
Universal Ring Signatures in the Standard Model

Pedro Branco1, Nico Döttling2, and Stella Wohnig2,3

1Johns Hopkins University
2Helmholtz Center for Information Security (CISPA)

3Universität des Saarlandes

Abstract

Ring signatures allow a user to sign messages on behalf of an ad hoc
set of users - a ring - while hiding her identity. The original motivation
for ring signatures was whistleblowing [Rivest et al. ASIACRYPT’01]:
a high government employee can anonymously leak sensitive information
while certifying that it comes from a reliable source, namely by signing
the leak. However, essentially all known ring signature schemes require
the members of the ring to publish a structured verification key that is
compatible with the scheme. This creates somewhat of a paradox since, if
a user does not want to be framed for whistleblowing, they will stay clear
of signature schemes that support ring signatures.

In this work, we formalize the concept of universal ring signatures
(URS). A URS enables a user to issue a ring signature with respect to a
ring of users, independently of the signature schemes they are using. In
particular, none of the verification keys in the ring need to come from the
same scheme. Thus, in principle, URS presents an effective solution for
whistleblowing.

The main goal of this work is to study the feasibility of URS, espe-
cially in the standard model (i.e. no random oracles or common reference
strings). We present several constructions of URS, offering different trade-
offs between assumptions required, the level of security achieved, and the
size of signatures:

• Our first construction is based on superpolynomial hardness assump-
tions of standard primitives. It achieves compact signatures. That
means the size of a signature depends only logarithmically on the
size of the ring and on the number of signature schemes involved.

• We then proceed to study the feasibility of constructing URS from
standard polynomially-hard assumptions only. We construct a non-
compact URS from witness encryption and additional standard as-
sumptions.

• Finally, we show how to modify the non-compact construction into
a compact one by relying on indistinguishability obfuscation.

1

1 Introduction

Ring Signatures. Ring signatures, introduced in [RST01], allow for a user to
create a signature σ for a message m with respect to an ad-hoc group of users R,
called a ring. A ring signature should be: i) unforgeable, meaning that, given a
valid signature σ for a ring R, it must have been created by one of the users in
R; and ii) anonymous, meaning that it should be infeasible for someone, even if
they have access to every signing key corresponding to the verification keys in
the ring R, to identify which user created the signature.

Ring signatures have recently found wide-spread application in the context
of cryptocurrencies. However in this work we revisit the original motivation
of ring signatures: whistleblowing [RST01]. Using a ring signature scheme, a
whistleblower in a high government office with access to some classified infor-
mation can leak this information e.g. to the media, in a way that convinces
them that this information comes from a reliable source, namely by signing the
leak. At the same time, the identity of the whistleblower remains hidden in the
ring of insiders. A critical aspect in this scenario is that the whistleblower can
issue such a signature without the consent of the other parties in the ring.

Rivest, Shamir and Tauman-Kalai [RST01] showed that signature schemes
with RSA verification keys can be used to issue ring signatures. If RSA sig-
natures were the universally agreed-upon standard for digital signatures, this
would be great for whistleblowers! Yet, currently there is a plethora of compet-
ing schemes and standards for digital signatures.

Support for ring signatures might however even deter users from adopting
some signature scheme: Knowing that a certain signature scheme supports ring
signatures, why should loyal government officials even use such a scheme and
potentially be framed for being a whistleblower? Furthermore, wouldn’t it even
be in the interest of a government to mandate their officials to use signature
schemes which do not allow to issue ring signatures? Can the kind of whistle-
blowing envisioned by [RST01] be prohibited by such measures? Are there
effective countermeasures which protect users against being abused as a crowd
in which a whistleblower seeks anonymity? Concretely, can we construct sig-
nature schemes which protect their users from being involuntarily forced into a
ring?

Universal Ring Signatures. Formalizing the idea of a ring signature com-
patible with all digital signature schemes, we define the notion of Universal
Ring Signatures (URS)1. URS allow users to create a ring signature for a ring
composed of verification keys R = (vk1, . . . , vk`) independently of the structure
of each vki and even the signature schemes which were used to create these keys.
In other words, each vki can be a verification key from a (possibly different) sig-
nature scheme.2 Most importantly, none of the verification keys is required to

1The term universal ring signatures was also used in [Tso13] to refer to a completely
different property of ring signatures.

2For example, one of the verification keys can be from an SIS-based signature scheme and
another from a group-based signature scheme.

2

be compatible with known ring signature schemes.
Thus, URS allow users to conceal their identity inside a ring in a non-

cooperative way : The user can create a signature with respect to a ring of verifi-
cation keys, even if they were specifically chosen to be incompatible with specific
ring signature schemes. This is in stark contrast to standard ring signatures,
where the parties cooperate by issuing verification keys that are compatible with
a ring signature scheme, thus intentionally providing anonymity to one another
(which is what happens in a cryptocurrency setting).

A URS provides a way out of the whistleblower problem described above.
Equipped with a URS scheme, a whistleblower just needs to somehow specify
(implicitly or explicitly) the verification keys of the users in the ring. However,
unlike for all known ring signature schemes, these verification keys do not need
to obey any particular structure.

Ring Signatures via Non-Interactive Zero-Knowledge Proofs. Non-
interactive zero-knowledge (NIZK) proofs [BFM88] are a powerful and quite
general tool to make protocols secure against malicious adversaries. In the
context of ring signatures, the slightly stronger notion of non-interactive zero-
knowledge proofs of knowledge (NIZKPoK) provide a stronger soundness guar-
antee, in the sense that any (efficient) prover providing a valid proof of some
statement x must know corresponding witness w of x.

NIZKPoK proofs provide a direct approach to construct ring signatures: For
a ring R, a message m and a commit c one provides a proof π which certifies
that c commits to a signature σ such that the pair (σ,m) verifies under some
verification key vk in the ring R.

This construction does not require that the verification keys in the ring R
come from one and the same signature scheme. Thus, NIZKPoK proofs in
fact imply universal ring signatures. Yet, NIZK (and thus also NIZKPoK) are
known to be impossible in the standard model [GO94], that is without a common
reference string and without making use of the random oracle heuristic [BR93].
We will later discuss the ramifications of relying on either the random oracle
model or the random oracle heuristic in the construction of URS.

1.1 Our Results

The main problem we address in this work is the question of whether universal
ring signatures exist in the standard model, and if so under which assumptions.

Before we tackle the problem of constructing universal ring signatures, we
first provide definitions that formalize the requirements informally laid out
above.

We present three standard model URS construction, offering different trade-
offs between compactness, security and primitives/assumptions needed to con-
struct them. Our schemes are fully universal, in the sense that no assumptions
on the structure of verification keys are made.

Our first construction is a URS scheme with compact signatures, i.e., the sig-
nature size depends only logarithmically on the number of users in the ring and

3

on the number of signature schemes. This scheme relies on superpolynomial
hardness of standard assumptions. Specifically, we rely on a superpolynomi-
ally secure signature scheme, a (polynomially secure) perfectly binding com-
mitment scheme, perfectly sound non-interactive witness-indistinguishability
(NIWI) proof systems for NP and somewhere perfectly binding (SPB) hashing
scheme [BDH+19]. All of these primitives can be instantiated using standard
hardness assumptions.

We get the following theorem.

Theorem 1 (Informal). Assuming the existence of perfectly binding commit-
ment schemes, perfectly sound NIWI proof systems for NP and SPB hashing
schemes (all three with polynomial security), there exists a universal ring signa-
ture scheme in the standard model with compact signatures under the condition
that the underlying signature schemes are superpolynomially secure.

While this construction provides the baseline for our investigation, it raises
the question whether superpolynomial hardness is necessary to construct stan-
dard model universal ring signatures. Compared with 2-move blind signatures,
we do know standard model constructions (again, no CRS or RO) from su-
perpolynomial hardness assumptions [GRS+11, GG14], yet we don’t know of
any such construction from polynomial hardness assumptions and in fact, it is
known that no such construction is achievable via a black-box reduction [FS10].
Thus, it is conceivable that something similar might be the case for universal
ring signatures.

Perhaps somewhat surprisingly, our second construction shows that this is
not the case for URS: We provide a construction that enjoys a security reduction
to polynomial and falsifiable hardness assumptions. Concretely, we rely on the
existence of a witness encryption (WE) scheme for NP, a perfectly sound NIWI
proof system for NP, an SPB hashing scheme, and a pseudorandom function
(PRF). In terms of compactness, the size of the signatures of this scheme de-
pends linearly on the number of users in the ring. Further, this scheme fulfills a
slightly relaxed notion of anonymity, which we call t-anonymity, which requires
that there need to be at least t honestly generated verification keys in the ring.
The standard notion of anonymity corresponds to 2-anonymity.

Theorem 2 (Informal). Assuming the existence of a WE for NP, a perfectly
sound NIWI proof system for NP, an SPB hashing scheme, and a PRF, there
exists a (non-compact) universal ring signature scheme in the standard model
with t-anonymity, where t is a parameter depending on the signature schemes
involved.

For all conceivable purposes, the parameter t here is a small constant. Con-
cretely, t depends on the entropy κ of the honest verification keys involved.
Asymptotically, any such key must have entropy at least κ = ω(log(λ)). Oth-
erwise, it would be trivially insecure. Our only requirement on t will be that
t · κ ≥ λ. In terms of concrete parameters, κ would have to be at least 50 bits
(or else the underlying scheme would be trivially insecure). Setting t = 3 or
t = 4 will be sufficient for this parameter choice.

4

This leaves open the question of compactness. Is perhaps any standard
model URS necessarily non-compact?

We can also resolve this question negatively, yet under still a (potentially)
stronger assumption: We provide a construction of a compact WE scheme from
polynomial hardness assumptions for a special type of languages that we call
(t,N) threshold conjunction languages, which together with Theorem 2 will
imply a compact URS scheme from polynomial hardness assumptions.

A (t,N) threshold conjunction language is the set of statements (x1, . . . , xN)
for which there are at least t valid statements xi among them. The size of the
ciphertexts we receive when encrypting under such a statement is compact in
the sense that it only depends logarithmically on N . Our WE construction
requires indistinguishability obfuscation (iO), puncturable pseudorandom func-
tions (PPRF) [BW13], somewhere statistically binding (SSB) hashing schemes
[HW15, OPWW15] and (t,N)-linear secret sharing (LSS). We obtain the fol-
lowing theorem.

Theorem 3 (Informal). Assuming the existence of an iO for all circuits, a
(non-compact) WE for NP, a PPRF, an SSB hashing scheme, and a (t,N)-LSS,
there exists a compact WE scheme for (t,N) threshold conjunction languages,
when N − t ∈ O(logN).

Combining the two previous theorems, we obtain our final URS construction.
This URS construction achieves compact signatures.

Theorem 4 (Informal). Assuming the existence of a compact WE for (N−1, N)
threshold conjunction languages, a perfectly sound NIWI proof system for NP, an
SPB hashing scheme and a PRF, there exists a compact universal ring signature
scheme in the standard model with t-anonymity.

1.2 Discussion and Interpretation of our Results

Returning to our main motivation, a URS enables whistleblowing since a whistle-
blower can force any honest users into a ring, regardless of which signature
scheme they use. In this sense, one can view the process of signing a message
using a URS as an adversarial act : even if a set of honest users do not want to
hide the whistleblower, there are no effective measures on the level of signature
schemes which could protect users from being included in an anonymity set.

Bearing this in mind, we interpret our results, which establish the feasibility
of URS, as demonstrating the impossibility of designing signature schemes that
resist coercion into rings. Needless to say, the rather heavy components involved
in our constructions do not lead to practically useful protocols.

Above we briefly discussed that universal ring signatures can be constructed
from NIZKPoK proofs and by now there is a plethora of constructions of NIZKPoK
proofs from standard assumptions in the common reference string (CRS) model
[BFM88, FLS90, GOS06b, PS19b, BKM20, JJ21], or alternatively in the ran-
dom oracle model [BR93]. If the goal was to construct a practically useful URS

5

to provide support across different, seemingly incompatible but common signa-
ture schemes, then a protocol relying on succinct NIZKPoK arguments would
be preferable. In such a setting, one would expect the users of these schemes
to collaborate in the sense that they are willing to provide anonymity to one
another, i.e. one could assume that all users trust a common reference string as
well as all the signature schemes involved.

Yet, the scenario we are interested in is different, in the sense that the “users”
have no reason to trust one another, as they were potentially forced into a ring
against their will. In this sense, a universal ring signature scheme in the CRS
could give users who have been forced into a ring against their will a means of
plausible deniability, e.g. by claiming that they do not trust the CRS that was
used to generate a universal ring signature, as the party who generated such a
CRS may also forge such a signature.

On the other hand, if we consider URS in the random oracle model, then
the unsoundness of the ROM could cause issues. When protocols in the ROM
are instantiated, we replace the random oracle with a concrete hash function H.
As shown by Goldwasser and Kalai [GK03], this heuristic can lead to unsound
proof systems if the underlying language already depends on this (concrete)
hash function H.

This issue also comes up in the context of universal ring signatures, as one
of the signature schemes could be chosen depending on the hash function H.
Somewhat more concretely, assume we wanted to build a signature scheme Σ∗

which makes a URS relying on a random oracle unsound, in the sense that if any
verification key of Σ∗ is used in a ring R, then universal ring signatures can be
forged, while Σ∗ is still EUF-CMA secure. We could achieve this by taking any
EUF-CMA secure signature scheme Σ and modifying it to Σ∗ by additionally
including into the verification keys vk∗ of Σ∗ an obfuscated programO which lets
anyone publicly generate URS of rings involving vk∗. Note that this obfuscated
program O needs to know a succinct description of the hash function H, but
this is feasible as we assume H to be instantiated, rather than a random oracle.
The same can in fact be argued for any fixed static common reference string
CRS, i.e. CRS can be hardwired into O. Note that while for such a scheme
the size of the verification key would increase, both generation and verification
would remain essentially unchanged.

Looking ahead, if such a transformation from Σ to Σ∗ was done starting
relative to one of our standard-model secure URS, then Σ∗ would be necessarily
insecure. But for a URS whose unforgeability rests on the CRS model or the
random oracle model, we would generally expect such a Σ∗ to be unforgeable
(once the CRS or the RO has been instantiated).

The bottom line of this discussion is that it seems hard to argue that URS
constructions in the CRS model or the ROM would be robust against signature
schemes which undermine the unforgeability of the URS by depending on the
concrete CRS which is used or the concrete hash function which instantiates the
Fiat-Shamir paradigm.

6

1.3 Previous Works

Ring signatures have been extensively studied in the last two decades. Construc-
tions in the random oracle model (ROM) include [RST01, AOS02, BGLS03,
DKNS04, LPQ18]. Ring signatures in the CRS model were studied in [SW07,
Boy07], where [Boy07] solves the interesting but orthogonal problem of how to
include users in a ring whose public keys are not posted publicly by using a PKI
structure. We can also find standard model constructions for ring signatures in
e.g. [BKM06, BDH+19, PS19a].

All works presented above assume some form of structure on the verification
keys. For example, the work of [RST01] assumes that ring verification keys
are RSA keys or the work of [BKM06] assumes that ring verification keys are
composed by a standard verification key and a uniformly random string.

The only exceptions we are aware of are the works [AOS02, GGHAK21].
In these works, ring signatures that support different signature schemes are
presented. However, these works are only somewhat universal in the sense
that there are signature schemes that are not compatible with their schemes.3

Moreover, these schemes are only secure in the ROM whereas we work in the
standard model. In essence, the focus of these works is different from ours
as they sacrifice universality for efficiency. In this work, we take the opposite
direction.

A construction of a universal primitive from iO has previously been given
for a notion called signature aggregators in [HKW15]. This allows to combine
signatures from different users using arbitrary signature schemes into one sig-
nature to succinctly store and verify. The application and techniques used are
however different and can not be transferred to ring signatures trivially.

2 Technical Overview

Before presenting our constructions of URS, we briefly recall the ring signature
scheme of Backes et al. [BDH+19]

In the scheme of [BDH+19] (which is itself based on [BKM06]), verification
keys are composed by VKi = (vki, pki) where vki is a verification key of a
standard signature scheme Sig and pki is a public key of a public-key encryption
(PKE) scheme that has pseudorandom ciphertexts4.

To sign a message m with respect to a ring R = {VKi}i∈[`], the signer i first
generates a signature σ ← Sig.Sign(ski,m) and then encrypts σ it using pki,
that is, ct0 ← PKE.Enc(pki, σ). The signer then samples ct1←$ {0, 1}λ. One
crucial point is that, if the underlying PKE has pseudorandom ciphertexts, then
we cannot distinguish well-formed ciphertexts from uniformly random strings.
In particular, this means that ct0 contains (computationally) no information
about the public key under which it was encrypted.

3More precisely, the scheme of [AOS02] is compatible with trapdoor-one-way and three-
move signature schemes. The scheme of [GGHAK21] is compatible with certain sigma proto-
cols. Any scheme outside of these classes is not compatible with their ring signature schemes.

4Examples of such PKE schemes exist from the LWE or DDH assumption.

7

The signer now proves that either ct0 or ct1 encrypts a valid signature un-
der one of the verification keys in the ring using a non-interactive witness-
indistinguishable (NIWI) proof system. If off-the-shelf NIWIs were used in this
construction, the size of the proof would scale linearly with the size of the ring.
This would lead to signatures of size O(|R| · poly(λ)), where λ is the security
parameter. To circumvent this problem, [BDH+19] employed a new strategy.

Compact NIWI proofs. The main ingredient to compress the size of the
NIWI proof is a somewhere perfectly binding (SPB) hashing scheme. An SPB
hashing scheme allows one to hash a database such that the hash perfectly
binds to the database item an index i, while the hashing key hides the index i.
[HW15, OPWW15, BDH+19].

Given ct0, ct1, the signer can now use a NIWI proof system together with a
somewhere perfectly binding (SPB) hashing scheme to create a compact proof π
that either ct0 or ct1 encrypts a valid signature under one of the keys in the ring.
The basic idea here is that instead of proving a statement over all verification
keys in the ring, it is sufficient to prove a statement about just two SPB hashes.
More concretely, to compute the proof π, the signer first generates an SPB pair
of hashing key/secret key (hkj , shkj)← SPB.KeyGen(1λ, i) that binds to position
i, for j ∈ {0, 1}. Then, it hashes R into a digest hj ← SPB.Hash(hkj , R) for
j ∈ {0, 1}. Finally, the signer proves that there exists an index i such that one
of the two statements is true:

1. ct0 encrypts a valid signature under vki and hk0 binds to i;

2. ct1 encrypts a valid signature under vki and hk1 binds to i.

