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Abstract. The Montgomery Ladder is widely used for implementing the
scalar multiplication in elliptic curve cryptographic designs. This algo-
rithm is efficient and provides a natural robustness against (simple) side-
channel attacks. Previous works however showed that implementations of
the Montgomery Ladder using Lopez-Dahab projective coordinates eas-
ily leak the value of the most significant bits of the secret scalar, which
led to a full key recovery in an attack known as LadderLeak [3]. In light of
such leakage, we analyse further popular methods for implementing the
Montgomery Ladder. We first consider open source software implemen-
tations of the X25519 protocol which implement the Montgomery Lad-
der based on the ladderstep algorithm from Düll et al. [15]. We confirm
via power measurements that these implementations also easily leak the
most significant scalar bits, even when implementing Z-coordinate ran-
domisations. We thus propose simple modifications of the algorithm and
its handling of the most significant bits and show the effectiveness of
our modifications via experimental results. Particularly, our re-designs
of the algorithm do not incurring significant efficiency penalties. As a
second case study, we consider open source hardware implementations
of the Montgomery Ladder based on the complete addition formulas for
prime order elliptic curves, where we observe the exact same leakage. As
we explain, the most significant bits in implementations of the complete
addition formulas can be protected in an analogous way as we do for
Curve25519 in our first case study.

Keywords: ECC · Montgomery Ladder · Curve25519 · Complete addition for-
mulas · Side-channel analysis

1 Introduction

Elliptic curve and isogeny based cryptographic implementations commonly make
use of the Montgomery Ladder for performing the scalar point multiplication
[21,13]. The preference for the Montgomery Ladder comes from its efficiency
and also from its natural robustness against simple side channel attacks, such
? Work partially done while at Radboud University.



as timing, simple power analysis (SPA), and simple electromagnetic analysis. Its
robustness comes from the fact that for each loop iteration, we always perform a
point addition followed by a point doubling, independent of the bit value we are
processing for the scalar (see Algorithm 1). Nevertheless, previous works have
shown that implementations of the Montgomery Ladder based on Lopez-Dahab
projective coordinates [22] easily leak at least one bit of the scalar via simple
side channel observations [3,9]. Lopez-Dahab projective coordinates represent
the points on the curve only by means of their x-coordinate in the form x = X

Z
and allow for fast computation of the Montgomery Ladder since no divisions
need to be performed during the main loop. The leakage in the implementations
is caused by the initialisation phase of the algorithm, where the projective rep-
resentation of the input point is defined as x = x

1 and thus one set of input
variables of the algorithm is initialised as X1 = x and Z1 = 1. The other input
variables are initialised with the values X2 = x4+b and Z2 = x2. As we then en-
ter the main loop of the algorithm, we perform some multiplications with Z1 = 1
as operand. However the number of such multiplications varies depending on the
value of the key bit we are processing: if the first loop iteration is performed for a
key bit with value 1, we perform only one multiplication with Z1 = 1 as operand.
On the other hand if the first loop iteration is performed for a key bit with value
0, then we perform three multiplications with Z1 = 1 as operand. Multiplica-
tions with operands with value 1 usually consume a notably smaller amount of
power than multiplications between two larger values.4 Thus, if we observe the
region of a power trace corresponding to the first loop iteration of the Mont-
gomery Ladder using Lopez-Dahab projective coordinates, we can easily tell the
value of the key bit being processed. This value corresponds to the second most
significant bit of the key, assuming that the most significant bit is always 1.

Algorithm 1 Montgomery Ladder
Inputs: k = (kn−1, ..., k0),
G = (Gx, Gy, Gz)
Output: R0 ← k ·G
R0 ← O, R1 ← G
for i from n− 1 downto 0 do

if ki = 1 then
R0 ← R0 +R1, R1 ← 2R1

else
R1 ← R0 +R1, R0 ← 2R0

end if
end for

Although we are only talking
about one bit, the LadderLeak at-
tack [3] took advantage of this leak-
age to fully break the ECDSA proto-
col implemented in recent OpenSSL
versions. They showed how this small
leakage can be exploited together with
advanced approaches for solving the
hidden number problem [11], leading
thus to a complete recovery of the se-
cret scalar. In an earlier work, the au-
thors of [9] also identified the same
leakage on a hardware implementation of the Montgomery Ladder. They showed
the leakage via simulated power traces and proposed a simple countermeasure: a
re-design of the initialisation phase of the algorithm as well as a special treatment

4 In this paper we will use the term balanced value to refer to large values or bitstrings
containing similar amounts of 0s and 1s. While we expect operations on such values
to consume a notably larger amount of power than operations on small values like
zero or one, this may not always be clearly visible due, e.g. to software optimisations.
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of the first loop iteration. The idea is that no registers are initialised with a value
equal 1 and when the loop is entered for the first time; we do not need to perform
multiplications with operands equal to 1 since the results of such operations are
already known. The authors showed that implementing the Montgomery Ladder
in this alternative way barely implies any additional costs in terms of execution
time, area and power consumption.

In this paper we consider further case studies of the Montgomery Ladder
when implemented with other projective coordinates or other point addition
and doubling algorithms. We consider both, software and hardware ECC imple-
mentations over prime fields and explore whether the aforementioned leakage
is present. We confirm its presence, even when Z-coordinate randomisation is
employed, and propose corresponding countermeasures to mitigate the easy ex-
traction of the most significant scalar bit(s). Our work is motivated by the results
of the LadderLeak attack, which showed how such leakage could be exploited,
but also by the fact that previous works showed that mitigating such leakage
could be done in a simple and efficient way. Below we elaborate on the imple-
mentations we study and modify in this paper.

