
Asymptotically Free Broadcast in

Constant Expected Time via Packed VSS

Ittai Abraham∗ Gilad Asharov† Shravani Patil‡ Arpita Patra§

Abstract

Broadcast is an essential primitive for secure computation. We focus in this paper on optimal
resilience (i.e., when the number of corrupted parties t is less than a third of the computing
parties n), and with no setup or cryptographic assumptions.

While broadcast with worst case t rounds is impossible, it has been shown [Feldman and
Micali STOC’88, Katz and Koo CRYPTO’06] how to construct protocols with expected con-
stant number of rounds in the private channel model. However, those constructions have large
communication complexity, specifically O(n2L+ n6 log n) expected number of bits transmitted
for broadcasting a message of length L. This leads to a significant communication blowup in
secure computation protocols in this setting.

In this paper, we substantially improve the communication complexity of broadcast in con-
stant expected time. Specifically, the expected communication complexity of our protocol is
O(nL + n4 log n). For messages of length L = Ω(n3 log n), our broadcast has no asymptotic
overhead (up to expectation), as each party has to send or receive O(n3 log n) bits. We also
consider parallel broadcast, where n parties wish to broadcast L bit messages in parallel. Our
protocol has no asymptotic overhead for L = Ω(n2 log n), which is a common communication
pattern in perfectly secure MPC protocols. For instance, it is common that all parties share
their inputs simultaneously at the same round, and verifiable secret sharing protocols require
the dealer to broadcast a total of O(n2 log n) bits.

As an independent interest, our broadcast is achieved by a packed verifiable secret sharing, a
new notion that we introduce. We show a protocol that verifies O(n) secrets simultaneously with
the same cost of verifying just a single secret. This improves by a factor of n the state-of-the-art.

∗VMWare Research. iabraham@vmware.com
†Department of Computer Science, Bar-Ilan University, Israel. Gilad.Asharov@biu.ac.il. Sponsored by the

Israel Science Foundation (grant No. 2439/20), by JPM Faculty Research Award, by the BIU Center for Research
in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime
Minister’s Office, and by the European Union’s Horizon 2020 research and innovation programme under the Marie
Sk lodowska-Curie grant agreement No. 891234.

‡Indian Institute of Science, Bangalore, India. shravanip@iisc.ac.in. Supported by DST National Mission on
Interdisciplinary Cyber-Physical Systems (NM-ICPS) 2020-2025.

§Indian Institute of Science, Bangalore, India. arpita@iisc.ac.in. Supported by DST National Mission on Inter-
disciplinary Cyber-Physical Systems (NM-ICPS) 2020-2025, Google India Faculty Award 2020, and SERB MATRICS
(Theoretical Sciences) Grant 2020-2023.

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Applications and Discussions . 5
1.3 Related Work . 6

2 Technical Overview 7
2.1 Improved Broadcast in Constant Expected Rounds 7
2.2 Packed Verifiable Secret Sharing . 10
2.3 Optimal Gradecast . 12

3 Preliminaries 13
3.1 Security Definition . 14
3.2 Bivariate Polynomials . 14
3.3 Finding (n, t)-STAR . 15

4 Packed Verifiable Secret Sharing 16

5 Balanced Gradecast 21
5.1 The Gradecast Protocol . 22
5.2 Making the Protocol Balanced . 26
5.3 Conclusions . 27

6 Multi-Moderated Packed Secret Sharing 28
6.1 Reconstruction . 33

7 Oblivious Leader Election 34

8 Broadcast 37
8.1 Byzantine Agreement . 37
8.2 Broadcast and Parallel-broadcast . 40

1 Introduction

A common practice in designing secure protocols is to describe the protocol in the broadcast-
hybrid model, i.e., to assume the availability of a broadcast channel. Such a channel allows a
distinguished party to send a message while guaranteeing that all parties receive and agree on the
same message. Assuming the availability of a broadcast channel is reasonable only in a restricted
setting, for instance, when the parties are geographically close and can use radio waves. In most
settings, particularly when executing the protocol over the Internet, parties have to implement this
broadcast channel over point-to-point channels.

The cost associated with the implementation of the broadcast channel is often neglected when
designing secure protocols. In some settings, the implementation overhead is a real obstacle in
practice. In this paper, we focus on the most demanding setting: perfect security with optimal
resilience.

Perfect security means that the protocol cannot rely on any computational assumptions, and
the error probability of the protocol is zero. Optimal resilience means that the number of parties
that the adversary controls is bounded by t < n/3, where n is the total number of parties. This
bound is known to be tight, as a perfectly-secure broadcast protocol tolerating n/3 corrupted
parties or more is impossible to construct [LSP82, PSL80], even when a constant error probability
is allowed [AN21].

Asymptotically-free broadcast. What is the best implementation of broadcast that we can
hope for? For broadcasting an L bit message, consider the ideal trusted party that implements an
“ideal broadcast”. Since each party has to receive L bits, the total communication is O(nL). To
avoid bottlenecks, we would also prefer balanced protocols where all parties have to communicate
roughly the same number of bits, i.e., O(L), including the sender.

Regarding the number of rounds, it has been shown that for any broadcast protocol with perfect
security there exists an execution that requires t+1 rounds [FL82]. Therefore, a protocol that runs
in strict constant number of rounds is impossible to achieve. The seminal works of Rabin and Ben-
Or [Rab83, Ben83] demonstrated that those limitations can be overcome by using randomization.
We define asymptotically-free broadcast as a balanced broadcast protocol that runs in expected
constant number of rounds and with (expected) communication complexity of O(nL).

There are, in general, two approaches for implementing broadcast in our setting. These ap-
proaches provide an intriguing tradeoff between communication and round complexity:

• Low communication complexity, high number of rounds: For broadcasting a single
bit, the first approach [CW89, BGP92] requires O(n2) bits of communication complexity,
which is asymptotically optimal for any deterministic broadcast protocols [DR82], or in gen-
eral, O(nL + n2 log n) bits for broadcasting a message of size L bits via a perfect broadcast
extension protocol [Che21].1 This comes at the expense of having Θ(n) rounds.

• High communication complexity, constant expected number of rounds: The sec-
ond approach, originated by the seminal work of Feldman and Micali [FM88], followed by
substantial improvements and simplifications by Katz and Koo [KK06], requires significant
communication complexity of O(n6 log n) bits in expectation for broadcasting just a single bit,

1Broadcast extension protocols handle long messages efficiently at the cost of a small number of single-bit broad-
casts.

1

or O(n2L + n6 log n) bits for a message of L bits.2 However, they work in expected constant
number of rounds.

To get a sense of how the above translates to practice, consider a network with 200ms delay
per round-trip (such a delay is relatively high, but not unusual, see [lat]), and n = 300. Using
the first type of protocol, ≈ 300 rounds are translated to a delay of 1 minute. Then, consider for
instance computing the celebrated protocol of Ben-Or, Goldwasser and Wigderson [BGW88] on an
arithmetic circuit with depth 30. In each layer of the circuit the parties have to use broadcast,
and thus the execution would take at least 30 minutes. The second type of protocols require at
least Ω(n6 log n) bits of communication. The protocol is balanced and each party sends or receives
n5 log n bits ≈ 2.4 terabytes. Using 1Gbps channel, this is a delay of 5.4 hours. Clearly, both
approaches are not ideal.

This current state of the affairs calls for the design of faster broadcast protocols and in particular,
understanding better the tradeoff between round complexity and communication complexity.

Why perfect security? Our main motivation for studying broadcast is for perfectly secure mul-
tiparty computation. Perfect security provides the strongest possible security guarantee. It does not
rely on any intractable assumptions and provides unconditional, quantum, and everlasting security.
Protocols with perfect security remain adaptively secure (with some caveats [CDD+01, ACS22])
and secure under universal composition [KLR06]. Perfect broadcast is an essential primitive in
generic perfectly secure protocols.

Even if we relax our goals and aim for statistical security only, the situation is not much better.
Specifically, the best upper bounds that we have are in fact already perfectly secure [CW89, BGP92,
KK06, Pat11, NRS+20, Che21]. That is, current statistically secure results do not help in achieving
a better communication complexity vs round complexity tradeoff relative to the current perfect
security results. We remark that in the computational setting, in contrast, the situation is much
better. Asymptotically-free broadcast with f < n/2 can be achieved assuming threshold signatures
and setup assumption in constant expected rounds and with O(n2 + nL) communication [KK06,
ADD+19, SBKN21].

1.1 Our Results

We provide a significant improvement in the communication complexity of broadcast with perfect
security and optimal resilience in the presence of a static adversary. Towards that end, we also
improve a pivotal building block in secure computation, namely, verifiable secret sharing (VSS).
Our new VSS has an O(n) complexity improvement that may be of independent interest. We
present our results in a top-down fashion. Our main result is:

Theorem 1.1. There exists a perfectly secure, balanced, broadcast protocol with optimal resilience,
which allows a dealer to send L bits at the communication cost of O(nL) bits, plus O(n4 log n) ex-
pected bits. The protocol runs in constant expected number of rounds and assumes private channels.

Previously, Katz and Koo [KK06] achieved O(n2L) bits plus O(n6 log n) expected number of
bits. For messages of size L = Ω(n3 log n) bits, the total communication of our protocol is O(nL)

2Using broadcast extension of [NRS+20] we can bring the asymptotic cost to O(nL)+E(O(n7 logn)) bits. However,
the minimum message size to achieve this L = Ω(n6 logn). This is prohibitively high even for n = 100.

2

bits. Thus, we say that our protocol is asymptotically free for messages of size L = Ω(n3 log n)
bits. We recall that [KK06] together with [NRS+20] are also asymptotically free albeit only for
prohibitively large value of L (= Ω(n6 log n)). Table 1 compares our work to the state of the art
in broadcast protocols.

To get a sense from a practical perspective, for broadcasting a single bit with n = 300, our
protocol requires each party to send/receive roughly n3 log n ≈ 27 MB (as opposed to ≈ 2.4
terabytes by [KK06]). Using a 1Gbps channel, this is 200ms. For broadcasting a message of size
≈ 27 MB, each party still has to send/receive roughly the same size of this message, and the
broadcast is asymptotically free in that case.

Parallel composition of broadcast. In MPC, protocols often instruct the n parties to broad-
cast messages of the same length L in parallel at the same round. For instance, in the protocol
of [BGW88], all parties share their input at the same round, and for verifying the secret, each party
needs to broadcast L = O(n2 log n) bits.3 In fact, the notion of parallel-broadcast goes back to the
work of Pease et al. [PSL80]. We have the following extension to our main result:

Corollary 1.2. There exists a perfectly-secure, balanced, parallel-broadcast protocol with optimal
resilience, which allows n dealers to send messages of size L bits each, at the communication cost
of O(n2L) bits, plus O(n4 log n) expected bits. The protocol runs in constant expected number of
rounds.

For message of size L = O(n2 log n) bits, which is common in MPC, our broadcast is asymptot-
ically optimal. We obtain a cost of O(n4 log n) bits in expectation, with expected constant rounds.
Note that each party receives O(nL) bits, and therefore O(n2L) = O(n4 log n) bits is the best that
one can hope for. Again, the protocol is balanced, which means that each party sends or receives
only O(nL) bits.

For comparison, the other approach for broadcast based on [CW89, BGP92, Che21] requires
total O(n4 log n) bits for this task, but with Θ(n) rounds. We refer again to Table 1 for comparison.

To get a practical sense of those complexities, when n = 300 and parties have to broadcast
simultaneously messages of size L, our protocol is asymptotically optimal for L = n2 log n ≈ 90KB.

Packed verifiable secret sharing. A pivotal building block in our construction, as well as per-
fectly secure multiparty protocols is verifiable secret sharing (VSS), originally introduced by Chor
et al. [CGMA85]. It allows a dealer to distribute a secret to n parties such that no share reveal
any information about the secret, and the parties can verify, already at the sharing phase, that the
reconstruction phase would be successful.

To share a secret in the semi-honest setting, the dealer embeds its secret in a degree-t univariate
polynomial, and it has to communicate O(n) field elements. In the malicious setting, the dealer
embeds its secret in a bivariate polynomial of degree-t in both variables [BGW88, Fel88]. The
dealer then has to communicate O(n2) field elements to share its secret. An intriguing question is

3In fact, in each round of the protocol, each party performs O(n) verifiable secret sharings (VSSs), i.e., it has to
broadcast O(n3 logn) bits. In [AAY21] it has been shown how to reduce it to O(1) VSSs per party, i.e., each party
might have to broadcast O(n2 logn).

4Since the broadcast extension protocol of [Che21] requires O(n) rounds, combining [KK06] with [Che21] results
in linear-round complexity and a worse communication complexity than what the second row ([CW89, BGP92] +
[Che21]) provides.

3

Task Reference Total P2P (in bits) Rounds

1× BC(L)

[CW89, BGP92] O(n2L) O(n)
[CW89, BGP92] + [Che21] O(nL+ n2 log n) O(n)

[KK06] O(n2L) + E(O(n6 log n)) E(O(1))
[KK06] + [NRS+20] O(nL) + E(O(n7 log n)) E(O(1))

Our work O(nL) + E(O(n4 log n))O(nL) + E(O(n4 log n))O(nL) + E(O(n4 log n)) E(O(1))E(O(1))E(O(1))

n× BC(L)
[CW89, BGP92] O(n3L) O(n)

[KK06] O(n3L) + E(O(n6 log n)) E(O(1))
[KK06] + [NRS+20]4 O(n2L) + E(O(n7 log n)) E(O(1))

Our work O(n2L) + E(O(n4 log n))O(n2L) + E(O(n4 log n))O(n2L) + E(O(n4 log n)) E(O(1))E(O(1))E(O(1))

Table 1: Comparison of communication complexity of our work with the state-of-the-art broadcast.
1× BC(L) refers to the task of a single dealer broadcasting a L-element message.

n× BC(L) refers to the task of n dealers broadcasting a L-element message in parallel.

whether this gap between the semi-honest (where the dealer has to encode its secret in a structure
of size O(n)) and the malicious setting (where the dealer has to encode its secret in a structure of
size O(n2)) is necessary. While we do not answer this question, we show that the dealer can pack
O(n) secrets, simultaneously in one bivariate polynomial. Then, it can share it at the same cost as
sharing a single VSS, achieving an overhead of O(n) per secret. We show:

Theorem 1.3. Given a synchronous network with pairwise private channels and a broadcast chan-
nel, there exists a perfectly secure packed VSS protocol with optimal resilience, which has a commu-
nication complexity of O(n2 log n) bits over point-to-point channels and O(n2 log n) bits broadcast
for sharing O(n) secret field elements (i.e., O(n log n) bits) in strict O(1) rounds. The optimistic
case (where all the parties behave honestly) does not use the broadcast channel in the protocol.

The best previous results achieve O(n3 log n) (point-to-point and broadcast) for sharing O(n)
secret elements [BGW88, Fel88, KKK08, AKP20], this is an improvement by a factor of n in
communication complexity.

Packing k secrets into one polynomial is a known technique, proposed by Franklin and Yung [FY92].
It was previously used in Shamir’s secret sharing scheme. However, it comes with the following
price: While Shamir’s secret sharing allows protecting against even n−1 corrupted parties, packing
k secrets in one polynomial achieves privacy against only n− k − 1 parties. In the malicious case,
VSS of a single secret is possible only when the number of corruption satisfies t < n/3. The idea
of packing many secrets without trading off the allowed threshold of corruption has been explored
by Damg̊ard et al. [DDGN14]. However, it is achieved at the expense of having O(n) rounds.
In contrast, our packed verifiable secret sharing enables packing O(n) secrets while keeping the
threshold exactly the same and ensuring O(1) round complexity. Compared to a constant round
VSS of a single secret, we obtain packed secret sharing completely for free (up to small hidden
constants in the O notation of the above theorem). Lastly, the same result as ours is achieved in
the asynchronous setting with the optimal resilience of t < n/4 in [CP16, CHP13].

Optimal gradecast for Ω(n2) messages. Another building block that we improve along the
way is gradecast. Gradecast is a relaxation of broadcast introduced by Feldman and Micali [FM88]
(“graded-broadcast”). It allows a distinguished dealer to transmit a message, and each party
outputs the message it receives together with a grade g ∈ {0, 1, 2}. If the dealer is honest, all

4

honest parties receive the same message and grade 2. If the dealer is corrupted, but some honest
party outputs grade 2, it is guaranteed that all honest parties output the same message (though
some might have grade 1 only). We show that:

Theorem 1.4. There exists a perfectly secure gradecast protocol with optimal resilience, which
allows a party to send a message of size L bits with a communication cost of O(nL+ n3 log n) bits
and in O(1) rounds. The protocol is balanced.

Note that this result is optimal when L = Ω(n2 log n) bits as each party has to receive L bits
even in an ideal implementation. Previously, the best gradecast protocol in the perfect security
setting [FM88] required O(n2L) bits of communication.

1.2 Applications and Discussions

Applications: Perfect secure computation. We demonstrate the potential speed up of pro-
tocols in perfect secure computation using our broadcast. There are, in general, two lines of works
in perfectly secure MPC, resulting again in an intriguing tradeoff between round complexity and
communication complexity.

The line of work [BGW88, CCD88, GRR98, CDM00, ALR11, AAY21] achieves constant round
per multiplication and round complexity of O(depth(C)), where C is the arithmetic circuit that the
parties jointly compute. The communication complexity of those protocols results in O(n3|C| log n)
bits over point-to-point channels in the optimistic case, and an additional O(n3|C| log n) bits over
the broadcast channel in the pessimistic case (recall that this means that each party has to send
or receive a total of O(n4|C| log n) bits). In a nutshell, the protocol requires each party to per-
form O(1) VSSs in parallel for each multiplication gate in the circuit, and recall that in each VSS
the dealer broadcasts O(n2 log n) bits. This is exactly the setting in which our parallel broad-
cast gives asymptotically free broadcast (Corollary 1.2). Thus, we get a protocol with a total
of O(n4|C| log n) bits (expected) and expected O(depth(C)) rounds over point-to-point channels.
Previously, using [KK06], this would have been resulted in expected O(n6|C| log n) communication
complexity with O(depth(C)) rounds.