The signature is composed by (ct0, ct1, hk0, hk1, π). Thus, by the efficiency re-
quirements of SPB, the signature has size O(log |R| · poly(λ)).

Finally, to verify that a signature is valid, one just needs to recompute hj
as the hash of R under hkj , for j ∈ {0, 1}, and check that π is a valid proof.

Security. Unforgeability and anonymity are roughly argued as follows in [BDH+19].
To argue unforgeability, the security of the scheme is reduced to the security of
the underlying signature scheme. To do this, the reduction receives a verifica-
tion key vki∗ from the challenger, creates the remaining verification keys vki, for
i 6= i∗, and also the public keys pki for all i ∈ [`]. Importantly, the public keys
pki are created such that the reduction knows the corresponding secret keys.

Upon receiving a (ring signature) forge from the adversary, the reduction
proceeds as follows:

1. Decrypt both ct0 and ct1, to obtain σ0 and σ1, respectively;

2. Check if any of σ0, σ1 is a valid signature under vki∗ . If one of them is
valid, the reduction outputs it as the forge.

By the perfect correctness of the SPB hashing and perfect soundness of the
NIWI, the reduction outputs a valid forge with non-negligible probability.

8

To prove anonymity, one relies on the witness-indistinguishability of the
NIWI and the fact that the underlying PKE has pseudorandom ciphertexts.
Concretely, given two honestly generated verification keys vki0 and vki1 , build
a sequence of hybrids to prove that a signature created under vki0 is indistin-
guishable from a signature created under vki1 . The sequence of hybrids starts
by replacing ct1 with an encryption of a valid signature under vki1 , and this
change goes unnoticed since the PKE has pseudorandom ciphertexts. Next,
change the index in the witness used to create the proof π from i0 to i1 using
the witness-indistinguishability of the NIWI scheme.

2.1 Compact Universal Ring Signatures from Signatures
with Superpolynomial Security

The construction of the Backes et al. scheme [BDH+19] serves as the starting
point of our first construction. Observe that the ring signature verification keys
of the Backes et al. scheme have a special format: each verification key VKi is
composed of a standard verification key vki and a public key pki.

The public key pki, which can be chosen by the unforgeability reduction,
is what enables this reduction to extract a valid forge. In a URS, however,
verification keys are not required to have any particular format. In particular,
they are not required to include an independently chosen public key of a PKE.
How can we facilitate the extraction of a forge by an unforgeability reduction
in the setting of URS?

Commitments instead of Ciphertexts. Our first observation is that the
ciphertexts in the scheme of Backes et al. [BDH+19] are never decrypted in
the actual scheme. So, ciphertexts in this scheme actually serve as extractable
commitments. Thus, a natural approach is to rely on commitments instead
of ciphertexts in this construction. The main reason for using commitments
instead of ciphertexts is that we can choose a keyless commitment scheme.

Using a commitment scheme, we can build a URS as follows: To sign
a message m under a ring of users R = {vk1, . . . , vk`} (where each vki is
from a possibly different signature scheme), a signer first creates a signature
σ ← Sig.Signi(ski,m) using its signature scheme Sigi. Then, it commits to
(com0, γ0) ← CS.Commit(1λ, σ) and to (com1, γ1) ← CS.Commit(1λ, 0) (where
γb is the opening information). Using SPB and NIWI exactly as before, the
signer can create a compact proof π that one of the commitments hides a valid
signature under one of the keys in R.

Anonymity follows by essentially the same argument as before, where the
hiding property of the underlying commitment is used instead of the ciphertext
pseudorandomness of the PKE in [BDH+19].

Unforgeability from Superpolynomial Hardness. We now show how the
unforgeability reduction can extract a valid forge from the adversary. As-
sume that the hiding property of the commitment scheme CS holds against

9

polynomial-time adversaries but that CS can be extracted in superpolynomial-
time. We can then use complexity leveraging to prove the unforgeability of the
scheme, given that the underlying signature schemes are unforgeable against
superpolynomial-time adversaries.

Concretely, given a PPT adversary A that breaks the unforgeability of
our URS, we can construct a superpolynomial-time reduction against the un-
forgeability of one of the Sigi. The reduction, after receiving a forge Σ∗ =
(com∗0, com

∗
1, hk

∗
0, hk

∗
1, π
∗) by A, opens both com0 and com1 by brute force to

recover σ∗0 and σ∗1 respectively. Note that, since CS can be extracted in super-
polynomial time, the reduction succeeds in recovering σ∗0 and σ∗1 . Now, as before,
the reduction tests if there is a b ∈ {0, 1} such that 1 ← Sig.Verifyi(vki,m, σ

∗
b)

and outputs σ∗b if it is the case.

2.2 Non-Compact Universal Ring Signatures from Wit-
ness Encryption

Considering both the construction of Backes et al. [BDH+19] and our construc-
tion in the last paragraph, the question emerges of how one could possibly effi-
ciently extract a signature, even if we cannot shoehorn an extraction trapdoor
into the protocol utilizing a CRS or augmenting the verification keys. Somewhat
more abstractly:

Is it possible to extract a secret from a protocol when the protocol constraints
don’t allow us to embed an extraction gadget into the protocol?

Extracting via Witness Encryption. Our way out of this dilemma starts
with the observation that by relying on a sufficiently strong tool, namely stan-
dard witness encryption (WE) [GGSW13], we can repurpose any sufficiently
cryptographic object as a public key. In our case, these objects will be the
verification keys of the honest parties.

Recall that a WE for an NP language L (with relationR) allows an encrypter
to encrypt a message m with respect to a statement x. If x ∈ L, then a party in
possession of a witness w such that R(x,w) = 1 can recover the encrypted m.
But, if x /∈ L, then indistinguishability of encryptions holds. Currently, we have
constructions of WE from indistinguishability obfuscation (iO) [GGH+13] or
multilinear maps [GGSW13], but WE is potentially a weaker assumption than
either of these.

To use the security of WE, we need to craft a language L with distinct true
and false statements, such that witnesses of true statements allow for decryption,
whereas ciphertexts under false statements hide the encrypted message. Ideally,
true and false statements should be indistinguishable. Our design-choice of true
and false statements will be informed by the following consideration: Consider
two distributions of (honest) verification keys, one where each honest vk is gen-
erated using truly random coins, and another one where each honest ṽk is gener-
ated using (possibly correlated) pseudorandom coins. While these distributions
are clearly computationally indistinguishable, under the right circumstances we

10

can also make them statistically far, meaning that one of them can serve as a
distribution of true statements, while the other one will be the distribution of
false statements.

More concretely, let PRG be a pseudorandom generator (PRG). We say that
a verification key vk is malformed if it is created using random coins coming
from a PRG, instead of using truly random coins. That is, for some seed s

(vk, sk)← Sig.KeyGen(1λ;PRG(s)).

Similarly, a well-formed key vk is created using truly random coins.
Now, consider the language L parameterized by ` different verification keys

{vki}i∈[`]. The yes instances of L are the instances {vki}i∈[`] where all but one
of the verification keys are malformed. In other words, there exist {si}i∈[`]\{i∗}
with i∗ ∈ [`] such that for all i ∈ [`] \ {i∗}

(vki, ski)← Sig.KeyGeni(1
λ;PRG(si)).

Looking ahead, the dichotomy between all but one key are malformed vs at
least two keys are well-formed is what will allow us to prove unforgeability and
anonymity respectively. In the former case, the statement under which the WE
ciphertext is created is true and, thus, we will be able to decrypt it. In the
latter case, the statement is false. Therefore, we can use the security of the WE
scheme.

At first glance, this approach seems to work. However, there is a caveat:
when the reduction wants verification keys to be well-formed, it might acciden-
tally end up creating them malformed. As an example, consider a signature
scheme Sig whose verification keys have less min-entropy than the underlying
PRG. Say the key generation algorithm Sig.Gen(1λ, r) only uses the first λ/3
bits of r whereas the PRG seed has λ/2 bits of entropy. In other words, the
distributions of well-formed keys and malformed keys might not be sufficiently
statistically far. Then, there is a non-negligible probability that a key chosen
from the well-formed distribution is actually malformed. We could assume that
the underlying signature schemes have exponential security (e.g., verification
keys have λ bits of min-entropy) but this would to some degree defeat the pur-
pose of URS.

Replacing the PRG by a PRF. The solution for this problem is to use
a pseudorandom function (PRF) instead of a PRG to sample malformed keys.
Instead of generating malformed keys individually, we now generate them in a
correlated fashion: A set of keys {vki} is malformed iff a PRF key K exists such
that

(vki, ski)← Sig.KeyGeni(1
λ;PRF(K, i)).

Note that now, all malformed keys are correlated via the PRF key. This implies
that the distribution of t malformed keys has λ bits of min-entropy because as
soon as we choose the PRF key, all malformed keys are fixed. On the other hand,
when sampling t well-formed keys independently, the resulting distribution will

11

have tκ bits of min-entropy where κ is the min-entropy of each verification key.
Setting tκ > λ we conclude that the distributions of well-formed and malformed
keys are statistically far apart.

This fact will allow us to prove t-anonymity by making the number of honest
keys in the ring just large enough.

Given this, we redefine the language L in the following way: yes instances
of L are the instances {vki}i∈[`] where all but one of the verification keys are

malformed. In other words, there exists K ∈ {0, 1}λ such that for all i ∈ [`]\{i∗}

(vki, ski)← Sig.KeyGeni(1
λ;PRF(K, i)).

The Scheme. Armed with a WE scheme WE for the language L described
above, we now outline how we can construct a URS scheme.

The scheme is essentially the same as above except that we use the WE
scheme for language L as a drop-in replacement for the commitment scheme.

To sign a message m with respect to the ring R, the signer encrypts a valid
signature σ created using its own signing key. Then, it encrypts σ using WE
under the statement x = R, that is, ct0 ← WE.Enc(1λ, x, σ). Additionally, it
creates the ciphertext ct1 ←WE.Enc(1λ, x, 0). Finally, the signer can again use
NIWI and SPB to prove compactly that one of the ciphertexts encrypts a valid
signature.

We first analyze the size of the signature. Note that, for all known WE
schemes, the ciphertext size is proportional to the size of the verification circuit
for the language L. Since the statement is of size O(|R| · poly(λ)), then the
ciphertexts output by WE are of size O(|R| · poly(λ)). This implies that the
signature is of size O(|R| · poly(λ)).

Security. We now sketch how we prove the security of the scheme. As men-
tioned before, we will set all but one key to be malformed in order to prove
unforgeability. Whereas in the t-anonymity proof, we set none of the keys to be
malformed (recall that t-anonymity requires that the challenge ring as at least
t honestly generated verification keys).

To prove unforgeability, we design a reduction that sets all verification keys,
but the challenge key vki∗ to be malformed. That is, {vki}i∈[`]\{i∗} are mal-
formedly created using a PRF key K. By the security of the PRF, the adversary
is not able to distinguish the case where the verification keys {vki}i∈[`]\{i∗} are
well-formed from the case when they are malformed.

The crucial observation now is that the reduction has a valid witness w = K
for the statement x = R under which WE ciphertexts are encrypted. This
means that, upon receiving a URS forge

Σ∗ = (ct∗0, ct
∗
1, hk

∗
0, hk

∗
1, π
∗)

by the adversary, the reduction can use w to decrypt both ct∗0 and ct∗1. An
analysis identical as for the previous scheme shows us that, if Σ∗ is a valid

12

URS signature, then there is a non-negligible probability that one of ct∗0 and ct∗1
decrypts to a valid signature σ∗ under vki∗ .

In the t-anonymity proof, we set none of the verification keys to be mal-
formed, from which the adversary chooses t of them, say, vki0 , . . . , vkit−1

. If the
parameters of the PRF are chosen properly, then there is a negligible probabil-
ity that x ∈ L. As explained above, since all t verification keys are sampled
independently, it is unlikely that t−1 share correlations via a PRF key K. This
is because the distribution of t−1 honestly generated keys has much more min-
entropy than t− 1 malformed keys. Thus, there will be at least two well formed
verification keys in the challenge ring R∗ with overwhelming probability. We
conclude that WE encryptions of σ are indistinguishable from WE encryptions
of 0 by the security of the WE.

Given this, we can easily build a sequence of hybrids in a similar fashion
as for the previous schemes. That is, given two honestly generated verification
keys vki0 , vki1 and a signature Σ∗ = (ct∗0, ct

∗
1, hk

∗
0, hk

∗
1, π
∗) for a message m∗ with

respect to the ring R∗ where vki0 , vki1 ∈ R∗:

1. We first replace ct∗1 by an encryption of a valid signature σ′ under vki1 .
By the security of the underlying WE, this change is undetected by the
adversary.

2. We switch witnesses from i0 to i1, using the witness-indistinguishability
of the NIWI scheme.

2.3 Compact Universal Ring Signatures from Indistinguisha-
bility Obfuscation

At first glance, the techniques that we employed in the previous construction
seem hopeless in our ultimate goal of building a compact URS from falsifiable
hardness assumptions. On the one hand, for all known WE schemes that we
know of, the size of the ciphertexts grows with the size of the statement. On
the other hand, if we try to reduce the size of the statement of the language L,
we immediately run into trouble.

The reason for this is that to be able to extract a valid forge, the reduction
needs to set up all verification keys but the challenge one in a special mode.5

If the reduction sets just a few of them in this special mode, anonymity does
not hold anymore: An adversary breaking anonymity could just use the same
strategy as the unforgeability reduction to extract a signature from the challenge
URS signature since, in the anonymity game, all but two verification keys may
be adversarially chosen.

Given this state of affairs, it seems implausible (or even impossible!) that
we can achieve a compact URS scheme just from WE.

Our final contribution is to build a WE scheme for a special type of NP
languages that we call threshold conjunction languages. A threshold conjunction

5In our case, the special mode is when keys are malformed.

13

language L′ is a language of the form

L′ = {(x1, . . . , xN) : ∃(xi1 , . . . , xiN−1
) s.t. xi1 ∈ L ∧ · · · ∧ xiN−1

∈ L}.

In other words, given an instance x = (x1, . . . , xN), x is a yes instance of L′ if
all but one of the xi are instances of L.

Compact URS from compact WE. Assume for now that we have a com-
pact WE scheme for threshold conjunction languages. That is ciphertexts of
such a scheme scale only logarithmically with N . Then, plugging this WE
scheme into our construction from the previous section immediately yields a
compact URS.

Compact witness encryption for threshold conjunction languages. It
remains to show how we can obtain such a scheme. For simplicity, we focus on
the case where we have N instances x = (x1, . . . , xN) and x ∈ L′ iff xi ∈ L for
all i ∈ [N]. The case where all but one of the statements xi must be true can
be easily obtained by additionally using a secret sharing scheme.

The high-level idea of the construction is as follows: We build an obfuscated
circuit C̄ that receives an index i ∈ [N] and outputs non-compact WE cipher-
texts WE.Enc(1λ, xi, ri) for uniform ri←$ {0, 1}.6 The ciphertext of our new
WE scheme for a message m ∈ {0, 1} is composed by C̄ and c = m+

∑
ri.

If one is in possession of witnesses for all statements xi, then by the correct-
ness of the underlying non-compact WE scheme, one can recover all ri. On the
other hand, if one of the statements xi∗ is false, then we can build a sequence
of hybrids where we replace WE.Enc(1λ, xi, ri) by an encryption of 0 and then
replace c by a uniform value.

Although the idea seems to work at first glance, there is a critical issue: The
scheme is not compact. The reason for this is that we have to hardwire all the
statements in C̄, otherwise how does the circuit know under which statements it
must encrypt each ri? To circumvent this problem we use (again!) a somewhere
statistically binding (SSB) hashing scheme in a similar way as [HW15].7 That
is, the circuit only has a hash value h← SSB.Hash(hk, {x1, . . . , xN}) hardwired.
Now, when it receives (i, xi, γi), it first checks if γi is a valid opening with respect
to xi, h. Since {x1, . . . , xN} is public, anyone can compute a valid opening

γi ← SSB.Open(hk, {x1, . . . , xN}, i)

for every i ∈ [N].
Recall that the verification algorithm of an SSB hashing scheme can be

implemented in size O(logN · poly(λ)). Hence, the efficiency requirements are
met and the circuit is now of size O(logN · poly(λ)).

We thus obtain a WE scheme that outputs ciphertexts that depend only
logarithmically on N .

6To make the circuit size independent of N , we use a pseudorandom function (PRF) to
succinctly describe all the ri. This PRF has to be puncturable in order to use the puncturing
technique of [SW14].

7This time we use SSB in its statistically binding form.

14

How to avoid the exponential security loss of current iO schemes.
We stress that, although the scheme presented above enjoys a polynomial re-
duction to the underlying cryptographic primitives, current iO schemes incur
a security loss - compared to the underlying hardness assumptions - which is
proportional to the size of the domain of the circuit being obfuscated (e.g.,
[AJ15, BV15, BGL+15]). This implies that the construction presented above
suffers from an exponential security loss when we instantiate the iO scheme by
any known construction since the circuit being obfuscated has an exponentially-
sized domain.8

Intending to avoid this exponential security loss, we present an alternative
construction of compact WE for threshold languages where we just obfuscate
a program with a polynomial-size domain. Note that, if the domain of the
obfuscated program has only polynomial size, then the security reduction from
iO to the underlying hardness assumptions loses only a polynomial factor.

As explained above, the statements cannot be hardwired in the circuit, other-
wise, the size of the obfuscated circuit is not compact. To avoid this conundrum,
we utilize the iO for Turing machines (TM) scheme of [GS18].

We note that, in the scheme of [GS18], a TM is modeled as a sequence
of circuits. The input is written on a tape and the obfuscated TM accesses
the input via a laconic oblivious transfer (LOT) [CDG+17]. We can consider
a second tape which includes the statements (x1, . . . , xN) and from which the
TM reads from using a LOT in a similar way as in [GS18]. Note that since
(x1, . . . , xN) is public knowledge, this tape can be created by any party and
does not have to be part of the description of the obfuscated TM. Instead,
only the LOT hash needs to be hardwired in the TM. The size of the resulting
obfuscated TM depends only logarithmically on the size of this tape.

