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Abstract. We propose Flashproofs, a new type of efficient special hon-
est verifier zero-knowledge arguments with a transparent setup in the
discrete logarithm (DL) setting. First, we put forth gas-efficient range

arguments that achieve 𝑂 (𝑁
2
3 ) communication cost, and involve 𝑂 (𝑁

2
3 )

group exponentiations for verification and a slightly sub-linear number of
group exponentiations for proving with respect to the range [0, 2𝑁 − 1],
where 𝑁 is the bit length of the range. For typical confidential trans-
actions on blockchain platforms supporting smart contracts, verifying
our range arguments consumes only 234K and 315K gas for 32-bit and
64-bit ranges, which are comparable to 220K gas incurred by verifying
the most efficient zkSNARK with a trusted setup (EUROCRYPT '16)
at present. Besides, the aggregation of multiple arguments can yield fur-
ther efficiency improvement. Second, we present polynomial evaluation
arguments based on the techniques of Bayer & Groth (EUROCRYPT
'13). We provide two zero-knowledge arguments, which are optimised
for lower-degree (𝐷 ∈ [3, 29]) and higher-degree (𝐷 > 29) polynomials,
where 𝐷 is the polynomial degree. Our arguments yield a non-trivial
improvement in the overall efficiency. Notably, the number of group ex-
ponentiations for proving drops from 8 log 𝐷 to 3(log 𝐷 +

√︁
log 𝐷). The

communication cost and the number of group exponentiations for ver-
ification decrease from 7 log 𝐷 to (log 𝐷 + 3

√︁
log 𝐷). To the best of our

knowledge, our arguments instantiate the most communication-efficient
arguments of membership and non-membership in the DL setting among
those not requiring trusted setups. More importantly, our techniques en-
able a significantly asymptotic improvement in the efficiency of com-
munication and verification (group exponentiations) from 𝑂 (log 𝐷) to
𝑂 (

√︁
log 𝐷) when multiple arguments satisfying different polynomials with

the same degree and inputs are aggregated.
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1 Introduction

Zero-knowledge proofs play a critical role in modern secure applications and sys-
tems, e.g., confidential transactions, signature schemes, federated learning and
multi-party computation. A zero-knowledge proof allows a prover to convince
a verifier of the truth of a statement without revealing any secret information.
More formally, given an NP-language L, a prover aims to convince a verifier of
knowing a witness 𝜔 for a statement 𝑢 ∈ L with high probability by a zero-
knowledge proof that satisfies three properties:

– Completeness. A prover can convince a verifier of 𝑢 ∈ L, if 𝑢 ∈ L.
– Soundness. A prover cannot convince a verifier of 𝑢 ∈ L, if 𝑢 ∉ L.
– Zero-knowledge. The proof should reveal nothing except the truth that 𝑢 ∈ L.

There are varieties of zero-knowledge proofs [2, 5–7, 13, 14, 17, 28, 37, 41, 46] for
general NP-complete languages, e.g., arithmetic circuits satisfiability. However,
generic constructions used by these proofs tend to be sub-optimal and may not
achieve the best efficiency as in specialised constructions for particular languages.
This paper focuses on the zero-knowledge proofs for two particular languages in
the discrete logarithm (DL) setting: range arguments and polynomial evaluation
arguments. An argument is a computationally sound proof that no probabilistic
polynomial-time provers are able to deceive a verifier into falsely accepting it.

Range proofs are designed to prove a committed value is within a specific
range. Several zero-knowledge range proofs have been applied to confidential
transactions (CT) [26] on blockchain platforms. Blockchain has enabled a sig-
nificant revolution towards decentralised peer-to-peer transactions. By default,
blockchain does not ensure privacy but rather its transparency and immutabil-
ity properties. However, with growing privacy concerns, confidential transactions
have received increasing attention as they protect privacy by hiding transaction
information. A plenty of confidential transaction protocols, e.g., AZTEC [45],
TornadoCash [40], have been developed on blockchain platforms, e.g., Ethereum.
As one of the most emerging blockchain technologies, smart contracts are play-
ing an increasingly important role in promoting confidential transactions. They
are publicly verifiable computer programs running on blockchain platforms to
automate the execution of agreements without the intervention of intermediaries
when some pre-determined conditions are met. To prevent inconsistent transac-
tions, zero-knowledge range proofs are used to demonstrate sufficient funds in
accounts for non-negative transfer values. However, many existing proposals for
CT zero-knowledge proofs suffer from three drawbacks:

– Trusted Setup: Prior zero-knowledge proofs (e.g., zkSNARK [28]) require a
“trusted setup”, where a group of trusted parties use some secret information
to generate public parameters and destroy the secret information without
revealing it. However, introducing a trusted setup will compromise the secu-
rity and notion of decentralisation, which leaves a backdoor for misbehaving
provers to exploit and create false proofs.
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– Imbalanced Overhead: Recent zero-knowledge proofs have replaced trusted
setups with transparent setups. However, achieving transparent setups may
give rise to imbalanced overhead with either expensive computation costs
or large communication costs, which would undermine the scalability of
blockchain applications, where scalability refers to the capability of han-
dling transactions in a short period. For example, Bulletproofs [13] achieve a
logarithmic proof size but require a linear number of group exponentiations
for both proving and verification. The zkSTARK [5] has poly-logarithmic
verification efficiency but entails a large proof size about 45KB [31].

– Trade-off With Soundness. There is a new class of range proofs (e.g. CKLR21
[20]) based on bounded integer commitments in the DL setting, which can
attain efficient computational and communication costs. However, one has
to make a trade-off between the range size and the soundness error for a
given group, which undermines the applicability of these range proofs. Note
that using RSA or class groups [20] could address this trade-off limitation
by removing bounds on the size of integers, which, however, would either
require a trusted setup or a different security assumption with considerably
large groups1.

On the other hand, polynomial evaluation proofs are designed to prove a
public polynomial relation 𝑦 = 𝑃(𝑥;𝐷) between two committed values 𝑥 and 𝑦,
where 𝐷 is the polynomial degree. Notably, polynomial evaluation proofs are
a basic building block for constructing the zero-knowledge proofs of member-
ship and non-membership. For example, a polynomial function 𝑦 = 𝑃(𝑥;𝐷) = 0
can be built for membership proofs to prove that a committed value 𝑥 belongs
to a public set 𝑋, where the roots are the elements of 𝑋. For non-membership
proofs, 𝑦 ≠ 0 needs to be proved. A prover can commit to a value 𝑧 = 𝑦−1

and demonstrate 𝑧 · 𝑦 = 1 with a multiplication proof. Proofs of membership and
non-membership have extensive applications, e.g., anonymous credentials, group
signatures, whitelist, and blacklist. Bayer & Groth [3] (BG13) presented polyno-
mial evaluation arguments that achieve 𝑂 (log 𝐷) efficiency in verification (group
exponentiations) and communication based on the DL assumption. Nevertheless,
the computational and communication costs for higher-degree polynomials are
still high.

1.1 Contributions

In this paper, we propose Flashproofs, efficient special honest verifier zero-
knowledge arguments of range and polynomial evaluation with a transparent
setup. Flashproofs are 3-round public coin interactive protocols between a prover
and a verifier. The prover sends an initial message to the verifier in the first
round. The verifier replies with a uniformly random challenge, and then the
prover responds to the challenge in the third round. Finally, the verifier decides

1 According to the recent study [22], class groups of 3392-bit order can barely achieve
128-bit security as 256-bit elliptic curve groups.
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whether to accept or reject based on the conversation. Flashproofs have per-
fect completeness, computational witness-extended emulation and perfect spe-
cial honest verifier zero-knowledge under the typical DL assumption that applies
to elliptic curve groups. We follow the transparent approach [13] without resort-
ing to a trusted setup with elliptic curve groups. Besides, our arguments can be
made non-interactive via Fiat-Shamir heuristic [25], where provers can generate
random challenges by computing the hashes of the initial messages instead of
verifiers, with a collision-resistant hash function modelled as a random oracle.

Range Arguments We put forth a new type of gas-efficient zero-knowledge
range arguments to prove that a committed value lies in the range [0, 2𝑁 − 1],
where 𝑁 indicates the bit length. Our range arguments involve 𝑂 (𝑁 2

3 ) group ex-
ponentiations for verification and achieve𝑂 (𝑁 2

3 ) communication cost. Besides, as
illustrated in Fig. 1, our arguments with optimisation use a sub-linear number of
group exponentiations for proving (Please refer to Section 3.2 for optimisation).
They are highly suitable for confidential transactions on blockchain platforms. In
a nutshell, our work achieves sub-linearly overall efficiency without resorting to
a trusted setup while maintaining a negligible soundness error. Especially, our
arguments greatly reduce the verification gas costs to a practically affordable
level on smart contract platforms.

Fig. 1: Proving computational costs of our range arguments with optimisation.

Techniques. Our range arguments are based upon the bit-decomposition ap-
proach to proving that a committed value can be represented in binary form.
We devise a new strategy to achieve superior computational efficiency compared
to conventional works. The intuition is to fold the sequence of the bits of a com-
mitted value as a matrix. Then we prove each element in the matrix is either 0
or a certain power of 2 by using a quadratic-term cancellation technique. Finally,
we flatten the two-dimension matrix to a one-dimension vector in a column-wise
manner and prove that the committed value is the sum of the vector values. We
introduce an optimisation technique to refine the efficiency in both computation
and communication. Besides, the aggregation of multiple arguments is supported
for further efficiency improvement.

Comparisons with State-of-the-art Range Proofs. Verifying our range argu-
ments consumes about 234K and 315K gas for general 32-bit and 64-bit ranges.
The gas costs are comparable to 220K gas incurred by verifying the most effi-
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Table 1: Efficiency comparison of range arguments for the range [0, 2𝑁−1], where
𝑁 is the bit length of the range, G indicates a cyclic group of prime order 𝑝 and
Z𝑝 is the ring of integers modulo 𝑝. We essentially compare the involved group
exponentiations as they dominate the computational cost. Besides, we take the
nearest integer ⌈𝑁 1

3 ⌋ as the cubic root of N and 𝑁
2
3 can thus be obtained by

computing 𝑁 · ⌈𝑁− 1
3 ⌋. 𝐹 (𝑁 1

3 ) is a function that yields constant values based
on 𝑁

1
3 , where 𝐹 (2) = 3, 𝐹 (3) = 6, 𝐹 (4) = 8, 𝐹 (5) = 11, 𝐹 (6) = 13 , 𝐹 (7) =

20, 𝐹 (8) = 27, 𝐹 (9) = 32, 𝐹 (10) = 37. Please refer to Section 3.2 for the details
of 𝐹 (𝑁 1

3 ).

Type Bulletproof This work (3.2)
This work

with optimisation
(3.2)

Prover
No. of Exp (G)

14𝑁 + 4 log 𝑁 + 12 1

2
(𝑁

4
3 + 3𝑁

2
3 + 5𝑁

1
3 + 𝑁 + 6) (𝑁

2
3 + 1) · 𝐹 (𝑁

1
3 ) + 2𝑁

1
3 + 2

Verifier
No. of Exp (G)

2𝑁 + 2 log 𝑁 + 7 3

2
(𝑁

2
3 + 𝑁

1
3 + 2) 𝑁

2
3 + 𝑁

1
3 + 𝐹 (𝑁

1
3 ) + 2

Proof Size
No. of Elements

2 log 𝑁 + 4 (G)
5 (Z𝑝)

𝑁
2
3 + 2 (G)

1

2
(𝑁

2
3 + 3𝑁

1
3 + 4) (Z𝑝)

𝑁
2
3 + 2 (G)

𝑁
1
3 + 𝐹 (𝑁

1
3 ) + 1 (Z𝑝)

Table 2: Detailed efficiency comparison of Bulletproof with our optimised work,
where 𝑁 is the bit length of the range. Note that our range arguments are more
succinct in proof size when 𝑁 ≤ 22.