Another line of work [HMP00, BTH08, GLS19] in perfectly-secure MPC is based on the player
elimination framework (introduced by Hirt and Maurer and Przydatek [HMP00]). Those protocol
identify parties that may misbehave and exclude them from the execution. Those protocols result
in a total of O((n|C| + n3) log n) bits over point-to-point channels, and O(n log n) bits over the
broadcast channel. However, this comes at the expense of O(depth(C) + n) rounds. This can
be compiled to O((n|C| + n3) log n) communication complexity with O(n2 + depth(C)) rounds
using [CW89, BGP92], or to O((n|C|+n7) log n) communication complexity with O(n+depth(C))
rounds (expected) using [KK06]. Using our broadcast, the communication complexity is O((n|C|+
n5) log n) with O(n+ depth(C)) rounds (expected). We remark that in many setting, a factor n in
round complexity should not be treated the same as communication complexity. Roundtrips are
slow (e.g., 200ms delay for each roundtrip), whereas communication channels can send relatively
large messages fast (1 or even 10Gbps).

On sequential and parallel composition of our broadcast. Like Feldman and Micali [FM88]
and Katz and Koo [KK06] (and any o(t)-round expected broadcast protocol), our protocol cannot
provide simultaneous termination. Sequentially composing such protocols is discussed in Lindell,
Lysyanskaya and Rabin [LLR02], Katz and Koo [KK06] and Cohen et al. [CCGZ19]. Regarding

5

parallel composition, unlike the black-box parallel composition of broadcasts studied by Ben-Or
and El-Yaniv [BE03], we rely on the idea of Fitzi and Garay [FG03] that applies to OLE-based
protocols. The idea is that multiple broadcast sub-routines are run in parallel when only a single
election per iteration is required for all these sub-routines. This reduces the overall cost and also
guarantees that parallel broadcast is also constant expected number of rounds.

Modeling broadcast functionalities. We use standalone, simulation-based definition as in
[Can00]. The standalone definition does not capture rounds in the ideal functionalities, or the
fact that there is no simultaneous termination. The work of Cohen et al. [CCGZ19] shows that
one can simply treat the broadcast without simultaneous termination as an ideal broadcast as we
provide (which, in particular, has simultaneous and deterministic termination). Moreover, it allows
compiling a protocol using deterministic-termination hybrids (i.e., like our ideal functionalities)
into a protocol that uses expected-constant-round protocols for emulating those hybrids (i.e,. as
our protocols) while preserving the expected round complexity of the protocol. We remark that
in order to apply the compiler of [CCGZ19], the functionalities need to follow a structure of (1)
input from all parties; (2) leakage to the adversary; (3) output. For simplicity, we did not write
our functionalities using this specific format, but it is clear that our functionalities can be written
in this style.

Our broadcast with strict-polynomial run time. Protocols in constant expected number of
rounds might never terminate (although, with extremely small probability). Our protocols can be
transformed into a protocol that runs in strict polynomial time using the approach of Goldreich
and Petrank [GP90]: Specifically, after O(n) attempts to terminate, the parties can run the O(n)
rounds protocol with guaranteed termination. See also [CCGZ19].

1.3 Related Work

We review the related works below. Error-free byzantine agreement and broadcast are known to
be possible only if t < n/3 holds [LSP82, PSL80]. Moreover, Fischer and Lynch [FL82] showed
a lower bound of t + 1 rounds for any deterministic byzantine agreement protocol or broadcast
protocol. Faced with this barrier, Rabin [Rab83] and Ben-Or [Ben83] independently studied the
effect of randomization on round complexity, which eventually culminated into the work of Feldman
and Micali [FM97] who gave an expected constant round protocol for byzantine agreement with
optimal resilience. Improving over this work, the protocol of [KK06] requires a communication of
O(n2L+ n6 log n) for a message of size L bits, while achieving the advantage of expected constant
rounds. In regards to the communication complexity, Dolev and Reischuk [DR85] established
a lower bound of n2 bits for deterministic broadcast or agreement on a single bit. With a round
complexity ofO(n), [CW89, BGP92] achieve a broadcast protocol with a communication complexity
of O(n2) bits.

We quickly recall the state of the art perfectly-secure broadcast extension protocols. Recall that
these protocols aim to achieve the optimal complexity of O(nL) bits for sufficiently large message
size L and utilize a protocol for bit broadcast. The protocol of [Pat11, GP21] communicates O(nL)
bits over point-to-point channels and O(n2) bits through a bit-broadcast protocol. The work of
[NRS+20] improves the number of bits sent through a bit-broadcast protocol to O(n) bits. Both
these extension protocols are constant round. The recent work of [Che21] presents a protocol

6

that communicates O(nL + n2 log n) bits over point-to-point channels and a single bit through a
bit-broadcast protocol. However, the round complexity of this protocol is O(n).

A few other works in different settings are given below. The notion of parallel broadcast was
recently explored by Tsimos et al. [TLP20] in the dishonest majority setting under cryptographic
assumptions. Hirt and Zikas [HZ10] studied the adaptive security of broadcast in the UC model,
and improved the resilience of the ideal functionality to adaptive corruptions.

2 Technical Overview

We describe the high-level overview of our techniques. We start with our improved broadcast in
Section 2.1, and then describe packed VSS in Section 2.2, followed by the gradecast protocol in
Section 2.3. To aid readability, we summarize our different primitives and the relationship between
them in Figure 1. In each one of the those primitives we improve over the previous works.

Primitive P2P Broadcast Reference Remarks

Broadcast O(nL) + E(O(n4 log n)) – Section 8.2 L bit message
Byzantine Agreement O(n2) + E(O(n4 log n)) – Section 8.1 –

Gradecast O(nL+ n3 log n) – Section 5 L bit message
Oblivious Leader Election O(n4 log n) – Section 7 –
Multi-moderated VSS O(n4 log n) – Section 6 Sharing O(n) values

Packed VSS (w. Gradecast) O(n3 log n) – Section 4 Sharing O(n) values
Packed VSS (w. Broadcast) O(n2 log n) O(n2 log n) Section 4 Sharing O(n) values

Broadcast

Byzantine Agreement
(BA)

Oblivious Leader Election
(OLE) Multi-moderated VSS

Gradecast

Packed VSS
(w. Gradecast)

Figure 1: Roadmap of our building blocks. All lines are compositions, except for the line from Multi-moderated VSS to
Packed VSS, which is a white-box modification.

2.1 Improved Broadcast in Constant Expected Rounds

Our starting point is a high-level overview of the broadcast protocol of Katz and Koo [KK06], which
simplifies and improves the construction of Feldman and Micali [FM88]. Following the approach of
Turpin and Coan [TC84] for broadcast extension closely, broadcast can be reduced to two primitives:
Gradecast and Byzantine agreement.

1. Gradecast: A gradecast is a relaxation of broadcast, where a distinguished dealer transmits
a message, and parties output the message together with a grade. If the dealer is honest,
all honest parties are guaranteed to output the dealer’s message together with a grade 2.
Moreover, if the dealer is corrupted and one honest party outputs grade 2, then it is guaranteed
that all other honest parties also output the same message, though maybe with a grade 1.
Looking ahead, we show how to improve gradecast of message of length L bits from O(n2L)

7

bits to O(nL + n3 log n) bits, which is optimal for messages of L = Ω(n2 log n) bits. We
overview our construction in Section 2.3.

2. Byzantine agreement: In Byzantine agreement all parties hold some bit as input, and all
of them output a bit at the end of the protocol. If all honest parties hold the same value,
then it is guaranteed that the output of all parties would be that value. Otherwise, it is
guaranteed that the honest parties would agree and output the same (arbitrary) bit.

To implement broadcast, the dealer gradecasts its messageM and then the parties run Byzantine
agreement (BA) on the grade they received (using 1 as input when the grade of the gradecast is 2,
and 0 otherwise). Then, if the output of the BA is 1, each party outputs the message it received
from the gradecast, and otherwise it outputs ⊥.

If the dealer is honest, then all honest parties receive grade 2 in the gradecast, and all would
agree in the BA that the grade is 2. In that case, they all output M . If the dealer is corrupted,
and all honest parties received grade 0 or 1 in the gradecast, they would all use 0 in the Byzantine
agreement, and all would output ⊥. The remaining case is when some honest parties receives grade
2 in the gradecast, and some receive 1. However, once there is a single honest party that received
grade 2 in the gradecast, it is guaranteed that all honest parties hold the same message M . The
Byzantine agreement can then go either way (causing all to output M or ⊥), but agreement is
guaranteed.

Oblivious leader election. It has been shown that to implement a Byzantine agreement (on
a single bit), it suffices to obliviously elect a leader, i.e., a random party among the parties. In a
nutshell, a Byzantine agreement proceeds in iterations, where parties exchange the bits they believe
that the output should be and try to see if there is an agreement on the output. When there is no
clear indication of which bit should be the output, the parties try to see if there is an agreement
on the output bit suggested by the elected leader. A corrupted leader might send different bits to
different parties. However, once an honest leader is elected, it must have sent the same bit to all
parties. In that case the protocol guarantees that all honest parties will agree in the next iteration
on the output bit suggested by the leader, and halt.

Oblivious leader election is a protocol where the parties have no input, and the goal is to agree
on a random value in {1, . . . , n}. It might have three different outcomes: (1) All parties agree on
the same random index j ∈ {1, . . . , n}, and it also holds that Pj is honest; this is the preferable
outcome; (2) All parties agree on the same index i ∈ {1, . . . , n}, but Pi is corrupted; (3) The
parties do not agree on the index of the party elected. The goal is to achieve the outcome (1) with
constant probability, say ≥ 1/2. Recall that once outcome (1) occurs then the Byzantine agreement
succeeds. Achieving outcome (1) with constant number of rounds and with constant probability
implies Byzantine agreement with constant expected number of rounds.

The key idea to elect a leader is to randomly choose, for each party, some random value ci.
Then, the parties choose an index j of the party for which cj is minimal. To do that, we cannot let
each party Pj choose its random value cj , as corrupted parties would always choose small numbers
to be elected. Thus, all parties contribute to the random value associated with each party. That
is, each party Pk chooses ck→j ∈ {1, . . . , n4} and the parties define cj =

∑n
k=1 ck→j mod n4 as the

random value associated with Pj . This guarantees that each value cj is uniform.
However, just as in coin-tossing protocols, a party cannot publicly announce its random choices,

since then it would allow a rushing adversary to choose its random values as a function of the
announced values. This is prevented by using verifiable secret sharing. Verifiable secret sharing

8

provides hiding – given t shares, it is impossible to determine what is the secret, and binding – at
the end of the sharing phase, the dealer cannot change the secret, and reconstruction is guaranteed.
The parties verifiably share their random values ck→j for every k, j. After all parties share their
values, it is safe to reconstruct the secret, reveal the random values, and elect the leader based on
those values.

A problem: VSS uses a broadcast channel. A problem with the above solution is that
protocols for VSS use a broadcast channel to reach an agreement on whether or not to accept
the dealer’s shares. Yet, the good news is that broadcast is used only during the sharing phase.
Replacing each broadcast with a gradecast does not suffice since honest parties do not necessarily
agree on the transmitted messages when corrupted senders gradecast messages. This leads to the
notion of “moderated VSS”, where the idea is to have a party that is responsible for all broadcasted
message. Specifically, now there are two distinguished parties: a dealer Pk and a moderator Pj .
The parties run the VSS where Pk is the dealer; whenever a participant has to broadcast a message
m, it first gradecasts it, and then the moderator Pj has to gradecast the message it received. Each
party can then compare between the two gradecasted messages; however, the parties proceed the
execution while using the message that the moderator had gradecasted as the message that was
broadcasted. At the end of the execution, each party outputs together with the shares, a grade
for the moderator in {0, 1}. For instance, if the moderator ever gradecasted some message and the
message was received by some party Pi with grade ≤ 1, then the grade that Pi gives the moderator
is 0 — Pi cannot know whether other parties received the same message at all. The idea is that
honest parties might not necessarily output the same grade, but if there is one honest party that
outputs grade 1, it is guaranteed that the VSS was successful, and we have binding. Moreover, if
the moderator is honest, then all honest parties would give it grade 1.

Going back to leader election, the value ck→j is distributed as follows: the parties run a VSS
where Pk is the dealer and Pj is the moderator. After all values of all parties were shared (i.e.,
all parties committed to the values ck→j), each party defines for each moderator Pj the value
cj =

∑n
k=1 ck→j . If the grade of Pj was not 1 in all its executions as a moderator, then replace

cj =∞. Each party elects the party Pℓ for which cℓ is minimal.
If the moderator Pj is honest, then for both honest and corrupted dealer Pk, the VSS would

end up with agreement, and all honest parties would give Pj grade 1 as a moderator. The value
cj =

∑n
k=1 ck→j mod n4 would be the same for all honest parties, and it must distribute uniformly

as honest dealers contributed random values in this sum. Likewise, if a moderator Pj is corrupted
but some honest party outputs grade 1 in all executions where Pj served as a moderator, then the
value cj =

∑n
k=1 ck→j mod n4 must be the same for all honest parties, and it also must be random,

as honest dealers contributed random values. There might be no agreement if some honest parties
gave grade 1 for that moderator, while others did not and defined cj = ∞. In that case, we
might not have an agreement on the elected leader. However, it is guaranteed that the value cj
is distributed uniformly. Thus, the inconsistency is bounded with constant probability (roughly
t/n ≤ 1/3).

Our improvements. As noticed above, each party participates as the dealer in n executions,
and as the role of the moderator in n executions. Thus, we have a total of n2 executions of VSS.
First, we show a new protocol that enables a dealer to pack O(n) secrets at the cost of just one

9

VSS (assuming broadcast), called packed VSS (see an overview in Section 2.2). For leader election,
we have to replace the broadcast in the packed VSS with a gradecast (with a moderator).

However, we cannot just pack all the O(n) values ck→j where Pk is the dealer in one instance
of a VSS with a moderator since each one of the secrets corresponds to a different moderator.
We, therefore, introduce a new primitive which is called “Multi-moderated packed secret sharing”:
The dealer distributes O(n) values, where each corresponds to a different moderator, and have all
parties serve as moderator in one shared execution of a VSS.

More precisely, the packed VSS uses several invocations of broadcasts in the sharing phase, just
as a regular VSS. Until the very last round, the dealer also serves as the moderator within each
of those broadcasts. In the last round, there is a vote among the parties whether accept or reject
the dealer, where the vote is supposed to be performed over the broadcast channel. At this point,
the execution is forked to O(n) executions. Each corresponds to a different moderator, where the
moderator moderates just the last round’s broadcasts. The idea is that the vast majority of the
computation is shared between all O(n) executions, thus the additional cost introduced for each
moderator is small. This allows us to replace all n executions where Pi serves as a dealer with just
one execution where Pi is the dealer and other O(n) parties are moderators at the same time.

Another obstacle worth mentioning is that within multi-moderated packed VSS, the dealer
broadcasts O(n2 log n) bits, whereas other participant broadcasts at most O(n log n) bits. Our
gradecast is not optimal for this message size, and thus when replacing those broadcasts with
gradecasts, the overall cost would be O(n5 log n). We can do better by considering all the multi-
moderated VSSs in parallel. Each party then participates in O(1) executions as a dealer and in
O(n) executions as a participant. Therefore, each party has to broadcast O(n2 log n) bits in all
invocations of multi-moderated packed VSS combined (O(n2 log n) bits when it serves as a dealer,
and (n− 1)×O(n log n) when it serves as a participant). For that size of messages, our gradecast
is optimal.

To conclude, to obtain our broadcast, we build upon [FM88, KK06] and introduce: (1) an
optimal gradecast protocol for Ω(n2 log n) messages which is used twice – for gradecasting the
message before running the Byzantine agreement and within the Byzantine agreement as part of
the VSSs; (2) a novel multi-moderated packed secret sharing, which is based on a novel packed VSS
protocol; (3) carefully combine all the O(n) invocations of multi-moderated packed secret sharing
to amortize the costs of the gradecasts.

When comparing to the starting point of O(n2L) plus E(O(n6 log n)) of [KK06], the improved
gradecast allows us to reduce the first term to O(nL), for large enough messages. Regarding the
second term, packing O(n) values in the VSS reduces one n factor, and the improved gradecast
within the VSS reduces another n factor. Overall this brings us to O(nL) plus E(O(n4 log n)).

2.2 Packed Verifiable Secret Sharing

Our packed verifiable secret sharing protocol is the basis of the multi-moderated VSS. We believe
that it will find applications in future constructions of MPC protocols, and is of independent
interest. Communication cost wise, the best-known constant-round perfect VSS sharing one secret
is O(n2 log n) bits over point-to-point channels in the optimistic case, and additional O(n2 log n)
bits over the broadcast channel in the pessimistic case [BGW88, GIKR01, AL17]. Here, we retain
the same cost, yet “pack” t+ 1 secrets in one bivariate polynomial and generate t+ 1 independent
Shamir-sharings at one go. We remark that in asynchronous setting, with the optimal threshold of
t < n/4, this goal has been achieved in [CP16, CHP13].

10

Sharing more secrets at one go. Our goal is to generate Shamir-sharing of t + 1 secrets,
s−t, . . . , s0, at once. Denoting Shamir-sharing of a secret s by [s], our goal is to produce [s−t] , . . . , [s0]
using a single instance of a VSS. For this, the dealer chooses a degree-(2t, t) bivariate polynomial5

S(x, y) such that S(l, 0) = sl for each l ∈ {−t, . . . , 0}. We set fi(x) = S(x, i) of degree 2t and
gi(y) = S(i, y) of degree-t and observe that for every i, j it holds that fi(j) = S(j, i) = gj(i). The
goal of the verification part is that each Pi will hold fi(x) and gi(y) on the same bivariate polyno-
mial S(x, y). Then, each degree-t univariate polynomial gl(y) for l ∈ {−t, . . . , 0} is the standard
Shamir-sharing of sl amongst the parties. Once the shares of the parties are consistent, each party
Pi can locally compute its share on gl(y) as gl(i) = fi(l).

Our protocol is a strict improvement of [AAY21]. Specifically, the work of [AAY21] considers
the VSS protocol of [BGW88] when the dealer uses a (2t, t)-polynomial instead of a degree-(t, t)
polynomial. It observes that by minor modifications, the protocol still provides weak verifiability
even though the sharing is done on a higher degree polynomial. By “weak”, we mean that the
reconstruction phase of the polynomial might fail in the case of a corrupted dealer. Nevertheless,
the guarantee is that the reconstruction phase would either end up successfully reconstructing
S(x, y), or ⊥, and whether it would succeed or not depends on the adversary’s behavior. In
contrast, in a regular (“strong”) VSS, reconstruction is always guaranteed.