Given this, to encrypt a message m, one obfuscates a TM M that receives
an index i ∈ [N] as input, retrieves xi from the public tape and outputs
WE.Enc(1λ, xi, ri).

9 A ciphertext is composed by M̄ (which is the result of
obfuscating M) and c = m+

∑
ri. Decryption works exactly as before.

As mentioned before, the size of M̄ depends only logarithmically on N and,
hence, the size of the ciphertext is O(logN · poly(λ)).

Furthermore, since the obfuscated TM M̄ has a polynomial-size domain, its
security proof incurs only a polynomial security loss compared to the underlying
hardness assumption.

3 Preliminaries

Throughout this work, λ denotes the security parameter and PPT stands for
“probabilistic polynomial-time”. A negligible function negl(n) in n is a function
that vanishes faster than the inverse of any polynomial in n.

8Observe that the obfuscated circuit receives as input an index i, a statement xi and an
SSB proof γi.

9We remark that the underlying WE also has a domain of polynomial size hence it only
looses a polynomial factor in security if it is based on iO [GGH+13, GS18].

15

For n ∈ N, [n] denotes the set {1, . . . , n}.
If S is a (finite) set, we denote by x←$S an element x ∈ S sampled according

to a uniform distribution. If D is a distribution over S, x←$D denotes an
element x ∈ S sampled according to D. If A is an algorithm, y ← A(x) denotes
the output y after running A on input x. If A and O are algorithms, AO means
that A has oracle access to O.

We now present the cryptographic primitives used as building blocks for our
main construction.

3.1 Signature Schemes

Definition 1 (Signature Scheme). A signature scheme Sig is composed of the
following algorithms:

• (vk, sk) ← KeyGen(1λ; r) takes as input the security parameter λ and
random coins r ∈ {0, 1}λ (whenever r is omitted, it means it is chosen
uniformly at random). It outputs a pair of verification and signing keys
(vk, sk).

• σ ← Sign(sk,m) takes as input a signing key sk and a message m. It
outputs a signature σ.

• b← Verify(vk, σ,m) takes as input a verification key vk, a signature σ and
a message m. It outputs a bit b ∈ {0, 1}.

A signature scheme needs to have the following properties.

Definition 2 (Correctness). We say that a signature scheme is correct if for
all λ ∈ N and every message m we have that

Pr

[
1← Verify(vk, σ,m) :

(vk, sk)← KeyGen(1λ)
σ ← Sign(sk,m)

]
= 1.

Definition 3 (Existential Unforgeability against Chosen Message Attacks). We
say that a signature scheme is existentially unforgeable against chosen message
attacks (EUF-CMA) if for all λ ∈ N and all adversaries A we have that

Pr

[
1← Verify(vk, σ∗,m∗) :

(vk, sk)← KeyGen(1λ)
(m∗, σ∗)← ASign(sk,·)(vk)

]
≤ negl(λ)

where m∗ was never queried to the oracle Sign(sk, ·).

3.2 Non-Interactive Witness-Indistinguishable Proof Sys-
tems

Let X be a set and L ⊆ X an NP language with witness space W and witness
relation R, i.e., L = {x ∈ X : ∃w ∈ W s.t. R(x,w) = 1}.

16

Definition 4 (NIWI). Let L be an NP language. A non-interactive witness-
indistinguishable (NIWI) proof system NIWI for language L is composed of the
following algorithms:

• π ← Prove(1λ, x, w) takes as input a security parameter λ, a statement
x ∈ X and a witness w ∈ W. It outputs a proof π.

• b ← Verify(x, π) takes as input a statement x ∈ X and a proof π. It
outputs a bit b ∈ {0, 1}.

Definition 5 (Perfect Completeness). We say that a NIWI proof system is
perfectly correct if for all λ ∈ N, all statements x ∈ X and all witnesses w ∈ W,
if R(x,w) = 1, then

Pr
[
1← Verify(x, π) : π ← Prove(1λ, x, w)

]
= 1.

Definition 6 (Perfect Soundness). We say that a NIWI proof system has perfect
soundness if for all λ ∈ N, all statements x /∈ L and all proofs π we have that

Pr [0← Verify(x, π)] = 1.

Definition 7 (Witness-Indistinguishability). We say that a NIWI proof system
is witness-indistinguishable if for all λ ∈ N and all adversaries A = (A1,A2)
we have that∣∣∣∣Pr

[
b = b′ :

(x,w0, w1, aux)← A1(1λ); b←$ {0, 1}
π ← Prove(1λ, x, wb); b

′ ← A2(π, aux)

]
− 1

2

∣∣∣∣ ≤ negl(λ).

NIWI schemes can be constructed from pairing assumptions [GOS06a], iO
[BP15] or derandomization assumptions [BOV03].

Proof size. Let Cx be the verification circuit for statement x and a certain
relation R, that is, 1 ← Cx(w) if and only if R(x,w) = 1. All known NIWI
schemes for a relation R achieve a proof size |π| ∈ O (|Cx| · poly(λ)) where
π ← NIWI.Prove(x,w).

3.3 Commitment Schemes

Definition 8 (Commitment Scheme). A (non-interactive) commitment scheme
(CS) CS is composed of the following algorithms:

• (com, γ) ← Commit(1λ,m) takes as input the security parameter λ and a
message m. It outputs a commitment com and an opening information γ.

• b← Verify(com,m, γ) takes as input a commitment com, a message m and
opening information γ. It outputs a bit b ∈ {0, 1}.

Definition 9 (Correctness). We say that a commitment scheme is correct if
for all λ ∈ N and every message m we have that

Pr
[
1← Verify(com,m, γ) : (com, γ)← Commit(1λ,m)

]
= 1.

17

Definition 10 (Computational Hiding). We say that a commitment scheme is
computationally hiding if for all λ ∈ N and all PPT adversaries A = (A1,A2)
we have that∣∣∣∣∣∣Pr

b← A2(com, aux) :
(m0,m1, aux)← A1(1λ)

b←$ {0, 1}
(com, γ)← Commit(1λ,mb)

− 1

2

∣∣∣∣∣∣ ≤ negl(λ).

Definition 11 (Perfect Binding). We say that a commitment scheme is per-
fectly binding if for all λ ∈ N and all adversaries A we have that

Pr

m0 6= m1 ∧ b = b′ = 1 :
(com,m0, γ0,m1, γ1)← A
b← Verify(com,m0, γ0)
b′ ← Verify(com,m1, γ1)

 = 0.

3.4 Somewhere Statistically/Perfectly Binding Hashing

Somewhere statistically binding (SSB) hashing was first presented in [HW15]
and several constructions for it were presented in [OPWW15]. In this work
we will also use somewhere perfectly binding hashing [BDH+19] which is a
stronger notion. However, most realizations of SSB hashing are also SPB hash-
ing [BDH+19]. SPB hashing can then be instantiated from the hardness of
assumptions such as DDH, QR or LWE [OPWW15].

Definition 12 (Somewhere Perfectly Binding Hashing). A somewhere perfectly
binding (SPB) hashing scheme SPB is composed of the following algorithms:

• (hk, shk) ← Gen(1λ, n, i) takes as input the security parameter λ, n ∈ N
and an index i ∈ [n]. It outputs a pair of hashing and secret keys (hk, shk).

• h← Hash(hk, D) takes as input a hashing key hk and a database D of size
n. It outputs a hash value h.

• τ ← Open(hk, shk, D, i) takes as input a hashing key hk, a secret key shk,
a database D and an index i. It outputs a proof τ .

• b ← Verify(hk, h, i, x, τ) takes as input a hashing key hk, a hash value h,
an index i, a value x and a proof τ . It outputs a bit b ∈ {0, 1}.

We require that a SPB hashing scheme fulfills the following efficiency guar-
antees:

1. The hashing key hk and the proof τ are both of size O(poly(λ) · log n);

2. The Verify algorithm can be represented by a circuit of size O(poly(λ) ·
log n).

Additionally, an SPB hashing scheme fulfills the following properties.

18

Definition 13 (Correctness). We say that a SPB hashing scheme is correct if
for all λ ∈ N, all n = poly(λ), all databases D of size n, all indices j, i ∈ [n] we
have that

Pr

1← Verify(hk, h, i, x, τ) :
(hk, shk)← Gen(1λ, n, j)

h← Hash(hk, D)
τ ← Open(hk, shk, D, i)

 = 1.

Definition 14 (Somewhere Perfectly Binding). We say that a SPB hashing
scheme is somewhere perfectly binding if for all λ ∈ N, all n = poly(λ), all keys
hk, all databases D of size n, all indices i ∈ [n], all database values x and all
proofs τ we have that

Pr

[
Di = x :

h← Hash(hk, D)
1← Verify(hk, h, i, x, τ)

]
= 1.

Definition 15 (Index Hiding). We say that a SPB hashing scheme is index
hiding if for all λ ∈ N and all PPT adversaries A = (A1,A2) we have that∣∣∣∣∣∣Pr

b← A2(hk, aux) :
(n, i0, i1, aux)← A1(1λ)

b←$ {0, 1}
(hk, shk)← Gen(1λ, n, ib)

− 1

2

∣∣∣∣∣∣ ≤ negl(λ).

An alternative with a weaker binding guarantee is SSB. We now present the
syntax of SSB which is almost identical to the one of SPB.

Definition 16. A somewhere statistically binding (SSB) scheme SSB is com-
posed of the following algorithms

• hk← Gen(1λ, n, i) takes as input the security parameter λ, n ∈ N and an
index i ∈ [n]. It outputs a hashing key hk.

• h← Hash(hk, D) which is the same as above.

• τ ← Open(hk, D, i) takes as input a hashing key hk, a database D and an
index i. It outputs a proof τ .

• b← Verify(hk, h, i, x, τ) which is the same as above.

An SSB also satisfies correctness, index hiding and the same efficiency re-
quirements as above. These definitions can be straightforwardly adapted to SSB.
Additionally, SSB must be somewhere statistically binding as defined below.

Definition 17 (Somewhere statistically binding). We say that a SSB hashing
scheme is somewhere statistically binding if for all λ ∈ N, all n = poly(λ), all
databases D of size n, all indices i ∈ [n], all database values x and all proofs τ
we have that

Pr

Di = x :
hk← Gen(1λ, n, i)
h← Hash(hk, D)

1← Verify(hk, h, i, x, τ)

 = 1.

19

3.5 Pseudorandom Generators

We recall the definition of pseudorandom generators.

Definition 18 (Pseudorandom Generators). Let α = α(λ) and β = β(λ) be two
polynomials. A pseudorandom generator PRG : {0, 1}α → {0, 1}β is a function
such that for all PPT adversaries A we have that∣∣∣∣Pr

[
1← A(ν) :

s←$ {0, 1}α
ν ← PRG(s)

]
− Pr

[
1← A(ν) : ν←$ {0, 1}β

]∣∣∣∣ ≤ negl(λ).

3.6 Witness Encryption

Witness encryption [GGSW13] is a special type of encryption where a message
is encrypted with respect to an NP statement. Decryption is only possible for
someone holding a corresponding witness.

Definition 19 (Witness Encryption). Let L be an NP language with relation R.
A witness encryption WE scheme for L is composed of the following algorithms:

• ct ← Enc(1λ, x,m) takes as input the security parameter λ, a statement
x ∈ X and a message m. It outputs a ciphertext ct.

• m ← Dec(w, ct) takes as input a witness w ∈ W and a ciphertext ct. It
outputs a message m.

Definition 20 (Correctness). We say that a WE is correct if for all λ ∈ N, all
x ∈ L and all messages m we have that

Pr
[
m← Dec(w, ct) : ct← Enc(1λ, x,m)

]
= 1

where w ∈ W is such that R(x,w) = 1.

The standard security definition for witness encryption is soundness security.

Definition 21 (Soundness Security). We say that a WE is soundness secure if
for all λ ∈ N, for all adversaries A = (A1,A2) and for all x /∈ L we have that∣∣∣∣∣∣Pr

b← A2(ct, aux) :
(m0,m1, aux)← A1(1λ)

b←$ {0, 1}
ct← Enc(1λ, x,mb)

− 1

2

∣∣∣∣∣∣ ≤ negl(λ).

WE can be constructed from iO [GGH+13] or multilinear maps [GGSW13].

Ciphertext Size. Let Cx be the verification circuit for a statement x and
a relation R, that is, 1 ← Cx(w) if and only if R(x,w) = 1. All known WE
schemes for a relation R achieve a ciphertext size |ct| ∈ O (|Cx| · poly(λ)) where
ct←WE.Enc(1λ, x,m).

20

3.7 Indistinguishability Obfuscation

Indistinguishability obfuscation [BGI+12] roughly states, that it is hard to dis-
tinguish obfuscations of functionally equivalent circuits.

Let iO(1λ, C) be a uniform PPT algorithm that takes as input a security
parameter λ and a circuit C and outputs a circuit C̄. iO is called an iO obfuscator
for a circuit family C if the following properties hold.

Definition 22 (Correctness). We say that an iO obfuscator iO is correct if for
all λ ∈ N, all C ∈ C, all inputs x we have that

Pr
[
C̄(x) = C(x) : C̄ ← iO(1λ, C)

]
= 1

Definition 23 (Security). We say that an iO obfuscator iO is secure if for all
λ ∈ N, all pairs (C0, C1) such that |C0| = |C1| and C0(x) = C1(x) for all inputs
x, and all PPT adversaries A we have that∣∣Pr

[
1← A(C̄) : C̄ ← iO(1λ, C0)

]
− Pr

[
1← A(C̄) : C̄ ← iO(1λ, C1)

]∣∣ ≤ negl(λ).

3.8 Puncturable Pseudorandom Functions

Pseudorandom functions (PRF) were first introduced in [GGM84]. In this work,
we use the concept of puncturable PRFs [BW13, KPTZ13, BGI14].

Definition 24 (Puncturable PRF). Let α = α(λ) and β = β(λ) be two poly-
nomials. A puncturable PRF (PPRF) scheme PPRFα,β = PPRF is composed of
the following algorithms:

• k ← KeyGen(1λ) takes as input a security parameter λ. It outputs a key
k.

• y ← Eval(k, x) takes as input a key k and x ∈ {0, 1}α. It outputs y ∈
{0, 1}β.

• kS ← Punct(k, S) takes as input a key k and a subset S ⊆ {0, 1}α. It
outputs a punctured key kS.

• y ← EvalPunct(kS , x) takes as input a punctured key kS and x ∈ {0, 1}α.
It outputs y ∈ {0, 1}β.

Definition 25 (Correctness). A PPRF scheme PPRF is said to be correct if for
all λ ∈ N, for all S ⊆ {0, 1}α, all x /∈ S we have that

Pr

[
Eval(k, x) = EvalPunct(kS , x) :

k ← KeyGen(1λ)
kS ← Punct(k, S)

]
= 1.

Definition 26 (Pseudorandomness). A PPRF scheme PPRF is said to be pseu-
dorandom at punctured points if for all λ ∈ N, all PPT adversaries A = (A1,A2)
we have that∣∣∣∣∣∣∣∣

Pr

[
1← A2(kS , S, T, aux) :

(S, aux)← A1(1λ); k ← KeyGen(1λ)
kS ← Punct(k, S); T ← Eval(k, S)

]
−

Pr

[
1← A2(kS , S, T, aux) :

(S, aux)← A1(1λ); k ← KeyGen(1λ)
kS ← Punct(k, S); T ←$ {0, 1}β|S|

]
∣∣∣∣∣∣∣∣ ≤ negl(λ).

21

Puncturable PRFs that can be punctured at |S| = poly(λ) points and they
can be constructed from one-way functions. The size of the punctured key is
O(|S| · poly(λ)).

3.9 Linear Secret Sharing

Linear secret sharing (LSS) is used to divide a secret into shares such that if
one is in possession of an authorized set of shares, then one can reconstruct the
secret. In this work, we use threshold LSS (which, for simplicity, we simply refer
to as LSS).

Definition 27 (Linear Secret Sharing). Let t ≤ N . A (t,N)-linear secret
sharing (LSS) LSS scheme is composed of the following algorithms:

• (s1, . . . , sN)← Share(m) takes as input a message m. It outputs N shares
(s1, . . . , sN).

• m← Reconstruct(si1 , . . . , sit) takes as input t shares (si1 , . . . , sit). It out-
puts a message m.

A (t,N)-LSS scheme, which is generated by a generating matrix in the system-
atic form, has the following additional algorithm:

• (siz+1 , . . . , siN)← RemainShare(m, si1 , . . . , siz) that takes as input a mes-
sage m and uniformly chosen shares sij ←$ {0, 1}λ for j ∈ [z] with z < t,
and outputs the remaining shares (siz+1

, . . . , siN).

Definition 28 (Correctness). A LSS scheme LSS is said to be correct if for all
messages m and all subsets {i1, . . . , it} ⊆ [N]

Pr [m = Reconstruct(si1 , . . . , sit) : (s1, . . . , sN)← Share(m)] = 1.

Moreover,

Pr

[
m = Reconstruct(si1 , . . . , sit) :

sij ←$ {0, 1}λ for j ∈ [z]
(siz+1 , . . . , siN)← RemainShare(m, si1 , . . . , siz)

]
= 1

where z < t.

Definition 29 (Privacy). We say that a (t,N)-LSS scheme LSS is private if
for all subsets {i1, . . . , iz} ⊂ [N] where z < t, all pairs of messages (m0,m1)
and all PPT adversaries A we have that∣∣∣∣ Pr [1← A(s0,i1 , . . . , s0,iz) : (s0,1, . . . , s0,N)← Share(m0)]−

Pr [1← A(s1,i1 , . . . , s1,iz) : (s1,1, . . . , s1,N)← Share(m1)]

∣∣∣∣ ≤ negl(λ).

4 Universal Ring Signatures

In this section we present the definition of URS. A URS is composed of a signing
and a verification algorithm.

