
Tightly Secure Chameleon Hash Functions in the
Multi-User Setting and Their Applications⋆

Xiangyu Liu1,2, Shengli Liu1,2,3(B), and Dawu Gu1

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{xiangyu_liu, slliu, dwgu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. We define the security notion of (strong) collision resistance for chameleon
hash functions in the multi-user setting ((S-)MU-CR security). We also present three
constructions, CHFdl, CHFrsa and CHFfac, and prove their tight S-MU-CR security based
on the discrete logarithm, RSA and factoring assumptions, respectively. In applications,
our tightly S-MU-CR secure chameleon hash functions help us to lift a signature scheme
from (weak) unforgeability to strong unforgeability in the multi-user setting, and the
security reduction is tightness preserving. Furthermore, they can also be used to construct
tightly secure online/offline signatures, chameleon signatures and proxy signatures, etc.,
in the multi-user setting.

Keywords: Chameleon hash functions · Tight security · Multi-user setting · Signa-
tures.

1 Introduction

Chameleon hash function (CHF) has been studied for decades since its introduction
by Krawczyk and Rabin in [22]. Informally, chameleon hash function is a special hash
function indexed by a hash key, which is associated with a trapdoor. On the one hand,
it has the property of collision resistance, i.e., it is hard to find a collision given the
hash key only. On the other hand, one can easily find collisions with the help of the
trapdoor. Over the years, various constructions of CHF were proposed [27, 13, 7], and
they found wide applications in signatures (SIG), including online/offline signatures
[27], chameleon signatures [22], proxy signatures [24, 12], etc.

Tight Security. Generally, the collision resistance of CHF is proved by security re-
duction. That is, once an adversary finds a collision for CHF with probability ϵ, then
another algorithm can be built to make use of the collision to solve some well-known
hard problem with success probability ϵ/L. The parameter L is called the security loss
factor. If L is a constant, the security reduction is tight. And if L is a polynomial of
security parameter λ, the security reduction is loose. With a loose security reduction,
the deployments of CHF (and other primitives) have to be equipped with a larger secu-
rity parameter to compensate the loss factor L. This yields larger elements and slower
computations. For instance, if L ≈ 230, there will be a great efficiency loss.
⋆ This is the extended version of the short paper published in ACISP 2020. Compared to the proceedings

version, this version offers a formal proof of the extended GBSW transform, as well as three further
applications of tightly MU-CR secure CHFs in online/offline signatures, chameleon signatures and
proxy signatures.

Most constructions of CHF consider single user setting only. In the era of IoT,
cryptographic primitives are deployed in systems of multi-users. Hence, it is important
for us to consider tight security of CHF in the multi-user setting. With hybrid argument,
collision resistance of CHF in single user setting implies collision resistance in the multi-
user setting, but with a security loss factor L = µ, where µ is the number of users. In
consideration of wide applications of CHF, it is desirable for us to exploit tight collision
resistance for CHF.

Related Works. In [22], Krawczyk and Rabin gave two constructions of chameleon
hash functions. One is a generic construction from “claw-free” trapdoor permutations
[14], and is implemented based on the factoring assumption. The other is based on the
discrete logarithm (DL) assumption. Later, numerous constructions of chameleon hash
functions are proposed in [2, 3, 27, 13, 19, 7], to name a few.

In [7], Bellare and Ristov proved that chameleon hash functions and Sigma proto-
cols are equivalent, where the strong collision resistance property of chameleon hash
functions corresponds to the strong special soundness of Sigma protocols. Due to this
equivalence, many new chameleon hash functions CHFfs, CHFms, CHFoka, CHFhs are
obtained from well-studied Sigma protocols [16, 25, 26, 6]. Meanwhile, some variants
of chameleon hash functions came up in needs of different applications, like identity-
based CHF [2], key-exposure free CHF [3, 21], CHF with ephemeral trapdoors [11],
multiple-collision CHF [19], etc.

Chameleon hash functions have found numerous applications in different types of
signatures. The first application of CHF is chameleon signatures [22], which provide non-
transferability. In [27], Shamir and Tauman defined the “hash-sign-switch” paradigm
and gave a generic construction from (traditional) signature to online/offline signature
with the help of CHF. Consequently many proxy signatures with variant security re-
quirements are constructed based on CHF [24, 12]. Meanwhile, CHF can also be used
to strengthen a (weakly) unforgeable signature to a strong unforgeable one [10, 28].

Most of these constructions consider single user setting only. Though they also work
in the multi-user setting, but the price is a great security loss factor µ. As far as we
know, there is no research considering tight security of chameleon hash functions in the
multi-user setting, and that is exactly the focus of this paper.

Tight (Strong) Multi-User Collision Resistance of CHF. We define the secu-
rity notion of (strong) multi-user collision resistance ((S-)MU-CR) for chameleon hash
functions. In the multi-user setting, each user has its own hash key/trapdoor pair, and
each hash key determines a specific chameleon hash function. Informally, (S-)MU-CR
security means that after seeing all the hash keys, the adversary cannot find a collision
under a specific hash key of its choice.

Over the years, there are lots of proposals of chameleon hash functions, which are
tightly secure in single user setting. For example, the chameleon hash function CHFclaw

from the claw-free permutations [22], CHFst from the factoring assumption by Shamir
and Tauman [27], CHFrsa-n from the RSA[n, n] assumption [3], CHFvsh from the very
smooth hash [13], CHFms from the Micali-Shamir protocol [7], etc. We believe that
it is hard for these CHFs to achieve tight (S-)MU-CR security. Let us take CHFst as
an example. Each user has trapdoor (pi, qi) and hash key Ni = piqi. In the security

2

reduction, the factoring problem instance N is embedded into a specific Nj := N .
However, the adversary chooses Nj as its target with probability 1/µ. As a result, the
security loss factor is at least µ.

Nevertheless, we identify some CHFs, like CHFdl [22], CHFrsa [2] and CHFfac [7],
and prove their tight S-MU-CR security based on the discrete logarithm (DL), RSA
and factoring assumptions, respectively. Intuitively, the DL problem and RSA problem
are random self-reducible. For example, given one DL problem instance (g, gx), we can
create multiple instances (g, gx+bi), so that the DL problem can be embedded into hash
keys of all users. As for CHFfac, we embed the factoring problem instance into the public
parameter, which is shared by all users. In this way, no matter which target hash key
is chosen by the adversary, the collision can be used to solve the hard problem. That is
why tight S-MU-CR security can be achieved.

Applications of Tightly (S-)MU-CR Secure CHF to Signatures. By using our
tightly secure chameleon hash functions like CHFdl, CHFrsa and CHFfac, it is possible
for us to get a variety of signatures with tight security, see Fig. 1.

tightly S-MU-EUF-CMACorr SIG
↑ double-key

tightly S-MU-CR CHF + tightly MU-EUF-CMA SIG GBSW−−−−−→ tightly S-MU-EUF-CMA SIG

tightly MU-CR CHF + tightly MU-EUF-NCMA SIG [27]−−−−−→ tightly MU-EUF-CMA online/offline SIG

tightly MU-EUF-CMA SIG [22, 24]−−−−−→ tightly MU-EUF-CMA chameleon/proxy SIG

Fig. 1. Applications of tightly (S-)MU-CR secure chameleon hash functions to signatures.

First we extend the GBSW transform [28] to the multi-user setting. With the help
of tightly S-MU-CR secure CHFs, the extended GBSW transform lifts a signature
scheme from (weak) unforgeability (MU-EUF-CMA) to strong unforgeability (S-MU-
EUF-CMA) in the multi-user setting. The resulting S-MU-EUF-CMA secure signature
can be used in group signatures [1, 9], CCA secure encryption systems [10], etc. Fur-
thermore, we can cope with corruptions through the “double-key” mechanism [5], and
get a tightly S-MU-EUF-CMACorr secure signature against adaptive corruptions, which
can be used in authenticated key exchange (AKE) protocols [5, 17].

Our tightly MU-CR secure CHFs can further be used in multi-user online/offline
signatures [27], chameleon signatures [22] and proxy signatures [24, 12]. All these trans-
forms fall in the “hash-sign-switch” paradigm [27] (see subsec. 5.2), and the security is
tightly reduced to the tight security of CHF and signatures in the multi-user setting.

Our Contribution. In conclusion, our contribution is as follows.

1. We define the security notion of (strong) multi-user collision resistance ((S-)MU-
CR) for chameleon hash functions. Then we present three constructions (CHFdl,
CHFrsa and CHFfac) and prove their tight S-MU-CR security based on the discrete
logarithm, RSA and factoring assumptions, respectively.