1.1 Software implementations of Curve25519

We begin our studies with a software implementation of Curve25519 based on
the ladderstep algorithm introduced in [15] (see Algorithm 3 below). This algo-
rithm is a popular choice for implementing the X25519 key-exchange protocol in
software [7] (see [25] for alternative implementations of this algorithm and [14]
for a tutorial on implementations of Curve25519 on ARM Cortex-M0). Con-
cretely, we consider a recent open source implementation of X25519 from [4].
This implementation performs the scalar multiplications via the Montgomery
Ladder as described in Algorithm 2 and the ladderstep function is implemented
according to Algorithm 3.5 Note that Algorithm 2 does not assume that the
most significant bit of the scalar has a value equal to 1. Instead, the algorithm
initialises the registers X1, Z1, X2, Z2 with values corresponding to the point at
infinity and the input point xP respectively, and then the algorithm executes the
ladderstep function for the most significant bit of k, independently of its value.
Clearly, if the first loop iteration(s) is (are) executed for scalar bits with value
0, we know that the resulting outputs of the loops are basically equal to their
input values, and thus, such loop iterations are not really necessary. However,
the algorithm is implemented in this way with the scope of protecting the length
of the key with respect to timing and side channel attacks. That is, if we only
start executing the main loop of the algorithm once we’ve reached the first key
bit with value 1, we would obtain power traces of different sizes, depending on
where this first 1 is located. Implementing the Montgomery Ladder according

5 Note that in the X25519 protocol, the most significant (254th) bit of the secret
scalars is always set to 1; this is done by anding the most significant scalar byte with
0x7F|0x40 in [4]. However, since we consider the ECDSA protocol then the most
significant scalar bits can be 0 and we need to consider fully random scalars.
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to Algorithm 2 also relaxes the assumption that the most significant bit of the
scalar is always 1, and thus we always talk about a key space of size 2|k| and not
of size 2|k|−1, which (in theory) makes brute force attacks less feasible.

However as we show in this paper, this approach does not really protect
the values of the most significant bits (MSBs) of the scalar when considering
SPA. Namely, loop iterations for MSBs with value 0 can be easily distinguished
from the rest of the loop iterations, and thus it is easy for an adversary to
extract all MSBs of the scalar up to (and including) the first 1. This happens
because the loop iterations for MSBs with value 0 have a notably different power
consumption than the rest, given that many operations performed within those
loops use operands with the value 0 or 1. Such operands are only overwritten with
larger, balanced values once we finally iterate a loop for a key bit with value 1.

Leakage on DPA-protected implementations. We also verify the presence of this
leakage on the second implementation from [4] (see their Algorithm 2), which
is an SCA-protected implementation of ephemeral X25519 that randomises the
projective representation of the input value. However, the leakage is still present
since the input coordinates representing the point at infinity are initialised with
the values of 0 and 1. We thus show that projective coordinate randomisation
does not protect the MSBs of Curve25519 implementations.

Countermeasure. We modify Algorithm 2 to remove the aforementioned leak-
age in a simple, but effective way (see Algorithm 6). Our approach relies on al-
ways executing the ladderstep function using balanced operands as inputs. This
way, the corresponding measurements always have similarly looking patterns and
it is not easy to determine when the first loop iteration for a key bit with value
1 is executed. Our approach is implemented as follows. We initialise all input
variables X1, Z1, X2, Z2 with randomly chosen, balanced values. Additionally,
we use two new variables W1 and W2 initialised with values needed for the first
ladderstep execution for a scalar bit with value 1. These values are the result
of additions and subtractions with operands with value 1, and we pre-calculate
them to avoid performing such operations during ladderstep. Now, if the most
significant scalar bit is 0, we execute the normal ladderstep from Algorithm 3,
but with balanced input variables. Note also that the outputs of these loops are
irrelevant for the actual calculation of kP . We repeat this process for all key bits
until we reach the first scalar bit with value 1. For this scalar bit, we execute a
special version of ladderstep (see Algorithm 7), where we use the pre-calculated
W1 and W2. After this loop iteration, we finally have all variables X1, Z1, X2, Z2

overwritten with correct, balanced values. Thus from this point on, we can sim-
ply continue with the regular execution of the Montgomery Ladder using the
standard ladderstep from Algorithm 3. We avoid potential operation leakage by
ensuring that the special and regular ladderstep both consist of the same opera-
tion sequence, and by using only constant-time operations.

For implementing the countermeasure described above, we consider two al-
ternative software techniques and compare the costs of each. First we make use of
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arithmetic constant-time “conditional swap” operations (referred to as cswap op-
erations in this paper) for alternating between the two versions of the ladderstep
function as described above. The cswap(X,Y, c) routine simply swaps the first
two inputs if and only if c = 1. This is achieved without traditional conditional
statements in the following way. First c ∈ {0, 1} is converted to the form c′ = −c
(now c′ = 0 if c = 0 and c′ = 0xFF..., otherwise). Then, the conditional swap
on the first argument (and similarly on the second one) is performed arithmeti-
cally: X ˆ= c′ & (XˆY ). Thus, the value of X remains the same for c′ = 0 and
is overwritten with Y , otherwise.

The resulting re-design using cswap, while secure, incurs a notable perfor-
mance penalty due to the extra arithmetic operations. However, our second re-
design alternative is based on secret-memory access and incurs a much smaller
performance penalty. Here, instead of doing a swap depending on c, we put X
and Y into an array and we access them through memory access depending
on the value of c. Note that in our implementation, c depends directly on the
secret scalar, hence the name secret-memory access. We note that the security
of our second re-design may be dependent on the architecture used for running
the code. Namely if memory access is not always constant-time (as is the case
for architectures equipped with memory caching, for example), some small key
dependencies may be visible on power consumption traces.