22

Definition 30 (Universal Ring Signature). A universal ring signature (URS)
scheme URS is composed of the following algorithms:

• Σ ← Sign(1λ, ski,m,R, i, S) takes as input a security parameter 1λ, a
signing key ski, a message m, a ring of keys R = (vk1, . . . , vk`) an index
i ∈ [`] and a list of signature schemes S = {Sigi = (Sig.KeyGeni,Sig.Signi,
Sig.Verifyi)}i∈[M], where each vkj is a public verification key under exactly
one10 of the schemes Sigi. It outputs a signature Σ.

• b ← Verify(Σ,m,R, S) takes as input a signature σ, a message m, a ring
of keys R and a list of signature schemes S. It outputs a bit b ∈ {0, 1}.

We want a URS to fulfill correctness, unforgeability and anonymity.

Definition 31 (Correctness). We say that a URS URS = (Sign,Verify) is cor-
rect if for all λ ∈ N, all `,M = poly(λ), all correct signature schemes Sig′, all
j ∈ [`], all messages m and all (vk, sk)← Sig′.KeyGen(1λ), we have that

Pr
[
1← Verify

(
Sign(1λ, sk,m,R, j, S),m,R, S

)]
= 1

for any R = (vk1, . . . , vk`) such that vkj = vk and any S = {Sigi}i∈[M] such that
Sig′ ∈ S. That is, the remaining elements in R,S may be arbitrarily chosen.

We now define the unforgeability of a URS. A URS scheme should be com-
patible with any signature scheme. Hence, we would like to let the adversary
choose signature schemes for the URS scheme. However, the adversary could
choose an insecure signature scheme and, in this case, we cannot guarantee un-
forgeability. Hence, the experiment should provide a list of secure signature
schemes and verification keys at the beginning of the experiment. The forge
given by the adversary must be with respect to these verification keys.11 Our
definition is similar to the one of unforgeability with respect to insider corrup-
tion for standard ring signatures [BKM06], which is the strongest unforgeability
definition.

Definition 32 (Unforgeability). Let A be an adversary. We denote by Ls a list
of challenge signature schemes

Ls = {Sigi = (Sig.KeyGeni,Sig.Signi,Sig.Verifyi)}i∈[M].

Consider the following experiment, denoted by ExpURSUnf (Ls,A, 1λ):

1. The experiment provides Ls to A.

2. The adversary outputs a list of indices {indi}i∈[`].
10In practice, keys/certificates are usually annoted with their respective schemes and we

assume such a labelling here.
11Note that, in the unforgeability definition for standard ring signatures in [BKM06] a

similar situation happens: The forge of the adversary must be with respect to verification
keys created honestly and not with respect to maliciously chosen verification keys.

23

3. For all i ∈ [`], the experiment computes (vki, ski) ← Sig.KeyGenindi(1
λ)

and outputs R = (vk1, . . . , vk`) to the adversary. Also it initialises a set
K = ∅ and remembers the indices indi.

4. The adversary may now make three types of requests12:

• Corrupt(i), which the experiment answers with the secret key ski.
Also it adds vki to K.

• URSSign(m, R̄, i, S̄) takes as input an index i ∈ [`], a message m, a
ring of keys R̄ (not necessarily contained in R) and a list of signature
schemes S̄. If vki ∈ R̄, we denote its position as i∗. If additionally
Sigindi ∈ S̄, the experiment answers with Σ← URS.Sign(1λ, ski,m, R̄, i

∗, S̄).

• Sign(m, i) takes as input an index i ∈ [`] and a message m. The
experiment answers with Σ← Sig.Signindi(1

λ, ski,m).

5. A outputs (Σ∗,m∗, R∗, S∗).

6. If 1 ← Verify(Σ∗,m∗, R∗, S∗), R∗ ⊆ R \ K, S∗ ⊆ Ls and the message m∗

was never queried in a URSSign or Sign request, the experiment outputs
1.13 Else, it outputs 0.

We say that a URS URS = (Sign,Verify) is unforgeable, if for all λ ∈ N,
M = poly(λ), all lists of EUF-CMA secure signature schemes Ls = {Sigi}i∈[M]

and all PPT adversaries A we have that

Pr
[
1← ExpURSUnf (Ls,A, 1λ)

]
= negl(λ).

In the anonymity experiment, the goal of the adversary is to guess which user
created a given signature. We give a general definition called t-anonymity, which
mandates that at least t honest keys in the anonymity set must be honestly
chosen for anonymity to hold. The adversary may include at least t honest
and additional maliciously chosen verification keys (potentially from insecure
signature schemes) in a challenge ring. It should still be unable to determine
which of the honest parties signed a given URS under that ring.

The case of 2-anonymity coincides with the definition of anonymity against
full key exposure of [BKM06]. This is the strongest anonymity definition for ring
signatures and is even known to imply unrepudiability, meaning that a member
in the ring cannot prove that they did not sign the message [PS19a]. As it is
the standard case, we will refer to 2-anonymity as anonymity throughout this
work.

12Note that as the key generation algorithms are publicly available, the adversary may
honestly generate key pairs itself. The corruption oracle simply serves to corrupt the initial
honest keys. Arbitrary additional adversarially chosen keys can be included in ring signature
queries, as we do not require R̄ ⊆ R.

13We can consider the stronger notion, where a forge is valid, if no query of the form
URSSign(m∗, R∗, ·, ·) or Sign(m∗||R∗, i) for vki ∈ R∗ was made. This can be achieved by the
standard trick of signing the message (m∗||R∗) instead of m∗ or a hash H(m∗||R∗) thereof
for compactness.

24

Definition 33 (t-Anonymity). Let A = (A1,A2,A3) be an adversary. We de-
note a list of challenge signature schemes by Ls = {Sigi = (Sig.KeyGeni,Sig.Signi,
Sig.Verifyi)}i∈[M]. We define the t-anonymity experiment ExpURSAnont(Ls,A, 1

λ) as
follows:

1. ({indi}i∈[`], aux1)← A1(1λ, Ls).

2. For all i ∈ [`], the experiment computes (vki, ski)← Sig.KeyGenindi(1
λ; ri)

with random coins ri and sets K = (vk1, . . . , vk`).

3. (m∗, R∗ = (vk′1, . . . , vk
′
p), S

∗ = (Sig′1, . . . ,Sig
′
q), (jk)k∈[t], aux2) ← A2(K,

(r1, . . . , r`), aux1) where vk′jk ∈ K for k ∈ [t] with indices lk in K (i.e.

vk′jk = vklk). Additionally, the signature schemes corresponding to these
public keys, Sigindlk

, must be in the set S∗. If these conditions are violated,

the experiment aborts.

4. Σ∗ ← URS.Sign(1λ, sklk ,m
∗, R∗, jk, S

∗) where k←$ [t].

5. k′ ← A3(Σ∗, aux2).

6. If k = k′, then output 1. Else, output 0.

We say that a URS URS = (Sign,Verify) is t-anonymous, if for all λ ∈ N , all
sizes M = poly(λ), all lists of signature schemes Ls = {Sigi}i∈[M] and all PPT
adversaries A = (A1,A2,A3) we have that∣∣∣∣Pr

[
1← ExpURSAnont(Ls,A, 1

λ)
]
− 1

t

∣∣∣∣ = negl(λ).

Efficiency of URS. We remark that URS inherits the efficiency of the most
inefficient signature scheme in the ring. For this reason, it is unlikely that we
can construct a URS with good and practical parameters and efficiency.

5 Universal Ring Signature from Signature Schemes
with Superpolynomial Security

In this section, we present a construction of URS that is based on signature
schemes that are superpolynomially hard to forge. From this hardness, we can
prove security of the URS scheme using complexity leveraging.

5.1 Construction

We start by presenting the construction of this URS scheme.
For simplicity, we assume, that there is an upper bound on the size of

all descriptions of signature verification circuits. Also, for public keys vk ←
Sig.KeyGen(1λ), we assume that they are labeled with their respective schemes.
That is, there is a function tag(., .) which takes vk and a signature scheme Sig

25

and outputs 1, iff the key vk was made under Sig, but 0 for any other signature
verification scheme as input. Sig.Verify should only accept keys vk with the
corresponding tag to Sig, that is tag(vk,Sig) = 1.

In the scheme below, we use a commitment scheme whose hiding property
holds against PPT adversaries, but can be broken in superpolynomial time
T ′(λ) ∈ ω(poly(λ)) Additionally, we assume that all used signature schemes are
unforgeable against adversaries running in O(T ′(λ) · poly(λ)). A signature of
our URS for a message m includes a commitment to a signature of m in one
of the underlying signature schemes. This will give our reduction, that runs in
superpolynomial time, an advantage in the unforgeability experiment, where it
may extract the commitments and provide a forge against the underlying sig-
nature scheme. However, this opening strategy cannot be used by an adversary
against anonymity, as they are running in polynomial time.

Construction 1. Let:

• CS be a commitment scheme such that the hiding property holds against
polynomial-time adversaries but can be broken in superpolynomial-time
T ′(λ) ∈ ω(poly(λ)).

• SPB be a SPB hashing scheme;

• L be a language such that

L =

(m, com, hk, h, rhk, rh) : ∃(vk, i,Sig.Verify, ind, τ, ρ, σ, γ) s.t.

1← SPB.Verify(hk, h, i, vk, τ)
1← SPB.Verify(rhk, rh, ind,Sig.Verify, ρ)

1← CS.Verify(com, σ, γ)
1← Sig.Verify(vk,m, σ)

 ;

where Sig.Verify is a description of the verification algorithm of a signature
scheme Sig.14

• NIWI be a NIWI scheme for the language

LOR =

{
(m, com0, com1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1) :
∃b ∈ {0, 1} s.t. (m, comb, hkb, hb, rhkb, rhb) ∈ L

}
.

We now describe our scheme in full detail.

Sign(1λ, ski,m,R = (vk1, . . . , vk`), i, S = {Sigi}i∈[M])

• Determine an index ind such that tag(vki,Sigind). Parse Sigind = (Sig.KeyGen,
Sig.Sign,Sig.Verify). Set S′ = {Sig.Verifyi}i∈[M] to be the list of verification
algorithms in S.

• Compute σ ← Sig.Sign(ski,m).

14We assume that for all schemes, |Sig.Verify| is bounded by a polynomial β(λ).

26

• Compute (hkj , shkj) ← SPB.Gen(1λ, `, i) and hj ← SPB.Hash(hkj , R) for
j ∈ {0, 1}. Also, compute the proof τ ← SPB.Open(hk0, shk0, R, i).

• Compute (rhkj , rshkj)← SPB.Gen(1λ,M, ind) and rhj ← SPB.Hash(rhkj , S
′)

for j ∈ {0, 1}. Also, compute the proof ρ← SPB.Open(rhk0, rshk0, S
′, ind).

• Compute (com0, γ0)← CS.Commit(1λ, σ) and (com1, γ1)← CS.Commit(1λ, 0).

• Set x = (m, com0, com1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1).

• Set w = (vk, i,Sig.Verifyind, ind, τ, ρ, σ, γ0).

• Compute the proof π ← NIWI.Prove(x,w).

• Output Σ = (com0, com1, hk0, hk1, rhk0, rhk1, π).

Verify(Σ,m,R, S = {Sigi}i∈[M]) :

• Parse Σ as (com0, com1, hk0, hk1, rhk0, rhk1, π). Set S′ = {Sig.Verifyi}i∈[M]

to be the list of verification algorithms in S.

• Compute hj ← SPB.Hash(hkj , R) for j ∈ {0, 1}.

• Compute rhj ← SPB.Hash(rhkj , S
′) for j ∈ {0, 1}.

• Set x = (m, com0, com1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1).

• If 1← NIWI.Verify(x, π), output 1. Else, output 0.

We remark, that we only require the verification algorithms of the underlying
signature schemes to verify a URS signature. Therefore, we only include these
algorithms in S′, which is hashed down by SPB and provided to NIWI. This is
to reduce size. Essentially, our verification algorithm URS.Verify could only take
the list of signature verification algorithms S′ as an input, but we state the full
list of signature schemes to fit our more general definition.

Signature size. A signature for a message m with respect to a ring R (of
size `) and a list of schemes S (of size M) is composed of Σ = (com0, com1, hk0,
hk1, rhk0, rhk1, π). Both com0, com1 are of size O(poly(λ)) and independent of
` and M . The size of the hashing keys hk0, hk1, the proof τ and the circuit
SPB.Verify(hk, h, i, vk, τ) can be bounded by O(log(`) · poly(λ)). Analogously,
rhk0, rhk1, ρ and the runtime of SPB.Verify(rhk, rh, ind,Sig.Verify, ρ) are bounded
by O(log(M) · poly(λ)).15

Given that, we conclude that the circuit that verifies the relation of language
L has size at most O((log(M) + log(`)) · poly(λ)). Hence, the proof π has size
O((log(M) + log(`)) · poly(λ)). We conclude that the total size of the signature
is O((log(M) + log(`)) ·poly(λ)). Thus, it grows only logarithmic in the number
of users in the ring and logarithmic in the number of signature schemes.

15This holds, as we assumed, that we can bound |Sig.Verify| by a polynomial β(λ) for all
signature schemes Sig.

27

5.2 Proofs

We now show that the construction presented above fulfills the required proper-
ties for a URS. We start by showing correctness. Then we proceed to prove un-
forgeability and anonymity. Our proof of unforgeability uses a superpolynomial-
time reduction.

Theorem 5 (Correctness). The scheme presented in Construction 1 is correct,
given that NIWI is perfectly complete and SPB and CS are correct.

Proof. Let λ ∈ N, `,M = poly(λ), j ∈ [`], message m and a correct signature
scheme Sig′ be given. Let keys be constructed by (vk, sk) ← Sig′.KeyGen(1λ).
Let a ring R = (vk1, . . . , vk`) be chosen with vkj = vk and S = (Sig1, . . . ,SigM)
such that Sig′ ∈ S. Now we need to show, that

Pr
[
1← Verify

(
Sign(1λ, sk,m,R, j, S),m,R, S

)]
= 1

As SPB is deterministic and all other values are explicitly given, the input state-
ment (m, com0, com1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1) to NIWI.Verify is the
same as what was originally input to NIWI.Prove. So by the perfect complete-
ness of NIWI, we only need to show that w ← (vk, i,Sig.Verifyind, ind, τ, ρ, σ, γ0)
was in fact a valid witness. The statement 1 ← CS.Verify(com0, σ, γ0) holds by
construction and the correctness of CS. Also note, that by assumption there
exists an index ind such that Sigind is the scheme corresponding to vk, so such an
index can be chosen in URS.Sign. The conditions in LOR are then fulfilled for the
first disjunct by construction and using the correctness of SPB and Sigind.

Theorem 6 (Unforgeability). We assume, that our commitment scheme allows
extraction in superpolynomial time T ′(λ) ∈ ω(poly(λ)), but is secure against
PPT adversaries. Assume that the challenge signature schemes LS = {Sigi}i∈[M]

are unforgeable against adversaries running in time T ′(λ) · poly(λ). Then the
scheme presented in Construction 1 is unforgeable against PPT adversaries,
given that NIWI is perfectly sound and SPB is somewhere perfectly binding.

At a high-level, we will build a superpolynomial-time reduction that breaks
unforgeability for the underlying signature scheme. The reduction, upon re-
ceiving the challenge URS signature Σ∗ = (com∗0, com

∗
1, hk

∗
0, hk

∗
1, rhk

∗
0, rhk

∗
1, π
∗)

from the adversary, opens the commitments com∗0 and com∗1 using brute force.
Note that, since we allow the reduction to run in superpolynomial time, it will
succeed in breaking the hiding property of the commiment scheme. Then, by
the perfect soundess of the NIWI scheme, the reduction can extract a valid
signature from either com0 or com1 with non-negligible probability and, thus,
break the unforgeability of the signature scheme.

Proof. To prove the theorem, we show that if there exists a PPT adversary,
that is able to win the unforgeability experiment of Definition 32, then we can
build an algorithm that is able to forge a signature for one of the underlying
Sigi schemes in time T ′(λ) · poly(λ). More precisely, if A is able to break the

28

unforgeability, then there exists an algorithm B that breaks the EUF-CMA
security of one of the Sigi. In the following, let C be the challenger of Definition
3. We now describe B(Ls) in full detail:

1. B provides Ls = {Sigi}i∈[M] to A.

2. Upon receiving the indices {indi}i∈[`] from A, B guesses an index i∗ ← [`]

uniformly at random. It creates (vki, ski) ← Sig.KeyGenindi(1
λ) for all

i 6= i∗ and sets vki∗ to be a verification key under Sigindi∗ given by the
challenger for EUF-CMA security of that scheme C. It sends R = {vki}i∈[`]
to A.

3. B simulates the oracles OCorrupt, URSign and OSign in the following way:

• OCorrupt(i): Whenever A sends a query i, B reveals ski if i 6= i∗.
Otherwise, it aborts the protocol;

• URSign(m, R̄, i, S̄): Whenever A sends a query (m, R̄, i, S̄), B pro-
ceeds as in the experiment, if i 6= i∗. If i = i∗, B checks whether vki∗ ∈
R̄ and denotes its position as j∗. If additionally Sigindi∗ ∈ S̄, B sends a
query to C for message m. Upon receiving the signature σ for m, they
compute a signature Σ as they would in URS.Sign(1λ, ski∗ ,m, R̄, j

∗, S̄),
except that they use the σ they received instead of computing it by
Sig.Signindi∗ (ski∗,m). This can be done without the knowledge of
ski∗ .

B returns Σ to A.

• OSign(i,m): Whenever A sends a query (i,m) with i 6= i∗, B sends
σ ← Sig.Sign(ski,m). Otherwise, it sends a query m to C and, upon
receiving a signature σ, it outputs σ to A.

4. Upon receiving Σ∗ = (com∗0, com
∗
1, hk

∗
0, hk

∗
1, rhk

∗
0, rhk

∗
1, π
∗), plus m∗, R∗

and S∗ from A, B opens both commitments com0 and com1 to recover σ∗0
and σ∗1 , respectively. By assumption, this can be done in time 2T ′(λ). If
1← Sig.Verify(vki∗ ,m

∗, σ∗0), it outputs σ∗0 . Else if 1← Sig.Verify(vki∗ ,m
∗,

σ∗1), it outputs σ∗1 . Else, it aborts.

We now analyze the success probability of B in breaking the EUF-CMA
property of Definition 3.

