
A Modular Approach to the Incompressibility of
Block-Cipher-Based AEADs⋆

Akinori Hosoyamada1, Takanori Isobe2,3,4, Yosuke Todo1[0000−0002−6839−4777],
and Kan Yasuda1

1 NTT Social Informatics Laboratories, Tokyo, Japan
{akinori.hosoyamada.bh,yosuke.todo.xt,kan.yasuda.hy}@hco.ntt.co.jp
2 University of Hyogo, Hyogo, Japan takanori.isobe@ai.u-hyogo.ac.jp

3 National Institute of Information and Communications Technology, Tokyo, Japan
4 PRESTO, Japan Science and Technology Agency, Tokyo, Japan

Abstract. Incompressibility is one of the most fundamental security
goals in white-box cryptography. Given recent advances in the design of
efficient and incompressible block ciphers such as SPACE, SPNbox and
WhiteBlock, we demonstrate the feasibility of reducing incompressible
AEAD modes to incompressible block ciphers. We first observe that sev-
eral existing AEAD modes of operation, including CCM, GCM(-SIV),
and OCB, would be all insecure against white-box adversaries even when
used with an incompressble block cipher. This motivates us to revisit and
formalize incompressibility-based security definitions for AEAD schemes
and for block ciphers, so that we become able to design modes and reduce
their security to that of the underlying ciphers. Our new security notion
for AEAD, which we name whPRI, is an extension of the pseudo-random
injection security in the black-box setting. Similar security notions are
also defined for other cryptosystems such as privacy-only encryption
schemes. We emphasize that whPRI ensures quite strong authenticity
against white-box adversaries: existential unforgeability beyond leakage.
This contrasts sharply with previous notions which have ensured either
no authenticity or only universal unforgeability. For the underlying ci-
phers we introduce a new notion of whPRP, which extends that of PRP
in the black-box setting. Interestingly, our incompressibility reductions
follow from a variant of public indifferentiability. In particular, we show
that a practical whPRI-secure AEAD mode can be built from a whPRP-
secure block cipher: We present a SIV-like composition of the sponge
construction (utilizing a block cipher as its underlying primitive) with
the counter mode and prove that such a construction is (in the variant
sense) public indifferentiable from a random injection. To instantiate
such an AEAD scheme, we propose a 256-bit variant of SPACE, based
on our conjecture that SPACE should be a whPRP-secure cipher.

Keywords: symmetric-key cryptography · white-box cryptography · in-
compressibility · mode of operation · public indifferentiability

⋆ This article is the full version of the paper with the same title accepted to Asiacrypt
2022, © IACR 2022.

2 A. Hosoyamada et al.

1 Introduction

White-box cryptography, which has been introduced by Chow et al. for AES [29]
and DES [30], is a technique to protect data in the presence of adversaries who
have access to implementations of cryptographic algorithms. For two decades
since Chow et al. published the seminal papers, target systems of white-box
cryptography have spread out from digital rights management (DRM) to mobile
payment and banking services [2, 50]. Today white-box cryptography is applied
to a wide range of cryptographic algorithms [36], and in this paper we focus on
symmetric-key encryption schemes.

Secure white-box implementations must resist key extraction and “code lift-
ing” [36]. While the goal of key extraction is to retrieve a secret key from a
white-box implementation, code lifting tries to isolate and copy (a part of) the
functionality of the cryptographic algorithm. Security against code lifting is in
general stronger than security against key extraction, as key extraction implies
code lifting of the full functionality. Preventing code lifting is indispensable to
realize secure white-box implementations because arbitrary message can be en-
crypted or decrypted once the program is copied.

Delerablée et al. [36] have introduced the notion of incompressibility to for-
malize resistance to code lifting. Roughly, a white-box program of an encryption
scheme is incompressible if it is infeasible to compress the encryption program
while keeping its functionality. Delerablée et al. have shown that incompress-
ibility is achievable by an RSA-group-based construction. Follow-up work by
Fouque et al. [43] has introduced variants of incompressibility regarding privacy
(IND-COM) or limited authenticity of universal unforgeability (ENC-COM).
They have presented randomized schemes ensuring each of the security notions
but not both at the same time.5 The more recent work by Bock et al. [21] has
shown that an incompressible randomized encryption scheme can be built from
one-way permutations. Closely related to incompressibility is the work by Bellare
et al. on big-key symmetric encryption [9]6, which was later improved by Bellare
and Dai [8]. They have provided efficient randomized encryption schemes with
a high level of privacy (LIND) and without authenticity, in the setting where
information of the key is partially leaked, by making the key big, say, 1GB.

While there exist other white-box security notions, we focus on incompress-
ibility because it is achievable by relatively efficient schemes and without rely-
ing on special hardware. True that trusted execution environments are in com-
mon use today, but demands for software-only solutions are still high in various
scenarios—e.g., cloud servers providing digital rights management based services,
mobile phones running cloud-based payment services with host card emulations,
and memory-leakage resilient software—as listed by Bogdanov et al. [25].

It should be noted that some pieces of previous work [24, 9, 43, 25] (and we
also do) assume that a black-box adversary resides outside the target program

5 A scheme in Section 2 of the paper [43] achieves authenticity but not privacy in the
white-box setting, because its tag-generation part does not depend on keys.

6 This work focuses on bounded retrieval model rather than white-box cryptography,
but as Fouque et al. point out, its security notion almost matches IND-COM.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 3

and tries to attack in the conventional sense. More precisely, the white-box ad-
versary, which here we call a lifter, tries to isolate and copy the functionality
of the encryption program. Then, the black-box adversary tries to break pri-
vacy and/or authenticity with the aid of leakage generated by the lifter. Here,
the amount of leakage is properly restricted in agreement with the bounded
retrieval model [32, 27] of leakage-resilient cryptography.

There is another line of research: Designing incompressible block ciphers.
Bogdanov and Isobe [24] have introduced the concept of SPACE-hard white-box
block ciphers and presented a concrete construction SPACE based on a dedicated
design rather than on an obfuscated implementation of an existing cipher (such
a direction of adopting dedicated designs for block ciphers was initiated with
ASASA [17]). The notion of SPACE hardness is a variant of incompressibility and
provides immunity against code lifting. Similar notions include weak white-box
security [17] and ENC-TCOM [43]. Bogdanov and Isobe have shown that SPACE
achieves SPACE hardness, assuming AES is secure. SPACE is reasonably efficient,
running faster than a hundred cycles per byte on modern PCs. A number of
follow-up SPACE-hard white-box block ciphers have been proposed, including
SPNbox [25] and WhiteBlock [43].

Now our motivation behind this work becomes evident: There is a large gap
between the two lines of research. Specifically, we would like to address the
following issues:

1. There exist no modes of operation that turn incompressible block ciphers into
incompressible authenticated encryption (AE) schemes. As described in Sec-
tion 3 (and in Section B in the appendix), existing modes such as GCM [64],
GCM-SIV [45], CCM [79], and OCB [57] would not yield incompressible AE
even if combined with an incompressible block cipher. The state-of-the-art
incompressible block ciphers mentioned above, though secure and reasonably
efficient, are not utilized.

2. As mentioned above, there exist no AE schemes that simultaneously ensure
both privacy and authenticity against white-box adversaries, unless one relies
on special hardware. Moreover, the only type of authenticity that has been
achieved in the context of incompressibility is universal unforgeability, which
is much weaker than what has been done in the conventional setting. Similar
discussions are provided in the previous work by Bock et al. [22] where the
authors point out that “the definition of incompressibility does not capture
any further security such as confidentiality and authenticity”.

3. The lack of secure AE modes or schemes indicates the need for further in-
vestigation into the incompressibility notion. Specifically, we would like to
come up with a usable definition of incompressible block ciphers as well as a
new notion of incompressibility that captures more perfectly the privacy and
authenticity requirements on AE schemes. Having done that, we should be
able to design a mode that enjoys both privacy and authenticity in a strong
sense, by relying on the underlying incompressible cipher.

4 A. Hosoyamada et al.

1.1 Our Contributions

We introduce new incompressibility-based white-box security notions for AEAD
schemes and BCs which we name whPRI and whPRP, respectively. Intuitively,
with the two notions we attempt to define the best possible security such that
any λ-bit leakage from a lifter (e.g., malware) does not allow adversaries to
break privacy and/or authenticity, or equivalently indistinguishability, except
for λ-bit ciphertexts. In particular, the notions demand authenticity in quite a
strong sense: existential unforgeability beyond leakage. Our definition, we be-
lieve, should be the first one to formalize this notion concretely. Obviously, this
is a much stronger requirement than universal unforgeability. We remark that
whPRI and whPRP are extensions of pseudo-random injections (PRI) [74] and
pseudo-random permutations (PRP) in the black-box setting, respectively: they
exactly match in the extreme case of λ = 0. The security games for our new def-
initions involve both of black-box adversaries and lifters. These games become
inherently multi-stage.

We properly bound the computational resource tlif of a lifter and the leakage
size λ. Especially, no security is guaranteed after either tlif or λ reaches a certain
threshold, e.g., tlif = 250 or λ = 220. We expect that an attack (malware activ-
ity) should be detectable, before the threshold is reached, by some means, e.g.,
monitoring active processes and/or outgoing packets. We conjecture that SPACE
should satisfy whPRP-security under some reasonable parameter settings.

For completeness we study theoretical possibilities of security reductions of
various symmetric-key schemes; we introduce similar notions for keyed functions
and conventional (privacy-only) encryption schemes. Our notion for keyed func-
tions, which we call whPRF, is an extension of the standard pseudo-random
function (PRF). For conventional encryption schemes, we define two security

notions which we name whIND$-CPA and whS̃PRP. The former is an extension
of IND$-CPA security (for random-IV schemes) in the black-box setting. The
latter is obtained as a special case of whPRI where ciphertext lengths are always

equal to message lengths. Thus, whS̃PRP is an extension of the tweakable strong

PRP (S̃PRP) security for tweakable enciphering schemes [47] in the black-box
setting. We observe that meaningful counterparts of MAC security and nonce-
based security notions seem unachievable in our context. Table 1 gives compar-
isons between various security notions for (authenticated) encryption schemes.

We prove that a reduction between the new security notions is possible if the
construction in hand satisfies a variant of public indifferentiability [40, 82], which
we name weak public indifferentiability. Then we demonstrate that all the new
notions can be reduced to whPRP, by presenting corresponding constructions
that are weak public indifferentiable.

Finally, as an example of practical AEAD modes of block ciphers, we show
that a composition of the sponge construction [13] and the counter mode (CTR)
via SIV [74] is whPRI-secure if the underlying block cipehr EK is whPRP-secure.
Here, the underlying primitive EK is used both by the sponge and by the CTR.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 5

Table 1: Comparison of incompressibility or related notions for symmetric-key
(authenticated) encryption schemes. We assume that AEADs always take a
nonce (or IV) as a part of input. Especially, a nonce is included into inputs
of deterministic AEADs.
Security notion Target scheme Leakage Adversarial goal

(λ, δ)-incompressibility [36, 21]

deterministic or
randomized encryption
(RSA group or OWP-
based schemes [36, 21])

whole implementation
δ-functionality

with code size < λ

(Privacy) (Authenticity)

LIND [9]
randomized encryption via function

distinguishing —
(Big-Key Encryption [9, 8]) with output size = ℓ

IND-COM [43] randomized AE (WhiteKey [43]) via function distinguishing —
ENC-COM [43] randomized AE (WhiteKey+RO) with entropy left ⩾ µ — universal forgery

whPRI [Section 4.3]
deterministic AE via lifter (malware)

distinguishing
existential forgery

(SIV+CTR (Section 7)) with output size ⩽ λ beyond leakage

whIND$-CPA [Section 5.3]
randomized encryption via lifter (malware)

distinguishing —
(CTR (Section 6.3)) with output size ⩽ λ

whS̃PRP [Section 5.3]
tweakable enciphering scheme via lifter (malware)

distinguishing —
(6-round Feistel (Section 6.3)) with output size ⩽ λ

Roughly speaking, if EK is secure up to λ-bit leakage, the resulting AEAD is
secure as long as the amount of processed data is≪ 2n/4 and leakage is less than
λ. To instantiate EK , we propose to use a 256-bit-block variant of SPACE which
we name SPACE256. We conjecture that SPACE256 is secure up to 220 bits of
leakage. The resulting AEAD scheme is implemented on an Intel platform for
experiments, and we confirm that the performance is practical. The size of the
program is in an order of KB or MB, which is reasonably small for mobile
applications. Unlike previous schemes achieving incompressibility, our scheme
does not need random nonces. This is an advantage in the white-box setting
because random number generators may be compromised by adversaries.

Note that our notions do not supersede previous ones but rather coexist with
other white-box security approaches such as binding [23, 22]. Which security
approaches, definitions or solutions one should choose changes depending on
use cases and what one wants to achieve. Specifically, when trusted hardware
is available or when lifters have much more limited access to programs, other
security notions would be more suitable.

1.2 Related Work

Other Security Notions in White-Box Cryptography. The initial goal
set by Chow et al. was to protect software implementations of existing block
ciphers from key extraction when an attacker is given an unlimited access to
a white-box implementation. Many pieces of previous work have proposed such
implementations, but none of them remains unbroken [16, 59, 68, 80]. Some of
the state-of-the-art work focus on limited white-box adversaries such as DCA
and a certain class of algebraic attacks [26, 5, 19, 20].

6 A. Hosoyamada et al.

Several solutions outside incompressibility have been suggested to mitigate
code lifting. Chow et al. suggested external encoding [29], which yields a white-
box implementation of E′

K = G ◦EK ◦F−1 for some functions F and G instead
of EK . The problem is that even an ordinary user needs a separate implemen-
tation of G−1 or F to compute EK . Thus, white-box adversaries would also be
able to peel off the external encoding, unless the encoding is stored in trusted
hardware. Delerablée et al. suggested one-wayness [36], which formalizes the no-
tion that one is unable to perform decryption even if an encryption program is
given. They also suggested traceability [36], which allows a program distributor
to trace malicious users who leak their encryption programs. Both are inter-
esting, but they do not encompass resistance to copying encryption programs.
Other works have discussed the possibility of binding [23, 22, 1], where the execu-
tion of encryption is bound by trusted hardware or applications. Unfortunately,
cryptographically secure binding requires, together with secure hardware, primi-
tives such as indistinguishability obfuscation (iO) or LWE, which are richer than
usual symmetric-key primitives.

Symmetrically and Asymmetrically Hard Cryptography. Biryukov and
Perrin [18] introduced the HSp mode (and its instantiation WHALE), which can
be used to build an incompressible VIL/VOL hash function from a usual sponge
hash (like SHA-3) and an FIL/FOL incompressible function. The mode is proven
to achieve a universal-unforgeability-like security notion on incompressibility.
Their result seems close to ours (in Section 6.3) that the sponge construction be-
comes a VIL/VOL whPRF if the underlying primitive is a whPRP (or FIL/FOL
whPRF). Still, there are two differences between theirs and ours. First, they
proved only universal-unforgeability-like security while we proved existential-
unforgeability-like security (i.e., whPRF-security). Second, their proof is in the
random oracle model while ours is in the standard model in that the existence
of a whPRP (or a FIL/FOL whPRF) is a falsifiable assumption.

Leakage Resilient Cryptography. An important area related to white-box
cryptography is leakage resilient cryptography, which aims to achieve provable
security against side-channel attacks. Security models in leakage resilient cryp-
tography are roughly classified into two types7, depending on whether (1) an
adversary is allowed to obtain arbitrary leakage from the secret key as long as
the leakage length is bounded by a certain parameter, or (2) some form of secu-
rity is assumed on memory or storage, and/or leakage is obtained only when some
computation (e.g., encryption) is performed through a special class of functions
such as the Hamming weight of internal states with some noise.

Models of the First Type. A typical model of the first type closely related to
our results is the Bounded Retrieval Model (BRM) [32, 41], where large (e.g.,
1GB) keys are used to prevent key exfiltration. The BRM and related notions

7 This classification is based on (still not completely the same as) the one in [52, 53].

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 7

have been studied in a long line of research [32, 41, 27, 4, 3, 9, 8]. Among others,
Bellare et al. [9] showed practical symmetric-key encryption schemes achieving
confidentiality in the BRM, which was later improved by Bellare and Dai [8].

As pointed out by Fouque et al [43], the goals of Bellare et al. [8] and incom-
pressibility are quite close. Still, each of the BRM and incompressibility has its
own advantages. An advantage of the BRM is that, for well designed schemes
such as the one by Bellare et al. [8], bounding the running time of a lifter (mal-
ware) is not mandatory (it is mandatory for incompressible ciphers because the
secret key sizes are very small). Meanwhile, no previous works on symmetric
encryption scheme in the BRM achieve both confidentiality and authenticity
simultaneously8, while we prove that SIV+CTR achieves whPRI.

Models of the Second Type. Major models of the second type include the “only
computation leaks information” (OCL) model [65] and wire-probing leakage [51].
In models of the second type, lots of previous works have shown various leak-
age resilient schemes including AEADs [65, 42, 70, 60, 76, 12, 38, 7, 35, 39, 11, 46,
56]. Especially, Krämer and Struck [56] showed that the security of a leakage-
resilient AEAD can be reduced to the security of leakage-resilient PRFs in the
“only comoputation leaks information” model [65]. However, these results are
incomparable to ours because they essentially assume that attackers do not have
a direct full access to memory or storage that stores the secret key.

A clear advantage of the second type is that the size of implementations can
be small, compared to incompressibility and the first type. When we can assume
that adversaries do not have a full direct access to memory or storage (e.g.,
leakage can be obtained only by measuring power consumption of a circuit),
models of the second type will be more suitable than incompressibility and the
first type. When we cannot, incompressibility or the first type will be suitable.

1.3 Paper Organization

Section 2 introduces basic notations and definitions, and review basics on (pub-
lic) indifferentiability. Section 3 shows an observation that GCM is unlikely to
achieve incompressibility. In Section 4, we introduce whPRI, a new security
notions for AEADs. New security notions for other schemes are introduced in
Section 5. Section 6 introduces weak public indifferentiability and shows that
weak public indifferentiability implies white-box security reductions. The sec-
tion also demonstrates that our new notions on various schemes can be reduced
to whPRP, by showing (weak) public indifferentiable constructions. In Section 7
we show that a practical whPRI-secure AEAD mode of whPRP can be realized
as a composition by SIV of the sponge construction and the counter mode.

8 A scheme by Bellare et al. [9] also achieves authenticity, but only in the absence of
leakage (See also Table 1).

8 A. Hosoyamada et al.

2 Preliminaries

Throughout the paper, len(M) denotes the bit length for a bit string M . Given a

positive integer m < len(X), we write (A,B)
m, ∗←−−− X to mean assignment of bit

strings, the leftmost m bits of X to A and the remaining bits to B. The variable
A or B may be omitted with the symbol “ · ” in which case the corresponding
bits are not assigned to any variable. When we write like (X1, X2, . . . , Xℓ)

n←− X
we mean partitioning X into n-bit blocks and assigning them to X1, X2, . . . , Xℓ

where ℓ =
⌈
len(X)/n

⌉
and the last Xℓ is possibly fractional, i.e., len(Xℓ) < n.

The symbol ∥ stands for concatenation of bit strings and the symbol ⊕ exclu-
sive OR of two bit stings of the same length. By block length of M we denote
⌈len(M)/n⌉ when the parameter n is clear from the context. For an invertible
function F by F± we denote the oracles of F and F−1. We denote the empty bit
string by ε and define {0, 1}0 := {ε}. {0, 1}∗ denotes the set of all bit strings of
arbitrary length. For positive integers x and n, by x mod n we denote the min-
imum positive integer i such that i ≡ x mod n. We say an m-input function f :
(Z≥0)

×m → R≥0 is non-decreasing if f(x1, . . . , xi + z, . . . , xm) ≥ f(x1, . . . , xm)
holds for arbitrary 1 ≤ i ≤ m, (x1, . . . , xm) ∈ (Z≥0)

×m, and z ∈ Z≥0.

Definition 1 (Variable-key and fixed-key random injection). Let τ ≥ 0
be an integer and Injτ (K×N×A×M,C) denote the set of functions F : K×N×
A×M→ C such that FK,N,A := F (K,N,A, ·) is an injection for each (K,N,A)
and len(F (K,N,A,M)) = len(M)+ τ . A variable-key random injection F is an
injection chosen uniformly at random from Injτ (K×N×A×M,C). The inverse
F−1 : K×N×A×C→M∪{⊥} is defined so that F−1(K,N,A, F (N,A,M)) =
M for each (K,N,A,M) and F−1(K,N,A,C) = ⊥ for all C ̸∈ FK,N,A(M). If
K is a set that contains exactly a single element, we say F is a fixed-key random
injection and omit to write K and K.

Syntax of Symmetric-Key Cryptosystems and Basic Constructions.

Keyed Functions. A keyed function is a function f : {0, 1}κ ×X → Y. Here, κ
is a positive integer and {0, 1}κ is called the key space. We write fK(M) and
f(K,M) interchangeably.

Block Ciphers. A block cipher is a keyed function E : {0, 1}κ×{0, 1}n → {0, 1}n
such that E(K, ·) is a permutation for each K. The inverse function (EK)−1 is
denoted by DK , and we write DK(C) and D(K,C) interchangeably. E and D
are called the encryption and decryption functions.

AEADs. An AEAD scheme is a tuple Π = (E ,D). The first element of Π is
an encryption function E : K × N × A ×M → C. Here, K is the key space
from which the secret key is chosen uniformly at random. The set N = {0, 1}ν
is a nonce space with the nonce length ν being a non-negative integer. The
sets A,M,C correspond to the spaces of associated data, plaintext and ci-
phertext, respectively, where M = C = {0, 1}∗. We write interchangeably

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 9

Algorithm 1: CTR(K, IV,M)

1: (M1,M2, . . . ,Mℓ)
n←−M

2: for i = 1 to ℓ do

3: y ← fK(IV + i− 1),

4:
(
y′, ·

) len(Mi), ∗←−−−−−− y,

5: Ci ←Mi ⊕ y′

6: return C1 ∥ C2 ∥ · · · ∥ Cℓ

Algorithm 2: EK1,K2
(N,A,M)

1: IV ← fK1(N,A,M)

2: C ′ ← E ′K2
(IV,M)

3: return C ← IV ∥ C ′

Algorithm 3: DK1,K2
(N,A,C)

1: (IV , C ′)
τ, ∗←−− C

2: M ← DK2
(IV, C ′)

3: T ← fK1
(N,A,M)

4: if IV = T then

5: return M

6: else

7: return ⊥

E(K,N,A,M) = EK(N,A,M) = EK,N,A(M). For each (K,N,A) ∈ K×N×A
we demand that len

(
EK,N,A(M)

)
= len(M) + τ should hold for all M ∈ M,

where τ a fixed non-negative integer. The second element of Π is a decryption
function D : K×N×A×C→M∪{⊥}. Here, the symbol ⊥ signifies rejection.
We write interchangeably D(K,N,A,M) = DK(N,A,M) = DK,N,A(M). For
each (K,N,A,M) we demand that DK,N,A(EK,N,A(M)) = M should hold.

Conventional Encryption Schemes. The syntax for a conventional (privacy-only)
encryption scheme is essentially the same as that of AEAD except that it does
not take any associated data, i.e., A = {ε}, and τ = 0. In addition, nonce N and
nonce space N are renamed as IV and IV. We assume IV is chosen uniformly at
random for every encryption query or arbitrarily chosen by adversary depending
on security notions we focus on.

Counter Mode. Counter mode (CTR) is the construction to convert a keyed
function into a conventional encryption scheme. Let f : {0, 1}κ × {0, 1}m →
{0, 1}n be a keyed function. The encryption function of CTR based on f , which
we denote by CTR(K, IV,M), is computed as in Algorithm 1. The key, IV, and
message spaces are {0, 1}κ, {0, 1}m, and {0, 1}∗, respectively. The decryption
function is identical to the encryption function.

SIV. SIV is the construction introduced by Rogaway and Shrimpton to realize
a deterministic AEAD [74]. Let N and A be arbitrarily chosen space of nonces
and associated data. (We assume N = {0, 1}ν for some ν ∈ Z>0 and A = {0, 1}∗
unless otherwise noted.) Let f : {0, 1}κ1×(N×A×{0, 1}∗)→ {0, 1}τ be a keyed
function and Π ′ = (E ′,D′) be a conventional encryption scheme with the key
space {0, 1}κ2 , IV space {0, 1}τ , and message space {0, 1}∗. The SIV construction
based on f and Π is an AEAD with key space {0, 1}κ1 × {0, 1}κ2 , nonce space
N, associated data space A, and message space {0, 1}∗. The encryption function
E and decryption function D are defined as in Algorithm 2 and Algorithm 3,
respectively. We call an output of f a tag and f a tag-generation part.

Programs and White-Box Compilers. We follow the abstraction and nota-
tion used by Delerablée et al. [36] for dealing with programs and compilers. A

10 A. Hosoyamada et al.

program implements an algorithm, specific to some explicit language and execu-
tion model. A program can be read, copied and modified at will. A program can
be viewed as a bit string, and its binary code can be executed locally. A program
is inherently stateless. A program may, via APIs including system calls, make
use of external resources such as random coins and additional functionalities. A
white-box compiler CE of a block cipher E is an algorithm that takes K ∈ {0, 1}κ
as an input and outputs a program that implements EK . We use the notation
JEkK to denote a white-box implementation of EK in a context where explicitly
indicating the compiler is unnecessary. Moreover, we call JEKK white-box block
cipher simply. A white-box compiler may be probabilistic, outputting different
programs for the same key9. White-box compilers of other cryptosystems are
defined in the same way.

Indifferentiability. Let TP be an algorithm (a cryptographic scheme, e.g., a
VIL hash function) making queries to P, where P is an ideally random primitive
(e.g., a FIL random oracle). In addition, let R be an ideally random scheme
corresponding to TP with the same input-output interface (e.g., a VIL random
oracle). Then, the indifferentiability advantage of A against (TP,R) with respect

to a simulator S is defined as AdvindiffT,R,S(A) := Pr
[
1← ATP,P

]
−Pr

[
1← AR,SR

]
.

Informally, we say TP is indifferentiable from R if there is an efficient simulator
S such that the above advantage becomes negligibly small for any efficient A.
We call TP (resp., R) a construction oracle and P a primitive oracle. We call
queries to TP or R (resp., P or SR) construction queries (resp., primitive queries).

The most important feature of indifferentiability is the general “composition
theorem” [63, 71]: Suppose the following (1)-(3) hold: (1) A scheme (or protocol)
ΠR depending on the ideal object R is proven secure. (2) TP is indifferentiable
from R. (3) The security of Π is defined by single-stage games. Then the com-

position theorem guarantees that ΣTP

is secure [63]. Note that not only (1) and
(2) but also (3) is crucial; the composition theorem does not necessarily hold for
schemes of which security is defined by multi-stage games [71]. We do not get
into further details because it is not directly related to our results.

Indifferentiability of Sponge. Let r, c > 0 and f : {0, 1}r+c → {0, 1}r+c be
a function. Let pad : {0, 1}∗ → ({0, 1}r)+ be an injective padding function
such that the last (r-bit) block of pad(X) is not 0r for every X.10 The sponge
construction Spongef maps bit strings of arbitrary length to bit strings of any
requested length as in Algorithm 4 (i.e., Spongef can be regarded as a function
from {0, 1}∗×N to {0, 1}∞). The parameters r and c are called rate and capacity.