We would like to underline that the above countermeasures aim to efficiently
protect against SPA, but not against more sophisticated single-trace attacks,
like [26], for which extra costly countermeasures are required.

1.2 Hardware implementations of the complete addition formulas

Our second case study is performed analogously to our first one, but we consider
hardware implementations based on the complete addition formulas from Renes,
Costello and Batina [28]. These formulas gained popularity since they allow ad-
dition of any two points on Weierstrass curves and avoid thus exceptions during
the computations. Moreover, these formulas can be used for implementing both
the point addition and point doubling operations within the main loop of the
Montgomery Ladder. We consider an open-source implementation presented in
[27] which is based on Algorithm 8. This implementation does not assume that
the MSB of the scalar is equal to 1 and for each loop iteration, it executes Al-
gorithm 8 twice: once for a point addition and once for a point doubling. As for
our previous case study, we show via power consumption measurements that the
MSBs of the scalar can be (very) easily extracted from this hardware implemen-
tation. We believe that a countermeasure in the same style as for Curve25519
can be proposed and we leave that for future work.

Exploiting the leakage. Besides easily revealing a few bits of the scalar, the
leakage discussed in this paper may condition the security of ECC and isogeny-
based cryptographic designs in further ways. The leakage may be particularly
useful for preparing template [5,23] and single-trace horizontal attacks [17,20],
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Algorithm 2 Montgomery Ladder for x-coordinate-based scalar multiplication
on E : y2 = x3 + 486662x2 + x [4]
Inputs: k ∈ {0, ..., 2255 − 1}, xP
X1 ← 1; Z1 ← 0; X2 ← xP ; Z2 ← 1; p← 0
for i← 254 downto 0 do

c← k[i]⊕ p; p← k[i] . k[i] denotes bit i of k
(X1, Z1, X2, Z2)← cswap(X1, Z1, X2, Z2, c)
(X1, Z1, X2, Z2)← ladderstep(xp, X1, Z1, X2, Z2)

end for
return (X1, Z1)

since it easily reveals the length of loop executions. It also may reveal time
interval cycles when specific operations such as multiplications take place, which
is useful information for performing fault injection [10]. On implementations of
the complete addition formulas, the leakage might let an adversary distinguish a
point addition from a doubling. Namely when performing a doubling, we perform
a large amount of multiplications times 0 and times 1, leading thus to very
particular power trace profiles (see Section 5). Finally, this leakage can be used
for zero value attacks [1,16], which require the knowledge of some initial scalar
bits.

2 Background and experimental setup

In [24] Montgomery introduced efficient x-coordinate-only formulas for comput-
ing addition and doubling operations between points in elliptic curves. These for-
mulas would later be simply referred to as the Montgomery Ladder, described in
Algorithm 2. The ladderstep process corresponds to a point addition and a point
doubling operation. There exist different formulas for implementing the ladder-
step process using projective coordinates (e.g. [22,15,28]), and the choice of the
formulae is usually determined by the type of implementation we are considering
(software vs hardware, type of curve used, etc.). In [15] the authors proposed Al-
gorithm 3 for efficient software implementations of Curve25519. Implementations
based on this algorithm only need to make use of two extra variables (T1 and
T2) for the ladderstep processes. Additionally, each ladderstep process consists of
only 6 multiplications and 4 squarings, plus a few addition and subtraction op-
erations. This method of implementing the ladderstep has also been embraced
on a recent work [4], where the authors implement the X25519 key exchange
protocol in combination of a large amount of side-channel countermeasures.

Curve25519. The X25519 key-exchange protocol is based on Curve25519 de-
fined over F2255−19 as: E : y2 = x3 + 486662x2 + x. The protocol uses 255 bit
long public and secret keys, where the secret key is a randomly generated scalar
k and the public key corresponds to a little-endian encoding of the x-coordinate
of a point P on the curve. In the protocol, the shared secret corresponds to the
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Algorithm 3 Single Montgomery ladder step on Curve25519 from [15]
Inputs: xP , X1, Z1, X2, Z2

1: T1 ← X2 + Z2

2: X2 ← X2 − Z2

3: Z2 ← X1 + Z1

4: X1 ← X1 − Z1

5: T1 ← T1 ·X1

6: X2 ← X2 · Z2

7: Z2 ← Z2 · Z2

8: X1 ← X1 ·X1

9: T2 ← Z2 −X1

10: Z1 ← T2 · a24
11: Z1 ← Z1 +X1

12: Z1 ← T2 · Z1

13: X1 ← Z2 ·X1

14: Z2 ← T1 −X2

15: Z2 ← Z2 · Z2

16: Z2 ← Z2 · xP
17: X2 ← T1 +X2

18: X2 ← X2 ·X2

return (X1, Z1, X2, Z2)

resulting point on the curve from the scalar multiplication of kP . For calculating
kP , we use the Montgomery Ladder algorithm. Note that in X25519, the most
significant scalar bit is always set to 1, and if the scalar needs to be a multiple
of word length (that is 256 bits for many architectures) then it is extended with
zeroes. However, note that Curve25519 is also used in EdDSA protocols, which
are ECC-based signature schemes [8].6 Here, the scalar is the resulting hash of
the message to be signed together with an auxiliary parameter b. Thus in this
case, the resulting scalar does not have a fixed value for its most significant bits.