The work of [AAY21] utilizes this primitive to improve the efficiency of the degree-reduction step
of the BGW protocol. However, this primitive is weak and does not suffice for most applications
of VSS. For instance, it cannot be used as a part of our leader election protocol: The adversary
can decide whether the polynomial would be reconstructed or not. Thus there is no “binding”,
and it can choose, adaptively and based on the revealed secrets of the honest parties, whether the
reconstruction would be to the secret values or some default values. As such, it can increase its
chance of being elected.

Our work: achieving strong binding. In our work, we show how to achieve strong binding.
We omit the details in this high-level overview of achieving weak verifiability of [AAY21] secret
sharing while pointing out that the protocol is a variant of the VSS protocol of [BGW88]. For our
discussion, the protocol reaches the following stage: If the dealer is not discarded, then there is a
CORE of 2t + 1 parties that hold shares of a unique bivariate polynomial S(x, y), and this set of
parties is public and known to all (it is determined based on votes performed over the broadcast
channel). Each party Pi in CORE holds two univariate shares fi(x) = S(x, i) of degree-2t and
gi(y) = S(i, y) of degree-t. Each party Pj for j ̸∈ CORE holds a polynomial gj(y) = S(j, y), where
some of those polynomials are also public and were broadcasted by the dealer. In case the dealer is
honest, then all honest parties are part of CORE, whereas if the dealer is corrupted, then it might
be that only t + 1 honest parties are part of CORE. To achieve strong binding, the dealer has to
provide shares for parties outside CORE, publicly, and in a constant number of rounds.

The first step is to make all the polynomials gj(y) for each j ̸∈ CORE public. This is easy, since
each such polynomial is of degree t. The dealer can broadcast it, and the parties in CORE vote
whether to accept. If there are no 2t + 1 votes to accept, then the dealer is discarded. Since the
shares of the honest parties in CORE are consistent and define a unique (2t, t)-bivariate polynomial
S(x, y), the dealer cannot publish any polynomial gj(y) which is not S(j, y). Any polynomial
g′j(y) ̸= S(j, y) can agree with at most t points with S(j, y) and thus it would receive at most t

5We call a bivariate polynomial where the degree in x is 2t and in y is t, i.e., S(x, y) =
∑2t

i=0

∑t
j=0 ai,jx

iyj as a
(2t, t)-bivariate polynomial.

11

votes of honest parties in CORE, i.e., it cannot reach 2t+ 1 votes.
The next step is to make the dealer also publicize the shares fj(x) for each j ̸∈ CORE. This is

more challenging since each fj(x) is of degree-2t, and therefore achieving 2t+1 votes is not enough,
as t votes might be false. Therefore, the verification is more delicate:

1. First, the parties in CORE have to vote OK on the f -polynomials that the dealer publishes.
If there are less than 2t+ 1 votes, the dealer is discarded.

2. Second, for each party Pj in CORE that did not vote OK, the dealer is required to publish its
gj(y) polynomial. The parties in CORE then vote on the revealed polynomials as in the first
step of boosting from weak to strong verification.

To see why this works, assume that the dealer tries to distribute a polynomial f ′j(x) ̸= S(x, j).
Then, there must exist an honest party such that its share does not agree with f ′j(x). If f

′
j(x) does

not agree with shares that are public, then it would be immediately discarded. If f ′j(x) does not
agree with a share of an honest party Pk that is part of CORE, then gk(y) would become public
in the next round, and the dealer would be publicly accused. The dealer cannot provide a share
gk(y) ̸= S(k, y) for the same reason as the first step of boosting from weak to strong VSS. At the
end of this step we have that all honest parties are either part of CORE and their shares are private,
or they are not in CORE and their shares are public. Overall, all honest parties hold shares on the
bivariate polynomial S(x, y). We refer to section 4 for the formal protocol description.

2.3 Optimal Gradecast

A crucial building block in our construction is gradecast. We show how to implement gradecast of
a message of length L bits using total communication of O(n3 log n+ nL) bits. For this overview,
we just deal with the case where the dealer is honest and show that all honest parties output the
message that the dealer gradecasted with grade 2. We leave the case of a corrupted dealer to the
relevant section (Section 5).

Data dissemination. Our construction is inspired in part by the data dissemination protocol
of [DXR21], while we focus here on the synchronous settings. In the task of data dissemination, t+1
honest parties hold as input the same input M , while other honest parties hold the input ⊥, and
the goal is that all honest parties receive the same output M in the presence of t corrupted parties.
In our protocol, assume for simplicity messages of size (t + 1)2 field elements (i.e., a degree-(t, t)
bivariate polynomial). Data dissemination can be achieved quite easily: (1) Each honest party
sends to each party Pj the univariate polynomials S(x, j), S(j, y). (2) Once a party receives t + 1
messages with the same pair of univariate polynomials, it forwards those polynomials to all others.
An adversary might send different polynomials, but it can never reach plurality t+1. (3) After all
the honest parties forwarded their polynomials to the others, we are guaranteed that each party
holds 2t + 1 correct shares of S and at most t incorrect shares. Each party can reconstruct S
efficiently using Reed Solomon decoding. Note that this procedure requires the transmission of
O(n3 log n) bits overall. Therefore, our goal in the gradecast protocol is to reach a state where t+1
honest parties hold shares of the same bivariate polynomial.

Gradecast. For the sake of exposition, we first describe a simpler protocol where the dealer is
computationally unbounded, and then describe how to make the dealer efficient. Again, assume

12

that the input message of the dealer is encoded as a bivariate polynomial S(x, y). The dealer sends
the entire bivariate polynomial to each party. Then, every pair Pi and Pj exchange the polynomials
S(x, i), S(i, y), S(x, j), S(j, y). The two parties check whether they agree on those polynomials or
not. If Pi sees that the polynomials it received from Pj are the same as it received from the
dealer, then it adds j to a set Agreedi. The parties then send their sets Agreedi to the dealer,
who defines an undirected graph where the nodes are the set {1, . . . , n} and an edge {i, j} exists
if and only if i ∈ Agreedj and j ∈ Agreedi. The dealer then (inefficiently) finds a maximal clique
K ⊆ {1, . . . , n} of at least 2t + 1 parties and gradecasts K to all parties using a näıve gradecast
protocol of [FM88, KK06] (note that this is a gradecast of case O(n2L) with L = O(n log n)). A
party Pi is happy if: (1) i ∈ K; (2) it received the gradecast message of the dealer with grade 2;
and (3) K ⊆ Agreedi. The parties then proceed to data dissemination protocol.

The claim is that if the dealer is honest, then at least t+ 1 honest parties are happy, and they
all hold the same bivariate polynomial. This is because the set of honest parties defines a clique of
size 2t + 1, and any clique that the honest dealer finds of cardinality 2t + 1 must include at least
t+1 honest parties. The result of the data dissemination protocol is that all honest parties output
S. If the dealer is corrupted, we first claim that all honest parties that are happy must hold the
same bivariate polynomial. Any two honest parties that are happy must be part of the same clique
K that contains at least t+ 1 honest parties, and all honest parties in that clique must agree with
each other (all see the same clique K defined by the dealer, and verified that they agreed with each
other). The univariate polynomials exchanged between those t + 1 honest parties define a unique
bivariate polynomial. Again, data dissemination would guarantee that all honest parties would
output that bivariate polynomial.

On making the dealer efficient. To make the dealer efficient, we rely on a procedure that
finds an approximation of a clique, known as the STAR technique, introduced by [Can93]. In the
technical section, we show how we can use this approximation of a clique, initially introduced for
the case of t < n/4, to the much more challenging scenario of t < n/3. We refer to Section 5 for
the technical details.

Organization. The rest of the paper is organized as follows. In Section 3 we provide preliminaries
and notations. In Section 4 we describe our packed verifiable secret sharing, followed by our
gradecast in Section 5. We then proceed to multi-moderated packed secret sharing (Section 6),
oblivious leader election (Section 7) and we conclude with our broadcast protocol in Section 8.

3 Preliminaries

We consider a synchronous network model where the parties in P = {P1, . . . , Pn} are connected
via pairwise private and authenticated channels. Additionally, for some of our protocols we assume
the availability of a broadcast channel, which allows a party to send an identical message to all
the parties. One of the goals of this paper is to implement such a broadcast channel over the
pairwise private channels, and we mention explicitly for each protocol whether a broadcast channel
is available or not. The distrust in the network is modelled as a computationally unbounded active
adversary A which can maliciously corrupt up to t out of the n parties during the protocol execution
and make them behave in an arbitrary manner. We prove security in the stand-alone model for

13

a static adversary. Owing to the results of [CDD+01], this guarantees adaptive security with
inefficient simulation. We derive universal composability [Can01] for free using [KLR06].

Our protocols are defined over a finite field F where |F| > n+ t+ 1. We consider two sets of n
and t+1 distinct elements from F publicly known to all the parties, which we denote by {1, . . . , n}
and {−t, . . . , 0} respectively. We use [v] to denote the degree-t Shamir-sharing of a value v among
parties in P.

3.1 Security Definition

We prove the security of our protocols in the standard, standalone simulation-based security model
of multiparty computation in the perfect settings [Can00, AL17]. Let f : ({0, 1}∗)n → ({0, 1}∗)n
be an n-party functionality and let π be an n-party protocol over private and authenticated point-
to-point channels and an authenticated broadcast channel. Let A be the adversary with auxiliary
input z, and let C ⊂ P be the set of corrupted parties controlled by it. We define the real and ideal
executions:

• The real execution: In the real model, the parties run the protocol π where the adversary
A controls the parties in C. The adversary is assumed to be rushing, meaning that in every
round it can see the messages sent by the honest parties to the corrupted parties before it
determines the message sent by the corrupted parties. The adversary cannot see the messages
sent between honest parties on the point-to-point channels. We denote by RealπA(z),C(x⃗) the
random variable consisting of the view of the adversary A in the execution (consisting of all
the initial inputs of the corrupted parties, their randomness and all messages they received),
together with the output of all honest parties.

• The ideal execution: The ideal model consists of all honest parties, a trusted party and
an ideal adversary SIM, controlling the same set of corrupted parties C. The honest parties
send their inputs to the trusted party. The ideal adversary SIM receives the auxiliary
input z and sees the inputs of the corrupted parties. SIM can substitute any xi with any
x′i of its choice (for the corrupted parties) under the condition that |x′i| = |xi|. Once the
trusted party receives (possibly modified) inputs (x′1, ..., x

′
n) from all parties, it computes

(y1, ..., yn) = f(x′1, ..., x
′
n) and sends yi to Pi. The output of the ideal execution, denoted

as IdealfSIM(z),C(x⃗) is the output of all honest parties and the output of the ideal adversary
SIM.

Definition 3.1. We say that a protocol π is t-secure for a functionality f , if for every adversary
A in the real world, there exists an adversary SIM in the ideal world such that for every C ⊂ P
of cardinality at most t, it must hold that

{IdealfSIM(z),C(x⃗)} ≡ {Real
π
A(z),C(x⃗)}

where x⃗ is chosen from ({0, 1}∗)n such that |x1| = . . . = |xn|.

3.2 Bivariate Polynomials

A degree (l,m)-bivariate polynomial over F is of the form S(x, y) =
∑l

i=0

∑m
j=0 bijx

iyj where

bij ∈ F. The polynomials fi(x) = S(x, i) and gi(y) = S(i, y) are called ith f and g univariate
polynomials of S(x, y) respectively. In our protocol, we use (2t, t)-bivariate polynomials where the
ith f and g univariate polynomials are associated with party Pi for every Pi ∈ P.

14

Claim 3.2 ([AAY21, Claim 3.4]). Let t be a non-negative integer, {1, . . . , t+1} be distinct elements
in F and f1(x), . . . , ft+1(x) be t+1 univariate polynomials of degree at most 2t. Then, there exists
a unique (2t, t)-bivariate polynomial S(x, y) such that S(x, i) = fi(x) holds for every i ∈ [t+ 1].

Claim 3.3 ([ACP21, Lemma 2.7]). Let C ⊆ D ⊆ {1, . . . , n} be two sets such that |C| ≥ t+ 1 and
|D| ≥ 2t + 1. Let {fi(x)}i∈C be a set of degree-2t polynomials and {gj(y)}j∈D be a set of degree-t
polynomials over F. If for every i ∈ C and every j ∈ D it holds that fi(j) = gj(i), then there exists
a unique (2t, t)-bivariate polynomial S(x, y) such that S(x, i) = fi(x) holds for every i ∈ C and
S(j, y) = gj(y) holds for every j ∈ D.

Claim 3.4 ([AAY21, Claim 3.6]). Let C ⊂ {1, . . . , n} be a set such that |C| ≤ t and let p(x) and
q(x) be two degree-2t polynomials such that p(i) = q(i) holds for every i ∈ C. Then, the probability
distributions {(i, Sp(x, i), Sp(i, y))}i∈C and {(i, Sq(x, i), Sq(i, y))}i∈C are identical, where Sp(x, y)
and Sq(x, y) are (2t, t)-bivariate polynomials chosen under the constraint that Sp(x, 0) = p(x) and
Sq(x, 0) = q(x) respectively.

3.3 Finding (n, t)-STAR

Definition 3.5. Let G be a graph over the nodes {1, . . . , n}. We say that a pair (C,D) of sets
such that C ⊆ D ⊆ {1, . . . , n} is an (n, t)-star in G if the following hold:

• |C| ≥ n− 2t,

• |D| ≥ n− t,

• For every j ∈ C and every k ∈ D, the edge (j, k) exists in G.

Canetti [Can93] showed that if a graph has a clique of size n− t, then there exists an efficient
algorithm which always finds an (n, t)-star. For completeness, we describe the algorithm for finding
an (n, t)-star in Algorithm 3.6 which is taken verbatim from [BCG93, Can96]. We describe the
(n, t)-star finding algorithm [BCG93, Can96] below.

Algorithm 3.6: STAR – efficiently finding a star

Input: an undirected graph G (over the nodes {1, . . . , n}), a parameter t.

1. Find a maximum matchingM inG. LetN be the set of matched nodes (namely, the endpoints
of the edges in M) and let N := {1, . . . , n} \N .

2. Let T be the set of triangle-heads, i.e., all vertices that are not endpoints of the matching
but they have two neighbors in the matching.

T :=
{
i ∈ N | ∃j, k s.t. (j, k) ∈M and (i, j), (i, k) ∈ G

}
.

Let C := N \ T .
3. Let B the set of matched nodes that have neighbors in C. That is, set:

B :=
{
j ∈ N | ∃i ∈ C s.t. (i, j) ∈ G

}
.

Let D := {1, . . . , n} \B.

4. Output: If |C| ≥ n − 2t and D ≥ n − t then output (C,D). Otherwise, output “star not
found”.

15

It was shown in [Can96, BCG93] that if a graph has a clique of size n− t, then the above procedure
halts with a (C,D) star.

Claim 3.7. Let G be a graph over {1, . . . , n} such that if Pi and Pj are honest then {i, j} ∈ G.
Then, C contains at least t+ 1 indices of honest parties.

Proof. Since honest parties trust each other, we have a clique of size at least 2t+ 1 in G and thus
a (C,D)-star will be found. Since there are always edges between two honest parties in G, all the
edges in G are either between an honest party and a corrupted party, or between a pair of corrupted
parties. Let x be the number of edges in the matching that are between pairs of corrupted parties,
and let y be the number of edges in the matching that are between an honest party and a corrupted
party. We have that x+y ≤ t. Next, we claim that the number of honest parties in T (i.e., triangle-
heads) is bounded by x. The only triangles in questions are those between an honest party as a
head and the two neighbors as corrupted parties that are also in the matching. We claim that each
edge in the matching between a pair of corrupted parties can be a part of only one triangle. That
is, for (j, k) ∈M there exists at most one honest i ∈ N for which i ∈ T . Otherwise, if there exists a
pair i1, i2 ∈ N such that i1, i2 ∈ T , then we can find a larger matching: instead of taking (j, k) ∈M
we would take (i1, j) and (i2, k), in contradiction to the maximality of M .

To conclude, C is defined as ({1, . . . , n} \ N) \ T . In N there are y indices of honest parties,
and in T at most x indices. Since x + y ≤ t, we obtain that C contains at least t + 1 indices of
honest parties.

4 Packed Verifiable Secret Sharing

Here we present a packed VSS to generate Shamir sharing of t+1 secrets at the cost of O(n2 log n)
bits point-to-point and broadcast communication.

The Functionality. On holding t+1 secrets s−t, . . . , s0, the dealer chooses a uniformly random
(2t, t)-bivariate polynomial S(x, y) such that S(l, 0) = sl for each l ∈ {−t, . . . , 0} and uses the
polynomial as its input. Our functionality for VSS is as follows, followed by the VSS protocol.

Functionality 4.1: FVSS – Packed Verifiable Secret Sharing Functionality

Input: The dealer holds a polynomial S(x, y).

1. The dealer sends S(x, y) to the functionality.

2. If S(x, y) is of degree at most 2t in x and at most t in y, then the functionality sends to each
party Pi the two univariate polynomials S(x, i), S(i, y). Otherwise, the functionality sends ⊥
to all parties.

Protocol 4.2: ΠpVSS – Packed VSS Protocol

Common input: The description of a field F, two sets of distinct elements from it denoted as
{1, . . . , n} and {−t, . . . , 0}.

16

Input: The dealer holds a bivariate polynomial S(x, y) of degree at most 2t in x and at most t in
y. Each Pi initialises a happy bit happyi = 1 6.

1. (Sharing) The dealer sends (fi(x), gi(y)) to Pi where fi(x) = S(x, i), gi(y) = S(i, y).

2. (Pairwise Consistency Checks) Each Pi sends (fi(j), gi(j)) to every Pj . Let (fji, gji)
be the values received by Pi from Pj . If fji ̸= gi(j) or gji ̸= fi(j), Pi broadcasts
complaint(i, j, fi(j), gi(j)).

3. (Conflict Resolution) For each complaint(i, j, u, v) such that u ̸= S(j, i) or v ̸= S(i, j),
dealer broadcasts gDi (y) = S(i, y). Let pubR be the set of parties for which the dealer broad-
casts gDi (y). Each Pi ∈ pubR sets happyi = 0. For two mutual complaints (complaint(i, j, u, v),
complaint(j, i, u′, v′)) with either u ̸= u′ or v ̸= v′, if the dealer does not broadcast anything,
then discard the dealer.