3

2. We show some applications of tightly (S-)MU-CR secure chameleon hash functions
to signatures in the multi-user setting. We first extend the generic GBSW trans-
form to the multi-user setting, resulting in tightly S-MU-EUF-CMA secure signa-
ture schemes, which can be further used to construct group signatures and AKE
protocols. Meanwhile, the extension can also be applied to online/offline signatures,
chameleon signatures and proxy signatures, and help us to get tightly secure sig-
nature schemes, which are widely used in grid computing, e-commerce, electronic
currency systems, etc.

2 Preliminaries

Let λ ∈ N denote the security parameter. For µ ∈ N, define [µ] := {1, 2, ..., µ}. Denote
by x := y the operation of assigning y to x. Denote by x

$←− X the operation of sampling
x uniformly at random from a set X . For an algorithm A, denote by y ← A(x), the
operation of running A with input x and assigning the output to y. “PPT” is short for
probabilistic polynomial-time.

2.1 Chameleon Hash Family

Definition 1 (Chameleon Hash Family). A chameleon hash family (CHF) consists
of four algorithms, namely CHF = (Setup,KGen,Eval,TdColl).

– Setup(1λ): The setup algorithm takes as input the security parameter 1λ, and outputs
public parameter ppCHF, which determines the key space HK, the trapdoor space T D,
input domains M×R, and its range Y.

– KGen(ppCHF): The key generation algorithm takes as input ppCHF, and outputs a
hash key hk ∈ HK along with a trapdoor td ∈ T D. Here hk determines a specific
chameleon hash function Hhk(·, ·) in the chameleon hash family H = {Hhk(·, ·)}hk∈HK.

– Eval(hk,m, r): The evaluation algorithm takes as input hk, message m ∈ M and
randomness r ∈ R, and outputs the hash value h = Hhk(m, r)4.

– TdColl(td,m1, r1,m2): The trapdoor collision algorithm takes as input the trapdoor
td, a message-randomness pair (m1, r1) and another message m2, and outputs r2
such that Hhk(m1, r1) = Hhk(m2, r2).

CHF is strongly secure if it has the following two properties.

Strong Collision Resistance (S-CR). For any PPT adversary A, the advantage
Advs-cr

CHF,A(λ) is negligible, where Advs-cr
CHF,A(λ) :=

Pr

 ppCHF ← Setup(1λ);
(hk, td)← KGen(ppCHF);

(m1, r1,m2, r2)← A(ppCHF, hk)
:
Hhk(m1, r1) = Hhk(m2, r2)
∧ (m1, r1) 6= (m2, r2)

 .

Random Trapdoor Collision (RTC). For every (hk, td) ∈ HK×T D, m1,m2 ∈M,
if r1 is distributed uniformly over R, then r2 := TdColl(td,m1, r1,m2) enjoys a
uniform distribution over R.

4 We assume that Eval and TdColl take ppCHF as an implicit input.

4

Some definitions of chameleon hash family require uniformity of the hash value
H(m, r) (when r is uniform) instead of random trapdoor collision property.

Definition 2 (Uniformity [22, 7]). A chameleon hash family CHF = (Setup,KGen,Eval,
TdColl) has uniformity property if for every (hk, td) ∈ HK × SK and m ∈ M, if r is
distributed uniformly over R, then Hhk(m, r) has a uniform distribution over Y.

For a chameleon hash family, uniformity property and random trapdoor collision
property characterize different aspects. Uniformity [22, 7, 8] is helpful to define semantic
security [2, 3], where an adversary (even all-powerful) cannot get any information about
m from its hash value Hhk(m, r) if r is chosen uniformly at random. While random
trapdoor collision property [27, 13, 28] implies that no one can distinguish whether r is
a randomness chosen uniformly at random, or r is the output of the trapdoor collision
function.

The following theorem describes some links between uniformity and random trap-
door collision properties.

Theorem 1. Let CHF = (Setup,KGen,Eval,TdColl) be a chameleon hash family with
input domains M×R and range Y. If |R| = |Y|, then CHF has uniformity property iff
it has random trapdoor collision property.

Proof. Consider a specific key pair (hk, td).

1. Uniformity implies random trapdoor collision.
For any m ∈ M, the evaluation function Hhk(m, ·) defines a mapping from

R to Y. Since CHF has uniformity and |R| = |Y|, Hhk(m, ·) must be a bijection.
Hence, function TdColl(td,m1, ·,m2) is equivalent to H−1

hk (m2,Hhk(m1, ·)), which is
a bijection too. So if r1 is chosen uniformly at random, r2 := TdColl(td,m1, r1,m2)
has a uniform distribution over R.

2. Random trapdoor collision implies uniformity.
We prove it by contradiction. Suppose CHF does not have uniformity property,

i.e., there exists m1 ∈M such that Hhk(m, ·) is not a bijection from R to Y. Hence,
there must exist h∗ ∈ Y such that Hhk(m1, r1) 6= h∗ for all r1. Meanwhile, since
h∗ ∈ Y, we can always find (m2, r2) such that Hhk(m2, r2) = h∗. Thus, for r1 chosen
uniformly at random, r2 := TdColl(td,m1, r1,m2) is not uniformly distributed. ut

In the case of |R| < |Y|, it is impossible for CHF to have uniformity: for any m ∈M,
the range defined by Hhk(m, ·) cannot cover Y, consequently the trapdoor collision
function cannot work. However, in the case of |R| > |Y|, it is difficult to analyse the
relation between uniformity and random trapdoor collision properties.

2.2 Security of Chameleon Hash Family in the Multi-User Setting

Now we extend the S-CR security of CHF to the multi-user setting by defining strong
multi-user collision resistance (S-MU-CR) security for CHF.

Definition 3. A chameleon hash family CHF = (Setup,KGen,Eval,TdColl) is strongly
secure in the multi-user setting if it has RTC property (as defined in Def.1) and strong
multi-user collision resistance.

5

Strong Multi-User Collision Resistance (S-MU-CR). For any PPT adversary
A, the advantage Advs-mu-cr

CHF,µ,A(λ) is negligible, where Advs-mu-cr
CHF,µ,A(λ) :=

Pr

 ppCHF ← Setup(1λ);
(hki, tdi)← KGen(ppCHF) for i ∈ [µ];

(i∗,m1, r1,m2, r2)← A(ppCHF, {hki}i∈[µ])
:
Hhki∗ (m1, r1) = Hhki∗ (m2, r2)
∧ (m1, r1) 6= (m2, r2)

 .

If we only require m1 6= m2, then S-MU-CR security becomes MU-CR security,
and CHF is (non-strongly) secure in the multi-user setting if it has RTC property and
MU-CR security.

3 Tightly Secure Chameleon Hash Functions in the Multi-User
Setting

In this section, we review some chameleon hash families, CHFdl, CHFrsa and CHFfac, and
prove their tight S-MU-CR security and RTC property. Recall that these constructions
are originally proposed in [22, 2, 7], but their collision resistance security are proved in
the single user setting, and uniformity or semantic security of hash values are considered
instead of RTC property.

3.1 Chameleon Hash Family Based on the DL Assumption

Let GGen be a group generation algorithm that outputs a cyclic group G of prime order
q with generator g. In formula, := (G, q, g)← GGen(1λ).

Definition 4 (The DL Assumption). For any adversary A, the advantage of A in
solving the discrete logarithm (DL) problem is defined as

Advdl
G,A(λ) := Pr[(G, q, g)← GGen(1λ);x $←− Zq : A(G, q, g, gx) = x].

The DL assumption states that for any PPT adversary A, Advdl
G,A(λ) is negligible.

The construction of CHFdl
5 [22] is shown in Fig. 2.

Setup(1λ):
(G, q, g)← GGen(1λ)
Define M := Zq, R := Zq, Y := G
Return ppCHF := (G, q, g,M,R,Y)

KGen(ppCHF):
x

$←− Zq; X := gx

Return (hk := X, td := x)

Eval(hk,m, r):
h := hkm · gr
Return h

TdColl(td,m1, r1,m2):
r2 := td · (m1 −m2) + r1 mod q
Return r2

Fig. 2. Construction of CHFdl.

5 Here we compute the hash value with h = Xm · gr instead of h = gm ·Xr as in [22]. One can easily
see that they are essentially the same.

6

Theorem 2. CHFdl has tight strong security in the multi-user setting. That is, it has
not only the RTC property but also the tight S-MU-CR security from the DL assumption.
More precisely, for any PPT adversary A with advantage Advs-mu-cr

CHFdl,µ,A(λ), there exists
a PPT algorithm B against the DL problem such that Advs-mu-cr

CHFdl,µ,A(λ) ≤ Advdl
G,B(λ).