9 In practice, many white-box implementations of AES are the output of the proba-
bilistic compiler. On the other hand, the dedicated white-box block cipher such as
SPACE uses the deterministic compiler in general.

10 In what follows, we assume the padding function pads “1” and the minimum number
of zeroes so that the total length of the padded string becomes multiple of r, i.e.,
pad(X) := X||1||0len(X) mod r−1.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 11

Algorithm 4: Spongef (X) with requested output length m

1: (X1, . . . , Xℓ)
r←− pad(X), s← 0r+c, y ← ε

2: for i = 0 to ℓ− 1 do

3: s← f(s⊕ (Xi+1||0c))
4: for i = ℓ to ℓ+ ⌈mr ⌉ − 1 do

5: y ← y||(the upper r bits of s), s← f(s)

6: return y

Bertoni et al. [13] proved that the sponge construction is indifferentiable from
a VIL/VOL random oracle RO : {0, 1}∗ → {0, 1}∞ if f is an ideally random
function. More precisely, they showed the following theorem11.

Theorem 1 (Theorem 1 of [13]). Let ϵ(q) := 1 −∏q
i=1

(
1− 1

2c

)
. There ex-

ists a simulator S making queries of total length at most ⌈ r+c
r ⌉q2 such that

Advindiff
Sponge,RO,S(A) ≤ ϵ(q) holds for any adversary A that calls f at most q(< 2c)

times in the real world, either directly or indirectly through Spongef .

Indifferentiable AEAD Schemes. Barbosa and Farshim studied indifferentiable
AEAD schemes [6], where the ideal oracle is a variable-key random injection F
and its inverse F−1 (see Definition 1)12. Note that a variable random injection
takes not only nonce, associated data, and message (or ciphertext) but also a
key as an input. They especially showed that indifferentiable AEADs cannot be
achieved by some generic compositions such as SIV, and that indifferentiable con-
structions can be built by Encode-then-Encipher (EtE) or 3-round Feistel-based
scheme. In particular, by using the sponge construction for round functions of the
Feistel-based scheme, an indifferentiable AEAD can be built from a FIL/FOL
random function. See Section C in the appendix for details.

Public Indifferentiability. Again, let TP be a construction calling an ideal
primitive P, and R be an ideal object of which interface is compatible with TP.
Public indifferentiability [40, 82] is defined in the same way as the original indif-
ferentiability, except that a simulator S is allowed to observe all the queries by

11 The theorem roughly says Spongef is secure up to 2c/2 queries because ϵ(q) ≈ 1 −
e
− q(q+1)

2c+1 < q(q+1)

2c+1 holds for q ≪ 2c. The original theorem in [13] did not mention the
exact number of queries by S but we can deduce it is at most ⌈ r+c

r
⌉q by checking

the details of the proof.
12 The parameter τ (the length of ciphertext-stretch) is also considered as an input to

AEADs and random injections in [6], but this paper considers the special case where
is τ fixed to a constant.

12 A. Hosoyamada et al.

adversaries to R and the responses. (Public-indifferentiability is actually a spe-
cial case of indifferentiability rather than a variant. However, we regard it as a
variant for readability.) More precisely, in the ideal world, there is an additional
oracle-query interface to reveal the list of all the queries made so far to R and the
responses, and an access to this interface is given to S (but not to A). We call this
interface the revealing interface, and denote by Rev[R]. This models the condition
that every input to R (and the output) is visible to all the parties involved in a se-
curity game, and the general “composition theorem” on public-indifferentiability
holds only for schemes of which security games satisfy such a condition. The
restriction that the “composition theorem” does not necessarily hold for multi-
stage games also applies to public-indifferentiability, but the theorem holds for
single-stage games as long as this condition holds. The public indifferentiability

advantage is defined as Advpub-indiffT,R,S (A) := Pr
[
1← ATP,P

]
−Pr

[
1← AR,SR,Rev[R]

]
.

Informally, we say TP is public indifferentiable from R if there exists an efficient
simulator S such that the above advantage becomes negligibly small for any effi-
cient A. The Merkle-Damg̊ard construction is proven public indifferentiable [40].

Remark 1. While it is straightforward to show the composition of two indiffer-
entiable constructions becomes again indifferentiable13, its seems quite hard (or
even impossible) to prove that the composition of two public indifferentiabile
constructions becomes again public indifferentiable. (See Section 6.1 for details).

3 Code Lifting on GCM

This section briefly explains that GCM [64] is unlikely to achieve incompress-
ibility in the presence of a lifter given an unlimited access to an implementation,
even when used with an incompressible block cipher. Recall that GCM is an
AEAD mode of 128-bit block cipher composed of CTR and a universal hash
function called GHASH (see Fig. 4 in the appendix for details). As an input,
the encryption function of GCM takes a tuple of a nonce N , associated data
A, and a message M . Given an input (N,A,M), CTR first encrypts M into a
ciphertext C ′ with an IV derived from N . Then, a tag value T is computed as
T := GHASHEK(0128)(A,C ′) ⊕ EK(N ||1). The output of the encryption func-
tion is T ||C ′. GCM is proven secure in the nonce-respecting scenario where each
nonce is never repeated for encryption queries14. When a nonce is repeated,
GCM is broken even in the black-box setting.

An important feature of GCM is that the authenticity heavily relies on the
value EK(0128): Suppose we know EK(0128) in addition to the tag T and the ci-
phertext C ′ for an input (N,A,M). Then, for arbitrary Ã and M̃ with len(M̃) ≤
len(M), we can produce the tag T̃ and the ciphertext C̃ ′ corresponding to

13 If S (resp., S ′) is a simulator for a construction TP (resp., UQ) making the indiffer-

entiability advantage small (and if the interfaces are compatible), then S ′S makes

the advantage for TUQ

small.
14 Note that nonce reuse for decryption is allowed.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 13

(N, Ã, M̃) without knowing the secret key K as C̃ ′ = M̃⊕(the upper len(M̃) bits
of M ⊕C) and T̃ = GHASHEK(0128)(A,C ′)⊕T ⊕GHASHEK(0128)(Ã, C̃ ′) . This
means the universal forgery attack is possible and the authenticity of GCM is
completely broken once an adversary retrieves EK(0128).

In the black-box setting, the value EK(0128) is hidden from adversaries and
GCM achieves authenticity. However, in the white-box setting where a lifter has
an unlimited access to a white-box implementation of GCM, the lifter could copy
and leak the value EK(0128) to an attacker to break authenticity15. This attack
works even if the underlying block cipher EK is incompressible. Just copying a
single 128-bit string EK(0128) would not be difficult no matter how hard copying
the full functionality of EK is.

The above attack shows that GCM fails to inherit incompressibility from
EK : A relatively small amount of data EK(0128) leaks information on an expo-
nentially many input-output pairs of GCM. Similar attacks exist for other AE
modes such as CCM, GCM-SIV, and OCB. See Section B in the appendix for
details.

4 New AEAD Security Notion

This section gives us a formal definition of incompressibility-based white-box
security of an AEAD implementation. Security notions for other cryptosystems
are given later based on the definition for AEADs.

The attack in the previous section (and the ones in Section B) shows that,
with raw implementation of AEAD modes such as GCM, a small amount of
leakage from the underlying white-box cipher could lead to giving the adversary
a great deal of information concerning valid ciphertext values of the overlying
AEAD scheme. Clearly this is an undesirable situation.

Basically, we want that a small amount of leakage would only lead to a small
amount of valid ciphertext information, but there is a subtlety. A white-box at-
tacker, or lifter (e.g., malware) could locally encrypt a large number of messages
and then compute leakage of a small size from the obtained ciphertexts. As a
result, the leakage, as a function, may depend on a large number of ciphertext
values. Intuitively, we want that:

1. The leakage should not contain information yielding ciphertext values that
have not been computed by the lifter, so that the ciphertexts that the ad-
versary can compute from the leakage are limited to those that have been
already computed by the lifter, and

2. The number of ciphertexts that the adversary can compute from the leakage
should be small likewise the leakage size.

We establish a security notion that formalizes these requirements.

15 The value EK(0128) could be protected from some white-box attacks with software
or hardware countermeasures. Still, the effectiveness of such countermeasures would
be limited, given that existing white-box implementations of AES ensure security
only when adversaries have limited access to implemented algorithms. In addition,
our aim is to achieve white-box security without assuming trusted hardware.

14 A. Hosoyamada et al.

4.1 White-Box AEAD Attack Model

This section shows our attack model on white-box AEADs. We discuss on the
security after the code lifting because no security can be guaranteed before and
during the code lifting.

First, we provide an intuitive observation on what kind of attackers we have
to take into account. Assume a white-box AEAD scheme is running on a target
device, e.g., a remote server or a smartphone. Real-world attackers will behave
as follows: First, an attacker performs advance preparation on the target scheme,
making black-box queries to the encryption and decryption functions if possible.
Then the attacker creates a lifter, e.g., a malware or an analysis tool, and give
the lifter access to the white-box implementation by any means16. After analyz-
ing the implementation, the lifter leaks some information on the scheme to the
attacker. Finally, the attacker tries to break the privacy or authenticity of the
scheme by using the leakage.

Based on the above observation, we reach the following attack model. For-
mally, let Π = (E ,D) be an AEAD and CΠ its compiler. A white-box adversary
A = (Acreate,Adist) is a pair of oracle-aided, probabilistic random-access ma-
chines (RAMs.) The adversary A attacks CΠ , running in two stages, as follows:

Initialization. A key K is chosen uniformly at random. Then using this key
we put P ← CΠ(K).

1st stage: creating a lifter. The first-stage is run by the sub-adversaryAcreate

which has only black-box access to P, making queries to oracles EK and DK .
The goal of Acreate is to output a deterministic RAM L which we call a lifter.

Lifter execution. Once created, the lifter L gets full access to the AEAD pro-
gram P. The lifter L tries to extract some useful information out of the
implementation P, for example key material or compressed codes, and sends
leakage data L to the adversary. The size of L is restricted to λ bits, which
are properly smaller than the description of P.

2nd stage: distinguishing. Upon receiving leakage L from the lifter, the second-
stage sub-adversary Adist resumes querying to Ek and Dk, and finally outputs
a bit string.

We could consider various sorts of adversarial goals, such as key recovery,
plaintext recovery and ciphertext forgery. Of these, we choose the distinguishing
attack, extending the “gold-standard” IND-CCA in the black-box setting: We
assume Adist finally outputs a bit b. The final goal of the adversary A is to
distinguish between the real world (b = 1) and the ideal world (b = 0), i.e.,
whether the oracles EK and DK and the leakage have been real, or they have
been some random and simulated ones.

Of course, white-box implementation is not present in the black-box security
definitions, so we shall define how the leakage is computed in the ideal world.

16 For instance, if the target device is a remote server, the lifter would be a malware
that sneaks into the server. If the device is a smartphone, the lifter would be an
analysis tool and the attacker may take the advantage of a slight opportunity to
analyze the smartphone while the owner does not pay attention to it.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 15

Consequently, we shall later introduce a simulator that imitates the behavior of
the lifter L.

Even if it is impossible to prevent lifters from getting access to the white-
box implementation, we expect it is still possible to notice an attack is being
mounted when non-negligible amount of data is sent to a strange and suspicious
direction, by monitoring outgoing packets. Hence we define security notions when
the leakage size λ is limited, e.g., up to 220 bits. No security is guaranteed after
λ reaches the limitation. In addition, basically we assume the running time of
the lifter tlif is much smaller than that of the adversary t (e.g., tlif = 250 while
t = 2112) and the intrusion of the lifter can be detected after tlif time has passed.

We do not formalize the attack model in such a way L communicates with
A since L can do everything A can do, and thus communications do not help
much to break the scheme.

4.2 Ideal Oracles and Simulators

It remains to describe the ideal world in order to give a formal definition of
white-box AEAD security.

When black-box security of nonce-based AEAD is studied, typically the ideal
encryption (resp., decryption) oracle is set to be the one that always returns
a random ciphertext (resp., the reject symbol). The adversary is prohibited to
forward outputs from the encryption oracle to the decryption oracle to exclude
trivial attacks.

On the other hand, in our white-box setting we cannot set the ideal oracles
like above because the adversary can distinguish the ideal decryption oracle from
the real one if the lifter leaks a valid ciphertext C and the adversary queries C
to the decryption oracle.

Thus we set a fixed-key random injection F and its inverse F−1 as the ideal
oracles (see Definition 1), following previous works on pseudorandom injection
(PRI) security of AEADs [74, 48]. In particular, our security notion will com-
pletely match the black-box PRI security when λ = 0.

Note that the black-box PRI security matches the misuse-resistant AE (MRAE)
security [74, 48] if the tag length τ is sufficiently long: Roughly speaking, the dif-
ference between the PRI advantage and the MRAE advantage of an AEAD
scheme is upper-bounded by O(q2/2τ), where q is the number of black-box or-
acle queries [48, Thorem 1]. Thus our white-box security notion will require a
secure scheme to be at least MRAE-secure in the black-box model.

Simulators. Now what remains of the real world is the program P and the lifter
L. P does not exist in the ideal world and it is non-trivial how we should define
the behavior of L. To remedy this, we introduce a simulator that imitates the
behavior of L.

Recall our intuition on the property that a secure white-box scheme must
meet: Any leakage on a secure scheme does not contain information enabling an
adversary to compute ciphertext values that have not been computed by a lifter.
In other words, information that a lifter L can send to an adversary Adist (with

16 A. Hosoyamada et al.

reasonable computational resources) is only those computable or simulatable
from some input-output pairs of EK and DK .

We model this situation by existence of a simulator S working as follows.
Given the description of a lifter L17 and oracle access to F and F−1 in the ideal
world, S produces a bit string Lideal which is, to Adist, indistinguishable from
leakage Lreal by L in the real world.

Since F is an ideally random object, S in the ideal world cannot leak more
than λ bits of information on F± via λ-bit leakage Lideal. Hence, intuitively, if
Adist cannot Lreal and Lideal, then L in the real world cannot leak more than λ
bits of information on EK and DK via λ-bit leakage Lreal.

More specifically, a simulator S is an oracle-aided RAM. We give S the ability
to do its job as follows:

1. We give S as its input the lifter L just as it is. Then S can perform static and
dynamic analyses on L. The code of L can be read, dissected and studied,
so that S can determine the functionality of L.

2. Needless to say, we let S have oracle access to F±1.
3. We give S sufficient computational power and do not explicitly bound its

running time. We only demand that the algorithm S be a finite sequence
of well-defined instructions and operations. By doing so, we believe that
our security notion should become achievable by a sound portion of AEAD
programs while dismissing the rest.

In addition, we assume that S can observe all the queries to F± by Acreate and
the responses. The reasons that we assume this is as follows. First, if we define
a security notion for conventional encryption schemes similarly without this as-
sumption, then a conventional encryption scheme (random-IV CTR) which intu-
itively seems white-box-secure is deemed insecure (see Section D in the appendix
for details). However, if the assumption is included in the definition, random-IV
CTR can be proven secure (Section 6.3). Thus it seems reasonable to include
the assumption into the definition for conventional encryption schemes. Second,
We would like to make security definitions for various cryptosystems consistent
as much as possible. Thus we include this assumption not only for conventional
encryption schemes but also for AEADs.

4.3 Formal Security Notion: whPRI

Now we are ready to define new security notion of AEAD programs. We call our
notion white-box pseudo-random injection security (whPRI).

We consider a white-box adversary A = (Acreate,Adist) running in two dif-

ferent experiments called games. The real white-box PRI game (PRI -real) is
an experiment in the real world as described in Sect. 4.1. We assume that the
white-box program P contains an implementation of not only encryption but

also decryption. The ideal white-box PRI game (PRI -ideal) is an experiment

17 Note that a lifter is also made by a first-stage adversary Acreate in the ideal world,
but the black-box oracles given to Acreate are (F, F−1) instead of (EK ,DK).

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 17

Experiment 5: ExpPRI -real
Π,CΠ ,A

1: K
$←− K, P ←− CΠ(K)

2: (L, S)← Acreate
EK ,DK ()

3: L← L(P)
4: β ← Adist

EK ,DK (S,L)
5: return β

Experiment 6: ExpPRI -ideal
S,A

1: F
$←− Injτ (N×A×M,C)

2: (L, S)← Acreate
F,F−1

()

3: L← SF,F−1

(L, Listcreate)
4: β ← Adist

F,F−1

(S,L)
5: return β

Fig. 1: Experiments for whPRI. In the ideal experiment, Listcreate denotes the
list of queries by Acreate to F± and the responses.

in the ideal world, where the oracles and the lifter are replaced with a random
injection and a simulator, respectively. These two games are formally defined
in Exp. 5 and Exp. 6.

Now, given an AEAD scheme Π and its compiler CΠ , let us define the wh-
PRI advantage of a white-box adversary A = (Acreate,Adist) with respect to a

simulator S asAdvwhPRI
Π,CΠ ,S(A) := Pr

[
Exp

PRI -real

Π,CΠ ,A = 1

]
−Pr

[
Exp

PRI -ideal

S,A = 1

]
.

Definition 2 (whPRI). The pair of an AEAD scheme Π and a compiler CΠ
is (λ, t, q, σ, tlif , qsim, σsim, ϵ)-whPRI-secure white-box AEAD if the following con-
dition is satisfied: Let A be an arbitrary adversary running in time t and making
queries at most q times. The lengths of the queries are at most σ in total18. In
addition, A creates a lifter that runs in time tlif and outputs at most λ-bit leak-
age. For arbitrary such A, there exists a simulator S that makes at most qsim
queries of which lengths are at most σsim in total, and satisfies an inequality
AdvwhPRI

Π,CΠ ,S(A) < ϵ.

Informally, suppose the following claim holds: For any “efficient” A, there exists
a simulator S that makes a “reasonable amount of” queries and making the
whPRI-advantage small19. Then we say that Π is whPRI-secure.

The attacks on GCM, GCM-SIV, CCM, OCB in Section 3 (or in Section B)
show that, for each of those schemes, there exists a lifter L that leaks the in-
formation on exponentially many number of input-output pairs by only a small
amount of leakage. In the ideal world, the information of input-output pairs of
the black-box oracle F± that a simulator can output by a λ-bit leakage is at

18 The unit of length can be set arbitrarily (e.g., bit or block) depending on the context.
19 We set quantifiers as ∀A∃S rather than ∃S∀A so that the possibility of existence of

primitives will increase, and the order of the quantifiers seems to have little impact
on whether a practical scheme is judged secure or not. Indeed, our proofs in later
sections, in addition to the discussions about the attacks on GCM, GCM-SIV, CCM,
OCB mentioned below, work regardless of the order of the quantifiers.

18 A. Hosoyamada et al.

Experiment 7: Exp
PRP -real

E,CE ,A

1: K
$←− {0, 1}κ, P ← CE(K)

2: (L, S)← Acreate
EK ()

3: L← L(P)
4: β ← Adist

EK (S,L)
5: return β

Experiment 8: Exp
PRP -ideal

S,A

1: P
$←− Perm(n)

2: (L, S)← Acreate
P ()

3: L← SP,P−1

(L, Listcreate)
4: β ← Adist

P (S,L)
5: return β

Fig. 2: Experiments for whPRP. Listcreate in Experiment 2 denotes the list of
queries to P by Acreate and the responses.

most λ-bit. Hence no simulator will be able to mimic the behavior of such L.
Therefore those modes are unlikely to achieve whPRI-security.

5 New White-Box Security Notions for Other Schemes

This section introduces white-box security notions for block ciphers, keyed func-
tions, and conventional encryption schemes.

5.1 whPRP: Secure White-Box Block Ciphers

We call the new security notion for white-box block ciphers white-box pseudo-
random permutation security (whPRP). The definition of whPRP is similar to
that of whPRI; the oracles EK and DK are now just EK , and its counterpart in
the ideal game is a random permutation P ∈ Perm(n), where Perm(n) denotes
the set of permutations on {0, 1}n.

We again consider a white-box adversary A = (Acreate,Adist) running in

two games: the real white-box PRP game (PRP -real) which is formally de-

fined in Exp. 7 and the ideal white-box PRP game (PRP -ideal) in Exp. 8. We
assume that the white-box program given to a lifter contains an implementa-
tion of not only encryption but also decryption. Then, given a block cipher E
and its compiler CE , let us define the whPRP advantage of a white-box adver-
sary A = (Acreate,Adist) with respect to a simulator S as AdvwhPRP

E,CE ,S(A) :=

Pr

[
Exp

PRP -real

E,CE ,A = 1

]
− Pr

[
Exp

PRP -ideal

S,A = 1

]
.

Definition 3 (whPRP). The pair of a block cipher E and a compiler CE is a
(λ, t, q, tlif , qsim, ϵ)-secure whPRP if the following condition is satisfied: Let A be
an arbitrary adversary running in time t and making at most q queries. A makes
a lifter that runs in time tlif and outputs at most λ-bit leakage. For arbitrary such
A, there exists a simulator S that runs in time tsim, makes at most qsim queries,
and satisfies an inequality AdvwhPRP

E,CE ,S(A) < ϵ.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 19

Informally, suppose the following claim holds: For any “efficient” A, there exists
a simulator S that makes a “reasonable amount of” queries and making the
whPRP-advantage small. Then we say that Π is whPRP-secure.

The definition of whPRP is a strengthening of the conventional black-box PRP,
as the latter corresponds to the case λ = 0. It should be noted that we allow the
simulator S to make queries to P−1.

We can also consider the strong PRP version, whSPRP, where A is given
oracle access to not only EK but also E−1

K . It is strictly stronger than whPRP.
As a candidate of whPRP, we conjecture20 that SPACE-na (na ∈ {8, 16, 24, 32})

is a (λ, t, q, tlif , qsim, ϵ)-secure whPRP with t ≈ 2κ, q ≈ 2n, λ ≈ (n− na) · 2na−2,
and ϵ≪ 1, as long as tlif ≪ qsim(< 2n). Here, n and κ denote the block and key
length, which are 128. More details on why we expect that this conjecture holds
can be found in Section M in the appendix.

5.2 whPRF: Secure White-Box Keyed Functions

We call the new security notion for white-box keyed functions white-box pseudo-
random function security (whPRF)21, which is defined in the same way as wh-
PRP except that the black-box oracle given to the adversary is a random function
RF instead of a random permutation P , and that simulators have access to RF
instead of P and P−1. Real and ideal experiments in addition to a distinguishing
advantage are defined in the same way as those for whPRP.

5.3 White-Box Security of Conventional Encryption Schemes

We define two security notions on conventional IV-based encryption schemes,

which we name tweakable strong PRP security (whS̃PRP) and white-box IND$-
CPA security (whIND$-CPA).

whS̃PRP. The most natural way to obtain a definition of conventional IV-based
encryption schemes is to consider the special case of whPRI where A = {ε} and
τ = 0. This is an extension of (VIL) tweakable strong PRP (S̃PRP) security for

enciphering schemes in the black-box setting [47], and thus we call it whS̃PRP.

20 Note that it is unrealistic to “prove” whPRP-security of SPACE-256-16 in the same
sense as proving PRP security of AES is unrealistic. Generally, the only realistic way
to be confident with security of a block cipher is to see whether it withstands various
attempts of cryptanalysis by experts. Recently, the security of some space-hard block
ciphers was reviewed against a similar adversary to whPRP in [78].

21 We define a white-box version of PRF security but does not for MAC security such
as existential unforgeability. This is because a lifter can leak a valid message-tag
pair that has not been queried to oracles before, and thus it seems hard to achieve a
sound white-box version of existential unforgeability. It might be possible to define
a white-box version of weaker notions such as universal unforgeability, but such
notions are out of the scope of this paper. Studying weaker notions is a future work.

20 A. Hosoyamada et al.

whIND$-CPA. Though whS̃PRP is naturally derived from whPRI, many pop-

ular conventional encryption schemes such as CTR and CBC are not S̃PRP-
secure even in the black-box setting. Thus we seek for another definition extend-
ing ones that CTR and CBC meet in the black-box setting. Since CTR and CBC
cannot achieve indistinguishability against CCAs, we focus on security against
CPAs.

In the black-box setting, we have three scenarios depending on how IVs for
encryption queries are chosen.

1. Arbitrary IV (or, nonce-misuse) scenario: IVs are chosen by adversaries com-
pletely arbitrarily.

2. Nonce IV (or, nonce-respecting) scenario: IVs are chosen by adversaries ar-
bitrarily, but repeated uses are prohibited (i.e., once an IV value is used for
a query, it is never be used again).

3. Random IV scenario: An IV is chosen uniformly at random for every encryp-
tion query.

CTR and CBC cannot achieve indistinguishability in the first scenario. The
second scenario is popular in the black-box setting but not suitable in our context
since a lifter may leak information on a valid message-ciphertext pair w.r.t. an
unused nonce. Thus we focus on the random IV scenario.

We follow [69] for the black-box security notion against CPAs for conven-
tional random-IV encryption scheme. The notion is defined by real and ideal
experiments. In the real experiment, an adversary has an access to a modified
version of the encryption oracle EK , which we denote by EK,rnd. For each encryp-
tion query, EK,rnd chooses IV uniformly at random, and returns (IV, EK(IV)).
In the ideal experiment, EK,rnd is replaced with an oracle $(·) that just returns a
random IV and a random ciphertext of the same length as the message. A scheme
is defined to be secure if an adversary with a reasonable amount of computa-
tional resources cannot distinguish the two experiments. We call this black-box
security notion IND$-CPA22.

Our new notion whIND$-CPA is defined by extending IND$-CPA in the same
way as whPRI is defined extending PRI security. In the real world, the black-
box oracle given to A is EK,rnd only. In the ideal world, the oracle $(·) is given
to both of A and S. We show the real and ideal experiments in Fig. 3 in the
appendix. The advantage AdvwhIND$−CPA

Π,CΠ ,S (A) is defined as before. We assume
that the white-box program given to a lifter contains an implementation of not
only encryption but also decryption.

6 Weak Public Indifferentiability and White-Box Security
Reductions

This section first introduces a weaker version of public indifferentiability which
we name weak public indifferentiability. Second, we show that weak public indif-

22 This name is from [72], though it is defined for nonce-based scheme rather than
random-IV schemes.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 21

ferentiability implies reductions between our white-box security notions intro-
duced in Sections 4 and 5. Third, we provide feasibility results that our white-box
security notions on various schemes can be reduced to whPRP, by showing weak
public indifferentiable constructions.

6.1 Weak Public Indifferentiability and Compositions

An important point to be aware of about public indifferentiability is that it seems
quite hard to prove a composition of two arbitrary public indifferentiable scheme
become again public indifferentiable. This is because the general “composition
theorem” is not applicable to show public indifferentiability of composite schemes
due to the following reason. Suppose a scheme UQ (Q is an ideally random prim-
itive) is public indifferentiable from a random object P (e.g., a random oracle).
Then, what the general ”composition theorem” for public indifferentiability says
is that we can safely replace P in a protocol or construction with UQ if the secu-
rity of the protocol/construction is defined by single-stage games satisfying the
following condition: Queries to P by any party involved in the security games
can be made public without affecting the security. (We denote this condition by
(C).) Now, assume that there is another scheme TP that is public indifferentiable
from a random object R. If (C) were satisfied by the security games of TP (i.e.,
by the security games of public indifferentiability), public indifferentiability of

UQ and the ”composition theorem” would imply public indifferentiability of TUQ

.
However, (C) is not satisfied because queries by a simulator must not be visible
to an adversary in the ideal game. Thus the general ”composition theorem” is

not applicable to prove public indifferentiability of TUQ

. (See also Remark 2.)