4. (Identifying the CORE Set) Each Pi ̸∈ pubR broadcasts OK if fi(k) = gDk (i) holds
for every k ∈ pubR. Otherwise, Pi sets happyi = 0. Let CORE be the set of parties who
broadcasted OK. If |CORE| < 2t+ 1, then discard the dealer.

5. (Revealing f-polynomials for non-CORE parties) For each Pk /∈ CORE, the dealer
broadcasts fD

k (x) = S(x, k). Discard the dealer if for any Pj ∈ pubR and Pk /∈ CORE,
gDj (k) ̸= fD

k (j). Each Pi /∈ pubR broadcasts OK if fD
k (i) = gi(k) holds for every broadcasted

fD
k (x). Otherwise Pi sets happyi = 0. Let K = {Pj |Pj /∈ pubR and did not broadcast OK}.

6. (Opening g-polynomials for complaining parties) For each Pj ∈ K, the dealer broad-
casts gDj (y) = S(j, y). Set pubR = pubR ∪K. Discard the dealer if fD

k (j) ̸= gDj (k) for any

Pk /∈ CORE and Pj ∈ K. Each Pi ∈ CORE with happyi = 1 broadcasts OK if fi(j) = gDj (i)

for every broadcasted gDj (y). Otherwise, Pi sets happyi = 0. If at least 2t+ 1 parties do not
broadcast OK, then discard the dealer.

7. (Output) If the dealer is discarded, then each Pi outputs ⊥. Otherwise, Pi outputs
(fi(x), gi(y)), where fi(x) = fD

i (x) if Pi /∈ CORE and gi(y) = gDi (y) if Pi ∈ pubR.

Theorem 4.3. Protocol ΠpVSS (Protocol 4.2) securely realizes FVSS (Functionality 4.1) in the
presence of a static malicious adversary controlling up to t parties with t < n/3.

Proof. Let A be an adversary in the real world. We show the existence of a simulator SIM in the
ideal world, such that for any set of corrupted parties C and for all inputs, the output of all parties
in the real protocol with A is identical to the output in the ideal world with SIM. Depending on
whether the dealer is honest or not, we have the following two cases.

Case 1 - The dealer is honest. In this case, the dealer always holds a valid (2t, t)-bivariate
polynomial S(x, y). The simulator proceeds as follows:

1. SIM invokes A on auxiliary input z.

6The happy bits will be used later for Multi-Moderated VSS in Section 6.

17

2. SIM receives from FVSS, the polynomials fi(x), gi(y) for every Pi ∈ C and simulates the
protocol execution for A:
(a) Sharing: SIM sends (fi(x), gi(y)) to A for every Pi ∈ C on behalf of the dealer.

(b) Pairwise Consistency Checks: SIM sends (gi(j), fi(j)) to A for every Pi ∈ C and
every honest Pj . SIM receives from A the values (fij , gij) for each honest party Pj and
every Pi ∈ C. If fij ̸= fi(j) or gij ̸= gi(j), SIM broadcasts complaint(j, i, gi(j), fi(j))
on behalf of Pj . SIM also receives complaint(·, ·, ·, ·) broadcasted by A.

(c) Conflict Resolution: The dealer never broadcasts gDj (y) for honest parties. For every
complaint(i, j, u, v) from A, SIM checks if u = fi(j) and v = gi(j). If not, SIM
broadcasts gDi (y) on behalf of the dealer. Define pubR to be the set of parties for which
gDi (y) was broadcasted.

(d) CORE Set Identification: An honest party never belongs to pubR. Since the dealer
is honest, fj(i) = gDi (j) holds for every honest Pj and every Pi ∈ pubR. The dealer
broadcasts OK on behalf of every honest party and receives the OKmessages broadcasted
by A. Define CORE to be the set of parties who broadcasted OK.

(e) Revealing f-polynomials non-CORE parties: An honest party will always be a
part of CORE. On behalf of the dealer, SIM reveals fD

i (x) for each Pi /∈ CORE. These
polynomials will always be consistent with the honest parties’ polynomials and the g-
polynomials revealed publicly. SIM broadcasts OK on behalf of each honest party and
receives the OK broadcasted by A. Let K be the parties which did not broadcast OK.

(f) Opening g-polynomials for parties in K: Let pubR = pubR ∪K. On behalf of the
dealer, SIM reveals gDi (y) for each Pi ∈ K. These polynomials will always be consistent
with the f -polynomials of honest parties and the f -polynomials revealed publicly. SIM
broadcasts OK on behalf of each honest party and receives the OK messages broadcasted
by A.

3. Output: SIM outputs whatever A outputs, and halts.

It can be observed that, since the protocol as well as the simulation is deterministic, the adversary’s
view in the real execution and ideal execution is identical. Hence, our goal is to now show that the
output of honest parties is the same in the real and ideal executions.

In the ideal execution, an honest dealer always invokes the functionality with a valid (2t, t)-
bivariate polynomial S(x, y). Thus, each honest party Pi outputs the polynomials fi(x) = S(x, i)
and gi(y) = S(i, y) which it receives from the functionality, and never outputs ⊥. Moreover, the
corrupted parties do not have inputs and hence do not influence the output of the honest parties.
We will show that the same holds in the real execution as well.

In the real execution, since the dealer is honest, it always holds a valid (2t, t)-bivariate polyno-
mial S(x, y) and sends fi(x) and gi(y) as prescribed by the protocol to every Pi. As per the protocol
specification, a party’s g and f polynomials do not change unless they are revealed publicly by the
dealer in Step 3, 5 or 6. However, an honest dealer never reveals an honest party’s polynomials
during these phases. Hence, during the output phase, an honest party either outputs fi(x), gi(y)
consistent with S(x, y), or ⊥. We thus proceed to show that an honest party never outputs ⊥.

Recall that an honest party outputs fi(x) and gi(y) if and only if at least 2t + 1 parties with
happy = 1 broadcast OK during Step 6. Thus, it suffices to show that all the honest parties have
their happy bit as 1 and broadcast OK. An honest party Pi has happyi = 1 and broadcasts OK
during Step 6 if and only if the following conditions hold:

18

1. While resolving complaints, the dealer never broadcasts gDi (y).

2. The dealer resolves all pairs of complaints of the type complaint(j, k, u, v) and
complaint(k, j, u′, v′) where u ̸= u′ or v ̸= v′.

3. All gDk (y) broadcasted by the dealer in Step 3 satisfy fi(k) = gDk (i).

4. CORE set includes at least 2t+ 1 parties.

5. All fD
j (x) broadcasted by the dealer for every Pj /∈ CORE in Step 5 and gDk (y) broadcasted

for every Pk ∈ pubR in Step 3 satisfy fD
j (k) = gDk (j), and fD

j (i) = gi(j).

6. All gDk (y) broadcasted by the dealer for every Pk ∈ K in Step 6 and all fD
j (x) broadcasted

for every Pj /∈ CORE in Step 5 satisfy fD
j (k) = gDk (j), and fi(k) = gDk (i).

Therefore we conclude that in the real execution, every honest party has happyi = 1 broadcasts
OK in Step 6 and hence every honest party Pi outputs fi(x) and gi(y) identical to the ideal execution.

Case 2 - The dealer is corrupt. In this case, the adversary A controls the dealer. The honest
parties do not have any input to the protocol and the protocol is deterministic. The simulator
proceeds as follows:

1. SIM invokes A on auxiliary input z.

2. SIM plays the role of all the honest parties while interacting with A, as specified by protocol
ΠpVSS (Protocol 4.2).

3. Let Pj be an arbitrary honest party emulated by SIM. From its output in the simulated
execution, let G be the set of parties that broadcasted OK in the simulation in Step 6. Then,

(a) If |G| ≥ 2t+ 1, then let H ⊂ G \ C be the set of t+ 1 honest parties which broadcasted
OK. SIM finds the unique (2t, t)-bivariate polynomial, say S(x, y) that satisfies fi(x) =
S(x, i) for every Pi ∈ H. Such a polynomial always exists by virtue of Claim 3.2. SIM
sends S(x, y) to FVSS to allow the honest parties to learn their output, and receives the
output fi(x), gi(y) for each Pi ∈ C.

(b) Otherwise, SIM invokes FVSS with an invalid polynomial, say S(x, y) = x2t+1 causing
all the honest parties to receive ⊥ in the ideal execution.

4. SIM outputs whatever A outputs, and halts.

Since the simulator emulates the honest parties as in the real execution of the protocol, the view
of the adversary in the real and ideal world is identical. Thus, it remains to be shown that the
output of the honest parties in the ideal world is the same as that in the real execution. For this,
we consider the following two cases:

Case I - There exists an honest party that outputs ⊥ in the real execution. In such
a case, we claim that all the honest parties output ⊥. An honest party outputs ⊥ only if (i) the
dealer does not resolve all mutual complaints (ii) CORE set (decided based on OK messages in
Step 4) includes less than 2t+1 parties, (iii) any of the verification checks on the publicly revealed
polynomials fail, or (iii) less than 2t+ 1 parties from CORE broadcast OK in Step 6. In all of the
above cases, the corresponding messages are broadcasted, and hence all honest parties output ⊥.
Since the real execution and simulated executions are identical, all the simulated honest parties
will output ⊥. In this case, the simulator invokes the functionality with S(x, y) = x2t+1, which in
turn rejects the polynomial and sends ⊥ to all the honest parties.

19

Case II - No honest party outputs ⊥ in the real execution. In this case, we want to show
that each honest party Pi holds fi(x) = S(x, i) and gi(y) = S(i, y) consistent with some unique
(2t, t)-bivariate polynomial S(x, y).

Observe that, if an honest party did not output ⊥, it implies that at least 2t + 1 parties from
CORE broadcast OK in Step 6. This in turn implies that there exists CORE set with at least 2t+1
parties at the conclusion of Step 4, which includes at least t+1 honest parties. By construction of
the CORE set, it is guaranteed that the fi(x) polynomial of every honest Pi ∈ CORE is consistent
with gj(y) of every honest Pj . Suppose for the sake of contradiction that there exists some honest
Pi ∈ CORE and an honest Pj such that fi(j) ̸= gj(i). We have the following two cases:

1. If Pj ∈ pubR, the dealer must have broadcasted gDj (y) in Step 3. If indeed fi(j) ̸= gDj (i), then
Pi would not have broadcasted OK in Step 4, which is a contradiction.

2. If Pj /∈ pubR, and indeed fi(j) ̸= gj(i), then honest Pi, Pj would have broadcasted a mutual
complaint which the dealer would have to resolve by broadcasting either gDi (y) or gDj (y), which
is a contradiction.

Therefore, by Claim 3.3, there exists a unique bivariate polynomial S(x, y) such that every honest
Pi ∈ CORE \ C holds S(x, i) and S(i, y) and every honest Pj holds S(j, y) by the conclusion of
Step 4. We claim that all the honest parties output shares on this polynomial at the termination
of the protocol. In particular, we prove the following.

Lemma 4.4. If there exists a set H of at least t+1 honest parties such that every Ph ∈ H holding
(fh(x), gh(y)) has happyh = 1 and broadcasts OK Step 6, then every honest party Pi outputs g and
f polynomial consistent with the unique bivariate polynomial S(x, y) (see Claim 3.2) defined by
parties in H.

Note that, in Step 5, the dealer must have broadcasted fD
j (x) for every Pj /∈ CORE. We now

show that the dealer must broadcast fj(x) = S(x, j). Assume for the sake of contradiction that
fj(x) ̸= S(x, j). Since both fj(x) and S(x, j) are degree-2t polynomials, they can agree on at most
2t points. However, the number of honest parties is at least 2t + 1. Therefore, there must exists
some honest party Pl for which fj(l) ̸= gl(j) = S(l, j). We thus have the following two cases to
consider:

1. If Pl ∈ pubR, then gDl (y) was already revealed publicly in Step 3 and hence it must hold that
gDl (y) = S(l, y). This implies that parties can publicly verify the consistency of fj(x) and
gDl (y). If indeed fj(l) ̸= gDl (j), every party in H would set its happy to 0 and not broadcast
OK. Hence, this case is impossible.

2. If Pl /∈ pubR, then gl(y) is private. This implies that Pl would not broadcast OK during
Step 5, and thus the dealer must reveal gDl (y) in Step 6. We can have two sub-cases:

(a) The dealer reveals gDl (y) ̸= S(l, y). Both, gDl (y) and S(l, y) are degree-t polynomials,
and hence they can agree on at most t points. Moreover, since |H| ≥ t+ 1, there must
exist a party Ph ∈ H such that gl(h) ̸= fh(l). This implies that Ph would set happyh = 0
and not broadcast OK in Step 6, which is a contradiction.

(b) The dealer reveals gDl (y) = S(l, y). This implies that parties can publicly verify the
consistency of fj(x) and gDl (y). If indeed fj(l) ̸= gDl (j), every party in H would set its
happy to 0 and not broadcast OK. Hence, this case is impossible.

20

We therefore conclude that the dealer must reveal fj(x) = S(x, j) for every Pj /∈ CORE. Thus,
if indeed 2t + 1 parties broadcast OK in Step 6, it holds that each Pi holds fi(x) = S(x, i) and
gi(y) = S(i, y) on a unique (2t, t)-bivariate polynomial S(x, y) (see Claim 3.3).

Since the real and simulated executions are identical, the simulator reconstructs the unique
polynomial S(x, y) using the shares of the simulated honest parties in H and invokes the function-
ality FVSS with the valid polynomial S(x, y). The functionality in turn sends to each Pi its shares
fi(x) = S(x, i) and gi(y) = S(i, y). This is the output of honest parties in the ideal execution. This
is exactly the same as output of simulated honest parties which is identical to the output of honest
parties in the real execution.

Lemma 4.5. Protocol ΠpVSS has a communication complexity of O(n2 log n) bits over point-to-point
channels and O(n2 log n) bits broadcast for sharing O(n) values (i.e., O(n log n) bits) simultaneously
in 9 rounds.

In this section, we give details of our gradecast, multi-moderated secret sharing and oblivious
leader election protocols. We conclude with the byzantine agreement and the parallel-broadcast
using the above as building blocks.

5 Balanced Gradecast

In a Gradecast primitive, a dealer has an input and each party outputs a value and a grade {0, 1, 2}
such that the following properties are satisfied: (Validity): If the dealer is honest then all honest
parties output the dealer’s input and grade 2; (Non-equivocation): if two honest parties each
output a grade ≥ 1 then they output the same value; and lastly (Agreement): if an honest party
outputs grade 2 then all honest parties output the same output and with grade ≥ 1. We model
this in terms of a functionality given in Functionality 5.1. The case of an honest dealer captures
validity. Case 2a and Case 2b capture the agreement and non-equivocation respectively.

Functionality 5.1: FGradecast

The functionality is parameterized by the set of corrupted parties, I ⊆ {1, . . . , n}.

1. If the dealer is honest: the dealer sends m to the functionality, and all parties receive (m, 2)
as output.

2. If the dealer is corrupted then it sends some message M to the functionality.

(a) If M = (ExistsGrade2,m, (gj)j ̸∈I) for some m ∈ {0, 1}∗ and each gj ∈ {1, 2}, then verify
that each gj ≥ 1 and that at least one honest party receives grade 2. Send (m, gj) to
each party Pj .

(b) If M = (NoGrade2, (mj , gj)j ̸∈I) where each mj ∈ {0, 1}∗ and gj ∈ {0, 1}, then verify that
for every j, k ̸∈ I with gj = gk = 1 it holds that mj = mk. Then, send (mj , gj) to each
party Pj .

In Section 5.1 we first describe a protocol that is not balanced, i.e., the total communication
complexity is O(n2L) but in which the dealer sends O(n2L) and every other party sends O(nL). In
Section 5.2 we show how to make the protocol balanced, in which each party (including the dealer)
sends/receives O(nL) bits.

21

5.1 The Gradecast Protocol

We build our construction in Protocol 5.2 using the idea presented in Section 2.3. Recall that the
gradecast used inside our protocol is the näıve gradecast with complexity O(n2L) bits for L-bit
message, as in [FM88, FM97]. The security of our protocol is stated in Theorem 5.3.

Protocol 5.2: ΠGradecast

Input: The dealer P ∈ {P1, . . . , Pn} holds (t+1)2 field elements (bi,j)i,j∈{0,...,t} where each bi,j ∈ F
that it wishes to distribute. All other parties have no input.

1. (Dealer’s polynomial distribution) The dealer:

(a) The dealer views its elements as a bivariate polynomial of degree at most t in both x
and y, i.e., S(x, y) =

∑t
i=0

∑t
j=0 bi,jx

iyj .

(b) The dealer sends S(x, y) to all parties.

2. (Pair-wise Information Exchange) Each party Pi:

(a) Let Si(x, y) be the polynomial received from the dealer.

(b) Pi sends to each party Pj the four polynomials (Si(x, j), Si(j, y), Si(x, i), Si(i, y)).

3. (Informing dealer about consistency) Each party Pi:

(a) Initialize Agreedi = ∅. Let (f j
i (x), g

j
i (y), f

j
j (x), g

j
j (y)) be the polynomials received from

party Pj . If f j
i (x) = Si(x, i), g

j
i (y) = Si(i, y), f

j
j = Si(x, j) and gjj (y) = Si(j, y) then

add j to Agreedi.

(b) Send Agreedi to the dealer.

4. (Quorum forming by dealer) The dealer:

(a) Define an undirected graph G as follows: The nodes are {1, . . . , n} and an edge {i, j} ∈ G
if and only if i ∈ Agreedj and j ∈ Agreedi. Use STAR algorithm (Algorithm 3.6) to find
a set (C,D) ∈ {1, . . . , n}2 where |C| ≥ t + 1 and |D| ≥ 2t + 1, C ⊆ D, such that for
every c ∈ C and d ∈ D it holds that c ∈ Agreedd and d ∈ Agreedc.

(b) Let E be the set of parties that agree with at least t+ 1 parties in C. That is, initialize
E = ∅ and add i to E if |Agreedi ∩ C| ≥ t+ 1.

(c) Let F be the set of parties that agree with at least 2t+1 parties in E. That is, initialize
F = ∅ and add i to F if |Agreedi ∩ E| ≥ 2t+ 1.

(d) If |C| ≥ t+1 and |D|, |E|, |F | ≥ 2t+1, then gradecast (C,D,E, F). Otherwise, gradecast
(∅, ∅, ∅, ∅).