Proof. It is easy to prove the RTC property. For any td = x, m1,m2 ∈ Zq, r1 ∈ Zq, we
have r2 := x · (m1 −m2) + r1. Hence, if r1 is independently chosen from Zq uniformly
at random, then r2 := x · (m1 −m2) + r1 is uniform over Zq as well.

Next we prove that for any PPT adversary A, Advs-mu-cr
CHFdl,µ,A is negligible under the

DL assumption. To this end, we construct a PPT algorithm B against the DL problem.
B gets a group description = (G, q, g) along with a challenge (g,X = gx) from its DL
challenger.
B directly sets ppCHF := (G, q, g,M,R,Y) with M := Zq,R := Zq,Y := G. For i ∈

[µ], B samples bi
$←− Zq, and sets hki := X ·gbi . In this way, B implicitly sets tdi := xi :=

x + bi. Then B sends ppCHF and {hki}i∈[µ] to A. Finally A outputs (i∗,m1, r1,m2, r2).
If m1 6= m2, B outputs (r2 − r1)/(m1 −m2)− bi∗ as its answer to the DL problem.

IfA successfully finds a collision, then gxi∗m1+r1 = gxi∗m2+r2 and (m1, r1) 6= (m2, r2).
If m1 = m2, then r1 = r2. So we must have m1 6= m2 and xi∗ = (r2 − r1)/(m1 −m2)
when A succeeds. As a result, x := xi∗ − bi∗ is the correct answer to the DL problem,
and Advs-mu-cr

CHFdl,µ,A(λ) ≤ Advdl
G,B(λ). ut

3.2 Chameleon Hash Family Based on the RSA Assumption

Let RSAGen be an algorithm that outputs an RSA tuple (N, p, q, e, d), where p, q are safe
primes of bit-length λ/2, N = pq and ed ≡ 1 mod φ(N). In formula, (N, p, q, e, d) ←
RSAGen(1λ). Here we limit that e is a prime and e > 2L(λ), where L(·) is the challenge
length function associated with RSAGen.

Definition 5 (The RSA Assumption). For any adversary A, the advantage of A
in solving the RSA problem is defined as

Advrsa
N,e,A(λ) := Pr[(N, p, q, e, d)← RSAGen(1λ);x $←− Z∗

N : A(N, e, xe) = x].

The RSA assumption states that for any PPT adversary A, Advrsa
N,e,A(λ) is negligible.

The construction of CHFrsa [2, 7] is shown in Fig. 3.

Theorem 3. CHFrsa has tight strong security in the multi-user setting. That is, it
has not only the RTC property but also the tight S-MU-CR security from the RSA
assumption. More precisely, for any PPT adversary A with advantage Advs-mu-cr

CHFrsa,µ,A(λ),
there exists a PPT algorithm B against the RSA problem such that Advs-mu-cr

CHFrsa,µ,A(λ) ≤
Advrsa

N,e,B(λ).

Proof. Recall that Z∗
N is a multiplicative group. For any fixed td = x and m1,m2 ∈

{0, 1}ℓ, if r1 is uniform over Z∗
N , then xm1−m2 · r1 is also uniform. This gives the RTC

property of CHFrsa.
As for the proof of S-MU-CR security, we construct a PPT algorithm B against the

RSA problem as follows. B gets (N, e) and X = xe from its challenger, where x
$←− Z∗

N .

7

Setup(1λ):
(N, p, q, e, d)← RSAGen(1λ)
ℓ := L(λ)

Define M := {0, 1}ℓ, R := Z∗
N , Y := Z∗

N

Return ppCHF := (N, e,M,R,Y)

KGen(ppCHF):
x

$←− Z∗
N ; X := xe mod N

Return (hk := X, td := x)

Eval(hk,m, r):
h := hkm · re mod N
Return h

TdColl(td,m1, r1,m2):
r2 := tdm1−m2 · r1 mod N
Return r2

Fig. 3. Construction of CHFrsa.

The public parameter is set as ppCHF := (N, e,M,R,Y) with M := {0, 1}ℓ,R :=

Z∗
N ,Y := Z∗

N . For i ∈ [µ], B samples bi
$←− Z∗

N and sets hki := Xi = X · bei . In this way,
B implicitly sets tdi := xi := x · bi. Then B sends ppCHF and {hki}i∈[µ] to A. Finally A
outputs (i∗,m1, r1,m2, r2), and B outputs (r2/r1)

β ·Xα
i∗ · b

−1
i∗ as its answer to the RSA

problem, where αe+ β(m1 −m2) = 1.
Suppose A successfully finds a collision. That is, HXi∗ (m1, r1) = HXi∗ (m2, r2), so

(xm1
i∗ · r1)e = (xm2

i∗ · r2)e. Note that fe : x 7→ xe is a bijection over Z∗
N . Hence xm1

i∗ · r1 =
xm2
i∗ · r2, equivalently xm1−m2

i∗ = r2/r1. We must have m1 6= m2, otherwise r1 = r2 and
A fails. Let α, β be two integers such that αe+β(m1−m2) = 1 (α and β can always be
found since e is a prime and e > 2L(λ)), then we get xi∗ = (r2/r1)

β ·Xα
i∗ . And x := xi∗/bi∗

is the correct answer to the RSA problem. So Advs-mu-cr
CHFrsa,µ,A(λ) ≤ Advrsa

N,e,B(λ). ut

3.3 Chameleon Hash Family Based on the Factoring Assumption

Let FacGen be an algorithm that outputs (N, p, q), where p, q are safe primes of bit-
length λ/2 and N = pq. In formula, (N, p, q)← FacGen(1λ).

Definition 6 (The Factoring Assumption). For any adversary A, the advantage
of A in solving the factoring problem is defined as

Advfac
N,A(λ) := Pr[(N, p, q)← FacGen(1λ) : A(N) = p ∨ A(N) = q].

The factoring assumption states that for any PPT adversary A, Advfac
N,A(λ) is negligible.

Define Z+
N := Z∗

N ∩ {1, ..., N/2}. For m ∈ {0, 1}ℓ, denote by mk the k-th bit of m.
The construction of CHFfac [7] is shown in Fig. 4.

Theorem 4. CHFfac has tight strong security in the multi-user setting. That is, it
has not only the RTC property but also the tight S-MU-CR security from the factoring
assumption. More precisely, for any PPT adversary A with advantage Advs-mu-cr

CHFfac,µ,A(λ),
there exists a PPT algorithm B against the factoring problem such that Advs-mu-cr

CHFfac,µ,A(λ) ≤
2Advfac

N,B(λ).

Proof. For the proof of random trapdoor collision (RTC) property, consider fixed values
of td = (s1, ..., sℓ), m1,m2 ∈ {0, 1}ℓ. The algorithm TdColl(td,m1, r1,m2) returns r2 :=

min{τ · r1, N − τ · r1}, where τ :=
∏ℓ

k=1 s
m1,k−m2,k

k is some fixed value in Z∗
N . We just

8

Setup(1λ):
(N, p, q)← FacGen(1λ)
ℓ := poly(λ)
Define M := {0, 1}ℓ, R := Z+

N , Y := QRN

Return ppCHF := (N,M,R,Y)

KGen(ppCHF):
For k ∈ [ℓ]:

sk
$←− Z∗

N ; uk := s2k mod N
hk := (u1, ..., uℓ); td := (s1, ..., sℓ)
Return (hk, td)

Eval(hk,m, r):
Parse hk = (u1, ..., uℓ)

h :=
∏ℓ

k=1 u
mk
k · r2 mod N

Return h

TdColl(td,m1, r1,m2):
Parse td = (s1, ..., sℓ)

r2 :=
∏ℓ

k=1 s
m1,k−m2,k

k · r1
r2 := min{r2, N − r2}
Return r2

Fig. 4. Construction of CHFfac.

need to prove that the function fτ (r1) := min{τ · r1, N − τ · r1} is an injection (hence
bijection) over Z+

N . This is justified by the fact that for r1, r′1 ∈ Z+
N with r1 6= r′1, neither

τ · r1 ≡ τ · r′1 nor τ(r1 + r′1) ≡ 0 mod N , i.e., no two distinct inputs correspond to the
same output. With a bijection fτ : R→ R, r2 := fτ (r1) is uniformly random as long as
r1 is, and the RTC property follows.

