xw}w∈n

)
: Given a garbled circuit C̃ and a sequence of input labels

{labw,xw}w∈n (referred to as the garbled input), EvalCkt outputs a string y.

Correctness. For correctness, we require that for any circuit C, input x ∈ {0, 1}|n| and input
labels {labw,b}w∈n,b∈{0,1}, we have that

Pr
[
C(x) = EvalCkt

(
C̃, {labw,xw}w∈n

)]
= 1

where C̃ ← GarbleCkt
(
1λ, C, {labw,b}w∈n,b∈{0,1}

)
.

12

Selective Security. For security, we require that there exists a ppt simulator SimCkt such that
for any circuit C and input x ∈ {0, 1}|n|, we have that{

C̃, {labw,xw}w∈n

}
c
≈

{
SimCkt(1

λ, 1|C|, C(x), {labw,xw}w∈n), {labw,xw}w∈n}
}

where C̃ ← GarbleCkt
(
1λ, C, {labw,b}w∈n,b∈{0,1}

)
, and we have labw,b ← {0, 1}λ for w ∈ n, b ∈ {0, 1}.

Theorem 3.3 ([Yao82,LP09]). Assuming the existence of one-way functions, there exists a con-
struction of garbling scheme for circuits.

3.2 Public-Key Functional Encryption

A public-key FE scheme Π over a message space {Mλ} and a circuit space {Cλ} consists of a tuple
(Setup,KeyGen,Enc,Dec) with the following properties:

• Setup(1λ, s): On input the security parameter 1λ and the maximum size s of supported
circuits, the setup algorithm outputs a public key pk and a master secret key MSK.

• KeyGen(MSK, C): On input master secret key MSK and a circuit C ∈ Cλ, the key generation
algorithm outputs a functional key skC .

• Enc(pk,m): On input public key pk and a messagem ∈Mλ, the encryption algorithm outputs
a ciphertext CT.

• Dec(skC ,CT): On input a functional key skC and a ciphertext CT, the decryption algorithm
outputs m ∈M∪⊥.

For correctness, we require that there exists a negligible function negl(·) such that for all suffi-
ciently large λ ∈ N, for every message m ∈Mλ, and for every C ∈ Cλ, it holds that

Pr [Dec(KeyGen(MSK, C),Enc(pk,m)) = C(m)] ≥ 1− negl(λ)

where Setup(1λ, s) → (pk,MSK), and the probability is taken over the random choices of all algo-
rithms.

In terms of efficiency requirement, we require the following:

• Setup(1λ, s) runs in time poly(λ, s),

• Enc(pk,m) runs in time poly(λ, s, |m|).

• KeyGen(MSK, C) runs in time poly(λ, |C|).

• Dec(skC ,CT) runs in time poly(λ, s).

For security, we consider the standard indistinguishability-based notion for functional encryp-
tion. Intuitively, the notion askes that the encryption of any two messages, m0 and m1, should
be computationally indistinguishable given access to functional keys for any circuit f such that
f(m0) = f(m1).

Definition 3.4 (Selective security). A public-key FE scheme Π over a message space {Mλ} and a
circuit space {Cλ} is selectively secure if for any ppt adversary A, there exists a negligible function
negl(·) such that

AdvselΠ,A(1
λ) =

∣∣∣Pr[ExptselΠ,A(1
λ, 0) = 1]− Pr[ExptselΠ,A(1

λ, 1) = 1]
∣∣∣ ≤ negl(λ)

for any sufficiently large security parameters λ, where the random variable ExptselΠ,A(1
λ, b) is defined

via the following experiment:

13

1. Setup phase: The challenger computes (pk,MSK)← Setup(1λ, s).

2. Challenge phase: On input 1λ, the adversary submits (m0,m1), and the challenger replies
with pk and CT← Enc(pk,mb).

3. Query phase: The adversary adaptively queries the challenger with any circuit f such that
C(m0) = C(m1). The challenger replies with skP ← KeyGen(MSK, C).

4. Output phase: The adversary outputs guess b′, which is defined as the output of the experi-
ment.

Theorem 3.5 ([AV19]). Assuming the existence of public-key encryption, there exists bounded
public-key functional encryption.

Bounded-key functional encryption achieves a weaker version of collusion resistant security,
which ensures security only against adversaries that corrupt an a-priori bounded (polynomial) num-
ber of functional keys.

3.3 Puncturable PRF

Puncturable PRFs [BW13,KPTZ13,BGI14] are PRFs for which a key can be given out such that,
it allows evaluation of the PRF on all inputs, except for any polynomial-size set of inputs. The
following definition is adapted from [SW14].

Definition 3.6 (Puncturable PRF). A puncturable family of PRFs F mapping is given by a typle
of ppt algorithms (GenF ,EvalF ,PuncF) and a pair of computable functions n(·) and m(·), satisfying
the following conditions:

• Functionality preserved under puncturing: For every ppt adversary A such that A(1λ)
outputs a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ) where x /∈ S, we have that

Pr[EvalF (K,x) = EvalF (KS , x) : K ← GenF (1
λ),KS = PuncF (K,S)] = 1

• Pseudorandom at punctured points: Foe every ppt adversary (A1,A2) such that A1(1
λ)

ouputs a set S ⊆ {0, 1}n(λ) and state σ, consider an experiment where K ← GenF (1
λ) and

KS = PuncF (K,S). Then we have∣∣Pr[A2(σ,KS , S,EvalF (K,S)) = 1]− Pr[A2(σ,KS , S, Um(λ)·|S|) = 1]
∣∣ = negl(λ)

where EvalF (K,S) denotes the the concatenation of (EvalF (K,x1), . . . ,EvalF (K,xk)), where
S = {x1, . . . , xk} is the enumeration of the elements of S in lexicographic order and Uℓ denotes
the uniform distribution over ℓ bits.

The GGM tree-based construction of PRFs [GGM86] from one-way function are easily seen to
yield puncturable PRFS, as shown in [BW13,KPTZ13,BGI14]. Thus we have:

Theorem 3.7. If one-way functions exist, then for all efficiently computable functions n(λ) and
m(λ), there exists a puncturable PRF family that maps n(λ) bits to m(λ) bits.

14

3.4 Indistinguishability Obfuscation

The definition below is from [GGH+13].

Definition 3.8. A uniform ppt machine iO is called an Indistinguishability obfuscator for a circuit
class {Cλ}, if the following conditions are satisfied:

• For all security parameter λ, all circuit C ∈ Cλ, all input x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• For all (not necessarily uniform) ppt adversaries (A0,A1), there exists a negligible function
α, such that the following holds: if Pr[∀x,C0(x) = C1(x) : (C0, C1, σ)← A0(1

λ)] > 1− α(λ),
then we have

|Pr[A1(σ, iO(λ,C0)) = 1]− Pr[A1(σ, iO(λ,C1)) = 1]| ≤ α(λ)

Theorem 3.9 ([LT17,LZ17]). For every large enough security parameter λ, assuming 2nϵ-secure
functional encryption, there exists an ϵ-secure indistinguishability obfuscator for circuits with input
length n.

In particular, when n = log(λ) and ϵ is negligible in security parameter, iO for n-length circuits,
can be based on polynomially secure compact functional encryption.

3.5 Selective-Database Laconic Oblivious Transfer

The definition of laconic oblivious transfer is proposed in [CDG+17,GS18b]. The security notion
we need about laconic oblivious transfer is based on work [KNTY19].

A laconic oblivious transfer scheme LacOT consists of four algorithms (crsGen,Hash,Send,Receive)
with details as follows:

• crsGen(1λ) takes as input security parameter λ and outputs a common reference string crs.

• Hash(crs, D) is a deterministic algorithm that takes as input the crs as well as a database
D ∈ {0, 1}∗, and outputs a hash value h and a state D̂.

• Send(crs, h, L,m0,m1) takes as input the crs, hash value h, a pair of messages (m0,m1) and
an index L ∈ N. It outputs a ciphertext c.

• ReceiveD̂(crs, c, L) is an algorithm with random access to a database D̂ that takes as input
the crs, a ciphertext c and an index L ∈ N. It outputs a message m.

The scheme LacOT satisfies the following correctness and security properties:

Correctness. We say the scheme LacOT is correct, if for all D ∈ {0, 1}∗ of size N = poly(λ), all
i ∈ [N] and all (m0,m1) ∈ {0, 1}p(λ), it holds that

Pr
[
ReceiveD̂(crs, c, L) = mD[L]

]
= 1

where crs← crsGen(1λ), (h, D̂)← Hash(crs, D) and c← Send(crs, h, L,m0,m1).

15

Selective-database adaptive-message sender privacy against semi-honest receivers. There
exists a ppt simulator Sim that satisfies the following:

|Pr[Exptselreal(1
λ) = 1]− Pr[Exptselsim(1

λ) = 1]| ≤ negl(λ)

where the experiments Exptselreal(1
λ) and Exptselsim(1

λ) are in Figure 2:

1. (D, st)← A(1λ)
2. crs← crsGen(1λ)
3. (h, D̂)← Hash(crs, D)
4. (L,m0,m1, st

′)← A(st, crs)
5. e← Send(crs, h, L,m0,m1)
6. b′ ← A(crs, e, st′)

(a) Exptselreal(1
λ)

1. (D, st)← A(1λ)
2. crs← crsGen(1λ)
3. (L,m0,m1, st

′)← A(st, crs)
4. e← Sim(crs, D, L,mD[L])
5. b′ ← A(crs, e, st′)

(b) Exptselsim(1
λ)

Figure 2: Experiments associated with sender privacy for reads

where |D| = N = poly(λ), L ∈ [N] and m0,m1 ∈ {0, 1}p(λ).

Efficiency. We require that |h| is bounded by a fixed polynomial in λ, and being independent of
|D|. The runtime of algorithm Hash is |D| · poly(log |D|, λ), and the runtime of Send and Receive
are poly(log |D|, λ).

A variant of laconic OT that supports write operation is called updatable laconic OT, defined
in the following:

Definition 3.10 (Updatable laconic OT [CDG+17]). A laconic OT scheme LacOT is called up-
datable if it supports the following two algorithms:

• ew ← SendWrite
(
crs, h, L, b, {mj,0,mj,1}|h|j=1

)
: On input the common reference string crs, a

hash value h, a location L ∈ [N], bit b ∈ {0, 1} and |h| pairs of messages {mj,0,mj,1}|h|j=1, it
outputs a ciphertext ew.

• {mj}|h|j=1 ← ReceiveWriteD̂ (crs, L, b, ew): On input the common reference string crs, location

L, a bit b ∈ {0, 1}, a ciphertext ew and random access to state D̂, it updates the state D̂ (such

that D[L] = b) and outputs messages {mj}|h|j=1.