5. (First reaffirmation) Each party Pi:

(a) Let (Ci, Di, Ei, Fi, g) be the message that the dealer gradecasted and let g be the asso-
ciated grade.

(b) If (1) g = 2; (2) i ∈ Ci; (3) |Di| ≥ 2t+ 1; and (4) Agreedi ∩Di = Di; then send OKC to
all parties. Otherwise, send nothing.

6. (Second reaffirmation) Each party Pi:

(a) Let C ′i be the set of parties that sent OKC in the previous round.

(b) If i ∈ Ei and |Agreedi ∩ Ci ∩ C ′i| ≥ t+ 1 then send OKE to all parties.

7. (Third reaffirmation and propagation) Each party Pi:

(a) Let E′i be the set of parties that sent OKE in the previous round.

22

(b) If i ∈ Fi and |Agreedi ∩ Ei ∩ E′i| ≥ 2t + 1 then send (OKF , Si(x, j), Si(j, y)) to each
party Pj .

8. (Final propagation) Each party Pi: Among all messages that were received in the previous
round, if there exist polynomials f ′i(x), g

′
i(y) that were received at least t + 1 times, then

forward those polynomials to all. Otherwise, forward ⊥.
9. (Output) Each party Pi: Let ((f ′1(x), g

′
1(y)), . . . , (f

′
n(x), g

′
n(y)) be the messages received

in the previous round. If received at least 2t+1 polynomials that are not ⊥, then use robust
interpolation to obtain a polynomial S′(x, y). If there is no unique reconstruction or less than
2t+ 1 polynomials received, then output (⊥, 0). Otherwise, if S′(x, y) is unique, then:

(a) If (1) Pi sent OKF in Round 7; and (2) it received 2t + 1 messages OKF at the end of
Round 7 from parties in Fi with the same polynomials (f ′i(x), g

′
i(y)); then output (S′, 2).

(b) Otherwise, output (S′, 1).

Theorem 5.3. Let t < n/3. Protocol ΠGradecast (Protocol 5.2) securely realizes Functionality
FGradecast (Functionality 5.1) in the presence of a malicious adversary controlling at most t parties.
The parties send at most O(n3 log n) bits where O(n2 log n) is the number of bits of the dealer’s
input.

Proof.
Efficiency. The dealer sends each message to all parties in the first step, i.e., O(n3 log n) bits.
Each party then sends a pair of univariate polynomial to each other party, i.e., sends or receive
O(n log n) for each pair of parties, or a total of O(n3 log n). Each party sends a set of size O(n log n)
to the dealer, which then gradecasts, using a näıve gradecast, sets of size O(n log n). This is again
a total of O(n3 log n) bits. Each party then sends a pair of univariate polynomials to each other
party, i.e., each party sends or receives O(n2 log n) bits, and a total of O(n3 log n) bits.

Case 1 - The dealer is honest. In this case, the honest dealer sends m to the functionality
FGradecast (Functionality 5.1) and all parties receive (m, 2). Moreover, the simulation is trivial.
Specifically, the protocol is deterministic and excluding the dealer, parties do not have any input
in the protocol. Further, the input of the dealer is known to the simulator, which it receives from
the trusted party. Therefore, the simulator can just run the protocol with the exact same inputs
as in the real world, and since the protocol is deterministic, the view of the adversary in the real
world and the simulated execution would be identical. Thus, all that remains to be shown is that
the output of honest parties in the real-world is the same as their output in the ideal world, i.e.,
all the honest parties output (m, 2) in the protocol execution. This requirement is captured by the
following claim and proven subsequently.

Claim 5.4 (Validity). If the dealer is honest and starts with input polynomial S(x, y), then all
honest parties output the same polynomial S(x, y) and grade 2.

Proof. If the dealer is honest, then it sends the same polynomial S(x, y) to all other parties in
Round 1b. This guarantees that all the honest parties are included in the Agreed set of every
honest party during Round 3a. Following this, in Round 4, the dealer finds sets (C,D,E, F) as
described, and gradecasts them. By the properties of gradecast, it is guaranteed that all the honest
parties receive the same sets with grade 2. Moreover, since there exists a clique of size 2t + 1

23

(consisting of all the honest parties), the STAR algorithm (Algorithm 3.6) finds sets (C,D) as
described, such that C contains at least t+ 1 honest parties (see Claim 3.7). This implies that E
as well as F contain all honest parties. Then:

1. First reaffirmation (Round 5) – all honest parties in C send OKC to all parties. This is
because, by the definition of the set D, all conditions in Round 5 are satisfied for each honest
party Pj for j ∈ C.

2. Second reaffirmation (Round 6) – since C contains at least t+ 1 honest parties, each honest
party in E sends OKE . Moreover, as mentioned above, all honest parties are a part of E and
consequently send OKE .

3. Third reaffirmation ((Round 7)) – as mentioned, all honest parties belong to F and also agree
among themselves. Therefore, each honest party Pj sends to every party Pk, the message
(OKF , Sj(x, k), Sj(k, y)).

Since, for every honest Pj , Sj(x, k) is equal to S(x, k) (and Sj(k, y) is equal to S(k, y) respectively)
that the dealer sent, it implies that each honest party Pk receives the same polynomial at least
2t+1 times in Round 8, which it forwards to all other parties. Therefore all honest parties receive
at least 2t+1 pairs of polynomials on S(x, y) thus ensuring robust reconstruction. Moreover, since
each honest party Pj had sent OKF in Round 7, and thus received 2t + 1 OKF messages at the
end of Round 7 with the same polynomials S(x, j), S(j, y), it satisfies the conditions described in
step 9a and therefore outputs the polynomial that the dealer had sent, with grade 2.

Case 2 - The dealer is corrupt. Since the honest parties have no input, simulation is trivial. In
particular, the simulator just runs the protocol while simulating the honest parties interacting with
the adversary. Since the protocol is deterministic, the view produced by the simulator is exactly
the same as the view of the adversary in the real world. At the end of the execution, the simulator
holds the outputs of the simulated honest parties, i.e., (mj , gj) for every j ̸∈ I where I is the set of
corrupted parties. Then:

1. If there exists an honest party Pj with grade gj = 2 then the simulator verifies that every
other honest party Pk holds the same message mk = mj with grade gk ≥ 1. If this condition
holds, then it sends (ExistsGrade2,mj , {gj}j ̸∈I) to the trusted party. Otherwise, it fails and
outputs ⊥.

2. If all honest parties have gj ≤ 1, then the simulator verifies that for every j, k ̸∈ I with
gj = gk = 1 it holds that mj = mk. If so, it sends (NoGrade2, (mj , gj)j ̸∈I) to the trusted
party and halts. Otherwise, it fails and outputs ⊥.

The functionality then delivers the output to all the honest parties. The following claims show that
the output of honest parties in the real world is the same as the output in the ideal world, and that
the simulator never fails and outputs ⊥.

Claim 5.5 (Agreement). If the dealer is corrupted and some honest party outputs (S′, 2), then all
honest parties output S′ with grade ≥ 1.

Proof. If some honest party Pi outputs S′ with grade 2, then as per the conditions of step 9a,
it must have sent OKF in Round 7. Moreover, the party must have unique interpolation; and
received 2t + 1 OKF messages from parties in Fi with the same pair of polynomials fi(x), gi(y)
during Round 7.

24

Since 2t+1 parties sent OKF messages with the same fi(x), gi(y), it implies that there are at least
t+1 honest parties in Fi that sent (OKF , fi(x), gi(y)) to Pi. For each such honest party Pj that sent
this message, as per the conditions of Round 7, it holds that j ∈ Fj and that |Agreedj ∩Ej ∩E′j | ≥
2t+1. Here, E′j is the set of parties that sent OKE to party Pj at the end of Round 6. This further
implies that at least t + 1 honest parties in E′j sent OKE , and moreover, the same set of honest
parties sent OKE to all the honest parties. Denote this set of honest parties as EH .

Since there are at least t+ 1 honest parties in EH , for each such honest party Pj it holds that
|Agreedj∩Cj∩C ′j | ≥ t+1, where C ′j is the set of parties that sent OKC to Pj at the end of Round 5.
This in turn implies that at least one honest party belongs to Cj and has sent OKC , and moreover,
the same set of honest parties has sent OKC to all the other honest parties. Since at least one
honest party sent OKC , due to the conditions of Round 5, it also implies that this honest party
received (C,D,E, F) with grade 2 from the dealer. This means that the tuple (C,D,E, F) has
been received identically by all the honest parties (with grade ≥ 1) and hence we can refer to each
of the sets C,D,E and F without party-specific subscript. With the above observations , we now
prove the aforementioned claim using the following three claims which are proved subsequently.

Claim 5.6. All honest parties in C that sent OKC must hold the same bivariate polynomial, denoted
as Ŝ(x, y).

Claim 5.7. If an honest party Pk such that k ∈ E sent OKE in Round 6, then there is at least one
honest party that sent OKC in Round 5 and it it holds that Sk(x, k) = Ŝ(x, k) and Sk(k, y) = Ŝ(k, y),
where Ŝ is defined by the honest parties in C.

Claim 5.8. If an honest party Pj such that j ∈ F sent OKF in Round 7, then there are at least
t + 1 honest parties that sent OKE in Round 6, and at least one honest party that sent OKC in
Round 5. Moreover, it holds that Sj(x, y) = Ŝ(x, y), where Ŝ is defined by the honest parties in C.

Given these three claims, together with the fact that 2t + 1 OKF messages were received by the
honest party that output grade 2 at the end of the protocol, we have that t+1 honest parties hold
the same polynomial Ŝ(x, y) in Round 7. Each such honest party sends to each party Pj the two
polynomials Ŝ(x, j), Ŝ(j, y) in Round 7. Thus, each honest party receives the same two polynomials
at least t+1 times and forwards them to every other party. Note that no other polynomial can be
received with plurality t+1. This implies that every honest party receives 2t+1 pairs of polynomials
on the polynomial Ŝ, thus ensuring a robust interpolation. Therefore, every honest party outputs
Ŝ with grade at least 1.

Proof of Claim 5.6: Let CH be the set of honest parties in C that sent OKC . Consider j, k ∈ CH .
We show that Sj(x, y) = Sk(x, y), where Sj , Sk are the polynomials received by parties Pj , Pk

respectively in Step 1b. As per the conditions of Round 5, an honest party Pj sends OKC only if
it receives (Cj , Dj , Ej , Fj) with grade 2, j ∈ Cj , |Dj | ≥ 2t + 1 and Agreedj ∩Dj = Dj . Since the
message is received with grade 2 by some honest Pj , by the properties of gradecast we know that
all honest parties receive the same message (Cj , Dj , Ej , Fj) and therefore we can omit the subscript
of Dj . Moreover, since |D| ≥ 2t+1, it holds that D contains at least t+1 honest parties. Further,
owing to the fact that Agreedj ∩ D = D and Agreedk ∩ D = D, we have Sj(x, d) = Sk(x, d) and
Sj(d, y) = Sk(d, y) for every honest d in D. Since D has at least t+ 1 honest parties, it holds that
Sj(x, y) = Sk(x, y).

Proof of Claim 5.7: Let EH denote the set of honest parties that sent OKE in Round 6. For each
honest party Pk in EH , it holds that |Agreedk ∩Ck ∩C ′k| ≥ t+1 where C ′k is the set of parties that

25

sent OKC in Round 5. Let CH be the set of honest parties that sent OKC in Round 5. It must hold
that |CH | ≥ 1, and therefore at least one honest party sent OKC to all honest parties. Therefore,
by the condition of Round 5 and the properties of gradecast, all the honest parties receive the same
sets (C,E,D, F) and we thus can omit the subscript of Ck. Moreover, from Claim 5.6, we have
that all honest parties in CH hold the same bivariate polynomial, Ŝ(x, y).

Further, since |Agreedk ∩C ∩C ′k| ≥ t+ 1 for each k ∈ EH we have that Pk agrees with at least
one honest party in CH . Let j ∈ CH such that j ∈ Agreedk. In Step 2b, Pj and Pk exchanged
polynomials and since j ∈ Agreedk, it must hold that k ∈ Agreedj . This implies that Pk holds the

two polynomials Ŝ(x, k), Ŝ(k, y) in round 6.

Proof of Claim 5.8: For each party Pj such that j ∈ F that sends OKF at the end of Round 7,
it holds that |Agreedj ∩ Ej ∩ E′j | ≥ 2t + 1 where E′j is the set of parties that sent OKE to Pj in
Round 6. This implies that at least t + 1 honest parties sent OKE , which further implies that at
least one honest party sent OKC at the end of Round 5 (see claim 5.7). Moreover, as described
in the proof of claims 5.6 and 5.7, due to the conditions of Round 5 and properties of gradecast,
this also implies that we can omit the subscript of Ej since all honest parties see the same sets
(C,D,E, F). Let EH be the set of honest parties that sent OKE in Round 6, where we have that
|EH | ≥ t+ 1.

From Claim 5.7 we know that each party Pk in EH holds Ŝ(x, k), Ŝ(k, y). For each honest party
Pj such that j ∈ F that sent OKF we have that Pj agrees with t+ 1 parties in EH . For each such
k ∈ EH , we conclude that Sj(x, k) = Ŝ(x, k) and Sj(k, y) = Ŝ(k, y). Since this holds for at least
t+ 1 distinct indices in EH , we conclude that Sj(x, y) = Ŝ(x, y).

This concludes the proof of Claim 5.5.

Claim 5.9 (Non-equivocation). If two honest parties each output a grade ≥ 1 then they output the
same polynomial Ŝ(x, y).

Proof. If an honest party outputs grade ≥ 1 then it must have received at least 2t + 1 pairs of
polynomials at the end of Round 8. This implies that at least t+ 1 honest parties forwarded their
polynomials in Round 8 thus indicating that each of these honest parties received their polynomials
with plurality at least t+ 1 at the end of Round 7. This in turn implies that there is at least one
honest party that sent OKF in Round 7. By virtue of claim 5.8, we know that all honest parties
that sent OKF in Round 7 hold the same polynomial Ŝ(x, y). As a result, the only two polynomials
that can be forwarded by honest parties in Round 8 (i.e., that can be received t+1 times) must lie
on Ŝ(x, y). Since t+ 1 honest parties forwarded their polynomials, it holds that all honest parties
receive at least t+ 1 univariate shares on Ŝ(x, y).

Thus, given that any two degree-t bivariate polynomials can agree on at most t shares, for any
honest party that receives 2t + 1 pairs of polynomials and runs the robust interpolation, the only
polynomial that can be accepted is Ŝ(x, y).

This concludes the proof of Theorem 5.3.

5.2 Making the Protocol Balanced

To make the protocol balanced, note that each party sends or receives O(n2 log n) bits except for
the dealer who sends O(n3 log n). We therefore change the first round of the protocol as follows:

26

1. The dealer:

(a) The dealer views its elements as a bivariate polynomial of degree at most t in both x
and y, i.e., S(x, y) =

∑t
i=0

∑t
j=0 bi,jx

iyj .

(b) The dealer sends S(x, i) to each party Pi.

2. Each party Pi:

(a) Forwards the message received from the dealer to every other party.

(b) Given all univariate polynomials received, say u(x, 1), . . . , u(x, n), runs the Reed-
Solomon decoding procedure to obtain the bivariate polynomial Si(x, y). If there is
no unique decoding, then use Si(x, y) = ⊥.

3. Continue to run Protocol ΠGradecast (Protocol 5.2) from Step 2 to the end while interpreting
Si(x, y) decoded from the prior round as the polynomial received from the dealer.

Theorem 5.10. The modified protocol securely realizes Functionality FGradecast (Functionality 5.1)
in the presence of a malicious adversary controlling at most t parties. Each party, including the
dealer sends or receives O(n2 log n) bits (giving a total communication complexity of O(n3 log n)).

Proof. We show that the above procedure is equivalent to let the dealer send S to each party
separately.

The case of an honest dealer. In that case, the dealer holds a (t, t)-bivariate polynomial S(x, y)
and sends to each party its share on S, which is essentially a univariate polynomial with degree-t in
x. Since there are at least 2t+ 1 honest parties, each honest party holds at least 2t+ 1 univariate
shares (in x) on the polynomial S defined by the dealer and therefore the decoding will result in
the polynomial S that the dealer initially holds.

The case of a corrupted dealer. In this case, any attack by the adversary in the modified
steps of the protocol can be mapped to a malicious behaviour of the dealer in the polynomial
distribution step of the unbalanced protocol. Specifically, for an honest party Pj , the failure to
obtain a bivariate polynomial Sj(x, y) upon decoding in the balanced protocol is equivalent to a
corrupt dealer sending ⊥ to Pj in the first step of the unbalanced protocol. Thus, for any adversary
A attacking the modified protocol we can build an adversary A′ for ΠGradecast. Since ΠGradecast

tolerates at most t parties and securely realizes Functionality FGradecast, we get that the modified
protocol also securely realizes Functionality FGradecast. A′ corrupts the same set of parties as A.
It simulates the honest parties in the first two rounds of the modified protocol and obtains the
polynomial Sj that each honest party Pj uses. It then simply hands Sj as the polynomial the
corrupted dealer sends to Pj in Protocol ΠGradecast.

5.3 Conclusions

The following is a simple corollary, where for general message length of L bits the dealer simply
breaks the message into ℓ = ⌈L/(t + 1)2 log n⌉ blocks and runs ℓ parallel executions of gradecast.
Each party outputs the concatenation of all executions, with the minimum grade obtained on all
executions. The protocol is optimal for L > n2 log n. We thus obtain the following corollary.

Corollary 5.11. Let t < n/3. There exists a gradecast protocol in the presence of a malicious
adversary controlling at most t parties, where for transmitting L bits, the protocol requires the
transmission of O(nL+ n3 log n) bits, where each party sends or receives O(L+ n2 log n) bits.

27

6 Multi-Moderated Packed Secret Sharing

At a high level multi-moderated packed secret sharing is a packed VSS moderated by a setM of
t+1 distinguished parties called moderators. The parties output a flag for every moderator in the
end. We represent the flag for a moderator M ∈ M held by a party Pk as vkM . In addition, each
party Pk holds a variable dkM taking values from {accept, reject} for each M ∈ M which identifies
whether the dealer is accepted or rejected when M assumes the role of the moderator.

If a moderator M is honest, then every honest party Pk will set vkM = 1 and the properties of
VSS will be satisfied irrespective of whether the dealer is honest or corrupt. If the dealer is honest,
every honest Pk will set dkM = accept. For a corrupt dealer, the bit can be 0 or 1 based on the
dealer’s behaviour, but all the honest parties will unanimously output the same outcome.