Complete addition formulas. Renes et al. [28] introduced the complete addi-
tion formulas for prime order elliptic curves, which are optimisations on formulas
presented earlier by Bosma and Lenstra in [12]. These formulas are said to be
complete on prime order Weirstrass curves of the form y2 = x3 + ax + b since
they can compute the sum of any two points on these curves. Moreover, these
addition formulas can be used for implementing both, the point addition and
point doubling operations within an implementation of the Montgomery Lad-
der. It is believed that using the same addition formula for implementing both
operations may provide additional robustness in light of SCA attacks, since it
becomes more difficult to distinguish a point addition from a point doubling
operation, and behavioural effects of branching can be easily mitigated.

These formulas also use projective representation of the input points, in the
form P = (X,Y, Z). Thus, we additionally use the y-coordinate of the input
points for these formulas. The authors present one general addition formula and
further optimisations for special families of curves, in cases where the constant
a has the values -3 or 0. In this paper, we will focus on an open source imple-
mentation of Algorithm 7 of [28], described below in Algorithm 8. This flavour
of the formula is applicable for short Weierstrass curves which set the constant
a = 0. As the authors explain, such a curve has appeared in Certicom’s SEC-2
standard [29] which specifies the curve secp256k1, used in the Bitcoin protocol.

6 We refer to EdDSA with the parameters of Curve25519 as Ed25519 [7].
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2.1 Experimental setup and side-channel evaluation

We perform our experiments and verifications with respect to three open source
implementations. The first two correspond to implementations from [4], which
are designs of X25519 using Montgomery Ladder for performing scalar multi-
plications. For simplicity and for obtaining a general result, we first focus on
the plain and unprotected design from the repository, which is an implementa-
tion of the Montgomery Ladder according to Algorithm 2, and implements the
ladderstep according to Algorithm 3. We will then show that the second design
from the repository, which implements some SCA countermeasures, also leaks
the most significant bits of the scalar. We run these designs on a Cortex-M4
on an STM32F407IGT6 board clocked at 168MHz. For side-channel evaluation
of the designs, we measure current using the Riscure Current Probe [30] and
we collect the traces using the PicoScope 3406D oscilloscope with the sampling
frequency of 109 samples per second. Finally for side-channel analysis we use
the Inspector software by Riscure [31]. Subsequently, we re-design Algorithms 2
and 3 and propose countermeasures. We test our new designs by performing
experiments on the same experimental setup as described above.

We conduct our second case study on the hardware accelerator implementing
the Montgomery Ladder using the complete addition formulas [27]. We run the
design on an FPGA SAKURA-G board [19] and measure its power consumption
via a Teledyne Lecroy Waverunner 8404M oscilloscope with the sampling of
frequency 108 samples per second.

3 Leakage on Curve25519

In this section we analyse the Montgomery Ladder implemented according to
Algorithms 2 and 3 and explain how the most significant scalar bits can be ex-
tracted via SPA. We confirm our intuitions via experimental results by measuring
the power consumption of the algorithm when running on a microcontroller.

3.1 Initial loop iterations

We now focus on Algorithm 2, whereby the ladderstep process is defined in Algo-
rithm 3. As we see, the input variables are initialised as X1 ← 1,
Z1 ← 0, X2 ← xP , and Z2 ← 1. If the most significant scalar bit equals 0
then all variables will hold these values when we enter the ladderstep process.
Otherwise, the cswap operation will be executed and the variables will have the
values X1 = xP , Z1 = 1, X2 = 1, Z2 = 0. We first focus on the former case. In
the following, we refer to k[0] as the most significant bit of the scalar.

Case k[0] = 0. Algorithm 4 shows the explicit operand values that will be used
during the first execution of ladderstep if the most significant bit of the scalar
has a value of 0. We highlight in gray all operations that will be performed with
a variable with value 1 or 0 as operand, or operations where the variables are not
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Algorithm 4 Ladder step when entered just after the initialisation for k[0] = 0

Inputs: xP , X1 = 1, Z1 = 0, X2 = xp, Z2 = 1

1: T1 ← xP + 1
2: X2 ← xP − 1
3: Z2 ← 1 + 0
4: X1 ← 1− 0
5: T1 ← T1 · 1
6: X2 ← X2 · 1
7: Z2 ← 1 · 1
8: X1 ← 1 · 1
9: T2 ← 1− 1 = 0
10: Z1 ← 0 · a24

11: Z1 ← 0 + 1
12: Z1 ← 0 · 1
13: X1 ← 1 · 1
14: Z2 ← (xP + 1)− (xP − 1) = 2
15: Z2 ← 2 · 2 = 4
16: Z2 ← 4 · xP
17: X2 ← (xP + 1) + (xP − 1) = 2xP
18: X2 ← 2xP · 2xP = 4x2P

return (X1 = 1, Z1 = 0);
(X2 = 4x2P , Z2 = 4xP )

overwritten with any new values. Particularly interesting are the multiplications
performed in steps 5 through 8 and in step 13, which are all multiplications with
at least one operand with value 1. In steps 10 and 12, we perform multiplications
with operands with value 0. We can expect to see very small power consumption
peaks in the power trace regions corresponding to the execution of these steps.

Note that by the end of the process, i.e. by the end of this first loop iteration,
the variables X1 and Z1 preserve their values of 1 and 0 respectively.7 Moreover,
forX2 and Z2, note that X2

Z2
= 4x2

4x = x
1 , i.e. these projective coordinates preserve

their original value as well. Thus, the input values for the next loop iteration
(for the second bit of the scalar) are equivalent to the input values for the first
iteration. If the second loop iteration is executed again for a key bit with value
0, i.e. if k[1] = 0, we have basically the same situation as the one described in
Algorithm 4. Namely, although variable Z2 enters the loop with a value different
from 1, Z2 is quickly overwritten in step 3 with a value equal to 1. This holds
for all following loop iterations until we finally process a key bit with value 1.