We require an updatable laconic oblivious transfer to additionally satisfy the following properties:

• Correctness of Writes: Let database D be of size at most N = poly(λ). Let D∗ be a
database that is identical to D except that D∗[L] = b for bit b ∈ {0, 1}. For any sequence of
messages {mj,0,mj,1}j∈[λ] ∈ {0, 1}p(λ), it holds that

Pr[m′
j = mj,d∗j

,∀j ∈ [|h|] : {m′
j}

|h|
j=1 ← ReceiveWriteD̂(crs, L, b, ew)] = 1

where crs← crsGen(1λ), (d, D̂)← Hash(crs, D), (d∗, D̂∗)← Hash(crs, D∗), and we have

ew ← SendWrite
(
crs, h, L, b, {mj,0,mj,1}|h|j=1

)

16

• Selective-database adaptive-message sender privacy against semi-honest receivers
with regard to writes: There exists a ppt simulator SimWrite satisfies the following∣∣∣Pr[Exptwrtreal(1

λ) = 1]− Pr[Exptwrtideal(1
λ) = 1]

∣∣∣ = negl(λ)

where experiments Exptwrtreal and Exptwrtideal are defined in Figure 3, where D∗ is identical to D
except D∗[L] = b.

• Efficiency. We require that the runtime of algorithms SendWrite and ReceiveWrite are
poly(log |D|, λ).

1. (D, st)← A(1λ)
2. crs← crsGen(1λ).
3. h = Hash(crs, D)

4. (L, b, {mj,0,mj,1}|h|j=1, st)← A(st, crs)
5.
6. e← SendWrite(crs, h, L, b, {mj,0,mj,1}|h|j=1)
7. b′ ← A(crs, e, st′).

(a) Exptwrtreal(1
λ)

1. (D, st)← A(1λ)
2. crs← crsGen(1λ).
3. h = Hash(crs, D)

4. (L, b, {mj,0,mj,1}|h|j=1, st)← A(st, crs)
5. (h∗, D̂∗)← Hash(crs, D∗)
6. e← Sim(crs, D, L, b, {mj,h∗

j
}j∈[|h|])

7. b′ ← A(crs, e, st′).
(b) Exptwrtideal(1

λ)

Figure 3: Experiments associated with sender privacy for writes

In [KNTY19], the authors show that selective-database laconic OT can be constructed from
weakly-selectively secure, single-key public-key functional encryption for circuits, i.e.

Theorem 3.11 ([KNTY19]). Assuming the existence of public-key functional encryption for cir-
cuits, there exists selective-database laconic OT.

Theorem 3.12 ([CDG+17,BLSV18]). Assuming the existence of laconic OT, there exists public-
key encryption.

3.6 Timed Encryption

The notion of timed encryption was introduced in [GOS18]. Simply put, a timed encryption is a
symmetric key encryption scheme with some special properties. In encryption, every message is
encrypted with respect to a timestamp t. Additionally, there is a constrain algorithm that takes
an encryption key sk and a time t′ as input and outputs a time constrained key sk[t′], where this
key sk[t′] can be used to decrypt any ciphertext encrypted with respect to timestamp t < t′. The
description of the scheme Π = (KeyGen,Enc,Dec,Constrain) is the following:

• sk ← KeyGen(1λ): On input security parameter λ, the key generation algorithm outputs a
key sk.

• sk[t] = Constrain(sk, t): On input a key sk and a timestamp t, the constrain algorithm outputs
a time constrained key sk[t].

• c ← Enc(sk, t,m): On input a key sk, a timestamp t and a message m, the encryption
algorithm outputs a ciphertext c.

• m = Dec(sk, c): On input a secret key sk and a ciphertext c, the decryption algorithm outputs
a plaintext m.

17

Correctness. We require that for any message m and any timestamps t1 ≤ t2, it holds that

Pr[Dec(sk[t2], c) = m] = 1

where sk← KeyGen(1λ), sk[t2] = Constrain(sk, t2) and c← Enc(sk, t1,m).

Encrypting using constrained key. For any message m and timestamps t1 ≤ t2, we re-
quire that distribution {Enc(sk, t1,m)} is identical to distribution {Enc(sk[t2], t1,m)}, where sk ←
KeyGen(1λ) and sk[t2] = Constrain(sk, t2).

Security. For any two messages m0,m1 and timestamps (t, {ti}i∈[ℓ]), where ti < t for all i ∈ [ℓ],
we require that

{{sk[ti]}i∈[ℓ],Enc(sk, t,m0)}
c
≈ {{sk[ti]}i∈[ℓ],Enc(sk, t,m1)}

where sk← KeyGen(1λ) and sk[ti] = Constrain(sk, ti) for i ∈ [ℓ].

Theorem 3.13 ([GOS18]). Assuming the existence of one-way functions, there exists a construc-
tion of timed encryption.

For our purposes of constructing succinct schemes, however, we require a stronger security
notion called simulation security.

Simulation security. For any messages m and timestamps (t, {ti}i∈[ℓ]), where ti < t for all
i ∈ [ℓ], we require that

{{sk[ti]}i∈[ℓ],Enc(sk, t,m)}
c
≈ {{sk[ti]}i∈[ℓ], SimEnc(1λ, t)}

where sk ← KeyGen(1λ), sk[ti] = Constrain(sk, ti) for i ∈ [ℓ], and U is a uniform bitstring of same
length as Enc(sk, t,m).

Theorem 3.14. Assuming the existence of one-way functions, there exists a construction of timed
encryption with simulation security.

Proof. To achieve this stronger property, we note that in [GOS18], the construction of Enc is
basically (t,SK.Enc(PRFK(t),m)), where PRF is a (range-constrained) pseudorandom function and
SK is an underlying semantically secure secret key encryption. Therefore if we instantiate SK with a
secret key encryption with pseudorandom ciphertext [Gol01], and let SimEnc(1λ, t) := (t,U) where
U is a uniform bitstring of the same length, it is easy to see that the corresponding construction in
[GOS18] will be simulation secure.

3.7 Rewindable ORAM

Rewindable ORAM: Initial-State Setting. In this section, we first formally describe the
standard oblivious RAM [GO96] notion. We refer to the database (i.e., the client’s data) as “logical
memory”, and server’s state (which the server has RAM access to) as the “physical memory”. The
terminology we use to described ORAM is based on [HHWW19]. An ORAM scheme consists of
procedures (Setup,Access), with details as follows:

• Setup(1λ, D) takes as input a security parameter λ and a database D ∈ {0, 1}N , and outputs
the initial client state ck and server state st. We can think of st as an encoding of the database
D.

18

• Access(op, addr, val) is an interactive protocol executed by a client C and a server S. The
client C has state ck, and his input is an operation op ∈ {rd,wt}, and address addr ∈ [N]
and a value val (if op = rd, then val is ignored). The client finally outputs a value val′ (if
op = wrt, then val′ = ⊥).
Throughout the execution, the server S is used only as remote storage, and does not perform
any computations. In each round of the protocol, the client read some physical address paddri ,
and performs an update operation which replaces the block at some physical location paddr′i
with blocki. We use st′ to denote the updated server state at the end of execution.

For correctness, consider the following interaction between a stateful client and server. The client
and server initially receive ck and st (respectively), sampled as (ck, st)← Setup(1λ, D). They then
repeatedly execute the Access protocol, where the client’s input is given by a sequence of read and
write instructions (op1, . . . , opq). Then the output of the client is, with probability 1, identical to
his output when these instructions are sequentially performed directly on a database whose initial
contents are D.

In [HHWW19], the authors define two ORAM variants, which guarantee security against rewind-
ing attacks, Any-State Rewindable ORAM and Initial-State Rewindable ORAM. Intuitively, the
adversarial server can rewind the interaction with client to a previous state, and continue the execu-
tion from that state. In this work, we use initial-state rewindable ORAM, where the adversary can
only rewind to the initial state. The security game is run between an adversary A and a challenger
C:

1. A sends C two databases D0, D1 ∈ {0, 1}N .

2. C picks a random bit b ∈ {0, 1} and runs Setup(1λ, Db) to obtain client and server states ck, st.
C sends st to A.

3. Let st0 = st and ck0 = ck. Repeat the following procedure poly(λ) times, where in i-th
iteration:

(a) A sends C an index ji ∈ {0, 1, . . . , i− 1}, as well as two sequences of instructions Q0
i =(

opi,ℓ, addr
0
i,ℓ, val

0
i,ℓ

)
ℓ∈[qi]

, and Q1
i =

(
opi,ℓ, addr

1
i,ℓ, val

1
i,ℓ

)
ℓ∈[qi]

, where qi ≤ poly(λ), opi,ℓ ∈
{rd,wt}, addr0i,ℓ, addr1i,ℓ ∈ [N] and val0i,ℓ, val

1
i,ℓ ∈ {0, 1}.

(b) Starting from server state stji and client state ckji , C runs Access(opi,ℓ, addr
b
i,ℓ, val

b
i,ℓ) for

1 ≤ ℓ ≤ qi. Let cki, sti denote the updated client and server states at the end of this
sequence of executions. Let acci denote the access pattern to physical memory during
the sequence of Access exeutions.

(c) C sends acci to A.

4. A outputs a bit b′, and his advantage in the game is defined as |Pr[b = b′]− 1/2|

Definition 3.15 (Initial-State Rewindable ORAM [HHWW19]). We say that an adversary A is
initial-state restricted if in every iteration i of the rewindable ORAM security game as described
above, it chooses ji = 0. We say that an ORAM scheme is initial-state rewindable if for any initial-
state restricted ppt adversary A, his advantage in the security game described above in negl(λ).

3.8 DEPIR

A public-key Doubly efficient PIR [CHR17,BIPW17] (PK-DEPIR) scheme consists of procedures
Π = (KeyGen,Process,Resp,Query,Decode), with the following syntax:

19

• KeyGen(1λ) takes as input a security parameter λ, and outputs an encoding key k.

• Process(k,D) takes as input a secret encoding key k and a database D ∈ {0, 1}N , and outputs

a processed database D̂ ∈ {0, 1}N̂ .

• Query(k, i) takes as input a key k and an index i ∈ [N], and outputs a set q ∈ [N̂] of queries,
and an internal state st.

• RespD̂(q) takes as input the query set q and has random access to D̂, and outputs the server
answer a.

• Decode (st, k, a) takes as input an internal state st, the encoding key k, server answer a, and
outputs the decoded value val.

We require that the scheme satisfies the following properties:

Definition 3.16 (Correctness). For every N ∈ N, every database D ∈ {0, 1}N , and every address
addr ∈ [N], it holds that

Pr [Decode (st, a) = D[i])] = 1

where k ← KeyGen(1λ), D̂ ← Process(k,D), (q, st)← Query(k, i) and a← RespD̂(q).

Definition 3.17 (Security). No efficient adversary, given access to a public key and encoded
database, can distinguish the memory access produced by algorithm Query on input index i0 and i1.
Namely, for every non-uniform ppt adversary A, the distinguishing advantage of A in the following
game is bounded by a negligible function negl(λ);

1. A chooses a database D ∈ {0, 1}N . A sends D to the challenger.

2. The challenger runs key generation algorithm KeyGen(1λ) to obtain k and then processes the
database Process(k,D)→ D̂. The challenger sends (k, D̂) to adversary A.

3. On input D̂, pk ans aux, adversary selects and sends two distinct index i0 and i1 to challenger.

4. The challenger computes Query(pk, ib)→ (skib , q) for a randomly chosen bit b ∈ {0, 1}.

5. On input the set q from challenger, the adversary outputs his guess b′.

6. A’s advantage in the above game is defined as |Pr[b′ = b] − 1
2 | over the randomness of the

challenger and A.

Definition 3.18 (Non-triviality). We say a PK-DEPIR scheme Π is non-trivial, if (1) the runtime
of KeyGen(1λ) is poly(λ), (2) the runtime of Process is poly(N,λ), (3) the runtime of Query,Decode
is o(N) · poly(λ), where N is the size of database.