However, infeasibility of compositions is inconvenient because security proofs
cannot be provided in a modular way. To remedy this, we introduce a weaker
variant which we name weak public indifferentiability. Let TP be a construc-
tion querying to an ideally random primitive P, and let R be a random ob-
ject of which input-output interfaces are compatible with TP. Now, let Rev′[R]
be a variant of the revealing interface Rev[R] that returns the list of all the
queries made so far by A, but not by S, together with the responses23. We
define weak public indifferentiability in the same way as public indifferentiabil-
ity is defined except that the revealing interface is Rev′[R] instead of Rev[R].

Weak public indifferentiability advantage is defined as Advweak-pub-indiff
T,R,S (A) :=

Pr
[
1← ATP,P

]
− Pr

[
1← AR,SR,Rev′[R]

]
.

23 Note that lists returned by Rev′[R] contain more useful information for S than lists
returned by Rev[R]. This is because (1) S can record what it has queried to R so far
by itself, and (2) Sometimes S cannot tell which queries recorded in a list by Rev[R]
have been queried by A: If a value x had been queried to R for the first time by S
but not A, there is no means for S to know whether A queried x to R afterwards.

22 A. Hosoyamada et al.

A public indifferentiable scheme is weak public indifferentiable24. This is
because a simulator S for public indifferentiability can be converted into a one
for weak public indifferentiability just by recording queries that S makes to R.

On Compositions of Two Weak Public Indifferentiable Schemes. Here
we explain that a composition of two weak public indifferentiable schemes be-
come weak public indifferentiable if a few additional conditions are satisfied. To
explain this, we formally define random-IV schemes. Note that we say a con-
struction TP is deterministic if, for an arbitrary inputX, the output value TP(X)
is unchanged during each game.

Definition 4. A construction TP is a random-IV scheme if it is a public-coin
protocol. Namely, there exists a deterministic construction T̃P and a set IV such
that, on arbitrary input X, TP runs as follows: (1) Take a value IV from IV
uniformly at random. (2) Return (IV, T̃P(IV,X)).

The following lemma shows the composition of two weak public indifferentiable
schemes is again weak public indifferentiable if a few additional conditions are
satisfied. Here we provide only an informal version due to page limitation. See
Section E in the appendix for a formal version and a proof.

Lemma 1 (Composition of weak public indifferentiable schemes, infor-
mal). Suppose the following (1)-(3) hold: (1) TP is a deterministic or random-IV
scheme calling an ideally random primitive P and is weak public indifferentiable
from R, (2) UQ is another deterministic construction calling an ideally random
primitive Q and is weak public indifferentiable from P, and (3) P and Q are

deterministic. Then TUQ

is also weak public indifferentiable from R, regarding Q
as the primitive oracle.

All compositions of (weak public) indifferentiable schemes appearing in this pa-
per satisfy (1)-(3).

Intuition of the Proof. Here we explain a sketch of the proof when all the func-
tions and constructions are deterministic. Suppose the ideal game for TU is being
executed with an adversary A.

Let ST (resp., SU) be a “good” simulator for T (resp., U) making the indiffer-
entiability advantage small. Then, a “good” simulator STU for TU is defined as
follows, by using ST and SU as subroutines: When a value x is queried to STU , it
first runs SU on the input x as a subroutine. Intuitively, STU tries to convince the

subroutine SU that “now SU is run as a part of ATP,SP,Rev′[P]
U ”. When SU returns

an output, STU returns it to A as its own output. To achieve this, STU simulates

the oracles P and Rev′[P] for SU. P is simulated just by running SR,Rev
′[R]

T . (Note

24 It seems hard to prove weak public indifferentiability implies public indifferentiabil-
ity, but currently we are not aware of any separation example that is weak public
indifferentiable but not public indifferentiable.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 23

that STU is given oracle access to R and Rev′[R].) The non-trivial part is how to
simulate the oracle Rev′[P].

What the subroutine SU is expecting to receive when it makes a query to
the revealing interface is a list storing queries (and the responses) to P that are

made so far by A through T (but not by SU) while running ATP,SP,Rev′[P]
U . Hence,

when the subroutine SU makes a query to the revealing interface, STU simulates
the oracle Rev′[P] as follows. First, STU queries to Rev′[R] to get the list ListA[R]
of queries made so far to R by A (but not by STU). Then STU computes the

function TSR,Rev′[R]
T on the input X for each entry (X,Y) in ListA[R], recording

all the queries by T to SR,Rev
′[R]

T into a list Listprim, together with the responses.
Finally, STU returns Listprim to SU as a response. The simulation works well
because STU can tell which value has been queried to R so far by A (but not by
STU). See Section E in the appendix for further details.

Remark 2. The above idea does not work for (original) public indifferentiability.
Here we explain which part fails for public indifferentiability. The non-trivial
part of the proof is again how to simulate Rev[P] for SU. The issue in simulating
Rev[P] is also again how to determine the values queried to P through T by A
but not by SU. Now, the procedure ”First, STU queries to Rev′[R] to get...” does
not work for public indifferentiability due to the property (2) in Footnote 23.

6.2 Weak Public Indifferentiability Implies White-Box Reduction

Let (π, Cπ) be a white-box symmetric-key scheme that are either of a keyed
function, block cipher, AEAD, or a conventional IV-based encryption scheme.
In addition, let (Σπ, CΣπ) be another white-box symmetric-key scheme built on
(π, Cπ). We assume Σ calls π in a black-box manner not only at a level of syntax
but also at a level of implementation, i.e., the following conditions are satisfied.

1. The implementation of π (denoted by JπK) is included into the implemen-
tation of Σπ (denoted by JΣπK). In particular, JπK and an implementation
of an oracle-aided algorithm Σ (which is independent from π) is explicitly
separated in JΣπK.

2. The implementation of Σ calls JπK in a black-box manner.

Our goal is to reduce the security of (Σπ, CΣπ) to the security of (π, Cπ). By sec-
const (resp., sec-prim) we denote the security notion corresponding to (Σπ, CΣπ)

(resp., (π, Cπ)), which is whPRI, whPRP, whPRF, whS̃PRP, or whIND$-CPA25.
By abuse of notations, we use the same symbols Σπ and π to denote the

corresponding keyed black-box oracles given to (Acreate,Adist) in the white-box
security definitions. We assume Σπ is a deterministic or random-IV scheme: If

25 We assume the interfaces of π that Σ accesses to are only those given to A as black-
box oracles in the security games of sec-prim. For instance, if π is a block cipher
EK and sec-prim is whPRP, we assume that Σ calls only EK and does not call E−1

K

(though simulators in the ideal game of whPRP access to both of P and P−1).

24 A. Hosoyamada et al.

it is a random-IV scheme, there exists a scheme Σ̃π and a set IV such that Σπ

runs as follows on arbitrary input X: (1) IV is chosen uniformly at random from
IV. (2) Return (IV, Σ̃π(IV,X)).

Let R and P denote the ideal oracles given to a simulator in the ideal games of
the security definition of (Σπ, CΣπ) and (π, Cπ), respectively. Suppose there exist
non-decreasing functions qΣ(·, ·) and σΣ(·, ·) satisfying the following property: If
Σπ is evaluated on q inputs of which lengths 26 are σ in total during a game, Σ
makes at most qΣ(q, σ) queries to π and the lengths of the queries are at most
σΣ(q, σ) in total. In addition, assume we have the following three algorithms.

1. An adversary A = (Acreate,Adist) against (Σ
π, CΣπ). The running time is at

most tA. The number of black-box oracle queries by A is at most qA and the
lengths of queries are at most σA in total. A creates a lifter running in time
tlif and outputs at most λ-bit leakage.

2. A simulator Sprim for (π, Cπ) on sec-prim. Sprim makes at most qSprim queries
to the ideal oracle P. The lengths of queries are at most σSprim in total.

3. A simulator Sindiff for weak public indifferentiability of ΣP from R27. There
exist non-decreasing functions qSindiff

(·, ·, ·, ·) and σSindiff
(·, ·, ·, ·) satisfying

the following properties: If an adversary makes at most qc (resp., qp) con-
struction (resp., primitive) queries of which lengths are at most σc (resp.,
σp) in total in the ideal game of weak public indifferentiability, Sindiff makes
at most qSindiff

(qc, σc, qp, σp) queries to the ideal oracle R. The lengths of the
queries are σSindiff

(qc, σc, qp, σp) in total.

Theorem 2. Let A, Sprim, and Sindiff be as above. Then there exists an adver-
sary A′ = (A′

create,A′
dist) against (π, Cπ), a simulator Sconst for (Σπ, CΣπ), and

an algorithm A′′ against weak public indifferentiability of Σ such that

Advsec-const
Σπ,CΣπ ,Sconst

(A) = Advsec-prim
π,Cπ,Sprim

(A′) +Advweak-pub-indiff
Σ,R,Sindiff

(A′′) (1)

holds. Here, we can construct Sconst, A′, and A′′ so that (a) A′ does not de-
pend on Sprim and Sindiff , (b) Sconst does not depend on A, (c) A′′ does not
depend on Sindiff , and the following conditions hold: (1) Sconst makes at most
qSindiff

(qA, σA, q
′
Σ+qSprim

, σ′
Σ+σSprim

) queries to R. The lengths of the queries are
at most σSindiff

(qA, σA, q
′
Σ + qSprim , σ

′
Σ +σSprim) in total. Here, q′Σ := qΣ(qA, σA)

and σ′
Σ := qΣ(qA, σA) (2) A′ runs in time O(tA + σ′

Σ) and makes at most q′Σ
queries to a black-box oracle. The lengths of the queries are at most σ′

Σ in total.
A′ creates a lifter L′ that runs in time O(tlif) and outputs at most λ-bit leakage.
(3) A′′ makes at most qA construction queries of which lengths are at most σA
in total, and makes at most q′Σ + qSprim primitive queries of which lengths are at
most σ′

Σ + σSprim in total.
26 The unit of length can be set arbitrarily (e.g., bit or block) depending on the context.
27 Since P is the oracle given to a simulator while π is the black-box oracle given to

an adversary in the security games of sec-prim, Σ may access to only a part of the
interfaces of P: If sec-prim is whPRP and π = EK , P is the pair (P, P−1) (here, P
is a random permutation) but Σ accesses only to P (and not to P−1) because the
black-box oracle interface given to an adversary A in the definition of whPRP is
only EK (and E−1

K is not given to A).

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 25

Interpretation of Theorem 2. The above theorem indeed shows that (Σπ, CΣπ)
is a secure white-box scheme w.r.t. sec-const if the underlying scheme (π, Cπ) is
secure w.r.t. sec-prim and ΣP is weak public indifferentiable from R: Let A be
an adversary attacking (Σπ, CΣπ). Then, we can construct an adversary A′ to
attack (π, Cπ) as in Theorem 2. If (π, Cπ) is secure (w.r.t. sec-prim), then there

is a simulator Sprim for (π, Cπ) that makes Advsec-prim
π,Cπ,Sprim

(A′) small. In addition,

if ΣP is weak public indifferentiable from R, then there exists a simulator Sindiff
making Advweak-pub-indiff

Σ,Sindiff
(A′′) small, where A′′ is the adversary built from A

and Sprim as in the theorem. Again, Theorem 2 assures that we can construct
Sconst from Sprim and Sindiff such that Advsec-const

Σπ,CΣπ ,Sconst
(A) satisfies Eq. (1).

If all the parameters appearing in Theorem 2 are not so large, the advantage
Advsec-const

Σπ,CΣπ ,Sconst
(A) is sufficiently small.

Intuition of the Proof. Here we provide a rough sketch on why Σπ becomes
secure if π is secure and ΣP satisfies the original indifferentiability. Let Sindiff be
a simulator making the indifferentiability advantage of ΣP small. We consider
the following three games.

1. [The real world (for Σπ on sec-const).] The adversary A = (Acreate,Adist)
is given a black-box oracle access to Σπ. A lifter L is given a white-box
implementation of Σπ.

2. [Intermediate world.] The black-box oracle of π and the lifter L in the real
world are replaced with a random permutation P and a simulator Sprim (for
π on sec-prim), respectively. The adversary A = (Acreate,Adist) and §prim are
given oracle access to ΣP and P, respectively. Especially, this game executes

three algorithms AΣP

create, SPprim, and AΣP

dist.

3. [The ideal world] The black-box oracle given to A = (Acreate,Adist) is R.
In addition, the simulator (for Σπ on sec-const) is defined to be SSindiff

prim .

SSindiff

prim is also given an oracle access to R. Especially, this game executes

three algorithms AR
create, S

SR
indiff

prim , and AR
dist.

If π is secure, then we can replace π (in Σπ) and a lifter in the real world with P
and a simulator Sprim, respectively, with a small security loss. That is, the differ-
ence between the first and the second worlds is small. Next, regarding the tuple
(Acreate,Sprim,Adist) as a single algorithm, we can regard the intermediate world
as a game where a single-stage adversary (Acreate,Sprim,Adist) runs relative to
the oracles (ΣP,P). Moreover, we can also regard the ideal wold as a game where
the single algorithm (Acreate,Sprim,Adist) runs relative to the oracles (R,SRindiff).
Especially, the difference between the intermediate and ideal worlds matches the
indifferentiability advantage of the single algorithm (Acreate,Sprim,Adist) against
TP and R with respect to Sindiff28. Since ΣP is indifferentiable from R by Sindiff ,
the difference between the intermediate world and the ideal world is also small.

28 This is the reason that we can utilize the indifferentiability of ΣP from R to show
the security of Σπ although the security games of Σπ are not single-stage games.

26 A. Hosoyamada et al.

In fact there are some subtleties on how to simulate list of queries passed
to Sprim. Moreover, when we consider weak public indifferentiability instead of
original indifferentiability, we also have to consider how to simulate the revealing
interface Rev′[R]. See Section F in the appendix for details.

6.3 Feasibility Results

This section shows feasibility results that various white-box security notions can
be reduced to that of block ciphers (whPRP) and FIL/FOL keyed functions
(whPRF) like in the black-box setting. We only prove (weak) public indiffer-
entiability of the constructions because Theorem 2 shows white-box security
reductions follow from (weak) public indifferentiability.

whPRP-whPRF Switch. Let P be an n-bit random permutation. Then, re-
garding (P, P−1) as a primitive oracle, P is public indifferentiable from a random
function RF : {0, 1}n → {0, 1}n. (In the real world, the construction oracle is P
and the primitive oracle is (P, P−1).) Specifically, the proposition below holds.

Proposition 1. There is a simulator S making at most qp queries to RF sat-

isfying Advpub-indiff
P,RF,S (A) ≤ (qc+qp)

2

2n for any adversary A making at most qc and
qp queries to the construction and primitive oracles, respectively.

The proof is quite straightforward. See Section G in the appendix for a complete
proof. Together with Theorem 2, this proposition implies that a whPRP-secure
BC is a whPRF-secure keyed function.

Reduction from whPRP to whPRF. The 6-round Feistel construction is
public indifferentiable from a random invertible permutation when round func-
tions are random functions [61]. Thus we can build a whPRP-secure BC from a
whPRF-secure keyed function.

Reduction from VIL/VOL-whPRF to FIL/FOL-whPRF. The indiffer-
entiability result of the sponge construction (Theorem 1) implies that we can
build VIL/VOL-whPRF from FIL/FOL-whPRF. We can also build VIL/FOL-
whPRF from FIL/FOL-whPRF by the Merkle-Damg̊ard construction since it is
public indifferentiable [40].

Reduction from whPRI to FIL/FOL-whPRF. By the result of Barbosa
and Farshim [6], an indifferentiable AEAD can be constructed from a FIL/FOL
random function by a scheme based on (unbalanced) 3-round Feistel that uses
the sponge construction as round functions. (See Theorem 5 in the appendix
and the explanation below for more details.) Thus we can build a whPRI-secure
AEAD from a whPRF-secure FIL/FOL keyed function. In Section 7 we show a
more practical construction.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 27

Reduction from whS̃PRP to whPRF. A weak public indifferentiable VIL
tweakable ideally random permutation can be built from a FIL/FOL random
function f , by a (balanced) 6-round Feistel construction of which round functions
are the sponge construction using f as an underlying primitive. See Section H
in the appendix for more details.

Reduction from whIND$-CPA to whPRF. Let us modify the encryption
oracle of CTR in such a way that (1) a uniformly random IV is chosen for each
encryption query (rather than IV is chosen by adversary) and IV is returned
together with the ciphertext, and (2) the underlying keyed function of CTR is
replaced with a random function ρ. We denote the resulting encryption oracle
by Eρrnd. Then E

ρ
rnd is public indifferentiable from $(·) that appears in the ideal

experiment of whIND$-CPA. More precisely, the following proposition holds.

Proposition 2. There exists a simulator S making at most qc queries to the
$(·), where the lengths of queries are at most σ blocks in total, that satisfies

Advpub-indiff
Ernd,$(·),S(A) ≤

σ2

2m +
σ(σ+qp)

2m for any adversary A making at most qc queries

to the construction oracle of which lengths are at most σ blocks in total and qp
queries to the primitive oracle.

Intuition of the Proof. For simplicity, we assume len(M) is always a multiple of
n and denote the i-th block of M by Mi, i.e., M = M1|| · · · ||Mlen(M)/n. Roughly
speaking, the simulator S runs as follows: Let List[$(·)] be the list storing queries
made so far to $(·) and the responses. When a fresh value x is queried to the
interface corresponding to ρ, the simulator first queries to the revealing interface
to get List[$(·)]. If there exists (M, (IV, C)) ∈ List[$(·)] such that x = IV + i− 1
for 1 ≤ i ≤ len(M)/n, the adversary may be trying to compute the i-th block of
C itself. Thus the simulator sets the value ρ(x) as ρ(x) := Mi ⊕ Ci so that the
adversary cannot notice that ρ is simulated. If such (M, (IV, C)) does not exist
in List[$(·)], the value ρ(x) is just randomly sampled.

The simulator may not be able to sample the value ρ(x) in compatible with
C and fail if the following (a) or (b) happen: (a) when a message M is queried to
$(·) and IV is randomly chosen, IV +i = IV ′+j holds for some (M ′, (IV ′, C ′)) ∈
List[$′(·)], where 0 ≤ i < len(M)/n and 0 ≤ j < len(M ′)/n. (b) when a message
M is queried to $(·) and IV is randomly chosen, the value IV + i (0 ≤ i <
len(M)/n) collides with a value x on which the output value of ρ is already

defined. The events (a) and (b) correspond to the terms σ2

2m and
σ(σ+qp)

2m in
the security bound, respectively. If both of (a) and (b) do not happen in the
ideal world, then outputs of ρ are appropriately simulated in compatible with
ciphertexts, and thus an adversary cannot distinguish the ideal world from the
real world. See Section J in the appendix for a complete proof.

On Reduction of Pairs and Generic Compositions We also observe fea-
sibility of reductions of pairs (i.e., providing proof in a modular way), and in-
feasibility of generic compositions for AEADs. See Section I in the appendix for
details.

28 A. Hosoyamada et al.

7 A Search for a Practical whPRI-Secure AEAD Mode

This section shows a practical AEAD mode to convert whPRP into whPRI.
Section 7.1 shows that SIV with CTR is public indifferentiable from a fixed-key
random injection when the tag-generation (or, MAC) part is a single VIL/FOL
random function f and the underlying keyed function of CTR is a FIL/FOL
random function ρ. Then, in Section 7.2, we replace ρ and f with keyed functions
built from a single whPRP, and observe that the resulting scheme is a whPRI-
secure AEAD.

7.1 Public Indifferentiability of SIV+CTR

Let CTRρ(IV,M) denote the encryption function of the counter mode with the
underlying keyed function being replaced with a random function ρ : {0, 1}τ →
{0, 1}n (τ ≤ n). In addition, let Π = (Ef,ρ,Df,ρ) be the SIV construction of
which keyed function for tag-generation is replaced with a random function
f : N ×A × {0, 1}∗ → {0, 1}τ and conventional encryption scheme is replaced
with CTRρ. Let enc : N×A×{0, 1}∗ → {0, 1}∗ be an arbitrary encoding function
that encodes each tuple (N,A,X) into a single bit string in a uniquely decod-
able manner. We let len(N,A,X) := len(enc(N,A,X)) and call ⌈len(X)/n⌉ the
block length of a bit string of X. The following theorem shows Π is public
indifferentiable from a random injection.

Theorem 3. Let F : N×A×{0, 1}∗ → {0, 1}∗ be a fixed-key random injection
with message space {0, 1}∗ and such that len(F (N,A,M)) = len(M) + τ . There
exists a simulator S for public indifferentiability of Π from F±, where a primitive
oracle is (f, ρ), such that the number of queries by S to the construction oracle
is at most qf and the block lengths of the queries are at most σf in total, and

Advpub-indiff
Π,F±,S (A) ≤ (σc + σf)

2

2τ
+

(σc + σf)(qρ + σc)

2τ
+

3qc
2τ

+
(qc + qf)

2

2τ
(2)

holds for any adversary A of which computational resources are as follows: To
the construction oracle, A makes at most qc queries of which block lengths are
at most σc in total. To the first primitive oracle (corresponding to f), A makes
at most qf queries of which block lengths are at most σf in total. To the second
primitive oracle (corresponding to ρ), A makes at most qρ queries. Here, we
assume (qc + qf) ≤ 2τ−1.

Intuition of the Proof. For simplicity, we assume len(M) is always a multiple
of n. For each (N,A,M), we assume F (N,A,M) is divided as F (N,A,M) =
IV ||C1|| · · · ||Cℓ, where IV ∈ {0, 1}τ and C1, . . . , Cℓ ∈ {0, 1}n. The simulation
of ρ is almost the same as that for the proof of random-IV CTR (See the ex-
planation below Proposition 2. Here, $(·) in Proposition 2 is replaced with F .).
Simulation of f(N,A,M) is done just by querying (N,A,M) to F and return
F0(N,A,M). Intuitively, the simulation does not work well if the simulation of
ρ fails (the events (a) and (b) in the explanation below Proposition 2), or (c) an

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 29

adversary computes Df,ρ(N,A,C) itself for a tuple (N,A,C) such that C has
never been returned from F , and Df,ρ(N,A,C) happens to be a value that is not

⊥. The events (a) and (b) correspond to the terms
(σc+σf)

2

2τ and
(σc+σf)(qρ+σc)

2τ of
Eq. (14), respectively. Due to (c), an additional term qc

2τ is added. Moreover, we

need another term
(qc+qf)

2+2qc
2τ to deal with lazy sampling of a random injection.

See Section K in the appendix for a complete proof.

7.2 Instantiation with Block Ciphers

This section discusses how to combine the scheme in the previous subsection
with a whPRP-secure block cipher to build a whPRI-secure AEAD.

Assume τ < n and let P : {0, 1}n → {0, 1}n a random permutation. De-
fine P0 : {0, 1}n−1 → {0, 1}n−1 and P1 : {0, 1}τ → {0, 1}n by P0(x) :=
(The lower (n− 1) bits of P (0||x)) and P1(x) := P (1n−τ ||x). Set N = {0, 1}n/2.
Let enc be an encoding function such that enc(N,A,M) = N ||A||M ||len(M).
(We assume len(M) is represented as an n/4-bit string.) In addition, define
MACP (N,A,M) := SpongeP0(enc(N,A,M)). Replace f (tag generation func-
tion) and ρ (underlying function of CTR) of Π in Theorem 3 with MACP and
P1, and denote the resulting scheme by Π[P].

Then, Π[P] is weak public indifferentiable from a fixed-key random injection
F± when P± is regarded as a primitive oracle29. Furthermore, if we replace P
with a whPRP-secure block cipher EK , the resulting scheme Π[EK] becomes a
whPRI-secure AEAD by Theorem 2. (Here, we assume Π[EK] is implemented
in such a way that the implementation of the mode is explicitly separated from
the implementation of EK and the former calls the latter in a black-box manner,
so that Theorem 2 can be applied.) More precisely, the following corollary holds.
(See Section L in the appendix for more details on how to derive the corollary.)

Corollary 1. Let A be an adversary against (Π[EK], CΠ[EK]) on whPRI-security.
The running time of A is at most t. The number of queries by A to a black-box
oracle is at most q and the block lengths of the queries are at most σ in total. A
creates a lifter running in time tlif and outputs at most λ-bit leakage. In addition,
let Sprim be a simulator for (E, CE) on whPRP-security. Sprim makes at most
qsim queries to P±. Then there exists a simulator Sconst for (Π[EK], CΠ[EK]) on
whPRI-security and an adversary A′ against (E, CE) on whPRP-security such

29 This is because (1) an invertible permutation is public indifferentiable from a ran-
dom function (Proposition 1), (2) the sponge construction is indifferentiable from
a random oracle (Theorem 1), (3) the scheme Π in Theorem 3 is public indiffer-
entiable from a fixed-key random injection, (4) composition of deterministic weak
public indifferentiable schemes are again weak public indifferentiable (Lemma 1, or
its formal version Lemma 2 in the appendix).

30 A. Hosoyamada et al.

that AdvwhPRI
Π[EK],CΠ[EK],Sconst

(A) is upper bounded by

AdvwhPRP
EK ,CEK

,Sprim
(A′) +

⌈nr ⌉6(10⌈nr ⌉σ + qsim)
4

2τ
+
⌈nr ⌉4(10⌈nr ⌉σ + qsim)

3

2τ

+
3qc
2τ

+
⌈nr ⌉2(10⌈nr ⌉σ + qsim)

2

2τ
+ ϵ

(
2
⌈n
r

⌉
(8

⌈n
r

⌉
σ + qsim)

)
+
⌈nr ⌉2(9⌈nr ⌉σ + 2qsim)

2

2n
,

where ϵ(j) = 1−Πj
i=1(1− 1

2c). Sconst makes at most
⌈
n
r

⌉
(9

⌈
n
r

⌉
σ+ qsim) queries

to F± and the lengths of the queries are at most (
⌈
n
r

⌉3
(9

⌈
n
r

⌉
σ + qsim)

2) blocks

in total. A′ runs in time O(t + σ) and makes at most (2σ +
⌈
n
r

⌉
q) black-box

oracle queries. A′ outputs a lifter that runs in time O(tlif) and outputs at most
λ bits of leakage.

Interpretation of Corollary 1. Let us set τ = n − 1 and (r, c) = (n/2, n/2 − 1).
Then, Corollary 1 says that AdvwhPRI

Π[EK],CΠ[EK],Sconst
(A) becomes small as long as

AdvwhPRP
E,CE ,Sprim

(A) is small and qsim, q, σ ≪ 2n/4. This means the following: Let

λ and tlif be some reasonable parameters (≪ 2n/4) and assume the underlying
block cipher EK is a secure whPRP. More concretely, let A′ be an adversary
attacking EK with t ≪ 2κ and q ≪ 2n/4, and L be a lifter running in time
tlif(< 2n/4) that leaks at most λ-bit leakage. Suppose, for any such A′ and L,
there exists Sprim with making qsim(≪ 2n/4) queries such thatAdvwhPRP

E,CE ,Sprim
(A′)

is sufficiently small. ThenΠ[EK] is whPRI-secure against an adversary A as long
as (1) the running time of A is ≪ 2κ, (2) the length of messages processed by
Π[EK] is ≪ 2n/4 blocks in total while running A in the real world, and (3) the
running time and leakage of a lifter (output by A) are at most tlif and λ bits 30.