Case k[0] = 1. We now analyse the first ladderstep execution for a key bit
with value equal to 1. Recall that when executing the ladderstep for a key bit
with value 1, we first swap the content of the variables via the cswap operation.
Thus the variables enter the loop with values X1 = xP , Z1 = 1, X2 = 1, Z2 = 0.
Recall that the values of X2 and Z2 may vary from xP and 1 respectively if the
ladderstep function was previously executed for a key bit with value 0. However,
the variables will retain the relation X1

Z1
= x

1 . For simplicity, we assume here that
Z1 = 1. Algorithm 5 shows the explicit operand values that will be used during
this loop execution. In this algorithm, the variables wi denote some operand
value larger than 1 (usually, some balanced operand value). As we can see, only
steps 5 and 6 consist of multiplications with operands with value 1.

We can expect higher power consumption peaks on the power trace region
corresponding to this execution of the ladderstep, in comparison to the regions
7 Observe that in Algorithm 4 (and in all algorithms in this paper) “=” denotes only
the equality relation and “←” is used for assignment.
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Algorithm 5 Ladder step executed for the first scalar bit equal to 1 (k[i] = 1)
Inputs: xP , X1 = xP , Z1 = 1, X2 = 1, Z2 = 0

1: T1 ← 1 + 0
2: X2 ← 1− 0
3: Z2 ← xP + 1
4: X1 ← xP − 1
5: T1 ← 1 · (xP + 1)
6: X2 ← 1 · (xP − 1)
7: Z2 ← (xP + 1) · (xP + 1) = (xP + 1)2

8: X1 ← (xP − 1) · (xP − 1) = (xP − 1)2

9: T2 ← (xP + 1)2 − (xP − 1)2 = w1

10: Z1 ← w1 · a24 = w2

11: Z1 ← w2 + (xP − 1)2 = w3

12: Z1 ← w1 · w3 = w4

13: X1 ← (xP + 1)2 · (xP − 1)2

14: Z2 ← (xP − 1)− (xP + 1) = w5

15: Z2 ← w5 · w5 = w6

16: Z2 ← w6 · xP
17: X2 ← (xP − 1) + (xP + 1) = w7

18: X2 ← w7 · w7 = w8

return
(X1 = (xP +1)2 · (xP − 1)2, Z1 = w4);
(X2 = w8, Z2 = w6xP )

corresponding to the k[0] = 0 case. Moreover, note that by the end of the loop,
all variables have been overwritten with some more balanced values. Thus in all
following executions of ladderstep, we can expect to see high power consumption
peaks. Next, we verify our assumptions via power consumption measurements.

3.2 Experimental verification

We run the implementation of the Montgomery Ladder with selected scalar
values, and record its power consumption as described in Section 2.1. We consider
cases where the most significant bit(s) of the scalar are 0s and cases where the
most significant bit of the scalar is 1. More concretely, we consider two keys
with the following values for their first bits: k1[0..7] = 0x04 = 00000100 and
k2[0..7] = 0x7F = 01111111.8 When comparing the power traces generated for
each key, we expect notably different power consumption profiles for the regions
corresponding to the processing of the first 5 bits of the scalars. After that, we
expect to see very similar power consumption profiles.

Figure 1 shows two power traces overlapped. The blue coloured trace corre-
sponds to the execution of the algorithm on k1 and a fixed input point P .9 The
yellow coloured trace corresponds to the execution with k2 and the same input
P . We mark in the red box the regions corresponding to the most significant bits
of the scalars. As we can observe, these regions differ notably from each other
and they do not align. The remaining regions of the power traces align very well
with each other, since they correspond to executions of the ladderstep where
we always use operands with balanced values. We repeated the experiment in a
similar setting but with random input points and the result was very similar.

In Figure 2 we include power traces measured on the second implementa-
tion from [4], which is also an implementation of Algorithm 2, but additionally
protected with projective Z-coordinate randomisation. We can observe a very

8 Note that 256th bit of the scalar is always set to 0 since p = 2255 − 19.
9 Px = 0x67C5590EF5591AEEE312308D155579DC042E497FEC764BB3CAF3DE88597B8C24.
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Fig. 1. Comparison of power profiles with scalars starting with 0x04 and 0x7F.

Fig. 2. Comparison of power profiles with scalars starting with 0x04 and 0x7F when
the Z-coordinate is randomized.

similar leakage as in Figure 1.10 As explained in the introduction, the projective
randomisation is applied only to the variables corresponding to the input point
P , but not to the variables corresponding to the point at infinity and thus, many
operations with operands equal to 1 or 0 are performed during the initial loops.

4 Protecting the most significant bits in Curve25519

We now present our proposed modification of the Montgomery Ladder, which
protects the most significant bits of the scalar.11 As mentioned before, our idea
consists on always using balanced operands during all executions of the ladder-
step process. For this, we initialise the input variables with dummy, balanced
values and use these values for all executions of the main loop until we reach
the first 1 of the scalar. For the loop iteration corresponding to the first 1 of the

10 We acknowledge that the traces in Figure 2 look different than the ones collected from
the first implementation. This is caused not only by differences in implementations,
but also due to the fact that these new traces were collected later on with a new
physical setup (although probes and oscilloscopes were equivalent models).

