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Abstract. Constructions based on two public permutation calls are very
common in today’s cryptographic community. However, each time a new
construction is introduced, a dedicated proof must be carried out to
study the security of the construction. In this work, we propose a new
tool to analyze the security of these constructions in a modular way. This
tool is built on the idea of the classical mirror theory for block cipher
based constructions, such that it can be used for security proofs in the
ideal permutation model. We present different variants of this public
permutation mirror theory such that it is suitable for different security
notions.
We also present a framework to use the new techniques, which provides
the bad events that need to be excluded in order to apply the public per-
mutation mirror theory. Furthermore, we showcase the new technique
on three examples: the Tweakable Even-Mansour cipher by Cogliati et
al. (CRYPTO ’15), the two permutation variant of the pEDM PRF
by Dutta et al. (ToSC ’21(2)), and the two permutation variant of the
nEHtMp MAC algorithm by Dutta and Nandi (AFRICACRYPT ’20).
With this new tool we prove the multi-user security of these construc-
tions in a considerably simplified way.

Keywords: mirror theory, two permutation calls constructions, multi-
user security, modular framework

1 Introduction

Permutation-Based Crypto.Following the selection of Keccak as the winner
of the SHA-3 competition [2], cryptographic schemes based on public permuta-
tions gained a lot of traction in the research community. Nowadays, permutation-
based constructions have become a trend in cryptography, and form a successful
and full-fledged alternative to block-cipher based designs. Recently, in the first
round of the ongoing NIST lightweight competition [1], 24 out of 57 submissions
are based on public permutations, and 16 out of 24 permutation-based designs
have been selected for the second round. These statistics show without a doubt
the wide acceptance of permutation based designs in the community. The long
line of research on the design of secret key constructions using public permu-
tations originates with Even and Mansour [23], who designed a secret random



permutation using a public permutation by xoring random keys to the input
and output of this permutation. Later, their work was generalized to the Iter-
ated Even-Mansour construction or the Key Alternating Cipher by [6,9, 17,26],
which is the backbone of today’s block ciphers.

Constructions Based on Two Permutation Calls. In recent years, be-
yond birthday bound security has become a very popular topic in the field of
symmetric key cryptography due to the rise of lightweight primitives. Admit-
tedly, the state size of a permutation is typically very large: for example the
SHA-3 permutation is of size 1600 bits, and a simple birthday bound secure
construction built on SHA-3 would be secure up to an attack complexity of 2800.
However, this example permutation is on the extreme end: a big drawback of
these big permutations is that they were not designed with lightweight applica-
tions in mind, the state of lightweight permutations such as SPONGENT [5] and
PHOTON [25] can be as small as 88 and 100 bits, respectively. Hence, birthday
bound secure constructions using these types of permutations are inadequate.

Due to the above-mentioned reason, beyond birthday-bound constructions
based on two permutations are interesting to investigate. Indeed, it is possible
to break any single-permutation construction by finding a collision between the
input of the underlying permutation of the given construction and an input to
the oracle of the public primitive, which happens with probability Ω(qp/2n),
where q is the number of queries to the construction and p is the number of
queries to the underlying permutation. Constructions using more than two per-
mutation calls can achieve even better security, however these are less efficient
and difficult to analyze. On the other hand, constructions based on two per-
mutation calls can achieve a resulting security bound of the form O(qp2/22n),
which is usually sufficient for most practical applications. In the last years, sev-
eral types of constructions based on two permutation calls were proposed and
analyzed. The most notable examples are the 2-round Even-Mansour cipher by
Bogdanov et al. [6] and Chen et al. [8], the tweakable block cipher TEM by
Cogliati et al. [15] and Dutta [19], the pseudorandom function SoEM by Chen
et al. [11] and pEDM by Dutta et al. [22], the FPTP hash function by Chen
and Tessaro [12], and the nonce-based MAC algorithm nEHtMp by Dutta and
Nandi [20]. Due to the similarity in the structures, the security proofs of these
construction all share some relevance.