𝑁 8 10 12 14 16 18 20 22 32 52 64

Prover
No. of Exp (G)

Bulletproof 136 252 252 252 252 480 480 480 480 932 932
This work 21 24 27 30 33 36 39 42 80 122 146

Verifier
No. of Exp (G)

Bulletproof 29 47 47 47 47 81 81 81 81 147 147
This work 11 12 13 14 15 16 17 18 22 27 30

Proof Size
(Byte)

Bulletproof 482 546 546 546 546 610 610 610 610 674 674
This work 385 417 449 481 513 545 577 609 738 898 994

cient zkSNARK (Groth16) [28], which requires three elliptic curve pairing op-
erations for any arithmetic circuits with the aid of a trusted setup. For the
aggregation of 16 of our range arguments, it is estimated that the allocated
gas costs per argument would be reduced by 20% to about 184K and 251K.
Thus, with respect to proving ranges, our arguments can be a suitable alter-
native to the zkSNARKs for confidential transactions on blockchain platforms.
Bulletproofs [13] are generic-purpose arguments in the DL setting for any arith-
metic circuits with a transparent setup, which can instantiate range arguments.
Bulletproof2 is designed to pursue 𝑂 (log 𝑁) communication efficiency at the ex-
pense of using 𝑂 (𝑁) number of group exponentiations in computation for the
range [0, 2𝑁 − 1]. Table 1 and 2 show efficiency comparisons with Bulletproof.
Our arguments involve 15.7% and 20.4% of the group exponentiations used by

2 We will call the range instance of Bulletproofs by ”Bulletproof” in the following.
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Bulletproof for 𝑁 = 64, respectively, while incurring only 50% additional com-
munication cost. For smaller 52-bit ranges3, the advantage of our arguments in
computational efficiency is even greater, whereas the discrepancy in communica-
tion efficiency is smaller. Moreover, our range arguments are more sensitive to 𝑁,
resulting in finer-grained performance and more flexible usage in different scenar-
ios. Another range proof in the DL setting is CKLR21 [20]. It applies Legendre’s
three squares theorem [36] to achieve constant efficiency in computation and
communication by leveraging a bounded integer commitment scheme. However,
it suffers an inherent trade-off between the range size and the soundness error
(sometimes called “knowledge error”) for a certain group. Soundness errors indi-
cate the probability of a malicious prover cheating a verifier into accepting false
proofs. Confidential transactions typically have stringent security requirements,
demanding highly negligible soundness errors. As for the mainstream 256-bit
elliptic curve groups in confidential transactions, CKLR21 achieves a soundness
error 2−80 for 32-bit ranges at the risk of a re-run with a 65% probability. The
errors would rise to 2−70 on smart contract platforms due to the 256-bit word
limit4. Besides, for 64-bit and larger ranges, the errors would surge to no less
than 2−48. Thus, current CT platforms must increase the number of sequential
iterations or use larger groups to obtain negligible soundness errors. Moving to
larger groups is undesirable as it may require a major change to their infrastruc-
ture. Moreover, both ways would increase the computational and communication
costs. Our arguments tend to be more efficient for verification and communica-
tion at a comparable level of soundness errors. For example, iterating CKLR21
three times helps achieve a negligible soundness error 2−240 for a 32-bit range
but increases the proof size to about 827 bytes. Accordingly, the computational
cost also grows. By comparison, our arguments have 738 bytes with a soundness
error 2−256. Please see Table 5 and 6 for a detailed efficiency comparison.

Polynomial Evaluation Arguments Based on the techniques of BG13 [3],
we present two zero-knowledge arguments, which are optimised for the polyno-
mials 𝑦 = 𝑃(𝑥;𝐷) of lower-degree (𝐷 ∈ [3, 29])5 and higher-degree (𝐷 > 29),
respectively. Two arguments are distinguished based on the proof size, with the
higher-degree one outperforming the lower-degree one when the degree 𝐷 exceeds
29. Our arguments essentially leverage the quadratic-term cancellation technique
to greatly reduce the number of group exponentiations and elements for supe-
rior efficiency in computation and communication. To the best of our knowledge,
our arguments instantiate the most communication-efficient zero-knowledge ar-
guments of membership and non-membership in the DL setting among those not
requiring trusted setups. Furthermore, we propose an aggregation optimisation,
where multiple arguments satisfying different polynomials with the same degree
and inputs can be aggregated such that the efficiency in verification (group expo-
nentiations per argument) and communication is asymptotically increased from

3 A 52-bit range can cover all the values from 1 satoshi up to 21 million bitcoins.
4 The size of one field element in CKLR21 is larger than 256 bits for 32-bit ranges.
5 We skip the protocol for 𝐷 ∈ {1, 2}, which is simpler than the lower-degree one.
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Table 3: Efficiency comparison of polynomial evaluation arguments with a trans-
parent setup in the DL setting, where 𝑁 is the polynomial degree. Note that log 𝑁
should be rounded up if 𝑁 is not a power of 2.

Type Bulletproofs BG13
This Work(4.2)

Lower-Deg 𝑁 ∈ [3, 29]
This Work (4.3)

Higher-Deg 𝑁 > 29

Prover
No. of Exp (G)

14𝑁 + 4 log 𝑁 + 12 8 log 𝑁 − 4 4 log 𝑁 + 2 3 log 𝑁 + 3
√︁
log 𝑁 + 2

Verifier
No. of Exp (G)

2𝑁 + 2 log 𝑁 + 7 7 log 𝑁 − 1 2 log 𝑁 + 7 log 𝑁 + 3
√︁
log 𝑁 + 6

Proof Size
No. of Elements

2 log 𝑁 + 8 (G)
5 (Z𝑝)

4 log 𝑁 − 2 (G)
3 log 𝑁 (Z𝑝)

log 𝑁 + 3 (G)
log 𝑁 + 3 (Z𝑝)

2
√︁
log 𝑁 + 3 (G)

log 𝑁 +
√︁
log 𝑁 + 4 (Z𝑝)

𝑂 (log 𝐷) to 𝑂 (
√︁
log 𝐷). In addition, our range arguments can adapt the poly-

nomial evaluation arguments for scenarios where 𝑦 is even secretly committed
without losing the sub-linear computational efficiency. For example, with the
aid of the Maclaurin series [44], the polynomial evaluation arguments can satisfy
complex mathematical relations between two committed values, e.g., trigono-
metric and exponential functions. The range arguments help confine the input 𝑥
to a specific range to ensure 𝑦 is in the safe range [− 𝑝−12 ,

𝑝−1
2 ] without overflow,

where 𝑝 is the group order.
Comparisons with State-of-the-art Polynomial Evaluation Proofs. Table 3

shows an efficiency comparison of polynomial evaluation arguments in the DL
setting with a transparent setup. As compared to BG13, it is observed that our
arguments achieve a significant improvement in the efficiency of computation
and communication without a trusted setup. More concretely, for polynomials
of degree 𝐷 = 216 − 1, our arguments incur 1122 bytes over a 256-bit elliptic
curve group, yielding a 3.1× reduction in proof size. The allocated communi-
cation cost per argument would decrease by 72.4% to about 310 bytes for the
aggregation of 16 distinct arguments. In addition, the efficiency in proving and
verification is raised by a factor of 2 and 3.3, respectively. An alternative type of
communication-efficient arguments with a transparent setup in the DL setting
is the generic-purpose Bulletproofs, which require 2 log 𝑁 + 13 elements for any
arithmetic circuits, where 𝑁 is the number of multiplication gates. On the one
hand, our arguments outperform Bulletproofs in the efficiency of computation
and communication regarding the polynomial evaluation. On the other hand,
our arguments only need three rounds, while Bulletproofs require log 𝑁 rounds.

1.2 Outline of Our Paper

Our paper is organised as follows. First, we introduce the cryptographic prelim-
inaries in Section 2. We elaborate on the core techniques of the range arguments
and polynomial evaluation arguments as well as some optimisations in Section
3 and 4. A comprehensive evaluation of performance is given in Section 5. We
provide the full protocols of our arguments and the security proofs in Section 6.
We describe the related work in Section 7.
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2 Preliminaries

We follow the definitions in [13, 29] to formalise homomorphic commitment
schemes and zero-knowledge arguments of knowledge.

Let 𝜆 and negl(𝜆) be the security parameter and the negligible function.
PPT means probabilistic polynomial time. Denote a cyclic group of prime or-
der 𝑝 by G, and the ring of integers modulo 𝑝 by Z𝑝. Let Z

∗
𝑝 be Z𝑝\{0}. Let

𝑔, ℎ
$←− G, (𝑔𝑖)𝑛−1𝑖=0

$←− G𝑛 be uniformly random generators from G. Let 𝑥
$←− Z∗𝑝

be uniformly random element from Z∗𝑝. Denote the vector spaces of dimension 𝑛
over G and Z𝑝 by G𝑛 and Z𝑛𝑝, respectively.

2.1 Homomorphic Commitment Schemes

Homomorphic commitment schemes are a crucial building block for zero-knowledge
proofs. A homomorphic commitment allows to commit to a value with a neg-
ligible chance of altering it before opening the commitment. A homomorphic
commitment scheme is, hiding if a commitment does not reveal the value and,
binding if a commitment can only be opened to one value.

A homomorphic commitment scheme is a pair of PPT algorithms (G, Cm),
where the setup algorithm G(𝜆) generates a commitment key ck and the com-
mitment algorithm Cm defines a function Cmck : Mck × Rck → Cck for a message
space Mck, a randomness space Rck and a commitment space Cck. For a message
𝑚 ∈ Mck, a uniformly randomness 𝑟 ∈ Rck can be picked to produce a commit-
ment 𝑐 = Cmck (𝑚; 𝑟). The commitments are homomorphic for all well-formed
commitment keys ck and 𝑚0, 𝑚1 ∈ Mck, 𝑟0, 𝑟1 ∈ Rck:

Cmck (𝑚0; 𝑟0) · Cmck (𝑚1; 𝑟1) = Cmck (𝑚0 + 𝑚1; 𝑟0 + 𝑟1)
Cmck (𝑚0; 𝑟0)𝑚1 = Cmck (𝑚0 · 𝑚1; 𝑟0 · 𝑚1)

Definition 1 (Hiding). A commitment scheme (G, Cm) is hiding if a commit-
ment does not reveal the value for all PPT adversaries A:

𝑃𝑟

[
𝑐 = Cmck (𝑚𝑏), 𝑏 ∈ {0, 1},
𝑏′ ← A(𝑐), 𝑏 = 𝑏′

���� ck← G(𝜆),(𝑚0, 𝑚1 ∈ Mck) ← A(ck)

]
≈ 1

2

The scheme is perfectly hiding if the probability is equal to 1
2 .

Definition 2 (Binding). A commitment scheme (G, Cm) is binding if a com-
mitment can only be opened to one value for all PPT adversaries A:

𝑃𝑟

[
Cmck (𝑚0; 𝑟0) = Cmck (𝑚1; 𝑟1),
𝑚0 ≠ 𝑚1

���� ck← G(𝜆),(𝑚0, 𝑚1 ∈ Mck, 𝑟0, 𝑟1 ∈ Rck) ← A(ck)

]
≤ negl(𝜆)

The scheme is perfectly binding if the probability is equal to 0.
We define the Pedersen commitment and Pedersen vector commitment as

below, both of which are perfect hiding and computationally binding:
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Definition 3 (Pedersen Commitment). Given Mck = Z𝑝 ,Rck = Z∗𝑝, Cck = G

of order p and 𝑔, ℎ
$←− G:

Cm(𝑚; 𝑟) = 𝑔𝑚ℎ𝑟 (mod 𝑝)

Definition 4 (Pedersen Vector Commitment). Given Mck = Z𝑛𝑝 ,Rck = Z∗𝑝,

Cck = G of order p and (𝑔0, ..., 𝑔𝑛−1)
$←− G𝑛, ℎ $←− G:

Cm(𝑚0, ..., 𝑚𝑛−1; 𝑟) = ℎ𝑟
𝑛−1∏
𝑖=0

𝑔
𝑚𝑖
𝑖
(mod 𝑝)

2.2 Zero-Knowledge Arguments of Knowledge

Based upon the discrete logarithm assumption, Flashproofs are public-coin honest-
verifier zero-knowledge arguments of knowledge. A zero-knowledge argument is
comprised of three interactive probabilistic polynomial-time algorithms (G, P,
V), where the setup algorithm G(𝜆) returns a common reference string 𝜎. P
and V are the prover and verifier algorithms, which produce the public tran-
script, 𝑡𝑟 ← ⟨P(𝑣),V(𝑡)⟩ on inputs 𝑣 and 𝑡. Denote a polynomial-time decidable
tertiary relation by R ⊂ {0, 1}∗×{0, 1}∗×{0, 1}∗. A CRS-dependent language can
be defined as L𝜎 = {𝑢 | ∃𝜔 : (𝜎, 𝑢, 𝜔) ∈ R}, where 𝜔 is a witness for a statement
𝑢 in the relation (𝜎, 𝑢, 𝜔) ∈ R.
Definition 5 (Argument of Knowledge). The triple (G, P, V) is called an
argument of knowledge for the relation R if it satisfies the perfect completeness
and computational witness-extended emulation.
Definition 6 (Perfect Completeness). An argument of knowledge (G, P, V)
has perfect completeness if for all PPT adversaries A:

𝑃𝑟

[
(𝜎, 𝑢, 𝜔) ∉ R 𝑜𝑟 ⟨P(𝜎, 𝑢, 𝜔),V(𝜎, 𝑢)⟩ = 1

�� 𝜎 ← G(𝜆), (𝑢, 𝜔) ← A(𝜎)] = 1

Definition 7 (Computational Witness-Extended Emulation). An argu-
ment of knowledge (G, P, V) has witness-extended emulation if for all deter-
ministic polynomial time P∗, there exists an expected polynomial time emulator
E such that for all PPT adversaries A:

𝑃𝑟

A(𝑡𝑟) = 1

����� 𝜎 ← G(𝜆)(𝑢, 𝑠) ← A(𝜎),
𝑡𝑟 ← O

 ≈ 𝑃𝑟

A(𝑡𝑟) = 1

∧ tr is accepting

→ (𝜎, 𝑢, 𝑤) ∈ R

�����
𝜎 ← G(𝜆),
(𝑢, 𝑠) ← A(𝜎),
(𝑡𝑟, 𝜔) ← EO (𝜎, 𝑢)


where the oracle is defined as O = ⟨P∗ (𝜎, 𝑢, 𝑠),V(𝜎, 𝑢)⟩.