11 We will provide a link to the code repository in the final version of the paper.
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Algorithm 6 Modified x-coordinate-based Montgomery Ladder
Inputs: k ∈ {0, ..., 2255 − 1}, xP
X1 ←$Fp; Z1 ←$Fp; X2 ←$Fp; Z2 ←$Fp;
W1 ← xP + 1; W2 ← xP − 1; p, s← 0;
for i← 254 downto 0 do

t← (k[i] ∨ s)⊕ s . k[i] denotes bit i of k
c← k[i]⊕ p; p← k[i]
(X1, Z1, X2, Z2)← cswap(X1, Z1, X2, Z2, c)
(X1, Z1, X2, Z2)← ladderstep(xp, X1, Z1, X2, Z2,W1,W2, t)
s← s ∨ t

end for
return (X1, Z1)

scalar, we execute a special version of the ladderstep, where we finally use the
operand values necessary for a correct calculation of kP .

Algorithm 6 describes our proposed modification of the Montgomery Lad-
der. All input variables X1, Z1, X2, and Z2 are initialised with randomly chosen
balanced values. These are 32-byte values which represent elements of Fp. Note
that these values can either be chosen at random for each execution, they can
be derived from the input point P or they can also just be hardcoded in the
implementation. Additionally, we also use two new variables W1 and W2 that
we initialise as follows:

W1 ← xP + 1, W2 ← xp − 1.

Both W1 and W2 contain values needed when we execute ladderstep for the first
1 in the scalar. Note that in Algorithm 5 these two values (xP + 1 and xP − 1)
are obtained from an addition and subtraction with value 1, performed in steps
3 and 4. These are the first operations in the loop which actually depend on the
input point value xP . Moreover, these two values are used as operands in steps
7, 8, 14 and 17 in Algorithm 5.

We now describe the operation flow of Algorithm 6 when processing the scalar
bits. If the most significant bit is 0 then we execute the normal ladderstep as de-
scribed in Algorithm 3. Note that in this case, the inputs to the ladderstep process
will be (dummy) balanced variables, set in the second line of the algorithm. We
repeat this process until we reach the first scalar bit with the value 1. When we
reach the first 1 of the scalar, we execute a special variation of the ladderstep
function (Algorithm 7), where we make use of the pre-calculated values W1 and
W2. After this iteration, we have all variables X1, Z1, X2, Z2 overwritten with
correct values and we simply continue the regular execution of the Montgomery
Ladder using the standard ladderstep function (Algorithm 3).

4.1 Implementing our proposed modification

For implementing Algorithm 6, we need to take special care of the two follow-
ing aspects. First, we need to determine when we encounter the first non-zero

12



Algorithm 7 Single Montgomery ladder step for the case t = 1

Inputs: xP , X1, Z1, X2, Z2,W1,W2

1: T1 ← X2 + Z2

2: X2 ← X2 − Z2

3: Z2 ← X1 + Z1

4: X1 ← X1 − Z1

5: T1 ← T1 ·X1

6: X2 ← X2 · Z2

7: Z2 ←W1 ·W1

8: X1 ←W2 ·W2

9: T2 ← Z2 −X1

10: Z1 ← T2 · a24
11: Z1 ← Z1 +X1

12: Z1 ← T2 · Z1

13: X1 ← Z2 ·X1

14: Z2 ←W2 −W1

15: Z2 ← Z2 · Z2

16: Z2 ← Z2 · xP
17: X2 ←W2 +W1

18: X2 ← X2 ·X2

return (X1, Z1, X2, Z2)

scalar bit so we can execute the modified ladderstep (for t = 1). Second, the
modified ladderstep loop should be executed only once. Naturally, all operations
need to be implemented in constant-time, else we might observe small scalar-
dependent operation leakages in the power traces. In the following we explain
how we identify the first non-zero bit of the scalar and how we ensure that the
modified ladderstep algorithm (Algorithm 7) is executed only once and is hard
to distinguish from a regular ladderstep.

Note that the variable s is initialised to 0. Then, if k[0] = 0 (at the beginning
of the scalar multiplication), variable t is set to 0. This follows for all subsequent
scalar bits that equal to 0 because at the end of the loop s retains the value 0
(s = 0∨0). When k[i] = 1 for the first time, t is set to 1 right at the beginning of
the loop. Namely, s = 0 and thus we calculate t← (1∨ 0)⊕ 0. Now we will exe-
cute the special case for ladderstep since t = 1. Note that at the end of this loop,
right after executing the special ladderstep, s will be set to 1: s ← 0 ∨ 1. In all
subsequent loops t will be set to 0 regardless the value of k[i] because (k[i]∨1)⊕1
always equals 0. By ensuring that t = 0 for all subsequent loop iterations, we
ensure that we execute the standard ladderstep process from Algorithm 3.

Note that the original ladder step (for t = 0) executes the exact same instruc-
tions as the modified one (for t = 1). Their only difference is the use of some
registers as operands as we explain in the next subsection. Thus, there may still
be data leakage present in the above operations, but there is no operation leak-
age. Moreover, as we show later in Section 4.3 via side-channel evaluation, the
present data leakage is small and not visible by SPA means.

4.2 Implementations of the Ladder Step

Our proposed Montgomery Ladder described in Algorithm 6 needs to switch
seamlessly between both Algorithm 3 and Algorithm 7. Note that the algo-
rithms execute the same operations but differ only on how the following steps
are implemented: 7, 8, 14, and 17 — see Table 1 for details. As we see from the
table, we need to seamlessly alternate between parameters Z2 and W1 in step 7,
X1 and W2 in step 8, and T1, X2 and W2,W1 in steps 14 and 17 respectively.

We now describe how we implement the ladderstep from Algorithm 6 alter-
nating smoothly between both versions of the ladderstep. Essentially, we want
to ensure that the same sequence of operations is always performed, regardless
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Table 1. Different Steps between Algorithm 3 and Algorithm 7.