Before A outputs a potential forge, unless they query to corrupt vki∗ , B only
differs from the experiment, in that it queries a signing oracle for vki∗ instead
of computing signatures itself. Therefore until such a query would be made, the
index i∗ is uniform in the view of A. The probability that A does not query
OCorrupt on i∗ is thus at least 1/`. We now condition on this query not hap-
pening: Assume that Σ∗ output by A is such that 1 ← Verify(Σ∗,m∗, R∗, S∗),
where R∗ = (vki1 , . . . , vki`′).

Since NIWI is perfectly sound, then w.l.o.g, (m∗, com0, hk0, h0, rhk0, rh0) ∈ L.
This means there exists a tuple (vk′, i′,Sig.Verify′, ind′, τ ′, ρ′, σ′, γ′) such that
1← SPB.Verify(hk0, h0, i

′, vk′, τ ′), 1← SPB.Verify(rhk0, rh0, ind
′,Sig.Verify′, ρ′),

29

1← CS.Verify(com0, σ
′, γ′) and 1← Sig.Verify′(vk′,m∗, σ′). Thus, by the some-

where perfectly binding property of SPB we have that vk′ = vkii′ with probabil-
ity 1. Moreover, since i∗ is chosen uniformly at random from the point-of-view
of A, then i∗ = ii′ with probability at least 1/`. Since we assumed that the vk
are tagged with what scheme they correspond to, we can assume here that this
is then a valid forge under Sig′.

If this happens, then σ′ is a valid signature for message m∗ under vki∗ and B
is able to break the EUF-CMA of Sigi∗ with probability at least 1

`2 Pr
[
1← ExpURSUnf

]
.

Now, we need to analyse the time which B requires. Since A is PPT, and the
answering of requests is possible in polynomial time as well, as all algorithms
invoked run in poly(λ), the time spent until A outputs a forge is in poly(λ).
Then, B runs in a total time of 2T ′(λ)+poly(λ). This contradicts the assumption
that Sigi∗ is EUF-CMA against adversaries running in time O(poly(λ) · T ′(λ)).

Theorem 7 (Anonymity). Assume that SPB is index hiding, NIWI is witness-
indistinguishable and CS is hiding. Then the scheme presented in Construction
1 is anonymous.

To prove the theorem above, we build a sequence of hybrids starting from
the anonymity game where b = 0 and ending at a hybrid describing the game for
b = 1. Let vki0 and vki1 be the challenge verification keys in the anonymity game
and let Σ = (m∗, com0, com1, hk0, hk1, rhk0, rhk1, π) be the challenge signature
build using vki0 . In the first hybrid, we change hk1 and rhk1 to be SPB hashing
keys binding to index i1. Next, we replace com1 by a commitment of a valid
signature under vki1 . In the next hybrid, we can replace the proof π by a new
one computed using the new signature under vki1 (this change goes unnoticed
by the witness indistinguishability of the NIWI). We can now replace com0 by
a commitment of a valid signature under vki1 . In the next step, we replace hk0
and rhk0 to be SPB hashing keys binding to index i1 and, finally, compute π as
the proof that com0 is a commitment to a valid signature under vki1 for which
hk0 and rhk0 bind to.

Proof. Let Ls = {Sigi}i∈[M] be a list of signature schemes. In the following
we will only modify our response to A after they made their challenge query.
That means, we have already received indices {indi}i∈` from A and provided
them with a ring R of verification keys as well as random coins. Let now
(i0, i1,m

∗, R∗, S∗) be the challenge query of A in the game of Definition 33. We
denote by j0, j1 the indices of vki0 , vki1 in R∗ and by ind′0, ind

′
1 the indices of their

corresponding signature schemes in S∗. Let S′ be the list of signature verification
algorithms in S∗. The proof of the theorem follows from the following sequence
of hybrids.

Hybrid H0. This is the real anonymity experiment defined in Definition 33
where b = 0. That is, the challenger outputs Σ = (m∗, com0, com1, hk0, hk1,

30

rhk0, rhk1, π) where

σi0 ← Sig.Signindi0 (ski0 ,m
∗)

(hka, shka)← SPB.Gen(1λ, |R∗|, j0) for a ∈ {0, 1}
τ ← SPB.Open(hk0, shk0, R

∗, j0)

(rhka, rshka)← SPB.Gen(1λ, |S′|, ind′0) for a ∈ {0, 1}
ρ← SPB.Open(rhk0, rshk0, S

′, ind′0)

(com0, γ0)← CS.Commit(1λ, σi0)

(com1, γ1)← CS.Commit(1λ, 0)

π ← NIWI.Prove(x,w)

where x = (m, com0, com1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1) and
w = (vk, j0,Sig.Verifyindi0 , ind

′
0, τ, ρ, σi0 , γ0).

Hybrid H1. This hybrid is identical to the previous one except that it switches
the index in key creation to (hk1, shk1) ← SPB.Gen(1λ, |R∗|, j1). Additionally,
it computes a new opening τ ′ ← SPB.Open(hk1, shk1, R

∗, j1).

Claim 1. Assume that SPB is index hiding. Then hybrids H0 and H1 are
indistinguishable.

Proof. Assume an adversary A has a non-negligible advantage in distinguishing
H0 from H1. We build a reduction R against the index-hiding game as follows:
R chooses (|R∗|, j0, j1) as challenge and receives hk1 from the challenger. R
uses this key instead of computing (hk1, shk1) ← SPB.Gen(1λ, |R∗|, j0) in an
otherwise perfect simulation of H0. As τ ′ is not output in H1, from the view of
A, the output of R is identical to H0, if the challenge bit in the index hiding
game was 0 and identical to H1 otherwise. Therefore, we can output whatever
A outputs and receive the same advantage.

Hybrid H1b. This hybrid is identical to the previous one except that it uses
(rhk1, rshk1) ← SPB.Gen(1λ, |S′|, ind′1). Additionally, it computes an opening
ρ′ ← SPB.Open(rhk1, rshk1, S

′, ind′1).

Claim 2. Assume that SPB is index hiding. Then hybrids H1 and H1b are
indistinguishable.

The proof is identical to the one for Claim 1.

Hybrid H2. This hybrid is identical to the previous one except that it uses
σ′ ← Sig.Signindi1 (ski1 ,m

∗) and (com1, γ1)← CS.Commit(1λ, σ′).

Claim 3. Assume that CS is hiding. Then hybrids H1b and H2 are indistin-
guishable.

31

Proof. Assume an adversary A has a non-negligible advantage in distinguishing
H1b from H2. We build a reduction R against the hiding property of CS as
follows: R chooses m0 = 0 and m1 = σ′ as challenge in the hiding game. Then
it receives com from the challenger and uses this commitment as com1 instead
of computing com1 itself in an otherwise perfect simulation of H1b. As γ1 is not
needed in H1b or H2, all further computations are possible and the output of R
is identically distributed to H1b, if the commitment hides 0, and it is identically
distributed to H2 otherwise. Therefore, we can output whatever A outputs and
receive the same advantage.

Hybrid H3. This hybrid is identical to the previous one except that π ←
NIWI.Prove(x,w′) where w′ = (vki1 , j1,Sig.Verifyindi1 , ind

′
1, τ
′, ρ′, σ′, γ1).

Claim 4. Assume that NIWI is witness-indistinguishable. Then hybrids H2 and
H3 are indistinguishable.

Proof. Assume an adversary A’ has a non-negligible advantage in distinguish-
ingH2 fromH3. We build a reductionR against the witness indistinguishability
game as follows: R chooses (x,w,w′) where w = (vki0 , j0,Sig.Verifyindi0 , ind

′
0, τ, ρ,

σi0 , γ0) and w′ = (vki1 , j1,Sig.Verifyindi1 , ind
′
1, τ
′, ρ′, σ′, γ1) as their challenge.

Then it receives a proof π from the challenger that it uses instead of computing
π ← NIWI.Prove(x,w) in an otherwise perfect simulation of H2. We remark
that by our previous changes, the conditions for the second disjunct in LOR are
now fulfilled by correctness of SPB,CS and Sig if the witness is w′. For the
witness w, the first disjunct still holds, as no changes were made to its inputs.
This means the statement-witness pairs were valid in all hybrids so far.

Now, clearly the output of R is identically distributed to H2, if the challenge
bit in the witness indistuingishability game was 0 and to H3 otherwise. There-
fore, we can output whatever A outputs and receive the same advantage.

Hybrid H4. This hybrid is identical to the previous one except that it ran-
domly chooses com0 ← CS.Commit(1λ, 0).

Claim 5. Assume that CS is hiding. Then hybrids H3 and H4 are indistin-
guishable.

The proof of the claim is identical to the proof of Claim 3.

Hybrid H5. This hybrid is identical to the previous one except that it com-
putes (hk0, shk0) ← SPB.Gen(1λ, |R∗|, j1), τ ← SPB.Open(hk0, shk0, R

∗, j1),
(rhk0, rshk0)← SPB.Gen(1λ, |S′|, ind′1) and ρ← SPB.Open(rhk0, rshk0, S

′, ind′1).

Claim 6. Assume that SPB is index hiding. Then hybrids H4 and H5 are
indistinguishable.

The proof of the claim is identical to the proof of Claim 1.

32

Hybrid H6. This hybrid is identical to the previous one except that it uses
σ′′ ← Sig.Signindi1 (ski1 ,m

∗) and (com0, γ0)← CS.Commit(1λ, σ′′).

Claim 7. Assume that CS is hiding. Then hybrids H5 and H6 are indistin-
guishable.

The proof of the claim is identical to the proof of Claim 3.

Hybrid H7. This hybrid is identical to the previous one except that π ←
NIWI.Prove(x,w′′) where w′′ = (vki1 , j1,Sig.Verifyindi1 , ind

′
1, τ, ρ, σ

′′, γ0).

Claim 8. Assume that NIWI is witness-indistinguishable. Then hybrids H6 and
H7 are indistinguishable.

The proof of the claim is identical to the proof of Claim 4. We note, that
now again, the first disjunct in LOR is fulfilled by the previous modifications.

Hybrid H8. This hybrid is identical to the previous one except that it ran-
domly chooses com1 ← CS.Commit(1λ, 0).

Claim 9. Assume that CS is hiding. Then hybrids H7 and H8 are indistin-
guishable.

The proof of the claim is identical to the proof of Claim 3. Since H8 is
identical to the experiment with challenge bit b = 1 and indistinguishable from
H0, we have therefore shown, that A can not have more than non-negligible
advantage.

6 Non-compact Universal Ring Signature from
Witness Encryption

In this section we present a URS scheme from falsifiable assumptions. The
resulting URS has a signature size that scales with the size of the ring. We first
present the construction. Then, we proceed to the analysis of the scheme.

6.1 Construction

We now present our construction for URS from WE.

Construction 2. Let

• PRF : K × [`]→ {0, 1}λ be a PRF.

• L′ be a language such that

L′ =

({vki}i∈[`] : ∃

(
{Sigij}j∈[`−1],K

)
s.t.

rij ← PRF(K, ij)
(vkij , skij)← Sig.KeyGenij (1

λ; rij)

 .

33

• WE be a witness encryption scheme for language L′.

• SPB be a SPB hashing scheme;

• L be a language such that

L =

(m, ct, hk, h, rhk, rh, x) : ∃(vk, i,Sig.Verify, ind, τ, ρ, σ, rct) s.t.

1← SPB.Verify(hk, h, i, vk, τ)
1← SPB.Verify(rhk, rh, ind,Sig.Verify, ρ)

ct←WE.Enc(1λ, x, σ; rct)
1← Sig.Verify(vk,m, σ)

 ;

where Sig.Verify is a description of the verification algorithm of a signature
scheme Sig.16

• NIWI be a NIWI scheme for the language

LOR =

{
(m, ct0, ct1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1, x) :
∃b ∈ {0, 1} s.t. (m, ctb, hkb, hb, rhkb, rhb, x) ∈ L

}
.

We now describe the scheme in full detail.

Sign(1λ, ski,m,R = (vk1, . . . , vk`), i, S = {Sigi}i∈[M]}):

• Determine an index ind with tag(vki,Sigind). Parse Sigind = (Sig.KeyGen,
Sig.Sign,Sig.Verify). Set S′ = {Sig.Verifyi}i∈[M] to be the list of verification
algorithms in S.

• Compute σ ← Sig.Sign(ski,m).

• Compute (hkj , shkj) ← SPB.Gen(1λ, `, i) and hj ← SPB.Hash(hkj , R) for
j ∈ {0, 1}. Also, compute the proof τ ← SPB.Open(hk0, shk0, R, i).

• Compute (rhkj , rshkj)← SPB.Gen(1λ,M, ind) and rhj ← SPB.Hash(rhkj , S
′)

for j ∈ {0, 1}. Also, compute the proof ρ← SPB.Open(rhk0, rshk0, S
′, ind).

• Encrypt ct0 ← WE.Enc(1λ, x′, σ; rct) and ct1 ← WE.Enc(1λ, x′, 0), where
x′ = R.

• Set x = (m, ct0, ct1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1, x
′).

• Set w = (vk, i,Sig.Verifyind, ind, τ, ρ, σ, rct).

• Compute the proof π ← NIWI.Prove(x,w).

• Output Σ← (ct0, ct1, hk0, hk1, rhk0, rhk1, π).

16We assume again, that for all schemes, |Sig.Verify| is bounded by a polynomial b(λ).

34

Verify(Σ,m,R, S):

• Parse Σ = (ct0, ct1, hk0, hk1, rhk0, rhk1, π). Set S′ = {Sig.Verifyi}i∈[M] to
be the list of verification algorithms in S.

• Compute hj ← SPB.Hash(hkj , R) for j ∈ {0, 1}.

• Compute rhj ← SPB.Hash(rhkj , S
′) for j ∈ {0, 1}.

• Set x = (m, ct0, ct1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1, R).

• If 1← NIWI.Verify(x, π), output 1. Else, output 0.

Signature size. A signature for a message m under a ring R (of size `) and a
list of schemes S (of size M) is of the form Σ = (ct0, ct1, hk0, hk1, rhk0, rhk1, π).
We first analyze the size of the ciphertexts ct0, ct1. The circuit that verifies
the relation R′ of language L′ needs to have size at least O(` · poly(λ)) since
witnesses for this language are of that size. It is clear that the conditions can
be checked in a circuit of this size.

Moreover, a similar analysis as the one made for Construction 1 shows that
the total size of (hk0, hk1, rhk0, rhk1, π) is O((log ` + logM) · poly(λ)). We may
assume, that M ≤ ` because signature schemes that no corresponding key exists
for in R may be omitted without altering functionality.

We conclude that the signatures in this scheme have size O(` · poly(λ)).

6.2 Proofs

We now give the proofs of the security of the proposed scheme.

Theorem 8 (Correctness). The scheme presented in Construction 2 is correct,
given that NIWI is perfectly complete.

Proof. Let λ ∈ N, `,M = poly(λ), and Sig′ be a correct signature scheme. Let
further j ∈ [`], a messages m and a key pair honestly constructed by (vk, sk)←
Sig′.Gen(1λ) be given. Now, for R = (vk1, . . . , vk`) such that vkj = vk and
S = {Sigi}i∈[M] such that Sig′ ∈ S, we have to show

Pr
[
1← Verify

(
Sign(1λ, sk,m,R, j, S),m,R, S

)]
= 1

.
Clearly, the statement x in Verify

(
Sign(1λ, skj ,m,R, j, S),m,R, S

)
is iden-

tical to the statement in Sign(1λ, skj ,m,R, j, S). Therefore by the perfect com-
pleteness of NIWI, it remains to show that w = (vk, i,Sig.Verifyind, ind, τ, ρ, σ, rct)
was a valid witness. The case b = 0 in LOR is fulfilled by construction and cor-
rectness of Sig′ and SPB. Therefore, Verify outputs 1.

Theorem 9 (Unforgeability). Assume that Sigi is EUF-CMA, PRF is a pseudo-
random function, NIWI is perfectly sound and WE is correct. Then, the scheme
presented in Construction 2 is unforgeable.

35

To prove unforgeability, we first build a hybrid where the experiment com-
putes all verification keys, except for vki∗ , using randomness from a PRF (instead
of using truly random coins). Note that this change goes unnoticed given that
PRF is a PRF. Next, we build a reduction to the unforgeability of the underlying
signature scheme. The idea is similar to the proof of Theorem 6. Namely, the
goal of the reduction is to extract a valid signature from either ct0 or ct1. To
do this, note that the reduction is in possession of the key K such that vki is
created using random coins PRF(K, i), for all i 6= i∗ where vki∗ is the challenge
verification key. Then, by the correctness of the WE and the perfect soundness
of the NIWI, the reduction can use K to decrypt both ct0 and ct1. In the
end, there is a non-negligible probability that the reduction can extract a valid
signature under vki∗ , thus breaking the unforgeability of the signature scheme.

Proof. Let A be a PPT adversary against the unforgeability of URS. Consider
the following sequence of hybrids.

Hybrid H0. This is the real unforgeability experiment defined in Definition
32. In particular, all verification keys vki computed by the challenger are com-
puted honestly using Sig.KeyGeni. That is, (vki, ski)← Sig.KeyGen(1λ).

Hybrid H1. This hybrid is identical to the previous one except that the ex-
periment samples i∗←$ [`]. Let {i1, . . . , i`−1} = [`] \ {i∗}.

Note that this hybrid is identically distributed from the view of the adversary.

Hybrid H2,j. This hybrid is identical to the previous one, except that the
challenger sets the verification keys vkij to be computed using randomness com-
ing from a PRF. That is, the experiment samples K ←$ {0, 1}λ and computes
(vkij , skij) ← Sig.KeyGenindij

(1λ, rij) where rij ← PRF(K, ij). This hybrid is

defined for j = {1, . . . , `− 1}.

Claim 10. Assume that PRF is a PRF. Then, hybrids H1 and H2,`−1 are
indistinguishable.

Proof. We prove that hybrids H2,j−1 and H2,j are indistinguishable, for all
j ∈ {1, . . . , `− 1} and where H2,0 = H1.

Suppose that there is an adversary A that is able to distinguish hybrids
H2,j−1 and H2,j . Then, there is a reduction R that breaks the security of the
underlying PRF.