Soundness can be defined based on the witness-extended emulation. Infor-
mally, whenever P∗ makes a convincing argument in state 𝑠, there exists a knowl-
edge emulator E that can extract a witness for (𝜎, 𝑢, 𝜔) ∈ R by rewinding the
interaction to any specific points and running again with the same state for the
prover, but fresh randomness for the verifier.
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Definition 8 (Public Coin). An argument of knowledge (G, P, V) is called
public coin if the verifier chooses her messages uniformly at random and inde-
pendently of the messages sent by the prover.
Definition 9 (Perfect Special Honest Verifier Zero-Knowledge, SHVZK).
A public coin argument of knowledge (G, P, V) is called perfect special honest
verifier zero-knowledge argument of knowledge for R if there exists a PPT sim-
ulator S such that for all interactive PPT adversaries A:

𝑃𝑟


(𝜎, 𝑢, 𝜔) ∈ R
∧ A(𝑡𝑟) = 1

����� 𝜎 ← G(𝜆),(𝑢, 𝜔, 𝑒) ← A(𝜎),
𝑡𝑟 ← ⟨P(𝑣),V(𝑡)⟩

 = 𝑃𝑟

(𝜎, 𝑢, 𝜔) ∈ R
∧ A(𝑡𝑟) = 1

����� 𝜎 ← G(𝜆),(𝑢, 𝜔, 𝑒) ← A(𝜎),
𝑡𝑟 ← S(𝑢, 𝑒)


where 𝑒 is a public coin challenge, 𝑣 = (𝜎, 𝑢, 𝜔) and 𝑡 = (𝜎, 𝑢, 𝑒).

An argument is zero-knowledge if no extra information except the witness can
be inferred from the statement. A general approach to proving that an argument
has special honest verifier zero-knowledge is to construct a simulator that knows
the challenge and can simulate the whole transcript of the argument without
knowing the witness.

3 Range Arguments

3.1 Overview of Bit-Decomposition Approach

Bit-decomposition is a folklore approach for constructing range proofs. The chal-
lenge consists in seeking an efficient method to prove that a committed value
can be represented in binary form. Bulletproof employs a variant of the bit-
decomposition approach by using an inner product argument [10] (Please refer
to their original paper [13] for more details). The intuition is that a prover pre-
pares one vector commitment, which commits to the bit vector b of the target
value 𝑦 and to the vector a = b − 1N. The prover constructs an equation in Eqn.
(1) to prove the three constraints: (I) ⟨b, 2N⟩ = 𝑦, (II) ⟨b−1N−a, r⟩ = 0 and (III)
⟨b, a ◦ r⟩ = 0.

𝑧2 · ⟨b, 2N⟩ + 𝑧 · ⟨b − 1N − a, r⟩ + ⟨b, a ◦ r⟩ = 𝑧2 · 𝑦 (1)

where 𝑧 ∈ Z∗𝑝 is a random value and r ∈ Z∗𝑁𝑝 is a vector of random values provided

by the verifier. 1N = (1, 1, ..., 1) is a vector of 1 and 2N = (20, 21, ..., 2𝑁−1) is a
vector of powers of 2. ⟨·, ·⟩ and ◦ denote the inner product and the Hadamard
product, respectively.

Then the prover takes advantage of the inner product argument to recursively
compress the equation in 𝑂 (log 𝑁) rounds. The compression technique helps
achieve 𝑂 (log 𝑁) communication efficiency but exposes two limitations:

– The process is computationally expensive, demanding 𝑂 (𝑁) group exponen-
tiations for proving and verification.

– To a degree, the recursion impedes a parallel acceleration of proof generation.
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3.2 Our Techniques

We devise a new variant of the bit-decomposition approach that only needs
three rounds. Our technique is highly lightweight in computation and does not
require pairing operations. Compared to Bulletproof, our arguments involve far
fewer group exponentiations in both proving and verification and also allow
for a speedup of proof generation by parallelisation. In this section, we mainly
concentrate on the core techniques of our arguments, whereas the full protocol
is given in Section 6.1. Our techniques work as follows:

1. Given a commitment 𝑐𝑦 = 𝑔𝑦ℎ𝑟𝑦 , we express the committed value 𝑦 =∑𝑁−1
𝑖=0 2𝑖𝑏𝑖 as a sequence of terms (𝑤0, 𝑤1, ..., 𝑤𝑁−1) for the range [0, 2𝑁 −1],

where 𝑏𝑖 ∈ {0, 1} and 𝑤𝑖 = 2𝑖𝑏𝑖 , 𝑖 ∈ {0, 1, ..., 𝑁 − 1}. Then we fold the se-
quence and arrange all the terms (𝑤𝑖)𝑁−1𝑖=0 in an 𝐿 × 𝐾 matrix in Eqn. (2),
where 𝐿 and 𝐾 indicate the number of rows and columns, respectively. If 𝑁
is a prime integer, additional zeros of size 𝛾 ∈ Z+ can be padded onto the
high-order bits to make 𝑁 + 𝛾 = 𝐾 · 𝐿.

2. We prove each coefficient 𝑤𝑙𝐾+𝑘 is 0 or 2𝑙𝐾+𝑘 .
3. We flatten the two-dimension matrix to a one-dimension vector and prove

that 𝑦 is the sum of 𝐾 values, such that 𝑦 =
∑𝐾−1
𝑘=0 𝑠𝑘 , where 𝑠𝑘 =

∑𝐿−1
𝑙=0 𝑤𝑙𝐾+𝑘

is the sum of 𝐿 coefficients (𝑤𝑙𝐾+𝑘)𝐿−1𝑙=0
in the 𝑘-th column.

©­­­­«
20𝑏0 . . . 2𝐾−1𝑏𝐾−1
2𝐾𝑏𝐾 . . . 2𝐾+𝐾−1𝑏𝐾+𝐾−1
...

. . .
...

2(𝐿−1)𝐾𝑏 (𝐿−1)𝐾 . . . 2
(𝐿−1)𝐾+𝐾−1𝑏 (𝐿−1)𝐾+𝐾−1

ª®®®®¬
=

©­­­­«
𝑤0 . . . 𝑤𝐾−1
𝑤𝐾 . . . 𝑤𝐾+𝐾−1
...

. . .
...

𝑤 (𝐿−1)𝐾 . . . 𝑤 (𝐿−1)𝐾+𝐾−1

ª®®®®¬
(2)

where the 𝑖-th term 𝑤𝑖 in the 𝑙-th row and the 𝑘-th column is also denoted by
𝑤𝑙𝐾+𝑘 , 𝑘 ∈ {0, ..., 𝐾 − 1} and 𝑙 ∈ {0, ..., 𝐿 − 1}.

Next, we describe the intuition in more details. Instead of proving each bit
𝑏𝑖 ∈ {0, 1} as Bulletproof, we turn to prove 𝑤𝑙𝐾+𝑘 ∈ {0, 2𝑙𝐾+𝑘} for each (𝑖 =
𝑙𝐾 + 𝑘). In the third round of the protocol, the prover computes and sends a
value 𝑣𝑙 =

∑𝐾−1
𝑘=0 𝑤𝑙𝐾+𝑘𝑒𝑘 + 𝑟𝑙 to the verifier for each 𝑙 after acquiring a challenge

vector (𝑒0, ..., 𝑒𝐾−1)⊺ from the verifier. 𝑣𝑙 is a randomised inner product of the
𝑙-th row and the challenge vector, where 𝑟𝑙 ∈ Z∗𝑝 is used to prevent 𝑣𝑙 from
leaking any information about the coefficients. The essence of our technique is
an effective use of 𝑣𝑙 for verifying 𝑤𝑙𝐾+𝑘 ∈ {0, 2𝑙𝐾+𝑘}. Unlike Bulletproof, which
requires the prover to satisfy the constraint (II) in Eqn. (1), we design a new
technique to relieve the prover of this burden, which greatly reduces proving
computational costs. The technique allows the verifier to compute a value 𝑓𝑙 by
subtracting 𝑣𝑙 from

∑𝐾−1
𝑘=0 2𝑙𝐾+𝑘𝑒𝑘 for each 𝑙:

𝑓𝑙 =

𝐾−1∑︁
𝑘=0

2𝑙𝐾+𝑘𝑒𝑘 − 𝑣𝑙 =
𝐾−1∑︁
𝑘=0

(2𝑙𝐾+𝑘 − 𝑤𝑙𝐾+𝑘)𝑒𝑘 − 𝑟𝑙
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For the case where 𝑁 is a prime number, it suffices for the verifier to use 0
rather than 2𝑙𝐾+𝑘𝑒𝑘 for the padded bits. Then computing 𝑓𝑙 · 𝑣𝑙 for each 𝑙 will
generate a series of cross-terms in the challenges:

𝑓𝑙 · 𝑣𝑙
?
=

𝐾−1∑︁
𝑘=0

𝑤𝑙𝐾+𝑘 (2𝑙𝐾+𝑘 − 𝑤𝑙𝐾+𝑘)𝑒2𝑘︸                                 ︷︷                                 ︸
= 0, if 𝑤𝑙𝐾+𝑘 ∈{0,2𝑙𝐾+𝑘 }

+
𝑘=𝐾−2, 𝑗=𝐾−1∑︁

𝑘=0, 𝑗=1

𝑡𝑙,𝑘, 𝑗𝑒𝑘, 𝑗 +
𝐾−1∑︁
𝑘=0

𝑞𝑙,𝑘𝑒𝑘 + 𝑞𝑙,𝐾

(3)

where 𝑡𝑙,𝑘, 𝑗 = 𝑤𝑙𝐾+𝑘 (2𝑙𝐾+ 𝑗 − 𝑤𝑙𝐾+ 𝑗 ) + 𝑤𝑙𝐾+ 𝑗 (2𝑙𝐾+𝑘 − 𝑤𝑙𝐾+𝑘) and 𝑒𝑘, 𝑗 = 𝑒𝑘 · 𝑒 𝑗 for
𝑘, 𝑗 ∈ {0, ..., 𝐾 − 1} ∧ 𝑘 ≠ 𝑗 . 𝑞𝑙,𝑘 = 2𝑟𝑙 (2𝑙𝐾+𝑘−1 − 𝑤𝑙𝐾+𝑘) for 𝑘 ∈ {0, ..., 𝐾 − 1} and
𝑞𝑙,𝐾 = −𝑟2

𝑙
. The number of terms 𝑒𝑘, 𝑗 is

𝐾 (𝐾−1)
2 .