Remark 3.19 (Secret-key DEPIR). The secret-key version of DEPIR can be defined similarly by
requiring the encoding key k to be private, while other algorithms remain the same. The correctness,
security and non-triviality requirements can be defined analogously.

Construction of ISR-ORAM. The construction of ISR-ORAM (Setup,Access) from SK-DEPIR
DEPIR and ORAM (for initial-empty databases) is shown in [HHWW19].

20

4 Functional Encryption for RAMs

We define a public-key functional encryption scheme for RAM programs [GHRW14]. A public-
key FE for RAM programs consists of the probabilistic polynomial time (ppt) algorithms Π =
(Setup,Enc,KeyGen,Dec), defined as follows:

• Setup algorithm. Setup(1λ, T): On input security parameter λ, an upper bound T on the
running time of the RAM program, the setup algorithm outputs the master secret key MSK
and public key pk.

• Encryption algorithm. Enc(pk, D): On input public key pk and databaseD, the encryption
algorithm outputs the ciphertext CT.

• Key generation algorithm. KeyGen(MSK, P): On input master secret key MSK, RAM
program P , the key generation algorithm outputs the functional key skP .

• Decryption algorithm. DecCT(skP): On input a functional key skP and with random access
to ciphertext CT, the decryption algorithm (modeled as a RAM program) outputs the result
y.

Definition 4.1 (Correctness). A public-key functional encryption for RAMs scheme Π is correct,
if there exists a negligible negl(·) such that for any security parameter λ, any database D, for any
RAM program P , it holds that

Pr
[
DecCT (skP) = PD

]
= 1− negl(λ)

where (pk,MSK) ← Setup(1λ, T),CT ← Enc(pk, D), skP ← KeyGen(MSK, P) and the probability is
taken over the internal randomness of algorithms Setup, Enc and KeyGen.

Succinctness. Unlike the traditional functional encryption for circuits scheme, where the param-
eters can grow with the worst case runtime of the computation, we require the parameters in the
functional encryption for RAMs schemes to have the following efficiency guarantees.

Definition 4.2 (Succinctness). A public-key functional encryption for RAMs scheme (Setup,Enc,KeyGen,
Dec) satisfies succinctness if the following properties hold:

• Setup(1λ, T) runs in time poly(λ, log(T)).

• Enc(pk, D) runs in time poly(λ, log(T), |D|).

• KeyGen(MSK, P) runs in time poly(λ, log(T), |P |).

• DecCT(skP) runs in time poly(λ, T).

Remark 4.3 (Input-Specific Runtime). An astute reader would notice that we only require the de-
cryption time to grow with the worst case time bound, and not with input-specific runtime. Luckily,
there is a simple generic transformation that shows how to modify a scheme with worst-case time
bound into a scheme that has input-specific runtime: we encourage the reader to refer to [GKP+13]
for a description of this transformation.

21

Security. Our security notion is modeled along the same lines as FE for circuits. We only focus
on selective security in this work.

Definition 4.4 (Selective security). A public-key FE for RAMs scheme Π is selectively secure if
for any ppt adversary A, there exists a negligible function negl(·) such that

AdvpfeΠ,A(1
λ) =

∣∣∣Pr[ExptpfeΠ,A(1
λ, 0) = 1]− Pr[ExptpfeΠ,A(1

λ, 1) = 1]
∣∣∣ ≤ negl(λ)

for any sufficiently large security parameters λ, where ExptpfeΠ,A(1
λ, b) is defined via the following

experiment:

1. Setup phase: The challenger computes (pk,MSK)← Setup(1λ, T).

2. Challenge phase: On input 1λ, the adversary submits (D0, D1), and the challenger replies
with pk and CT← Enc(pk, Db).

3. Query phase: The adversary adaptively queries the challenger with any RAM program P
such that PD0 = PD1. The challenger replies with skP ← KeyGen(MSK, P).

4. Output phase: The adversary outputs guess b′, which is defined as the output of the experi-
ment.

5 Succinct Reusable Garbled RAM

We first start with the definition of succinct reusable garbled RAM. This will be followed by the
construction of succinct UMA-secure reusable GRAM. Finally, we give a transformation from UMA
security to full security.

5.1 Syntax and Security Definition

A succinct reusable garbled RAM scheme consists of PPT algorithms GRAM = (GrbDB,GProg,GEval),
with details as follows:

• GrbDB(1λ, D, T, 1Q): On input security parameter λ, time upper bound T , collusion upper
bound Q, a database D, output the garbled database encoding D̂ along with secret key sk.

• GrbProg(sk, P): On input secret key sk, and a RAM program P , output the garbled program
P̂ .

• GEvalD̂
(
P̂
)
: On input garbled program P̂ , database encoding D̂, output y.

Correctness. For correctness, we require that for any program P , any database D, we have that

Pr
[
GEvalD̂

(
P̂
)
= PD()

]
= 1

where (D̂, sk)← GrbDB(1λ, T,D), and P̂ ← GrbProg(sk, P).

22

Succinctness. We define succinctness property of garbled RAM. In the definition below, we note
the dependence of log T is implicit since log T is at most the security parameter.

Definition 5.1 (Weak succinctness). A garbled RAM scheme GRAM = (GrbDB,GrbProg,GEval)
satisfies the weak succinctness property if the following holds:

• GrbDB(1λ, T, 1Q, D) runs in time poly (λ, log T,Q, |D|).

• GrbProg(sk, P) runs in time poly(λ, T, logQ, log |D|, |P |).

• GEvalD̂
(
P̂
)
runs in time poly(λ, t, |P |, logQ, log |D|).

Definition 5.2 (Succinctness). A garbled RAM scheme GRAM = (GrbDB,GrbProg,GEval) satisfies
(full) succinctness property if the following holds:

• It satisfies the weak succinctness;

• GrbProg(sk, P) runs in time poly(λ, log T, logQ, log |D|, |P |), instead of T .

Reusable Security. We define a notion of reusable security that will be compatible with the
security definition of FE for RAMs.

To define reusable security, we first describe the experiment below.

ExptA(1λ, b):

• A submits two databases D0 and D1, a collusion bound Q (or ⊥ for unbounded GRAM
scheme), and a running time bound encoded in unary 1T .

• The challenger responds back with database encoding D̂b.

• Proceeding adaptively, A submits RAM programs P0, P1. The challenger checks that P
D0
0 () =

PD1
1 () and each program executes for the same number of time steps. It also checks that

|D0| = |D1|. If both the checks fail, it aborts; otherwise, it sends the garbled program P̂b and
garbled input x̂b. A repeats this step for Q = poly(λ) times.

• A outputs b′. The output of the experiment is b′.

Definition 5.3 ((Indistinguishability) reusability). A garbled RAM scheme (GrbDB,GrbProg,Eval)
satisfies (indistinguishability) reusability property if the following holds for every ppt adversary A:∣∣∣Pr[0← ExptA(1λ, 0)]− Pr[0← ExptA(1λ, 1)]

∣∣∣ ≤ negl(λ)

Remark 5.4. Our construction actually satisfies a stronger security of simulation security, where
simulated version of GrbDB only takes as input (1λ, 1|D|), and the simulated version of GrbProg only
takes as input (sk, 1|P |, y). Note that for this definition, simulation security is in fact equivalent to
indistinguishability security¶¶.

¶¶In general these two notions are not equivalent: in our setting, they are equivalent since we only consider
programs with boolean outputs.

23

Unbounded Reusability. Ideally, we would like the garbled database encoding to be reusable
by a priori unbounded number of garbled programs. We capture this in the formal definition below.

Definition 5.5 (Unbounded reusability). In addition to succinctness, a succinct garbled RAM
scheme satisfies unbounded reusability, if the algorithm GrbDB takes Q = ⊥ and all algorithms run
in time independent of Q, for example, GrbDB runs in time poly (λ, log T, |D|).

5.2 Succinct UMA Reusable GRAM

To construct succinct reusable GRAM, we start by constructing a succinct garbled RAM scheme
that only satisfies a weaker notion of reusable security, which we call UMA security.

UMA security. UMA security is defined similar as the indistinguishability security above, except
that the challenger in addition to checking PD0

0 () = PD1
1 (), she also checks that D0 = D1, and every

step circuits in PD0
0 (), PD1

1 () at the same time step output the exact same output.

Ingredients. We use the following ingredients in our construction:

• Selective-database updatable laconic oblivious transfer (crsGen,Hash, Send,SendWrite,Receive,
ReceiveWrite).

• A puncturable PRF (PRF.Gen,PRF.Eval,PRF.Punc).

• Indistinguishability obfuscation iO for circuits with log-sized inputs.

Construction. We construct Π = (GrbDB,GrbProg,GEval) as follows:

• GrbDB(1λ, D, 1Q, Tmax): On input security parameter λ, database D and running time upper
bound Tmax, it does the following:

1. Sample crs← crsGen(1λ) and compute (d, D̂) = Hash(crs, D)

2. Output D̂ as garbled database and (d, crs, Q, Tmax) as the secret key sk.

• GrbProg (sk, P): On input secret key sk and program P , it does:

1. Sample a PRF key K ← PRF.Gen(1λ).

2. For each step τ ∈ [2, T], k ∈ [λ+ n+ 1] and b ∈ {0, 1}, let labτk,b = PRFK(τ ||k||b).
3. We use {labτk,b} to denote {labτk,b}k∈[λ+n+1],b∈{0,1}.

4. Output P̂ = (iO(PG[P, crs,K, d]), {lab1k,dk}k∈[λ], {lab
1
k+λ,0}k∈[n+1]), where PG is de-

scribed in Figure 4.
Note: we pad the circuit PG such that its size is |P | · poly(λ, log |D|, log T) bits. This
will become clear later in the security proof.

• GEvalD̂
(
P̂
)
: With random access to D̂ and on input garbled program P̂ ,

1. Extract l̃ab← {lab1k,xk
}k∈[λ+n+1] from the garbled program

2. For τ from 1 to T ,

– Invoke the iO program on τ to obtain Ĉτ .

24

Program generator circuit PG

Hardwired values: the program P , the CRS string crs, the PRF key K, the initial digest
d
Input: step number τ

(a) Compute CCPU ← P (τ). That is, P on input time step τ outputs the step circuit
CCPU.

(b) Output GarbleCkt
(
1λ, C

[
CCPU, crs, τ, {labτ+1

k,b }
]
, {labτk,b};PRFK(τ)

)
, where the cir-

cuit C is described in Figure 5.

Figure 4: Description of program generator circuit PG

Step circuit C

Hardwired values: A step circuit CCPU, the CRS string crs, the step number τ and a
set of labels {labk,b}
Input: A digest d, state st and read value rv.

(a) Compute (st′, op, addr,wb) = CCPU(st, rv).