Single vs Multi-User Security. The security of most of the above con-
structions has been proven in the single-user setting. In practice, however, com-
monly used cryptographic constructions are usually deployed in contexts with
a large number of users. An obvious question is to what extent the number of
users will affect the security bound of these permutation-based constructions,
or more specifically, can these constructions still have a security bound of the
form O(qp2/22n) in the multi-user setting? The concept of multi-user security
was first introduced by Bellare, Boldyreva and Micali [3] in the context of pub-
lic key cryptography, and was later extended by Biham [4] to symmetric key
cryptanalysis. In the multi-user setting, attackers can adaptively distribute their
q construction queries across multiple users with independent keys, and the

2



attackers succeed as long as they can compromise one user key. Unfortunately,
research on provable multi-user security for permutation-based constructions has
been missing until now. The notable exceptions are the work of key-alternating
ciphers by Mouha and Luykx for a single round [31], and Hoang and Tessaro for
multiple rounds [26]. These works show that evaluating how security degrades
as the number of users grows is a challenging technical problem, even when the
security is known in the single-user setting. The generic reduction [7], however,
does not help the constructions to maintain beyond birthday-bound security in
the multi-user setting. For example, suppose the number of users is u, then sim-
ply applying the generic reduction to obtain multi-user security from single-user
security introduces an extra factor u in the security bound. If the attacker only
asks one query per user, then the security bound becomes

uqp2

22n
≤ q2p2

22n
,

which is only comparable to the O(qp/2n) security of one-call constructions.
Therefore, it appears that a dedicated analysis of the multi-user security is

needed. Most security proofs in symmetric key cryptography today are based on
the H-coefficients technique [9,33]. The idea behind this technique is that only a
smaller number of transcripts are significantly more likely to appear in the ideal
world than in the real world, namely: the bad transcripts. Usually, such proofs
are performed as follows: (1) we first define a set of bad transcripts, (2) then the
probability of observing bad transcripts in the ideal world is upper bounded, (3)
and finally the ratio of observing good transcripts in the real and the ideal world
is lower bounded. Note that points (1) and (3) are completely different problems
than point (2). Since upper bounding the probability of the bad transcripts is
a purely combinatorial problem and has little to do with cryptography, it relies
heavily on the randomness of the generated keys. Defining the bad transcripts
and lower bounding the ratio of the good transcripts depend, however, strongly
on the way a particular construction is built. Unlike the case of block cipher-
based constructions, where single-user security is usually proven in the standard
model and multi-user security in the ideal-cipher model. For permutation-based
constructions, ideal-permutation model analysis is used for both the single and
multi-user settings. This raises the question whether or not it is possible to
derive a modular approach that can be applied to constructions based on two
permutation calls, which generically find the set of bad transcripts and a tight
lower bound for the ratio of the corresponding good transcripts in both the single
and multi -user settings, avoiding the long and involved dedicated analysis.

Patarin’s Mirror Theory.Before we give an answer to this question, we recall
Patarin’s mirror theory [34], which is a very powerful but currently still unver-
ified technique. Mirror theory is concerned with systems of qm ≥ 1 equations
with r ≥ qm unknowns of the form v⊕ y = λ, where v and y are two unknowns,
and λ is a known value. The goal is to determine a lower bound on the number
of possible solutions to the unknowns such that the solution does not contain
collisions. Originally, Patarin derived mirror theory in order to prove the opti-
mal n-bits security of the Xor of two secret Permutations construction (XoP).
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After the modernization by Mennink and Neves [30], who used mirror theory
to prove the pseudorandom function security of EDM, EDMD and EWCDM,
the applications of mirror theory seem to be increasing. For example, mirror
theory was used to prove the security of the 2-round CLRW tweakable block
cipher by Jha and Nandi [27], and to prove the security of the nonce-less MAC
algorithms PolyMAC, SUM-ECBC, PMAC-Plus, 3kf9, and LightMAC-Plus by
Kim et al. [28]. Datta et al. [18] were first to extend the mirror theory by in-
cluding a system of qa ≥ 1 non-equations of the form v ⊕ y ̸= λ, and used it to
prove the security of the nonce-based MAC algorithm DWCDM. Later, Dutta
et al. [21], and Kim et al. [14] used it to prove the security of the nonce-based
MAC algorithm nHEtM.

The New Idea.The reason why we can apply mirror theory to the above men-
tioned block cipher based constructions is because all these constructions can
be viewed as the xor of two secret permutations. Note that when the permu-
tations become public, the constructions have a structure that follows the Sum
of Even-Mansour (SoEM) construction of Chen et al. [11]. Since the proofs of
public permutation based constructions are all performed in the ideal permuta-
tion model, the attacker also gets access to the underlying permutations. Hence
it is necessary to have an xor before the input and after the output of each
of the permutation evaluations. Due to this important observation, almost all
constructions based on two permutation calls can be viewed as the xor of two
public permutations in the middle. This observation leads to the answer to the
previous question, and the goal of this paper is to use the idea of mirror theory
to build a modular technique that can be applied to all of the above mentioned
permutation-based constructions.