On Underlying Block Cipher. The above discussions show that Π[EK] is
whPRI-secure if EK is whPRP-secure and the amount of data processed by
Π[EK] is ≪ 2n/4. As a candidate of whPRP-secure BC, we conjecture that
SPACE is whPRP-secure for some parameter settings (see Section 5.1). However,
the block length of SPACE is basically n = 128 only, when 2n/4 = 232. In practical
use cases, the limitation of 232 is inconvenient and unsatisfactory.

Thus, we propose a 256-bit block variant of SPACE-16, which we name
SPACE256-16. Its details are provided in Section N in the appendix, where
we discuss its security against various attacks following the convention of block
cipher designs. We conjecture31 that SPACE256-16 is a (λ, t, q, tlif , qsim, ϵ)-secure
whPRP with λ ≈ 220, t ≈ 2128, q ≈ 264, qsim ≈ 264, and ϵ ≪ 1, as long as
tlif ≪ qsim. Assuming our conjecture is true, Π[EK] with EK instantiated with

30 Note that λ does not explicitly appear in the upper bound of
AdvwhPRI

Π[EK],CΠ[EK],Sconst
(A) in the corollary. This is because we (implicitly)

assume λ ≤ qsim and the effect of λ is absorbed into qsim in the security bound.
31 This conjecture is obtained by changing the settings of n and na in our conjecture

in Section 5.1 to n = 256 and na = 16. κ is still 128.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 31

SPACE256-16 is secure until the amount of processed data is ≪ 264 (and the
amount of leakage is < 220).

To evaluate the performance, we implemented Π[EK] using SPACE256-16 on
a single core in a laptop PC with Intel Core i7-1065G7, being Turbo Boost and
hyperthreading disabled. The implementation size is in the order of KB or MB.
As a result, the performance reaches about 530 CPB when a 1KB message is
processed. Considering the performance of raw SPACE-16 is 305.11 cpb [25], we
believe our mode of operation achieves relevant performance.

The limit of leakage for SPACE256-16 is not large. Still, in the same way
as (the original, 128-bit-block) SPACE-32 and SPACE-24 provide better security
than SPACE-16 does, a better limit could be achieved by 256-bit-block versions
of SPACE-32 or SPACE-24 (at the cost of performance). We introduced a 256-
bit-block version of SPACE-16 rather than SPACE-32 or SPACE-24 to balance se-
curity and performance. Improving the performance and the limit of the leakage
is an interesting future work. This could be achieved by improving SPACE-hard
block ciphers, modes of operations, or both.

References

1. Agrawal, S., Bock, E.A., Chen, Y., Watson, G.J.: White-box cryptography with
device binding from token-based obfuscation and more. IACR Cryptology ePrint
Archive 2021/767 (2021)

2. Alliance, S.C.: A smart card alliance mobile & nfc council white paper, host card
emulation (hce) 101 (2014)

3. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key en-
cryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010,
Proceedings. LNCS, vol. 6110, pp. 113–134. Springer (2010)

4. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009, Proceedings. LNCS,
vol. 5677, pp. 36–54. Springer (2009)

5. Banik, S., Bogdanov, A., Isobe, T., Jepsen, M.B.: Analysis of software countermea-
sures for whitebox encryption. IACR Trans. Symmetric Cryptol. 2017(1), 307–328
(2017)

6. Barbosa, M., Farshim, P.: Indifferentiable authenticated encryption. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Proceedings, Part I. LNCS, vol. 10991,
pp. 187–220. Springer (2018)

7. Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated encryption in
the face of protocol and side channel leakage. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Proceedings, Part I. LNCS, vol. 10624, pp. 693–723. Springer
(2017)

8. Bellare, M., Dai, W.: Defending against key exfiltration: Efficiency improvements
for big-key cryptography via large-alphabet subkey prediction. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, Proceedings. pp. 923–
940. ACM (2017)

9. Bellare, M., Kane, D., Rogaway, P.: Big-key symmetric encryption: Resisting key
exfiltration. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Proceedings, Part I.
LNCS, vol. 9814, pp. 373–402. Springer (2016)

32 A. Hosoyamada et al.

10. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006, Pro-
ceedings. LNCS, vol. 4004, pp. 409–426. Springer (2006)

11. Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.: Tedt, a leakage-resist
AEAD mode for high physical security applications. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020(1), 256–320 (2020)

12. Berti, F., Pereira, O., Peters, T., Standaert, F.: On leakage-resilient authenticated
encryption with decryption leakages. IACR Trans. Symmetric Cryptol. 2017(3),
271–293 (2017)

13. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the indifferentiability of
the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008, Proceedings.
LNCS, vol. 4965, pp. 181–197. Springer (2008)

14. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT ’99, Pro-
ceedings. LNCS, vol. 1592, pp. 12–23. Springer (1999)

15. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO ’90, Proceedings. LNCS, vol. 537,
pp. 2–21. Springer (1990)

16. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a White Box AES Imple-
mentation. In: SAC 2004, Revised Selected Papers. pp. 227–240 (2004)

17. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on
the ASASA structure: Black-box, white-box, and public-key (extended abstract).
In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Proceedings, Part I. LNCS,
vol. 8873, pp. 63–84. Springer (2014)

18. Biryukov, A., Perrin, L.: Symmetrically and asymmetrically hard cryptography.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Proceedings, Part III. LNCS,
vol. 10626, pp. 417–445. Springer (2017)

19. Biryukov, A., Udovenko, A.: Attacks and countermeasures for white-box designs.
In: Peyrin, T., Galbraith, S.D. (eds.) ASIACRYPT 2018, Proceedings, Part II.
LNCS, vol. 11273, pp. 373–402. Springer (2018)

20. Biryukov, A., Udovenko, A.: Dummy shuffling against algebraic attacks in white-
box implementations. In: Canteaut, A., Standaert, F. (eds.) EUROCRYPT 2021,
Proceedings, Part II. LNCS, vol. 12697, pp. 219–248. Springer (2021)

21. Bock, E.A., Amadori, A., Bos, J.W., Brzuska, C., Michiels, W.: Doubly half-
injective prgs for incompressible white-box cryptography. In: Matsui, M. (ed.) CT-
RSA 2019, Proceedings. LNCS, vol. 11405, pp. 189–209. Springer (2019)

22. Bock, E.A., Amadori, A., Brzuska, C., Michiels, W.: On the security goals of white-
box cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(2), 327–357
(2020)

23. Bock, E.A., Brzuska, C., Fischlin, M., Janson, C., Michiels, W.: Security reductions
for white-box key-storage in mobile payments. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020, Proceedings, Part I. LNCS, vol. 12491, pp. 221–252. Springer
(2020)

24. Bogdanov, A., Isobe, T.: White-box cryptography revisited: Space-hard ciphers.
In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, Proceedings. pp. 1058–1069.
ACM (2015)

25. Bogdanov, A., Isobe, T., Tischhauser, E.: Towards practical whitebox cryptogra-
phy: Optimizing efficiency and space hardness. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016, Proceedings, Part I. LNCS, vol. 10031, pp. 126–158 (2016)

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 33

26. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
Hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016, Proceedings. LNCS, vol. 9813, pp. 215–236. Springer (2016)

27. Cash, D., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R.J., Walfish, S.: Intrusion-
resilient key exchange in the bounded retrieval model. In: Vadhan, S.P. (ed.) TCC
2007, Proceedings. LNCS, vol. 4392, pp. 479–498. Springer (2007)

28. Cho, J., Choi, K.Y., Dinur, I., Dunkelman, O., Keller, N., Moon, D., Veidberg, A.:
WEM: A new family of white-box block ciphers based on the even-mansour con-
struction. In: Handschuh, H. (ed.) CT-RSA 2017, Proceedings. LNCS, vol. 10159,
pp. 293–308. Springer (2017)

29. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002, Revised
Papers. LNCS, vol. 2595, pp. 250–270. Springer (2002)

30. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: A white-box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) Security and Privacy in
Digital Rights Management, ACM CCS-9 Workshop, DRM 2002, Revised Papers.
LNCS, vol. 2696, pp. 1–15. Springer (2002)

31. Coron, J., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner, D.A. (ed.) CRYPTO 2008, Proceedings. LNCS,
vol. 5157, pp. 1–20. Springer (2008)

32. Crescenzo, G.D., Lipton, R.J., Walfish, S.: Perfectly secure password protocols in
the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006, Proceed-
ings. LNCS, vol. 3876, pp. 225–244. Springer (2006)

33. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher square. In: Biham, E.
(ed.) FSE ’97, Proceedings. LNCS, vol. 1267, pp. 149–165. Springer (1997)

34. Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials
in block ciphers. J. Math. Cryptol. 1(3), 221–242 (2007)

35. Degabriele, J.P., Janson, C., Struck, P.: Sponges resist leakage: The case of au-
thenticated encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019,
Proceedings, Part II. LNCS, vol. 11922, pp. 209–240. Springer (2019)

36. Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for
symmetric encryption schemes. In: Lange, T., Lauter, K.E., Lisonek, P. (eds.) SAC
2013, Revised Selected Papers. LNCS, vol. 8282, pp. 247–264. Springer (2013)

37. Dinur, I., Dunkelman, O., Kranz, T., Leander, G.: Decomposing the ASASA block
cipher construction. IACR Cryptology ePrint Archive 2015/507

38. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP
- towards side-channel secure authenticated encryption. IACR Trans. Symmetric
Cryptol. 2017(1), 80–105 (2017)

39. Dobraunig, C., Mennink, B.: Leakage resilience of the duplex construction. In:
Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Proceedings, Part III. LNCS,
vol. 11923, pp. 225–255. Springer (2019)

40. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging merkle-damg̊ard for practical
applications. In: Joux, A. (ed.) EUROCRYPT 2009, Proceedings. LNCS, vol. 5479,
pp. 371–388. Springer (2009)

41. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006, Proceedings. LNCS, vol. 3876, pp. 207–224. Springer
(2006)

42. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS 2008,
Proceedings. pp. 293–302. IEEE Computer Society (2008)

34 A. Hosoyamada et al.

43. Fouque, P., Karpman, P., Kirchner, P., Minaud, B.: Efficient and provable white-
box primitives. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Proceedings,
Part I. LNCS, vol. 10031, pp. 159–188 (2016)

44. Gilbert, H., Plût, J., Treger, J.: Key-recovery attack on the ASASA cryptosystem
with expanding s-boxes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015,
Proceedings, Part I. LNCS, vol. 9215, pp. 475–490. Springer (2015)

45. Gueron, S., Lindell, Y.: GCM-SIV: full nonce misuse-resistant authenticated en-
cryption at under one cycle per byte. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM
CCS 2015, Proceedings. pp. 109–119. ACM (2015)

46. Guo, C., Pereira, O., Peters, T., Standaert, F.: Towards low-energy leakage-
resistant authenticated encryption from the duplex sponge construction. IACR
Trans. Symmetric Cryptol. 2020(1), 6–42 (2020)

47. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003, Proceedings. LNCS, vol. 2729, pp. 482–499. Springer (2003)

48. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
Proceedings, Part I. LNCS, vol. 9056, pp. 15–44. Springer (2015)

49. Inc., G.O.: Gurobi optimizer, official webpage, http://www.gurobi.com/

50. intertrust: Intertrust white paper, taking steps to protect financial mobile applica-
tions (2018)

51. Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003, Proceedings. LNCS, vol. 2729,
pp. 463–481. Springer (2003)

52. Kalai, Y.T., Reyzin, L.: A survey of leakage-resilient cryptography. In: Goldreich,
O. (ed.) Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, pp. 727–794. ACM (2019)

53. Kalai, Y.T., Reyzin, L.: A survey of leakage-resilient cryptography. IACR Cryptol.
ePrint Arch. p. 302 (2019)

54. Knudsen, L.R., Wagner, D.A.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002, Revised Papers. LNCS, vol. 2365, pp. 112–127. Springer (2002)

55. Koike, Y., Sakamoto, K., Hayashi, T., Isobe, T.: Galaxy: A family of stream-cipher-
based space-hard ciphers. In: Liu, J.K., Cui, H. (eds.) ACISP 2020, Proceedings.
LNCS, vol. 12248, pp. 142–159. Springer (2020)

56. Krämer, J., Struck, P.: Leakage-resilient authenticated encryption from leakage-
resilient pseudorandom functions. In: Bertoni, G.M., Regazzoni, F. (eds.) COSADE
2020, Revised Selected Papers. LNCS, vol. 12244, pp. 315–337. Springer (2020)

57. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011, Revised Selected Papers. LNCS, vol. 6733,
pp. 306–327. Springer (2011)

58. Kwon, J., Lee, B., Lee, J., Moon, D.: FPL: white-box secure block cipher using
parallel table look-ups. In: Jarecki, S. (ed.) CT-RSA 2020, Proceedings. LNCS,
vol. 12006, pp. 106–128. Springer (2020)

59. Lepoint, T., Rivain, M., Mulder, Y.D., Roelse, P., Preneel, B.: Two Attacks on
a White-Box AES Implementation. In: SAC 2013, Revised Selected Papers. pp.
265–285 (2013)

60. Longo, J., Martin, D.P., Oswald, E., Page, D., Stam, M., Tunstall, M.: Simulatable
leakage: Analysis, pitfalls, and new constructions. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Proceedings, Part I. LNCS, vol. 8873, pp. 223–242. Springer
(2014)

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 35

61. Mandal, A., Patarin, J., Seurin, Y.: On the public indifferentiability and correlation
intractability of the 6-round feistel construction. In: Cramer, R. (ed.) TCC 2012,
Proceedings. LNCS, vol. 7194, pp. 285–302. Springer (2012)

62. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT ’93, Proceedings. LNCS, vol. 765, pp. 386–397. Springer (1993)

63. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004, Proceedings. LNCS, vol. 2951, pp. 21–39. Springer (2004)

64. McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode
(GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004,
Proceedings. LNCS, vol. 3348, pp. 343–355. Springer (2004)

65. Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In:
Naor, M. (ed.) TCC 2004, Proceedings. LNCS, vol. 2951, pp. 278–296. Springer
(2004)

66. Minaud, B., Derbez, P., Fouque, P., Karpman, P.: Key-recovery attacks on ASASA.
J. Cryptol. 31(3), 845–884 (2018)

67. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer (2011)

68. Mulder, Y.D., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao - Lai White-Box
AES Implementation. In: SAC 2012, Revised Selected Papers. pp. 34–49 (2012)

69. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composi-
tion. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014, Proceedings. LNCS,
vol. 8441, pp. 257–274. Springer (2014)

70. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009, Proceedings. LNCS, vol. 5479, pp. 462–482. Springer (2009)

71. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011,
Proceedings. LNCS, vol. 6632, pp. 487–506. Springer (2011)

72. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002, Proceedings. pp. 98–107. ACM (2002)

73. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) ACM CCS 2001, Proceedings. pp. 196–205. ACM (2001)

74. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006, Proceedings. LNCS, vol. 4004, pp.
373–390. Springer (2006)

75. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and crypt-
analysis aspects - revealing structural properties of several ciphers. In: Coron, J.,
Nielsen, J.B. (eds.) EUROCRYPT 2017, Proceedings, Part III. LNCS, vol. 10212,
pp. 185–215 (2017)

76. Standaert, F., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptography under
empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Proceedings, Part I. LNCS, vol. 8042, pp. 335–352. Springer (2013)

77. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Proceedings, Part I. LNCS, vol. 9056, pp.
287–314. Springer (2015)

78. Todo, Y., Isobe, T.: Hybrid code lifting on space-hard block ciphers: Application
to Yoroi and SPNbox. IACR Trans. Symmetric Cryptol. 2022(3), 368–402 (2022)

79. Whiting, D., Housley, R., Ferguson, N.: AES Encryption & Authentication Using
CTR Mode & CBC-MAC. IEEE P802.11 Wireless LNAs (2002)

36 A. Hosoyamada et al.

80. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of White-Box
DES Implementations with Arbitrary External Encodings. In: SAC 2007, Revised
Selected Papers. pp. 264–277 (2007)

81. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Proceedings, Part I. LNCS, vol.
10031, pp. 648–678 (2016)

82. Yoneyama, K., Miyagawa, S., Ohta, K.: Leaky random oracle. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci. 92-A(8), 1795–1807 (2009)

A Additional Figures

Experiment 9:

Exp
whIND$-CPA -real

Π,CΠ ,A

1: K
$←− K, P ← CΠ(K)

2: (L, S)← Acreate
EK ()

3: L← L(P)
4: β ← Adist

EK (S,L)
5: return β

Experiment 10:

Exp
whIND$-CPA -ideal

S,A

1:

2: (L, S)← Acreate
$(·)()

3: L← S$(·)(L, Listcreate)
4: β ← Adist

$(·)(S,L)
5: return β

Fig. 3: Experiments for whIND$-CPA. Listcreate denotes the list of queries to $(·)
by Acreate and the responses.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 37

GHASH

CTR

N M A

IV INPUT

C

K

concatenation

0128

E

E

Fig. 4: A simplified sketch of GCM mode of operation when N ∈ {0, 1}96. (N is
padded before fed to E and CTR but we omit to write details because it does
not affect our attack.)

38 A. Hosoyamada et al.

B Code Lifting on Existing Modes Other than GCM
Using White-Box Block Ciphers

Section 3 showed that an efficient lifter, given an unlimited access to a white-
box implementation of GCM, can leak the information on exponentially many
valid message-ciphertext pairs by a small amount of leakage. The information
is so much that an adversary can perform universal forgery. The attack works
regardless of whether the underlying block cipher resists code lifting or not,
and it intuitively shows that GCM is vulnerable to code lifting attacks. This
section shows similar attack exist on white-box implementations of GCM-SIV,
CCM, and OCB (under some reasonable assumptions), and that these modes
are essentially not resistant to code lifting attacks.

Our goal of this section is to provide intuitions that the modes are unlikely
to resist code lifting, rather than to provide formal discussions. For readability,
we sometimes simplify (a part of) the descriptions of the modes that does not
essentially affect our attacks.

B.1 Code Lifting on GCM-SIV

GCM is proven secure only if nonces are never repeated for encryption (i.e.,
secure in the nonce-respecting scenario). Once a nonce is repeatedly used, the
scheme is easily broken even in the black-box setting. However, it is not always
easy to completely ensure that users do not repeat nonces.

GCM-SIV [45] is a variant of GCM resolving this issue. It is proven secure
even if nonces are repeated for encryption (i.e., secure in the nonce-misuse sce-
nario). Figure 5 shows the high-level (and a simplified) overview of GCM-SIV
using two keys.

We expected that GCM-SIV would be immune from code lifting as it re-
sists nonce-repeating attacks. However, we observe that GCM-SIV is broken if
an efficient and reasonable lifter is given an unlimited access to a white-box
implementation.

We reasonably assume K1 and a white-box implementation of EK2 can ef-
ficiently be recovered once a white-box implementation of GCM-SIV is given:
Readers may wonder if they could be protected by software or hardware coun-
termeasures. However, the effectiveness of such countermeasures would be lim-
ited, given that existing white-box implementations of AES ensure security only
when adversaries have limited access to implemented algorithms. (Note that K1

is used only in GHASH, which is essentially a polynomial in K1 and some other
variables.)

Universal Forgery. Suppose that an attacker knows

1. K1,

2. a valid message-ciphertext pair ((N,A,M), C).

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 39

GHASH

CTR

E

M NA

IV INPUT

K1

C

K2

concatenation

Fig. 5: GCM-SIV mode of operation.

Then, for arbitrarily chosen associated dataA′ and any messageM ′ with len(M ′) ≤
len(M), the attacker can compute N ′ and C ′ such that ((N ′, A′,M ′), C ′) is a
valid message-ciphertext pair without making encryption or decryption queries
as follows.

1. IV ← the upper n bits of C, C̃ ← the remaining part of C
2. N ′ ← GHASH(K1, A,M)⊕GHASH(K1, A

′,M ′)⊕N
3. C̃ ′ ←M ′ ⊕ (the upper len(M ′) bits of C̃ ⊕M)
4. C ← IV ||C̃ ′

That is, the attacker can perform universal forgery.
The above discussions intuitively show that GCM-SIV is not secure against

code lifting attacks: An efficient lifter can leak information on exponentially
many message-ciphertext pairs just by leaking a small amount of data, i.e., K1

and a valid message-ciphertext pair. The attack works regardless of whether the
underlying white-box block cipher is secure against code lifting or not.

Remark on Single-Key GCM-SIV GCM-SIV supports a single-key variant,
where it takes a single key K0 and derive two keys K1 and K2 as K1 = EK0

(0128)
and K2 = EK0(0

127∥1). A natural way to implement this single-key variant is
to (1) implement a white-box implementation of EK0 and (2) compute K1 ←
EK0

(0128) and K2 ← EK0
(0127∥1) at every encryption/decryption function call

(i.e., EK0
is used as a deterministic key derived function).

Unfotunately, it is a disaster. Given an unlimited access to such a white-box
implementation, an attacker (lifter) can simply compute and copy K1 and K2.

40 A. Hosoyamada et al.

Once K1 and K2 are retrieved, arbitrary plaintext (resp., ciphertext) can be
encrypted (resp., decrypted).

Remark on GCM-SIV+ AES-GCM-SIV described in RFC8452 is based on
GCM-SIV+, a variant of the original GCM-SIV. The POLYVAL hash function
is used instead of GHASH, and the initial counter of CTR is generated from
the tag in a different way. The two differences do not affect our attack, and the
universal forgery attack works on GCM-SIV+ too.

The single-key GCM-SIV+ is further different from the single-key GCM-
SIV, where it derives two keys K1 and K2 by encrypting a nonce (with some
padding functions) with EK0

. Thus, K1 and K2 dynamically change depending
on nonces. Let K1,N and K2,N denote the keys derived from a nonce N . Again,
an attacker (lifter) can copy K1,N and K2,N for arbitrary N . Once K1,N and
K2,N are retrieved, arbitrary plaintext can be encrypted with nonce N , and
arbitrary ciphertext encrypted with nonce N can be decrypted.

B.2 Code Lifting on CCM

CCM [79] is also used in many applications as the authenticated encryption,
e.g., wireless LAN described in IEEE 802.11i. CCM uses CBC-MAC for the au-
thentication and CTR for the encryption. Figure 6 shows a rough and simplified
sketch of the CCM mode of operation. Both CTR0 and A0 are set by loading
the nonce with different encodings. In addition, A0 depends on the byte length
of the message. (A0 is not proper associated data since it depends on nonce, but
we treat it as associated data for ease of explanation.)

Unlike GCM or GCM-SIV, universal forgery is infeasible. This is because, if
an attacker wants to be able to evaluate chaining values of the CBC-MAC on an
arbitrarily chosen message, then the attacker has to copy the whole implemen-
tation of EK beforehand. However, existential forgery is still possible.

Existential Forgery. First, suppose an attacker knows the following informa-
tion.

(A) The value of EK(CTR0) and EK(A0) that are derived from a nonce N (and
a message length ℓM).

(B) The ciphertext C corresponding to an input (N,A0,M). Here, M is an ℓM ·n
bit (ℓM -block) message.

(C) The ciphertext C ′ corresponding to (N,A0,M
′), where M ′ is another ℓM ·n

bit (ℓM -block) message.

Let Xi (resp., X
′
i) be the input to EK in the CBC-MAC part just after XORing

Mi (resp., M
′
i). In addition, let Yi := EK and Y ′

i := EK(X ′
i). Then the attacker

knowing (A)-(C) can compute all of Xi, X
′
i, Yi, and Y ′

i .
Define M̃ = M̃1|| · · · ||M̃ℓM be the set of all the ℓM -bit block messages M̃

satisfying the following conditions:

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 41

EK

EK EK EK EK EK

tag

EK

A0 A1

M1

incr

EK

incrCTR0 CTR1

A�A

M �M

CTR�M

S0

S0

S1 S�M

C1 C�M

truncation

Fig. 6: CCM mode of operation.

1. M̃1 = EK(A0)⊕X1 or EK(A0)⊕X ′
1

2. M̃i = Ỹi−1⊕Xi or Ỹi−1⊕X ′
1 for i = 2, 3, . . . ℓM . (here, Ỹi denotes the output

of EK in the CBC-MAC part just after XORing M̃i in encrypting M̃ , which
is either of Yi of Y

′
i).

We can expect that the size of the set M̃ is ≈ 2ℓM .

Now we observe that an attacker can compute a valid ciphertext C̃ cor-
responding to (N,A0, M̃) for arbitrary M̃ ∈ M̃ if the attacker knows (A)-
(C), because the attacker can compute Xi and X ′

i. (Note that the keystream
S1||S2|| · · · ||SℓM used in CTR is common for M , M ′, and M̃ and it can be
recovered from M and C.)

The above discussions shows that CCM is vulnerable to code lifting: If a lifter
leaks only a small amount of data (A)-(C), an attacker obtains the information
on exponentially many (2ℓM) input-output pairs of CCM. This attack works even
if it is hard to copy the full implementation of EK .

B.3 Code Lifting on OCB

OCB is an authenticated encryption designed by Rogaway et al. [73, 57]. Figure 7
shows a rough sketch of the OCB mode of operation when associated data is
empty, where each ∆i is computed from certain two values Ktop, L∗ ∈ {0, 1}128,

42 A. Hosoyamada et al.

tag

M1

C1

EK

M2

C2

EK EK EK

truncation

M�M

C�M

∆1 ∆2 ∆�M

∆1 ∆2 ∆�M

M1 ⊕ · · · ⊕ M�M

∆$

Fig. 7: OCB mode of operation.

which are derived from a nonce and EK . (Here we assume the block length of
EK is n = 128.)

We show that existential forgery on OCB is possible by code lifting: Let c
be a small positive integer (e.g., c = 2) and X := {x ∈ {0, 1}128|x < 2c}. A
lifter first choose a nonce N , and compute corresponding Ktop, L∗, and S =
∆1⊕∆2⊕· · ·∆ℓM ⊕∆$. The lifter then copies and leaks Ktop, L∗, 2

c outputs of
EK whose corresponding inputs has the form of X , and 2c outputs of EK whose
corresponding inputs has the form of S⊕X . In total, 2c+1+2 blocks are copied.

Given the leakage by the lifter, an attacker can construct exponentially many
message-ciphertext pairs, i.e., existential forgeries. Let Xi and Yi be the input
and output of the ith block cipher EK , respectively. For arbitrary choice of
Xi ∈ X , the attacker can compute corresponding Mi and Ci because Ktop and
L∗ are known. Moreover,

M1 ⊕ · · · ⊕MℓM ⊕∆$ =

ℓM⊕
i=1

Xi ⊕ S ∈ S ⊕X ,

holds and they can also compute the output of EK of the last block thanks
to code lifting. Similarly to CCM, the number of existential forgeries (cℓM) is
exponentially large.