(b) If st′ is in abort state, reset labk,b = b for k ∈ [λ+ 1, λ+ n] and b ∈ {0, 1}.
(c) If op = write, compute ew ← SendWrite

(
crs, d, addr,wb, {labk,b}k∈[λ],b∈{0,1}

)
. Output(

op, addr, ew,wb, {labk,st′[k−λ]}i∈[n],k∈[λ+1,λ+n], labn+λ+1,0

)
(d) Otherwise, compute e← Send

(
crs, d, addr, {labλ+n+1,b}b∈{0,1}

)
. Output(

op, addr, {labk,dk}k∈[λ], {labk,st′[k−λ]}k∈[λ+1,λ+n], e
)

Figure 5: Description of step circuit C

– Compute
(
op, addr, A, {labk}k∈[λ+1,λ+n], B

)
= EvalCkt

(
Ĉτ , l̃ab

)
.

– If the labels corresponding to st are in plain-text, abort the loop

– If op = write, parse A as (ew,wb) and B as {labk}k∈[λ+1,λ+n]. Compute {labk}k∈[λ] ←
ReceiveWriteD̂(crs, addr,wb, ew).

– Otherwise, parseA as {labk}k∈[λ+n] andB as e. Compute labλ+n+1 ← ReceiveD̂(crs, addr, e).

– Let l̃ab← {labk,xk
}k∈[λ+n+N]

3. Output {labk}k∈[λ+1,λ+n].

Correctness. We can prove the correctnss of our construction using an inductive argument that
for each step τ , the state st and databases are updated correctly at the end of execution of step
circuit. The base case is τ = 0. For τ ̸= 0, observe that if op = write, then algorithm Eval updates
the database Dj and its associated digest, where Dj is the corresponding database for write location

25

addr. Otherwise, if op = read, the labels recovered in Eval step 2 correspond to the value in the
location addr as requested.

Succinctness.

1. By the efficiency of laconic OT, GrbDB runs in time poly(λ, |D|) + logQ+ log Tmax.

2. By the efficiency of indistinguishability obfuscation, GrbProg runs in time poly(λ, log T, log |D|,
|P |).

3. Finally, GEval runs in time t · poly(λ, log T, log |D|, |P |), as it will abort execution once the
new state is in abort state.

We now prove that the above scheme is secure.

Theorem 5.6. Assuming the security of selective-database updatable laconic oblivious transfer,
puncturable PRF and iO with log-sized inputs, there exists a succinct (unbounded) reusable garbled
RAM scheme satisfying UMA security.

The crux of the proof is to show that the above construction satisfies reusable security.

Proof. We prove that the above construction satisfies reusable security. Consider a PPT adversary
A. Let A submit Q program pairs (P1,0, P1,1), . . . , (PQ,0, PQ,1). We employ a standard hybrid
argument.

Hybprogk : In this hybrid, the challenger generates the database encoding D̂ honestly. For i ≤ k − 1,

it generates the garbled program P̂i,0 and for i ≥ k, it generates the garbled program to be P̂i,1.

If we show that Hybprogk ≈c Hyb
prog
k+1 , for any k ∈ {1, . . . , Q − 1} then this implies that Hybprog0 ≈c

HybprogQ+1; thus proving that the scheme satisfies reusability security.

Proof of Hybprogk ≈c Hyb
prog
k+1 . To prove this, we perform a hybrid sequence given by a pebbling

game and we use techniques inspired by [GOS18, Appendix C]. We will use P0, P1 as a shorthand

for Pk,0, Pk,1. The goal is to show that P̂0 ≈c P̂1. Consider the following hybrids.

Hyb1: This hybrid is identical to Hybprogk .

Hyb2: In this hybrid, the challenger generates the kth garbled program as ̂Hyb.PG[P0, P1, crs,K, d],
where Hyb.PG[P0, P1, crs,K, d] has the same functionality as PG[P0, crs,K, d] (Figure 4) and it
has two programs P0 and P1 hardwired inside the circuit.

Hyb1 ≈c Hyb2 follows from the indistinguishability security of iO.

Hyb3: In this hybrid, the challenger generates the kth garbled program as ̂Hyb.PG[P0, P1, crs,K, d],
where Hyb.PG[P0, P1, crs,K, d] is has the same functionality as PG[P1, crs,K, d] (Figure 4) and it
has two programs P0 and P1 hardwired inside the circuit.

The rest of the proof will be devoted to proving Hyb2 ≈c Hyb3.

Hyb4: This hybrid is identical to Hybprogk+1 .
Hyb3 ≈c Hyb4 follows from the indistinguishability security of iO.

26

Proof of Hyb2 ≈c Hyb3. At a high level, we prove this by defining a series of hybrids associated
with a pebbling game. That is, each hybrid will be associated with a configuration of a pebbling
game. Hyb2 is associated with the first configuration of the pebbling game and Hyb3 is associated
with the last configuration of the pebbling game. The indistinguishability of every consecutive pair
of hybrids will be proven using the security properties of the underlying cryptographic tools.

Pebbling Game: A pebbling game is associated with a line graph on T nodes, labeled 1, 2, . . . , T .

1. Associated with a pebbling game is a pebbling sequence C0,C1, ...,CN , where each configura-
tion Ci : [T] 7→ {0, 1} describes whether each node has a pebble or not. If a node does not
have a pebble (i.e., it corresponds to Ci mapping this node to 0) then we say that this node
is labeled ”White” and if the node does have a pebble then the node is labeled ”Grey” (i.e.,
it corresponds to Ci mapping this node to 1).

2. We start and end at an empty configuration, i.e., C0(τ) = CN (τ) = 0 for all τ ∈ [T];

3. Pebbling rule: In each step, we only put or remove a single pebble on a node if its immediate
predecessor is also pebbled, i.e. for all i ∈ [N], there exists τ ∈ [T] such that τ = 1 or
Ci(τ − 1) = 1, furthermore, we have Ci(τ

′) = Ci−1(τ
′) for every τ ′ ̸= τ ;

4. Winning condition: Every node is pebbled at least once, i.e. for any τ ∈ [T], there exists
some i ∈ [N] such that Ci(τ) = 1;

In this work, we would like pebbling games where in each minimize the number of pebbles used in
each configuration, i.e. we want to minimize η = maxi∈[N]

∑
τ∈[T] Ci(τ). In particular, we want η

to be poly-logarithmic in T . Moreover, we require the number of pebbling steps to be polynomial
in T . Looking ahead, the number η corresponds to the total number of simulated garbled step
circuits that need to be hardwired inside the obfuscated circuit and since the size of the circuit
being obfuscated needs to be upper bounded by poly(λ, log(|D|)), this naturally places an upper
bound on the number of pebbles as well.

Fortunately, pebbling games satisfying the above efficiency condition was already shown in a
previous work. We state the lemma below.

Lemma 5.7 (Pebbling Strategy). [GOS18, Lemma C.4] There exists a pebbling sequence C0, . . . ,CN

satisfying that the number of pebbles used are η = log T and uses only N = poly(T) steps.

Proving Hyb2 ≈c Hyb3 via Pebbling game: We now use pebbling games to prove the indistin-
guishability of hybrids Hyb2 and Hyb3. As mentioned earlier, we define a sequence of intermediate
hybrids between Hyb2 and Hyb3 with each intermediate hybrid corresponding to a configuration
in the pebbling game. In more detail, in the ith intermediate hybrid, the challenger generates the
kth garbled program according to the ith configuration in the pebbling sequence. Before explaining
how this is done, we first set up some notation. Let the ith configuration be represented by a
T -dimensional vector, i.e., if a node has pebble on it then the corresponding component in this
vector will be set to gray, otherwise if the node does not have a pebble on it then it will be set to
either white0 or white1.

• When we remove a pebble on a node, we change the corresponding component in the vector
from grey to white1.

• When we place a pebble on a node, we change the corresponding component from either
white0 or white1 to gray.

27

The starting configuration C0 (corresponding to Hyb2) is a vector having white0 in all the com-
ponents. The final configuration CN (corresponding to Hyb3) is a vector having white1 in all the
components.

Let the hybrid distribution for each configuration C to be HybC. We first start by describing
HybC. Then we prove that HybCi

≈c HybCi+1
, for every i; this will then prove that Hyb2 = HybC0

≈c

HybCN
= Hyb3.

Description of HybCi
: In this hybrid, the challenger generates all the garbled programs along

with the database encoding except the kth garbled program according to Hyb2. The k
th garbled pro-

gram is generated as follows: output the obfuscated circuit P̂Ci
= (iO(PGCi

), along with the wire
labels {lab1k,dk}k∈[λ], {lab

1
k+λ,0}k∈[n+1]) (we use the same notation as given in the scheme), where

PGCi
is described in Figure 6. We denote C[yτ] to be a circuit that always outputs yτ , where

yτ is the simulated output of the simulated τ th garbled step circuit when evaluated on the given
database, specifically yτ is going to be the output of the honest circuit, except that we replace the
laconic OT read/write ciphertext with its corresponding simulated ciphertext using the simulator,
which only takes the correct pair of labels as input.

Program generator PGCi
associated with configuration Ci

Hardwired values:

• Program P ,

• CRS string crs,

• PRF key K punctured at {τ : τ th component in Ci is grey} and,

• {Ĉ[yτ] : τ
th component in Ci is grey} consisting of simulated garbled circuits.

Input: step number τ

1. If τ th component in Ci is marked grey, do the following:

• Find Ĉ[yτ] in the hardwired set and output it directly.

That is, output the hardcoded simulated garbling of τ th step circuit.

2. If τ th component in Ci is marked whiteb, do the following:

• Compute CCPU ← Pb(τ).

• Output GarbleCkt
(
1λ, C

[
CCPU, crs, τ, {labτ+1

k,b }
]
, {labτk,b};PRFK(τ)

)
, where the

circuit C is described in Figure 5.

That is, generate the garbling of τ th step circuit honestly.

Figure 6: Description of PGCi .

Implementing pebbling rules (or proving HybCi
≈c HybCi+1

). There are two possibilities: Ci+1

28

is obtained by adding a pebble on some node or Ci+1 is obtained by removing a pebble on some
node. We focus on the former case only and we describe the intermediate hybrids below; the latter
case follows similarly with the same intermediate hybrids but in reverse order. Roughly speaking,
adding a pebble corresponds to hardwiring a garbled circuit in PGCi

and removing a pebble corre-
sponds to removing a hardwired garbled circuit in PGCi

.

SubHyb1: This corresponds to HybCi
.

SubHyb2: Let τ∗ be the unique node such that Ci(τ
∗) = 0 and Ci+1(τ

∗) = 1. We modify PGCi
,

call the modified version PGSubHyb2 , to instead output the evaluated garbled circuit for the time
step τ∗ directly. For all other τ , PGSubHyb2 behaves the same way as PGCi

. We formally describe
this in Figure 7.

Hybrid Program generator PGSubHyb2

Hardwired values:

• Program P ,

• CRS string crs,

• PRF key K punctured at {τ : τ th component in Ci is grey
∨

(Ci(τ) = 0∧Ci+1(τ) =
1)} and,

• {Ĉ[yτ] : τ th component in Ci is grey
∨

(Ci(τ) = 0 ∧ Ci+1(τ) = 1)} consisting of
simulated garbled circuits.

Input: step number τ

1. If τ is such that Ci(τ) = 0 and Ci+1(τ) = 1 or if τ th component in Ci is marked grey,
do the following:

• Find Ĉ[yτ] in the hardwired set and output it directly.

That is, output the hardcoded simulated garbling of τ th step circuit.

2. If τ th component in Ci is marked whiteb, do the following:

• Compute CCPU ← Pb(τ).