The reduction receives ν from the challenger and computes the key vkj by
(vkj , skj) ← Sig.KeyGenindij

(1λ; ν). For all i 6= j, the remaining vki are com-

puted as in hybrid H2,j−1. From now on, the reduction behaves exactly as in
H2,j−1.

Note that, if ν←$ {0, 1}β is a uniform string then the simulation is identical
to H2,j−1. On the other hand, if ν ← PRF(K, ij) for some K ←$ {0, 1}λ then
the simulation is identical to H2,j . Therefore, R outputs whatever A outputs
and gets the same advantage.

36

We now prove that we can reduce the hardness of unforgeability for the
scheme in Hybrid H2,`−1 to the EUF-CMA of the underlying signature scheme.

Let A be an adversary that wins in H2,`−1. We provide the description of
an adversary B that breaks the EUF-CMA of one of the underlying signature
schemes Sigindi∗ . Let C be the challenger of Definition 3.

1. B provides Ls = {Sigi}i∈[M] to A.

2. Upon receiving the indices {indi}i∈[`] from A, B guesses an index i∗ ← [`]

uniformly at random. It samples K ←$ {0, 1}λ. It creates (vki, ski) ←
Sig.KeyGenindi(1

λ; ri) for all i 6= i∗ where ri ← PRF(K, i) and sets vki∗ to
be a verification key under Sigindi∗ given by the challenger C for EUF-CMA
security of that scheme. B sends R = {vki}i∈[`] to A.

3. B simulates the oracles OCorrupt, URSign and OSign in the following way:

• OCorrupt(i): Whenever A sends a query i, B reveals ski if i 6= i∗.
Otherwise, it aborts the protocol;

• URSign(m, R̄, i, S̄): Whenever A sends a query (m, R̄, i, S̄), B pro-
ceeds as in the experiment, for i 6= i∗. If i = i∗, B checks whether
vki∗ ∈ R̄ and denotes its position as j∗. If additionally Sigindi∗ ∈ S̄, B
sends a query to C for message m and, upon receiving the signature
σ for m, it proceeds to compute a signature Σ as in the hybrid, using
σ instead of computing it itself.

• OSign(i,m): Whenever A sends a query (i,m) with i 6= i∗, B sends
σ ← Sig.Sign(ski,m). Otherwise, it sends a query m to C and, upon
receiving a signature σ, it outputs σ to A.

4. Upon receiving Σ∗ = (ct∗0, ct
∗
1, hk

∗
0, hk

∗
1, rhk

∗
0, rhk

∗
1, π
∗), plus m∗, R∗ and

S∗ from A, B decrypts σ∗0 ←WE.Dec(w′, ct∗0) and σ∗1 ←WE.Dec(w′, ct∗1),
using the witness w′ = ({Sigindi}i∈[`]\{i∗},K). Per our construction of the
keys, this is a valid witness. If 1← Sig.Verify(vki∗ ,m

∗, σ∗0), it outputs σ∗0 .
Else if 1← Sig.Verify(vki∗ ,m

∗, σ∗1), it outputs σ∗1 .

Note that the statement x′ is in L′, because B creates all verification keys
vki as (vki, ski)← Sig.KeyGenindi(1

λ, ri), where ri ← PRF(K, i) for all i 6= i∗. A
witness for x′ is thus exactly w′ = ({Sigindi}i∈[`]\{i∗},K).

Following a similar analysis as the one of Theorem 6, we conclude that B
succeeds in extracting a valid forge with probability at least 1

`2 Pr
[
1← ExpURSUnf

]
.

Remark also that B only takes polynomial time to output a valid forge, given
that A runs in polynomial time. This concludes the proof of the theorem.

Theorem 10 (t-Anonymity). Assume that NIWI is witness-indistinguishable,
SPB is index hiding and WE is soundness secure. Then the scheme presented
in Construction 2 is t-anonymous where t = (λ − ω(log λ))/q and q is a lower
bound of the min-entropy of verification keys in the ring.

37

The proof of the theorem is similar to the proof of Theorem 7. However,
now we would like to use the security of the WE to replace ct1 by an encryption
of a valid signature under one key (and then replace back by an encryption of
0). To do this, we note that (unlike the unforgeability security proof described
above) all verification keys in K are computed using truly random coins. The
challenge ring given by the adversary must include at least t of these keys.
A simple information-theoretical argument states that there is only a negligible
probability that there is a PRF key K such that t−1 of these honestly generated
verification keys are malformed. This is because they are sampled independently
and thus it is unlikely that they are correlated via a PRF key. Hence, we can
conclude that `−1 verification keys in the adversary’s ring are not created using
random coins PRF(K, i), except with negligible probability. In other words,
there is a negligible probability that x′ ∈ L′. We can thus use the security of
the WE to safely replace encryptions of signatures and encryptions of 0. That
is, we switch out the encrypted signature in ct0 from one under one challenge
key to a signature under another one.

Proof. Let Ls = {Sigi}i∈[M] be a list of unforgeable signature schemes. In
the following we will only modify our response to A after they made their
challenge query. That means, we have already received indices {indi}i∈` from A
and provided them with a ring R of verification keys and respective random
coins. Let now (m∗, R∗ = (vk′1, . . . , vk

′
p), S

∗ = (Sig′1, . . . ,Sig
′
q), (jk)k∈[t]) be

the challenge query of A in the game of definition 33. Let j0 = jk for any
k ∈ {2, 3, . . . , t}. We show that the encryptions using vk′j0 and vk′j1 are not
distinguishable. Let i0, i1 be the indices for these challenge keys in K, that is
vki0 = vk′j0 , vki1 = vk′j1 in R∗ and by ind′0, ind

′
1 the indices of their corresponding

signature verification schemes in S∗. The proof of the theorem follows from the
following sequence of hybrids.

Hybrid H0. This is the real anonymity experiment defined in Definition 33
where the key at index j0 is used in encryption. That is, the challenger outputs
Σ∗ = (ct0, ct1, hk0, hk1, rhk0, rhk1, π) where

σ0 ← Sig.Signindi0 (ski0 ,m
∗)

ct0 ←WE.Enc(1λ, x′, σ0; rct)

ct1 ←WE.Enc(1λ, x′, 0)

π ← NIWI.Prove(x,w0)

where x = (m, ct0, ct1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1, R
∗), x′ = R∗ and

w0 = (vk, j0,Sig.Verifyindi0 , ind
′
0, τ, ρ, σ0, rct).

Hybrid H1. This hybrid is identical to the previous one, except that the chal-
lenger sets (hk1, shk1)← SPB.Gen(1λ, |R∗|, j1). Additionally, it computes τ ′ ←
SPB.Open(hk1, shk1, R

∗, j1). Also, it sets (rhk1, rshk1)← SPB.Gen(1λ, |S′|, ind′1).
Additionally, it computes ρ′ ← SPB.Open(rhk1, rshk1, S

′, ind′1).

38

Claim 11. Assume that SPB is index hiding. Then hybrids H0 and H1 are
indistinguishable.

The proof of the claim is identical to the proof of Claim 1.

Hybrid H2. This hybrid is identical to the previous, except that the challenger
computes σ1 ← Sig.Signindi1 (ski1 ,m

∗) and sets ct1 ←WE.Enc(1λ, x′, σ1; r′ct).

Claim 12. Assume that WE is soundness secure. Then hybrids H1 and H2 are
indistinguishable.

Proof. First, note that all verification keys vki given to the adversary A are
generated as (vki, ski) ← Sig.KeyGenindi(1

λ; ri) where ri←$ {0, 1}λ (here we
explicitly input random coins ri into the key generation algorithm).

We claim that, if each ri←$ {0, 1}λ, then x′ /∈ L′ except with negligible
probability. To prove this, we show that if vki ← Sig.Gen(1λ, ri) for ri←$ {0, 1}λ
then there is a negligible probability that there exists a PRF key K such that
vk′i ← Sig.Gen(1λ,PRF(K, i)) and vki = vk′i for at least t− 1 keys.

Assume that the min-entropy of each verification key is at least q bits, that is,
H∞(vki) ≥ q. Since each vki is independently sampled then H∞(vk1, . . . , vkt−1) ≥
(t−1)q. On the other hand, the number of t−1 tuples (vk′1, . . . , vk

′
t−1) such that

each vk′i is created using vk′i ← Sig.Gen(1λ,PRF(K, i)) is 2λ. This is because of
two reasons: i) once we choose the PRF key K ∈ {0, 1}λ, the verification keys
vk′i are fixed; and ii) the number of different PRF keys is 2λ.

We now compute the probability that (vk1, . . . , vkt−1) = (vk′1, . . . , vk
′
t−1)

where vk′i ← Sig.Gen(1λ,PRF(K, i)) for some K ∈ {0, 1}λ.
Since H∞(vk1, . . . , vkt−1) ≥ (t−1)q, then Pr [(vk1, . . . , vkt−1) = (α1, . . . , αt−1)] ≤
2−(t−1)q, for any tuple (α1, . . . , αt−1) in the range of Sig.Gen, by the definition
of min-entropy. Hence,

Pr

[
(vk1, . . . , vkt−1) =
(vk′1, . . . , vk

′
t−1)

:
vk′i ← Sig.Gen(1λ,PRF(K, i))

for some K ∈ {0, 1}λ
]
≤ 2λ

1

2(t−1)q

= 2λ−(t−1)q

where the first inequality is obtained by applying a union bound over the number
of possible different PRF keys. Setting t ≥ (λ + ω(log λ))/q + 1, we get that
the probability above is negligible in λ. Hence x′ /∈ L except with negligible
probability.

Now, since x′ /∈ L′ and given an adversary that distinguishes both games,
we can easily build a reduction R that breaks the soundness security of the
underlying WE. The reduction simply sets m0 = 0 and m1 = σ1 as the messages
to be sent to the challenger of the soundness security of WE. Upon receiving
a ciphertext ct from the challenger, it sets ct1 = ct in an otherwise perfect
simulation of H0. If b = 0 (in the soundness security game), then the game
played by A is identical to H0, otherwise it is identical to H1. Therefore, R
outputs whatever A outputs and gets the same advantage.

39

Hybrid H3. This hybrid is identical to the previous one, except that the chal-
lenger computes π ← NIWI.Prove(x,w1) where w1 = (vki1 , j1,Sig.Verifyindi1 , ind

′
1,

τ ′, ρ′, σ1, r
′
ct).

Claim 13. Assume that NIWI is witness indistinguishable. Then hybrids H2

and H3 are indistinguishable.

The proof of the claim is identical to the proof of Claim 4.

Hybrid H4. This hybrid is identical to the previous, except that the challenger
computes σ′1 ← Sig.Signindi1 (ski1 ,m

∗) and sets ct0 ←WE.Enc(1λ, x′, σ′1; r′′ct).

Claim 14. Assume that WE is soundness secure. Then hybrids H3 and H4 are
indistinguishable.

The proof of the claim is identical to the proof of Claim 12.

Hybrid H5. This hybrid is identical to the previous one, except that the chal-
lenger sets (hk0, shk0)← SPB.Gen(1λ, |R∗|, j1). It computes τ ← SPB.Open(hk0,
shk0, R

∗, j1). Also, it computes (rhk0, rshk0) ← SPB.Gen(1λ, |S′|, ind′1) and
ρ← SPB.Open(rhk0, rshk0, S

′, ind′1).

Claim 15. Assume that SPB is index hiding. Then hybrids H4 and H5 are
indistinguishable.

The proof of the claim is identical to the proof of Claim 1.

Hybrid H6. This hybrid is identical to the previous one except that the chal-
lenger sets π ← NIWI.Prove(x,w2) for w2 = (vki1 , j1,Sig.Verifyindi1 , ind

′
1, τ, ρ, σ

′
1, r
′′
ct).

Claim 16. Assume that NIWI is witness indistinguishable. Then hybrids H5

and H6 are indistinguishable.

The proof of the claim is identical to the proof of Claim 4.

Hybrid H7. This hybrid is identical to the previous one except that the chal-
lenger sets ct1 ←WE.Enc(1λ, x′, 0).

Claim 17. Assume that WE is soundness secure. Then hybrids H6 and H7 are
indistinguishable.

The proof of the claim is identical to the proof of Claim 12.
This hybrid is identical to the real anonymity experiment of Definition 33

where the key at index j1 is used in encryption. This concludes the proof of the
theorem.

40

7 Compact Witness Encryption for Threshold
Conjunction Languages

In this section we present a WE scheme that is compact for threshold conjunc-
tion languages. We first define the notion of threshold conjunction languages.

Definition 34 (Threshold Conjunction Languages). Let L be an NP language,
with relation R. We define a (t,N)-threshold conjunction language L′ as follows

L′ =
{

(x1, . . . , xN) : ∃{ij}j∈[t] ∈ [N] s.t. xij ∈ L
}
.

In other words, an accepting instance (x1, . . . , xN) of L′ is one such that
there are at least t accepting instances xij .

7.1 Construction from Indistinguishability Obfuscation

We now describe our WE scheme for any (t,N)-threshold conjunction language
L′. The protocol achieves compact ciphertexts, i.e., of size O(logN), when
N − t ∈ O(logN).

Construction 3. Let N ∈ poly(λ) and t be such that N − t ∈ O(logN) and L
be an NP language. Let

• LSS be a (t,N)-LSS scheme. In the following, we assume that shares can
be written as strings in {0, 1}λ.

• WE be a (non-compact) WE scheme for language L.

• iO be an obfuscator for all circuits.

• PPRF be a puncturable PRF.

• SSB be an SSB hashing scheme.

Additionally, consider the following circuit C[λ, hk, h, k0, k1, t, N] which has the
values λ, hk, h, k0, k1, t and N hardwired.

C[λ, hk, h, k0, k1, t, N](i, τi, xi) :

• If 0← SSB.Verify(hk, h, i, xi, τi) or i ≥ t, return ⊥.

• Compute si ← PPRF.Eval(k0, i) and random coins ri ← PPRF.Eval(k1, i).

• Compute cti ←WE.Enc(1λ, xi, si; ri). Output cti.

We now define the WE scheme for the (t,N)-conjunction language L′.

41

Enc(1λ, x,m) :

• Parse x = (x1, . . . , xN).

• Create PPRF keys k0 ← PPRF.KeyGen(1λ) and k1 ← PPRF.KeyGen(1λ).

• For i ∈ [t−1], compute pseudorandom shares si ← PPRF(k0, i). Compute
the remaining shares (st, . . . , sN)← LSS.RemainShare(m, s1, . . . , st−1).

• Compute hk ← SSB.Gen(1λ, t − 1, j) for j←$ [t − 1]. Moreover, compute
h← SSB.Hash(hk, {x1, . . . , xt−1}).

• Consider the circuit C = C[λ, hk, h, k0, k1, t, N]. Compute C̄ ← iO(1λ, C).

• For i ∈ {t, . . . , N}, compute encryptions cti ←WE.Enc(1λ, xi, si).

• Output ct = ({cti}i∈{t,...,N}, C̄, hk).

Dec(w, ct) :

• Parse w = (wi1 , . . . , wit) and ct as ({cti}i∈{t,...,N}, C̄, hk)

• For i ∈ [t − 1], compute τi ← SSB.Open(hk, {x1, . . . , xt−1}, i) and run
cti ← C̄(i, τi, xi).

• For j ∈ [t], decrypt sij ←WE.Dec(wij , ctij).

• Reconstruct m← LSS.Reconstruct(si1 , . . . , sit). Output m.

Ciphertext size. The ciphertext is of the form ({cti}i∈{t,...,N}, C̄, hk). As-
sume that the language L has a verification circuit CL.

The ciphertexts cti for i ∈ {t, . . . , N} have size O(|CL| · poly(λ)). Since
N − t ∈ O(log(N)), then the size of {cti}i∈{t,...,N} is O(log(N) · |CL| · poly(λ)).

The obfuscated circuit C implements the SSB.Verify algorithm which is of
size O(log(N)). Moreover, all other operations in C are independent of N and
depend only on |CL|. Hence, |C| ∈ O(log(N) · |CL| · poly(λ)).

Finally, the hashing key hk is of sizeO(log(N)) by the efficiency requirements
of SSB.

We conclude that the scheme presented above outputs ciphertexts of size
O(log(N) · |CL| · poly(λ)).

7.2 Proofs

We now prove that the scheme is correct and soundness secure.

Theorem 11 (Correctness). The scheme presented in Construction 3 is correct,
given that LSS, SSB and WE are correct.

42

Proof. Assume that x = (x1, . . . , xN) ∈ L. That is, there exists indices i1, . . . , it
such that xij ∈ Lij . Let wi1 , . . . , wit be the corresponding witnesses.

First, note that for all i ∈ [t] and by the correctness of the SSB hash-
ing scheme, the circuit C[λ, hk, h, k0, k1, t, N](i, τi, xi) always outputs cti ←
WE.Enc(1λ, xi, si) since 1← SSB.Verify(hk, h, i, xi, τi) for hk← SSB.Gen(1λ, t−
1, j) (for j←$ [t− 1]), h← SSB.Hash(hk, {x1, . . . , xt−1} and τi ← SSB.Open(hk,
{x1, . . . , xt−1}, i).

Moreover, sij ← WE.Dec(wij , ctij) holds by the correctness of the WE
scheme, giving us access to t of N shares. Finally, the correctness of the LSS
scheme implies that we succesfully extract m← LSS.Reconstruct(si1 , . . . sit).

Theorem 12 (Soundness security). The scheme presented in Construction 3 is
soundness secure given that SSB is index hiding and somewhere statistically
binding, iO is a secure iO obfuscator, PPRF is pseudorandom at punctured
points, WE is soundness secure and LSS is private.

Before presenting the formal proof, we give a brief outline of it. The proof
follows a sequence of hybrids, where the last one can be reduced to the privacy
of the LSS. First, note that if x /∈ L′, then there do not exist t instances xi ∈ L.
Assume, for simplicity that t = N , then there exists an index i∗ such that
xi∗ /∈ L. We start with a hybrid that is identical to the real soundness security
game.