C On Details of Results by Barbosa-Farshim

This section explains details of the results by Barbosa and Farshim on indif-
ferentiabile AEAD schemes [6], where the ideal oracle is a variable-key random
injection F and its inverse F−1. Note that a variable random injection takes
not only nonce, associated data, and message (or ciphertext) but also a key as
an input. In what follows, we explain the results by Barbosa and Farshim es-
pecially relevant to our results: the impossibility of generic compositions, and
indifferentiable constructions by Encode-then-Encipher (EtE) or 3-round Feistel.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 43

C.1 Impossibility of Generic Compositions

A common way to build a secure AEAD scheme is to glue a secure MAC (or PRF)
with a secure conventional encryption scheme. Such conversions are referred
to as generic compositions. Possible generic compositions are comprehensively
classified in a previous paper by Namprepre et al. [69]. However, Barbosa and
Farshim observed that the generic compositions in Namprepre et al.’s paper,
which includes SIV, are not indifferentiable AEAD schemes. Below we explain
this, taking SIV as an example.

For simplicity, we assume that there is no associated data and nonces are
n-bit strings. First, the underlying MAC (or PRF) is modeled as a random func-
tion RF : {0, 1}κ × {0, 1}n × {0, 1}∗ → {0, 1}τ , and the underlying conventional
IV-based encryption scheme is modeled as a family of VIL random permutations
E : {0, 1}κ × {0, 1}τ × {0, 1}∗ → {0, 1}∗, i.e., E(K, IV, ·) is a random permu-
tation satisfying len(E(K, IV,M)) = len(M) for each K ∈ {0, 1}κ and IV ∈
{0, 1}τ . Then the encryption function of SIV is defined as E((K1,K2), N,M) :=
RF(K1, N,M)||E(K2,RF(K1, N,M),M). The tuple (RF, E,D) are regarded as
primitive oracles, where D is the decryption function corresponding to E. Here,
the important point is that a two-key construction is considered, i.e., two differ-
ent keys K1 and K2 are used for RF and E, following the common setting for
generic compositions.

Now it is easy to see that a simple differentiator exists against SIV: First,
query an arbitrary tuple ((K1,K2), N,M) to the encryption oracle of SIV (real
world) or a variable-key random injection F± (ideal world). Let T1 be the tag
part of the response, i.e., the most significant τ bits of the ciphertext. Second,
query the tuple again to the same oracle, keeping (K1, N,M) unchanged while
changing K2 to another value. Let T2 be the tag part of the response. Then
T1 = RF(K1, N,M) = T2 always holds in the real world but T1 does not match
T2 with an overwhelming probability in the ideal world.

The above attack does not work in the single-key setting where K1 = K2,
but still another attack differentiates SIV. First, choose random (K1, N,M) and
query ((K1,K1), N,M) to the encryption oracle of SIV (or variable-key random
injection). Let C = T ||C ′ be the response, where T is the tag part. Second,
query (K1, T, C

′) to the decryption oracle of the underlying conventional IV-
based encryption scheme (or the corresponding interface of a simulator), and let
M ′ be the response. Then M ′ = M always holds in the real world. However, in
the ideal world, any simulator S cannot efficiently compute M and returns M ′

of another value with high probability even if S has an access to the ideal oracle
F± since S does not have any information on N .

Remark 3. Barbosa and Farshim showed all the generic compositions by Nam-
prempre et al. are not indifferentiable in the two-key setting. They also showed
some of them including SIV are not indifferentiable even in the single-key setting,
but do not show indifferentiability nor differentiator for others.

44 A. Hosoyamada et al.

C.2 Indifferentiable Construction by EtE

Let RO : {0, 1}∗ → {0, 1}κ be a VIL random oracle, and let E : {0, 1}κ ×
{0, 1}∗ → {0, 1}∗ be an ideally random tweakable enciphering scheme. That is,
EK is a length-preserving random permutation for each K ∈ {0, 1}κ. Denote
E−1

K by DK , and define an AEAD Π = (E ,D) as follows.
Encryption. E(K,N,A,M) := E(RO(K,N,A),M ||0τ), where we assume
(K,N,A) is encoded into a single bit string in a uniquely decodable manner.
Decryption. D(K,N,A,C) := M if D(RO(K,N,A), C) = M ||0τ for some
M and D(K,N,A,C) := ⊥ otherwise.

The following theorem, which is a combination of Theorem 4, Lemma 2, and
Proposition 3 of [6], shows the EtE scheme is indifferentiable froma a variable-
key random injection. Here, the construction oracle is (E ,D) and the primitive
oracle is (RO, E,D) in the real world.

Theorem 4 (Indifferentiability of AEAD by EtE [6]). There exists an
expected O(q)-query simulator S such that AdvindiffΠ,F±,S(A) ≤ O(q2/2κ) holds for
any adversary A making at most q queries.

C.3 Indifferentiable Construction by 3-round Feistel

An indifferentiable AEAD can be built upon an enciphering scheme as in Theo-
rem 4, but it is unclear how we can build an efficient enciphering scheme from a
small primitive of fixed input lengths (FIL) and fixed output lengths (FOL) in
an indifferentiably secure manner. The Feistel construction is known to be indif-
ferentiable from a random permutation, but at least 6 rounds are required [31].
Barbosa and Farshim instead showed an indifferentiable AEAD scheme by an
(unbalanced) 3-round Feistel with the message encoding M 7→M ||0τ .

More precisely, let f1, f3 : {0, 1}κ × {0, 1}∗ → {0, 1}τ and f2 : {0, 1}κ ×
{0, 1}τ → {0, 1}∞ be random functions, and Φ3(K,M ||M ′) be the unbalanced
3-round Feistel construction computed as X := M ′ ⊕ f1(K,M), Y := M ⊕
f2(K,X), Z := X ⊕ f3(K,Y)⊕X, Φ3(K,M) = Z||Y, where M ∈ {0, 1}∗,M ′ ∈
{0, 1}τ , and the output of f2(K,X) is truncated to len(M) bits. (see also Fig. 8).

Again, let RO : {0, 1}∗ → {0, 1}κ be a random oracle, and Π = (E ,D) denote
the AEAD defined in the same way as the EtE scheme in Theorem 4 except
that Φ3 is used instead of a random enciphering scheme E. Then the following
theorem, which is a combination of Theorem 5, Lemma 2, and Proposition 3 of
[6], shows Π is indifferentiable from a variable-key random injection. Here, the
construction oracle is Π = (E ,D) and the primitive oracle is (RO, F1, F2, F3) in
the real world.

Theorem 5 (Indifferentiability of AEAD by 3-round Feistel [6]). Sup-
pose q ≤ O(min{

√
2n+τ , 2n}). Then, there exists a simulator S making O(q2)

queries such that AdvindiffΠF3,F±,S(A) ≤ O(q3/2τ + q2/2κ) holds for any adversary
A making at most q queries in total.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 45

Fig. 8: 3-round (unbalanced) Feistel Construction Φ3(K,M ||M ′).

A VIL and variable output lengths (VOL) function that is indifferentiable from a
random oracle can be built from a FIL/FOL random function by the sponge con-
struction (Theorem 1). Thus, by replacing RO, F1, F2, F3 of Π with the sponge
construction, we can build an indifferentiable AEAD from a FIL/FOL random
function. (Compositions of indifferentiable schemes are again indifferentiable.
See Remark 1.)

D On the Assumption that S can Observe Queries by
Acreate.

Here we explain why we assume that S can observe queries by Acreate in our
white-box security notions. We assume the readers have already read Section 5.3
before reading this section, and know how we define whIND$-CPA. (See also the
last paragraph of Section 4.2).

Let Π = (E ,D) denote CTR that is based on an n-bit block cipher EK .
We assume there is a white-box implementation of Π such that the white-box
implementation of EK can efficiently be retrieved from the implementation of
Π.

Intuitively, Π is white-box secure in the sense that EK is indistinguishable
from $(·) in the following situation.

1. As an black-box oracle, an adversary is given access to EK (in the real world)
or $(·) (in the ideal world).

2. Every time a message is queried to the encryption oracle, IV is always cho-
sen uniformly at random (rather than chosen by adversary) and returned
together with the ciphertext.

3. The underlying block cipher is EK white-box secure.

This is because, even if an adversary A obtains a (partial) information L of the
implementation of Π, it will not help A distinguish EK from $(·) because an
IV is always randomly chosen, and L will not contain useful information on the
value EK(IV)||EK(IV +1)|| · · · with a high probability (as long as EK is white-
box secure). Thus we argue that a sound white-box security definition should be
such a one that judges the random-IV CTR secure.

46 A. Hosoyamada et al.

Indeed, we can show Π is whIND$-CPA-secure if EK is a whPRP (see Sec-
tion 6.3). However, there exists an efficient adversary that “breaks” the scheme
if the assumption that S can observe queries by Acreate is removed from the
definition of whIND$-CPA. The adversary runs as follows.

1. Acreate queries 0n to the encryption oracle to obtain (IV, C). Then, Acreate

builds a lifter L that, given an implementation of Π, computes the value
EK(IV) by itself32 and sends L := EK(IV) to Adist as a leakage (Acreate

does not include the information of C into L). In addition, Acreate passes
both of C to Adist.

2. Given L and C, finally Adist outputs 1 if L = C and 0 if L ̸= C.

Note that Adist always outputs 1 in the real world. Now, assume a simulator S
in the ideal world cannot observe the queries by Acreate and the responses. Then
S cannot return a leakage L which is equal to C with high probability because
S has no information on C. Hence Adist outputs 0 with a high probability in the
ideal world, and Π is deemed “insecure”.

E On Composition of Weak Public Indifferentiable
Schemes

This section explains details about the fact that a composition of two weak pub-
lic indifferentiable schemes become weak public indifferentiable, if the schemes
satisfy a few additional conditions.

Let TP be a deterministic or random-IV construction calling an ideally ran-
dom primitive P, and let R be the ideally random oracle of which interface is
compatible with TP. In addition, let UQ be a deterministic construction call-
ing an ideally random primitive Q, and assume the interfaces of P and U are
compatible. Suppose P and Q are deterministic.

If TP is a random-IV construction, we assume there is a deterministic con-
struction T̃P and a set IV such that TP runs as follows on arbitrary input X: (1)
Choose a value IV uniformly at random from IV. (2) Return (IV, T̃P(IV,X)).

Suppose there exist non-decreasing functions qT(·, ·) and σT(·, ·) such that, if
TP is evaluated on q inputs of which lengths are σ bits in total in a security game,
then T makes at most qT(q, σ) queries to P and the lengths of the queries are at
most σT(q, σ) in total. In addition, suppose we have the following algorithms.

1. A simulator ST (resp., SU) on weak public indifferentiability of T from R
(resp., U from P), where the primitive oracle is P (resp., Q). There exist
non-decreasing functions qST

(·, ·, ·, ·) and σST
(·, ·, ·, ·) (resp., qSU

(·, ·, ·, ·) and
σSU

(·, ·, ·, ·)) satisfying the following properties: If an adversary makes at
most qc (resp., qp) queries to a construction (resp., primitive) oracle in secu-
rity games of weak public indifferentiability, and the lengths of the queries
are at most σc (resp., σp) in total, then ST (resp., SU) makes at most

32 Note that we are assuming the implementation EK can efficiently be retrieved from
the implementation of Π.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 47

qST
(qc, σc, qp, σp) queries to the ideal oracle R (resp., qSU

(qc, σc, qp, σp) queries
to P). The lengths of the queries are σST

(σc, σp) at most (resp., σSU
(σc, σp))

in total.
2. An adversary A against weak public indifferentiability of TU from R. The

number of queries by A to the construction oracle (resp., primitive oracle)
is at most qA,c (resp., qA,p) and the lengths of the queries are at most σA,c

(resp., σA,p) in total.

Then the following lemma holds.

Lemma 2 (Formal version of Lemma 1). Given the above situation, there
exists (1) a simulator STU on weak public indifferentiability of TU from R, where
the primitive oracle is Q, and (2) an adversary A′ (resp., A′′) against weak
public indifferentiability of T from R (resp., U from P) such that

Advweak-pub-indiff
TU,R,S

TU
(A) = Advweak-pub-indiff

T,R,ST
(A′) +Advweak-pub-indiff

U,P,SU
(A′′) (3)

holds. Here, the number of queries by STU to R is at most qST
(qA,c, σA,c, q

′
T +

qSU
(q′T, σ

′
T, qA,p, σA,p), σ

′
T+σSU

(q′T, σ
′
T, qA,p, σA,p)) and the lengths of the queries

are at most σST
(qA,c, σA,c, q

′
T+qSU

(q′T, σ
′
T, qA,p, σA,p), σ

′
T+σSU

(q′T, σ
′
T, qA,p, σA,p))

in total, where q′T := qT(qA,c, σA,c) and σ′
T := σT(qA,c, σA,c). The number of

queries by A′ to the construction oracle (resp., primitive oracle) is at most qA,c

(resp., q′T + qSU
(q′T, σ

′
T, qA,p, σA,p)) and the lengths of the queries are at most

σA,c (resp., σ′
T + σSU

(q′T, σ
′
T, qA,p, σA,p)) in total. The number of queries by A′′

to the construction oracle (resp., primitive oracle) is at most q′T (resp., qA,p)
and the lengths of the queries are at most σ′

T (resp., σA,p) in total.

Proof. Define STU , A′, and A′′ as follows.

STU . Note that STU is given oracle access to R and the revealing interface Rev′[R].

STU keeps lists Listtmp and Listprim, which are empty at the beginning33. When
a query x is made to STU , it runs as follows, using ST and SU as subroutines.

1. Query to the revealing interface Rev′[R] and get the list ListA[R] storing
queries made so far by A to R and the responses.
If T is deterministic: For each (X,Y) ∈ ListA[R]\Listtmp, do the following

procedure:

(a) Compute TSR,Rev′[R]
T on the input X, storing all the queries made by

T to SR,Rev
′[R]

T during the computation, together with the responses,
into Listprim.

33 Listprim is a list to simulate the revealing interface given to SU. Listtmp is a list con-
structed in such a way that ListA[R] \ Listtmp in Step 1-(a) contains the queries (and
the responses) that are made by A to R before x is queried to STU and after STU

returned something to A in response to the previous query. (Weak public indiffer-
entiability is introduced so that we can indeed build Listtmp in such a way. If lists
returned by the revealing interface of R contain queries by ST, it seems to hard to
build a desired Listtmp.)

48 A. Hosoyamada et al.

(b) Add (X,Y) to Listtmp.

If T is a random-IV scheme: For each (X, (IV, Y)) ∈ ListA[R] \ Listtmp,
do the following procedure:

(a) Compute T̃SR,Rev′[R]
T on the input (IV,X), storing all the queries made

to SR,Rev
′[R]

T during the computation, together with the responses,
into Listprim.

(b) Add (X, (IV, Y)) to Listtmp.

2. Run SU on x, simulating the ideal oracle P by running SR,Rev
′[R]

T . When SU
makes a query to the revealing interface, return Listprim.

3. Finally, return the output of SU.

A′. Note that A′ is given oracle access to Oconst (either of TP or R) and Oprim

(either of P or SR,Rev
′[R]

T). A′ keeps three lists Listconst, Listtmp, and Listprim,
which are empty at the beginning.

First, A′ runs A. Queries by A to a construction oracle is just forwarded to
Oconst and recorded into Listconst together with the responses. When A makes a
primitive query x, a primitive oracle for A is simulated as follows.

1. If T is deterministic: For each (X,Y) ∈ Listconst\Listtmp, do the following
procedure:

(a) Compute TOprim on the input X, storing all the queries made to
Oprim during the computation together with the responses into Listprim.

(b) Add (X,Y) to Listtmp.

If T is a random-IV scheme: For each (X, (IV, Y)) ∈ Listconst \ Listtmp,
do the following procedure:

(a) Compute T̃Oprim on the input (IV,X), storing all the queries made
to Oprim during the computation together with the responses into
Listprim.

(b) Add (X, (IV, Y)) to Listtmp.

2. Run SU on x. Queries by SU to an ideal oracle are forwarded to Oprim. When
SU makes a query to the revealing interface, return Listprim.

3. Finally, return the output of SU (to A).

A′′. Given oracle access to Oconst (either of U
Q or P) and Oprim (either of Q or

SP,Rev
′[P]

U), A′′ runs ATOconst ,Oprim . When A returns an output, A′′ returns it as
its own output.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 49

Then, since P and Q are deterministic, we have

Advweak-pub-indiff
TU,R,S

TU
(A) = Pr

[
1← ATUQ ,Q

]
− Pr

[
1← AR,SR,Rev′[R]

TU

]
= Pr

[
1← ATUQ ,Q

]
− Pr

[
1← ATP,SP,Rev′[P]

U

]
+ Pr

[
1← ATP,SP,Rev′[P]

U

]
− Pr

[
1← AR,SR,Rev′[R]

TU

]
= Pr

[
1← A′′UQ,Q

]
− Pr

[
1← A′′P,S

P,Rev′[P]
U

]
+ Pr

[
1← A′TP,P

]
− Pr

[
1← A′R,S

R,Rev′[R]
T

]
= Advweak-pub-indiff

U,P,SU
(A′′) +Advweak-pub-indiff

T,R,ST
(A′).

Hence Eq. (3) holds.
Next, we analyze the number of queries by STU and their lengths.
Suppose the ideal game of weak public indifferentiability on UQ is executed

with an adversary B and SP,Rev
′[P]

U . By assumption, the number of queries by SU
to P and their lengths are upper bounded by qSU

(qc, σc, qp, σp) and σSU
(qc, σc, qp, σp),

where

qc: the number of construction queries by B,
σc: the total length of the construction queries by B,
qp: the number of primitive queries by B, and
σp: the total length of the primitive queries by B.
In fact, SU can get information on construction queries by B only through lists
returned by the revealing interface. In particular, when analyzing the number of
queries by SU and their lengths, qc and σc can be replaced with

q̃c: the maximum number of queries stored in lists returned by the revealing
interface, and

σ̃c: the maximum of the total length of queries stored in lists returned by the
revealing interface.

Recall q′T := qT(qA,c, σA,c) and σ′
T := σT(qA,c, σA,c). When the ideal game of

weak public indifferentiability for TU is executed with A and STU , The number

of queries made by T to SR,Rev
′[R]

T at Step 1-(a) of STU is at most q′T in total
and their total length is at most σ′

T. In addition, when SU makes a query to
the revealing interface in Step 2 of STU , Listprim is returned. The queries stored
in Listprim are those recorded at Step 1-(a). The number of those queries are at
most q′T and the length is at most σ′

T in total. Hence (by the above discussions on

q̃c and σ̃c), the number of queries made by SU to SR,Rev
′[R]

T in Step 2 of STU is at
most qSU

(q′T, σ
′
T, qA,c, σA,p) and the total length is at most σSU

(q′T, σ
′
T, qA,c, σA,p).

Therefore the number of queries by STU to R is at most

qST
(qA,c, σA,c, q

′
T + qSU

(q′T, σ
′
T, qA,p, σA,p), σ

′
T + σSU

(q′T, σ
′
T, qA,p, σA,p))

50 A. Hosoyamada et al.

and the lengths of the queries are at most

σST
(qA,c, σA,c, q

′
T + qSU

(q′T, σ
′
T, qA,p, σA,p), σ

′
T + σSU

(q′T, σ
′
T, qA,p, σA,p))

in total.
The upper bounds of queries by A′ and their lengths can be derived in the

same way. Analysis of the upper bounds on A′′ is trivial. ⊓⊔

F Proof of Theorem 2

Proof (of Theorem 2). Define A′, Sconst, and A′′ as follows.

A′ = (A′
create,A′

dist): Note that A is given access to an oracle Oprim, which is

expected to be π or P. A′ = (A′
create,A′

dist) runs as follows, utilizing A.

1. First, A′
create runs AΣOprim

create . When Acreate outputs a state S and a lifter L
(for CΣπ), A′

create builds and outputs a lifter L′ (for Cπ) running as follows.

(a) Build a white-box implementation JΣπK of (Σπ, CΣπ) using the white-
box implementation JπK of (π, Cπ) given to L′, and run L on the input
JΣπK.

(b) When L outputs a leakage, forward it to Adist.

In addition, A′
create passes the state S to A′

dist as its own state.
2. The second stage adversary A′

dist receives a state S from A′
create and L from

a lifter (or a simulator), and then runs AΣOprim

dist (S,L). Finally A′
dist returns

the output of Adist.

Sconst: Note that, as inputs, Sconst receives the description of a lifter L (for CΣπ)
and a list Listcreate containing all the queries by Acreate and the responses. In
addition, Sconst is given oracle access to R. Sconst runs as follows, keeping an
additional list Listprim which is empty at the beginning.

1. From L, build a lifter L′ for Cπ, like A′
create does.

2. If Σ is deterministic: For each (X,Y) ∈ Listcreate, compute the function

ΣSR,Rev-Sim
indiff on the input X, recording all the queries by Σ to SR,Rev-Simindiff

into Listprim together with the responses. Here, Rev-Sim is an oracle that
returns Listcreate.

If Σ is a random-IV scheme: For each (X, (IV, Y)) ∈ Listcreate, compute

the function Σ̃SR,Rev-Sim
indiff on the input (IV,X), recording all the queries by

Σ̃ to SR,Rev-Simindiff into Listprim together with the responses. Here, Rev-Sim
is an oracle that returns Listcreate.

3. Run SS
R,Rev-Sim
indiff

prim (L′, Listprim).
4. Return the output of Sprim.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 51

A′′: Note that this adversary is given oracle access to Oconst and Oprim, which
correspond to a construction oracle and a primitive oracle (or simulator) in the
games of weak public indifferentiability. A′′ runs as follows, keeping two lists
Listcreate and Listprim which are empty at the beginning.

1. Run AOconst
create , recording all the queries to Oconst by Acreate into a list Listcreate

together with the responses. Let L and S denote the lifter and the state
returned by Acreate, and L′ be the lifter constructed from L as is done in A′.

2. If Σ is deterministic: For each (X,Y) ∈ Listcreate, compute the function
ΣOprim on the input X, recording all the queries by Σ to Oprim a list
Listprim together with the responses.

If Σ is a random-IV scheme: For each (X, (IV, Y)) ∈ Listcreate, compute
the function Σ̃Oprim on the input (IV,X), recording all the queries by Σ̃
to Oprim a list Listprim together with the responses.

3. Run L← SOprim

prim (L′, Listprim), and then b← AOconst

dist (S,L).
4. Return b.

We show they satisfy Eq. (1) by introducing a sequence of games.

Game 0. This game is the real game on (Σπ, CΣπ) w.r.t. sec-const when the ad-
versary is A.

Game 1.

0. Sample an ideal primitive P corresponding to π. Let Listcreate and Listprim
be empty lists.

1. Run (L, S) ← AΣP

create, recording all the queries by Acreate to ΣP into a list
Listcreate together with the responses. Then, build L′ from L like A′ does.

2. If Σ is deterministic: For each (X,Y) ∈ Listcreate, compute ΣP on the
input X, recording all the queries by Σ to P into a list Listprim together
with the responses.

If Σ is a random-IV scheme: For each (X, (IV, Y)) ∈ Listcreate, compute
Σ̃P on the input (IV,X), recording all the queries by Σ̃ to P into a list
Listprim together with the responses.

3. Run L← SPprim(L′, Listprim)

4. Run b← AΣP

dist(S,L).
5. Return b.

We see the output distributions of Game 0 and Game 1 are identical to that of

Exp
sec-prim -real

π,Cπ,A′ and Exp
sec-prim -ideal

Sprim,A′ . Hence

Pr[Game 0 = 1]− Pr[Game 1 = 1] = Advsec-prim
π,Cπ,Sprim

(A′) (4)

holds.

Game 2.

52 A. Hosoyamada et al.

0. Sample an ideal primitive R corresponding to Σπ. Let Listcreate and Listprim
be empty lists.

1. Run (L, S) ← AR
create, recording all the queries to R by Acreate and the

responses into a list Listcreate. Then, build L′ from L like A′ does.
2. If Σ is deterministic: For each (X,Y) ∈ Listcreate, compute the function

ΣSR,Rev-Sim
indiff on the input X, recording all the queries by Σ to SR,Rev-Simindiff

into Listprim together with the responses. Here, Rev-Sim is an oracle that
returns Listcreate.

If Σ is a random-IV scheme: For each (X, (IV, Y)) ∈ Listcreate, compute

the function Σ̃SR,Rev-Sim
indiff on the input (IV,X), recording all the queries by

Σ̃ to SR,Rev-Simindiff into Listprim together with the responses. Here, Rev-Sim
is an oracle that returns Listcreate.

3. Run L← SS
R,Rev-Sim
indiff

prim (L′, Listprim).

4. Run b← AR
dist(S,L).

5. Return b.

Now, we see that the output distribution of Game 1 (resp., Game 2) is iden-
tical to that of the real (resp., ideal) game for weak public indifferentiability of
ΣP from R when the adversary is A′′ and the simulator is Sindiff . Therefore

Pr[Game 1 = 1]− Pr[Game 2 = 1] = Advpub-indiff
Σ,R,Sindiff

(A′′) (5)

holds.

Game 3. This is the ideal game on (Σπ, CΣπ) w.r.t. sec-const where the adversary
is A and the simulator is Sconst. Then

Pr[Game 2 = 1]− Pr[Game 3 = 1] = 0 (6)

holds.

From Eq. (4)-(6),

Advsec-const
Σπ,CΣπ ,Sconst

(A) = Pr

[
Exp

sec-const -real

Σπ,CΣπ ,A = 1

]
− Pr

[
Exp

sec-const -ideal

Sconst,A = 1

]
= Pr[Game 0 = 1]− Pr[Game 3 = 1]

= Advsec-prim
π,Cπ,Sprim

(A′) +Advweak-pub-indiff
Σ,R,Sindiff

(A′′)

follows.
Next, we analyze the number of queries by Sconst and their lengths.
Suppose the ideal game of weak public indifferentiability on ΣR is executed

with an adversary B and SR,Rev
′[R]

indiff . By assumption, the number of queries by
Sindiff to R and their lengths are upper bounded by qSindiff

(qc, σc, qp, σp) and
σSindiff

(qc, σc, qp, σp), where

qc: the number of construction queries by B,

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 53

σc: the total length of the construction queries by B,
qp: the number of primitive queries by B, and
σp: the total length of the primitive queries by B.

In fact, Sindiff can get information on construction queries by B only through lists
returned by the revealing interface. In particular, when analyzing the number of
queries by Sindiff and their lengths, qc and σc can be replaced with

q̃c: the maximum number of queries stored in lists returned by the revealing
interface, and

σ̃c: the maximum of the total length of queries stored in lists returned by the
revealing interface.

Recall q′Σ := qΣ(qA, σA) and σ′
Σ := σΣ(qA,c, σA,c). When the ideal game for

(Σπ, CΣπ) is executed with A and Sconst, the number of queries made by Σ to

SR,Rev-Simindiff at Step 2 of Sconst is at most q′Σ in total and their total length is at

most σ′
Σ . The number of queries made by Sprim to SR,Rev-Simindiff at Step 3 of Sconst

is at most qSprim
in total and their total length is at most σSprim

. In addition,
when Sindiff makes a query to the revealing interface in Step 2 or Step 3 of Sconst,
Listcreate is returned. The queries stored in Listcreate are those made by Acreate.
Thus, the number of these queries are at most qA and the lengths are at most σA
in total. Hence (by the above discussions on q̃c and σ̃c), the number of queries
by Sconst to R is at most

qSindiff
(qA, σA, q

′
Σ + qSprim , σ

′
Σ + σSprim)

and the lengths of the queries are at most

σSindiff
(qA, σA, q

′
Σ + qSprim

, σ′
Σ + σSprim

)

in total.
The upper bounds of queries by A′ and their lengths can be derived in the

same way. Analysis of the upper bounds on A′′ is trivial.
⊓⊔

G Proof of Proposition 1

This section shows Proposition 1.