• Output GarbleCkt
(
1λ, C

[
CCPU, crs, τ, {labτ+1

k,b }
]
, {labτk,b};PRFK(τ)

)
, where the

circuit C is described in Figure 5.

That is, generate the garbling of τ th step circuit honestly.

Figure 7: Description of PGSubHyb2 .

By the correctness of puncturable PRF, it follows that PGSubHyb2 ≡ PGCi
, and therefore the output

distributions of the hybrids SubHyb1 and SubHyb2 are computationally indistinguishable from the
security of iO.

29

SubHyb3: Let τ∗ be the unique node such that Ci(τ
∗) = 0 and Ci+1(τ

∗) = 1. We change the

hardwired garbled circuit C̃τ∗ to its simulated distribution using the simulator from selectively
secure garbled circuits. That is, C̃τ∗ is generated using the following: let GarbleCkt.Sim be the
simulator associated with the garbling scheme. If opτ∗ = write, we instead generate (recall that
this simulated garbled circuit is hardcoded inside PGSubHyb2) as follows:

GarbleCkt.Sim
(
1λ,

(
opτ∗ , addr, ew,wb, {labk,st′[k−λ]}i∈[n],k∈[λ+1,λ+n], labn+λ+1,0

))
Else if opτ∗ = read, generate the simulated garbled circuit as follows:

GarbleCkt.Sim
(
1λ,

(
opτ∗ , addr, {labk,dk}k∈[λ], {labk,st′[k−λ]}k∈[λ+1,λ+n], e

))
Here, opτ∗ denotes the CPU operation in the (τ∗)th time step.

The output distributions of the hybrids Hyb2 and Hyb3 are computationally indistinguishable
from the selective security of Yao’s garbling scheme.

SubHyb4: Let τ
∗ be as defined in the previous hybrid.

If opτ∗ = write, we simulate the laconic OT write cipertext ew using the simulator of laconic
OT (Figure 3). If opτ∗ = read, we simulate the read ciphertext e using the simulator of laconic OT
(Figure 2).

The output distributions of SubHyb3 and SubHyb4 are computationally indistinguishable by: (i)
the sender privacy for writes of laconic OT (Figure 3) if opτ∗ = write, (ii) sender privacy for reads
of laconic OT (Figure 2) if opτ∗ = read.

Instantiation. Combining the above theorem with Theorem 3.9 and Theorem 3.11, we arrive at
the following corollary.

Corollary 5.8. Assuming the existence of public-key functional encryption for circuits, there exists
a succinct (unbounded) garbled RAM scheme satisfying UMA security.

Bounded-key setting. For the bounded-key setting, since we only aim for the weak succinctness,
we can consider the same construction as before except that we can instantiate iO with an inefficient
iO scheme, i.e., a scheme that outputs the truth table of the circuit being obfuscated. Note that
since we only consider iO for logarithmic inputs, the size of the truth table is still polynomial in λ.
As a result, the running time of GrbProg is now T · poly(λ, log T, log |D|, |P |). Thus, we have the
following theorem.

Theorem 5.9. Assuming the existence of selective-database updatable laconic oblivious transfer,
there exists a weakly-succinct (unbounded) garbled RAM scheme satisfying UMA security.

5.3 Succinct Reusable GRAM: From UMA to Full Security

In this section, we will present the construction of (fully) succinct reusable garbled RAM. We
present a transformation that converts a succinct reusable garbled RAM with UMA security into a
succinct reusable garbled RAM scheme with full security. While such UMA to full security setting
have been known in the past, they have not been studied in the (parallel) reusable setting, which
is the focus of our work.

One of the main ingredients in our construction is an initial-state rewindable ORAM scheme
satisfying strong localized randomness property. We start by presenting a construction of this.

30

5.3.1 Rewindable ORAM with Strong Localized Randomness

Alternate Formulation of ORAMs. Before we recall the definition of strong localized ran-
domness, we first consider an alternate (equivalent) definition of ORAM schemes. We consider a
pair of PPT algorithms (OData,OProg).

Algorithm OData(1λ, D) takes as input security parameter λ, database D ∈ {0, 1}N and outputs
the oblivious database D∗ and some client key ck. Algorithm OProg(1λ, 1logN , 1T , P, ck) takes as
input security parameter λ, memory size N , runtime T , a RAM program P , and the client key ck,
and outputs a compiled program P ∗, which is a RAM program that instead operates on D∗.

Strong Localized Randomness. The additional property we need from ORAM is called strong
localized property from an ORAM scheme. The definition we use here is based on [GOS18] and is
stronger than the original definition.

Let D ∈ {0, 1}N be any database and (P, x) be any program/input pair. Let the step circuits of
P ∗ be indicated by {Cτ

CPU}τ∈[T ′] and R be the contents of the random tape used in the execution.

Definition 5.10 (Strong localized randomness). We say that an ORAM scheme has strong localized
randomness property if for any sequence of memory accesses of length T , there exists a sequence of
efficiently computable values 1 = τ1 < τ2 < · · · < τm = T ′ +1, where τt− τt−1 ≤ poly(logN) for all
t ∈ [2,m], such that

1. For every j ∈ [m − 1], there exists an interval Ij of size poly(logN,λ), such that for any
τ ∈ [τj , τj+1], the random tape accessed by Cτ

CPU is given by RIj .

2. For every j, j′ ∈ [m− 1] and j ̸= j′, it holds that Ij ∩ Ij′ = ∅.

3. There exists a PPT procedure CkSim that takes as input (τk, τk+1, ck) and outputs ck′. It has
the following guarantee: there exists a PPT algorithm that takes as input τi for i ̸= k, ck′,
RIi and outputs the correct (real world) memory access pattern.

Furthermore, the following security guarantee is satisfied. ∀j ∈ [m], ∃k < j, the following
distributions are computationally indistinguishable:

• R\Ik∪Ij (where R\Ik∪Ij denotes the content of random tape except in positions Ik ∪ Ij),
ck′ := CkSim(τk, τk+1, ck), the memory accesses for τ ∈ [τk, τk+1)

∗∗∗ and the memory
accesses for τ ∈ [τj , τj+1).

• R\Ik∪Ij , ck′ := CkSim(τk, τk+1, ck) and the memory accesses for τ ∈ [τk, τk+1) and
uniformly random memory accesses (with the same length as the memory accesses for
τ ∈ [τj , τj+1)).

Theorem 5.11 (ORAM with strong localized randomness [GOS18]). Assuming one-way functions,
there exists ORAM with strong localized randomness property.

We remark that even though the definition of strong localized randomness in [GOS18] does not
talk about CkSim, they implicitly constructed such a simulator at the end of [GOS18, Appendix
B], and their proof in Appendix D.1 implicitly relied on the fact that such simulation is possible.

∗∗∗[τk, τk+1) denotes the contents of the random tape starting from τ th
k position to (τk+1 − 1)th position.

31

Our Construction. We present our construction of ISR-ORAM with strong localized random-
ness property.

Theorem 5.12. Assuming the existence of ORAM with strong localized randomness and (un-
bounded) PK-DEPIR, there exists unbounded ISR-ORAM with strong localized randomness.

Proof. The proof is done via two steps. First, we construct an ORAM with initially-empty database
and strong localized randomness property, from an ORAM with strong localized randomness prop-
erty; next, we add the ISR property to the construction via using PK-DEPIR.

From Large Initial DB to Empty Initial DB. To prove the theorem, first we build an ORAM
with initially-empty database and strong localized randomness from ORAM with only strong lo-
calized randomness property. The requirements for ORAM with an initially-empty database are
essentially the same as ordinary ORAM, except that we restrict the scheme to having an empty
database at the beginning and allow the size of the database to grow as the number of operations
increase. (On the other hand, traditional ORAM works on a fixed-size database who is given in
its entirety at the beginning.) Furthermore, it needs to be able to achieve this without knowing an
upper bound on the number of operations a priori.

The construction is as follows:

1. Initialize an ORAM D of length C; (at the beginning take C to be any constant, say 1)

2. Read/write to the ORAM until ORAM program has performed over C writes;

3. Reinitialize another ORAM D′ of length 2C and copy data from D to D′;

4. Discard D and take D′ to be the new D, return to 2.

Despite possibly running in time linear in the size of the entire database for a single write, this
construction will only have amortized cost constant times the original read/write amortized cost
This is because every time we are expanding the database from size S to 2S, while this costs O(S)
operations, it means that we have performed S/2 operations since the last expansion. Therefore,
we can average the cost of this expansion into each operation, and thus on average the cost for each
operation is independent of S.

On the other hand, strong localized randomness property follows naturally as we are using
an ORAM with strong localized randomness as our building block. Finally, since by construction
the expansion only depends on the running time/the number of writes, the security properties are
preserved.

Generically Achieving Initial-State Rewindable Property. Next, we recall the construc-
tion of ISR-ORAM. The idea is that we will have a read-only ORAM instantiated by PK-DEPIR
and another read-write (initially-empty) ORAM “cache” instantiated by the actual ORAM. The
overall client state will consists of (ck, k), where ck is the client state for the initially-empty ORAM,
and k is the (public) key for the PK-DEPIR. Whenever we do a read, we read from both databases
and return the cached result if cache read results in a hit. For writes, we simply write directly to
the cache.

To construct unbounded ISR-ORAM with SLR, we simply change the construction above to use
the initially-empty ORAM with SLR instead of initially-empty ORAM. Note that the construction
has the efficiency we desire as argued above.

32

We now argue that it satisfies the strong localized randomness property. The first two properties
follow naturally, as there are only two places where we use randomness; for the ORAM, this follows
as we are using an ORAM with strong localized randomness property; for the DEPIR, this follows
as the randomness used by DEPIR is freshly sampled for every access and therefore independent of
everything else. To argue the third property, CkSim simulates ck by calling the underlying CkSim of
ORAM with SLR, and output the public key k for the PK-DEPIR as is. Using SLR of the initially-
empty ORAM, the memory access pattern for ISR-ORAM is indistinguishable from random; and
by the security of PK-DEPIR (where the distinguisher gets access to the key), the memory access
pattern for PK-DEPIR is indistinguishable from random.

Finally, it is apparent that for this construction, if we start with ORAM without SLR instead
of ORAM with SLR, and PK-DEPIR instead of B-bounded SK-DEPIR, we will end up with B-
bounded ISR-ORAM without SLR property by the same argument.

We are now ready to present the construction of succinct reusable GRAM in the full security setting.

Ingredients. We use the following cryptographic tools:

• Unbounded ISR-ORAM scheme (OData,OProg) with strong localized randomness (Section 5.3.1).

• UMA-secure reusable garbled RAM scheme (Section 5.2).

• Puncturable PRF (PRF.Gen,PRF.Eval,PRF.Punc) (Section 3.3).

• Timed encryption scheme (TE.KeyGen,TE.Enc,TE.Dec,TE.Constrain) (Section 3.6). Let M
be the output length of TE.Enc when encrypting single bit messages.

Construction. We describe the succinct reusable (fully-secure) GRAM (GrbDB,GrbProg,GEval)
below:

• GrbDB(1λ, D, 1Q, Tmax): On input security parameter λ, database D and running time upper
bound Tmax,

1. Sample K ← TE.KeyGen(1λ).

2. For i ∈ [N], compute D′[i]← TE.Enc(K, 0λ, D[i]).

3. Compute (D∗, ck)← OData(1λ, D′).

4. Run UGRAM.GrbDB(1λ, D∗, T ′(Tmax)) to obtain (sk, D̂), where T ′(·) is a polynomial
corresponding to the running time blow-up of using the ORAM scheme.