The verifier needs to ensure that the quadratic terms (𝑒2
𝑘
)𝐾−1
𝑘=0

are all cancelled
out by only using the commitments to the coefficients of the remaining terms
in Eqn. (3) for verification. Before obtaining the challenges, the prover must
provide these commitments in the first round. Thus, by the binding property
of Pedersen commitment and the Schwartz-Zippel lemma, it is with an over-
whelming probability that the coefficient of the 𝑘-th quadratic term satisfies the
constraint below:

𝑤𝑙𝐾+𝑘 (2𝑙𝐾+𝑘 − 𝑤𝑙𝐾+𝑘) = 0 =⇒ 𝑤𝑙𝐾+𝑘 ∈ {0, 2𝑙𝐾+𝑘}

The prover also needs to provide the commitments (𝑐𝑠𝑘 )𝐾𝑘=0 in the first round so
that the verifier can check the validity of (𝑠𝑘)𝐾𝑘=0 based upon the equation below:

𝐿−1∑︁
𝑙=0

𝑣𝑙
?
=

𝐾−1∑︁
𝑘=0

𝑠𝑘𝑒𝑘 + 𝑠𝐾 , 𝑠𝐾 =

𝐿−1∑︁
𝑙=0

𝑟𝑙 (4)

Finally, the verifier can be convinced that 𝑦 lies in the range [0, 2𝑁 − 1] by
checking the equation 𝑦

?
=
∑𝐾−1
𝑘=0 𝑠𝑘 . As we use elliptic curve groups to instantiate

the argument, where the group and field elements have roughly the same size,
then the total number of elements would be:

|Π | = 𝐿 + 2𝐾 + 𝐾 (𝐾 − 1)
2

+ 4 = ⌈𝑁
𝐾
⌉ + 𝐾

2

2
+ 3𝐾

2
+ 4

The number of group exponentiations for verification is |Π | −1. We calculate the
derivative Δ |Π | = 𝐾 − 𝑁

𝐾2 + 3
2 , such that when 𝐾 ≈ ⌈𝑁 1

3 ⌋, both |Π | and verification
complexity achieve the minimum. Table 4a provides a set of (𝐿, 𝐾) values for
different ranges.

Optimisation. We propose an optimisation technique to improve the overall
efficiency. We change the way that the challenge vectors are generated at the
expense of amplifying the soundness error from (𝑝−𝐾 )!

𝑝! to 1
𝑝
, which is still suf-

ficiently negligible with a large 𝑝. The high-level idea is to allow the verifier to
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Table 4: Comparison of range arguments

(a) Values of (𝐿, 𝐾)

𝑁 8-bit 16-bit 32-bit 64-bit

𝐿 4 8 11 16
𝐾 2 2 3 4

(b) Comparison of range arguments for 64-bit

Type
Prover

No. of Exp (G)
Verifier

No. of Exp (G)
Proof Size
(Byte)

Original Work 197 33 1090
Optimised Work 146 30 994

Saving 51 (25.9%) 3 (9.1%) 96 (8.8%)

randomly produce a challenge 𝑒, such that the other challenges in the vector will
be produced by taking different powers of 𝑒. This change opens the possibility of
merging the terms of the same orders to reduce the number of group exponenti-
ations in both proving and verification. We exemplify a concrete case with 𝐾 = 4
and consider the 4 challenges (𝑒𝑘)3𝑘=0 = (𝑒−1, 𝑒, 𝑒4, 𝑒5) for a simpler interpreta-
tion. To check whether the witness 𝑦 is correctly represented in binary form,
the verifier needs to ensure that none of the terms (𝑒−2, 𝑒2, 𝑒8, 𝑒10) will appear
on the right-hand side of Eqn. (3). Computing 𝑓𝑙 · 𝑣𝑙 will generate a polynomial
with only 8 terms instead of the original 0.5 · 16 + 0.5 · 4 + 1 = 11:

𝑃(𝑒) = 𝑤9𝑒
9 + 𝑤6𝑒

6 + 𝑤5𝑒
5 + 𝑤4𝑒

4 + 𝑤3𝑒
3 + 𝑤1𝑒 + 𝑤−1𝑒−1 + 𝑤0

where 𝑤∗ indicates the coefficients of the corresponding terms.
The coefficients of the combined terms 𝑒 ·𝑒−1, 𝑒 ·𝑒4 and 𝑒−1 ·𝑒5 are respectively

merged into 𝑤0, 𝑤5 and 𝑤4. As shown in Table 4b, this optimisation saves 51 and
3 group exponentiations for proving and verification, respectively, and 3 group
elements for communication when 𝐾 = 4. Notably, the optimisation increases
the proving efficiency by 25.9%. Note that a particular choice of 𝐾 challenges
can yield 𝐹 (𝐾) number of terms for computing 𝑓𝑙 · 𝑣𝑙. We provide a possible
combination of the challenge exponents for 𝐹 (𝐾) as below and let the readers
discover more possible combinations.

𝐾=2: {−1, 1}, 𝐾=3: {−1, 1, 4}, 𝐾=4: {−1, 1, 4, 5}, 𝐾=5: {−1, 1,−4, 4, 5}
𝐾=6: {−1, 1,−4, 4,−5, 5}, 𝐾=7: {−1, 1,−4, 4,−5, 5, 16}
𝐾=8: {−1, 1,−4, 4,−5, 5,−16, 16}, 𝐾=9: {−1, 1,−4, 4,−5, 5,−16, 16, 17}
𝐾=10: {−1, 1,−4, 4,−5, 5,−16, 16,−17, 17}

3.3 Aggregate Range Arguments

Multiple arguments for the same range created by one prover can be aggregated
for further efficiency gains. Given 𝑀 witnesses (𝑦𝑚)𝑀−1𝑚=0 , the prover creates two

unique sets (𝑣 (𝑚)
𝑙
)𝐿−1
𝑙=0

and (𝑠 (𝑚)
𝑘
)𝐾
𝑘=0

for each 𝑚 ∈ {0, ..., 𝑀 − 1}. The prover
utilises 𝑀 · 𝐿 generators, where the (𝑚, 𝑙)-th generator is in charge of computing

𝑓
(𝑚)
𝑙
· 𝑣 (𝑚)
𝑙

. Hence, the 𝑀 coefficients of each term on the right-hand side of
Eqn. (3) can be compacted in one commitment. Then we can apply the batch
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verification technique [4] to reduce the number of group exponentiations by
simultaneously checking the equations in Eqn. (4) for these arguments. The
technique is based on the principle that checking 𝑎 = 0 ∧ 𝑏 = 0 is equivalent to
checking 𝑎+ 𝜌𝑏 = 0 with high probability, where 𝜌 ∈ Z∗𝑝 is a random value. Thus,
the verifier can produce a new random challenge 𝑧 ∈ Z∗𝑝 and use the equation

below to validate 𝑠 (𝑚)
𝑘

in batches:

𝑀−1∑︁
𝑚=0

(
𝐿−1∑︁
𝑙=0

𝑣
(𝑚)
𝑙
)𝑧𝑚 ?

=

𝐾−1∑︁
𝑘=0

(
𝑀−1∑︁
𝑚=0

𝑠
(𝑚)
𝑘

𝑧𝑚)𝑒𝑘 +
𝑀−1∑︁
𝑚=0

𝑠
(𝑚)
𝐾

𝑧𝑚

Finally, the verifier can check 𝑦𝑚
?
=
∑𝐾−1
𝑘=0 𝑠

(𝑚)
𝑘

for each 𝑚. The total number of

elements is |Πtotal | = 𝑀 · ( ⌈
𝑁

𝐾
⌉ +𝐾 +1) + 𝐾

2 + 𝐾
2
+3. When 𝐾 ≈ ⌈(𝑀𝑁) 13 ⌋ ∧ 𝑁

𝐾
≥ 1,

the complexity of both communication and verification achieves the minimum.
Then for aggregating 𝑀 optimised range arguments, we can use the formula
𝐹 (𝐾) + 2

𝑀
+⌈𝑁
𝐾
⌉+𝐾+1 to calculate the number of elements for communication cost

or the allocated number of group exponentiations for verification per argument.

4 Polynomial Evaluation Arguments

Built upon the techniques of Bayer & Groth (BG13) [3], our polynomial evalua-
tion arguments aim to prove that two committed values 𝑥 and 𝑦 satisfy a public
polynomial relation 𝑦 = 𝑃(𝑥;𝐷), where 𝐷 is the degree. They achieve non-trivial
efficiency gains in computation and communication thanks to the quadratic-term
cancellation technique. We give two protocols, which respectively excel in han-
dling the polynomials of lower-degree 𝐷 ∈ [3, 29] and higher-degree 𝐷 > 29.
We essentially focus on the core techniques of our arguments, whereas the full
protocols are given in Section 6.2 and 6.3.

4.1 Overview of BG13

We begin with an overview of BG13 (Please refer to their original paper [3] for
more details). Consider a polynomial function 𝑃(𝑥;𝐷) = ∑𝐷

𝑑=0 𝑎𝑑𝑥
𝑑, where we

assume 𝐷 = 2𝐽+1 − 1 for 𝐽 ∈ {1, 2, ...} without loss of generality by padding with
zero-coefficients. First, the polynomial 𝑃(𝑥;𝐷) can be re-written as below by sub-

stituting the 𝑑-th term 𝑥𝑑 with 𝑥
∑𝐽
𝑗=0 2 𝑗𝑏

( 𝑗)
𝑑 =

∏𝐽
𝑗=0 𝑥

2 𝑗𝑏
( 𝑗)
𝑑 , where 𝑑 =

∑𝐽
𝑗=0 2

𝑗𝑏
( 𝑗 )
𝑑

,

𝑏
( 𝑗 )
𝑑
∈ {0, 1} and 𝐽 + 1 = ⌈log 𝐷⌉:

𝑃(𝑥;𝐷) =
𝐷∑︁
𝑑=0

𝑎𝑑𝑥
𝑑 =

𝐷∑︁
𝑑=0

𝑎𝑑𝑥
∑𝐽
𝑗=0 2 𝑗𝑏

( 𝑗)
𝑑 =

𝐷∑︁
𝑑=0

𝑎𝑑

𝐽∏
𝑗=0

𝑥2
𝑗𝑏
( 𝑗)
𝑑

Then BG13 defines a new polynomial 𝑄(𝑒; 𝐽 + 1) by substituting 𝑥2
𝑗

with a
masking value 𝑧 𝑗 = 𝑥

2 𝑗 𝑒 + 𝑚 𝑗 for each 𝑗 , such that the coefficient of the leading
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term 𝑒𝐽+1 is equal to 𝑃(𝑥;𝐷), where 𝑚 𝑗 is a random value, 𝑒 is the verifier’s
random challenge and 𝑤 𝑗 is the coefficient of the term 𝑒 𝑗 .

𝑄(𝑒; 𝐽 + 1) =
𝐷∑︁
𝑑=0

(𝑎𝑑
𝐽∏
𝑗=0

𝑒1−𝑏
( 𝑗)
𝑑 𝑧

𝑏
( 𝑗)
𝑑

𝑗
) = 𝑃(𝑥;𝐷)𝑒𝐽+1 +

𝐽∑︁
𝑗=0

𝑤 𝑗𝑒
𝑗 (5)

The prover must provide the commitment to 𝑃(𝑥;𝐷) and the commitments to the
coefficients (𝑤 𝑗 )𝐽𝑗=0 before acquiring the challenge 𝑒 to prove that the polynomial
𝑄(𝑒; 𝐽 + 1) is well formed. In a nutshell, there are three constraints to satisfy:

1. 𝑃(𝑥;𝐷) is the coefficient of the leading term 𝑒𝐽+1.
2. The linearity between 𝑥2

𝑗

and 𝑧 𝑗 = 𝑥
2 𝑗 𝑒 + 𝑚 𝑗 for 𝑗 ∈ {0, ..., 𝐽}.

3. The quadratic relations between 𝑥2
𝑗

hidden in 𝑧 𝑗 and 𝑥
2 𝑗+1 hidden in 𝑧 𝑗+1 for

𝑗 ∈ {0, ..., 𝐽 − 1}.