If a moderator M is corrupt, then it is guaranteed that: if some honest party Pk sets the flag
vkM = 1, then the properties of VSS will be satisfied irrespective of whether the dealer is honest
or corrupt. That is, if the dealer is honest every honest Pk outputs dkM = accept. For a corrupt
dealer, it is guaranteed that all the honest parties unanimously output the same outcome for the
dealer. We note that when no honest party sets its flag to 1 for a moderator M , then irrespective
for whether the dealer is honest or corrupt, it is possible that the parties do not have agreement
on their dkM .

We capture these properties in a functionality, defined as follows:

Functionality 6.1: Fmm-pVSS – Multi-Moderated Packed Secret Sharing

The functionality is parameterized by the set of corrupted parties I ⊆ {1, . . . , n}, a setM of t+ 1
distinguished parties called as moderators.
1. The dealer sends polynomials fj(x), gj(y) for every j. If the dealer is honest, then there exists

a single (2t, t) polynomial S(x, y) that satisfies fj(x) = S(x, j) and gj(y) = S(j, y) for every
j ∈ {1, . . . , n}.

2. If the dealer is honest, then send fi(x), gi(y) for every i ∈ I to the adversary.
3. For each moderator Mj ∈M:
(a) If the moderator Mj is honest, then set vkMj

= 1 for every k ∈ {1, . . . , n}. Moreover:

i. If the dealer is honest, then set dkMj
= accept for every k ∈ {1, . . . , n}.

ii. If the dealer is corrupt, then receive a message mj from the adversary. If mj = accept
then verify that the shares of the honest parties define a unique (2t, t)-polynomial. If so,
set dkMj

= accept for every k ∈ {1, . . . , n}. In any other case, set dkMj
= reject for every

k ∈ {1, . . . , n}.
(b) If the moderator Mj is corrupt then receive mj from the adversary.

i. If mj = (Agreement, (vkMj
)k ̸∈I), dMj) where dMj ∈ {accept, reject}, and for some k ̸∈ I it

holds that vkMj
= 1. Set (vkMj

)k ̸∈I as received from the adversary. Verify that S(x, y) is

(2t, t)-polynomial. If not, set dkMj
= reject for every k ̸∈ I. Otherwise, set dkMj

= dMj for
every k ̸∈ I.

ii. If mj = (NoAgreement, (dkMj
)k ̸∈I) where each dkMj

∈ {accept, reject}, then set vkMj
= 0 for

every k ∈ {1, . . . , n} and d1Mj
, . . . , dnMj

as received from the adversary.

4. Output: Each honest party Pk (k ̸∈ I) receives as output fi(x), gi(y), (d
k
M)M∈M, and flags

(vkM)M∈M.

28

To clarify, each party Pi receives global shares for all moderators, and an output diM and flag
viM per each moderator M ∈M. If the dealer and the moderator are honest, then all the flags are
1 and the parties accept the shares. If the moderator Mj is corrupted, then as long as there is one
honest party Pk with vkMj

= 1 there will be an agreement in the outputs d1Mj
, . . . , dnMj

(either all

the honest parties accept or all of them reject). When vkMj
= 0 for all the honest parties, we might

have inconsistency in the outputs d1Mj
, . . . , dnMj

with respect to that moderator.

The protocol. We build on the discussion given in Section 2.1. We consider the protocol of VSS
where the dealer inputs some bivariate polynomial S(x, y) of degree at most 2t in x and degree
at most t in y. For multi-moderated packed secret sharing, essentially, each broadcast from ΠpVSS

is simulated with two sequential gradecasts. The first gradecast is performed by the party which
intends to broadcast in the underlying packed VSS protocol, while the second is executed by a
moderator. Note that these gradecasts are realized via the protocol ΠGradecast, presented in the
Section 5, having the optimal communication complexity. Up to Step 6 of ΠpVSS (Protocol 4.2),
the dealer is the moderator for each gradecast. At Step 6, we fork into t + 1 executions, with a
unique party acting as the moderator in each execution. Since the protocol steps remain similar to
ΠpVSS, we describe the multi-moderated packed secret sharing protocol below in terms of how the
broadcast is simulated at each step and the required changes at Step 6 of the packed VSS protocol.

Protocol 6.2: Πmm-pVSS – Multi-Moderated Packed Secret Sharing

Simulating broadcast up to (including) Step 6 of ΠpVSS:

1. Simulating broadcast of a message by the dealer.

(a) The dealer: When the dealer has to broadcast a message m it gradecasts it.

(b) Party Pi: Let (m, g) be the message gradecasted by the dealer, where m is the message
and g is the grade. Proceed with m as the message broadcasted by the dealer. If g ̸= 2,
then set happyi = 0 within the execution of ΠpVSS.

2. Simulating broadcast of a party Pj .

(a) Party Pj: When Pj wishes to broadcast a message m, it first gradecasts it.

(b) The dealer: Let (m, g) be the message and g its associated grade. The dealer gradecasts
m.

(c) Each party Pi: Let (m′, g′) be the messages gradecasted by the dealer. Use m′ as the
message broadcasted by Pj in the protocol. Moreover, if g′ ̸= 2; or if g = 2 but m′ ̸= m,
then Pi sets happyi = 0 within the execution of ΠpVSS.

After Step 6 of ΠpVSS:

1. Each party Pi: Set viMj
= 1, and let fi(x), gi(y) be the pair of shares Pi is holding at end of

Step 6. Gradecast accept if happyi = 1 and reject otherwise.
At this point, we fork into |M| executions, one per moderator Mj ∈M as follows:

(a) The moderator Mj: Let (a1, . . . , an) be the decisions of all parties as received from
the gradecast. Gradecast (a1, . . . , an).

(b) Each party Pi: Let (a1, . . . , an) be the decisions received directly from the parties,
and let (a′1, . . . , a

′
n) be the message gradecasted from the moderator Mj with associated

grade g′. Set viMj
= 0 if g′ ̸= 2, or there exists ak received from Pk with grade 2 but for

which ak ̸= a′k. Then:

29

i. If there exists 2t+ 1 accepts within (a′1, . . . , a
′
n), then set diMj

= accept.

ii. Otherwise, set diMj
= reject.

2. Output: Pi outputs (fi(x), gi(y)), (d
i
M1

, . . . , diMt
) and (viM1

, . . . , viMt
).

Theorem 6.3. Let t < n/3. Protocol Πmm-pVSS (Protocol 6.2) computes Fmm-pVSS (Functional-
ity 6.1) in the presence of a malicious adversary corrupting at most t parties. The protocol requires
the transmission of O(n2 log n) bits over point-to-point channels, the dealer gradecasts O(n2 log n)
bits, and each party gradecasts at most n log n bits.

Proof. Case 1 - The dealer is honest. Let SV SS be the simulator of the VSS protocol (Pro-
tocol 4.2). The simulator receives from the trusted party, the shares of the corrupted parties –
S(x, i), S(i, y) as in Step 2 of the functionality, and simulates the view of the adversary similar to
SV SS . While all the modifications described in the protocol for Πmm-pVSS (Protocol 6.2) are deter-
ministic, the simulator now also has to emulate Functionality 5.1. We claim that when the dealer is
honest, no honest party sets happyi = 0. This holds from the same reasoning as in SV SS , and due
to the fact that the modifications in the multi-moderated packed secret sharing do not affect this
claim. In particular, note that the dealer’s broadcasted messages, which are now emulated using
gradecast will always be received with grade 2 by all the honest parties. Furthermore, observe
that every other party’s broadcast which is emulated via that party’s gradecast followed by dealer’s
gradecast will not lead to an honest party setting happyi = 0. This is because neither an honest
dealer’s gradecast will have grade less than 2, nor a gradecast by some party which is received by
an honest party with grade 2 will follow the dealer’s gradecast with a different output value. The
latter holds due to the property of gradecast, where if an honest party receives a message with
grade 2 then all the honest parties (including the dealer) would receive the same message with
grade ≥ 1, and the dealer would further gradecast the same message. As a result, no honest party
sets happyi = 0.

Consequently, at the modified Step 6, an honest party’s initial decision will be accept, and the
final decision of whether to accept or reject, and the grade of the moderator is determined by the
messages it receives from the moderator and the decisions it received from other parties. Thus, the
simulator can completely simulate this stage as well for all moderators Mj ∈M. It can then obtain
the outputs of all honest parties, i.e., the set (dkMj

, vkMj
)k ̸∈I,Mj∈M, although it cannot necessarily

compute the output share of each honest party. For each moderator Mj ∈M:

1. If the moderator is honest, then the trusted party does not expect a message from the simu-
lator and just delivers to each honest party dkMj

= accept and vkMj
= 1. We will show below

(Claim 6.4) that the same happens in the simulated execution, and in the real execution.

2. If there exists a simulated honest party that outputs vkMj
= 1, then we prove below

(Claim 6.5) that for every honest P ′k we have that dk
′

Mj
= dkMj

. Then, the simulator sends

mj = (Agreement, (vkMj
)k ̸∈I) to the trusted party. Since the dealer is honest, S(x, y) is of

degree (2t, t), and the trusted party would just forward dkMj
, vkMj

to every honest party Pk.

3. If for every k ̸∈ I it holds that vkMj
= 0 then the simulator sends mj =

(NoAgreement, (dkMj
)k ̸∈I) to the trusted party. The trusted party just forwards dkMj

to ev-

ery honest party Pk with grade 0 (as in the simulated execution).

30

The above shows that the output of all honest parties in the ideal world is exactly the same as
the output of honest parties simulated by SV SS in the simulated execution. As mentioned in the
proof of ΠpVSS (Theorem 4.3), the view of the adversary in the simulation of SV SS and in the
real execution is exactly the same. We now show that the output of all honest parties in the
real execution is exactly the same as the output of all simulated honest parties in the simulated
execution. To conclude the case of an honest dealer, we have the following claims:

Claim 6.4. When the dealer is honest and the moderator Mj is honest, every honest party Pk sets
dkMj

= accept and vkMj
= 1.

Proof. Note that at Step 6, if some honest party receives the decision ai with grade 2 from a
party Pi, then by the properties of gradecast, the honest moderator Mj receives the same ai (with
grade ≥ 1) and further gradecasts the exact same message. Moreover, the message (a1, . . . , an)
gradecasted by an honest moderator is received by all the honest parties with grade 2. Thus,
for every honest party Pk it holds that vkMj

= 1. Additionally, as described, for the case of an
honest dealer, for every honest party Pi it holds that happyi = 1 and hence every honest party
gradecasts its initial decision as accept, ensuring a total of at least 2t+1 accept decisions. Thus, for
every honest party Pk, it holds that dkMj

= accept. Note that in the ideal world, this corresponds

to Step 3(b)i of the functionality (Functionality 6.1), where similar to the real world, all honest
parties output dkMj

= accept and vkMj
= 1.

Claim 6.5. If the dealer is honest and the moderator Mj is corrupted then if some honest party
Pk holds vkMj

= 1 then all other honest parties P ′k have dk
′

Mj
= accept.

Proof. If an honest party Pk outputs vkMj
= 1, then it must have received the decisions (a′1, . . . , a

′
n)

from Mj with grade 2, and moreover, all the decisions corresponding to honest parties must agree
with those gradecasted previously by the respective honest parties themselves. As described earlier,
for the case of an honest dealer, every honest party gradecasts its initial decision as accept. This
implies that, of (a′1, . . . , a

′
n), at least 2t + 1 decisions are accept. Furthermore, as guaranteed by

gradecast, all the other honest parties see the exact same decisions (a′1, . . . , a
′
n) for the moderator

Mj , though they might have grade equal to 1. As a result, every other honest party P ′k sets
dk

′
Mj

= accept while vk
′

Mj
is either 0 or 1 (depending on the grade of the message (a′1, . . . , a

′
n)

gradecasted by Mj). In the ideal execution, the simulator in this case sends (Agreement, ·) as
described above and the outputs dkMj

are the same for all honest Pk.

Case 2 - The dealer is corrupt. When the dealer is corrupted, simulation is trivial since all
honest parties have no input. The simulator just simulates the honest parties interacting with the
adversary as in the protocol specifications, and simulates the behavior of the gradecast functionality
as in Functionality 5.1. Moreover, since the protocol is deterministic, the view of the adversary in
the real execution and in the ideal execution is exactly the same.

The simulator proceeds by simulating all the honest parties’ messages and let (fi(x), gi(y), (d
i
M1

,

. . . , diMt
), (viM1

, . . . , viMt
) be the output of the simulated honest party Pi. The decision gradecasted

by an honest party is the same for all the moderators. The proof of packed VSS (Theorem 4.3)
shows that if there are at least t+1 honest parties that decide on accept in Step 6, then there exists

31

a unique bivariate polynomial S(x, y) of degree-(2t, t) such that the shares of all the honest parties
lie on this polynomial. Then, for each moderator Mj :

1. If Mj is honest: We will show below (Claim 6.6) that the output of every simulated honest
party Pk is vkMj

= 1 and that all the honest parties have the same output dkMj
. If all of them

have dkMj
= accept, then the simulator sets mj = accept. If all have dkMj

= reject, then it sets
mj = reject.

2. If Mj is corrupted: We have the following sub-cases to consider.

(a) There exists an honest party Pk with vkMj
= 1 and dkMj

= accept: We show below

(Claim 6.7) that every other honest party P ′k must have dk
′

Mj
= accept, and the shares

of all the honest parties lie on a unique bivariate polynomial S(x, y) of degree-(2t, t). In
this case, the simulator sets mj = (Agreement, (vkMj

)k ̸∈I , accept).

(b) There exists an honest party Pk with vkMj
= 1 and dkMj

= reject: We show

subsequently (Claim 6.7) that every other honest party P ′k must have dk
′

Mj
= reject.

Thus the simulator sets mj = (Agreement, (vkMj
)k ̸∈I , reject).

(c) All honest parties have vkMj
= 0: In this case, there is no guarantee on the output.

Therefore, the simulator sets mj = (NoAgreement, (dkMj
)k ̸∈I).

The simulator sends mj for every Mj ∈ M to the trusted party. It is easy to see by inspection
of the functionality (Functionality 6.1) that upon sending these messages to the trusted party,
all the honest parties in the ideal world receive the exact same output as the simulated honest
parties in the simulated execution. Further, since the simulated execution is exactly the same as
the corresponding execution in the real world, the outputs of honest parties and views are identical.
To conclude the proof, we prove the following claims.

Claim 6.6. For an honest moderator Mj, each honest party Pk outputs a grade vkMj
= 1. Moreover,

all the honest parties have the same output dkMj
, i.e., either all accept or all reject.

Proof. Note that all the honest parties receive the messages gradecasted by the honest moderator
Mj identically and with grade 2. Moreover, for every message gradecasted by some party which is
received with grade 2 by any honest party, the properties of gradecast ensure that the moderator
receives the same message (although with grade ≥ 1). This implies that the moderator gradecasts
exactly the same message. In particular, this also holds true for the gradecast of the decisions
(a′1, . . . , a

′
n) where each ai was previously gradecasted by party Pi. Hence, for every honest Pk

it must hold that vkMj
= 1. Moreover, by the property of gradecast, since all the honest parties

receive the same (a′1, . . . , a
′
n), if the decisions contain at least 2t + 1 accept messages, then every

honest party Pk sets dkMj
= accept. On the other hand, if the decisions do not contain 2t+1 accept

messages, then all honest parties set dkMj
= reject.

For the former case, we have that at least t+1 honest parties decided on accept. Therefore, ac-
cording to Lemma 4.4, this implies that all honest parties have shares on the same (2t, t) polynomial
S(x, y).

Claim 6.7. For a corrupted moderator Mj, if some honest party Pk holds vkMj
= 1 then every other

honest party P ′k holds dk
′

Mj
= dkMj

.

32

Proof. If an honest party Pk outputs vkMj
= 1 with outputkMj

= accept, then it must have received

2t + 1 decisions (a′1, . . . , a
′
n) of accept from the moderator with grade 2 such that the decisions

corresponding to the honest parties actually agree with the ones gradecasted by the honest parties
themselves. Due to the property of gradecast, this implies that all honest parties receive the same
decisions (a′1, . . . , a

′
n). Therefore, all other honest parties P ′k also set dk

′
Mj

= accept. We now show

that there is a unique polynomial S(x, y) of degree at most 2t in x and degree t in y, and all the
honest parties output shares on this polynomial.

Since the decisions of honest parties are received with grade 2, and as described these agree with
the decisions of the corresponding honest parties in (a′1, . . . , a

′
n), there must be at least t+1 honest

parties that decided accept. For each such honest party Pi it holds that happyi = 1. This implies
that all the broadcasts within the VSS protocol were simulated by the dealer (as a moderator)
correctly: Pi received all the gradecasts made by the dealer with grade 2, each complaint in the
protocol that an honest party made was received with grade 2 and was echoed by the dealer with
grade 2. Since there are t + 1 honest parties with happyi = 1, we have that all the complaints of
honest parties were publicly resolved by the dealer, and received by all other honest parties with
grade at least 1. Thus, all honest parties see the same messages, and all parties that are not happy
have public shares. By the properties of the underlying VSS protocol, all shares of honest parties
lie on the same bivariate polynomial S(x, y).

If an honest party Pk outputs vkMj
= 1 with dkMj

= reject, then every honest party P ′k sets

dk
′

Mj
= reject. The proof follows similar to the previous case. Specifically, if Pk outputs vkMj

= 1

with dkMj
= reject, this implies that Pk must have received (a′1, . . . , a

′
n) gradecasted by Mj with

grade 2 such that the decisions of honest parties in (a′1, . . . , a
′
n) agree with the ones gradecasted by

the respective parties themselves. Thus, all honest parties receive the same (a′1, . . . , a
′
n). Moreover,

(a′1, . . . , a
′
n) does not contain 2t + 1 accept messages. Thus, each honest party P ′k sets dk

′
Mj

=
reject.

Efficiency. As in the packed VSS protocol, the sharing phase requires O(n2 log n) bits of point-
to-point communication. Every party gradecasts O(n) values in the worst case to communicate its
complaints, while the dealer performs O(n2) gradecasts to resolve the complaints.

6.1 Reconstruction

The reconstruction protocol ensures that even for a corrupt moderator, all the honest parties
reconstruct the same value when its flag is set to 1 by some honest party. This aligns with the
guarantees of the sharing phase, which ensures that the protocol achieves VSS corresponding to a
moderator when there exists an honest party with its flag set to 1 at the end of the sharing phase.