5. Output D̂ as garbled memory and (sk,K, ck) as secret key SK.

• GrbProg(SK, P): On input secret key SK = (sk,K, ck) and a program P ,

1. Generate a puncturable PRF key K ′ ← PRF.Gen(1λ).

2. Compute P ∗ ← OProg(1λ, N, 1T , P, ck), where P ∗ runs in time T ′.

3. Construct a RAM program P ′ such that on input τ ∈ [T ′], do

(a) Compute K[τ]← TE.Constrain(K, τ).

(b) Let τ1, . . . , τm be the sequence of values guaranteed by the strong localized random-
ness property of the ORAM scheme.

(c) Let j ∈ [m − 1] such that τ ∈ [τj , τj+1) and CP ∗
CPU ← P ∗(τ). Output Cτ

CPU =
SCτ [C

P ∗
CPU, τ,K[τ], Ij ,K

′]. The circuit SC is described in figure 8.

33

Note: We need to pad the program P ′ such that the total size is |P | · poly(λ, logD, log T)
bits.

4. Compute and output P̂ ← UGRAM.GProg(sk, P ′).

Step circuit SCτ

Hardwired values: A circuit CCPU, step number τ , constrained key K[τ], interval Ij ,
and the key K ′.
Input: A Ciphertext cCPU and a encrypted data X.

(a) Compute decryption as rv = TE.Dec(K[τ], X) and st = TE.Dec(K[τ], cCPU).

(b) Compute RIj = PRF.Eval(K ′, Ij).

(c) Compute (st′, op, addr′,wb) = CCPU(st, rv;RIj).

(d) If τ = T ′, then output c′CPU = st′. Else, compute c′CPU ← TE.Enc(K[τ], st′).

(e) Else if op = write, compute X ′ ← TE.Enc(K[τ], τ,wb). Output (c′CPU, op, addr, X
′).

(f) Else if op = read, output (c′CPU, op, addr,⊥)

Figure 8: Description of step circuit Cτ
CPU[τ, Ij ,K[τ],K ′]

• GEvalD̂(P̂): With random access to garbled database D̂ and input P̂ , it computes and outputs

y = UGRAM.GEvalD̂(P̂).

Theorem 5.13. Assuming the existence of public-key functional encryption for circuits and un-
bounded PK-DEPIR, there exists a succinct reusable garbled RAM scheme.

Assuming the existence of updatable laconic oblivious transfer, there exists a weakly-succinct
B-bounded reusable garbled RAM.

Proof. Since the two constructions are very similar, the proof is also very similar. For this reason,
we will present a joint proof for both constructions, and only present the difference in the proof
when they come up.

The proof of correctness follows along the same lines as the proof of correctness of UMA-secure
succinct reusable garbled RAM. For succinctness of unbounded GRAM:

1. The running time of GrbDB is dominated by ORAM preparation and since we use unbounded
ISR-ORAM, the running time is poly(λ, log T, |D|).

2. The running time of GrbProg is dominated by UGRAM.GProg. In particular, by the efficiency
of UGRAM and ISR-ORAM, it runs in time poly(λ, log T, log |D|, |P |).

3. By the efficiency of UGRAM, the running time of GEval is poly(λ, t, |P |, log |D|).

For weak succinctness of bounded GRAM:

1. The running time of GrbDB is again dominated by ORAM preparation and in the bounded
case, we use the ordinary ORAM and the running time is poly(λ, log T,Q, |D|).

2. The running time of GrbProg is dominated by UGRAM.GProg, in particular, by the efficiency
of UGRAM and ORAM, it runs in time T · poly(λ, log T, logQ, log |D|, |P |) in the Q-bounded
case.

34

3. By the efficiency of UGRAM, the running time of GEval is poly(λ, t, |P |, logQ, log |D|).

We will now prove simulation security, which, as remarked earlier, is equivalent to indistin-
guishability security. The simulation security requires that the garbled RAM program P̃ is in-
distinguishable from garbling another RAM program which simply outputs PD() and does not
perform database read/writes. Formally we describe the simulator below.

• Simulator for GrbDB: On input 1λ, 1|D|, 1Q, Tmax, outputs GrbDB(1
λ, 0|D|, 1Q, Tmax).

• Simulator for GrbProg: On input the secret key from the previous database simulator SK and
output y, samples a PRF key K̃ and outputs UGRAM.GProg(sk, P̃ [K̃]), where P̃ [K̃] is the
following RAM program:

– On time τ < T ′, outputs a step circuit that outputs (c′CPU, op, addr, X
′), where c′CPU ←

TE.SimEnc(1λ, τ, |st|;PRFK̃(τ ||1||0||·)), addr ← PRFK̃(t||0||·), and if op is write, X ′ ←
TE.SimEnc(1λ, τ, |st|;PRFK̃(t||1||1||·)).

– On time τ = T ′, outputs a step circuit that outputs y.

We describe the hybrid sequence below. We start with the honest distribution, denoted by
HybT ′+1,0. For τ = T ′, T ′ − 1, . . . , 1, we perform the following hybrids.

Hybτ,1: We start with Hybτ+1,0 and replace all Q programs submitted by the adversary one by one,

by changing the τ -th step circuit into a dummy circuit that directly outputs the correct output of
the original step circuit. That is, let P ′

i be the program generated, as a function of Pi, according
to the scheme. We modify P ′

i such that on input τ , it outputs the τ th time step of Pi which is
hardwired inside P ′

i . Let Hybτ,1,i denote the hybrid distribution after we replace the i-th program.
We note that Hybτ+1,0 ≈c Hybτ,1,1 ≈c Hybτ,1,2 ≈c ... ≈c Hybτ,1,Q = Hybτ,1; the indistinguisha-

bility of every pair of consecutive hybrids follows from the UMA security of the reusable garbled
RAM scheme.

Hybτ,2: For each program, we replace timed encryption key K[τ] in the program generation circuit

for the RAM program P ′ to be K[τ − 1].

Claim 5.14. Assuming the UMA security of the reusable garbled RAM, the hybrids Hybτ,1 and
Hybτ,2 are computationally indistinguishable.

Proof. The modification in Hybτ,2 does not change the functionality since the last key is no longer
used as we are directly outputting the correct step circuit outputs for timestep τ . Thus, Hybτ,1 ≈c

Hybτ,2 also follows from the UMA security of the reusable garbled RAM scheme.

Hybτ,3: For each program, if τ < T ′, the output state is encrypted and we change the encryption of

the state from being generated honestly to using the simulated encryption TE.SimEnc(1λ, τ, |st|).
The following claim holds.

Claim 5.15. Assuming the simulation security of the timed encryption scheme, the hybrids Hybτ,2
and Hybτ,3 are computationally indistinguishable.

Hybτ,4: For each program, we change the write data from being generated honestly to using the

simulated encryption TE.SimEnc(1λ, τ, |wb|).
Similar to the indistinguishability of Hybτ,2 and Hybτ,3, the following claim also follows.

35

Claim 5.16. Assuming the simulation security of the timed encryption scheme, Hybτ,3 and Hybτ,4
are computationally indistinguishable.

Hybτ,5: For the bounded setting, this is the same hybrid as before.

For the unbounded setting, using strong localized randomness property of rewindable ORAM,
there exists some small efficiently computable interval Ij ∋ τ and another Ik associated with it.
For each program, we change all step circuits in [τk, τk+1) ∪ [τj , τj+1) to be dummy circuits that
output the correct output of their original counterparts.

The following claim holds.

Claim 5.17. Assuming the UMA security of the garbled RAM scheme, the hybrids Hybτ,4 and
Hybτ,5 are computationally indistinguishable.

Hybτ,6: For the bounded setting, for each program, we puncture the randomness tape PRF used

for ORAM at timestep τ and instead hardwire the output for the punctured parts.
For the unbounded setting, for each program, we appropriately puncture the randomness tape

PRF in Ij∪Ik, and use the punctured key to generate randomness, unless where the key is punctured
and we use hardwired PRF outputs instead.

Claim 5.18. Assuming the reusable security of the UMA garbled RAM scheme, the hybrids Hybτ,5
and Hybτ,6 are computationally indistinguishable.

Proof. Since the outputs of the step circuits are unchanged by the correctness of puncturable PRF,
the proof of the claim holds.

Hybτ,7: For each program, we replace ORAM randomness used by step circuits at step τ with fresh

randomness.
The following holds.

Claim 5.19. Assuming the security of puncturable PRF, the hybrids Hybτ,6 and Hybτ,7 are com-
putationally indistinguishable.

Hybτ,8: For the bounded setting, for each program, we change the memory access pattern for all

step circuits to be hardwired when generating the garbled program. We can do this since in the
bounded setting, we are only aiming for weak succinctness.

For the unbounded setting, for each program, we change the ck used for ISR-ORAM with strong
localized randomness to be generated by CkSim. Since we have hardwired all the correct memory
access pattern outside of Ij ∪ Ik, the behavior of the step circuits is preserved by the correctness of
CkSim.

The following holds.

Claim 5.20. Assuming the UMA security of the garbled RAM scheme, the hybrids Hybτ,7 and
Hybτ,8 are computationally indistinguishable.

Hybτ,9: For each program, we change the memory access to be random for step circuit τ .

Claim 5.21. Assuming either the security of ORAM for bounded setting, or the security of rewind-
able ORAM with strong localized randomness property as constructed in Theorem 5.12 for the un-
bounded setting, the hybrids Hybτ,8 and Hybτ,9 are computationally indistinguishable.

36

Proof. In the bounded setting, since all the memory access patterns are already hardwired in the
garbled programs, we no longer need access to the ORAM secret key for generating the garbled
program. Therefore, we can now reduce distinguishing the change to the security game of ORAM.

In the unbounded setting, we are going to invoke the strong localized randomness property of
the underlying ORAM in the construction for Theorem 5.12. Recall that the ISR-ORAM from
Theorem 5.12 consists of two parts: a PK-DEPIR and an ORAM with an initially-empty database
and strong localized randomness property. For memory accesses issued by PK-DEPIR, the local
randomness is equivocated and the memory access patterns are hardwired, thus we can reduce this
directly to the security of PK-DEPIR; and for memory accesses issued by the underlying ORAM,
again the local randomness is equivocated and the access patterns are hardwired, but furthermore,
we also generate the client key using CkSim, the view of the adversary corresponds to that in
the strong localized randomness game, and thus we can also reduce the indistinguishability to the
security game of the strong localized randomness property of ISR-ORAM.

Hybτ,10: We reverse the changes originally made in Hybτ,8.

The following holds.

Claim 5.22. Assuming the reusable security of UMA garbled RAM, the hybrids Hybτ,9 and Hybτ,10
are computationally indistinguishable.

Hybτ,11: For each program, we change the memory access location from random to being sampled

by PRFK̃(τ ||0||·), where K̃ is a new PRF key. (At a high level, we need this PRF key so that we
can sample a long random tape succinctly).

The following holds.

Claim 5.23. Assuming the security of PRFs, the hybrids Hybτ,10 and Hybτ,11 are computationally
indistinguishable.