Step Algorithm 3 Algorithm 7
7 Z2 ← Z2 · Z2 Z2 ←W1 ·W1

8 X1 ← X1 ·X1 X1 ←W2 ·W2

14 Z2 ← T1 −X2 Z2 ←W2 −W1

17 X2 ← T1 +X2 X2 ←W2 +W1

of the used ladderstep version in order to stop SPA. To achieve this, we combine
Algorithms 3 and 7 into one software implementation since both algorithms use
the same sequence of operations and only their operands differ. When the most
significant scalar bit is 1, we choose operands as in Algorithm 7. When the bit
is 0, we choose operands as in Algorithm 3. We propose two alternatives for
implementing this operand switch:

1. a cswap-based implementation and
2. an implementation based on secret-memory accesses.

These methods differ in provided security guarantees and performance impact
as we explain bellow.

cswap based implementation. Our first design is based on conditional swap
(cswap). The cswap(X,Y, c) routine swaps the content of the inputs X and Y if
and only if c = 1. For the sake of simplicity let us consider 32-bit values. In this
case cswap can be implemented as follows:

c’ = - c; //now c’=0xFFFFFFFF if c=1 and 0 otherwise
TMP = X;
X ^= c’ & (X ^ Y);
Y ^= c’ & (TMP ^ Y);

Since in our implementation the operands are 255-bit values, the last 3 lines
need to be repeated multiple times to swap all words of the operands.

While this implementation is not very fast, it has the following advantage: the
sequence of addresses accessed by the algorithm does not depend on the secret
scalar. Therefore, the implementation is constant-time even on a target equipped
with data caching and we obtain a design which is constantly robust against
SPA, independently of the platform we are running it on. For implementing,
we use the same extra memory as for our secret memory access-based method
(described below), but instead of accessing the memory directly we perform
cswaps (depending on the t value from Algorithm 6) twice: just before and just
after the operations from Table 1.

Secret-memory accesses. Our second proposed re-design uses secret scalar-
dependent access to memory locations. The memory locations correspond to the
operands we are using within the loop. The bit t from Algorithm 6 indicates
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which operands we use. We access the memory corresponding to the operands
from Algorithm 7 if t = 1, and according to Algorithm 3 otherwise.

This implementation is fast but it is constant-time only if the access to the
memory by the microcontroller is constant-time. Thus, the robustness of this
countermeasure depends on the used platform. Since, our target, a Cortex-M4
on an STM32F407IGT6 board, does not have data caches, the memory access
is expected to be constant-time as long as the same SRAM region is accessed;12
as shown in [2] this target has 2 different regions with different characteristics.
To increase the probability that the memory accesses are to the same region, we
declare the alternating operands as global variables next to each other. In partic-
ular, we keep pairs of the values in an array with two elements and access either
the original value for t = 0 or W1 and W2 for t = 1. There are 4 values in total
for which we need to keep the corresponding pre-computed values. Additionally,
there are 4 balanced values that we pre-calculate and which are hard-coded in
our implementation. Thus, we increase the memory usage by 8 coordinates of
32-bytes each.

4.3 Evaluation of our countermeasures

We now present our benchmark results comparing our two proposed re-designs
with the original one from [4]. We later perform a side-channel evaluation and
confirm the effectiveness of our proposed countermeasures. All experiments pre-
sented in this section are performed as described in Section 2.1.

Performance Evaluation. The performance evaluation results are presented
in Table 2. We have checked that all implementations are constant-time. Some-
times, minimal jitter takes place due to instruction caching.13 As expected, the
SCA countermeasure against SPA comes at a cost in our re-designs since we are
performing additional arithmetic operations on each loop execution when setting
the values of the variables s and t. For our implementation using cswap opera-
tions, the overhead is of 35.2%. However for our re-design using secret memory
access, the overhead is only of about 3.4%. The memory overheard is small: for
both implementations it consists of 256 extra bytes, which come from 8 extra
global variables in the finite field Fp, where p = 2255 − 19.

Side-channel evaluation. We run both of our modified implementations using
the same inputs as in Section 3.2. Namely, we consider scalars k1 and k2 starting
with 0x04 and 0x7F, and the same fixed point for each case. Figure 3 shows the
resulting power traces for both implementations. We conduct the experiment a

12 The target has however an instruction cache. This caching mechanism is randomized,
but since the sequence of instructions is always the same in our algorithms, this
potential timing difference is independent from the scalar.

13 The sequence of instructions performed by our algorithms is always the same but
the instruction caching of our target seems to be random.
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Table 2. Performance Evaluation.

Implementation Time (milliseconds): Extra Memory (bytes):
Unprotected Imp.: 5.62 -
Cswap-based Imp.: 7.6 (+35.2%) 8 ∗ 32 = 256
Secret-Memory Access Imp.: 5.81 (+3.4%) 8 ∗ 32 = 256

Fig. 3. Comparison of power profiles scalars starting with 0x04 and 0x7F for the cswap-
based implementation (top) and the secret-memory access implementation (bottom).

total of 20 times for verification, obtaining always the same result for both cases.
The top plot in Figure 3 shows that indeed the cswap-based implementation is
protected against SPA. The bottom plot confirms that different memory-access
does not generate an SPA-detectable leakage on our evaluation target. We also
repeated the experiment in a similar setting but with random input points and
the result was very similar for both implementations. Therefore, we can confirm
the effectiveness of our designs.

Note that as expected (given our performance evaluation), the secret-memory
access implementation is visibly faster than the cswap-based one. This is visible
from the repeating pattern in the traces, which corresponds to a loop iteration
in the Montgomery Ladder. This pattern is notably longer in the traces corre-
sponding to the cswap-based implementation.

Evaluation Limitations. Since we only consider SPA, we use visual means
to determine the leakage. We are aware that even for our protected implemen-
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tations, automated leakage detection like TVLA [18,6] would indicate leakage
exploitable by more advanced side-channel attacks. This is expected since we do
not use randomisations and we do not consider such attacks in this work.