BG13 creates three sets of group elements (𝑐
𝑥2
𝑗 )𝐽
𝑗=1, (𝑐𝑚 𝑗 )𝐽𝑗=0, (𝑐 (𝑥2 𝑗𝑚 𝑗 ) )

𝐽−1
𝑗=0 and

two sets of field elements (𝑟 𝑗 )𝐽𝑗=0, (𝜉 𝑗 )𝐽−1𝑗=0 . Then it utilises two equations to fulfil
the constraints 2 and 3 for each 𝑗 :

𝑧 𝑗
?
= 𝑥2

𝑗

𝑒 + 𝑚 𝑗 =⇒ Cm(𝑧 𝑗 ; 𝑟 𝑗 )
?
= 𝑐𝑒

𝑥2
𝑗 · 𝑐𝑚 𝑗

0
?
= 𝑥2

𝑗+1
𝑒 − 𝑥2 𝑗 𝑧 𝑗 + 𝑥2

𝑗

𝑚 𝑗 =⇒ Cm(0; 𝜉 𝑗 )
?
= 𝑐𝑒

𝑥2
𝑗+1 · 𝑐

−𝑧 𝑗
𝑥2
𝑗 · 𝑐 (𝑥2 𝑗𝑚 𝑗 )

4.2 Techniques of Lower-Degree (LD) Protocol

In this protocol, we aim for optimisations to fulfil the constraint 2 and 3 for better
computational and communication efficiency. Our technique is a new equation in
Eqn. (6) that effectively leverages the field elements (𝑧 𝑗 )𝐽𝑗=0 rather than the group
elements as in BG13 to achieve the verification, which significantly improves the
computational efficiency by reducing the number of group exponentiations. The
two equations for simultaneously satisfying the constraint 2 and 3 are:

𝑧0
?
= 𝑥𝑒 + 𝑚0, 𝑧2𝑗 − 𝑧 𝑗+1𝑒

?
= (2𝑥2 𝑗𝑚 𝑗 − 𝑚 𝑗+1)𝑒 + 𝑚2

𝑗 , 𝑗 ∈ {0, ..., 𝐽 − 1} (6)

In Eqn. (6), first, we must ensure the linearity between the input 𝑥 and 𝑧0.
Then computing 𝑧2

𝑗
− 𝑧 𝑗+1𝑒 for 𝑗 ∈ {0, ..., 𝐽 − 1} will cancel out quadratic terms

𝑒2 and leave the first-order term (2𝑥2 𝑗𝑚 𝑗 − 𝑚 𝑗+1)𝑒 and the constant term 𝑚2
𝑗
.

Our techniques only require the prover to provide the vector commitments to
the coefficients of these two terms before acquiring the challenge 𝑒. This not
only ensures the quadratic relations between 𝑥2

𝑗

and 𝑥2
𝑗+1

but also justifies the
linearity between 𝑥2

𝑗

and 𝑧 𝑗 = 𝑥2
𝑗

𝑒 + 𝑚 𝑗 for 𝑗 ∈ {1, ..., 𝐽 − 1}. Otherwise, the
quadratic terms 𝑒2 must have appeared on the right-hand side with overwhelm-
ing probability. Compared with the techniques of BG13, ours entail far fewer
computationally expensive group operations. With respect to the communica-
tion cost, the reduction by 5 log 𝐷 elements is essentially attributed to the use
of vector commitments. Moreover, our new equation in Eqn. (6) also contributes
to decreasing the proof size.



16 N. Wang and S.C.K. Chau

4.3 Techniques of Higher-Degree (HD) Protocol

On top of the lower-degree protocol, we aim for a further optimisation to fulfil
the constraint 1. We attempt to trade log 𝐷 group elements in Eqn. (5) for

3
√︁
log 𝐷 group and field elements by applying the technique of the polynomial

commitment [10]. Intuitively, we can factor out common polynomial factors from
the polynomial

∑𝐽
𝑗=0 𝑤 𝑗𝑒

𝑗 . First, we rewrite
∑𝐽
𝑗=0 𝑤 𝑗𝑒

𝑗 as
∑𝐿−1
𝑙=0 𝑒𝑙𝐾

∑𝐾−1
𝑘=0 𝑤𝑙𝐾+𝑘𝑒

𝑘

without loss of generality by padding with zero coefficients, where 𝐽 + 1 = 𝐿 · 𝐾
and 𝑙 ∈ {0, .., 𝐿 − 1}, 𝑘 ∈ {0, ..., 𝐾 − 1}. 𝐿 polynomials (∑𝐾−1

𝑘=0 𝑤𝑙𝐾+𝑘𝑒
𝑘)𝐿−1
𝑙=0

can be
factored out to build a matrix in a way that each row contains the coefficients of
the factored polynomials, and each column is a vector of the coefficients of the
same-order of 𝑒:

©­­­­«
𝑤0 + 𝜃0 𝑤1 . . . 𝑤𝐾−1
𝑤𝐾 + 𝜃1 𝑤𝐾+1 . . . 𝑤2𝐾−1

...
...

. . .
...

𝑤 (𝐿−1)𝐾 + 𝜃𝐿−1 𝑤 (𝐿−1)𝐾+1 . . . 𝑤𝐿𝐾−1

ª®®®®¬
The prover commits to all the columns as (𝑐𝑤𝑘 )𝐾−1𝑘=0

using vector commitments

and creates a field value 𝑓𝑙 =
∑𝐾−1
𝑘=0 𝑤𝑙𝐾+𝑘𝑒

𝑘 + 𝜃𝑙 for each 𝑙, which is a randomised
inner product of the 𝑙-th row and the challenge vector (1, 𝑒, ..., 𝑒𝐾−1)⊺, where
𝜃𝑙 ∈ Z∗𝑝 is a random value to prevent leaking information about the coefficients

(𝑤𝑙𝐾+𝑘)𝐾−1𝑘=0
.

𝑐𝑤0
=

𝐿−1∏
𝑙=0

𝑔
𝑤𝑙𝐾+𝜃𝑙
𝑙

· ℎ𝑟𝑤0 (𝑐𝑤𝑘 =
𝐿−1∏
𝑙=0

𝑔
𝑤𝑙𝐾+𝑘
𝑙

· ℎ𝑟𝑤𝑘 )𝐾−1𝑘=1

where (𝑔𝑙)𝐿−1𝑙=0

$←− G𝐿 , ℎ $←− G are distinct generators and (𝑟𝑤𝑘
$←− Z∗𝑝)𝐾−1𝑘=0

are
random values.
The verifier computes

∏𝐿−1
𝑙=0 𝑔

𝑓𝑙
𝑙
· ℎ𝑠 ?

=
∏𝐾−1
𝑘=0 𝑐

𝑒𝑘

𝑤𝑘
to check the correctness of

( 𝑓𝑙)𝐿−1𝑙=0
, where 𝑠 =

∑𝐾−1
𝑘=0 𝑟𝑤𝑘 𝑒

𝑘 , and constructs a new equation in Eqn. (7) to
replace Eqn. (5) for the constraint 1:

𝑄(𝑒; 𝐽 + 1) −
𝐿−1∑︁
𝑙=0

𝑓𝑙𝑒
𝑙𝐾 ?

= 𝑃(𝑥;𝐷)𝑒𝐽+1 −
𝐿−1∑︁
𝑙=0

𝜃𝑙𝑒
𝑙𝐾 (7)

The prover is required to provide the commitments to (𝜃𝑙)𝐿−1𝑙=0
before obtaining

the challenge 𝑒. In addition to the proof size reduction, this technique greatly
reduces the number of group exponentiations, which improves the efficiency in
both communication and verification.

4.4 Aggregate Polynomial Evaluation Arguments

The aggregation of multiple arguments is supported for a significant efficiency
improvement. Recall that our techniques enable a non-trivial reduction in the
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communication cost to log 𝐷+3
√︁
log 𝐷+7 elements for higher-degree polynomials,

where 𝐽 + 1 field elements (𝑧 𝑗 = 𝑥2
𝑗

𝑒 + 𝑚 𝑗 )𝐽𝑗=0 dominate the whole argument.
Thus, multiple arguments satisfying different polynomials with the same degree
and inputs can split the communication cost of these field elements. Given 𝑀

polynomials
(
𝑃(𝑥;𝐷) (𝑚)

)𝑀−1
𝑚=0 of the same degree 𝐷, the prover utilises 𝑀 · 𝐿

generators to create 𝐾 commitments (𝑐𝑤𝑘 )𝐾−1𝑘=0
by compacting the coefficients

of all 𝑀 arguments. Then the prover provides two unique sets of ( 𝑓 (𝑚)
𝑙
)𝐿−1
𝑙=0

and

(𝜃 (𝑚)
𝑙
)𝐿−1
𝑙=0

for each 𝑚 ∈ {0, ..., 𝑀−1}. Similar to the aggregate range argument, the
verifier uses the equation below to check the constraint 1 for multiple arguments
in batches, where 𝑧 ∈ Z∗𝑝 is a new random challenge provided by the verifier:

𝑀−1∑︁
𝑚=0

(
𝑄(𝑒; 𝐽+1) (𝑚)−

𝐿−1∑︁
𝑙=0

𝑓
(𝑚)
𝑙

𝑒𝑙𝐾
)
𝑧𝑚

?
=

𝑀−1∑︁
𝑚=0

𝑃(𝑥;𝐷) (𝑚) 𝑧𝑚𝑒𝐽+1−
𝐿−1∑︁
𝑙=0

(
𝑀−1∑︁
𝑚=0

𝜃
(𝑚)
𝑙

𝑧𝑚)𝑒𝑙𝐾

For aggregating 𝑀 arguments, we can use the formula
log 𝐷 +

√︁
log 𝐷 + 7
𝑀

+
2
√︁
log 𝐷 to calculate the number of elements for communication cost or the

allocated number of group exponentiations for verification per argument. For
a certain degree 𝐷, the efficiency in verification (group exponentiations) and

communication asymptotically approaches 𝑂 (
√︁
log 𝐷) when 𝑀 increases.

4.5 Limitation & Extension

Limitation Overall, our techniques aim to reduce the number of group exponen-
tiations and elements for superior efficiency in computation and communication.
Based on the techniques of BG13, unfortunately, our protocols still inherit its
limitation of using a linear number of field multiplications in verification for eval-
uating the worse-case polynomials with few zero terms. The field multiplications
would dominate the computational costs over the group exponentiations when
the degrees are fairly large, even the latter ones are far more computationally ex-
pensive. However, the computational costs of high-order polynomials with quite
a few zero terms are less subject to this limitation. Hence, the more zero terms,
the less subject to this limitation.

Extension Our arguments can be extended to satisfy multi-variate polynomial
relations, e.g., the inner-product of two vectors. The efficiency in communication
and computation would be linear in the number of variates.

5 Empirical Experiments

In our experiments, we measured verification gas costs of the range proofs on
Ethereum, one of the most popular blockchain platforms supporting smart con-
tracts. We employed the 254-bit elliptic curve BN-128 [18]6 that ensures 127-bit

6 Gas costs would be significantly reduced if precompiled contracts for non-pairing
curves, e.g., secp256k1, are supported in future on smart contract platforms.
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security as Ethereum provides gas-efficient precompiled contracts for BN-128
curve operations. We adopted keccak256 (Ethereum-SHA-3) as the hash func-
tion modelling the random oracle. Our empirical evaluation was conducted with
the processor Intel Core i7-8700 CPU @3.2GHz.

For range arguments, we conducted a full-scale performance comparison with
several state-of-the-art range proofs with respect to the computational costs and
gas costs on Ethereum. For polynomial evaluation arguments, we essentially
compare the computational efficiency between ours and BG13. We skipped the
measurement of Bulletproofs as its running time of both proving and verification
is considerably greater than those two. The Java and Solidity code is published
at this link7.

Computational Cost We measured running time in milliseconds as an evalu-
ation metric of the computational costs. We used the well-known Bouncy Castle
Crypto APIs [12] to implement the BN-128 elliptic curve since they were ini-
tially used in the Java implementation8 of Bulletproofs [9], which facilitates a
fair comparison. All the experiments were executed on the Java Virtual Machine
15 in a single thread, with results averaged over 50 instances. Note that the
Java implementation was aimed at performance comparison. Rust programming
language is more suited to commercial usage for high efficiency.

(a) Computational costs. (b) Allocated verification costs.

Fig. 2: Computational cost of our range arguments.

Fig. 2a describes the running time of proving and verification in milliseconds
of our optimised range arguments. The verification running time is 𝑂 (𝑁 2

3 ) sub-
linear in the range size. The proving running time is slightly sub-linear when
𝑁 ≤ 64, which corresponds to the holistic sub-linearity in Fig. 1. Table 5 shows
a detailed running time comparison with other state-of-the-art proofs. Our range
arguments outperform Bulletproof in both proving and verification. Moreover,
at a comparable level of soundness errors, our range arguments do not perform
as efficiently as CKLR21 in proving but present higher efficiency in verification.
Fig. 2b illustrates the allocated number of group exponentiations per argument
for verifying aggregate range arguments with the increased aggregation size. The

7 https://github.com/wangnan-vincent/Flashproofs
8 The Java code [9] was implemented by the first author of Bulletproofs paper.
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Table 5: Running time of range proofs in milliseconds, where CKLR21 was re-
spectively run 3 and 5 iterations for 32-bit and 64-bit ranges to achieve a sound-
ness error 2−240, which is practically close to 2−254 of ours. For CKLR21, we
considered the additional 54% of the proving computational costs caused by re-
runs (mentioned in their paper).