Protocol 6.8: ΠRec
mm-pVSS – Reconstruct of Multi-Moderated Packed Secret Sharing

The protocol is parameterized by the set of moderators M and a set B containing |M| distinct
non-zero values in the field. To be specific B denotes the set {−t, . . . , 0} used in ΠpVSS. We assume
a one-to-one mapping betweenM and {−t, . . . , 0}.
Input: Each party Pi holds (fi(x), gi(y)), (d

i
M)M∈M and (viM)M∈M.

1. Each party sends fi(x) to all. Let (f1(x)
′, . . . , fn(x)

′) be the polynomials received.

2. For each M ∈M (let β∗ ∈ B be its associated value):

33

(a) If diM = accept, then use Reed Solomon decoding procedure to reconstruct the unique
degree-t polynomial gβ∗(y) that agrees with at least 2t+1 values f1(β

∗), . . . , fn(β
∗) and

set siM = gβ∗(0). If there is not unique decoding, then set siM = 0.

(b) If diM = reject, then set siM = 0.

3. Output: Output (siM)M∈M.

Theorem 6.9. For each moderator M ∈ M, if there exists an honest party with vkM = 1 then all
honest parties hold the same sk

′
M = skM .

Proof. By the properties of Fmm-pVSS (Functionality 6.1), if there exists an honest party Pk that
holds vkM = 1 for some moderator M then all honest parties hold the same value dM , i.e., all
accept or reject. For each dM = reject, every honest party Pi sets siM = 0 in the reconstruction
protocol. On the other hand, if there exists an honest party with dM = accept, then according
to Functionality 6.1, even in the case of a corrupted dealer we have that all the shares of honest
parties lie on the same (2t, t)-bivariate polynomial S(x, y). As a result, each polynomial gβ∗(y) =
S(β∗, y) is of degree-t. Moreover, the parties send their shares to one another, and thus the 2t+ 1
honest parties send the degree-2t polynomials S(x, i) to one another. Therefore, each honest party
would have at least 2t+ 1 correct points on S(β∗, y), for which the Reed-Solomon error correction
will return a unique decoding, thus ensuring that every honest party Pi obtains the same output
siM = S(β∗, 0).

7 Oblivious Leader Election

We start with the functionality which captures OLE with fairness δ, where each party Pi outputs
a value ℓi ∈ {1, . . . , n} such that with probability at least δ there exists a value ℓ ∈ {1, . . . , n}
for which the following conditions hold: (a) each honest Pi outputs ℓi = ℓ, and (b) Pℓ is an
honest party. The functionality is parameterized by the set of corrupted parties I, a parameter
δ > 0 and a family of efficiently sampling distributions D = {D}. Each D ∈ D is a distribution

D : {0, 1}poly(n) → {1, . . . , n}n satisfying: Pr
r←{0,1}poly(n) [D(r) = (j, . . . , j) s.t. j ̸∈ I] ≥ δ .

Functionality 7.1: FOLE – Oblivious Leader Election Functionality

The functionality is parameterized by the set of corrupted parties I ⊂ {1, . . . , n} and the family D.

1. The functionality receives from the adversary a sampler D and verifies that D ∈ D. If not,
then it takes some default sampler in D ∈ D.

2. The functionality chooses a random r ← {0, 1}poly(n) and samples (ℓ1, . . . , ℓn) = D(r).

3. It hands r to the adversary and it hands ℓi to every party Pi .

Looking ahead, our protocol will define a family D in which the functionality can efficiently
determine whether a given sampler D is a member of D. Specifically, we define the sampler as a
parametrized algorithm with some specific values hardwired. Therefore, the ideal adversary can
just send those parameters to the functionality to specify D in the family.

Protocol 7.2: ΠOLE – Oblivious Leader Election Protocol

34

1. Choose and commit weights: Each party Pi ∈ P acts as the dealer and chooses ci→j

as random values in {1, . . . , n4}, for every j ∈ {1, . . . , n}. Pi then runs the following for
T := ⌈n/t + 1⌉ times in parallel. That is, for ℓ ∈ [1, . . . , T], each Pi acting as the dealer
executes the following in parallel:

(a) Let the set of moderators beMℓ = (P(ℓ−1)·(t+1)+1, . . . , Pℓ·(t+1)).

(b) The dealer Pi chooses a random (2t, t)-bivariate polynomial Si,ℓ(x, y) while hiding the
t + 1 values ci→j for every j ∈ {(ℓ − 1) · (t + 1) + 1, . . . , ℓ · (t + 1)}, one corresponding
to each moderator Pj ∈ Mℓ. Specifically, Pi chooses Si,ℓ(x, y) such that Si,ℓ(0, 0) =
ci→(ℓ−1)·(t+1)+1 and so on till Si,ℓ(−t, 0) = ci→ℓ·(t+1). The parties invoke Fmm-pVSS
(Fig. 6.1) where Pi is the dealer, and the moderators are parties inMℓ.

(c) Each party Pk gets as output a pair of shares f i,ℓ
k (x), gi,ℓk (y), outputs dki,j and a flag vki,j

for each moderator Pj ∈Mℓ.

Note that the above is run for all dealers P1, . . . , Pn in parallel, where each dealer has T
parallel instances (in total T · n invocations).
Upon completion of the above, let succeededi be the set of moderators for which Pi holds a
flag 1 in all executions, i.e., succeededi := {j | vid,j = 1 for all dealers Pd ∈ P}.

2. Reconstruct the weights and pick a leader: The reconstruction phase, ΠRec
mm-pVSS

(Fig. 6.8) of each of the above nT instances of multi-moderated packed secret sharing is
run in parallel to reconstruct the secrets previously shared.
Let cki→j denote Pk’s view of the value ci→j for every i, j ∈ {1, . . . , n}, i.e., the reconstructed
value for the instance where Pi is the dealer and Pj is the moderator.
Each party Pk sets ckj =

∑n
i=1 c

k
i→j mod n4 and outputs j that minimizes ckj among all j ∈

succeededk (break ties arbitrarily).

Theorem 7.3. Let t < n/3. Protocol ΠOLE (Protocol 7.2) computes FOLE (Functionality 7.1) in the
presence of a malicious adversary corrupting at most t parties. The protocol requires a transmission
of O(n4 log n) bits over point-to-point channels.

Proof. The simulator first simulates Fmm-pVSS (Functionality 6.1) for all the packed secret sharings

of all the honest dealers. For this, it generates random shares f i,ℓ
k (x), gi,ℓk (y) for each ℓ ∈ {1, . . . , T}

on behalf of every honest dealer Pi for the parties corrupted by the adversary. Observe that these
shares do not determine the underlying values ci→j (see Claim 3.4) for each j ∈ {1, . . . , n}. Note
that each party acts as the moderator in one instance of multi-moderated secret sharing where Pi

is the dealer. Hence, for every honest moderator Pj , it sets d
k
i,j = accept and flag vki,j = 1 for every

Pk. For each corrupted moderator Pj , the simulator receives from the adversary, a message mj as
per Functionality 6.1, which determines the output dki,j and flag vki,j for all honest parties Pk and

whether the reconstruction would be a default value (i.e., 0 when dki,j = reject) or the secret of the
dealer otherwise. Following this, the simulator simulates Functionality 6.1 for all the packed secret
sharings of all corrupted dealers. First, for every corrupt Pi, it receives from the adversary the
shares f i,ℓ

k (x), gi,ℓk (y) for each honest Pk and every l ∈ {1, . . . , T}. For each honest moderator Pj ,
it sets the flag vki,j = 1 for every Pk. Further, it receives from the adversary a message mj as per
Functionality 6.1. Depending on mj and whether the shares of the honest parties received from
the adversary define a unique (2t, t) polynomial, the simulator sets dki,j to accept or reject as per
the functionality. Further, as in the case of honest dealers, it receives from the adversary, for each

35

corrupted moderator, a message as per Functionality 6.1, which similarly determines the outputs
of all honest parties and whether the reconstruction would be a default value (i.e., 0) or the secret
of the dealer. Thus, given the shares of the honest parties, dki,j and flag vki,j , the simulator can fully

compute the view of each party Pk of the value – cki→j for every corrupted Pi, every moderator Pj .

Moreover, given the flags vki,j , the simulator can compute succeedk set for each every honest Pk.
Given all the above information, the simulator can set the sampling algorithm D as follows

(this also defines the family D). The sampling algorithm D is parameterized with the values cki→j

for every corrupted Pi and every moderator Pj , and the flags vki,j for every Pi, Pj . Further, the
sampling algorithm uses its randomness r to pick all the secret ci→j values for every honest dealer
Pi and every moderator Pj . Then, given the values ci→j and the corresponding vki,j for each Pk, the

algorithm can simulate the output cki→j for each party Pk, i.e., Pk’s view of the value ci→j for every

honest dealer Pi and moderator Pj . Consequently, it can compute ckj =
∑n

i=1 c
k
i→j mod n4 and set

ℓk as the index j ∈ {1, . . . , n} that minimizes ckj among all j ∈ succeedk, just as the protocol.
Note that the family D is defined as described in the algorithm above, and therefore to specify

D it is enough for the simulator to just send the parameterized values cki→j for every corrupted Pi,

and the flags vki,j . Therefore the functionality itself is also efficient.
Upon defining the sampling algorithm as above, the simulator sends D to the functionality.

The functionality returns the randomness used for sampling, which is essentially all the values ci→j

corresponding to every honest dealer Pi and every moderator Pj . Using these values, the simulator
can then generate the polynomials Si,ℓ(x, y) for each ℓ ∈ {1, . . . , T} that each honest dealer uses
in its T instance of the multi-moderated secret sharing, as a function of the shares it has sent
to the adversary so far. That is, the simulator sets Si,ℓ(x, y) as described in Step 1b under the

constraint that Si,ℓ(x, k) = f i,ℓ
k (x) and Si,ℓ(k, y) = gi,ℓk (y) sent to the adversary for each corrupt Pk.

The simulator then uses these polynomials to simulate the reconstruction phase of each instance
of multi-moderated secret sharing. For this, the simulator sends f i,ℓ

k (x) for each honest Pk to the

adversary, where for an honest Pi, the simulator sets f i,ℓ
k (x) = Si,ℓ(x, i) using Si,ℓ(x, y) computed

as described. By construction of the polynomials Si,ℓ(x, y) and the sampler D, the result of the
reconstruction phase would be exactly the output of D(r), as is the output of all parties in the
ideal execution. Below, we show that D is a valid sampler.

Proving that D is valid. We next show that D is a valid sampler, namely, that for a random
r, D(r) outputs the index of an honest party with some probability δ > 1/2. The proof is almost
verbatim from [KK06].

Towards that end, define:

succeeded =
⋃
k∈H

succeededk ,

where H is the set of all parties that were honest at the end of phase 1 of the protocol. Recall
that by the guarantees of multi-moderated secret sharing, even if a single honest party Pk holds
vkd,j = 1 then in the execution where Pd is the dealer and Pj is the moderator, the honest parties
would have an agreement on the reconstructed value.

Hence, by the properties of multi-moderated secret sharing, if reconstruction is successful and
if k ∈ succeeded, then for any honest Pi, Pj and any 1 ≤ ℓ ≤ n we have that ciℓ→k = cjℓ→k, i.e., the
outputs of Pi and Pj are the same in the reconstruction associated with the instance with Pℓ as a
dealer and Pk as the moderator. As a result, we can omit the superscripts i and j.

36

We claim that all values ck for k ∈ succeeded are uniformly distributed in {1, . . . , n4}. Note that
the set succeeded might contain parties that are controlled by the adversary, but acted honestly
while moderating the sharing phases and therefore are also considered. Consider the value ci→k, that
is, the instance of multi-moderated secret sharing where Pi is the dealer and Pk is the moderator.
We have the following cases to consider:

1. The moderator Pk is honest, then all the honest parties see the same values c1→k, . . . , cn→k

regardless of whether each respective dealer P1, . . . , Pn is honest or not. Moreover, k is in the
set succeededℓ of all honest parties Pℓ. Furthermore,

(a) If the dealer Pi is honest then ci→k is uniformly distributed in {1, . . . , n4}. Moreover,
the shares received by the corrupted parties are independent of ci→k.

(b) If the dealer Pi is corrupted then ci→k must have been chosen independently of all other
values, due to the secrecy property of secret sharing.

2. The moderator Pk is corrupted, then all the honest parties see the same values c1→k, . . . , cn→k

regardless of whether each respective dealer P1, . . . , Pn is honest or not. However, k might
not be in the set succeededℓ of all honest parties Pℓ. Furthermore,

(a) If the dealer Pi is honest then ci→k is uniformly distributed in {1, . . . , n4}.
(b) If the dealer Pi is corrupted then ci→k must have been chosen independently of all other

values.

We therefore conclude that all the ck for k ∈ succeeded are distributed uniformly at random in
{1, . . . , n4}. Let HonestChosen be the event where the index k for which ck is minimal among all
parties in succeeded is an index of an honest party. We have that:

Pr [HonestChosen]

≥ Pr [HonestChosen | ∀i, j ∈ succeeded ci ̸= cj] · Pr [∀i, j ∈ succeeded ci ̸= cj]

≥ n− t

n
· (1− Pr [∃i, j ∈ succeeded, ci = cj])

≥ n− t

n
·
(
1− n2 · 1

n4

)
≥ n− t

n
− 1

n2
≥ 1

2
.

8 Broadcast

8.1 Byzantine Agreement

In a Byzantine agreement, every party Pi holds initial input vi and the following properties hold:
(Agreement): All the honest parties output the same value; (Validity): If all the honest parties
begin with the same input value v, then all the honest parties output v. We simply plug in our OLE
in the Byzantine agreement of [KK06]. As described in Section 1.3, we present standalone func-
tionalities for Byzantine agreement and broadcast, where the intricacies of sequential composition
are tackled in [CCGZ19].

Functionality 8.1: FBA – Byzantine Agreement

The functionality is parameterized by the set of corrupted parties I.

37

1. The functionality receives from each honest party Pj its input bj ∈ {0, 1}. The functionality
sends (bj)j ̸∈I to the adversary.

2. The adversary sends a bit b̂.

3. If there exists a bit b such that bj = b for every j ̸∈ I, then set y = b. Otherwise, set y = b̂.

4. Send y to all parties.

The protocol for byzantine agreement appears below, followed by the proof of its security.

Protocol 8.2: ΠBA – Byzantine Agreement Protocol

Input: Each party Pi holds a bit bi.
Initialization: Each party initializes decidedi = false and openToAcceptRandom = false. Run
the following iteratively until termination:

1. Round I – each party Pi:

(a) Send bi to all parties.

(b) Let bj,i be the bit received from Pj (if no value was received, use the value from the
previous iteration; at the outset of the protocol, use a default value).

2. Round II – each party Pi:

(a) Set S0i := {j | bj,i = 0} and S1i := {j | bj,i = 1}.
(b) If |S0i | ≥ t+ 1 then set bi = 0. If |S0i | ≥ n− t then set decidedi = true.

(c) Send bi to all parties. If a value was received from party Pj , then store it as bj,i.

3. Round III – each party Pi:

(a) Update S0i and S1i according to the new values b1,i, . . . , bn,i.

(b) If |S1i | ≥ t+ 1 then set bi = 1. If |S1i | ≥ n− t then set decidedi = true.

(c) Send bi to all parties. If a value was received from party Pj , then store it as bj,i.

4. Round IV – each party Pi:

(a) If decidedi = false then set openToAcceptRandomi = true.

(b) Update S0i and S1i according to the new values b1,i, . . . , bn,i.

(c) If |S0i | ≥ t+ 1 then set bi = 0. If |S0i | ≥ n− t then set openToAcceptRandomi = false.

(d) Send bi to all parties. If a value was received from party Pj , then store it as bj,i.

5. Round V – each party Pi:

(a) Update S0i and S1i according to the new values b1,i, . . . , bn,i.

(b) If |S1i | ≥ t+ 1 then set bi = 1. If |S1i | ≥ n− t then set openToAcceptRandomi = false.

(c) Send bi to all parties. If a value was received from party Pj , then store it as bj,i.

6. Round VI – each party Pi:

(a) All parties execute ΠOLE (Protocol 7.2) and let ℓi be the output of Pi.

(b) If openToAcceptRandomi = true, then set bi = bℓi .

(c) If decidedi = true, then output bi and terminate. Otherwise, proceed to the next
iteration.

38

Theorem 8.3. Protocol ΠBA (Protocol 8.2) is a Byzantine agreement protocol tolerating t malicious
parties that works in constant expected rounds and requires the transmission of O(n4 log n) bits in
expectation for n ≥ 3t+ 1.

Proof. Simulation is straightforward: since the simulator receives all the inputs of the honest parties
it can perfectly simulate them. Moreover, the simulator can also perfectly simulate the FOLE. It
just receives a (valid) sampler algorithm from the adversary, runs it, and gives the randomness it
used to the adversary, while also receiving the outputs of each honest party. Thus, the view of the
adversary is identical between the real and ideal executions.

The simulator then sees the output of the simulated honest parties b̂, and send that bit b̂ to
the trusted party. We will next show that all simulated honest parties must output the same bit
(this is essentially the “agreement” property). The trusted party then decides what to send to the
honest parties. If all honest parties sent the same input b to the trusted party, then it ignores the
bit that the simulator had sent it and just output b (this is essentially the “validity” property).
Otherwise, it outputs b̂.

We now show that the protocol satisfies agreement and validity. This in particular shows that
the output of the simulated honest parties in the simulated execution is the same as the output of
the honest parties in the ideal execution. Moreover, this also implies that the output in the ideal
execution is identical to the real.

The proof of agreement and validity here is taken almost verbatim from [KK06]. The proofs of
the following properties can be found in [KK06] and we give them here for completeness.

Claim 8.4. Protocol ΠBA (Protocol 8.2) satisfies the following properties:
Property I: If at the beginning of some iteration, all (remaining) honest parties Pi hold the same

value bi = b, then all honest parties who have not yet terminated will output b and terminate
the protocol at the end of the iteration.

Property II: If some party Pi sets decidedi = true at some iteration, then by the end of that
iteration, each honest party Pj that has not yet terminated holds bj = bi, regardless of the
result of the OLE protocol.