Intuition of the Proof. Suppose we execute the ideal game with an adversary A.
The simulator S runs as follows, recording all the queries made to S together
with the responses that S return to A:
Simulation of P . When A queries a fresh value x to the first primitive interface
(corresponding to P), S queries x to RF and returns RF(x) to A.
Simulation of P−1. Let Dom-Defined be the set of the values x such that (1) A
has queried x to the construction oracle or the first primitive interface (corre-
sponding to P) before, or (2) A has received x as a response from the second

54 A. Hosoyamada et al.

primitive interface (corresponding to P−1) before. When A queries a fresh value
y to the second primitive interface (corresponding to P−1), S queries to the
revealing interface Rev′[RF] to construct Dom-Defined. Then, S chooses x uni-
formly at random from {0, 1}n \Dom-Defined, and returns x to A as a response.

The above simulation works well as long as no collision of RF is observed,
and we obtain the desired result. A complete proof is as follows.

Proof (of Proposition 1). Define a simulator S as follows.

S: Note that S is given an oracle access to RF and the revealing interface Rev[RF].
S keeps a list List[P], which is empty at the beginning of the game, and runs as
follows.

1. When an adversary queries x to the primitive interface corresponding to P ,
check if (x, y) ∈ List[P] for some y. If there exists such y, respond with y.
Otherwise, query x to RF, respond with RF(x), and add the pair (x,RF(x))
into List[P].

2. When an adversary queries y to the primitive interface corresponding to
P−1, check if (x, y) ∈ List[P] for some x. If there exists such x, respond
with x. Otherwise, query to the revealing interface to get the list List[RF] of
queries made so far to RF and the responses. If List[RF] contains a collision
of RF, return ⊥. If List[RF] does not contain collisions, execute the following
procedure.
(a) List[P]← List[P] ∪ List[RF].
(b) Check if (x, y) ∈ List[P] for some x. If there exists such x, return x.

Otherwise, proceed to the next step.

(c) x
$←− {0, 1}n \X, where X := {x′|(x′, y′) ∈ List[P]}.

(d) Add (x, y) to List[P] and return x.

Let A be an adversary making at most qc construction queries and qp primi-
tive queries, respectively. Then the above simulator S makes at most qp queries
to RF. In what follows we show

Advpub-indiff
P,RF,S (A) ≤ (qc + qp)

2

2n
(7)

holds by introducing games and using the game-playing technique [10].

Game 1.
This is the real game of public indifferentiability with adversary A where the
construction oracle is P and the primitive oracle is (P, P−1).

Game 2.
In this game, the construction oracle P and primitive oracle (P, P−1) are re-
placed with Oconst and (O+

prim,O−
prim) in Fig. 9, respectively, where the single-

boxed part of Fig. 9 is executed but the double-boxed part is not executed.
(Oconst, (O+

prim,O−
prim)) is completely indistinguishable from (P, (P, P−1)) and

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 55

Algorithm 11: Oconst(x).

1: if ∃y, (x, y) ∈ List[RF] then

2: return y

3: else

4: y
$←− {0, 1}n

5: if ∃(x′, y′) ∈ List[RF] s.t. y = y′ then

6: bad← 1

7: y
$←− {0, 1}n \ {y′|(x′, y′) ∈ List[RF]}

8: Add (x, y) to List[RF]

9: return y

Algorithm 12: O+
prim(x).

1: if ∃y, (x, y) ∈ List[P] then

2: return y

3: else

4: y ← RF(x)

5: Add (x, y) to List[P]

6: return y

Algorithm 13: O−
prim(y).

1: if ∃x, (x, y) ∈ List[P] then

2: return x

3: else if bad = 1 then

4: return ⊥
5: else

6: List[P]← List[P] ∪ List[RF]

7: if ∃x, (x, y) ∈ List[P] then

8: return x

9: else

10: x
$←− {0, 1}n \ {x′|(x′, y′) ∈ List[P]}

11: Add (x, y) to List[P]

12: return y

Fig. 9: Oracles in Games 2 and 3. The single-boxed part is executed in Game 2
but not in Game 3. The double-boxed part is executed in Game 3 but not in
Game 2. O+

prim(x) and O−
prim(y) are primitive oracles corresponding to P (x) (as

a primitive oracle) and P−1(y) in the real game.

56 A. Hosoyamada et al.

we have
Pr [Game1 = 1] = Pr [Game2 = 1] .

Game 3.
In this game, the construction and primitive oracles are stillOconst and (O+

prim,O−
prim)

in Fig. 9, respectively, but now the double-boxed part is executed while the
single-boxed part is not. Games 2 and 3 are identical until the flag bad is set,
and

Pr [Game2 = 1]− Pr [Game3 = 1] ≤ Pr[bad is set to 1] ≤ (qc + qp)
2

2n

holds.

Game 4.
This is the ideal game of public indifferentiability with adversaryA and simulator
S. We see that (RF,SRF,Rev[RF]) is completely indistinguishable from (Oconst, (O+

prim,O−
prim))

in Game 3 and
Pr [Game3 = 1] = Pr [Game4 = 1]

holds.

Due to the above arguments,

Advpub-indiff
P,RF,S (A) = Pr [Game1 = 1]− Pr [Game4 = 1] ≤ (qc + qp)

2

2n

follows.
⊓⊔

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 57

H On Reduction from whS̃PRP to FIL-whPRF

Here explain the details that a VIL tweakable ideally random permutation can
be built from a FIL random function f in a secure manner (w.r.t. weak public
indifferentiability), by the 6-round Feistel construction of which round functions
are built by the sponge construction using f as an underlying function. (In

particular, by Theorem 2, it follows that whS̃PRP-secure enciphering schemes
can be built from whPRF-secure FIL/FOL keyed functions.)

Let {0, 1}2∗ denote the set of all the bit strings of which lengths are a multiple
of 2, and IV be a finite set. Let F : IV × Z≥0 × Z≥0 × {0, 1}∗ → {0, 1}∞ be a
function such that len(F (IV, i,m,X)) = m.

Now, let Φ′
6 : IV × {0, 1}2∗ → {0, 1}2∗ be a function such that, for each

IV and ML,MR ∈ {0, 1}n, Φ′
6(IV,ML||MR) is the output of the 2n-bit 6-

round Feistel construction of which i-th round function is F (IV, i, n, ·). That
is, Φ′

6(IV,ML||MR) is computed as follows:

1. x0 ←MR and x1 ←ML

2. For i = 2, 3, . . . , 6, xi ← F (IV, i− 1, n, xi−1)⊕ xi−2

3. Φ′
6(IV,ML||MR)← x5||x6.

For each fixed IV and n, Φ′
6(IV, ·) is public indifferentiable from a 2n-bit

invertible random permutation when the domain of Φ′
6(IV, ·) is restricted to

2n and F is a random function (the primitive oracle is F) [61]. In addition,
outputs of F (IV, i,m,X) for different (IV,m) are independent, and thus outputs
of Φ′

6 for different IV and different message lengths are independent. Therefore
the indifferentiability of Φ′

6 from a VIL ideally random tweakable permutation
E : IV × {0, 1}2∗ → {0, 1}2∗ (when regarding F as a primitive) follows from a
simple hybrid arguments on IV and the message length.

Let f be a FIL/FOL random function. When F in Φ′
6 is replaced with Spongef

(with some appropriate encodings), the resulting scheme is weak public indiffer-
entiable from a VIL ideally random tweakable permutation, where f is regarded
as a primitive (by Lemma 2).

I Discussions: Reduction of Pairs and Generic
Compositions

This section shows details on reductions of pairs and generic compositions.

I.1 Reduction of Pairs.

Suppose we have two white-box schemess, say, a block cipher (E, CE) and an
AEAD (Π, CΠ). Then the white-box security of the pair ((E,Π), (CE , CΠ)) is
naturally defined by combining whPRP and whPRI as follows:

1. Independent two keys K and K ′ are chosen for E and Π.

58 A. Hosoyamada et al.

2. Both of the two black-box oracles (EK and (EK ,DK) in the real exper-
iment, and P and (F, F−1) in the ideal experiment, where P is a ran-
dom permutation and F is a random injection) are given to an adversary
A = (Acreate,Adist).

3. A lifter is given the two implementations CE(K) and CΠ(K ′).
4. A simulator is allowed to make queries to both of the two ideal oracles, i.e.,

(P, P−1) and (F, F−1).

Similarly we can define the security of pairs of a whPRF and whS̃PRP, two
whPRPs, and so on.

In the black-box setting, usually such a pair becomes automatically secure if
each of the two schemes are secure: We can bound the advantage of an adversary
for pairs by the sum of the advantage for one scheme and the advantage for
another. However, this is not the case for our white-box security notions. That
is, even if each of the two schemes are secure, it is unclear whether we can deduce
the pair is secure.

Still, we can show security reductions in a modular way through weak public
indifferentiability: Suppose we have a white-box security reduction from a scheme
X1 to another Y1 and a reduction from X2 to Y2, and assume they are given
weak through public indifferentiability (and Theorem 2). That is, assume X1

(resp., X2) is weak public indifferentiable from an ideally random object when
Y1 (resp., Y2) is replaced with an ideally random object. Then, the pair (X1, X2)
is again weak public indifferentiable. Thus the white-box security of (X1, X2)
can be reduced to the security of (Y1, Y2) as pairs by Theorem 2.

More precisely, the following proposition holds.

Proposition 3. For i = 1, 2, let Si be a simulator for weak public indiffer-
entiability of a construction TPi

i from an ideally random object Ri (Pi is the
underlying ideal primitive). In addition, let A3 be an adversary for weak public
indifferentiability of (TP1

1 ,TP2
2) from (R1,R2) that makes at most qconst,i queries

to Ti of which lengths are at most σconst,i in total, and qprim,i queries to Pi of
which lengths are at most σprim,i in total. Then there exists an adversary Ai for

weak public indifferentiability of TPi
i for i = 1, 2 satisfying

Advweak-pub-indiff
(T1,T2),(R1,R2),S3

(A3) ≤ Advweak-pub-indiff
T1,R1,S1

(A1) +Advweak-pub-indiff
T2,R2,S2

(A2).

Here, S3 := (S1,S2). In addition, A1 and A2 can be built in such a way that that
(1) the number of construction and primitive queries by Ai (i = 1, 2) is at most
qconst,i and qprim,i, respectively, (2) the lengths of queries by Ai (i = 1, 2) to the
construction and primitive oracles are at most σconst,i and σprim.i, respectively,
and (3) A1 does not depend on S1 and S2, and A2 does not depend on S2.

Proof. Define A1 and A2 as follows.

A1: First, A1 runs A3, sampling the function P2 by itself. When A3 makes a

query x to the interfaces corresponding to T2 or P2, A1 responds with TP2
2 (x)

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 59

or P2(x), respectively, by using the sampled function. When A3 makes queries
to the interfaces corresponding to T1 or P1, A1 just forwards them to the con-
struction oracle and the primitive oracle given to A1.

A2: First, A2 samples the function R1 by itself and runs A3. A2 uses S1 as a
subroutine. When A3 makes queries to the interfaces corresponding to T1 or P1,

A2 respond with the sampled function R1 or by using SR1,Rev
′[R]

1 , respectively.
When A3 makes queries to the interfaces corresponding to T2 or P2, A2 just
forwards them to the construction oracle and the primitive oracle given to A2.

Now we have

Advweak-pub-indiff
(T1,T2),(R1,R2),S3

(A3) = Pr

[
1← A(T

P1
1 ,T

P2
2),(P1,P2)

3

]
− Pr

[
1← A(R1,R2),(S

R1,Rev′[R1]
1 ,SR2,Rev′[R2]

2)
3

]
= Pr

[
1← A(T

P1
1 ,T

P2
2),(P1,P2)

3

]
− Pr

[
1← A(R1,T

P2
2),(SR1,Rev′[R1]

1 ,P2)
3

]
+ Pr

[
1← A(R1,T

P2
2),(SR1,Rev′[R1]

1 ,P2)
3

]
− Pr

[
1← A(R1,R2),(S

R1,Rev′[R1]
1 ,SR2,Rev′[R2]

2)
3

]
= Pr

[
1← AT

P1
1 ,P1

1

]
− Pr

[
1← AR1,S

R1,Rev′[R1]
1

1

]
+ Pr

[
1← AT

P2
2 ,P2

2

]
− Pr

[
1← AR2,S

R2,Rev′[R2]
2

2

]
= Advweak-pub-indiff

T1,R1,S1
(A1) +Advweak-pub-indiff

T2,R2,S2
(A2),

and A1 and A2 satisfy the desired properties. ⊓⊔

I.2 On Generic Compositions for AEADs.

After seeing our new security notions, a natural question is whether it is possible
to build a whPRI-secure AEAD by generic compositions like [69] or not.

Indeed, it seems possible to show public indifferentiability of SIV when the
tag-generation function is a completely random function and the conventional
encryption scheme is a family of VIL random permutations in the single-key
setting (i.e., the keys for tag-generation and conventional encryption are identi-
cal)34 If this is the case, by Theorem 2 we can reduce whPRI security of SIV to

(the pair of) whPRF security and whS̃PRP security of the underlying schemes.
This is in contrast to the result by Barbosa and Farshim on the impossibility of
indifferentiability of generic compositions, especially SIV.

Nevertheless, such compositions would be of less interest in practice because

it is unclear how to build efficient and secure whS̃PRP-secure (or, public in-
differentiable) enciphering scheme. As mentioned in Section 6, we can rely on

34 The differentiators in Section 2 does not seem to work in the single-key setting if
simulators can observe construction queries. See the paragraph above Remark 3 for
details.

60 A. Hosoyamada et al.

an 6-round (balanced) Feistel-based construction to use it to realize whS̃PRP-
secure enciphering scheme, but the resulting AEAD scheme would be much less
efficient than the scheme based on 3-round Feistel (see Section 2 for details).

Moreover, it seems hard to reduce the whPRI-security of an AEAD scheme by
generic composition to the whIND$-CPA-security of the underlying conventional
encryption scheme (and the whPRF-security of the underlying keyed function).
Regardless of whether we rely on public indifferentiability, what we have to show
is to reduce a security notion of AEAD against CCAs to a security notion of
underlying encryption scheme against CPAs. This essentially means we have
to prove that adversaries (in the real world) cannot notice if we replace the
decryption oracle with an oracle that, on an input (N,A,C), (1) returns the
original message M if (N,A,M) has already been queried to the encryption
oracle and the response was C, and (2) returns ⊥ otherwise. However, showing
such a claim is impossible in the white-box setting because a leakage may contain
some information on a valid ciphertext that has not been returned from the
encryption oracle.

Instead of generic compositions, the next section directly shows the security
of SIV when the underlying conventional encryption scheme is CTR.

J Proof of Proposition 2

Proof (of Proposition 2). We show the proposition by introducing a sequence of
games and utilizing the code-based game-playing technique [10].

Game 1. This is the real game for random-IV CTR built on ρ (denoted by Eρrnd).
We assume outputs of ρ is sampled via lazy sampling.

Game 2. In this game we introduce an oracle $′(·) that runs as in Algorithm 14.
(The output distribution of $′(·) is the same as that of $(·) but we do not give
$′(·) to adversaries as the construction oracle.) The sampling of the primitive
oracle ρ is changed depending on $′(·) as in Algorithm 15. The construction
oracle (random-IV counter mode) is also modified as in Algorithm 16, where the

resulting construction is denoted by E ′rnd
$′,ρ

. The list of queries to ρ (resp., $′(·))
made so far and the responses is denoted by List[ρ] (resp., List[$′(·)]).

Since the output distribution of $′ is completely random, the output distri-
butions of the construction oracle and the primitive oracle are the same as those
in Game 1. Hence

Pr [Game1 = 1] = Pr [Game2 = 1] (8)

holds.

Game 3. This game is the same as Game 2 only except that Line 4 of Algo-
rithm 16 is executed. Games 2 and 3 are identical until the flag bad2 is set, and
thus

Pr [Game2 = 1]− Pr [Game3 = 1] ≤ Pr [bad2] (9)

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 61

Algorithm 14: Sampling of $′(M).

1: IV
$←− {0, 1}m, C

$←− {0, 1}len(M)

2: if ∃(M ′, (IV ′, C ′)) ∈ List[$′(·)] s.t. IV + i = IV ′ + j for some 0 ≤ i <

⌈len(M)/n⌉ and 0 ≤ j < ⌈len(M ′)/n⌉, or ∃(X, y) ∈ List[ρ] s.t. x = IV + i

for some 0 ≤ i < ⌈len(M)/n⌉ then
3: bad2← 1

4: Add (M, (IV, C)) to List[$′(·)]
5: return (IV, C)

Fig. 10: Sampling of the oracle $′(·), of which output distribution is the same as
that of the ideal construction oracle $(·).

holds. In addition, we have

Pr[bad2] ≤ σ2

2m
+

σ(σ + qp)

2m
(10)

because the length of queries to $′(·) is at most σ blocks in total and the size of
List[ρ] does not exceed (σ + qp) during the games35. Therefore

Pr [Game2 = 1]− Pr [Game3 = 1] ≤ σ2

2m
+

σ(σ + qp)

2m
(11)

holds.
In addition, we can show the following claim.

Claim. Suppose a message M is queried to E ′rnd
$′,ρ

. If the flag bad2 is not set
while running Algorithm 16, the value (IV, C ′

1|| · · · ||C ′
ℓ) returned at line 9 of

Algorithm 16 is equal to the value (IV, C) at line 2 (in both of Game 2 and

Game 3). In particular, E ′rnd
$′,ρ

in Game 3 is perfectly indistinguishable from
$′(·).

Proof. Since the flag bad2 is not set, the conditions at line 2 of Algorithm 14
are not satisfied when $′(·) is called at line 2 of Algorithm 16. This means, at
line 6 of Algorithm 16, the value (IV + i − 1) is a fresh query to ρ, and the
value ρ(IV + i − 1) is sampled at line 7 or line 9 of Algorithm 15 by using the

35 The first term σ2

2m
corresponds to the first condition “∃(M ′, (IV ′, C)) ∈ List[$′(·)]...”

at line 2 of the Algorithm 16 and the second term corresponds to the second condition
“or, ∃(X, y) ∈ List[ρ]...”.

62 A. Hosoyamada et al.

Algorithm 15: Sampling of ρ(X) depending on $′(·).

1: if ∃y s.t. (X, y) ∈ List[ρ] then

2: return y

3: if ∃(M, (IV, C)) ∈ List[$′(·)] s.t. X = IV +i−1 for some 1 ≤ i ≤ ⌈len(M)/n⌉
then

4: (M1,M2, . . . ,M⌈len(M)/n⌉)
n←−M

5: (C1, C2, . . . , C⌈len(M)/n⌉)
n←− C

6: if i < ⌈len(M)/n⌉ then
7: y ← Ci ⊕Mi

8: else

9: y′
$←− {0, 1}n−(len(M) mod n), y ← (Ci ⊕Mi)||y′

10: \\ If there exist two or more candidates for the pair (M, (IV, C)) in

List[$′(·)], we take the smallest one with respect to a lexicographical

order.

11: else

12: y
$←− {0, 1}n

13: Add (X, y) to List[ρ]

14: return y

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 63

Algorithm 16: E ′rnd
$′,ρ

(M)

1: (M1,M2, . . . ,Mℓ)
n←−M

2: (IV, C)← $′(M)
3: if bad2 = 1 then
4: return (IV, C)

5: for i = 1 to ℓ do
6: y ← ρ(IV + i− 1),
7: y′ ← (the upper len(Mi) bits of y),
8: C ′

i ←Mi ⊕ y′

9: return (IV, C ′
1 ∥ C ′

2 ∥ · · · ∥ C ′
ℓ)

Fig. 11: The construction oracle in Game 2 and 3. The boxed part is executed
only in Game 3.

tuple (M, (IV, C)) (but not another tuple (M ′, (IV ′, C ′)) in List[$′(·)]). Hence
the claim follows. ⊓⊔

Game 4. In this game, the construction oracle is $′(·). The primitive oracle is
not changed from Game 3 (i.e., Algorithm 15). By the claim we proved below
Eq. (11), we have

Pr [Game3 = 1]− Pr [Game4 = 1] = 0. (12)

Game 5. This is the ideal game. We define a simulator S running as follows.

1. When an adversary makes a query X to the interface corresponding to ρ,
query to the revealing the interface to get the list List[$(·)] storing the queries
made so far to $(·) and the responses.

2. Sample and return the value ρ(X) as in Algorithm 15, replacing List[$′(·)]
with List[$(·)].

Then obviously

Pr [Game4 = 1]− Pr [Game5 = 1] = 0 (13)

holds.

From Eq. (8)-(13),

Advpub-indiff
Eρ
rnd,$(·),S

= Pr [Game1 = 1]− Pr [Game5 = 1] ≤ σ2

2m
+

σ(σ + qp)

2m

follows, and the simulator satisfies the desired properties.

64 A. Hosoyamada et al.

K Security Proof for SIV+CTR

This section proves Theorem 3, which is restated in Theorem 6 below. In what
follows, we just write “random injection” to refer to fixed-key random injection.

Recall that CTRρ(IV,M) denotes the encryption function of the counter
mode with the underlying keyed function being replaced with a random function
ρ : {0, 1}τ → {0, 1}n. In addition, Π = (Ef,ρ,Df,ρ) is the SIV construction
of which keyed function for tag-generation is replaced with a random function
f : N ×A × {0, 1}∗ → {0, 1}τ and conventional encryption scheme is replaced
with CTRρ. Let enc : N×A×{0, 1}∗ → {0, 1}∗ be an arbitrary encoding function
that encodes each tuple (N,A,X) into a single bit string in a uniquely decodable
manner. We let len(N,A,X) := len(enc(N,A,X)) and call ⌈len(N,A,M)/n⌉ the
block length of (N,A,X).

Theorem 6 (Theorem 3, restated). Let F : N×A× {0, 1}∗ → {0, 1}∗ be a
fixed-key random injection with message space {0, 1}∗ and such that len(F (N,A,M)) =
len(M) + τ . There exists a simulator S for public indifferentiability of Π from
F± such that the number of queries by S to the construction oracle is at most
qf and the block lengths of the queries are at most σf in total, and

Advpub-indiff
Π,F±,S (A) ≤ (σc + σf)

2

2τ
+

(σc + σf)(qρ + σc)

2τ
+

3qc
2τ

+
(qc + qf)

2

2τ
(14)

holds for any adversary A of which computational resources are as follows: To
the construction oracle, A makes at most qc queries of which block lengths are
at most σc in total. To the first primitive oracle (corresponding to f), A makes
at most qf queries of which block lengths are at most σf in total. To the second
primitive oracle (corresponding to ρ), A makes at most qρ queries. Here, we
assume (qc + qf) ≤ 2τ−1.

Notation for the list of input-output pairs of functions. Suppose that output
values of a function g are sampled on the fly when inputs are queried to g
(e.g., by lazy sampling) rather than determined all at once at the beginning of
games. For such a function g, by List[g] we denote the list of input-output pairs
(x0, g(x0)), (x1, g(x1)), . . . of g that have been defined so far.

For a bit string x, by [x]Upper(m) and [x]Lower(m) we denote the upper and lower
m bits of x, respectively. By abuse of notations we denote min1≤α≤n {α ≡ x mod n}
by x mod n.

In what follows We prove Theorem 6 by introducing games and utilizing the
code-based game-playing technique [10],

K.1 Game 1

This is the real game for Π.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 65

Algorithm 17: ρ(x), lazy sampling

1: if ∃y, (x, y) ∈ List[ρ] then

2: return y

3: else

4: y
$←− {0, 1}n, add (x, y) to List[ρ]

5: return y

Algorithm 18: f(N,A,M), lazy sampling

1: if ∃T, ((N,A,M), T) ∈ List[f] then

2: return T

3: else

4: T
$←− {0, 1}τ , add ((N,A,M), T) to List[f]

5: return T

K.2 Game 2

Here we modify the oracles ρ and f so that outputs are sampled by lazy sampling.
As mentioned before, we maintain lists List[ρ] and List[f] which record “already-
defined” input values of ρ and f , respectively. See also Algorithm 17 and 18.

Apparently, the following proposition holds.

Proposition 4.

Pr[Game 1 = 1]− Pr[Game 2 = 1] = 0.

K.3 Game 3

Here we introduce a random function F ′(N,A,M) of which domain and codomain
are the same as the ideal encryption oracle F and that satisfies len(F ′(N,A,M)) =
len(M)+τ for each input (N,A,M). See Fig. 12 for details. We assume the value
F ′(N,A,M) is represented as a concatenation F ′

0(N,A,M)∥· · ·∥F ′
⌈len(M)/n⌉(N,A,M),

where F ′
0(N,A,M) ∈ {0, 1}τ , F ′

i (N,A,M) ∈ {0, 1}n for i = 1, . . . , ⌈len(M)/n⌉−

66 A. Hosoyamada et al.

Algorithm 19: F ′(N,A,M), lazy sampling

1: if ((N,A,M), C) ∈ List[F ′] then

2: return C

3: else

4: C
$←− {0, 1}len(M)+τ

5: Add ((N,A,M), C) to List[F ′]

6: return C

Fig. 12: Lazy sampling of F ′.

Algorithm 20: Sampling of f(N,A,M) depending on F ′.

1: if ((N,A,M), T) ∈ List[f] then

2: return T

3: else

4: T ← F ′
0(N,A,M)

5: Add ((N,A,M), T) to List[f]

6: return T

1, and F ′
⌈len(M)/n⌉(N,A,M) ∈ {0, 1}len(M) mod n. As mentioned before, we as-

sume List[F ′
i (N,A, ·)] is constructed and automatically updated when List[F ′(N,A, ·)]

is updated, for each (N,A).

Sampling of f and ρ depending on F ′. From this game, we assume outputs
of f and ρ are sampled depending on F ′ so that Ef,ρ(N,A,M) will match
F ′(N,A,M) as much as possible.

The sampling of f for a fresh query (N,A,M) is performed by first querying
(N,A,M) to F ′ and setting f(N,A,M)← F ′

0(N,A,M) (see also Algorithm. 20).

The sampling of ρ(X) for a fresh query X is performed roughly as follows.
See Algorithm 21 for a precise description.

1. If A seems to compute the i-th ciphertext block Ci that corresponds to
an input (N,A,M) which has already been queried to F ′ before and i <

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 67

⌈len(M)/n⌉, ρ(X) is set to be F ′
i (N,A,M) ⊕ Mi. (Here, Mi is the i-th

message block.) If i = ⌈len(M)/n⌉, ρ(X) is set to be (F ′
i (N,A,M)⊕Mi)||y′,

where y′ is an (n− (M mod n))-bit random string.
2. Otherwise ρ(X) is sampled as before.

Algorithm 21: Sampling of ρ(X) depending on F ′.