Then we prove Advs-mu-cr
CHFfac,µ,A(λ) ≤ 2Advfac

N,B(λ). We construct a PPT algorithm B
against the factoring problem. B gets N from its own challenger. The public parameter
is set as ppCHF := (N,M,R,Y) with M := {0, 1}ℓ,R := Z+

N ,Y := QRN . For i ∈
[µ], k ∈ [ℓ], B samples si,k

$←− Z∗
N and sets ui,k := s2i,k. In this way, hki = (ui,1, ..., ui,ℓ)

and tdi = (si,1, ..., si,ℓ). Then B sends ppCHF and {hki}i∈[µ] to A.
If A finds a collision with output (i∗,m1, r1,m2, r2), then

ℓ∏
k=1

(ui∗,k)
m1,k · r21 =

ℓ∏
k=1

(ui∗,k)
m2,k · r22. (1)

We discuss Eq. (1) in two cases.

Case 1. m1 = m2 but r1 6= r2.
In this case, Eq. (1) implies r21 ≡ r22 mod N , i.e., (r1+r2)(r1−r2) ≡ 0 mod N . Note
that r1, r2 ∈ Z+

N and r1 6= r2. Thus, B can always find a factor of N by outputting
gcd(r1 + r2, N).

Case 2. m1 6= m2. Then there must exist z ∈ [ℓ] such that m1,z 6= m2,z.
We can rewrite Eq. (1) as

(ui∗,z)
m1,z−m2,z =

∏
k ̸=z

(ui∗,k)
m2,k−m1,k · (r2/r1)2. (2)

Equivalently,

(
(si∗,z)

m1,z−m2,z
)2

=

∏
k ̸=z

(si∗,k)
m2,k−m1,k · (r2/r1)

2

. (3)

We denote the right part of Eq.(3) by ∆2. Note that m1,z −m2,z = ±1.

9

– If m1,z − m2,z = 1, then Eq.(3) is simplified to (si∗,z)
2 = ∆2, and B outputs

gcd(si∗,z +∆,N).
– If m1,z −m2,z = −1, then Eq.(3) is simplified to (s−1

i∗,z)
2 = ∆2, and B outputs

gcd(s−1
i∗,z +∆,N).

Recall that si∗,z is chosen randomly in Z∗
N , and the only information A gets is

ui∗,z = (si∗,z)
2. Thus, si∗,z /∈ {∆,N−∆} with probability 1/2, or s−1

i∗,z /∈ {∆,N−∆}
with probability 1/2. In either case, B successfully factors N with probability 1/2.

In conclusion, Advs-mu-cr
CHFfac,µ,A(λ) ≤ 2Advfac

N,B(λ). ut

4 Extending Message Space to Arbitrary String

For a chameleon hash family H, we can extend the message space fromM to bit strings
of any polynomial length by applying a traditional collision resistant hash function J to
the message first. The composition [22] results in a chameleon hash family over {0, 1}∗,
and the S-MU-CR security can be tightly reduced to the S-MU-CR security of H and
the collision resistance security of J .

Theorem 5. Let H = {Hhk(·, ·)}hk∈HK be a chameleon hash family with tight and
strong security and associated with message domain M. Let J : {0, 1}∗ → M be a
collision resistant hash function. Then H′ := {Hhk(J(·), ·)}hk∈HK is also a chameleon
hash family with tight and strong security but its message space is extended to {0, 1}∗.
More precisely, for any PPT adversary A against the S-MU-CR security of H′, there
exist PPT algorithms BH against the S-MU-CR security of H, and BJ against the
collision resistance security of J , such that Advs-mu-cr

H′,µ,A (λ) ≤ Advs-mu-cr
H,µ,BH (λ) + Advcr

J,BJ
(λ).

Proof. The RTC property of H′ directly follows from H. As for the S-MU-CR security, let
{(hki, tdi)}i∈[µ] be the challenge key pairs of H′, and A successfully finds a collision by
outputting (i∗,m1, r1,m2, r2), i.e., Hhki∗ (J(m1), r1) = Hhki∗ (J(m2), r2) but (m1, r1) 6=
(m2, r2). We analyse it in two cases.

Case 1. m1 6= m2 ∧ J(m1) = J(m2).
This means a collision of J . Hence, we can construct a PPT algorithm BJ against
J ’s collision resistance security, and Advs-mu-cr

H′,µ,A (λ) ≤ Advcr
J,BJ

(λ).
Case 2. J(m1) 6= J(m2) ∨ r1 6= r2.

Excluding case 1, either J(m1) 6= J(m2) or r1 6= r2 holds. Hence, we can construct a
PPT algorithm BH against H’s S-MU-CR security by outputting (i∗, J(m1), r1, J(m2), r2),
and Advs-mu-cr

H′,µ,A (λ) ≤ Advs-mu-cr
H,µ,BH (λ). ut

5 Applications of Tightly (S-)MU-CR Secure Chameleon Hash
Families to Signatures in the Multi-User Setting

By using our tightly S-MU-CR secure chameleon hash families, we can extend the generic
GBSW transform [28] to the multi-user setting and achieve tight security, as shown in
subsec. 5.1. Meanwhile, in subsec. 5.2, tightly MU-CR secure chameleon hash families
can be further applied to online/offline signatures [27], chameleon signatures [22], proxy
signatures [24, 12], etc., to achieve tight security in the multi-user setting.

10

Since all applications in this section are signatures, we first present the definition of
signature and its security notions in the multi-user setting.

Definition 7 (Signature Scheme). A signature (SIG) scheme consists of four algo-
rithms, S = (Setup,KGen,Sign,Ver).

– Setup(1λ): The setup algorithm takes as input the security parameter 1λ and outputs
public parameter ppS. Note that ppS is an implicit input of Sign and Ver.

– KGen(ppS): The key generation algorithm takes as input ppS and outputs a verifica-
tion/signing key pair (vk, sk).

– Sign(sk,m): The signing algorithm takes as input the signing key sk and message
m, and outputs a signature σ.

– Ver(vk,m, σ): The verification algorithm takes as input the verification key vk, a
message m and a signature σ, and outputs a bit 1/0, indicating whether σ is a valid
signature of m.

Definition 8 (Security of Signature Scheme). A signature scheme S = (Setup,KGen,
Sign,Ver) is existentially unforgeable under chosen message attacks in the multi-user
setting (MU-EUF-CMA), if for any PPT adversary A, the advantage Advmu-euf-cma

S,µ,A (λ)

is negligible, where Advmu-euf-cma
S,µ,A (λ) :=

Pr

 ppS ← Setup(1λ)
(vki, ski)← KGen(ppS) for i ∈ [µ]

(i∗,m∗, σ∗)← AOSign(·,·)(ppS, {vki}i∈[µ])
:
i∗ ∈ [µ] ∧ (m∗, ·) /∈ Qi∗

∧ Ver(vki,m∗, σ∗) = 1

 . (4)

Here OSign(·, ·) is an oracle that takes (i,m) as input, invokes σ ← Sign(ski,m), updates
Qi := Qi ∪ {(m,σ)} and returns σ.

– If (m∗, ·) /∈ Qi∗ is replaced by (m∗, σ∗) /∈ Qi∗ in (4), S is strongly existentially
unforgeable under chosen message attacks in the multi-user setting (S-MU-EUF-
CMA), and the advantage of A is denoted by Advs-mu-euf-cma

S,µ,A (λ).
– If A submits all signing queries {(i,m)} before it sees ppS and {vki}i∈[µ] in (4), S

is existentially unforgeable under non-adaptive chosen message attacks in the multi-
user setting (MU-EUF-NCMA), and the advantage ofA is denoted by Advmu-euf-ncma

S,µ,A (λ).
– If µ = 1 (and (m∗, σ∗) /∈ Qi∗) in (4), S is (strongly) existentially unforgeable under

chosen message attacks ((S-)EUF-CMA) in the single user setting, and the advantage
of A is denoted by Adveuf-cma

S,A (λ) (w.r.t. Advs-euf-cma
S,A (λ)).

Signature schemes with tight MU-EUF-CMA security can be found in [20, 4, 17, 29,
15, 18, 30].

5.1 Generic Transform for Signatures from MU-EUF-CMA Security to
S-MU-EUF-CMA Security

In [28], Steinfeld, Pieprzyk and Wang proposed a generic transform (the GBSW trans-
form), which can invert an EUF-CMA secure signature scheme to a S-EUF-CMA secure
signature scheme. The GBSW transform is (security) tightness preserving, but limited
only in single user setting. By using our strongly secure chameleon hash families that

11

have tight S-MU-CR security and RTC property, we are able to extend the GBSW
transform to the multi-user setting, which strengthens signature schemes from weak
unforgeability (MU-EUF-CMA) to strong unforgeability (S-MU-EUF-CMA) and en-
joys a tight security reduction.