1.1 Our Contribution

The goal of this paper is to derive a generic tool that can be used for the security
analysis of constructions based on two public permutation calls and for different
security notions. In order to do that, there are a few difficulties that we need
to resolve. First of all, the traditional mirror theory is only suitable for the prf
security, and we cannot simply apply it to the other settings. The second problem
is that mirror theory does not consider primitive queries, and we need to include
these queries in order to apply the theory for ideal permutation model proofs.

We solve the first problem using the approach proposed by Jha and Nandi [27]
(see SUP Material A-B), and we derive different versions of public permutation
mirror theory that are suitable for almost all popular security notions in sym-
metric key cryptography. On the other hand, since each primitive query defines
exactly the input and the output of one permutation evaluation, we can solve
the second problem by including a set of uni-variant affine equations of the form
v = λ and y = λ. Each uni-variate affine equation defines exactly one primitive
query (where the input and output values of these queries are well defined).

With all these in mind, we derive two new theorems for the ideal public
permutation model proofs. In Section 3.1, we explain the general setting for
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traditional mirror theory, and our new technique for the ideal permutation model
is defined and given in Section 3.2. We provide four theorems for different type
of settings. Theorem 1 (a) is suitable for security notions such as sprp and
tsprp, Theorem 1 (b) is suitable for security notions such as prf, weak prf, and
(t)ccr [24], and Theorem 2 (b) is suitable for notions such as mac security (prf
with non-equations). Since these three theorems already cover all currently know
security notions, Theorem 2 (a) (sprp or tsprp with non-equations) has been
added for the sake of completeness, as we are not aware of any notions on which it
can be applied and will leave this for future research. We want to emphasize that
our aim here is not to fix the proofs in the traditional mirror theory, but rather to
focus on a new modular technique for permutation-based constructions. Hence,
our technique focuses only on 2n/3-bit security, since this is a tight security
bound (as we will see from the three examples) for constructions based on two
permutations due to the presence of the primitive queries.

Another important contribution in this work is to provide a general frame-
work to use the new techniques for the (multi-user) security analysis of construc-
tions based on two independent permutation calls. The framework is given in
Section 4. In general, to prove the security of constructions based on two permu-
tation calls, one should first turn the query transcript into a system of bi-variate
(non-)equations and uni-variate equations. This system of (non-)equations can
be used to define the transcript graph (see Section 4.2). In our case, we decom-
pose our graph into four subgraphs - the union of the components containing one
“colliding vertex” (defined by an uni-variate affine equation), the union of “star”
components, the set of isolated edges, and the set of isolated vertices. However,
the graph may contain other types of components that prevent us from using the
new technique, these components need to be excluded in our analysis. A very
important part about this framework is that it provides a set of bad events that
need to be considered in the security analysis to exclude these components. It
seems, especially when non-equations also need to be considered, the analysis
becomes very complex, which increases the chance to miss some bad events (see
Section 4.3). The probability of these bad events must be upper bounded based
on the randomness of the generated keys, sometimes difficult combinatorial tech-
niques are required in the case of limited randomness. After these bad events
are excluded, our new theory can be applied to the given system to determine
a lower bound on the number of possible solutions to the unknowns, which in
its turn defines the ratio of observing good transcripts in the real and the ideal
world (see Section 4.4). This framework is useful for future designs, such that
the future analysis will not miss any necessary bad events.

Applications.We illustrate the new techniques by applying them to prove the
multi-user security of Tweakable Even Mansour (TEM), permutation-based En-
crypted Davies-Mayer (pEDM), and permutation-based version of nonce-based
Enhance Hash-then-Mask (nEHtMp). These three constructions are chosen be-
cause they use three important security notions in symmetric-key cryptography,
namely tsprp, prf and mac, allowing us to demonstrate the new technique on dif-
ferent notions. On the other hand, the three constructions are the permutation-
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based variants of important block cipher-based schemes LRW2 [27], EDM [16],
nEHtM [21], which have already received much attention in the field.

Firstly, we consider the 2-round TEM construction that was proposed by
Cogliati et al. [15]. They showed that 2-round TEM achieves 2n/3-bit security
in the single-user setting. In Section 5, we apply the public permutation mirror
theory suitable for tsprp (Theorem 1 (a)) to the TEM construction, and show
that TEM also achieves 2n/3-bit security in the multi-user setting.

Secondly, we consider the pEDM construction that was proposed by Dutta et
al. [22]. Again, pEDM was showed to achieve 2n/3-bit security in the single-user
setting. In Section 6, we apply the public permutation mirror theory suitable for
prf (Theorem 1 (b)) to pEDM construction, and show that pEDM also achieves
2n/3-bit security in the multi-user setting. In this example we can clearly see
that the analysis in the multi-user setting is more complex than the one in the
single-user setting.