5 Leakage on the complete addition formulas

We now analyse hardware implementations of the Montgomery Ladder based on
the complete addition formulas from [28]. We provide a more compact analysis
as for our previous case study, since the reasons for the leakage and its possible
mitigation can be explained and proposed analogous. We will focus on an open
source implementation from [27]. This design implements the point addition
and doubling operations based on Algorithm 8. For point addition, the inputs
to the algorithm correspond to the points we want to add (i.e. R0 and R1).
For point doubling we provide the same point twice as input and perform thus
R0 + R0 or R1 + R1. This implementation also relaxes the assumption that
the most significant bit of the secret scalar is 1, and performs a loop iteration
for each MSB of the scalar, even if it has the value 0. To this scope, the first
register R0 is initialised with coordinates corresponding to the point at infinity,
i.e. R0 = (0, 1, 0), and the second register R1 is initialised with coordinates
corresponding to the input point P , i.e. R1 = (xP , yP , 1), (see Section IV D in
[27]). However as we explain next, this way of executing the algorithm leads to
the exact same side-channel vulnerability discussed so far in this paper.

Algorithm 8 Point addition formula [28]
Inputs: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2) on E : Y 2Z = X3 + bZ3 and b3 = 3 · b
1: t0 ← X1 ·X2

2: t1 ← Y1 · Y2

3: t2 ← Z1 · Z2

4: t3 ← X1 + Y1

5: t4 ← X2 + Y2

6: t3 ← t3 · t4
7: t4 ← t0 + t1
8: t3 ← t3 − t4
9: t4 ← Y1 + Z1

10: X3 ← Y2 + Z2

11: t4 ← t4 ·X3

12: X3 ← t1 + t2

13: t4 ← t4 −X3

14: X3 ← X1 + Z1

15: Y3 ← X2 + Z2

16: X3 ← X3 · Y3

17: Y3 ← t0 + t2
18: Y3 ← X3 − Y3

19: X3 ← t0 + t0
20: t0 ← X3 + t0
21: t2 ← b3 · t2
22: Z3 ← t1 + t2
23: t1 ← t1 − t2
24: Y3 ← b3 · Y3

25: X3 ← t4 · Y3

26: t2 ← t3 · t1
27: X3 ← t2 −X3

28: Y3 ← Y3 · t0
29: t1 ← t1 · Z3

30: Y3 ← t1 + Y3

31: t0 ← t0 · t3
32: Z3 ← Z3 · t4
33: Z3 ← Z3 + t0

return
P +Q = (X3 : Y3 : Z3)

We now describe what happens if the MSB of the scalar has a value of 0, with
focus on the point doubling step, since this is the part of the algorithm where
the most leakage will be visible. If the MSB of the scalar is equal to 0, we will
perform a point doubling with values corresponding to the point at infinity. That
is, both inputs to the algorithm will have the values R0 = (0, 1, 0). Consequently,
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Fig. 4. Power profiles of the hardware implementation using complete addition for-
mulas with scalars starting with 0x08 (above) and 0xFF (below).

the first 5 operations of the algorithm are executed as follows:

t0 ← 0 · 0, t1 ← 1 · 1, t2 ← 0 · 0, t3 ← 0 + 1, t4 ← 0 + 1.

We are thus performing multiplications and additions exclusively with oper-
ands equal to 0 and 1 in the beginning of the algorithm. Moreover, the registers
t0 and t2 are overwritten with 0 and registers t1, t3 and t4 are overwritten with
a 1 which leads to a very large amount of leaky additions, subtractions and
multiplications throughout the rest of the algorithm execution. Note that equally
as for our previous case studies, such a leakage will be visible in the next loop
iteration if the next bit of the scalar also has a value of 0, and the leakage will
only be gone once we execute a loop iteration for a key bit with a value of 1.
Figure 4 shows power traces from this implementation running first on a scalar
whose initial bits are 0xFF and then with a scalar whose initial bits are 0x08,
both times with the same input point. These power trace measurements confirm
the presence of the leakage. We repeated the experiment in a similar setting
but with random input points and the result was very similar. Following the
approach from Section 3, we repeated the experiment with enabled Z-coordinate
randomisation and, as shown in Figure 5, the leakage is still visibly present.

6 Conclusions and future work

In this paper we studied an SCA leakage commonly found in ECC implemen-
tations, which easily reveals the value of the most significant bits of the secret
scalar. We showed the presence of this leakage via power consumption mea-
surements on two types of implementations, each based on a different method
for implementing the scalar multiplication: one software implementation for
Curve25519 and one hardware implementation for secp256k1 based on the com-
plete addition formulas. For Curve25519, we proposed re-designs of the scalar
multiplication algorithm with the goal of removing this leakage. We verified the
effectiveness of our re-design via experimental results in Section 4.
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Fig. 5. Power profiles of the hardware implementation when the Z-coordinate is ran-
domised with 0x08 (above) and 0xFF (below).

It remains to propose a complete re-design for the implementations using the
complete addition formulas, which we studied in Section 5. To remove the leakage
of these implementations, we can outline a similar re-design as the one presented
for Curve25519. Namely, we can initialise all input registers with random values,
and execute “dummy” loops for all MSBs with value equal 0. Once we reach the
first key bit with value 1, we can perform a special variation of the loop iteration,
where we plug-in pre-calculated values depending on the input point P . We can
alternate between the two possible loop iterations by means of a final state
machine, as usually done for VHDL designs. We leave a complete description of
a re-design for our second case study (and its evaluation) as future work.
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