Hybτ,12: We reverse the changes to ORAM random tape PRF, i.e. instead of using the punctured

PRF and hardwiring the output, we use the unpunctured PRF.
The following claim holds.

Claim 5.24. Assuming the reusable security of UMA-secure garbled RAM, the hybrids Hybτ,11 and
Hybτ,12 are computationally indistinguishable.

Hybτ,13: For each program, we change the random tape used by TE.SimEnc to be the output of

PRFK̃(τ ||1||·).
The following claim holds.

Claim 5.25. Assuming the security of PRFs, the hybrids Hybτ,12 and Hybτ,13 are computationally
indistinguishable.

Hybτ,14: For each program, we remove the simulation of the step circuit τ and replace it with a

dummy circuit that outputs pseudorandomness as above.
The following claim holds.

Claim 5.26. Assuming the reusable security of UMA garbled RAM, the hybrids Hybτ,13 and Hybτ,14
are computationally indistinguishable.

Hybτ,0: For each program, we undo the puncturing of ORAM random tape PRF key, i.e. instead

of outputting the punctured value, we use the unpunctured PRF.
The following claim holds.

37

Claim 5.27. Assuming the reusable security of UMA garbled RAMs, the distributions Hybτ,14 and
Hybτ,0 are computationally indistinguishable.

In the end, we arrive at Hyb1,0 where we observe that in this hybrid the garbled program does not
use any information from the original program P nor the data read from the database.

We observe that the output distribution of Hyb1,0 is computationally indistinguishable from the
output distribution of the simulator from the security of the timed encryption scheme, since the
only difference between Hyb1,0 and the simulator distribution is the way we generate the garbled
database. This completes the proof.

Bounded Setting. We observe that our techniques can be adapted to get bounded reusable
garbled RAM albeit satisfying the weaker succinctness property.

Theorem 5.28. Assuming the existence of selective-database updatable laconic oblivious transfer,
there exists a weakly-succinct bounded reusable garbled RAM scheme.

Proof. To put our construction to the Q-bounded-key setting, we implement the following changes
for the construction above:

1. UGRAM is replaced by the weakly-succinct reusable UMA GRAM we constructed in Theo-
rem 5.9;

2. Unbounded ISR-ORAM with strong localized randomness property is replaced with (Q·Tmax)-
bounded ISR-ORAM without strong localized randomness property, which can be constructed
from one way functions, as we show in Theorem 5.12.

Even though we lose the strong localized randomness property, since we only need weak succinct-
ness, we can get around the issue by hardwiring all the randomness for the program. Furthermore,
as we will only generate at most Q · Tmax queries to ISR-ORAM, intuitively, we can simply invoke
the security proof above to argue security for the new construction.

6 Collusion-Resistant Public-Key FE: from Circuits to RAMs

In this part, we show how to construct public-key FE for RAMs from public-key FE for circuits.
We use the following tools:

• Public-key FE scheme for circuits scheme F̃E.

• Succinct reusable garbled RAM scheme GRAM, where the length of randomness used in
algorithm GRAM.GrbProg is ℓ1, the length of garbled program is ℓ2 and the length of garbling
key is λ.

• Pseudorandom function PRF1 : K × {0, 1}λ → {0, 1}ℓ1 , and PRF2 : K × {0, 1}λ → {0, 1}ℓ2
where K is the space of keys of size λ.

We construct public-key functional encryption for RAMs scheme FE = (Setup,Enc,KeyGen,Dec) as
follows:

• Setup(1λ, T): On input security parameter λ and upper time bound T ,

1. Compute (F̃E.MSK, F̃E.pk)← F̃E.Setup(1λ).

38

2. Output MSK = F̃E.MSK, pk = F̃E.pk.

• Enc(pk, D): On input public key pk = F̃E.pk and database D,

1. Run the garbling database algorithm,

(D̂,GRAM.sk)← GRAM.GrbDB(1λ, D, T)

2. Choose a random PRF key K1 from PRF key space K.
3. Compute F̃E.CT← F̃E.Enc

(
pk, (GRAM.sk,K1, 0

λ, 0)
)
.

4. Output ciphertext as CT =
(
D̂, F̃E.CT

)
.

• KeyGen(MSK, P): On input master secret key MSK = (F̃E.MSK, T), a RAM program P ,

1. Sample random string τ ← {0, 1}λ, and r ← {0, 1}ℓ2 .

2. Compute F̃E.skP ← F̃E.KeyGen(F̃E.MSK, C[P, r, τ]) for circuit C[P, r, τ] as described in
Figure 9.

3. Output skP = F̃E.skP .

C [P, r, τ] (GRAM.sk,K1,K2, β)

Hardwired Values: RAM program P , random strings τ and r.
Input: (GRAM.sk,K1,K2, τ, β).
If β = 1, then output r ⊕ PRF2(K2, τ).
Else β = 0,

(a) Run GRAM.GrbProg(sk, P ;PRF1(K1, τ)) to obtain P̂ .

(b) Output garbled program P̂ .

Figure 9: Description of circuit C [P, r, τ] (GRAM.sk,K1,K2, β)

• DecCT (skP): On input secret key skP and random access to ciphertext CT, the decryption
algorithm does:

1. Parse the functional key skP as F̃E.skP .

2. Parse the ciphertext CT as (D̂, F̃E.CT).

3. Compute P̂ = F̃E.Dec
(
F̃E.skP , F̃E.CT

)
.

4. Compute and output y ← GRAM.GEval
(
P̂ , D̂

)
.

Correctness. For any RAM program P , databaseD, let CT← Enc(pk, D), and skP ← KeyGen(MSK, P),

where (pk,MSK) are generated as above. Parse CT as (D̂, F̃E.CT), and skP = F̃E.skP . The correct-

ness of F̃E guarantees that P̂ = GRAM.GrbProg(GRAM.sk, P ;PRF(K, τ)), where P̂ = Dec (skP ,CT).

By the correctness of pseudorandom function PRF and FE scheme F̃E, it follows that the output of

GEval
(
P̂ , D̂

)
= PD().

39

Succinctness. We analyze the succinctness property of the construction as follows:

• Setup(1λ, T) runs in time poly(λ, log(T)): first observe that F̃E.Setup(1λ) runs in time poly(λ, log(s)),
where s denotes the size of supported circuits. Now we determine an upper bound for s. By
the succinctness of GRAM, GrbProg(sk, ·;PRF1(K1, τ)) can be represented by a circuit of size
at most poly(λ, log(T), |P |); thus, |C| = poly(λ, log(T), |P |). Thus, s = poly(λ, log(T), |P |).

• Enc(pk, D) runs in time poly(λ, log(T), |D|): we first note that F̃E.Enc (pk,GRAM.sk) runs in
time poly(λ, log(s)), while GRAM.GrbDB(1λ, D, T) runs in time poly(λ, log(T), |D|).

• KeyGen(MSK, P) runs in time poly(λ, log(T), |P |): F̃E.KeyGen(F̃E.MSK, C [P, r, τ] (GRAM.sk,K1,
K2, β)) runs in time poly(λ, s) and from the first bullet, s = poly(λ, log(T), |P |).

• DecCT(skP) runs in time poly(λ, T): the runtime of F̃E.Dec(F̃E.skP , F̃E.CT) is poly(λ, log(T), |P |).
Moreover, from the succinctness of GRAM, the runtime of GEval

(
P̂ , D̂

)
is poly(λ, t), where t

is the time taken to execute PD().

Theorem 6.1. If F̃E is a public-key functional encryption for circuits satisfying indistinguishability
security, GRAM is a succinct reusable garbled RAM scheme and PRF is a secure pseudorandom
function, then the FE for RAMs construction FE described above is selectively secure.

Proof. We describe the hybrids below; in the first hybrid Hyb0,b, the challenger uses challenge bit

b
$←− {0, 1} to generate the ciphertexts and in the final hybrids Hyb4, all the parameters in the

system computationally hide b.

Hyb0,b: This correspondes to the real experiment. The challenger computes the following: (i)

(pk,MSK)← Setup(1λ, T), (ii) CTb ← Enc(MSK, Db), and (iii) {skP ← KeyGen(MSK, P)}. It sends
public key, functional keys and challenge ciphertext to A.

Hyb1,b: In this hybird, we change how the functional keys are generated for each query. The chal-

lenger chooses a key K2 from K for PRF2 and computes (D̂b,GRAM.skb)← GRAM.GrbDB(1λ, T,Db)
at the very beginning, then for each query Pi, where i ∈ [Q]

1. Sample a random string τ ← {0, 1}λ.

2. Compute P̂ = GRAM.GrbProg(GRAM.skb, P ;PRF1(K1, τ)).

3. Set r = P̂ ⊕ PRF2(K2, τ).

4. Compute and output functional key skP = F̃E.KeyGen(MSK, C[P, r, τ]).

The indistinguishability argument of hybrid Hyb0,b and Hyb1,b is based on the pseudorandom prop-
erty of PRF2(K2, τ), which is not used in any other place, and the randomness of string τ .

Hyb2,b: In this hybrid, we set the F̃E.CT part in challenge ciphertext as

F̃E.Enc
(
pk, (0λ, 0λ,K2, 1)

)
The indistinguishability between hybrid Hyb1,b and Hyb2,b is based on the indistinguishability se-

curity of FE scheme F̃E, since

C [P, r, τ] (GRAM.sk,K1, 0
λ, 0) = C [P, r, τ] (0λ, 0λ,K2, 1)

40

where r, τ are generated as described in hybrid Hyb2,b.

Hyb3,b: In this hybird, we change how the hardwired value τ is generated in each functional

key query. Instead of computing P̂ = GRAM.GrbProg(sk, P ;PRF1(K1, τ)), we compute P̂ =
GRAM.GrbProg(sk, P ;u), where u ∈ {0, 1}ℓ1 is a random string.

The indistinguishability of Hyb2,b and Hyb3,b follows from the security of pseudorandom function
PRF1 using key K1, which is not used anywhere else except for computing hardwired value τ .

The indistinguishability of Hyb3,0 and Hyb3,1 follows the reusable security of garbled RAM

scheme GRAM and query restraint PD0 = PD1 for program P .

7 Implication of FE for RAMs to Secret-Key DEPIR

In this section, we demonstrate the implication of FE for RAMs to secret key DEPIR. In particular,
an unbounded succinct FE for RAMs implies an unbounded secret-key DEPIR, even if FE is only
private-key. We require the private-key FE for RAMs scheme used here to satisfy function privacy,
which can be obtained using similar techniques for private-key FE for circuits in [BS18]. The
construction of SK-DEPIR Π = (KeyGen,Process,Query,Resp,Decode) can be based on FE for
RAMs scheme (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) as follows:

• KeyGen(1λ): On input security parameter λ, the generation runs FE.Setup(1λ, T,⊥) to obtain
FE.MSK. Output sk = FE.MSK.

• Process(sk, D): On input secret key sk and database D ∈ {0, 1}N , it computes and outputs
D̃ ← FE.Enc(FE.MSK, D).

• Query(sk, i): On input secret key sk and an index i ∈ [N], the query algorithm first chooses a
random bit r ∈ {0, 1} and computes FE.sk← KeyGen(FE.MSK, Pi,r) for program Pi,r described
in Figure 10. Then it outputs query q = FE.sk and local state r.