Then, we use the index hiding of the SSB hashing scheme to replace hk by a
hashing key that is binding to index i∗. We then use the puncturing technique
of [SW14]. That is, we create punctured PRF keys k′0 and k′1 (by puncturing
the PPRF keys k0 and k1 respectively) at the point i∗. At the same time, we
embed into the obfuscated circuit the ciphertext cti∗ ←WE.Enc(1λ, xi∗ , si∗ ; ri∗)
where si∗ ← PPRF.Eval(k0, i

∗) and ri∗ ← PPRF.Eval(k1, i
∗). Given that the

SSB is somewhere statistically binding at the point i∗, the circuits are func-
tionally equivalent and we can use the security of the iO obfuscator to argue
indistinguishability. We can now replace the values si∗ , ri∗ by uniform ones
since the PPRF is pseudorandom at punctured points. Finally, we replace cti∗
by an encryption of 0. To conclude the proof, we can easily build a reduction
to the security of the LSS.

In the more general case, some WE encryptions with respect to false state-
ments are computed using the obfuscated program and some of them are given
in the plain. For the former ones, we simply repeat the process above. For
the latter ones, we use the security of the WE to replace these encryptions by
encryptions of 0.

Proof. Assume that x /∈ L′. That is, there exists xij /∈ L for j ∈ [N − t + 1]
(where N − t + 1 ∈ log(N)). Let δ ∈ [N] be such that i1, . . . , iδ ≤ t − 1 <
iδ+1, . . . , iN−t+1. The proof of the theorem follows from the following sequence

43

of hybrids:

H0 ≈ H1,1 ≈ · · · ≈ H1,5

≈ H2,1 ≈ · · · ≈ H2,5

...

≈ Hδ,1 ≈ · · · ≈ Hδ,5
≈ Hδ+1,1 ≈ · · · ≈ Hδ+1,N−t+1−δ

where ≈ denotes that the games are computationally indistinguishable. The
first hybrid H0 denotes the real soundness security experiment of Definition 21.
The last hybrid can be reduced to the privacy of the underlying LSS.

Hybrid H0. This is the real soundness security game as defined in Definition
21.

Hybrid Hj,1. This hybrid is identical to the previous one, if j=1, and identical
to Hj−1,5 otherwise, except that the challenger sets hk← SSB.Gen(1λ, t− 1, ij)
if ij ≤ t− 1. This hybrid is defined for j = 1, . . . , δ.

Claim 18. Assume that SSB is index hiding. Then hybrids Hj−1,0 and Hj,1
are indistinguishable, for j ∈ {1, . . . , δ} where H0,0 = H0 and Hj−1,0 = Hj−1,5
(defined below).

The proof of the claim is similar to the proof of Claim 1.

Hybrid Hj,2. This hybrid is identical to the previous one except that, if
ij ≤ t − 1, the challenger computes the keys k′0 ← PPRF.KeyGen(1λ) and
k′1 ← PPRF.KeyGen(1λ), the punctured keys kij ← PPRF.Puncture(k′0, S) and
k′ij ← PPRF.Puncture(k′1, S) where S = {i1, . . . , ij}, and sets k0 = kij and

k1 = k′ij . Moreover, it computes ctij ← WE.Enc(1λ, xij , sij ; rij) where sij ←
PPRF.Eval(k′0, ij) and rij ← PPRF.Eval(k′1, ij).

Additionally, the challenger modifies

C = C[λ, hk, h, k0, k1, t, N, cti1 , . . . , ctij−1]

to a circuit
D = D[λ, hk, h, k0, k1, t, N, cti1 , . . . , ctij−1 , ctij]

that behaves exactly as C except on input (i, τi, xi) with i = ij . In this case,
the circuit D first checks if 1 ← SSB.Verify(hk, h, i, xi, τi) and, if so, it outputs
ctij that is hardwired.

This hybrid is defined for j = 1, . . . , δ.

Claim 19. Assume that iO is a secure iO obfuscator for all circuits and SSB is
somewhere statistically binding. Then hybrids Hj,1 and Hj,2 are indistinguish-
able for j = {1, . . . , δ}.

44

Proof. Given an adversary A′ that is able to distinguish both hybrids, we can
build a reduction R that breaks the security of the underlying iO scheme.

To see this, first observe that the circuits C and D are functionally equivalent.
That is, for every input (i, τi, xi), we claim that

C(i, τi, xi) = D(i, τi, xi).

This fact can be established by noting that the only possible inputs where C
and D could differ are of the form (ij , ·, ·). However, by the statistically binding
property of SSB (which is binding at position ij) we have that there exists only
one possible form of inputs (ij , ·, ·) that output something different then ⊥,
which - for both circuits - is (ij , τij , xij) for a verifying proof τij .

For this type of input D outputs the hardwired ciphertext ctij ←WE.Enc(1λ,
xij , sij ; rij), where sij ← PPRF.Eval(k′0, ij) and rij ← PPRF.Eval(k′1, ij). This
coincides with the output of C by definition.

We now describe the reduction R against security of iO. The reduction R
chooses

C = C[λ, hk, h, k0, k1, t, N, cti1 , . . . , ctij−1]

and
D = D[λ, hk, h, k0, k1, t, N, cti1 , . . . , ctij−1 , ctij]

as challenge circuits. Upon receiving the obfuscated circuit C̄ from the chal-
lenger, R simply outputs the ciphertext ct = ({cti}i∈{t,...,N}, C̄, hk) (where all
other values are computed as in hybrid Hj,1).

Remark that, if C̄ ← iO(1λ, C), then the game is identical to Hj,1. Else if
C̄ ← iO(1λ,D) the game is identical to Hj,2. The reduction outputs the same
as A and has the same advantage.

Hybrid Hj,3. This hybrid is identical to the previous one except that, if ij ≤
t − 1, the challenger samples rij ←$ {0, 1}λ.17 This hybrid is defined for j =
1, . . . , δ.

Claim 20. Assume that PPRF is pseudorandom at punctured points. Then
hybrids Hj,2 and Hj,3 are indistinguishable.

Proof. Let A′ be an adversary that distinguishes both hybrids. We build a
reduction R that breaks the pseudorandomness at punctured points of the un-
derlying PPRF.

The reduction works as follows: It sends S = {i1, . . . , ij} to the PPRF chal-
lenger. Upon receiving kS and the challenge T = {y1, . . . , yj}, the reduction
behaves exactly as in hybrid Hj,2 except that it sets k1 = kS and rij = yj .
Observe that, if yj ← PPRF.Eval(k, ij) then the simulated game is identical
to Hj,2. Else if y is uniformly chosen, then the simulated game is identical to

17Note that we are puncturing the PPRF on at most N − t+ 1 ∈ O(logN) points. So the
size of the punctured key is O(logN · poly(λ)). This means that the size of the ciphertext of
our WE scheme does not exceed O(logN · poly(λ)).

45

Hj,3. We output whatever A outputs and conclude that R breaks the pseudo-
randomness at punctured points with exactly the same advantage that A has
in distinguishing the hybrids.

Hybrid Hj,4. This hybrid is identical to the previous one except that, if ij ≤
t − 1, the challenger samples sij ←$ {0, 1}λ. This hybrid is defined for j =
1, . . . , δ.

Claim 21. Assume that PPRF is pseudorandom at punctured points. Then
hybrids Hj,3 and Hj,4 are indistinguishable.

The claim follows by a similar argument as the one of Claim 20

Hybrid Hj,5. This hybrid is identical to the previous one except that, if ij ≤
t− 1, the challenger computes ctij as ctij ← WE.Enc(1λ, xij , 0). This hybrid is
defined for j = 1, . . . , δ.

Claim 22. Assume that WE is soundness secure and xij /∈ L. Then hybrids
Hj,4 and Hj,5 are indistinguishable.

Proof. Let A be an adversary that is able to distinguish both hybrids. We build
a reduction R that breaks the soundness security of the underlying WE scheme.

The reduction simply sends the challenge messages m0 = sij and m1 = 0.
Upon receiving ct from the challenge, R behaves exactly as in hybrid Hj,4
except that it sets ctij = ct. Note that if ct ← WE.Enc(1λ, xij , sij) then the
game is identical to Hj,4, whereas if ct ← WE.Enc(1λ, xij , 0) then the game is
identical toHj,5. We output whateverA outputs and conclude thatR breaks the
soundness security with exactly the same advantage that A has in distinguishing
the hybrids.

Hybrid Hδ+1,j. This hybrid is identical to Hδ,5 for j = 1 and identical to
Hδ+1,j−1 otherwise, except that, if t − 1 < iδ+j ≤ N , the challenger computes
ctij+δ as ctij+δ ←WE.Enc(1λ, xij+δ , 0). This hybrid is defined for j = 1, . . . , N−
t+ 1− δ.

Claim 23. Assume that WE is soundness secure. Then hybrids Hδ+1,j−1 and
Hδ+1,j are indistinguishable, for j = 1, . . . , N − t+ 1− δ where Hδ+1,0 = Hδ,5.

The claim follows by a similar argument as the one of Claim 22.
We finally show that the advantage of the adversary is negligible given that

the LSS is private.

Claim 24. Assume that LSS is private. Then the advantage of A in hybrid
Hδ+1,N−t+1−δ is negligible.

Proof. Let A be an adversary that breaks the soundness security of our scheme
in hybrid Hδ+1,N−t+1−δ. We show that there is a reduction R that uses A and
breaks the privacy of LSS. A starts by sending (m0,m1), which R redirects
to the LSS challenger. R receives (s̄i∗1 , . . . , s̄i∗t−1

). It sets si∗j = s̄i∗j for all

46

i∗j ∈ [N]\{i1, . . . , iN−t+1}. Then, it behaves exactly as in hybrid Hδ+1,N−t+1−δ.
Upon receiving a bit b′′ from A, R outputs b′′.

Note that the game is identical to the game in Hδ+1,N−t+1−δ with challenge
bit b′ = b where b is the bit of the LSS game. Hence, R has the same advantage
as A.

This concludes the proof of the theorem.

7.3 Construction from Indistinguishability Obfuscation with
Polynomial Security Loss

Let C : {0, 1}ζ → {0, 1}ν be a circuit. It is well-known that current construc-
tions of iO incur a security loss of 2ζ . Hence, when we obfuscate circuits with
a domain of exponential size (in the security parameter) then the resulting ob-
fuscation incurs an exponential security loss (e.g., [AJ15, BV15, BGL+15]). We
note that this fact may be an artifact of known iO constructions and that our
construction from the previous section enjoys a polynomial security reduction
to an iO scheme.

Nevertheless, with the goal of avoiding the exponential security loss caused
by known iO constructions, we build a scheme using iO for a TM with only a
polynomially-size domain. We therefore incur only a polynomial security loss.

Let M be a family of TMs and siO(1λ,M) be a PPT algorithm that takes
as input a security parameter and a TM M, and outputs an obfuscated TM
M̄. The algorithm siO is called a succinct iO obfuscator for a family of TMs
M if it is correct, secure and succinct. Correctness and security are defined in
a similar fashion as in definitions 22 and 23.

Definition 35 (Succinctness). Let M be a TM that runs in time t. We say
that a succinct iO obfuscator siO is succinct if the running time of siO(1λ,M)
(and the size of its output, that is, the size of the obfuscated TM) is bounded by
poly(λ, |M|, log t).

We additionally require that both TM M and M̄ have access to a public
read-only tape tpp. That is, tpp is not part of the description of M nor of

M̄ but both TMs can make read operations of the tape. We write Mtpp to
denote a TM with access to tpp and we write xi ← Retrieve(tpp, i) to denote
the operation that M performs to retrieve the i-th block of tpp. Note that
the scheme of [GS18] allows for such TMs, which access the public tape tpp
via a laconic oblivious transfer (LOT) [CDG+17]. The hash value for the LOT
scheme is hardwired on M. Moreover, the resulting obfuscated TM has size
logarithmic in the size of the public tape tpp.

For TMs of polynomially-sized domains, the transformation of [BGL+15]
incurs only a polynomial security loss starting from the scheme of [GS18].

Lemma 1 ([BGL+15, GS18]). The scheme of [GS18], when applied to a TM
with domain of polynomial size incurs only a polynomial security loss in the
security reduction.

47

Remark 1. We remark that WE can be built from iO in a straightforward way
[GGH+13]. Hence, if iO for TM with polynomially-size domains can be built
while incurring only in a polynomial security loss in the security reduction, then
the same holds for WE if the input size on the encryption algorithm is only of
polynomial size. We will use this fact in the construction below.

Construction 4. Let N ∈ poly(λ) and t be such that N − t ∈ O(logN) and L
be a NP language. Let

• LSS = be a (t,N)-LSS scheme. In the following, we assume that shares
can be written as strings in {0, 1}λ.

• WE be a (non-compact) WE scheme for language L.

• siO be a succinct obfuscator for all TMs that can read from a public tape tpp
via a Retrieve algorithm (this can be done via a LOT scheme as described
above).

• PPRF be a puncturable PRF.

Additionally, consider the following TM Mtpp [λ, k0, k1, t, N] which has the val-
ues λ, k0, k1, t and N hardwired and accesses a public tape tpp.

Mtpp [λ, k0, k1, t, N](i ∈ [N]) :

• If i ≥ t, abort the computation.

• Retrieve xi ← Retrieve(tpp, i).

• Compute si ← PPRF.Eval(k0, i) and random coins ri ← PPRF.Eval(k1, i).

• Compute cti ←WE.Enc(1λ, xi, si; ri). Output cti.

We now define the WE scheme for the (t,N)-conjunction language L′.

Enc(1λ, x,m) :

• Parse x = (x1, . . . , xN).

• Create PPRF keys k0 ← PPRF.KeyGen(1λ) and k1 ← PPRF.KeyGen(1λ).

• For i ∈ [t− 1], compute pseudorandom shares si ← PPRF(k, i). Compute
the remaining shares (st, . . . , sN)← LSS.RemainShare(m, s1, . . . , st−1).

• Consider the TM Mtpp =Mtpp [λ, k0, k1, t, N] with the tape tpp initialized

to (x1, . . . , xt−1). Compute M̄tpp ← siO(1λ,Mtpp).

• For i ∈ {t, . . . , N}, compute encryptions cti ←WE.Enc(1λ, xi, si).

• Output ct = ({cti}i∈{t,...,N},M̄tpp).

48

Dec(w, ct) :

• Parse w = (wi1 , . . . , wit) and ct as ({cti}i∈{t,...,N},M̄tpp). Initialize the
tape tpp = (x1, . . . , xt−1).

• For i ∈ [t− 1], run cti ← M̄tpp(i).

• For j ∈ [t], decrypt sij ←WE.Dec(wij , ctij).

• Reconstruct m← LSS.Reconstruct(si1 , . . . , sit). Output m.

Ciphertext size. The ciphertext is of the form ct = ({cti}i∈{t,...,N},M̄tpp).
Assume that the language L has a verification circuit CL.

The ciphertexts cti for i ∈ {t, . . . , N} have size O(|CL| · poly(λ)). Since
N − t ∈ O(logN), the size of {cti}i∈{t,...,N} is O(log(N) · |CL| · poly(λ)).

Moreover, the obfuscated TM M̄tpp is of size O(log(N) · |CL| · poly(λ)) since
the tape tpp is of size O(N).

Therefore, the total size of the ciphertext is O(log(N) · |CL| · poly(λ)).

7.4 Proofs

We now prove that the scheme is correct and soundness secure.

Theorem 13 (Correctness). The scheme presented in Construction 4 is correct,
given that LSS and WE are correct.

The proof is similar to the proof of Theorem 11.

Theorem 14 (Soundness security). The scheme presented in Construction 4
is soundness secure given that siO is a secure succinct iO obfuscator, PPRF is
pseudorandom at punctured points, WE is soundness secure and LSS is private.

The proof of the Theorem follows the same outline as the proof of Theorem
12.

Proof. As in the proof of Theorem 12, assume that x /∈ L′. That is, there exists
xij /∈ L for j ∈ [N − t+ 1] (where N − t+ 1 ∈ log(N)). Let δ ∈ [N] be such that
i1, . . . , iδ ≤ t− 1. The proof of the theorem follows from the following sequence
of hybrids:

H0 ≈ H1,1 ≈ · · · ≈ H1,4

≈ H2,1 ≈ · · · ≈ H2,4

...

≈ Hδ,1 ≈ · · · ≈ Hδ,4
≈ Hδ+1,1 ≈ · · · ≈ Hδ+1,N−t+1−δ

where ≈ denotes that the games are computationally indistinguishable. The
first hybrid H0 denotes the real soundness security experiment of Definition 21.
The last hybrid can be reduced to the privacy of the underlying LSS.

49

Hybrid H0. This is the real soundness security game as defined in Definition
21.

Hybrid Hj,1. This hybrid is identical to the previous one18 except that, if
ij ≤ t − 1, the challenger computes the keys k′0 ← PPRF.KeyGen(1λ) and
k′1 ← PPRF.KeyGen(1λ), the punctured keys kij ← PPRF.Puncture(k′0, S) and
k′ij ← PPRF.Puncture(k′1, S) where S = {i1, . . . , ij}, and sets k0 = kij and

k1 = k′ij . Moreover, it computes ctij ← WE.Enc(1λ, xij , sij ; rij) where sij ←
PPRF.Eval(k′0, ij) and rij ← PPRF.Eval(k′1, ij).

Additionally, the challenger modifiesMtpp =Mtpp [λ, k0, k1, t, N, cti1 , . . . , ctij−1
](i)

to a TM Dtpp = Dtpp [λ, k0, k1, t, N, cti1 , . . . , ctij−1
, ctij] that behaves exactly as

Mtpp except when i = ij . In this case, the TM D outputs ctij that is hardwired.
This hybrid is defined for j = 1, . . . , δ.

Claim 25. Assume that siO is a secure succinct iO obfuscator for all TM (with
access to a public tape tpp). Then hybrids Hj,0 and Hj,1 are indistinguishable
for j = {1, . . . , δ} where H0,0 = H0 and Hj−1,0 = Hj−1,4 (defined below).

The proof of the claim is identical to the proof of Claim 19.

Hybrid Hj,2. This hybrid is identical to the previous one except that, if ij ≤
t − 1, the challenger samples rij ←$ {0, 1}λ.19 This hybrid is defined for j =
{1, . . . , δ}.

Claim 26. Assume that PPRF is pseudorandom at punctured points. Then
hybrids Hj,1 and Hj,2 are indistinguishable.

The proof of the claim is identical to the proof of Claim 20.