1: if ∃y s.t. (X, y) ∈ List[ρ] then

2: return y

3: else if ∃((N,A,M), IV ||C ′) ∈ List[F ′] s.t. X = IV + i− 1 for some 1 ≤ i ≤
⌈len(M)/n⌉ (here, IV = F ′

0(N,A,M)) then

4: (M1,M2, . . . ,M⌈len(M)/n⌉)
n←−M

5: if i < ⌈len(M)/n⌉ then
6: y ← F ′

i (N,A,M)⊕Mi

7: else

8: y′
$←− {0, 1}n−(len(M) mod n), y ← (F ′

i (N,A,M)⊕Mi)||y′

9: \\ If there exist two or more candidates for (N,A,M), we take the

smallest one with respect to a lexicographical order.

10: else

11: y
$←− {0, 1}n

12: Add (X, y) to List[ρ]

13: return y

Fig. 13: Sampling of ρ(X) depending on F ′. Note that a fresh query to F ′ is
never made in this algorithm.

Description of Game 3. Game 3 is defined in the same way as Game 2, except
that the sampling of f and ρ are done as in Algorithm 20 and Algorithm 21.
The encryption and decryption oracles given to A are still Ef,ρ and Df,ρ.

We define an event bad3 by bad3 := bad3E ∨ bad3D, where bad3E and
bad3D are defined as follows.

bad3E : Just after the value Ef,ρ(N,A,M) is computed for a query (N,A,M) to Ef,ρ,
F ′ is already defined on (N,A,M) but F ′(N,A,M) ̸= Ef,ρ(N,A,M).

68 A. Hosoyamada et al.

bad3D : When (N,A,C) is queried to Df,ρ,
(a) ((N,A,M), C) ̸∈ List[F ′] for any M but Df,ρ returns M ′ ̸= ⊥, or
(b) ((N,A,M), C) ∈ List[F ′] for a unique M but Df,ρ returns M ′ ̸= M or
⊥.

(c) There existM ̸= M ′ such that ((N,A,M), C), ((N,A,M ′), C) ∈ List[F ′].

The output distributions of f and ρ are unchanged from Game 2 (this is
because F ′ is a random function and each tuple (i,N,A,M) is used at most
once in Algorithm 21). Hence the following proposition holds.

Proposition 5.

Pr[Game2 = 1]− Pr[Game3 = 1] = 0.

Next, we show the following proposition.

Proposition 6. It holds that

Pr [bad3] ≤ (σc + σf)
2

2τ
+

(σc + σf)(qρ + σc)

2τ
+

qc
2τ

.

In what follows, we often use the property Pr[A ∧ B] ≤ Pr[A|B] for events
A and B without any notice. To prove Proposition 6, we additionally introduce
the following bad events.

bad3F ′ : When a fresh value (N,A,M) is queried to F ′ and IV := F ′
0(N,A,M)

is sampled, the value (IV + i− 1) for some 1 ≤ i ≤ ⌈len(M)/n⌉ happens to
collide with (IV ′+ j−1) for some existing ((N ′, A′,M ′), IV ′) ∈ List[F ′

0] and
1 ≤ j ≤ ⌈len(M ′)/n⌉.

bad3ρ : When a fresh value (N,A,M) is queried to F ′ and IV := F ′
0(N,A,M)

is sampled, the value (IV + i− 1) for some 1 ≤ i ≤ ⌈len(M)/n⌉ happens to
collide with x such that (x, y) ∈ List[ρ] for some y.

We say that the value Ef,ρ(N,A,M) is defined if all the values of ρ and f required
to compute Ef,ρ(N,A,M) are already sampled and defined. Then the following
lemma holds.

Lemma 3. If the value f(N,A,M) (resp., F ′(N,A,M)) is already defined, then
the value F ′(N,A,M) (resp., f(N,A,M)) is also already defined and

F ′
0(N,A,M) = f(N,A,M)

holds. In addition, if bad3F ′∨bad3ρ does not happen and the value Ef,ρ(N,A,M)
is already defined, then the value F ′(N,A,M) is also already defined and

F ′(N,A,M) = Ef,ρ(N,A,M)

holds. In particular, the event bad3E does not occur if bad3F ′ ∨ bad3ρ does
not happen.

Proof. We first show the statement for F ′
0 and f , and then for F ′ and Ef,ρ.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 69

F ′
0 and f . Suppose the value F ′(N,A,M) is already defined. Due to the defini-

tion of the samplings in Algorithm 20 and Algorithm 21, a fresh query (N,A,M)
to F ′ is made only when (N,A,M) is queried to f as a fresh value. Hence
f(N,A,M) is already defined iff F ′

0(N,A,M) is already defined, and f(N,A,M) =
F ′
0(N,A,M) holds as long as they are defined.

F ′ and Ef,ρ Next, assume the value Ef,ρ(N,A,M) is defined for a tuple (N,A,M)
and bad3F ′ ∨ bad3ρ does not hold. Then, by the claim on F ′

0 and f , the value
F ′(N,A,M) is already defined and F ′

0(N,A,M) = f(N,A,M) holds.
Let us fix i ∈ {1, . . . , ⌈len(M)/n⌉} arbitrarily and let IV := F ′

0(N,A,M).
Since the value Ef,ρ(N,A,M) is already defined, there exists a pair (IV +i−1, y)
in List[ρ].

Now we can deduce that the value y was sampled at line 6 or 8 of Algo-
rithm 21 with the tuple (i,N,A,M) (but not another tuple (j,N ′, A′,M ′)): If
z had been sampled at line 6 or 8 but by using another tuple (j,N ′, A′,M ′),
then F ′

0(N
′, A′,M ′) + j − 1 = F0(N,A,M) + i − 1 would hold and bad3F ′

would happen. However, this contradicts our assumption that bad3F ′ does not
happen. In addition, if y had been sampled at line 11 of Algorithm 21, the
value F ′(N,A,M) would have been sampled after the sampling of y, and bad3ρ

would happen (when F ′(N,A,M) is sampled). However, this again contradicts
our assumption that bad3ρ does not happen.

The above argument shows the i-th ciphertext block of Ef,ρ(N,A,M) is
equal to F ′

i (N,A,M) for all i ∈ {1, . . . , ⌈len(M)/n⌉}. Therefore we have Ef,ρ(
N,A,M) = F ′(N,A,M). ⊓⊔

Lemma 4. Pr [bad3F ′] and Pr [bad3ρ] can be upper bounded as

Pr [bad3F ′] ≤ (σc + σf)
2

2τ
, (15)

Pr [bad3ρ] ≤
(σc + σf)(qρ + σc)

2τ
. (16)

Proof. We begin with showing the first inequality. f is called once at each query
to Ef,ρ and Df,ρ. In addition, F ′ is called at most once at each query to f . Thus
the block lengths of fresh queries made to F ′ are at most (σc+σf) in total (note
that a fresh query is not made while sampling output values of ρ). Since F ′

0 is a
random function of output length τ , the first inequality follows the definition of
bad3F ′ .

Next, we show the second inequality. At each query of block length ℓ to Ef,ρ
and Df,ρ, ρ is called at most ℓ times. In particular, the size of List[ρ] is at most
(qρ + σc) in this game. Since the block lengths of fresh queries made to F ′ are
at most (σc + σf) in total and F ′ is a random function, the second inequality
follows from the definition of bad3ρ. ⊓⊔

Lemma 5. It holds that

Pr [bad3D ∧ ¬(bad3F ′ ∨ bad3ρ)] ≤
qc
2τ

.

70 A. Hosoyamada et al.

Proof. In what follows, we consider a situation where a tuple (N,A,C) is queried
to Df,ρ, and study the probability that bad3D-(a), bad3D-(b), or bad3D-(c)
happen.

Recall that the decryption Df,ρ on (N,A,C) proceeds as follows.

1. Separate C into IV and C ′, where IV is the upper τ -bits and C ′ is the rest
of C.

2. Compute M ′ ← CTRρ(IV, C ′).
3. Compute T ← f(N,A,M ′).
4. If T = IV , return M ′. Otherwise, return ⊥.
In addition, from Lemma 3, if either of the values f(N,A,M) or F ′(N,A,M) is
defined, then the other one is also defined and f(N,A,M) = F ′

0(N,A,M) holds.

On Pr [bad3D-(a)].
Assume bad3F ′ ∨ bad3ρ does not happen in the game. If ((N,A,M), C) =
((N,A,M), IV ||C ′) ̸∈ List[F ′] for any M before querying (N,A,C) to Df,ρ, then
the value f(N,A,M ′) (recall M ′ = CTRρ(IV, C ′)) is not defined yet before
the query (by Lemma 3). In addition, (N,A,M ′) is queried to F ′ as a fresh
query in computing f(N,A,M ′), and f(N,A,M ′) = F ′

0(N,A,M ′) holds after
the computation of f(N,A,M ′) (by Lemma 3). Thus, at each query to Df,ρ, the
probability that f(N,A,M ′)(= F ′

0(N,A,M ′)) happens to collide with IV is at
most 1/2τ . Therefore we have

Pr [bad3D-(a)] ≤ qc
2τ

. (17)

On Pr [bad3D-(b) ∧ ¬(bad3F ′ ∨ bad3ρ)].
Assume bad3F ′ ∨ bad3ρ does not happen in the game. Suppose there exists a
unique ((N,A,M), C) ∈ List[F ′] for some M before (N,A,C) = (N,A, IV ||C ′)
is queried to Df,ρ. Then, the value F ′(N,A,M) is defined and f(N,A,M) =
F ′
0(N,A,M) = IV holds (by Lemma 3).
Now we observe that, for all 1 ≤ i ≤ ⌈len(M)/n⌉, the value ρ(IV + i − 1)

is defined in Algorithm 21 as ρ(IV + i − 1) := F ′
i (N,A,M) ⊕Mi at line 6, or

ρ(IV + i − 1) := (F ′
i (N,A,M) ⊕Mi)||y′ with some y′ at line 8: If the value

ρ(IV + i − 1) were sampled at line 11 of Algorithm 21, the value F ′(N,A,M)
would have been sampled after the sampling of ρ(IV + i− 1) and bad3ρ would
happen (when F ′(N,A,M) is sampled). However, this contradicts the assump-
tion ¬(bad3F ′ ∨bad3ρ). In addition, if the value were sampled at line 6 or 8 of
Algorithm 21 but with a different tuple (j,N ′, A′,M ′) other than (i,N,A,M),
then F ′

0(N
′, A′,M ′) + j − 1 = F ′

0(N,A,M) + i − 1 holds and bad3F ′ would
happen. However, this contradicts the assumption ¬(bad3F ′ ∨ bad3ρ).

The above discussion shows CTRρ(IV, C ′) = M , which impliesDf,ρ(N,A,C) =
M . Hence we have

Pr [bad3D-(b) ∧ ¬(bad3F ′ ∨ bad3ρ)] = 0. (18)

On Pr [bad3D-(c) ∧ ¬(bad3F ′ ∨ bad3ρ)].

Suppose bad3D-(c) happens, i.e., there existM ̸= M ′ such that ((N,A,M), C), ((N,A,M ′), C) ∈

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 71

List[F ′]. Then F ′
0(N,A,M) = IV = F ′

0(N,A,M ′) holds and bad3F ′ happens.
Hence

Pr [bad3D-(c) ∧ ¬(bad3F ′ ∨ bad3ρ)] = 0. (19)

The claim of the lemma follows from Eq. (17), Eq. (18), and Eq. (19). ⊓⊔

Proof (of Proposition 6). From Lemma 3, 4, and 5, it follows that

Pr [bad3] ≤ Pr [bad3F ′ ∨ bad3ρ] + Pr [bad3E ∧ ¬(bad3F ′ ∨ bad3ρ)]

+ Pr [bad3D ∧ ¬(bad3F ′ ∨ bad3ρ)]

≤ (σc + σf)
2

2τ
+

(σc + σf)(qρ + σc)

2τ
+

qc
2τ

, (20)

Hence the proposition holds. ⊓⊔

K.4 Game 4

In Game 4, the oracles Ef,ρ and Df,ρ given to A is replaced with E ′f,ρ and D′f,ρ

defined as follows:

E ′f,ρ: Given an input (N,A,M), compute Ef,ρ(N,A,M). After computing Ef,ρ(N,A,M),
check if bad3E happens or not. If bad3E does not happen, return Ef,ρ(N,A,M).
If bad3E happens, query (N,A,M) to F ′ and return F ′(N,A,M). (Note
that Ef,ρ(N,A,M) = F ′(N,A,M) holds as long as bad3E does not hap-
pen.)

D′f,ρ: Given an input (N,A,C), check if ((N,A,M), C) ∈ List[F ′] for a unique
M . Let M̃ := M if there exists such M , and M̃ := ⊥ if not. Then compute
Df,ρ(N,A,C), and check if bad3D happens or not (by using M̃). If bad3D
does not happen, return Df,ρ(N,A,M). If bad3D happens, return M̃ . (Note
that Df,ρ(N,A,M) = M̃ as long as bad3D does not happen.)

The behavior of E ′f,ρ and D′f,ρ in this game is identical with that of Ef,ρ and
Df,ρ in Game 3 until bad3 = bad3E ∨ bad3D happens. Thus the following
holds.

Proposition 7.

Pr [Game 3 = 1]− Pr [Game 4 = 1] ≤ Pr [bad3]

K.5 Game 5

In Game 5, E ′f,ρ is replaced with F ′. In addition, D′f,ρ is replaced with (F ′)−1

defined as follows.

(F ′)−1: Given an input (N,A,C), if ((N,A,M), C) ∈ List[F ′] for a unique M ,
return M . Otherwise return ⊥.

72 A. Hosoyamada et al.

Other functions and algorithms remain unchanged.
Since F ′ and (F ′)−1 in this game are completely indistinguishable from E ′f,ρ

and D′f,ρ in Game 4, we have the following proposition.

Proposition 8.

Pr [Game 4 = 1]− Pr [Game 5 = 1] = 0.

K.6 Game 6

In this game the encryption and decryption oracles given to A are replaced
with the lazy sampling versions of the encryption oracle F (fixed-key random
injection) and the decryption oracle F−1, respectively, which are defined as in
Fig. 14 (the sampling of Fig. 14 is essentially the same as the lazy sampling of a
random injection given in Fig. 3 of [74]). Again, we assume the value F (N,A,M)
is represented as F (N,A,M) = F0(N,A,M)|| · · · ||F⌈len(M)/n⌉(N,A,M), where
F0(N,A,M) ∈ {0, 1}τ , Fi(N,A,M) ∈ {0, 1}n for 1 ≤ i < ⌈len(M)/n⌉, and
F⌈len(M)/n⌉(N,A,M) ∈ {0, 1}len(M) mod n. The sampling of the values of f and
ρ (Algorithms 20 and 21) are accordingly changed so that queries to F ′

i (i.e.,
queries to F ′ and truncation) are replaced with queries to Fi (queries to F and
truncation).

Here we provide intuition behind Algorithms 22 and 23. First, note that
the symbol ⊥ may be assigned to F−1(N,A,C) when a fresh value (N,A,C)
is queried to F−1. Once the value F−1(N,A,C) is set as F−1(N,A,C) = ⊥,
we cannot set C = F (N,A,M) for any fresh query (N,A,M) to F made later.
In particular, we have to remember which (N,A,C) the symbol ⊥ has been
assigned to. Thus we maintain the list Sm

⊥ , which is the set of ciphertexts C
such that F−1(C) is already defined to be ⊥ and len(C) = m. When sampling
F−1(N,A,C) for a fresh query (N,A,C) to F−1, first we have to decide whether
to assign ⊥ or not. This is the reason we choose a bit b at line 6 of Algorithm 23.
b = 1 means that we do not assign ⊥. The distribution D is chosen so that
Pr

b
$←−D

[b = 1] matches the fraction

(the number of messages on which F (N,A, ·) is not defined yet)

(the number of ciphertexts on which F−1(N,A, ·) is not defined yet)
.

If b = 1, we randomly choose a message M and define M := F−1(N,A,C). It is
straightforward to show the oracles defined by Algorithms 22 and 23 are indeed
indistinguishable from a random injection and its inverse.

As mentioned in Fig. 14, we introduce the two bad events bad6a and bad6b,
and define bad6 := bad6a ∨ bad6b.

If the boxed parts in Fig. 14 are not executed, then the output distributions
of Algorithms 22 and 23 match those of F ′ and (F ′)−1 in Game 5. Thus we have
the following proposition.

Proposition 9.

Pr [Game 5 = 1]− Pr [Game 6 = 1] ≤ Pr [bad6] .

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 73

Algorithm 22: F (N,A,M), lazy sampling

1: if ((N,A,M), C) ∈ List[F] for some C then

2: return C

3: else

4: C
$←− {0, 1}len(M)+τ

5: if ∃M ′, ((N,A,M ′), C) ∈ List[F] and len(M ′) = len(M) or C ∈ S
len(C)
⊥

then

6: bad6a← 1

7: C
$←− {0, 1}len(M)+τ \

(
Im(F (N,A, ·), len(M)) ∪ S

len(C)
⊥

)
8: Add ((N,A,M), C) to List[F]

9: return C

Algorithm 23: F−1(N,A,C), lazy sampling

1: if ((N,A,M), C), ((N,A,M ′), C) ∈ List[F] for distinct M and M ′ then

2: return ⊥ \\ In fact this part is never executed in Game 6

3: else if ((N,A,M), C) ∈ List[F] for some M then

4: return M

5: else if len(C) < τ or Dom(F (N,A, ·), len(C)− τ) = {0, 1}len(C)−τ then

6: return ⊥
7: else

8: Choose b ∈ {0, 1} randomly according to the distribution D such that

Pr
b

$←−D

[b = 1] =
2len(C)−τ − |Dom(F (N,A, ·), len(C)− τ)|

2len(C) − |Slen(C)
⊥ | − |Dom(F (N,A, ·), len(C)− τ)|

9: if b = 1 then

10: bad6b← 1

11: M
$←− {0, 1}len(C)−τ \Dom(F (N,A, ·), len(C)− τ)

12: Add ((N,A,M), C) to List[F]

13: return M

14: Add C to S
len(C)
⊥

15: return ⊥

Fig. 14: The lazy sampling versions of the ideal encryption oracle F and its
inverse F−1. Here, Dom(F (N,A, ·),m) := {M ∈ {0, 1}m : (N,A,M) ∈
List[F (N,A, ·)]} and Im(F (N,A, ·),m) := F (N,A,Dom(F (N,A, ·),m)), respec-
tively. Note that the boxed parts are executed in Game 6. If the boxed parts are
not executed, the output distributions of Algorithms 22 and 23 match those of
F ′ and (F ′)−1 in Game 5.

74 A. Hosoyamada et al.

In addition, the following proposition holds.

Proposition 10. Pr [bad6a] ≤ (qc + qf)
2/2τ and Pr [bad6b] ≤ 2qc/2

τ hold.
In particular,

Pr [bad6] ≤ (qc + qf)
2 + 2qc

2τ
(21)

holds.

Proof. First, we upper bound Pr [bad6a]. Since the number of fresh queries
made to F or F−1 is at most (qc + qf) in total (note that a fresh query is not
made to F while sampling outputs of ρ),∣∣∣Im(F (N,A, ·), len(M)) ∪ S

len(C)
⊥

∣∣∣ ≤ qc + qf

holds. In addition, we always have len(C) ≥ τ . Thus we have

Pr [bad6a] ≤ (qc + qf)
2

2τ
.

Next, we upper bound Pr [bad6b]. At each query (N,A,C) to F−1 with
len(C) ≥ τ , the bit b is set to 1 with probability

2len(C)−τ − |Dom(F (N,A, ·), len(C)− τ)|
2len(C) − |Slen(C)

⊥ | − |Dom(F (N,A, ·), len(C)− τ)|

≤ 2len(C)−τ

2len(C) − (qc + qf)

=
1

2τ
1

1− (qc + qf)/2len(C)

≤ 2

2τ
. (22)

(Here, we used the assumption qc + qf ≤ 2τ−1.) Since no queries are made to
F−1 while sampling the values of f and ρ,

Pr [bad6b] ≤ 2qc
2τ

holds. ⊓⊔

K.7 Game 7

This game is the ideal world. The encryption and decryption oracles F and
F−1 are not implemented with lazy-sampling but their values are determined
all at once at the beginning of the game. In addition, we define a simulator S to
simulate ρ and f running as follows.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 75

1. (Simulation of ρ) When an adversary makes a query to the interface corre-
sponding to ρ, query to the revealing interface to get the list List[F] storing
all the queries made so far to F (and the responses). Then, simulate ρ as in
Algorithm 20 (with F ′ and F ′

i being replaced with F and Fi), by using the
list List[F].

2. (Simulation of f) Simulation of f is done as in Algorithm 20, with F ′ and
F ′
0 being replaced with F and F0.

Note that the simulation of ρ can be performed without making queries to F
given List[F].

The output distributions of Games 6 and 7 are completely the same. Thus
the following proposition holds.

Proposition 11. Pr [Game 6 = 1]− Pr [Game 7 = 1] = 0

K.8 Finishing the Proof

From Propositions 4-11,

Advpub-indiff
Π,F±,S (A)

= Pr [Game1 = 1]− Pr [Game7 = 1]

≤ Pr [bad3] + Pr [bad6]

≤ (σc + σf)
2

2τ
+

(σc + σf)(qρ + σc)

2τ
+

3qc
2τ

+
(qc + qf)

2

2τ

follows. In addition, the number of queries by simulator S to F± is at most qf
and the block lengths of the queries are at most σf . Hence the statement of the
theorem holds.

L Details on How to Derive Corollary 1 from Theorem 3

This section explains how we can deduce that Corollary 1 holds by combin-
ing Theorem 3, Theorem 1, and Proposition 1, using Lemma 2. Note that the
notations in this section follow those in Section 7.

We assume each simulator S for (public) indifferentiability is naturally con-
verted into a one for weak public indifferentiability by recording queries that S
makes to a construction oracle. Moreover, when we refer to “length” in this sec-
tion, we mean block length rather than bit length (recall that the block length
of a bit string X is ⌈len(X)/n⌉). Lemma 2 holds verbatim even if the unit of
length is replaced from a bit to a block.

First, let Π[RF] denote a scheme where the random permutation P in Π[P]
is replaced with a random function RF : {0, 1}n → {0, 1}n. We define RF0 :
{0, 1}n−1 → {0, 1}n−1 and RF1 : {0, 1}τ → {0, 1}n from RF in the same way
as P0 and P1 are defined from P . Then we can show that Π[RF] is weak public
indifferentiable from a random injection when the primitive oracle is RF, by
combining Theorem 3 and Theorem 1 with Lemma 2. More precisely, we apply
Lemma 2 with the following setting.

76 A. Hosoyamada et al.

1. R in Lemma 2 is a random injection F±.
2. TP in Lemma 2 is Π = (Ef,ρ,Df,ρ) of Theorem 3. P in Lemma 2 is (f, ρ) of

Theorem 3.
3. UQ in Lemma 2 is (SpongeRF0(enc(·, ·, ·)),RF1). Q in Lemma 2 is RF.
4. ST in Lemma 2 is the simulator of Theorem 3.
5. Let SSponge be the simulator of Theorem 1. Then, a simulator SU is defined

so that it runs as follows when a bit string x is queried to SU. Note that SU
is given oracle access to (f, ρ) in addition to a revealing interface.
(a) (SU samples a random function RF′ : {0, 1}n → {0, 1}n at the beginning

of the game.)

(b) If x is of the form x = 0||x′ (x′ ∈ {0, 1}n−1), run SfSponge on x′ and

respond with the output of SfSponge.
(c) If x is of the form x = 1n−τ ||x′′ (x′′ ∈ {0, 1}τ) is queried to SU, query

x′′ to ρ and respond with ρ(x′′).
(d) Otherwise respond with RF′(x).

6. The functions appearing in Lemma 2 (e.g., qST
(·, ·, ·, ·)) related to the number

of queries are as follows.
(a) qST

(qc, σc, qp, σp) = qp, σST
(qc, σc, qp, σp) = σp,

(b) qSU
(qc, σc, qp, σp) = qp, σSU

(qc, σc, qp, σp) = ⌈nr ⌉q2p
(c) qT(q, σ) = 2σ, σT(q, σ) = 2σ

With the above setting, the following proposition follows from Lemma 2.

Proposition 12. There exists a simulator S for weak public indifferentiability
of Π[RF] from a fixed-key random injection F±, where a primitive oracle is
RF, such that the number of queries by S to the construction oracle is at most
(2σc+ qp) and the block lengths of the queries are at most (2σc+ ⌈nr ⌉q2p) in total,
and

Advweak-pub-indiff
Π,F±,S (A) ≤ (σc + (2σc + ⌈nr ⌉q2p))2

2τ
+

(σc + (2σc + ⌈nr ⌉q2p))((2σc + qp) + σc)

2τ

+
3qc
2τ

+
(qc + (2σc + qp))

2

2τ
+ ϵ(2σc + 2qp)

holds for any adversary A of which computational resources are as follows: To
the construction oracle, A makes at most qc queries of which block length is at
most σc in total. To the primitive oracle (corresponding to RF), A makes at most
qp queries. In addition, ϵ is the function such that ϵ(j) = 1−Πj

i=1(1− 1
2c).

Next, we replace RF in Π[RF] of the above proposition with P by using
Proposition 1 and applying Lemma 2 again. That is, we apply Lemma 2 with
the following setting.

1. R in Lemma 2 is a random injection F±.
2. TP in Lemma 2 is Π[RF]. P in Lemma 2 is RF of Theorem 3.
3. UQ in Lemma 2 is P . Q in Lemma 2 is (P, P−1).
4. ST is the simulator of Proposition 12.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 77

5. SU of Lemma 2 is the simulator of Proposition 1
6. The functions appearing in Lemma 2 (e.g., qST

(·, ·, ·, ·)) related to the number
of queries are as follows.
(a) qST

(qc, σc, qp, σp) = 2σc + qp, σST
(qc, σc, qp, σp) = 2σc + ⌈nr ⌉q2p

(b) qSU
(qc, σc, qp, σp) = qp, σSU

(qc, σc, qp, σp) = qp
(c) qT(q, σ) = ⌈nr ⌉(3σ + q), σT(q, σ) = ⌈nr ⌉(3σ + q)

With the above setting, the proposition below follows from Lemma 2.

Proposition 13. There exists a simulator S for weak public indifferentiabil-
ity of Π[RF] from a fixed-key random injection F±, where a primitive ora-
cle is P±, such that the number of queries by S to the construction oracle is
at most ⌈nr ⌉(5σc + qc + qp) and the block lengths of the queries are at most
(2σc + ⌈nr ⌉3(3σc + qc + qp)

2) in total, and

Advweak-pub-indiff
Π,F±,S (A)

≤ (3σc + ⌈nr ⌉3(3σc + qp + qc)
2)2

2τ
+

(3σc + ⌈nr ⌉3(3σc + qp + qc)
2)(3σc + ⌈nr ⌉(3σc + qp + qc))

2τ

+
3qc
2τ

+
(qc + (2σc + ⌈nr ⌉(3σc + qp + qc)))

2

2τ
+ ϵ

(
2σc + 2

⌈n
r

⌉
(3σc + qp + qc)

)
+
⌈nr ⌉2(3σc + 2qp)

2

2n

holds for any adversary A of which computational resources are as follows: To
the construction oracle, A makes at most qc queries of which block length is at
most σc in total. To the primitive oracle (corresponding to (P, P−1)), A makes at
most qp queries. In addition, ϵ is the function such that ϵ(N) = 1−ΠN

i=1(1− 1
2c).