Thirdly, we consider the nEHtMp MAC algorithm, proposed by Dutta and
Nandi [20]. They showed that nEHtMp based on a single permutation (using do-
main separation) achieves 2n/3-bit security. We first note that the proof of [20]
is incomplete since, according to our framework for MAC designs, the authors
missed some bad events in their analysis. This observation was also verified by
the authors [10]. Some of these additional bad events, however, require involved
arguments to bound. In order to solve this problem, we modify the nEHtMp

construction by adding an extra universal hash function call. This modified con-
struction uses more randomness, which in turn enables us to bound the addi-
tional bad events easily. We would like to note that our analysis does not imply
infeasibility in fixing the proof of nEHtMp. In Section 7, we will prove the multi-
user security of this modified variant nEHtMp using our public permutation
extended mirror theory (Theorem 2 (b)), and we show that it achieves 2n/3-bit
security in the multi-user setting.

We believe that the techniques have a wide range of applications in the
future design of public permutation based schemes. For example, when building
nonce-less MAC algorithms and (authenticated) encryption schemes with beyond
birthday bound security using public permutations, as done in the case of block
cipher-based mirror theory [13,28].

2 Preliminaries

For n ∈ N, we denote by [n] the shorthand notation for {1, . . . , n}, and by
{0, 1}n the set of bit strings of length n. For two bit strings X,Y ∈ {0, 1}n, we
denote their bitwise addition as X ⊕ Y . For a value Z, we denote by A← Z the

assignment of Z to the variable A. For a finite set S, we denote by S
$←− S the

uniformly random selection of S from S. We denote by Func(m,n) the set of all
functions that map {0, 1}m to {0, 1}n, and by Func(n) the set of all functions that
maps {0, 1}n to {0, 1}n. We denote by Perm(n) the set of all permutations on

{0, 1}n, and by P̃erm(t, n) the set of all functions π̃ : {0, 1}t × {0, 1}n → {0, 1}n
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such that π̃(T, ·) is in Perm(n) for all T ∈ {0, 1}t. For any integers a, b such that
1 ≤ b ≤ a, we have (a)b = a · (a− 1) . . . (a− b+ 1) and (a)0 = 1.

For q ∈ N, we denote by x∗q the q-tuple (x1, . . . , xq), and by x̂∗q the set
{xi : i ∈ [q]}. By an abuse of notation we also use x∗q to denote the multiset
{xi : i ∈ [q]}, and we denote by µ(x∗q, x′) the multiplicity of x′ ∈ x∗q. For two
disjoint sets P and Q, we denote their (disjoint) union as P ⊔Q.

2.1 Tweakable Block Ciphers Based on Public Permutations

For k, n, r, t, u ∈ N, consider a tweakable block cipher Ẽ : {0, 1}k × {0, 1}t ×
{0, 1}n → {0, 1}n that is based on π1, . . . , πr

$←− Perm(n), such that for fixed
key K ∈ {0, 1}k, the function ẼK(T, ·) = Ẽ(K,T, ·) is a permutation on {0, 1}n.
We denote its inverse (for fixed key and tweak) by Ẽ−1

K (T, ·) = Ẽ−1(K,T, ·),
and Ẽ−1

K should behave independently for different tweaks. We will consider
the multi-user tweakable strong pseudorandom permutation (mu-tsprp) secu-
rity of Ẽ, where the distinguisher D is given two-directional access to either

(Ẽ±
K1

, . . . , Ẽ±
Ku

, π±
1 , . . . , π

±
r ) for secret keysK1, . . . ,Ku

$←− {0, 1}k, or (π̃±
1 , . . . , π̃

±
u ,

π±
1 , . . . , π

±
r ) for π̃1, . . . , π̃u

$←− P̃erm(t, n). The goal is to determine which world
it interacted with:

Advmu-tsprp

Ẽ
(D) =

∣∣∣Pr [DẼ±
K1

,...,Ẽ±
Ku

,π±
1 ,...,π±

r = 1
]
− Pr

[
Dπ̃±

1 ,...,π̃±
u π±

1 ,...,π±
r = 1

]∣∣∣ .
Here the superscript ± indicates that the distinguisher has bi-directional access.
When u = 1, we consider the single-user security of Ẽ, and we simply denote
D’s advantage in distinguishing the real world from random by Advtsprp

Ẽ
(D).