Hybrid Hj,3. This hybrid is identical to the previous one except that, if ij ≤
t − 1, the challenger samples sij ←$ {0, 1}λ. This hybrid is defined for j =
{1, . . . , δ}.

Claim 27. Assume that PPRF is pseudorandom at punctured points. Then
hybrids Hj,2 and Hj,3 are indistinguishable.

The claim follows by a similar argument as in the proof of Claim 20

Hybrid Hj,4. This hybrid is identical to the previous one except that, if ij ≤
t− 1, the challenger computes ctij as ctij ← WE.Enc(1λ, xij , 0). This hybrid is
defined for j = {1, . . . , δ}.

Claim 28. Assume that WE is soundness secure and xij /∈ L. Then hybrids
Hj,3 and Hj,4 are indistinguishable.

18The previous hybrid is H0 for H1,1 and Hj−1,4 otherwise.
19Note that we are puncturing the PPRF on at most N − t+ 1 ∈ O(logN) points. So the

size of the punctured key is O(logNpoly(λ)). This means that the size of the ciphertext of
our WE scheme does not exceed O(logNpoly(λ)).

50

The claim follows by a similar argument as the one of Claim 22.

Hybrid Hδ+1,j. This hybrid is identical to Hδ,4 for j = 0 and identical to
Hδ+1,j−1 otherwise, except that, if t − 1 < iδ+j ≤ N , the challenger com-
putes ctij+δ as ctij+δ ← WE.Enc(1λ, xij+δ , 0). This hybrid is defined for j =
{1, . . . , N − t+ 1− δ}.

Claim 29. Assume that WE is soundness secure. Then hybrids Hδ+1,j−1 and
Hδ+1,j are indistinguishable, for j = {1, . . . , N−t+1−δ} where Hδ+1,0 = Hδ,4.

The claim follows by a similar argument as the one of Claim 22.
We finally show that the advantage of the adversary is negligible given that

the LSS is private.

Claim 30. Assume that LSS is private. Then the advantage of A in hybrid
Hδ+1,N−t+1−δ is negligible.

The proof of the claim follows a similar argument to the proof of Claim 24.
This concludes the proof of the theorem.

7.5 Compact Universal Ring Signature from Compact WE
for Threshold Conjunction Languages

Consider again the URS construction of Section 6. One of the requirements
of this URS scheme is a (non-compact) WE for a language L′ which is itself
a (N − 1, N) -threshold conjunction language. When we plug the WE scheme
for (t,N)-threshold conjunction languages as a drop in replacement for non-
compact WE, we obtain a compact URS scheme.

Specifically, the following theorem is a direct consequence of plugging the
compact WE scheme for (t,N)-threshold conjunction languages described above
with the URS signature from Section 6.

Theorem 15. Let

• PRG : {0, 1}λ/2 → {0, 1}λ be a PRG.

• L′ be the (`− 1, `) threshold conjunction language defined in Construction
2.

• WE be a compact witness encryption scheme for the (` − 1, `) threshold
conjunction language L′. As we have just established, this primitive can
be built from secure iO, (`− 1, `)-LSS, (non-compact) WE for NP, PPRF
and SSB.

• SPB be a SPB hashing scheme;

• L and LOR be the languages defined in Construction 2.

• NIWI be a NIWI scheme for LOR.

51

Then there exists a URS scheme that satisfies correctness, anonymity and un-
forgeability. Moreover, a signature Σ with respect to a ring of users R and a ring
of signature schemes S has size |Σ| ∈ O((log ` + logM)poly(λ)) where ` = |R|
and M = |S|.

Proof. The construction is the same as the one of Construction 2 where the
standard WE scheme is replaced by our new compact WE scheme for (`− 1, `)
threshold conjunction languages of Construction 3.

The size of the signature in the Construction 2 is dominated by the size
of the non-compact WE ciphertexts. By replacing it by the compact WE for
threshold conjunction languages, it is easy to see that the resulting signature
has size O((log `+ logM)poly(λ)).

The properties of correctness, unforgeability and anonymity can be estab-
lished using the same arguments as the ones of theorems 8, 9 and 10.

Acknowledgments

Pedro Branco: Part of this work was done while at IST University of Lisbon.
Nico Döttling: Funded by the European Union. Views and opinions ex-

pressed are however those of the author(s) only and do not necessarily reflect
those of the European Union or the European Research Council. Neither the
European Union nor the granting authority can be held responsible for them.
(ERC-2021-STG 101041207 LACONIC)

References

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability ob-
fuscation from compact functional encryption. In Rosario Gennaro
and Matthew J. B. Robshaw, editors, Advances in Cryptology –
CRYPTO 2015, Part I, volume 9215 of Lecture Notes in Computer
Science, pages 308–326, Santa Barbara, CA, USA, August 16–20,
2015. Springer, Heidelberg, Germany.

[AOS02] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 1-out-
of-n signatures from a variety of keys. In Yuliang Zheng, editor,
Advances in Cryptology – ASIACRYPT 2002, volume 2501 of Lec-
ture Notes in Computer Science, pages 415–432, Queenstown, New
Zealand, December 1–5, 2002. Springer, Heidelberg, Germany.

[BDH+19] Michael Backes, Nico Döttling, Lucjan Hanzlik, Kamil Kluczniak,
and Jonas Schneider. Ring signatures: Logarithmic-size, no setup
- from standard assumptions. In Yuval Ishai and Vincent Rijmen,
editors, Advances in Cryptology – EUROCRYPT 2019, Part III,
volume 11478 of Lecture Notes in Computer Science, pages 281–
311, Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg,
Germany.

52

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive
zero-knowledge and its applications (extended abstract). In 20th
Annual ACM Symposium on Theory of Computing, pages 103–112,
Chicago, IL, USA, May 2–4, 1988. ACM Press.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich,
Amit Sahai, Salil Vadhan, and Ke Yang. On the (im)possibility
of obfuscating programs. J. ACM, 59(2), May 2012.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional sig-
natures and pseudorandom functions. In Hugo Krawczyk, editor,
PKC 2014: 17th International Conference on Theory and Prac-
tice of Public Key Cryptography, volume 8383 of Lecture Notes
in Computer Science, pages 501–519, Buenos Aires, Argentina,
March 26–28, 2014. Springer, Heidelberg, Germany.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth
Telang. Succinct randomized encodings and their applications.
In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th Annual
ACM Symposium on Theory of Computing, pages 439–448, Port-
land, OR, USA, June 14–17, 2015. ACM Press.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggre-
gate and verifiably encrypted signatures from bilinear maps. In Eli
Biham, editor, Advances in Cryptology – EUROCRYPT 2003, vol-
ume 2656 of Lecture Notes in Computer Science, pages 416–432,
Warsaw, Poland, May 4–8, 2003. Springer, Heidelberg, Germany.

[BKM06] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring sig-
natures: Stronger definitions, and constructions without random
oracles. In Shai Halevi and Tal Rabin, editors, TCC 2006: 3rd
Theory of Cryptography Conference, volume 3876 of Lecture Notes
in Computer Science, pages 60–79, New York, NY, USA, March 4–
7, 2006. Springer, Heidelberg, Germany.

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. NIZK from
LPN and trapdoor hash via correlation intractability for approx-
imable relations. In CRYPTO (3), volume 12172 of Lecture Notes
in Computer Science, pages 738–767. Springer, 2020.

[BOV03] Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization
in cryptography. In Dan Boneh, editor, Advances in Cryptology –
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Sci-
ence, pages 299–315, Santa Barbara, CA, USA, August 17–21,
2003. Springer, Heidelberg, Germany.

[Boy07] Xavier Boyen. Mesh signatures. In Moni Naor, editor, Advances in
Cryptology – EUROCRYPT 2007, volume 4515 of Lecture Notes in

53

Computer Science, pages 210–227, Barcelona, Spain, May 20–24,
2007. Springer, Heidelberg, Germany.

[BP15] Nir Bitansky and Omer Paneth. ZAPs and non-interactive wit-
ness indistinguishability from indistinguishability obfuscation. In
Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th
Theory of Cryptography Conference, Part II, volume 9015 of Lec-
ture Notes in Computer Science, pages 401–427, Warsaw, Poland,
March 23–25, 2015. Springer, Heidelberg, Germany.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical:
A paradigm for designing efficient protocols. In Dorothy E. Den-
ning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria
Ashby, editors, ACM CCS 93: 1st Conference on Computer and
Communications Security, pages 62–73, Fairfax, Virginia, USA,
November 3–5, 1993. ACM Press.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability ob-
fuscation from functional encryption. In Venkatesan Guruswami,
editor, 56th Annual Symposium on Foundations of Computer Sci-
ence, pages 171–190, Berkeley, CA, USA, October 17–20, 2015.
IEEE Computer Society Press.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom func-
tions and their applications. In Kazue Sako and Palash Sarkar,
editors, Advances in Cryptology – ASIACRYPT 2013, Part II,
volume 8270 of Lecture Notes in Computer Science, pages 280–
300, Bengalore, India, December 1–5, 2013. Springer, Heidelberg,
Germany.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Pei-
han Miao, and Antigoni Polychroniadou. Laconic oblivious trans-
fer and its applications. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology – CRYPTO 2017, Part II, volume
10402 of Lecture Notes in Computer Science, pages 33–65, Santa
Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg,
Germany.

[DKNS04] Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor
Shoup. Anonymous identification in ad hoc groups. In Chris-
tian Cachin and Jan Camenisch, editors, Advances in Cryptology
– EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer
Science, pages 609–626, Interlaken, Switzerland, May 2–6, 2004.
Springer, Heidelberg, Germany.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-
interactive zero knowledge proofs based on a single random string
(extended abstract). In 31st Annual Symposium on Foundations

54

of Computer Science, pages 308–317, St. Louis, MO, USA, Octo-
ber 22–24, 1990. IEEE Computer Society Press.

[FS10] Marc Fischlin and Dominique Schröder. On the impossibility of
three-move blind signature schemes. In Henri Gilbert, editor, Ad-
vances in Cryptology – EUROCRYPT 2010, volume 6110 of Lec-
ture Notes in Computer Science, pages 197–215, French Riviera,
May 30 – June 3, 2010. Springer, Heidelberg, Germany.

[GG14] Sanjam Garg and Divya Gupta. Efficient round optimal blind
signatures. In Phong Q. Nguyen and Elisabeth Oswald, editors,
Advances in Cryptology – EUROCRYPT 2014, volume 8441 of
Lecture Notes in Computer Science, pages 477–495, Copenhagen,
Denmark, May 11–15, 2014. Springer, Heidelberg, Germany.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit
Sahai, and Brent Waters. Candidate indistinguishability obfus-
cation and functional encryption for all circuits. In 54th Annual
Symposium on Foundations of Computer Science, pages 40–49,
Berkeley, CA, USA, October 26–29, 2013. IEEE Computer Soci-
ety Press.

[GGHAK21] Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and
Gabriel Kaptchuk. Stacking sigmas: A framework to compose
σ-protocols for disjunctions. Cryptology ePrint Archive, Report
2021/422, 2021. https://ia.cr/2021/422.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to
construct random functions (extended abstract). In 25th Annual
Symposium on Foundations of Computer Science, pages 464–479,
Singer Island, Florida, October 24–26, 1984. IEEE Computer So-
ciety Press.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Wit-
ness encryption and its applications. In Dan Boneh, Tim Rough-
garden, and Joan Feigenbaum, editors, 45th Annual ACM Sym-
posium on Theory of Computing, pages 467–476, Palo Alto, CA,
USA, June 1–4, 2013. ACM Press.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of
the Fiat-Shamir paradigm. In 44th Annual Symposium on Founda-
tions of Computer Science, pages 102–115, Cambridge, MA, USA,
October 11–14, 2003. IEEE Computer Society Press.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-
knowledge proof systems. Journal of Cryptology, 7(1):1–32, De-
cember 1994.

55

https://ia.cr/2021/422

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive
zaps and new techniques for NIZK. In Cynthia Dwork, editor,
Advances in Cryptology – CRYPTO 2006, volume 4117 of Lecture
Notes in Computer Science, pages 97–111, Santa Barbara, CA,
USA, August 20–24, 2006. Springer, Heidelberg, Germany.

[GOS06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-
interactive zero knowledge for NP. In Serge Vaudenay, editor, Ad-
vances in Cryptology – EUROCRYPT 2006, volume 4004 of Lec-
ture Notes in Computer Science, pages 339–358, St. Petersburg,
Russia, May 28 – June 1, 2006. Springer, Heidelberg, Germany.

[GRS+11] Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique Schröder,
and Dominique Unruh. Round optimal blind signatures. In Phillip
Rogaway, editor, Advances in Cryptology – CRYPTO 2011, vol-
ume 6841 of Lecture Notes in Computer Science, pages 630–648,
Santa Barbara, CA, USA, August 14–18, 2011. Springer, Heidel-
berg, Germany.

[GS18] Sanjam Garg and Akshayaram Srinivasan. A simple construction
of iO for turing machines. In Amos Beimel and Stefan Dziem-
bowski, editors, TCC 2018: 16th Theory of Cryptography Confer-
ence, Part II, volume 11240 of Lecture Notes in Computer Science,
pages 425–454, Panaji, India, November 11–14, 2018. Springer,
Heidelberg, Germany.

[HKW15] Susan Hohenberger, Venkata Koppula, and Brent Waters. Univer-
sal signature aggregators. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology – EUROCRYPT 2015, Part II,
volume 9057 of Lecture Notes in Computer Science, pages 3–34,
Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

[HW15] Pavel Hubacek and Daniel Wichs. On the communication com-
plexity of secure function evaluation with long output. In Tim
Roughgarden, editor, ITCS 2015: 6th Conference on Innovations
in Theoretical Computer Science, pages 163–172, Rehovot, Israel,
January 11–13, 2015. Association for Computing Machinery.

[JJ21] Abhishek Jain and Zhengzhong Jin. Non-interactive zero knowl-
edge from sub-exponential DDH. In EUROCRYPT (1), volume
12696 of Lecture Notes in Computer Science, pages 3–32. Springer,
2021.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and
Thomas Zacharias. Delegatable pseudorandom functions and ap-
plications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti
Yung, editors, ACM CCS 2013: 20th Conference on Computer
and Communications Security, pages 669–684, Berlin, Germany,
November 4–8, 2013. ACM Press.

56

[LPQ18] Benôıt Libert, Thomas Peters, and Chen Qian. Logarithmic-size
ring signatures with tight security from the DDH assumption. In
Javier López, Jianying Zhou, and Miguel Soriano, editors, ES-
ORICS 2018: 23rd European Symposium on Research in Com-
puter Security, Part II, volume 11099 of Lecture Notes in Com-
puter Science, pages 288–308, Barcelona, Spain, September 3–7,
2018. Springer, Heidelberg, Germany.

[OPWW15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel
Wichs. New realizations of somewhere statistically binding hash-
ing and positional accumulators. In Tetsu Iwata and Jung Hee
Cheon, editors, Advances in Cryptology – ASIACRYPT 2015,
Part I, volume 9452 of Lecture Notes in Computer Science, pages
121–145, Auckland, New Zealand, November 30 – December 3,
2015. Springer, Heidelberg, Germany.

[PS19a] Sunoo Park and Adam Sealfon. It wasn’t me! - Repu-
diability and claimability of ring signatures. In Alexandra
Boldyreva and Daniele Micciancio, editors, Advances in Cryptol-
ogy – CRYPTO 2019, Part III, volume 11694 of Lecture Notes
in Computer Science, pages 159–190, Santa Barbara, CA, USA,
August 18–22, 2019. Springer, Heidelberg, Germany.

[PS19b] Chris Peikert and Sina Shiehian. Noninteractive zero knowl-
edge for NP from (plain) learning with errors. In Alexandra
Boldyreva and Daniele Micciancio, editors, Advances in Cryptol-
ogy – CRYPTO 2019, Part I, volume 11692 of Lecture Notes in
Computer Science, pages 89–114, Santa Barbara, CA, USA, Au-
gust 18–22, 2019. Springer, Heidelberg, Germany.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak
a secret. In Colin Boyd, editor, Advances in Cryptology – ASI-
ACRYPT 2001, volume 2248 of Lecture Notes in Computer Sci-
ence, pages 552–565, Gold Coast, Australia, December 9–13, 2001.
Springer, Heidelberg, Germany.

[SW07] Hovav Shacham and Brent Waters. Efficient ring signatures with-
out random oracles. In Tatsuaki Okamoto and Xiaoyun Wang,
editors, PKC 2007: 10th International Conference on Theory and
Practice of Public Key Cryptography, volume 4450 of Lecture Notes
in Computer Science, pages 166–180, Beijing, China, April 16–20,
2007. Springer, Heidelberg, Germany.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability
obfuscation: deniable encryption, and more. In David B. Shmoys,
editor, 46th Annual ACM Symposium on Theory of Computing,
pages 475–484, New York, NY, USA, May 31 – June 3, 2014.
ACM Press.

57

[Tso13] Raylin Tso. A new way to generate a ring: Universal ring signa-
ture. Computers & Mathematics with Applications, 65(9):1350–
1359, 2013. Advanced Information Security.

58

	Introduction
	Our Results
	Discussion and Interpretation of our Results
	Previous Works

	Technical Overview
	Compact Universal Ring Signatures from Signatures with Superpolynomial Security
	Non-Compact Universal Ring Signatures from Witness Encryption
	Compact Universal Ring Signatures from Indistinguishability Obfuscation

	Preliminaries
	Signature Schemes
	Non-Interactive Witness-Indistinguishable Proof Systems
	Commitment Schemes
	Somewhere Statistically/Perfectly Binding Hashing
	Pseudorandom Generators
	Witness Encryption
	Indistinguishability Obfuscation
	Puncturable Pseudorandom Functions
	Linear Secret Sharing

	Universal Ring Signatures
	Universal Ring Signature from Signature Schemes with Superpolynomial Security
	Construction
	Proofs

	Non-compact Universal Ring Signature from Witness Encryption
	Construction
	Proofs

	Compact Witness Encryption for Threshold Conjunction Languages
	Construction from Indistinguishability Obfuscation
	Proofs
	Construction from Indistinguishability Obfuscation with Polynomial Security Loss
	Proofs
	Compact Universal Ring Signature from Compact WE for Threshold Conjunction Languages