The GBSW Transform [28]. Let S = (S.Setup,S.KGen,S.Sign,S.Ver) be a signature
scheme with EUF-CMA security, and F, H be two chameleon hash families with strong
security (i.e., S-CR security and RTC property). Define the new signature scheme SGBSW
as follows.

1. SGBSW.Setup(1λ). Invoke ppS ← S.Setup(1λ), ppF ← F.Setup(1λ), ppH ← H.Setup(1λ),
and return ppSGBSW := (ppS, ppF, ppH).

2. SGBSW.KGen(ppSGBSW). Invoke (vk, sk) ← S.KGen(ppS), (hkF, tdF) ← F.KGen(ppF),
(hkH, tdH)← H.KGen(ppH), return (vkSGBSW , skSGBSW) := ((vk, hkF, hkH), (sk, tdH, hkF, hkH)).

3. SGBSW.Sign(skSGBSW ,m).
(a) Choose random r′, s;
(b) Choose random m′, σ′, and compute h := HhkH(m

′||σ′, r′);
(c) Compute m̄ := FhkF(h, s) and σ ← S.Sign(sk, m̄);
(d) Invoke r ← H.TdColl(tdH,m′||σ′, r′,m||σ), return σSGBSW := (σ, r, s).

4. SGBSW.Ver(vkSGBSW ,m, σSGBSW).
(a) Compute h := HhkH(m||σ, r), m̄ := FhkF(h, s);
(b) Return S.Ver(vk, m̄, σ).

The Extended GBSW Transform. The transform is similar to the GBSW trans-
form, except that the building block S is replaced with a signature scheme with MU-
EUF-CMA security, and F,H are replaced with chameleon hash families with S-MU-CR
security and RTC property.

Theorem 6. If chameleon hash families F and H are strongly secure in the multi-user
setting, S is MU-EUF-CMA secure, then the extended GBSW transform results in a S-
MU-EUF-CMA secure signature scheme SGBSW and the transform is (security) tightness
preserving. More precisely, for any PPT adversary A against SGBSW’s strong security
with advantage Advs-mu-euf-cma

SGBSW,µ,A (λ), there exist PPT adversaries BS,BF and BH, such that
Advs-mu-euf-cma

SGBSW,µ,A (λ) ≤ Advmu-euf-cma
S,µ,BS

(λ) + Advs-mu-cr
F,µ,BF (λ) + Advs-mu-cr

H,µ,BH (λ).

Proof. The proof mainly follows the proof in [28]. Intuitively, if A succeeds, then either
it forges a valid signature on a new message with respect to the signature scheme
S, or it finds a collision of F or H. Let (i∗,m∗, σ∗

GBSW = (σ∗, r∗, s∗)) be A’s out-
put and Win be the event that A wins. Recall that A wins iff (m∗, σ∗

GBSW) /∈ Qi∗ ∧
SGBSW.Ver(vki∗ ,m∗, σ∗

GBSW) = 1. Let h∗ = HhkH,i∗ (m
∗||σ∗, r∗) and m̄∗ = FhkF,i∗ (h

∗, s∗).
For each signing query (i,m) from A, the challenger returns a signature σGBSW =

(σ, r, s) and stores (m,σGBSW) in Qi. Let h = HhkH,i
(m||σ, r) and m̄ = FhkF,i(h, s) be

the internal values in the signing algorithm. Denote by Q̄i the set collecting all internal
values m̄ when answering the signing queries (i,m). We divide the event Win into three
cases:

– WinS: m̄∗ /∈ Q̄i∗ .
– WinF: There exists (m, (σ, r, s)) ∈ Qi∗ such that m̄ = m̄∗, but (h, s) 6= (h∗, s∗).

12

– WinH: There exists (m, (σ, r, s)) ∈ Qi∗ such that m̄ = m̄∗ and (h, s) = (h∗, s∗), but
(m,σ, r) 6= (m∗, σ∗, r∗).

Claim 1. Pr[WinS] ≤ Advmu-euf-cma
S,µ,A (λ).

Proof of Claim 1. To prove it, we construct a PPT adversary BS against S’s MU-
EUF-CMA security. BS gets ppS and a list of verification keys {vki}i∈[µ] from its chal-
lenger. Also, the challenger provides BS with a signing oracle OSign(·, ·). Then BS gen-
erates ppF, ppH, {(hkF,i, tdF,i)}i∈[µ] and {(hkH,i, tdH,i)}i∈[µ] itself, and sets ppSGBSW :=
(ppS, ppF, ppH), vkGBSW,i := (vki, hkF,i, hkH,i), skGBSW,i := (·, tdH,i, hkF,i, hkH,i). It sends
ppSGBSW and the verification key list {vkGBSW,i}i∈[µ] to A and simulates the strong secu-
rity experiment.

When A asks a signing query (i,m), BS responses as follows.
(a) Choose random r′, s;
(b) Choose random m′, σ′, and compute h := HhkH,i

(m′||σ′, r′);
(c) Compute m̄ := FhkF,i(h, s), and query its own signing oracle to get σ ← OSign(i, m̄);
(d) Invoke r ← H.TdColl(tdH,i,m

′||σ′, r′,m||σ), return σSGBSW := (σ, r, s) to A.
Finally A outputs (i∗,m∗, σ∗

GBSW = (σ∗, r∗, s∗)). If WinS happens, then BS outputs
(i∗, m̄∗, σ∗) as its forgery.

It is easy to see that BS simulates the experiment perfectly. WinS implies m̄∗ /∈
Q̄i∗ and S.Ver(vki∗ , m̄∗, σ∗) = 1. In other words, BS has never asked OSign(i

∗, m̄∗),
and (m̄∗, σ∗) is a valid pair. Therefore, BS breaks S’s MU-EUF-CMA security if WinS
happens.

Claim 2. Pr[WinF] ≤ Advs-mu-cr
F,µ,BF (λ).

Proof of Claim 2. We construct a PPT adversary BF against F’s S-MU-CR security. BF
gets ppF and µ hash keys {hkF,i}i∈[µ] from its own challenger. Recall that in SGBSW,
skGBSW,i = (ski, tdH,i, hkF,i, hkH,i), and we do not use tdF,i in the signing algorithm at
all. That is, BF can simulate S and H itself and embed {hkF,i}i∈[µ] into the verification
key list. Obviously, BF’s simulation is perfect.

If WinF happens, then BF finds a collision of F by outputting (i∗, h, s, h∗, s∗). Hence,
Pr[WinF] ≤ Advs-mu-cr

F,µ,BF (λ).

Claim 3. Pr[WinH] ≤ Advs-mu-cr
H,µ,BH (λ).

Proof of Claim 3. To this end, we construct a PPT adversary BF against H’s S-MU-CR
security. BH gets ppH and µ hash keys {hkH,i}i∈[µ] from its own challenger. Then it
simulates S and F itself, sets ppSGBSW := (ppS, ppF, ppH), hkGBSW,i := (vki, hkF,i, hkH,i),
skGBSW,i := (ski, tdF,i, hkF,i, hkH,i), and sends ppSGBSW and the verification key list to A.

When A asks a signing query (i,m), BS uses trapdoors of F to generate signatures.
In detail, B responses as follows.

(a) Choose random r, s′, random h′, compute m̄ := FhkF,i(h
′, s′);

(b) Invoke σ ← S.Sign(ski, m̄);
(c) Compute h := HhkH,i

(m||σ, r);
(d) Invoke s← F.TdColl(tdF,i, h′, s′, h), return σSGBSW := (σ, r, s) to A.

13

Finally A outputs (i∗,m∗, σ∗
GBSW = (σ∗, r∗, s∗)). If WinH happens, i.e., there exists

(m, (σ, r, s)) ∈ Qi∗ such that h = h∗ and (m,σ, r) 6= (m∗, σ∗, r∗), then BH finds a
collision HhkH,i∗ (m||σ, r) = HhkH,i∗ (m

∗||σ∗, r∗) and outputs (i∗,m||σ, r,m∗||σ∗, r∗).
It remains to prove that BH’s simulation is perfect. This is done by the random

trapdoor collision properties of F and H. Consider a specific signature σGBSW = (σ, r, s).

– In the real experiment, r is computed by trapdoor collision function TdColl(tdH, ·, r′, ·)
for random r′, and s is chosen uniformly at random.

– In BH’s simulation, r is chosen uniformly at random, and s is computed by trapdoor
collision function TdColl(tdF, ·, s′, ·) for random s′.