Type 8-bit 16-bit 32-bit 64-bit

Prove
This work 21.8 36.4 64.4 111.5
CKLR21 - - 55.1 73.9

Bulletproof 132.2 251.4 482 950.4

Verify
This work 13.4 18.7 27.1 35.5
CKLR21 - - 37.9 50.8

Bulletproof 51 85.9 150.5 262.9

Fig. 3: Computational costs of polynomial evaluation arguments.

costs are reduced asymptotically as the aggregation size grows. About 35% of
the group exponentiations per argument are saved when 16 arguments of the
64-bit range are aggregated.

Fig. 3 shows a running time comparison between our polynomial evaluation
arguments and BG13 for monomials of different degrees9. The computational
costs grow logarithmically with the increased degrees. The higher-degree and
lower-degree arguments significantly outperform BG13 in proving and verifica-
tion. Besides, the running time discrepancy between higher-degree and lower-
degree arguments diminishes with the increased degrees. It is foreseeable that
the higher-degree ones would be more competitive for the degrees over 29.

Gas Cost We used the Solidity programming language [32] and the Truffle
development framework [39] to measure the gas costs of verifying range proofs
on Ethereum. We set 500,000 to the optimize-runs10 parameter of the Solidity

9 Note that the arguments may not be sound when 𝑦 = 𝑥𝑘 is greater than the group
order 𝑝. We use these monomials only for measuring the computational costs.

10 The number of runs specifies how often each opcode will be executed across the
contract’s lifetime [38]. The larger the value, the more gas efficient code is generated.
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Table 6: Gas costs of verification on Ethereum in ascending order. SONIC*
indicates that the gas costs are estimated based on the data in SONIC [35].
We used the latest standard prices of gas and ether for reference at the time
of writing, which were 15 GWei and $1745 USD, respectively, taken from [24]
and [19] at UTC 11:15 am 12 September 2022. Note that the prices are subject
to market fluctuations, but the gas costs tend to be stable and more meaningful.

Type
Transparent

Setup
Gas Cost Ether USD

Proof Size
(Byte)

zkSNARK (Groth16) ✗ 220,100 0.0033 $5.8 192
This work (32-bit) ✓ 233,250 0.0035 $6.1 738
This work (64-bit) ✓ 314,140 0.00471 $8.2 994

zkSNARK (SONIC, Helped)* ✗ 492,000 0.00738 $12.9 385
zkSNARK (SONIC, Unhelped)* ✗ 655,000 0.00983 $17.2 1155

zkSNARK (BCTV14) ✗ 773,124 0.0116 $20.2 288
Bulletproofs (32-bit) ✓ 2,046,252 0.03069 $53.6 610
Bulletproofs (64-bit) ✓ 3,703,549 0.05555 $96.9 674

compiler with version 0.8.0. We ran the solidity-based code [1] to measure the gas
costs of Bulletproof. We also measured the gas costs of verifying a zkSNARK
(Groth16) [28] and a zkSNARK (BCTV14) [7] by running the solidity code
from [30] and [23]. Note that the code of two zkSNARKs may not be used
for verifying range proofs. But we feel it is meaningful to provide the results
for reference as the zkSNARKs benefit from trusted setups to achieve constant
verification efficiency for any arithmetic circuits.

Table 6 shows a comprehensive comparison of verification gas costs on Ethereum
in ascending order. Benefitting from a trusted setup, the zkSNARK (Groth16)
ranks first. Our range arguments incur a comparable amount of gas costs to
Groth16 and the least gas costs among those not requiring trusted setups. No-
tably, there is hardly any discrepancy in gas costs between Groth16 and our
32-bit range argument. We also roughly estimated the gas costs of SONIC, a typ-
ical zkSNARK with an updatable structured reference string setup. The helped
and unhelped arguments consume approximately 492K and 655K, where helped
means their proofs use an additional “helper” batch verification technique to im-
prove the verification efficiency. The zkSNARK (BCTV14) consumes a constant
773K gas with the second smallest proof size. However communication efficient,
Bulletproof is the most gas-consuming proof, which incurs 2046K and 3703K gas
for 32-bit and 64-bit ranges. Moreover, from Table 2b, the aggregation of 16 of
our range arguments saves an average of 8.2 (49.2K gas) and 10.6 (63.6K gas)
group exponentiations per argument for 32-bit and 64-bit ranges, respectively,
where one group exponentiation costs 6K gas [16] for BN-128 elliptic curve on
Ethereum. Thus, it is estimated that the allocated gas costs per argument can
be reduced to about 184,050 gas (0.00276 ETH, $4.8) and 250,540 gas (0.00376
ETH, $6.6).
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Fig. 4: Allocated communication costs of aggregate range arguments.

Communication Cost We measured proof sizes as communication costs over
a 256-bit field, the standard word size on Ethereum. We used the compressed
form of elliptic curve points, where one point can be stored as a 256-bit value
plus one extra bit indicating one of the two possible 𝑦 coordinates. In Table
6, Bulletproof is the most communication-efficient among those not requiring
trusted setups for general 32-bit and 64-bit ranges. Our range arguments pursue
superior computational efficiency through minor trade-offs in communication ef-
ficiency but still offer a slight advantage over CKLR21 at a comparable level
of soundness errors. Fig. 4 shows a comparison of the communication costs of
64-bit aggregate range arguments11 between Bulletproof and ours. Despite be-
ing less efficient than Bulletproof, our range arguments still achieve satisfactory
performance, whose allocated communication cost per argument is asymptoti-
cally reduced to 656 bytes for the aggregation of 16 arguments. For instance,
regarding 50 million UTXOs from 22 million transactions with 52-bit bitcoins,
the aggregate Bulletproof and ours would take up about 17GB [13] and 42GB.
The communication cost is still a factor of 3.8× reduction in size, compared to
the 160GB data12 of less succinct proofs in the current systems. Please see Table
3 for the communication cost comparison of polynomial evaluation arguments.

6 Protocols & Security Proofs

6.1 Range Argument

We describe the full protocol of our range arguments. Given a witness 𝑦 ∈ Z𝑝,
a random 𝑟𝑦

$←− Z∗𝑝, a commitment 𝑐𝑦 = 𝑔𝑦ℎ𝑟𝑦 ∈ G and the generators 𝑔, ℎ
$←−

G, (𝑔𝑙)𝐿−1𝑙=0

$←− G𝐿, the protocol aims to prove 𝑦 ∈ [0, 2𝑁 − 1]:

Prover :

𝑦 =

𝑁−1∑︁
𝑖=0

2𝑖𝑏𝑖 , 𝑏𝑖 ∈ {0, 1}, 𝑁 + 𝛾 = 𝐿 · 𝐾, 𝐿, 𝐾 ≥ 2, for some 𝛾 ∈ Z0+ (8)

11 We did not find the aggregate proofs of CKLR21 in the DL setting [20].
12 The data refers to the 50 million UTXOs mentioned in Bulletproofs [13].
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𝑁−1∑︁
𝑖=0

2𝑖𝑏𝑖 →
©­­­­«

𝑤0 . . . 𝑤𝐾−1
𝑤𝐾 . . . 𝑤𝐾+𝐾−1
...

. . .
...

𝑤 (𝐿−1)𝐾 . . . 𝑤 (𝐿−1)𝐾+𝐾−1

ª®®®®¬
, (9)

where 𝑤𝑙𝐾+𝑘 = 2𝑙𝐾+𝑘𝑏𝑙𝐾+𝑘 for 𝑙 ∈ {0, ..., 𝐿 − 1}, 𝑘 ∈ {0, ..., 𝐾 − 1}

(𝑟𝑙
$←− Z∗𝑝)𝐿−1𝑙=0 , (𝑟𝑠𝑘

$←− Z∗𝑝)𝐾𝑘=1, (𝑟𝑞𝑘
$←− Z∗𝑝)𝐾𝑘=0, (𝑟𝑡𝑘, 𝑗

$←− Z∗𝑝)
𝑘=𝐾−2, 𝑗=𝐾−1
𝑘=0, 𝑗=1

(10)

Prover =⇒ Verifier :

(𝑐𝑠𝑘 = 𝑔
∑𝐿−1
𝑙=0 𝑤𝑙𝐾+𝑘 ℎ𝑟𝑠𝑘 )𝐾−1𝑘=0 , 𝑐𝑠𝐾 = 𝑔

∑𝐿−1
𝑙=0 𝑟𝑙 ℎ𝑟𝑠𝐾 , where 𝑟𝑠0 = 𝑟𝑦 −

𝐾−1∑︁
𝑘=1

𝑟𝑠𝑘 (11)

(𝑐𝑡𝑘, 𝑗 =
𝐿−1∏
𝑙=0

𝑔
𝑡𝑙,𝑘, 𝑗

𝑙
· ℎ𝑟𝑡𝑘, 𝑗 )𝑘=𝐾−2, 𝑗=𝐾−1

𝑘=0, 𝑗=1
, for 𝑘 ≠ 𝑗 (12)

where 𝑡𝑙,𝑘, 𝑗 = 𝑤𝑙𝐾+𝑘 (2𝑙𝐾+ 𝑗 − 𝑤𝑙𝐾+ 𝑗 ) + 𝑤𝑙𝐾+ 𝑗 (2𝑙𝐾+𝑘 − 𝑤𝑙𝐾+𝑘)(
𝑐𝑞𝑘 =

𝐿−1∏
𝑙=0

𝑔
𝑞𝑙,𝑘
𝑙
· ℎ𝑟𝑞𝑘

)𝐾
𝑘=0 (13)

where
(
𝑞𝑙,𝑘 = 2𝑟𝑙 (2𝑙𝐾+𝑘−1 − 𝑤𝑙𝐾+𝑘)

)𝐾−1
𝑘=0 , 𝑞𝑙,𝐾 = −𝑟2𝑙

Prover⇐= Verifier : (𝑒𝑘
$←− Z∗𝑝)𝐾−1𝑘=0

Prover =⇒ Verifier :(
𝑣𝑙 =

𝐾−1∑︁
𝑘=0

𝑤𝑙𝐾+𝑘𝑒𝑘 + 𝑟𝑙
)𝐿−1
𝑙=0 (14)

𝑢 =

𝑘=𝐾−2, 𝑗=𝐾−1∑︁
𝑘=0, 𝑗=1

𝑟𝑡𝑘, 𝑗 𝑒𝑘, 𝑗 +
𝐾−1∑︁
𝑘=0

𝑟𝑞𝑙,𝑘 𝑒𝑘 + 𝑟𝑞𝑙,𝐾 , 𝜖 =

𝐾−1∑︁
𝑘=0

𝑟𝑠𝑘 𝑒𝑘 + 𝑟𝑠𝐾 (15)

where 𝑒𝑘, 𝑗 = 𝑒𝑘𝑒 𝑗 , for 𝑘 ≠ 𝑗

Verifier :

𝐿−1∏
𝑙=0

𝑔
𝑓𝑙𝑣𝑙
𝑙
· ℎ𝑢 ?

=

𝑘=𝐾−2, 𝑗=𝐾−1∏
𝑘=0, 𝑗=1

𝑐
𝑒𝑘, 𝑗
𝑡𝑘, 𝑗
·
𝐾−1∏
𝑘=0

𝑐𝑒𝑘𝑞𝑘 · 𝑐𝑞𝐾 , where 𝑓𝑙 =
𝐾−1∑︁
𝑘=0

2𝑙𝐾+𝑘𝑒𝑘 − 𝑣𝑙 (16)

𝑔
∑𝐿−1
𝑙=0 𝑣𝑙 · ℎ𝜖 ?

=

𝐾−1∏
𝑘=0

𝑐𝑒𝑘𝑠𝑘 · 𝑐𝑠𝐾 (17)

𝑐𝑦
?
=

𝐾−1∏
𝑘=0

𝑐𝑠𝑘 (18)

Theorem 1. Our range arguments have perfect completeness, computational
witness-extended emulation and perfect special honest verifier zero-knowledge
(SHVZK).
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Proof. Perfect completeness follows by a careful inspection of the protocol. Then
we describe a perfect SHVZK simulation. Given a challenge vector (𝑒𝑘)𝐾−1𝑘=0

, a

simulator randomly chooses group elements (𝑐𝑡𝑘, 𝑗 )
𝑘=𝐾−2, 𝑗=𝐾−1
𝑘=0, 𝑗=1

, (𝑐𝑠𝑘 )𝐾−1𝑘=1
, (𝑐𝑞𝑘 )𝐾𝑘=1

and field elements (𝑣𝑙)𝐿−1𝑙=0
, 𝑢, 𝜖 . By the perfect hiding property, the commitments

in a real argument are uniformly random as in the simulation. The field elements
in a real argument are also uniformly random due to the random choices of
(𝑟𝑙)𝐿−1𝑙=0

, 𝑟𝑞𝐾 and 𝑟𝑠𝐾 . Hence, in both real argument and simulation, the random
elements uniquely determine the values 𝑐𝑞𝐾 in Eqn. (16), 𝑐𝑠0 in Eqn. (18) and
𝑐𝑠𝐾 in (17). This means we have identical distributions of real and simulated
arguments with the given challenge vector.