PD
i,r

Random access to D.
Hardwired: index i and randomness r.
Output: D[i]⊕ r.

Figure 10: Description of program Pi,r.

• RespD̃(q): On input query q and random access to encrypted database D̃, the response

algorithm computes and outputs a = FE.DecD̃(q).

• Decode(r, a): On input the local state r and answer a, the decoding algorithm outputs a⊕ r.

Correctness. Based on the correctness of private-key FE for RAMs, the output of algorithm
Resp is D[i]⊕ r. Then using the local state r, we can get the correct result from algorithm Decode.

41

Efficiency analysis. Based on succinctness statement of private-key FE for RAMs (c.f. Def-
inition 4.2), the runtime of (Gen,Query) are poly(λ, log T), where T is the runtime of program
described in Figure 10. The runtime of algorithm Process is poly(log T, |D|), algorithm Resp is
poly(λ, T) and algorithm Decode only depends on the length of entries of the database. Therefore,
the construction of secret-key PIR described above is doubly efficient.

Security analysis. We show below that the security of unbounded SK-DEPIR constructed as
above can be based on the security of unbounded private-key FE for RAMs.

Theorem 7.1. Assuming the existence of unbounded private-key FE for RAMs, there exists an
unbounded secret-key DEPIR (c.f. Remark 3.19).

Proof. We prove this theorem using a sequence of hybirds.

Hyb0: This is security game as adapted in Remark 3.19. For database D, the challenger first
computes D̃ ← FE.Enc(FE.MSK, D), where FE.MSK ← FE.Setup(1λ, T,⊥). For each index query
(i0,j , i0,j), where j ∈ [Q], the challenger sends back Query(sk, ib,j), where rb,j is computed as
rb,j = D[ib,j]⊕D[ib̄,j]⊕ rb̄,j , where rb̄,j is chosen randomly.

{Hybj}j∈[Q]: For each index query j ∈ [Q], the challenger computes FE.skb̄,j ← KeyGen(FE.MSK, Pib̄,j ,rb̄,j)
and sends qb̄,j = FE.skb̄,j to adversary. The indistinguishability argument between Hybj and Hybj−1

is based on the security of underlying bounded FE for RAMs scheme. In particular, we have

(D̂, {FE.skb̄,t}t∈[j], {{FE.skb,t}
Q
t=j+1}) ≈ (D̂, {FE.skb̄,t}t∈[j+1], {{FE.skb,t}

Q
t=j+2})

for program query (Pib,j ,rb,j , Pib̄,j ,rb̄,j) such that PD
ib,j ,rb,j

= PD
ib̄,j ,rb̄,j

. Therefore, in hybrid HybQ,

the response are all generated for index queries {ib̄,j}j , and we show the the following distribution

(D̂, {FE.skb,j}j∈[Q]) is indistinguishable from (D̂, {FE.skb̄,j}j∈[Q]), where (D̂, {FE.skb̄,j}j∈[Q]) is the
distribution in Hyb0.

Acknowledgement

We thank Shota Yamada and anonymous ASIACRYPT 2022 reviewers for improving our work.
Luowen Qian is supported by DARPA under Agreement No. HR00112020023.

References

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From se-
lective to adaptive security in functional encryption. In Annual Cryptology Conference,
pages 657–677, 2015.

[ACC+16] Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-Kai Lin.
Delegating ram computations with adaptive soundness and privacy. In Theory of
Cryptography Conference, pages 3–30. Springer, 2016.

[AIK06a] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. computational complexity, 15(2):115–162,
2006.

42

[AIK06b] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NCˆ0. SIAM
Journal on Computing, 36(4):845–888, 2006.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In Annual Cryptology Conference, pages 308–326, 2015.

[AL18] Prabhanjan Ananth and Alex Lombardi. Succinct garbling schemes from functional
encryption through a local simulation paradigm. In TCC, pages 455–472, 2018.

[AM18] Shweta Agrawal and Monosij Maitra. FE and iO for turing machines from minimal
assumptions. In Theory of Cryptography Conference, pages 473–512, 2018.

[AS16] Prabhanjan Ananth and Amit Sahai. Functional encryption for turing machines. In
Theory of Cryptography Conference, pages 125–153, 2016.

[AS17] Shweta Agrawal and Ishaan Preet Singh. Reusable garbled deterministic finite au-
tomata from learning with errors. In ICALP. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

[AV19] Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion secure
functional encryption. In TCC, pages 174–198, 2019.

[BCP16] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel ram and applica-
tions. In Theory of Cryptography Conference, pages 175–204. Springer, 2016.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudo-
random functions. In Public-Key Cryptography–PKC 2014, pages 501–519. Springer,
2014.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Siddartha Telang. Succinct
randomized encodings and their applications. In STOC, 2015.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In CCS, pages 784–796, 2012.

[BHW19] Elette Boyle, Justin Holmgren, and Mor Weiss. Permuted puzzles and cryptographic
hardness. In TCC, 2019.

[BIPW17] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a database
both locally and privately? In TCC, pages 662–693, 2017.

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anonymous
IBE, leakage resilience and circular security from new assumptions. In EUROCRYPT,
pages 535–564, 2018.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding
a nash equilibrium. In FOCS’15, pages 1480–1498. IEEE, 2015.

[BS18] Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-
key setting. Journal of Cryptology, 31(1):202–225, 2018.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Theory of Cryptography, pages 253–273. Springer, 2011.

43

[BV18] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. Journal of the ACM (JACM), 65(6):39, 2018.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their ap-
plications. In Advances in Cryptology-ASIACRYPT 2013, pages 280–300. Springer,
2013.

[CCC+16] Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai, Wei-Kai
Lin, and Hong-Sheng Zhou. Cryptography for parallel RAM from indistinguishability
obfuscation. In Madhu Sudan, editor, ITCS, pages 179–190. ACM, 2016.

[CCHR16] Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova. Adaptive succinct
garbled ram or: How to delegate your database. In Theory of Cryptography Conference,
pages 61–90. Springer, 2016.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni
Polychroniadou. Laconic oblivious transfer and its applications. In Annual Interna-
tional Cryptology Conference, pages 33–65, 2017.

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In ITCS, pages
169–178. ACM, 2016.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Indistin-
guishability obfuscation of iterated circuits and RAM programs. In STOC, 2015.

[CHR17] Ran Canetti, Justin Holmgren, and Silas Richelson. Towards doubly efficient private
information retrieval. In TCC, pages 694–726, 2017.

[CIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In Advances in Cryptology - CRYPTO 2013, pages 519–535, 2013.

[CQ19] Kai-Min Chung and Luowen Qian. Adaptively secure garbling schemes for parallel
computations. In Dennis Hofheinz and Alon Rosen, editors, TCC, 2019.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS 2013, pages 40–49, 2013.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In TCC, pages 74–94, 2014.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. Journal of the ACM (JACM), 33(4):792–807, 1986.

[GGMP16] Sanjam Garg, Divya Gupta, Peihan Miao, and Omkant Pandey. Secure multiparty
ram computation in constant rounds. In TCC, pages 491–520, 2016.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled RAM revisited. In EUROCRYPT, pages 405–422, 2014.

[GHRW14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private
RAM computation. In FOCS, pages 404–413, 2014.

44

[GKM+19] Rishab Goyal, Sam Kim, Nathan Manohar, Brent Waters, and David J Wu. Wa-
termarking public-key cryptographic primitives. In Annual International Cryptology
Conference, pages 367–398, 2019.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
STOC’13., pages 555–564, 2013.

[GLO15] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled RAM. In Venkatesan
Guruswami, editor, FOCS, pages 210–229. IEEE, 2015.

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled RAM
from one-way functions. In STOC’15, pages 449–458. ACM, 2015.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
RAMs. Journal of the ACM (JACM), 43(3):431–473, 1996.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press, 2001.

[GOS18] Sanjam Garg, Rafail Ostrovsky, and Akshayaram Srinivasan. Adaptive garbled ram
from laconic oblivious transfer. In CRYPTO, pages 515–544, 2018.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a nash equilibrium. In Annual International Cryptology
Conference, pages 579–604, 2016.

[GS18a] Sanjam Garg and Akshayaram Srinivasan. A simple construction of iO for Turing
machines. In TCC, pages 425–454, 2018.

[GS18b] Sanjam Garg and Akshayaram Srinivasan. Adaptively secure garbling with near opti-
mal online complexity. In EUROCRYPT, pages 535–565, 2018.

[HHWW19] Ariel Hamlin, Justin Holmgren, Mor Weiss, and Daniel Wichs. On the plausibility of
fully homomorphic encryption for rams. In CRYPTO, 2019.

[HOWW19] Ariel Hamlin, Rafail Ostrovsky, Mor Weiss, and Daniel Wichs. Private anonymous
data access. In EUROCRYPT, pages 244–273, 2019.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability ob-
fuscation for turing machines with unbounded memory. In STOC, 2015.

[KMUW18] Lucas Kowalczyk, Tal Malkin, Jonathan Ullman, and Daniel Wichs. Hardness of
non-interactive differential privacy from one-way functions. In Annual International
Cryptology Conference, pages 437–466, 2018.

[KNTY19] Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka, and Takashi Yamakawa. Adap-
tively secure and succinct functional encryption: Improving security and efficiency,
simultaneously. In CRYPTO, pages 521–551, 2019.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security, pages 669–684.
ACM, 2013.

45

[KY18] Marcel Keller and Avishay Yanai. Efficient maliciously secure multiparty computa-
tion for ram. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 91–124. Springer, 2018.

[LO17] Steve Lu and Rafail Ostrovsky. Black-box parallel garbled RAM. In CRYPTO, 2017.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of cryptology, 22(2):161–188, 2009.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps
and block-wise local prgs. In CRYPTO, pages 630–660, 2017.

[LZ17] Qipeng Liu and Mark Zhandry. Decomposable obfuscation: a framework for building
applications of obfuscation from polynomial hardness. In Theory of Cryptography
Conference, pages 138–169. Springer, 2017.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010:556, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in
Cryptology - EUROCRYPT 2005, pages 457–473, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, Symposium on Theory of Com-
puting, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 475–484.
ACM, 2014.

[Yao82] Andrew C Yao. Protocols for secure computations. In 23rd annual symposium on
foundations of computer science (sfcs 1982), pages 160–164. IEEE, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167, 1986.

46

	Introduction
	Contributions

	Technical Overview
	Our Template
	Starting Point: Simpler, Better and Modular Succinct GRAM
	Succinct Garbled RAM: Achieving Reusability
	Bootstrapping Step: From FE for Circuits to FE for RAMs
	Organization

	Preliminaries
	Garbled Circuits
	Public-Key Functional Encryption
	Puncturable PRF
	Indistinguishability Obfuscation
	Selective-Database Laconic Oblivious Transfer
	Timed Encryption
	Rewindable ORAM
	DEPIR

	Functional Encryption for RAMs
	Succinct Reusable Garbled RAM
	Syntax and Security Definition
	Succinct UMA Reusable GRAM
	Succinct Reusable GRAM: From UMA to Full Security
	Rewindable ORAM with Strong Localized Randomness

	Collusion-Resistant Public-Key FE: from Circuits to RAMs
	Implication of FE for RAMs to Secret-Key DEPIR