Since F and H have random trapdoor collision properties, BH’s simulation is identical
to the real experiment.

Theorem 6 follows from Claims 1, 2 and 3. ut

Extension to SIG against Adaptive Corruptions. In some applications, the adver-
sary may corrupt some users and get their signing keys. Security in this case is formalized
by the notion MU-EUF-CMACorr security [4]. MU-EUF-CMACorr security requires sig-
natures of those uncorrupted users to be unforgeable. S-MU-EUF-CMACorr security for
SIG can be defined similarly. Via standard hybrid argument we know, EUF-CMA se-
curity implies MU-EUF-CMACorr security naturally, but with a security loss factor µ.
As suggested in [17], S-MU-EUF-CMACorr secure SIG can be used to achieve stronger
security of matching conversation for authenticated key exchange (AKE).

Note that we cannot transform a tightly MU-EUF-CMACorr secure SIG to a strong
one with S-MU-EUF-CMACorr security, through the extended GBSW transform (i.e.,
using tightly S-MU-CR secure chameleon hash families). The reason is simple: in the
security reduction to H’s S-MU-CR security, BH has no knowledge of the trapdoor of H
(which is a part of signing key), hence it cannot answer corruption queries.

Though the extended GBSW transform does not work, we can resort to the “double-
key” mechanism [5, 17, 15] to convert any tightly S-MU-EUF-CMA secure S to tightly
S-MU-EUF-CMACorr secure S′.

The “double-key” mechanism works as follows. Each user generates two pairs of keys,
(vk1, sk1) and (vk2, sk2) by the key generation algorithm of S, and take (vk1, vk2) as the
verification key and (b, skb) as the signing key of S′. Here b is an independent and random
bit. The signing algorithm of S′ uses skb and signing algorithm of S to generate σ, and
the signature does not contain σ, but a zero knowledge proof π, which proves that either
S.Ver(vk1,m, σ) = 1 or S.Ver(vk2,m, σ) = 1. The verification algorithm outputs 1 if the
proof π is correct. In the security proof from a MU-EUF-CMA secure signature to a MU-
EUF-CMACorr secure signature, the reduction algorithm B can generate a key pair itself,
and embed another key pair, whose sk is unknown to B, to the final verification/signing
key pair. In this way, B can answer corruption queries from A perfectly. Meanwhile,
the verification algorithm does not leak the information about b due to the usage of
or-proof. So B can convert A’s ability against MU-EUF-CMACorr security to its ability
against MU-EUF-CMA security in a tight way.

According to Theorem 6, with the help of CHFdl or CHFrsa or CHFfac in Section
3, we can convert any tightly MU-EUF-CMA secure SIG to tightly S-MU-EUF-CMA

14

secure SIG and then tightly S-MU-EUF-CMACorr secure SIG. Note that we have S-MU-
EUF-CMA secure SIGs, then we can use the “double-key” mechanism [5, 17, 15] to cope
with corruption queries, and get a S-MU-EUF-CMACorr secure SIG, as shown in Fig. 1.

5.2 Online/Offline Signatures, Chameleon Signatures and Proxy
Signatures

The first application of chameleon hash functions was chameleon signatures [22]. Later,
chameleon hash functions were further used to construct efficient online/offline signa-
tures [27], proxy signatures [24, 12], etc. Most of them consider single user setting only.
In this subsection, we show that when the building blocks of chameleon hash families
are replaced by our tightly MU-CR secure CHFs, tightly MU-EUF-CMA secure signa-
tures can be converted to tightly secure online/offline, chameleon, proxy signatures in
the multi-user setting.

Most of these applications in signatures fall in the “hash-sign-switch” paradigm
[27]. That is, there are two key pairs in the system, (vk, sk) for a signature scheme
S, and (hk, td) for a chameleon hash family H. In the first phase, a signature σ is
generated by σ ← S.Sign(sk,Hhk(m

′, r′)), where m′ and r′ are chosen randomly. Next
in the second phase, given the real message m to be signed, a collision is found by
r ← H.TdColl(td,m′, r′,m), and the final signature is (σ, r). One could then verify a
message-signature pair by S.Ver(vk,Hhk(m, r), σ). Which party generates and keeps
(hk, td) depends on the needs of applications. Here we take the generic online/offline
transform (called the ST transform) in [27] as example, and prove its tight security in
the multi-user setting.

Construction of [27]. Let S = (S.Setup,S.KGen,S.Sign,S.Ver) be a signature scheme,
and H = (H.Setup,H.KGen,H.Eval,H.TdColl) be a chameleon hash family. Define the
online/offline signature SST as follows.

1. SST.Setup(1λ). Invoke ppS ← S.Setup(1λ), ppH ← H.Setup(1λ), and return ppSST :=
(ppS, ppH).

2. SST.KGen(ppSST). Invoke (vk, sk) ← S.KGen(ppS), (hk, td) ← H.KGen(ppH), and re-
turn (vkSST , skSST) := ((vk, hk), (sk, td, hk)).

3. SST.Sign(skSST ,m).
– Offline phase (no message given).

(a) Choose random m′, r′, and compute h := Hhk(m
′, r′);

(b) Invoke σ ← S.Sign(sk, h) and store ((m′, r′), h, σ).
– Online phase (given message m).

(a) Retrieve ((m′, r′), h, σ) from the memory;
(b) Invoke r ← H.TdColl(td,m′, r′,m), return σSST := (σ, r).

4. SST.Ver(vkSGBSW ,m, σSST). Parse σSST = (σ, r) and return S.Ver(vk,Hhk(m, r), σ).

Theorem 7. If S is MU-EUF-NCMA secure and H is MU-CR secure, then the on-
line/offline signature scheme SST is MU-EUF-CMA secure. More precisely, for any
PPT adversary A with advantage Advmu-euf-cma

SST,µ,A (λ), there exist PPT adversaries BS and
BH, such that Advmu-euf-cma

SST,µ,A (λ) ≤ Advmu-euf-ncma
S,µ,BS

(λ) + Advmu-cr
H,µ,BH(λ).

15

Proof Sketch. The proof is similar to that in [27] and we give a sketch here. Consider
the MU-EUF-CMA security experiment played between a challenger and an adversary
A. For every signing query (i,m) from A, let (σ, r) be the return signature and h :=
Hhki(m, r). Denote by Li the set collecting all internal values (m, r, h) when answering
the signing queries. Let (i∗,m∗, σ∗

ST = (σ∗, r∗)) be A’s output and Win be the event that
A wins. Win happens iff S.Ver(vki∗ ,Hhki∗ (m

∗, r∗), σ∗) = 1 and m∗ /∈ Qi∗ . We divide it
into two cases.

– Case 1. There exists (m, r, h) ∈ Li∗ s.t. h = Hhki∗ (m
∗, r∗).

– Case 2. For all (m, r, h) ∈ Li∗ , h 6= Hhki∗ (m
∗, r∗).

Case 1 implies a collision of H, hence we can construct a PPT algorithm BH against
H’s MU-CR security.

Case 2 implies that A forges a valid signature σ∗ for Hhki∗ (m
∗, r∗) w.r.t. S, and

Hhki∗ (m
∗, r∗) is different from all values of h signed by S.Sign, hence we can construct a

PPT algorithm BS against S’s MU-EUF-NCMA security. BS generates µ pairs (hki, tdi)
via H.KGen, and chooses Q (maximum number of signing queries) random (m′, r′) and
computes their hash values as the messages to be signed. It sends those hash values to
its own challenger and gets {vki}i∈[µ] and Q signatures. Since BS has trapdoors of H, it
can do the computation of online phase itself. So BS is able to answer signing queries
and simulate the MU-EUF-CMA security experiment for A perfectly.

Since our building blocks H and S are tightly secure, and the security reduction is
tightness preserving, the resulting online/offline signature SST is tightly MU-EUF-CMA
secure. ut

Tightly Secure Chameleon Signatures. Traditional signature schemes allow any
party checking the validity of (m,σ). In some applications, m may contain sensitive
information. Thus, it is desirable for the signer to generate a non-transferable signa-
ture to the recipient. To this end, Krawczyk and Rabin [22] introduced the concept
of chameleon signature to achieve non-transferability, which prevents the recipient of
the signature from disclosing the contents of the signed information to any third party
without the signer’s consent. They also proposed a construction of chameleon signature
from the chameleon hash family, which is quite similar to online/offline signature. In
the construction, the first phase (see the beginning of subsec. 5.2 for the two phases)
was done by the original signer and the second phase was done by the recipient. The
security of chameleon signature was proved in the single user setting in [22].