Property III: If an honest party Pi sets openToAcceptRandomi = false in some iteration and
holds a bit bi = b, then all honest parties that have not yet terminated hold bj = bi = b by the
end of Round V of that iteration.

Property IV: If some party Pi terminates with output bi = b, then all honest parties terminate
with identical output in either the current iteration or in the next one, regardless of the results
of the OLE protocol.

Property V: If an honest leader Pℓ is elected in Round VI of some iteration, then all honest
parties Pi terminate by the end of the next iteration.

Property I. Assume that bi = b = 0 at the beginning of the iteration for every honest party
Pi. Then, it holds that |S0i | ≥ n − t and hence Pi sets decidedi = true at Step 2b. This implies
that bi cannot be changed in Round III and remains 0. Consequently, in Round IV, Pi sets
openToAcceptRandomi = false and bi stays 0 (as |S0i | ≥ n− t). Further, bi remains unchanged in
Round V (since |S1i | ≤ t). Finally, in Round VI the parties run the OLE protocol, but ignore its
value since openToAcceptRandomi = false. Since decidedi = true, every honest Pi outputs bi = 0
and terminates.

The case where all parties start with bi = b = 1 is shown analogously.

39

Property II. Assume that Pi sets decided = true at Step 2b. This implies that |S0i | ≥ n − t.
Since at most t parties from S0i can be corrupt, for every other honest party Pj it holds that∣∣∣|S0i | − |S0j |∣∣∣ ≤ t and thus |S0j | ≥ n − 2t ≥ t + 1. Hence, at the end of Step 2b every honest party

Pj sets bj = bi = 0. All honest parties then send their new bits in Step 2c, and thus at Round
III we have that |S1j | ≤ t for every honest Pj and therefore bj remains 0. As a result, in Round
IV all honest parties set openToAcceptRandomj = false, and bj remains 0 for all honest parties
at the end of Round V. In Round VI, parties run the OLE protocol, but ignore its value since
openToAcceptRandomi = false.

Consequently, in the next round, all honest parties (that did not terminate) start with the
same input, and as follows from Property I, all terminate with the same value as the output. An
analogous argument can be shown for the case when Pi sets decidedi = true at Step 3b.

Property III. A party Pi sets openToAcceptRandomi = false if |S0i | ≥ n− t in Step 4c. As shown
in the proof of the previous property, this implies that for every other honest party Pj it holds that
|S0j | ≥ t+1, and thus Pj sets bj = 0 (although it might keep the flag openToAcceptRandomi = true

if |S0j | < n − t). The value bj does not change during round V, from a similar reasoning as in the
previous claim.

A similar argument holds for the case when Pi sets openToAcceptRandomi = false in Step 5b.

Property IV. A party Pi terminates only when decidedi = true. Property II shows that all other
honest parties Pj would hold bj = bi = b at the end of the iteration, while some might terminate.
Further, by virtue of Property I, all the honest parties which do not terminate at the end of the
iteration are guaranteed to terminate by the end of the next iteration.

Property V. When an honest leader Pℓ is elected in Round VI, every honest party Pj obtains
the same value ℓj = ℓ as the output of ΠOLE. Moreover, all the honest parties must have re-
ceived the same bit bℓ from an honest Pl in the prior rounds. If all the honest parties Pj hold
openToAcceptRandomj = true, then all set bj = bℓ, and thus begin the next iteration with the
same value. By virtue of Property I, this implies that all honest parties output bℓ by the end of
the next iteration. Otherwise, if some honest party Pi has openToAcceptRandomi = false, then
due to Property III it holds that bℓ = bi by the end of Round V. Thus, every other honest party
Pj sets bj = bℓ = bi in Round VI. Similar to the prior case, this implies that all the (remaining)
honest parties begin the next iteration with the same value and hence output bℓ by the end of the
next iteration.

It is guaranteed that the OLE protocol (ΠOLE, Protocol 7.2) elects an honest leader with constant
probability as shown in Theorem 7.3. It thus follows that agreement is reached in expected number
of iterations, where each iteration requires only a constant number of rounds.

Efficiency. In each iteration the parties send O(n2) bits over the point-to-point channels, and
then run OLE protocol (ΠOLE, Protocol 7.2), which requires O(n4 log n) bits of communication
over point-to-point channels.

8.2 Broadcast and Parallel-broadcast

In a broadcast protocol, a distinguished dealer P ∗ ∈ P holds an initial input M and the following
hold: (Agreement): All honest parties output the same value; Validity: If the dealer is honest,
then all honest parties output M . We formalize it using the following functionality:

40

Functionality 8.5: FBC

The functionality is parametrized with a parameter L.

1. The dealer (sender) P ∗ sends the functionality its message M ∈ {0, 1}L.
2. The functionality sends to all parties the message M .

To implement this functionality, the dealer just gradecasts its message M and then parties
run Byzantine agreement on the grade they received, while parties use input 1 for the Byzantine
agreement if and only if the grade of the gradecast is 2. If the output of the Byzantine agreement
is 1, then they output the message they received in the gradecast, and otherwise, they output ⊥.
We simply plug in our gradecast and Byzantine agreement in the above protocol. Note that the
above communication complexity is asymptotically free (up to the expectation) for L > n3 log n.

Protocol 8.6: ΠBC– Broadcast Protocol for a single dealer

• Input: The dealer holds a message M ∈ {0, 1}L.
• Common input: A parameter L.

1. The dealer: Gradecast M .

2. Each party Pi: Let M
′ be the resultant message and let g be the associated grade. All

parties run Byzantine agreement where the input of Pi is 1 if g = 2, and otherwise the
input is 0.

• Output: If the output of the Byzantine agreement is 1 then outputM ′. Otherwise, output ⊥.

Theorem 8.7. Protocol 8.6 is a secure broadcast tolerating t < n/3 malicious parties. For an
input message M of length L bits, the protocol requires O(nL) plus expected O(n4 log n) bits total
communication, and expected constant number of rounds.

Proof. We prove the protocol in the FBA-FGradecast hybrid model.

The case of a corrupted sender. In case of a corrupted sender, the simulator simulates the
FGradecast functionality and receives from the adversary either:

1. (ExistsGrade2,M, (gj)j ̸∈I). Then, simulate the FBA functionality where all honest parties
input either 1 or 0 according to (gj)j ̸∈I , where note that FGradecast guarantees that all gj ≥ 1
and there exists at least one index for which gj = 2. The FBA sends to the adversary all the

bits of the honest parties and then receives back one bit, b̂. If gj = 2 for every j, or if b̂ = 1,
then the simulator sends M to FBC. Otherwise, it sends ⊥ to FBC. FBC forwards the chosen
message to all parties.

2. (NoGrade2, (Mj)j ̸∈I , (gj)j ̸∈I). This time, it is guaranteed that all honest parties have gj ≤ 1.
Then, simulate the FBA functionality where all honest parties input 0 to FBA. This implies
that the output of FBA is ⊥ to all parties. The simulator then sends ⊥ to FBC, which forwards
that message to all parties.

From inspection, the view of the adversary in the real and ideal is identical. Likewise, the output
of the honest parties.

41

The case of an honest sender. In this case, the simulator receives M from the trusted party.
It then simulates the FGradecast sending (M, 2) to all corrupted parties. Next, it simulates FBA,
considering all honest parties send 1 to FBA. It receives some bit b̂ from the adversary which it
ignores as its input to FBA, and simulates the output of FBA to be 1.

From inspection, it is easy to see that the joint distribution of the view of the adversary and
the outputs of the honest parties in the real is identically distributed to the view and the outputs
in the ideal.

Efficiency. The protocol gradecasts a message which requires O(nL) bits of communication
and runs in constant rounds. In addition, we run Byzantine agreement, which requires expected
O(n4 log n) bits of communication in expected constant rounds.

Parallel Broadcast. Parallel broadcast relates to the case where n parties wish to broadcast a
message of size L bits in parallel. In that case, we rely on an idea of Fitzi and Garay [FG03] that
applies to OLE-based protocols. The idea is that the multiple broadcast sub-routines are run in
parallel when only a single election per iteration is required for all these sub-routines. This results
in the following corollary:

Corollary 8.8. There exists a perfectly secure parallel-broadcast with optimal resilience, which
allows n parties to broadcast messages of size L bits each, at the cost of O(n2L) bits communication,
plus O(n4 log n) expected communicating bits. The protocols runs in constant expected number of
rounds.

For completeness, we provide the functionality for parallel broadcast below, and omit the proof
since it follows from broadcast.

Functionality 8.9: Fparallel
BC

The functionality is parametrized with a parameter L.

1. Each Pi ∈ P sends the functionality its message Mi ∈ {0, 1}L.
2. The functionality sends to all parties the message {Mi}i∈{1,...,n}.

Efficiency. The protocol gradecasts n messages, each of which requires O(nL) bits of communica-
tion and runs in constant rounds. In addition, we run Byzantine agreement where a single leader
election per iteration is necessary across all the instances, which requires expected O(n4 log n) bits
of communication in expected constant rounds.

References

[AAY21] Ittai Abraham, Gilad Asharov, and Avishay Yanai. Efficient perfectly secure compu-
tation with optimal resilience. In Theory of Cryptography Conference, 2021.

[ACP21] C Anirudh, Ashish Choudhury, and Arpita Patra. A survey on perfectly-secure verifi-
able secret-sharing. Cryptology ePrint Archive, 2021.

[ACS22] Gilad Asharov, Ran Cohen, and Oren Shochat. Static vs. adaptive security in perfect
mpc: A separation and the adaptive security of bgw. In Conference on Information-
Theoretic Cryptography - ITC 2022. (To Appear), 2022.

42

[ADD+19] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Syn-

chronous byzantine agreement with expected O(1) rounds, expected o(n2) communi-
cation, and optimal resilience. In Ian Goldberg and Tyler Moore, editors, Financial
Cryptography and Data Security, 2019, volume 11598, pages 320–334. Springer, 2019.

[AKP20] Benny Applebaum, Eliran Kachlon, and Arpita Patra. The round complexity of perfect
mpc with active security and optimal resiliency. In Annual Symposium on Foundations
of Computer Science (FOCS), 2020.

[AL17] Gilad Asharov and Yehuda Lindell. A full proof of the bgw protocol for perfectly secure
multiparty computation. Journal of Cryptology, 2017.

[ALR11] Gilad Asharov, Yehuda Lindell, and Tal Rabin. Perfectly-secure multiplication for any
t < n/3. In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011, 2011.

[AN21] Ittai Abraham and Kartik Nayak. Crusader agreement with ≤ 1/3 error is impossible
for n ≤ 3f if the adversary can simulate. Decentralized Thoughts, Blog Post, 2021.
https://tinyurl.com/decentralizedthougts, accessed: September 2021.

[BCG93] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation.
In Proceedings of ACM symposium on Theory of computing, 1993.

[BE03] Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency in constant
time. Distributed Computing, 16(4):249–262, 2003.

[Ben83] Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols (extended abstract). In Proc. of the Annual Symposium on Principles of
Distributed Computing (PODC), 1983.

[BGP92] Piotr Berman, Juan A Garay, and Kenneth J Perry. Bit optimal distributed consensus.
In Computer science. 1992.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In Pro-
ceedings of Annual ACM Symposium on Theory of Computing, 1988.

[BTH08] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure mpc with linear com-
munication complexity. In Theory of Cryptography Conference, 2008.

[Can93] Ran Canetti. Asynchronous secure computation. Technion - Computer Science De-
partment - Technical Report, CS0755, 1993.

[Can96] Ran Canetti. Studies in secure multiparty computation and applications. PhD thesis,
Citeseer, 1996.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J.
Cryptol., 13(1):143–202, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, 2001.

43

https://tinyurl.com/decentralizedthougts

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 11–19. ACM,
1988.

[CCGZ19] Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilistic termina-
tion and composability of cryptographic protocols. J. Cryptol., 32(3):690–741, 2019.

[CDD+01] Ran Canetti, Ivan Damg̊ard, Stefan Dziembowski, Yuval Ishai, and Tal Malkin. On
adaptive vs. non-adaptive security of multiparty protocols. In Advances in Cryptol-
ogy - EUROCRYPT 2001, International Conference on the Theory and Application of
Cryptographic Techniques, 2001.

[CDM00] Ronald Cramer, Ivan Damg̊ard, and Ueli Maurer. General secure multi-party computa-
tion from any linear secret-sharing scheme. In International Conference on the Theory
and Applications of Cryptographic Techniques, 2000.

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret
sharing and achieving simultaneity in the presence of faults (extended abstract). In 26th
Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA, 21-
23 October 1985, pages 383–395. IEEE Computer Society, 1985.

[Che21] Jinyuan Chen. Optimal error-free multi-valued byzantine agreement. In DISC, 2021.

[CHP13] Ashish Choudhury, Martin Hirt, and Arpita Patra. Asynchronous multiparty com-
putation with linear communication complexity. In Yehuda Afek, editor, Distributed
Computing - 27th International Symposium, DISC 2013, Jerusalem, Israel, October
14-18, 2013. Proceedings, volume 8205 of Lecture Notes in Computer Science, pages
388–402. Springer, 2013.

[CP16] Ashish Choudhury and Arpita Patra. An efficient framework for unconditionally secure
multiparty computation. IEEE Transactions on Information Theory, 2016.

[CW89] Brian A Coan and Jennifer L Welch. Modular construction of nearly optimal byzantine
agreement protocols. In ACM Symposium on Principles of distributed computing, 1989.

[DDGN14] Ivan Damg̊ard, Bernardo David, Irene Giacomelli, and Jesper Buus Nielsen. Com-
pact vss and efficient homomorphic uc commitments. In International Conference on
the Theory and Application of Cryptology and Information Security, pages 213–232.
Springer, 2014.

[DR82] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine
agreement. In Robert L. Probert, Michael J. Fischer, and Nicola Santoro, editors,
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Ottawa,
CanadaAugust 18-20, 1982, pages 132–140. ACM, 1982.

[DR85] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine
agreement. Journal of the ACM (JACM), 1985.

44

[DXR21] Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dissemination and its
applications. In ACM CCS Conference on Computer and Communications Security,
2021.

[Fel88] Paul Neil Feldman. Optimal Algorithms for Byzantine Agreement. PhD thesis, Mas-
sachusetts Institute of Technology, 1988.

[FG03] Matthias Fitzi and Juan A. Garay. Efficient player-optimal protocols for strong and
differential consensus. In PODC, 2003.

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive
consistency. Information Processing Letters, 1982.

[FM88] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing, 1988.

[FM97] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous
byzantine agreement. SIAM Journal on Computing, 1997.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure compu-
tation (extended abstract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and
John A. Ellis, editors, Proceedings of the 24th Annual ACM Symposium on Theory of
Computing, pages 699–710. ACM, 1992.

[GIKR01] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round complexity
of verifiable secret sharing and secure multicast. In ACM symposium on Theory of
computing, 2001.

[GLS19] Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient unconditional mpc
with guaranteed output delivery. In Annual International Cryptology Conference, 2019.

[GP90] Oded Goldreich and Erez Petrank. The best of both worlds: Guaranteeing termination
in fast randomized byzantine agreement protocols. Inf. Process. Lett., 36(1):45–49,
1990.

[GP21] Chaya Ganesh and Arpita Patra. Optimal extension protocols for byzantine broadcast
and agreement. Distributed Computing, 34(1):59–77, 2021.

[GRR98] Rosario Gennaro, Michael O Rabin, and Tal Rabin. Simplified vss and fast-track mul-
tiparty computations with applications to threshold cryptography. In ACM symposium
on Principles of distributed computing, 1998.

[HMP00] Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient secure multi-party com-
putation. In International conference on the theory and application of cryptology and
information security, 2000.

[HZ10] Martin Hirt and Vassilis Zikas. Adaptively secure broadcast. In Henri Gilbert, edi-
tor, Advances in Cryptology - EUROCRYPT 2010, volume 6110 of Lecture Notes in
Computer Science, pages 466–485. Springer, 2010.

45

[KK06] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzan-
tine agreement. In Annual International Cryptology Conference, 2006.

[KKK08] Jonathan Katz, Chiu-Yuen Koo, and Ranjit Kumaresan. Improving the round com-
plexity of vss in point-to-point networks. In International Colloquium on Automata,
Languages, and Programming, 2008.

[KLR06] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure
protocols and security under composition. In Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, 2006.

[lat] Aws latency monitoring. accessed February, 2022.

[LLR02] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. Sequential composition of proto-
cols without simultaneous termination. In Aleta Ricciardi, editor, Proceedings of the
Twenty-First Annual ACM Symposium on Principles of Distributed Computing, PODC
2002, Monterey, California, USA, July 21-24, 2002, pages 203–212. ACM, 2002.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 1982.

[NRS+20] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun Xiang. Im-
proved extension protocols for byzantine broadcast and agreement. arXiv preprint
arXiv:2002.11321, 2020.

[Pat11] Arpita Patra. Error-free multi-valued broadcast and byzantine agreement with optimal
communication complexity. In International Conference On Principles Of Distributed
Systems, 2011.

[PSL80] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the pres-
ence of faults. Journal of the ACM (JACM), 1980.

[Rab83] M. O. Rabin. Randomized byzantine generals. In 2013 IEEE 54th Annual Symposium
on Foundations of Computer Science, 1983.

[SBKN21] Nibesh Shrestha, Adithya Bhat, Aniket Kate, and Kartik Nayak. Synchronous dis-
tributed key generation without broadcasts. IACR Cryptol. ePrint Arch., page 1635,
2021.

[TC84] Russell Turpin and Brian A Coan. Extending binary byzantine agreement to multival-
ued byzantine agreement. Information Processing Letters, 18(2):73–76, 1984.

[TLP20] Georgios Tsimos, Julian Loss, and Charalampos Papamanthou. Gossiping for
communication-efficient broadcast. Cryptology ePrint Archive, 2020.

46

	Introduction
	Our Results
	Applications and Discussions
	Related Work

	Technical Overview
	Improved Broadcast in Constant Expected Rounds
	Packed Verifiable Secret Sharing
	Optimal Gradecast

	Preliminaries
	Security Definition
	Bivariate Polynomials
	Finding (n,t)-STAR

	Packed Verifiable Secret Sharing
	Balanced Gradecast
	The Gradecast Protocol
	Making the Protocol Balanced
	Conclusions

	Multi-Moderated Packed Secret Sharing
	Reconstruction

	Oblivious Leader Election
	Broadcast
	Byzantine Agreement
	Broadcast and Parallel-broadcast