Finally, we prove witness-extended emulation. An emulator E runs the argu-
ment with uniformly random challenges and rewinds the prover until it acquires
𝑇 = 𝐾2+𝐾+2

2 accepting transcripts. We expect E to rewind 𝑇
𝛿
· 𝛿 = 𝑇 times, where

𝛿 is the probability of a prover making a convincing argument. Thus, E runs in
expected polynomial time. Then we can obtain the openings of the commitments
(𝑐𝑡𝑘, 𝑗 )

𝑘=𝐾−2, 𝑗=𝐾−1
𝑘=0, 𝑗=1

and (𝑐𝑞𝑘 )𝐾𝑘=0 by computing:

©­­­­­­­­­­­«

𝑡𝑙,0,1 𝑟𝑡0,1
...

...

𝑡𝑙,𝐾−2,𝐾−1 𝑟𝑡𝐾−2,𝐾−1
𝑞𝑙,0 𝑟𝑞0
...

...

𝑞𝑙,𝐾−1 𝑟𝑞𝐾−1
𝑞𝑙,𝐾 𝑟𝑞𝐾

ª®®®®®®®®®®®¬
=

©­­­«
𝑒
(1)
0,1 . . . 𝑒

(1)
𝐾−2,𝐾−1 𝑒

(1)
0 . . . 𝑒

(1)
𝐾−1 1

...
. . .

...
...

. . .
...

...

𝑒
(𝑇 )
0,1 . . . 𝑒

(𝑇 )
𝐾−2,𝐾−1 𝑒

(𝑇 )
0 . . . 𝑒

(𝑇 )
𝐾−1 1

ª®®®¬
−1

·
©­­­«
𝑓
(1)
𝑙
𝑣
(1)
𝑙

𝑢 (1)

...
...

𝑓
(𝑇 )
𝑙

𝑣
(𝑇 )
𝑙

𝑢 (𝑇 )

ª®®®¬
We can also extract the openings of the commitments (𝑐𝑠𝑘 )𝐾𝑘=0 by computing:

©­­­­«
∑𝐿−1
𝑙=0 𝑤𝑙𝐾 𝑟𝑠0
...

...∑𝐿−1
𝑙=0 𝑤𝑙𝐾+𝐾−1 𝑟𝑠𝐾−1∑𝐿−1

𝑙=0 𝑟𝑙 𝑟𝑠𝐾

ª®®®®¬
=

©­­­«
𝑒
(1)
0 . . . 𝑒

(1)
𝐾−1 1

...
. . .

...
...

𝑒
(𝐾+1)
0 . . . 𝑒

(𝐾+1)
𝐾−1 1

ª®®®¬
−1

·
©­­­«
∑𝐿−1
𝑙=0 𝑣

(1)
𝑙

𝜖 (1)

...
...∑𝐿−1

𝑙=0 𝑣
(𝐾+1)
𝑙

𝜖 (𝐾+1)

ª®®®¬
Both two left multiplying matrices on the right-hand side consist of uniformly
random challenges. They are invertible for being full-rank matrices, where all
the rows and columns are linearly independent. Finally, the witness 𝑦 can be
obtained by summing up the openings of (𝑐𝑠𝑘 )𝐾−1𝑘=0

.

6.2 Polynomial Evaluation Arguments for Lower Degree

We describe the full protocol of our lower-degree polynomial evaluation argu-

ments. Given two witnesses 𝑥, 𝑦 ∈ Z𝑝, two randoms 𝑟𝑥 , 𝑟𝑦
$←− Z∗𝑝, two commit-

ments 𝑐𝑥 = 𝑔𝑥ℎ𝑟𝑥 , 𝑐𝑦 = 𝑔𝑦ℎ𝑟𝑦 ∈ G and the generators 𝑔, ℎ
$←− G, (𝑔 𝑗 )𝐽−1𝑗=0

$←− G𝐽 ,
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the protocol aims to prove 𝑦 = 𝑃(𝑥;𝐷) = ∑𝐷
𝑑=0 𝑎𝑑𝑥

𝑑 , 𝐷 = 2𝐽+1 − 1, 𝐽 ∈ {1, 2, ...}:

Prover :

𝑦 =

𝐷∑︁
𝑑=0

𝑎𝑑𝑥
𝑑 =

𝐷∑︁
𝑑=0

𝑎𝑑

𝐽∏
𝑗=0

𝑥2
𝑗𝑏
( 𝑗)
𝑑 , 𝑑 =

𝐽∑︁
𝑗=0

2 𝑗𝑏
( 𝑗 )
𝑑
, 𝑏
( 𝑗 )
𝑑
∈ {0, 1}, 𝐽 + 1 = ⌈log 𝐷⌉ (19)

(𝑚 𝑗

$←− Z∗𝑝)𝐽𝑗=0, (𝑟𝑤 𝑗
$←− Z∗𝑝)𝐽𝑗=0, 𝑟𝑚, 𝑟𝑣0 , 𝑟𝑣1 , 𝑒

$←− Z∗𝑝 , ( 𝑧̂ 𝑗 = 𝑥2
𝑗

𝑒 + 𝑚 𝑗 )𝐽𝑗=0 (20)

𝑄(𝑒; 𝐽 + 1) =
𝐷∑︁
𝑑=0

(𝑎𝑑
𝐽∏
𝑗=0

𝑒1−𝑏
( 𝑗)
𝑑 · 𝑧̂𝑏

( 𝑗)
𝑑

𝑗
) = 𝑦𝑒𝐽+1 +

𝐽∑︁
𝑗=0

𝑤 𝑗𝑒
𝑗 (21)

Prover =⇒ Verifier :

𝑐𝑚 = 𝑔𝑚0 · ℎ𝑟𝑚 (22)

𝑐𝑣0 =

𝐽−1∏
𝑗=0

𝑔
𝑚2
𝑗

𝑗
· ℎ𝑟𝑣0 , 𝑐𝑣1 =

𝐽−1∏
𝑗=0

𝑔
2𝑚 𝑗 𝑥

2 𝑗 −𝑚 𝑗+1
𝑗

· ℎ𝑟𝑣1 (23)

(𝑐𝑤 𝑗 = 𝑔𝑤 𝑗 · ℎ
𝑟𝑤𝑗 )𝐽𝑗=0 (24)

Prover⇐= Verifier : 𝑒
$←− Z∗𝑝

Prover =⇒ Verifier :(
𝑧 𝑗 = 𝑥

2 𝑗 𝑒 + 𝑚 𝑗

) 𝐽
𝑗=0 (25)

𝑡 = 𝑟𝑥𝑒 + 𝑟𝑚, 𝑢 = 𝑟𝑣1𝑒 + 𝑟𝑣0 , 𝑠 = 𝑟𝑦𝑒
𝐽+1 +

𝐽∑︁
𝑗=0

𝑟𝑤 𝑗 𝑒
𝑗 (26)

Verifier :

𝑔𝑧0 · ℎ𝑡 ?
= 𝑐𝑒𝑥 · 𝑐𝑚 (27)

𝐽−1∏
𝑗=0

𝑔
𝑧2
𝑗
−𝑧 𝑗+1𝑒

𝑗
· ℎ𝑢 ?

= 𝑐𝑒𝑣1 · 𝑐𝑣0 (28)

𝑔𝑄 (𝑒;𝐽+1) · ℎ𝑠 ?
= 𝑐𝑒

𝐽+1
𝑦 ·

𝐽∏
𝑗=0

𝑐𝑒
𝑗

𝑤 𝑗 (29)

Theorem 2. Our polynomial evaluation arguments of lower-degree have per-
fect completeness, computational witness-extended emulation and perfect special
honest verifier zero-knowledge (SHVZK).

Proof. Perfect completeness follows by carefully inspecting the protocol. Next,
we depict a perfect SHVZK simulation. Given a challenge 𝑒, a simulator ran-
domly picks up group elements 𝑐𝑣1 , (𝑐𝑤 𝑗 )𝐽𝑗=1 and field elements (𝑧 𝑗 )𝐽𝑗=0, 𝑡, 𝑢, 𝑠.
By the perfect hiding property and the random choices of (𝑚 𝑗 )𝐽𝑗=0, 𝑟𝑚, 𝑟𝑣0 , 𝑟𝑤0

,
the group and field elements are identically distributed in both real and simu-
lated arguments. Therefore, in both real argument and simulation, the random
elements uniquely determine the values 𝑐𝑚, 𝑐𝑣0 and 𝑐𝑤0

in Eqn. (27), (28), (29).
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Finally, we prove witness-extended emulation. An emulator E runs the argu-
ment in expected polynomial time and rewinds the prover until it acquires 𝐽 + 2
accepting transcripts. With the first two transcripts, E is able to extract the

witness 𝑥 =
𝑧
(1)
0 −𝑧

(0)
0

𝑒1−𝑒0 and the random 𝑟𝑥 =
𝑡1−𝑡0
𝑒1−𝑒0 . We can also get the openings of

𝑐𝑣1 and 𝑐𝑣0 by computing:(
2𝑚 𝑗𝑥

2 𝑗 − 𝑚 𝑗+1 𝑟𝑣1
𝑚2
𝑗

𝑟𝑣0

)
=

(
𝑒0 1
𝑒1 1

)−1
·
(
𝑧2
𝑗
− 𝑧 𝑗+1𝑒0 𝑢0

𝑧2
𝑗
− 𝑧 𝑗+1𝑒1 𝑢1

)
Similarly, for Eqn. (29), we obtain the openings of 𝑐𝑦 and (𝑐𝑤 𝑗 )𝐽−1𝑗=0 by computing:

©­­­­­­«

𝑦 𝑟𝑦
𝑤𝐽 𝑟𝑤𝐽
...

...

𝑤1 𝑟𝑤1

𝑤0 𝑟𝑤0

ª®®®®®®¬
=
©­­«
𝑒𝐽+10 𝑒𝐽0 . . . 𝑒0 1
...

...
. . .

...
...

𝑒𝐽+1
𝐽+1 𝑒

𝐽
𝐽+1 . . . 𝑒𝐽+1 1

ª®®¬
−1

·
©­­«
𝑄(𝑒; 𝐽 + 1)0 𝑠0

...
...

𝑄(𝑒; 𝐽 + 1)𝐽+1 𝑠𝐽+1

ª®®¬
where the left multiplying matrix is invertible for being a Vandermonde matrix.
Thanks to the binding property of Pedersen commitment, we can conclude that
𝑃(𝑥;𝐷), as the coefficient of the leading term of 𝑄(𝑒; 𝐽 + 1), is the opening of 𝑐𝑦.

6.3 Polynomial Evaluation Arguments for Higher Degree

We describe the full protocol of our higher-degree polynomial evaluation argu-
ments, where the witnesses are the same as those of lower-degree ones except

using different generators 𝑔, ℎ
$←− G, (𝑔 𝑗 )𝐽−1𝑗=0

$←− G𝐽 , (𝑔𝑙)𝐿−1𝑙=0

$←− G𝐿:

Prover :

(𝑚 𝑗

$←− Z∗𝑝)𝐽𝑗=0, (𝑟𝑤𝑘
$←− Z∗𝑝)𝐾−1𝑘=0 , (𝜃𝑙 , 𝑟𝜃𝑙

$←− Z∗𝑝)𝐿−1𝑙=0 , 𝑟𝑚, 𝑟𝑣0 , 𝑟𝑣1 , 𝑒
$←− Z∗𝑝 (30)

𝐽∑︁
𝑗=0

𝑤 𝑗𝑒
𝑗 =

𝐿−1∑︁
𝑙=0

𝑒𝑙𝐾
𝐾−1∑︁
𝑘=0

𝑤𝑙𝐾+𝑘𝑒
𝑘 , 𝐽 + 1 = ⌈log 𝐷⌉ = 𝐿 · 𝐾, 𝐿, 𝐾 ≥ 2 (31)

𝐿−1∑︁
𝑙=0

𝜃𝑙 +
𝐿−1∑︁
𝑙=0

𝐾−1∑︁
𝑘=0

𝑤𝑙𝐾+𝑘𝑒
𝑘 =

©­­­­«
𝑤0 + 𝜃0 𝑤1 . . . 𝑤𝐾−1
𝑤𝐾 + 𝜃1 𝑤𝐾+1 . . . 𝑤2𝐾−1

...
...