We can adapt the construction of chameleon signatures in [22] to the multi-user
setting. There are µ users, P1, ..., Pµ, all parties share the same public parameter of
signature scheme S and chameleon hash family H, and each party Pi generates a key
pair (vki, ski) of S and a key pair (hki, tdi) of H. When Pi needs to sign m for Pj , it
chooses random r, generates a signature σ for Hhkj (m, r)||Pj

6, and sends (σ, r) to Pj . Pj

can verify whether (σ, r) is valid by checking whether S.Ver(vki,Hhkj (m, r)||Pj , σ) = 1.

Analysis of Non-Transferability. It is infeasible for Pj to convince a third party
the validity of (m, (σ, r)). This is because Pj has the trapdoor tdj , and it is easy for

6 To prevent Pi denying σ later, the identity of Pj is added.

16

Pj to find a collision such that Hhkj (m, r) = Hhkj (m
′, r′). Hence, Pj may declare that

(m, (σ, r)) is a valid message-signature pair, where σ is an outdated signature signed for
some distinct message m′.

Besides non-transferability, chameleon signatures are required to have other proper-
ties [22].

– Unforgeability. No third party can produce a valid message-signature pair (m, (σ, r))
under vki and hkj , except Pi and Pj (Pj can generate new valid (m, (σ, r)) pairs
with σ generated by Pi previously). Similar to Theorem 7, the unforgeability in the
multi-user setting can be tightly reduced to the MU-EUF-CMA security of S and
MU-CR security of H.

– Denial. In case of dispute, if a judge presents a message-signature triple (m, (σ, r)) to
Pi, then Pi is able to convince the judge to reject it. If S.Ver(vki, Hhkj (m, r)||Pj , σ) 6=
1, obviously, the judge will reject it. If S.Ver(vki, Hhkj (m, r)||Pj , σ) = 1 but Pi did
not ever sign m, then according to unforgeability, Pi must have signed another
message m′ resulting in (m′, (σ, r′)) from which Pj adapted (m, (σ, r)). In this case,
Pj simply presents the judge the previous (m′, (σ, r′)) with m′ 6= m for denial,
and the judge will be convinced if Hhkj (m

′, r′) = Hhkj (m, r)) and m 6= m′. The
denial property is guaranteed by the MU-CR security of chameleon hash and the
unforgeability of the chameleon signature.

– Non-repudiation. If Pi did sign (m, (σ, r)) previously, then it cannot convince a judge
to reject it. In this case, Pi cannot repudiate (m, (σ, r)) if S.Ver(vki, Hhkj (m, r)||Pj , σ)
= 1, since it cannot offer a hash collision under Pj ’s hash key hkj . Similarly, the
non-repudiation property can be reduced to the tight MU-CR security of H.

– Exposure free. Pi can deny a pair (m, (σ, r)) not produced by itself, without exposing
any other message actually it signed. As discussed above, Pi can find a collision
(m1, r1,m2, r2) under Hhkj (·, ·), hence it can (partly) compute tdj and find arbitrary
collisions (as shown below, all our CHFs in Section 3 achieve this property).

As a result, we have the following corollary.

Corollary 1. Combining a tightly MU-CR secure chameleon hash family with a tightly
MU-EUF-CMA secure signature scheme yields a tightly secure chameleon signature
scheme in the multi-user setting.

Analysis of Exposure Free Property. We show chameleon signatures from CHFdl,
CHFrsa and CHFfac achieve the exposure free property [22]. Note that if one can compute
the trapdoor of CHF from a collision, then it can find arbitrary collisions, and the
exposure free property follows.

Let us consider a specific key pair (hk, td).
In CHFdl, a collision (m1, r1,m2, r2) implies that gxm1+r1 = gxm2+r2 , equivalently

xm1 + r1 = xm2 + r2. If m1 = m2, then r1 = r2. So we must have m1 6= m2, and one
can compute the trapdoor x := (r2 − r1)/(m1 −m2).

In CHFrsa, a collision (m1, r1,m2, r2) implies that (xm1r1)
e = (xm2r2)

e, equivalently
xm1−m2 = r2/r1. We must have m1 6= m2 (otherwise r1 = r2). Let α, β be two integers
such that αe + β(m1 −m2) = 1 (α and β can always be found since e is a prime and
e > 2L(λ)), then one can compute the trapdoor x := (r2/r1)

β ·Xα.

17

The analysis of CHFfac is more complex. Let (m1, r1,m2, r2) be a collision such that∏ℓ
k=1(uk)

m1,k · r21 =
∏ℓ

k=1(uk)
m2,k · r22. We divide it in two cases.

Case 1. m1 = m2 but r1 6= r2. In this case, r21 ≡ r22 mod N , equivalently (r1 +
r2)(r1 − r2) = 0. Since r1, r2 ∈ Z+

N and r1 6= r2, anyone can find a factor of N by
computing gcd(r1+r2, N), and then find the (possible) trapdoors7. These trapdoors
are sufficient to find new collisions.

Case 2. m1 6= m2. Define the set S := {k |m1,k 6= m2,k}. Thus we have (
∏

k∈S s
m1,k−m2,k

k)2

= (r2/r1)
2. We stress that this equation is sufficient to achieve the exposure free

property in chameleon signatures. One can choose random m̃1, m̃2 such that {k | m̃1,k 6=
m̃2,k} = S, and (m̃1, r1, m̃2, r2) is a collision too.

Tightly Secure Proxy Signatures. Proxy signature, proposed by Mambo, Usuda and
Okamoto [23], is a variant of signature scheme, where an original signer can delegate its
signing ability to a proxy (usually by a warrant), and enable the proxy to sign messages
on behalf of it. Many proxy signatures are based on chameleon hash functions [24, 12],
where the warrant is a signature for the chameleon hash value Hhk(m

′, r′).
Chameleon signature naturally implies a proxy signature8. Suppose a proxy signa-

ture system containing µ users, where all members share the same public parameter of
signature scheme S and chameleon hash family H. Pi generates its own key pair (vki, ski)
of S and (hki, tdi) of H. Any party Pi can adaptively delegate its signing ability to a
proxy Pj as follows: Pj computes h := Hhkj (m

′, r′) for random (m′, r′), and sends h to
Pi. Then Pi generates a signature σ for h as a warrant and sends it back to Pj . When-
ever there is a real message m to sign for Pj , it uses its trapdoor tdj to find a collision
randomness r such that Hhkj (m, r) = Hhkj (m

′, r′). Finally, the proxy signature is of
the form (σ, r).

If H is CR secure, we can prove the security of the proxy signature system above,
but lose a factor µ (given EUF-CMA secure SIG S) in the security reduction. However,
with the help of tightly MU-CR secure H, we can get a tightly secure proxy signature
system as long as the underlying building block S is tightly MU-EUF-CMA secure. The
analysis is similar to chameleon signatures, and we have the following corollary.

Corollary 2. Combining a tightly MU-CR secure chameleon hash family with a tightly
MU-EUF-CMA secure signature scheme yields a tightly secure proxy signature scheme
in the multi-user setting.

Acknowledgments. This work is supported by National Natural Science Foundation of
China (No. 61925207), Guangdong Major Project of Basic and Applied Basic Research
(2019B030302008), and Major Project of the Ministry of Industry and Information
Technology of China (2018-36).

References

[1] Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-
resistant group signature scheme. In: Advances in Cryptology - CRYPTO 2000, 20th Annual

7 For a hash key uk, there exist four possible sk such that uk = s2k.
8 The detailed security requirements of proxy signature depend on the needs of the scenarios. We

consider one-time proxy signatures [24] here.