Finally, by combining the above proposition and Theorem 2 with the fol-
lowing setting, and by some simplifications of mathematical expressions, we can
deduce that Corollary 1 holds.

1. R in Theorem 2 is a random injection F±.
2. Σπ in Theorem 2 is Π[EK].
3. P in Theorem 2 is a random permutation P and its inverse P−1.
4. π in Theorem 2 is EK .
5. Sindiff in Theorem 2 is the simulator of Proposition 13.
6. The functions appearing in Theorem 2 related to the number of queries are

as follows.
(a) qSindiff

(qc, σc, qp, σp) = ⌈nr ⌉(5σc + qc + qp), σSindiff
(qc, σc, qp, σp) = 2σc +

⌈nr ⌉3(3σc + qc + qp)
2.

(b) qΣ(q, σ) = σΣ(q, σ) = 2σ +
⌈
n
r

⌉
q.

M On the Existence of whPRP-Secure BCs

Our ensured security by the mode of operation is eventually reduced to whPRP-
secure block ciphers. It is a natural question whether there exist whPRP-secure

78 A. Hosoyamada et al.

block ciphers or not. Unfortunately, there are no existing block ciphers whose
design goal is whPRP36. However, we expect that some SPACE-hard block ci-
phers can be a good candidate for whPRP-secure block ciphers. Note that this
is not a provable discussion like we cannot prove a secure block cipher (such as
AES) is PRP. We discuss based on the existence of real cryptanalysis.

whPRP is not natural for the claimed security of block ciphers; e.g., we usu-
ally do not have the simulator when discussing cryptanalysis of block ciphers.
Therefore, in this section, we bridge from real cryptanalysis to whPRP. First,
we discuss existing security notions and attack models for SPACE-hard block
ciphers and introduce an extended security notion called hybrid SPACE hard-
ness. We provide an intuition why the block cipher satisfying the hybrid SPACE
hardness likely satisfies whPRP. Next, we discuss that SPACE likely satisfies the
hybrid SPACE hardness by taking some possible cryptanalyses into considera-
tion.

M.1 Hybrid SPACE Hardness and whPRP

SPACE Hardness. In [24], Bogdanov and Isobe introduced a SPACE hardness
defined as follows:

Definition 5 ((M,Z)-SPACE hardness [24]). The implementation of EK is
(M,Z)-space hard if it is infeasible to encrypt (decrypt) any randomly drawn
plaintext (ciphertext) with a probability of more than 2−Z given any code (table)
of size less than M .

We call block ciphers satisfying SPACE hardness SPACE-hard block ciphers.
In practice, SPACE-hard block ciphers encrypt plaintexts by continuous table
lookups, and the table is derived from a secure block cipher (such as AES) by
constraining inputs and truncating outputs. Thus, even if a white-box adversary
can look at the table, extracting a secret key from the table is as difficult as the
key recovery attack of the secure block cipher.

Bogdanov et al. [25] pointed out that the SPACE hardness depends on attack
models.

Definition 6 (Attack models for Definition 5 [25]). Let F be a table used
in EK .

– Known-Space Attack (KSA) extracts M pairs of inputs and corresponding
outputs of tables (xi, F (xi)) for i ∈ {1, . . . ,M}.

36 Recently, a hybrid code lifting is introduced as a new attack vector against space-
hard block ciphers in [78]. The demonstrated attack is very similar to ours, and our
hybrid space hardness can be regarded as the formal definition of their cryptanal-
ysis. According to their detailed cryptanalysis, space-hard block ciphers Yoroi and
SPNbox are vulnerable and do not satisfy our hybrid space hardness. On the other
hand, when we increase the number of rounds in SPNbox by several rounds, it can
be a good candidate.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 79

– Chosen-Space Attack (CSA) extracts M pairs of inputs and corresponding
outputs of tables (xi, F (xi)) for i ∈ {1, . . . ,M}, where xi is chosen by ad-
versaries before mounting attacks.

– Adaptive Chosen-Space Attack (ACSA) extracts M pairs of inputs and cor-
responding outputs of tables (xi, F (xi)) for i ∈ {1, . . . ,M}, where xi is adap-
tively chosen by adversaries, i.e., xa can be chosen after obtaining (xa−1, F (xa−1)).

Besides the above ones, Chow et al. suggested a more trivial attack model where
some plaintext-ciphertext pairs are simply copied [28]. We call such an attack
query leaking in short. We cannot avoid that ⌊λ/n⌋ plaintext-ciphertext pairs
are leaked, where λ is the total bit size of leakage and n is a block length.

Hybrid SPACE Hardness. SPACE hardness significantly deviates from wh-
PRP demanded in our mode. To bridge the gap, we extend the former notion to
hybrid SPACE hardness.

Definition 7 (Hybrid SPACE hardness). Let A denote a black-box adver-
sary running time in less than t and making q queries to EK and DK in total
that runs as follows: A first makes some queries and outputs a lifter running in
time tlif . Then the lifter is given unlimited access to JEKK and outputs L whose
size is at most λ bits. Finally, A receives L, makes additional queries, and then
outputs plaintext-ciphertext pairs. We say that the white-box block cipher satis-
fies (t, λ, q, tlif)-hybrid SPACE hardness if any such A cannot output more than
(q + ⌊λ/n⌋) correct plaintext-ciphertext pairs with sufficiently high probability.

Hybrid SPACE hardness is a straightforward extension of SPACE hardness.
The extension is two-fold: First, the adversary has a chance to make black-box
queries. Second, the lifter can leak arbitrary information rather than table entries
only. The time of the lifter is bounded to avoid trivial attacks by exhaustive key
search. Note that it is unavoidable that ⌊λ/n⌋ plaintexts or ciphertexts are leaked
via a λ-bit leakage.

To study whether existing SPACE-hard block ciphers fulfill hybrid SPACE
hardness, we discuss detailed cryptanalysis in AppendixM.2. We conclude that
any query leaking is not helpful to attack the hybrid SPACE hardness because a
black-box adversary can collect them by only oracle queries. Thus, it is enough
to consider lifters that leak inside information on JEKK. We tried several-kind of
such attacks. As a result, we expect the hybrid SPACE hardness to be satisfied
if well-designed SPACE-hard block ciphers have a large security margin w.r.t.
SPACE hardness against the KSA and CSA.

From Hybrid SPACE Hardness to whPRP. Hybrid SPACE hardness is
not a formal security definition available for a security proof. Still, we expect
that well-designed SPACE-hard block ciphers satisfying hybrid SPACE hardness
are likely to fulfill whPRP.

The hybrid SPACE hardness guarantees that any attack cannot leak more
information on plaintext-ciphertext pairs than query leaking. Besides, if an ad-
versary can compute some plaintext-ciphertext pairs with the aid of leakage and

80 A. Hosoyamada et al.

without the encryption oracle, it is natural to assume the lifter knows these
pairs. Considering such a situation, we present an idea for constructing the sim-
ulator. With bounds coming from the mode requirements, qsim must be chosen
from reasonable values, e.g., qsim ≈ 250, but huge tsim is accepted. In addition,
an adversary cannot notice even if table entries of SPACE-hard block ciphers
are randomly chosen by simulators. Thus, the simulator can use the following
strategy.

1. Try out all possible tables and construct ciphers using each table.
2. Apply the lifter to constructed ciphers, and list at most λ-bit information

about the leaked plaintext-ciphertext query, which can be encrypted by A
without encryption oracle.

3. Query properly chosen plaintexts, and get corresponding ciphertexts. Here,
it chooses plaintexts such that it discards some tables but many tables still
survive in the list.

4. Once we find a table whose λ-bit leaked query information is consistent with
the random permutation P , it prepares the program P ′ using the found table
and leaks L(P ′).

On the procedure above, we expect there is a simulator if tlif ≤ qsim because of
two reasons37. First, it is unlikely that it needs more queries than the lifter’s time
to obtain at most λ-bit leaked query information defined by the lifter. Next, it
is unlikely that the heuristic query by the simulator in step (3) discards all table
candidates because the simulator still has many tables on average after at most
λ-bit leaked query information is determined, supposing λ is the quarter size of
the table. For example, when a 16-bit to 112-bit table is used, the number of all
possible tables is 2112×216 . Even if λ = 112× 214-bit information is determined,
we still have table candidates.

Again, the discussion above is not a provable one and focuses on the existence
of attacks. As far as we try, there is no attack procedure such that the simulator
fails. Our discussion is the initial point of reviewing the security of SPACE-
hard block ciphers. We expect subsequent works to be more convinced with the
security by discussing new attack strategies.

M.2 Cryptanalysis of SPACE in Context of Hybrid SPACE
Hardness

Hereinafter, we concentrate on a concrete SPACE-hard block cipher SPACE. We
expect SPACE fulfills the hybrid SPACE hardness. We first introduce a specifica-
tion of SPACE and next review existing attacks against SPACE. We then discuss
some possible attacks in the context of hybrid SPACE hardness.

37 It is interesting that we fail to bridge from the hybrid SPACE hardness to whPRP
if qsim < tlif ≤ q. Then, we have the following attack: Acreate randomly chooses
x ∈ {0, 1}n and generates a lifter, which evaluates y = JEkKtlif (x) and leaks y. Adist

receiving y checks if y = E
tlif
K (x) holds by querying EK tlif times. The simulator fails

to simulate because it cannot query to P tlif times.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 81

Fig. 15: Dedicated SPACE-hard block cipher SPACE

SPACE. SPACE is the first SPACE-hard block cipher designed by Bogdanov
and Isobe [24]38. After their proposal, many SPACE-hard block ciphers have
been proposed [25, 43, 28, 58, 55].

SPACE is a 128-bit block cipher adopting the target-heavy generalized Feistel
structure for encryption. The table called the F function (the rth round function
F r) is derived from a secure block cipher by constraining inputs, truncating
outputs, and introducing a round constant r. The authors of [24] instantiated
SPACE with AES-128 to generate F r.

SPACE has four variants, SPACE-na, where na ∈ {32, 24, 16, 8}. The round
function is iterated by R = 128 times for na ∈ {32, 24, 16} and R = 256 times
for na = 8. Figure 15 shows the (r− 1)th and rth round functions of SPACE-na.

Existing Analysis by Black-Box Adversaries. We first say that security
against (only) black-box adversaries was already claimed in [24]. They evalu-
ated differential cryptanalysis [15], linear cryptanalysis [62], impossible differen-
tial [14], and so on. These attacks do not reach not only the full rounds but also
the half number of the full rounds because the number of rounds for SPACE is
determined by security against code lifting.

The difficulty comes from a secret, secure, and large F r. A normal block
cipher uses a combination of a short subkey and a public S-box. Thus, the guess
of the short subkey is very useful because we can evaluate all 2na mappings by
guessing an na-bit subkey. On the other hand, guessing such a small fraction of
secret information is not always powerful in SPACE. We need to guess (128−na)
bits to get one output of one table entry.

Existing Code Lifting by White-Box Adversaries. Code lifting (by white-
box adversaries) is more critical to discussing the security of SPACE. We inherit
the same security level claimed in [24]: code lifting reveals quarter-size of tables
to adversaries.

38 SPACE is a dedicated design for whitebox block cipher. To the best of our knowledge,
such a direction was initiated with ASASA [17], which was unfortunately broken [44,
37, 66].

82 A. Hosoyamada et al.

In [25], Bogdanov et al. introduced three attack models: the known-space
attack (KSA), chosen-space attack (CSA), and adaptive chosen space attack
(ACSA) (see Definition 6 in detail). We first follows their discussion as follows.

– In the KSA and CSA, because table entries are copied non-adaptively, the
probability that randomly-drawn plaintexts are successfully encrypted is
(1/4)R, that is 2−256 for SPACE-16, SPACE-24, and SPACE-32. There are
2128 plaintexts. Thus, there is unlikely any plaintext that can be encrypted
using the copied table. Moreover, considering (1/4)R/2 = (1/4)64 = 2−128,
on average, only one plaintext can be partially encrypted up to the half
number of rounds.

– In the ACSA, leaking R table entries allows a black-box adversary to encrypt
at least one plaintext, where R denotes the number of rounds. (2na−2, 128)-
SPACE hardness means that there is no plaintext that the black-box adver-
sary can encrypt by using the leakage. Therefore, it implies that guaranteeing
(2na−2, 128)-SPACE hardness is not practical when na ∈ {16, 24, 32} because
it requires at least 2na−2 rounds.

Remember that a white-box adversary can unlimitedly access the implementa-
tion. There is no reason that they copy table entries only. Practically, copying
simple query information, e.g., ciphertexts for chosen plaintexts, is easy because
the white-box adversary does not need to analyze the inside of the implemen-
tation. Such a trivial attack was suggested in [28]. This simple query leaking
implies that sneaking ⌊λ/128⌋ plaintext-ciphertext pairs is unavoidable when λ
is the total bit size of leakage39.

After the proposal of the SPACE hardness, the attacks mentioned above have
been discussed in [25, 28]. However, we do not know general attacks superior to
these attacks to the best of our knowledge.

New Analysis by Hybrid Adversaries. We next discuss the security against
the hybrid SPACE hardness (see Definition 7), which is our main goal. We assume
code lifting of any information related to the implementation. We additionally
assume the opportunity that an adversary queries to encryption and decryption
oracles.

39 Cho et al. also proposed an attack guessing unknown table entries after the
KSA/CSA [28]. In SPACE, when only one table entry is unknown out of R table
entries, we can successfully encrypt such a plaintext with a probability of 2−(128−na)

by guessing the (128 − na)-bit output of the unknown table entry. Thus, when the
probability of

(
R
1

)
× (1/4)R−1 > 2−128, there is at least a plaintext encrypted with

probability higher than 2128−na using known table entries. However, an adversary
cannot detect if given plaintexts belong to the set of such plaintexts. Thus, it is not
clear whether it allows encrypting any randomly-drawn plaintext with a probability
of more than 2−128. At least, it is unlikely to be possible for adversaries running
time in 2128.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 83

Black-Box Adversary with Query Leaking. We first consider a black-box ad-
versary with the query leaking. It provides any λ-bit information related to
plaintext-ciphertext pairs but does not include the inside information about the
implementation. We notice that the query leaking is not helpful to break the
hybrid SPACE hardness because the adversary can collect them by only oracle
queries. Namely, if this combined attack works, such a cipher is already insecure
against black-box adversaries.

Black-Box Adversary with KSA/CSA. We next consider a black-box adversary
with the KSA and CSA. It knows 1/4 table entries. Is it possible to complement
unknown table entries by using the chance of black-box oracle query? We expect
it is unlikely if (1/4)R ≪ 2−128.

Let us consider (1/4)R ≈ 2−128. Then, there are a few plaintexts, where their
encryption is possible by using known table entries with guessing a few unknown
table entries. Since the time in the adversary is bounded, it is not trivial to detect
such plaintexts but could be possible. If it is possible, the adversary guesses a
few unknown table entries and confirms the correctness of the guess by querying
encryption/decryption oracles. Once a few extra table entries are successfully
recovered, the use of newly recovered table entries allows the adversary to re-
cover more table entries. The repetition of this procedure might cause a risk of
recovering all table entries by the adversary.

In SPACE, (1/4)R = 2−256. The security margin, i.e., the gap between 2−128

and 2−256, is plenty enough, even considering the risk by the above guess-and-
determine attack. We need to remark that any follow-up SPACE-hard block
ciphers do not always have such plenty of security margin. For example, the
claimed security of SPNbox is (2na−2, 64)-SPACE hardness against KSA/CSA [25].
Thus, SPNbox does not satisfy the hybrid SPACE hardness unless λ ≪ na ×
2na−2.

The attack above uses a straightforward guess-and-determine attack. How
about a combination with more advanced cryptanalyses by black-box adver-
saries? We tried but were not successful very well. We summarize why it is
unlikely to be possible as follows.

– We usually use “(truncated) difference transitions” or “(multi-dimensional)
linear mask transitions” in advanced cryptanalyses. However, the knowledge
that 1/4 of table entries are known is not helpful for such statistical attacks.

– Attacks directly guessing values, like a meet-in-the-middle attack, might be
more helpful than statistical attacks. However, it needs to guess too many
bits because 3/4 of table entries are still unknown. Even after leakage, the
target cipher still looks like having a ((128− na)× 3× 2na−2)-bit key for a
black-box adversary unless they search the secret key exhaustively. The size
is still incredibly larger than other normal block ciphers such as AES, which
have at most 11× 128 bits even if all round keys are guessed independently.

– Finally, we will revisit results on black-box only and code lifting only sce-
narios. There is no black-box attack covering the half number of rounds.
Besides, the probability is already 2−128 for randomly-drawn plaintexts to

84 A. Hosoyamada et al.

encrypt up to the half round. Therefore, it is unlikely that the combined
attack can cover the full rounds.

Black-Box Adversary with ACSA. The most considerable attack would combine
the ACSA with the black-box oracle access. For example, a few table entries are
omitted from R table entries, and the omitted table entries are later recovered by
the guess-and-determine approach with black-box oracle access. When only one
table entry is omitted, the entry is easily recovered by querying the corresponding
plaintext to encryption oracle. When two table entries are omitted, we need to
guess one table entry, (128−na) bits. Another table entry is derived by checking
the consistency with encryption oracle, but the number of candidates is no longer
one, i.e., 22·(128−na)−128. The number of candidates exceeds 2128 when three table
entries are omitted. Assuming there are methods to recover three omitted table
entries after code lifting, the number of additionally recovered table entries is

3× 2na−2

R . It is unlikely to recover more table entries because the ACSA allows
encrypting only preliminary-determined fixed plaintexts.

The combination with the ACSA is interesting because it reveals more table
entries than 2na−2. This attack recovers some additional table entries, and we
need to review the security against the KSA and CSA again. Let us assume
concrete case: assuming an adversary gets 2na−2 ×

(
1 + 3

R

)
table entries after

the combined attack with ACSA, the probability hitting known table entries
increases from 1/4 to

(
1 + 3

R

)
× 1/4, which is about 0.2559. The probability of

encrypting randomly-drawn plaintexts (except for preliminary-determined fixed
plaintexts in the ACSA) is about 2−251.72, which is low enough still.

Black-Box Adversary with Other Code Lifting. We discussed that query leakage
is not helpful to break the hybrid SPACE hardness. We also discussed that ta-
ble leakage (based on KSA, CSA, and ACSA) is not beneficial if it has plenty
of security margin in the SPACE hardness against the KSA/CSA. But, how
about other any leakage? As far as we analyze, we cannot find a more useful
method than table leakage. For example, let us consider that the lifter copies
some intermediate states. It could recover some table entries. However, even if
possible, attackers can retrieve the corresponding table entry using each inter-
mediate state. Thus, we believe that the direct leak of table entries would be
simple and leak more information.

Some artificial designs could be possible such that another code lifting is help-
ful. Moreover, we might face uncertain risks when an exploitable specific struc-
ture exists in a concrete substantiation of SPACE-hard block cipher. Therefore,
we need to look precisely and carefully at each SPACE-hard block cipher.

After looking at SPACE by several kinds of cryptanalysis techniques, we can-
not find a more powerful attack than the combination attack with the ACSA.

Summary of security of SPACE. We finally expect that SPACE is a typi-
cal example satisfying the hybrid SPACE hardness. Concretely, it would fulfil
(t, λ, q, tlif)-hybrid SPACE hardness with t+ tlif < 2128, λ = (128−na)× 2na−2,

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 85

and q < 2128 − ⌊λ/128⌋. As discussed in Appendix M.1, SPACE-hard block ci-
phers satisfying (t, λ, q, tlif)-hybrid SPACE hardness is a good candidate of the
block cipher satisfying (t, λ, q, tlif , qsim, ϵ)-secure whPRP when tlif ≤ qsim.

N Proposal of SPACE256-16

Our mode of operation ensures roughly n/4-bit security with an n-bit block
whPRP-secure block cipher. We expect SPACE is a good candidate for whPRP-
secure block ciphers, but unfortunately, the block length is 128 bits only. Other
existing SPACE-hard block ciphers such as SPNbox, WhiteBlock, and WEM
also have 128-bit block lengths. When we use a 128-bit block whPRP-secure
block cipher, the ensured bit security is 32 bits, which we cannot recommend.
Therefore, we propose a new block cipher, SPACE256-16, with the 256-bit block
length and the 16-bit domain size of the table. We inherit the design rationale
of SPACE and extend the block length to 256 bits. Note that we still keep the
key size to 128 bits.

N.1 Specification of SPACE256-16

SPACE was initially designed to support variable branch sizes of generalized
Feistel structure, and the bit length of each branch is also variable. Therefore, it
is not difficult to extend the design to 256-bit block length. We simply use the
same network of SPACE-8, but the bit size in each branch is extended from 8
bits to 16 bits, i.e., the number of branches is 16, and 16-bit to 240-bit table is
used in the F r of the generalized Feistel structure. Similarly to SPACE, the rth
function of SPACE256-16 is specified as

F r(x) =
(
msb240

(
AESK(0112∥x)∥AESK(0111∥1∥x)

))
⊕ r. (23)

The white-box implementation uses 216 16-bit to 240-bit lookup tables. The
number of rounds to encrypt one block is 128.

N.2 Cryptanalysis in the White Box

Key Extraction. The table is generated by the AES. A white-box adversary
can look at all table entries, but it is equivalent to recover the secret key by
using many plaintext-ciphertext pairs. Assuming that there is no efficient key
recovery attack against AES, the key extraction from the table is infeasible.

Space Hardness. We inherit existing size of leakage. i.e., a quarter-size leakage.
When the KSA and CSA are mounted, the probability that we compute each
round successfully is 2−2. Therefore, in 128 rounds, the probability that we can
successfully encrypt plaintexts is 2−256, which is the same security margin as the
existing SPACE-16.

86 A. Hosoyamada et al.

When the ACSA is mounted, 128 table entries are extracted for each encryp-
tion of a chosen plaintext. Thus, the quarter-size leakage leaks 2na−2/128 = 27

chosen plaintext-ciphertext pairs. Note that the number of leaked plaintext-
ciphertext pairs is smaller than the query leaking, that leaks 2na−2× 240/256 ≈
213.9 chosen plaintext-ciphertext pairs.

N.3 Cryptanalysis in the Black Box

Similarly to the existing security analyses against SPACE, we evaluate the se-
curity of differential [15], linear [62], impossible differential [14], and integral at-
tacks [33, 54]. Recently, these security analyses can be automatically evaluated
by using some MILP-aided methods [67]. We use Gurobi optimizer [49] for each
evaluation.

Differential Cryptanalysis. We first discuss the upper bound of the differ-
ential characteristic probability, and these probabilities are usually evaluated
under the key average. The F function is generated by the secure block cipher
such as AES and is a 16-bit to 240-bit function with a 128-bit secret key. The

number of possible output differences is at most
(
216

2

)
× 2128 ≈ 2159, but the

length of the output is 240 bits. Thus, since the average of differential probabil-
ity is extremely low already for only one active F function, it is unlikely to apply
common differential cryptanalysis.

We next discuss very conservative security evaluation against cryptanalysis
using differences. We focus on the differential characteristic with a single key
instead of the key average. Again, the F function is a 16-bit to 240-bit function.
It is unlikely that two different input difference causes the same output difference.
Therefore, we assume the maximum differential probability of the F function is
2/216 = 2−15 for a fixed key. Let F r(x) + Y be updated 15 branches in the
rth round. When x is active, the difference of F r(x) + Y depends on the values
of x. Attackers need to rely on probabilistic events to control each of these
15 branches. Therefore, we count the number of active F functions under the
restriction of the number of inactive branches in F r(x) + Y .

We first suppose at least 13 branches are active. In other words, it accepts

that at most 2 branches can be inactive. Considering there are about
(
216

2

)
≈ 231

output differences of active F function, at most 2 branches (32 bits) can be
controlled by attackers. Thus, there might be such a differential transition in the
active F function. Under such a restriction, we got a result, where 40 rounds are
enough to have 9 active F functions by using an MILP-aided method, and we
have enough security margin.

We next suppose at least 5 branches are active. In other words, it accepts
that at most 10 branches can be inactive. It is unlikely that we have such a
differential transition for a randomly-chosen fixed key. However, we have 2128

keys, and there is the possibility to exist such a transition for 1 key out of 2128

keys. Even under such a restriction, we got a result, where 104 rounds are enough
to have 9 active F functions by using an MILP-aided method.

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 87

Linear Cryptanalysis. In [24], the linear probability is estimated based on
the result of [34].

Corollary 2 ([34]). The linear probability of a non-trivial linear approximation
over na-bit to nb-bit function with n ≥ 5 has mean 2−na and variance 2−2na+1.

According to Corollary 2, the authors of [24] estimated the linear probability of
the F function with 16-bit input as 2−12.5. Therefore, we inherit this estimation.
We count the number of active F functions by using an MILP. As a result, r
rounds ensures at least r − 1 active F functions. Since (2−12.5)11 < 2−128, 12
rounds have enough security margin against the linear cryptanalysis. Therefore,
128 rounds have plenty of security margin against the linear cryptanalysis.

Impossible Differential Cryptanalysis. Impossible differential is also found
by using an MILP [75]. We evaluated all 32 × 32 combinations, where numbers
of active branches in plaintexts are ciphertexts are 1. As a result, the maximum
number of rounds that we got an impossible differential was 30 rounds. Therefore,
128 rounds have plenty of security margin against the impossible differential
cryptanalysis.

Integral Cryptanalysis. A division property [77] is recently used as the tool
to find the longest integral characteristic, and its MILP-aided method is shown
in [81]. As a result, the maximum number of rounds of an integral characteristic
was 18 rounds. Therefore, 128 rounds have plenty of security margin against the
integral cryptanalysis.

N.4 Cryptanalysis in Context of Hybrid SPACE Hardness

As shown in M.2, we expect that SPACE-hard block cipher with significant
security margin can be a good candidate satisfying hybrid SPACE hardness. We
follow-up some important attacks and confirm that SPACE256-16 would satisfy
the hybrid SPACE hardness.

We now consider the most powerful attack: the attack collaborated with the
ACSA. In the ACSA, attackers leak 128 table entries to encrypt one plaintext.
We first consider the case that attackers omit one table entry from the leakage.
It is easy to recover the omitted table entry by checking the consistency with
the ciphertexts given by the oracle query. We next consider the case that at-
tackers omit two table entries from the leakage. Remember that the output size
of the F function is 256 − 16 = 240 bits. Therefore, attackers no longer guess
one table entry, and such a strategy is already infeasible. For the conservative
evaluation, assuming there are methods that attackers recover two omitted table
entries after code lifting, the number of additionally recovered table entries is

2 × 216−2

128 = 256. In total, attackers can get 16640 table entries. The probabil-
ity hitting known table entries increases from 1/4 to 16640/216 = 0.2539. The
probability of encrypting randomly-drawn plaintexts is about 2−253.14, which is
low enough still.

88 A. Hosoyamada et al.

Summary of security of SPACE256. Similarly to SPACE, we expect that
SPACE256 is a typical example satisfying the hybrid SPACE hardness. Con-
cretely, it would fulfil (t, λ, q, tlif)-hybrid SPACE hardness with t + tlif < 2128,
λ = (256− 16)× 216−2, and q < 2256 − ⌊λ/256⌋.