. . .
...

𝑤 (𝐿−1)𝐾 + 𝜃𝐿−1 𝑤 (𝐿−1)𝐾+1 . . . 𝑤𝐿𝐾−1

ª®®®®¬
·
©­­­­«

1
𝑒
...

𝑒𝐾−1

ª®®®®¬
(32)

Prover =⇒ Verifier :

𝑐𝑚 = 𝑔𝑚0 · ℎ𝑟𝑚 (33)

𝑐𝑣0 =

𝐽−1∏
𝑗=0

𝑔
𝑚2
𝑗

𝑗
· ℎ𝑟𝑣0 , 𝑐𝑣1 =

𝐽−1∏
𝑗=0

𝑔
2𝑚 𝑗 𝑥

2 𝑗 −𝑚 𝑗+1
𝑗

· ℎ𝑟𝑣1 (34)

𝑐𝑤0
=

𝐿−1∏
𝑙=0

𝑔
𝑤𝑙𝐾+𝜃𝑙
𝑙

· ℎ𝑟𝑤0 , (𝑐𝑤𝑘 =
𝐿−1∏
𝑙=0

𝑔
𝑤𝑙𝐾+𝑘
𝑙

· ℎ𝑟𝑤𝑘 )𝐾−1𝑘=1 (35)
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(𝑐𝜃𝑙 = 𝑔−𝜃𝑙 · ℎ𝑟𝜃𝑙 )𝐿−1𝑙=0 (36)

Prover⇐= Verifier : 𝑒
$←− Z∗𝑝

Prover =⇒ Verifier :(
𝑧 𝑗 = 𝑥

2 𝑗 𝑒 + 𝑚 𝑗

) 𝐽
𝑗=0, ( 𝑓𝑙 =

𝐾−1∑︁
𝑘=0

𝑤𝑙𝐾+𝑘𝑒
𝑘 + 𝜃𝑙)𝐿−1𝑙=0 (37)

𝑡 = 𝑟𝑥𝑒 + 𝑟𝑚, 𝑢 = 𝑟𝑣1𝑒 + 𝑟𝑣0 , 𝑠 =

𝐾−1∑︁
𝑘=0

𝑟𝑤𝑘 𝑒
𝑘 , 𝑞 = 𝑟𝑦𝑒

𝐽+1 +
𝐿−1∑︁
𝑙=0

𝑟𝜃𝑙 𝑒
𝑙𝐾 (38)

Verifier :

𝑔𝑧0 · ℎ𝑡 ?
= 𝑐𝑒𝑥 · 𝑐𝑚 (39)

𝐽−1∏
𝑗=0

𝑔
𝑧2
𝑗
−𝑧 𝑗+1𝑒

𝑗
· ℎ𝑢 ?

= 𝑐𝑒𝑣1 · 𝑐𝑣0 (40)

𝐿−1∏
𝑙=0

𝑔
𝑓𝑙
𝑙
· ℎ𝑠 ?

=

𝐾−1∏
𝑘=0

𝑐𝑒
𝑘

𝑤𝑘
(41)

𝑔𝜁 · ℎ𝑞 ?
= 𝑐𝑒

𝐽+1
𝑦 ·

𝐿−1∏
𝑙=0

𝑐𝑒
𝑙𝐾

𝜃𝑙
, where 𝜁 = 𝑄(𝑒; 𝐽 + 1) −

𝐿−1∑︁
𝑙=0

𝑓𝑙𝑒
𝑙𝐾 (42)

Theorem 3. Our polynomial evaluation arguments of higher-degree have per-
fect completeness, computational witness-extended emulation and perfect special
honest verifier zero-knowledge (SHVZK).

Proof. Perfect completeness follows by a careful inspection of the protocol. Then,
we provide a perfect SHVZK simulation. Given a challenge 𝑒, a simulator ran-
domly picks up group elements 𝑐𝑣1 , (𝑐𝑤𝑘 )𝐾−1𝑘=1

, (𝑐𝜃𝑙 )𝐿−1𝑙=1
and field elements (𝑧 𝑗 )𝐽𝑗=0,

( 𝑓𝑙)𝐿−1𝑙=0
, 𝑡, 𝑢, 𝑠, 𝑞. By the perfect hiding property and the random choices of

(𝑚 𝑗 )𝐽𝑗=0, 𝑟𝑚, 𝑟𝑣0 , 𝑟𝑤0
, (𝜃𝑙)𝐿−1𝑙=0

, the group and field elements are identically dis-
tributed in both real and simulated arguments. Therefore, in both real argument
and simulation, the random elements uniquely determine the values 𝑐𝑚, 𝑐𝑣0 , 𝑐𝑤0

and 𝑐𝜃0 in Eqn. (39), (40), (41) and (42).

Finally, we prove witness-extended emulation. We essentially describe the
soundness of Eqn. (41) and (42) in this section. Please refer to Theorem 2 for the
soundness of Eqn. (39) and (40). An emulator E runs the argument and rewinds
the prover until it acquires 𝐾 accepting transcripts. We have the openings of
(𝑐𝑤𝑘 )𝐾−1𝑘=0

by computing:

©­­­­«
𝑤𝑙𝐾+𝐾−1 𝑟𝑤𝐾−1

...
...

𝑤𝑙𝐾+1 𝑟𝑤1

𝑤𝑙𝐾 + 𝜃𝑙 𝑟𝑤0

ª®®®®¬
=
©­­«
𝑒𝐾−10 . . . 𝑒0 1
...

. . .
...

...

𝑒𝐾−1
𝐾−1 . . . 𝑒𝐾−1 1

ª®®¬
−1

·
©­­­«
𝑓
(0)
𝑙

𝑠0
...

...

𝑓
(𝐾−1)
𝑙

𝑠𝐾−1

ª®®®¬
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E rewinds the prover to acquire 𝐿 + 1 accepting transcripts for the openings of
𝑐𝑦 and (𝑐𝜃𝑙 )𝐿−1𝑙=0

:

©­­­­«
𝑦 𝑟𝑦

−𝜃𝐿−1 𝑟𝜃𝐿−1
...

...

−𝜃0 𝑟𝜃0

ª®®®®¬
=

©­­­«
𝑒𝐽+10 𝑒

(𝐿−1)𝐾
0 . . . 1

...
...

. . .
...

𝑒𝐽+1
𝐿

𝑒
(𝐿−1)𝐾
𝐿

. . . 1

ª®®®¬
−1

·
©­­«
𝜁0 𝑞0
...

...

𝜁𝐿 𝑞𝐿

ª®®¬
7 Related Work

Range Proofs In 2003, Lipmaa [33] used Lagrange’s four-square theorem [43]
to create a constant 1700-byte range proof with an arbitrary range. Groth [27]
improved the proof by using Legendre’s three-square theorem. Deng et al. [21]
also designed a constant-size range proof based on the RSA assumption by adapt-
ing Bulletproof for Lagrange’s four-square theorem. However, these proofs rely
on the RSA assumption, which requires a trusted setup to generate the RSA
modulus. In 2008, Camenisch et al. [15] proposed a range proof based on the
signature approach that depends on the 𝑞-Strong Diffie-Hellman assumption.
Their method has 𝑂 (𝑁) communication cost and requires a trusted setup to
make the proof non-interactive, where 𝑁 is the bit length of the range. AZTEC
protocol [45] also provided a signature-based range proof, which uses a trusted-
setup protocol to build a huge signature database that contains every accept-
able integer in the range. However, the security relies on trusting the parties
that would destroy the private keys for generating the signatures. Bootle &
Groth [11] presented a range argument under the DL assumption based on
the bit-decomposition. Nonetheless, their approach achieves 𝑂 (𝑁) complexity
in communication and computation with a trusted setup. Besides, one could use
the asymptotically efficient STARKS [5] to avoid a trusted setup. Nevertheless,
the proof size is quite large at 45KB [31]. Supersonic [14] achieves efficient loga-
rithmic efficiency in verification and communication based on class groups with
a transparent setup. Nevertheless, class groups demand large groups to meet
current security requirements, which are less commonly applied in practical sys-
tems.

Polynomial Evaluation Proofs Table 1 lists a series of state-of-the-art generic-
purpose zero-knowledge proofs with transparent setups. Most of them build on
general NP-complete languages, which can be used for polynomial evaluation.
Based on the hardness of the RSA assumption, Supersonic [14] is one of the most
efficient proofs, which has 𝑂 (log 𝑁) efficiency in verification time and proof size.
However, for a polynomial of degree 𝐷 = 220, it still needs 10.1KB and 60 group
exponentiations for verification, whereas our argument only needs 1.25KB and
40 group exponentiations. Bootle and Groth [11] also proposed a polynomial
evaluation argument based on BG13. However, it relies on common reference
strings as a trusted setup to achieve efficient 𝑂 ( log 𝑁

log log 𝑁 ) complexity for proving
and verification.
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Table 7: An efficiency comparison [37] of generic-purpose zero-knowledge proofs
with transparent setups for NP statements, where 𝑁 is the statement size.

Type Ligero [2] Bulletproofs [13] STARKs [5] Aurora [6] Fractal [17] Supersonic [14] Spartan [37]

Prover
Running time

𝑂 (𝑁 log 𝑁) 𝑂 (𝑁) 𝑂 (𝑁 log2 𝑁) 𝑂 (𝑁 log 𝑁) 𝑂 (𝑁 log 𝑁) 𝑂 (𝑁 log 𝑁) 𝑂 (𝑁 log 𝑁)

Verifier
Running time

𝑂 (𝑁) 𝑂 (𝑁) 𝑂 (𝑁 log2 𝑁) 𝑂 (𝑁) 𝑂 (log2 𝑁) 𝑂 (log 𝑁) 𝑂 (log2 𝑁)

Proof Size 𝑂 (
√
𝑁) 𝑂 (log 𝑁) 𝑂 (log2 𝑁) 𝑂 (log2 𝑁) 𝑂 (log2 𝑁) 𝑂 (log 𝑁) 𝑂 (log2 𝑁)

Membership Proofs In this section, we provide a brief related work on mem-
bership proofs. Most membership proofs require trusted setups, exposing vulner-
abilities that malicious provers can exploit. Proposed by Camenisch et al. [15] in
2008, the most classical membership argument is based on a bilinear-group sig-
nature scheme. Based on the 𝑞-Strong Diffie-Hellman assumption, the argument
has 𝑂 (1) communication cost but requires 𝑂 (𝑁) group elements as signatures of
all elements in the given set for a preliminary procedure. Therefore, the argument
needs a trusted setup to accomplish this procedure for non-interactivity. Further-
more, the authors also proposed an alternative approach using an RSA-based
accumulator for short signatures. However, this approach does not remove the
trusted setup, either. Recently, Benarroch et al. [8] presented an accumulator-
based membership proof based on class groups without a trusted setup. For
128-bit security, the proof uses a 6000-bit discriminant class group to achieve
a constant 6.4KB proof size. However, our membership argument requires a
tremendous set of 2169 ≈ 7.5𝐸50 elements for this proof size, which tends to be
more communication-efficient for general scenarios.

8 Conclusion

In this paper, we proposed Flashproofs, a new type of efficient special honest
verifier zero-knowledge arguments of knowledge with a transparent setup in the
DL setting. First, we put forth new gas-efficient range arguments that achieve
𝑂 (𝑁 2

3 ) communication cost, and involve 𝑂 (𝑁 2
3 ) group exponentiations for ver-

ification and a slightly sub-linear number of group exponentiations for proving
with respect to the range [0, 2𝑁 − 1]. Our range arguments achieve a compara-
ble amount of gas costs to the most efficient zkSNARK on blockchain platforms
without resorting to a trusted setup. Second, we presented polynomial evalu-
ation arguments based on the techniques of Bayer & Groth. We provided two
zero-knowledge protocols that excel in handling lower-degree (𝐷 ∈ [3, 29]) and
higher-degree (𝐷 > 29) polynomials, respectively. Our arguments make a sig-
nificant improvement in the efficiency of computation and communication. To
the best of our knowledge, our arguments instantiate the most communication-
efficient zero-knowledge arguments of membership and non-membership in the
DL setting among those not requiring trusted setups. In future work, we will
incorporate Flashproofs in more real-world blockchain-based applications, e.g.,
energy sharing and sharing economy [34,42].
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