18

International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2000, Pro-
ceedings. pp. 255–270 (2000), https://doi.org/10.1007/3-540-44598-6_16

[2] Ateniese, G., de Medeiros, B.: Identity-based chameleon hash and applications. In: Financial Cryp-
tography, 8th International Conference, FC 2004, Key West, FL, USA, February 9-12, 2004. Re-
vised Papers. pp. 164–180 (2004), https://doi.org/10.1007/978-3-540-27809-2_19

[3] Ateniese, G., de Medeiros, B.: On the key exposure problem in chameleon hashes. In: Se-
curity in Communication Networks, 4th International Conference, SCN 2004, Amalfi, Italy,
September 8-10, 2004, Revised Selected Papers. pp. 165–179 (2004), https://doi.org/10.1007/
978-3-540-30598-9_12

[4] Bader, C.: Efficient signatures with tight real world security in the random-oracle model. In:
Cryptology and Network Security - 13th International Conference, CANS 2014, Heraklion,
Crete, Greece, October 22-24, 2014. Proceedings. pp. 370–383 (2014), https://doi.org/10.1007/
978-3-319-12280-9_24

[5] Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated key exchange.
In: Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw,
Poland, March 23-25, 2015, Proceedings, Part I. pp. 629–658 (2015), https://doi.org/10.1007/
978-3-662-46494-6_26

[6] Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and
signature schemes. In: Advances in Cryptology - EUROCRYPT 2004, International Conference
on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6,
2004, Proceedings. pp. 268–286 (2004), https://doi.org/10.1007/978-3-540-24676-3_17

[7] Bellare, M., Ristov, T.: A characterization of chameleon hash functions and new, efficient designs.
J. Cryptology 27(4), 799–823 (2014), https://doi.org/10.1007/s00145-013-9155-8

[8] Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon hash functions.
In: Public-Key Cryptography - PKC 2015 - 18th IACR International Conference on Practice
and Theory in Public-Key Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015,
Proceedings. pp. 256–279 (2015), https://doi.org/10.1007/978-3-662-46447-2_12

[9] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Advances in Cryptology
- CRYPTO 2004, 24th Annual International CryptologyConference, Santa Barbara, Califor-
nia, USA, August 15-19, 2004, Proceedings. pp. 41–55 (2004), https://doi.org/10.1007/
978-3-540-28628-8_3

[10] Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on computational diffie-
hellman. In: Public Key Cryptography - PKC 2006, 9th International Conference on Theory and
Practice of Public-Key Cryptography, New York, NY, USA, April 24-26, 2006, Proceedings. pp.
229–240 (2006), https://doi.org/10.1007/11745853_15

[11] Camenisch, J., Derler, D., Krenn, S., Pöhls, H.C., Samelin, K., Slamanig, D.: Chameleon-hashes
with ephemeral trapdoors - and applications to invisible sanitizable signatures. In: Public-Key
Cryptography - PKC 2017 - 20th IACR International Conference on Practice and Theory in
Public-Key Cryptography, Amsterdam, The Netherlands, March 28-31, 2017, Proceedings, Part
II. pp. 152–182 (2017), https://doi.org/10.1007/978-3-662-54388-7_6

[12] Chandrasekhar, S., Chakrabarti, S., Singhal, M., Calvert, K.L.: Efficient proxy signatures based
on trapdoor hash functions. IET Information Security 4(4), 322–332 (2010), https://doi.org/
10.1049/iet-ifs.2009.0204

[13] Contini, S., Lenstra, A.K., Steinfeld, R.: Vsh, an efficient and provable collision-resistant hash
function. In: Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 -
June 1, 2006, Proceedings. pp. 165–182 (2006), https://doi.org/10.1007/11761679_11

[14] Damgård, I.: Collision free hash functions and public key signature schemes. In: Advances in
Cryptology - EUROCRYPT ’87, Workshop on the Theory and Application of of Cryptographic
Techniques, Amsterdam, The Netherlands, April 13-15, 1987, Proceedings. pp. 203–216 (1987),
https://doi.org/10.1007/3-540-39118-5_19

[15] Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with tight multi-user
security. In: Garay, J.A. (ed.) Public-Key Cryptography - PKC 2021 - 24th IACR International
Conference on Practice and Theory of Public Key Cryptography, Virtual Event, May 10-13, 2021,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12711, pp. 1–31. Springer (2021),
https://doi.org/10.1007/978-3-030-75248-4_1

19

https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/978-3-540-27809-2_19
https://doi.org/10.1007/978-3-540-30598-9_12
https://doi.org/10.1007/978-3-540-30598-9_12
https://doi.org/10.1007/978-3-319-12280-9_24
https://doi.org/10.1007/978-3-319-12280-9_24
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-540-24676-3_17
https://doi.org/10.1007/s00145-013-9155-8
https://doi.org/10.1007/978-3-662-46447-2_12
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/11745853_15
https://doi.org/10.1007/978-3-662-54388-7_6
https://doi.org/10.1049/iet-ifs.2009.0204
https://doi.org/10.1049/iet-ifs.2009.0204
https://doi.org/10.1007/11761679_11
https://doi.org/10.1007/3-540-39118-5_19
https://doi.org/10.1007/978-3-030-75248-4_1

[16] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature
problems. In: Advances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986,
Proceedings. pp. 186–194 (1986), https://doi.org/10.1007/3-540-47721-7_12

[17] Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authenticated key
exchange. In: Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II. pp. 95–125 (2018),
https://doi.org/10.1007/978-3-319-96881-0_4

[18] Han, S., Jager, T., Kiltz, E., Liu, S., Pan, J., Riepel, D., Schäge, S.: Authenticated key exchange and
signatures with tight security in the standard model. In: Malkin, T., Peikert, C. (eds.) Advances in
Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16-20, 2021, Proceedings, Part IV. Lecture Notes in Computer Science, vol.
12828, pp. 670–700. Springer (2021), https://doi.org/10.1007/978-3-030-84259-8_23

[19] Harn, L., Hsin, W., Lin, C.: Efficient on-line/off-line signature schemes based on multiple-collision
trapdoor hash families. Comput. J. 53(9), 1478–1484 (2010), https://doi.org/10.1093/comjnl/
bxp044

[20] Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. Des. Codes Cryptogr.
80(1), 29–61 (2016), https://doi.org/10.1007/s10623-015-0062-x

[21] Khalili, M., Dakhilalian, M., Susilo, W.: Efficient chameleon hash functions in the enhanced col-
lision resistant model. Inf. Sci. 510, 155–164 (2020), https://doi.org/10.1016/j.ins.2019.09.
001

[22] Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. IACR Cryptology ePrint Archive
1998, 10 (1998), http://eprint.iacr.org/1998/010

[23] Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing operation. In: CCS
’96, Proceedings of the 3rd ACM Conference on Computer and Communications Security, New
Delhi, India, March 14-16, 1996. pp. 48–57 (1996), https://doi.org/10.1145/238168.238185

[24] Mehta, M., Harn, L.: Efficient one-time proxy signatures. IEE Proceedings - Communications
152(2), 129–133 (April 2005)

[25] Micali, S., Shamir, A.: An improvement of the fiat-shamir identification and signature scheme.
In: Advances in Cryptology - CRYPTO ’88, 8th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 21-25, 1988, Proceedings. pp. 244–247 (1988), https:
//doi.org/10.1007/0-387-34799-2_18

[26] Okamoto, T.: Provably secure and practical identification schemes and corresponding signature
schemes. In: Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings. pp. 31–53 (1992),
https://doi.org/10.1007/3-540-48071-4_3

[27] Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Advances in Cryptol-
ogy - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara, Cali-
fornia, USA, August 19-23, 2001, Proceedings. pp. 355–367 (2001), https://doi.org/10.1007/
3-540-44647-8_21

[28] Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly unforgeable signature into
a strongly unforgeable signature. In: Topics in Cryptology - CT-RSA 2007, The Cryptographers’
Track at the RSA Conference 2007, San Francisco, CA, USA, February 5-9, 2007, Proceedings.
pp. 357–371 (2007), https://doi.org/10.1007/11967668_23

[29] Zhang, X., Liu, S., Gu, D., Liu, J.K.: A generic construction of tightly secure signatures in the
multi-user setting. Theor. Comput. Sci. 775, 32–52 (2019), https://doi.org/10.1016/j.tcs.
2018.12.012

[30] Zhang, X., Liu, S., Pan, J., Gu, D.: Tightly secure signature schemes from the LWE and subset
sum assumptions. Theor. Comput. Sci. 795, 326–344 (2019), https://doi.org/10.1016/j.tcs.
2019.07.015

20

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1093/comjnl/bxp044
https://doi.org/10.1093/comjnl/bxp044
https://doi.org/10.1007/s10623-015-0062-x
https://doi.org/10.1016/j.ins.2019.09.001
https://doi.org/10.1016/j.ins.2019.09.001
http://eprint.iacr.org/1998/010
https://doi.org/10.1145/238168.238185
https://doi.org/10.1007/0-387-34799-2_18
https://doi.org/10.1007/0-387-34799-2_18
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/3-540-44647-8_21
https://doi.org/10.1007/3-540-44647-8_21
https://doi.org/10.1007/11967668_23
https://doi.org/10.1016/j.tcs.2018.12.012
https://doi.org/10.1016/j.tcs.2018.12.012
https://doi.org/10.1016/j.tcs.2019.07.015
https://doi.org/10.1016/j.tcs.2019.07.015

	Tightly Secure Chameleon Hash Functions in the Multi-User Setting and Their Applications