2.2 Pseudorandom Functions Based on Public Permutations

For k,m, n, r, u ∈ N, consider a pseudorandom function F : {0, 1}k × {0, 1}m →
{0, 1}n that is based on π1, . . . , πr

$←− Perm(n), such that for fixed key K ∈
{0, 1}k, FK(·) = F (K, ·) is a function that maps {0, 1}m to {0, 1}n. We will
consider the multi-user pseudorandom function (mu-prf) security of F , where
the distinguisher D is given access to either (FK1 , . . . , FKu , π

±
1 , . . . , π

±
r ) for se-

cret keys K1, . . . ,Ku
$←− {0, 1}k, or (φ1, . . . , φu, π

±
1 , . . . , π

±
r ) for φ1, . . . , φu

$←−
Func(n). The goal is to determine which world it interacted with:

Advmu-prf
F (D) =

∣∣∣Pr [DFK1
,...,FKu ,π±

1 ,...,π±
r = 1

]
− Pr

[
Dφ1,...,φu,π

±
1 ,...,π±

r = 1
]∣∣∣ .

Here the superscript ± for π’s indicates that the distinguisher has bi-directional
access. When u = 1, we consider the single-user security of F , and we simply de-
note D’s advantage in distinguishing the real world from random by Advprf

F (D).

2.3 Nonce-Based MAC Algorithms Based on Public Permutations

For k, n, r, t ∈ N, consider a nonce-based message authentication code (MAC)

algorithm F : {0, 1}k × {0, 1}n × {0, 1}∗ → {0, 1}t that is based on π1, . . . , πr
$←−
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Perm(n). For any fixed keyK ∈ {0, 1}k, we write FK(·, ·) = F (K, ·, ·). We denote
by Ver : {0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}t → 1/0 the verification oracle that is
based on π1, . . . , πr, which takes as input a keyK ∈ {0, 1}k, a nonce N ∈ {0, 1}n,
a message M ∈ {0, 1}∗, and tag T ∈ {0, 1}t, and outputs 1 if the tag T is correct
and 0 otherwise.

For u ∈ N, the multi-user message authentication code (mu-mac) secu-
rity of F is measured by considering a distinguisher D that is given access to

(FK1
,VerK1

), . . . , (FKu
,VerKu

) for secret keys K1, . . . ,Ku
$←− {0, 1}k, and the

primitive oracles π1, . . . , πr. For any j = 1, . . . , u, the goal of D is to fool the ver-
ification oracle with a valid but new (j,N,M, T ), and its advantage with respect
to this task is defined as

Advmu-mac
F (D) = Pr

[
K1, . . . ,Ku

$←− {0, 1}k :

D(FK1
,VerK1

),...,(FKu ,VerKu ),π±
1 ,...,π±

r forges
]
,

where “forges” means that the distinguisher enters a tuple (j,N,M, T ) such that
VerKj

(N,M, T ) returns 1 and FKj
(N,M) has never been queried.

We call a MAC query to the j-th user (j,N,M) a faulty query if the dis-
tinguisher D has already queried FKj

with the same nonce N and a different
message M . The distinguisher D is allowed to make at most µ faulty MAC
queries over u users. We call D a nonce-respecting adversary if µ = 0, and
nonce-misusing if µ ≥ 1. We stress that D may always repeat nonces in its
verification queries.

It will be more convenient to express Advmu-mac
F (D) as a distinguisher’s

advantage. For j = 1, . . . , u, we define perfectly random oracles Randj : {0, 1}n×
{0, 1}∗ → {0, 1}t, and rejection oracles Rejj : {0, 1}n × {0, 1}∗ × {0, 1}t → 0.

To obtain an upper bound for the forging advantage of a message authenti-
cation code F with respect to the distinguisher D, we consider another distin-
guisher D′, that is given access to either the real world oracles O, π±

1 , . . . , π
±
r , or

the ideal world oracles P, π±
1 , . . . , π

±
r . Then, D′’s advantage is upper bounded

by:

Advmu-mac
F (D′) ≤

∣∣∣Pr [D′O,π±
1 ,...,π±

r = 1
]
− Pr

[
D′P,π±

1 ,...,π±
r = 1

]∣∣∣ ,
withO =

(
(FK1 ,VerK1), . . . , (FKu ,VerKu)

)
for secret keysK1, . . . ,Ku

$←− {0, 1}k,
and P =

(
(Rand1,Rej1), . . . , (Randu,Reju)

)
.

Here the superscript ± for the πi’s indicates that the distinguisher has bi-
directional access. We call a distinguisher D′ non-trivial if it never makes a query
(j,N,M, T ) to its j-th verification oracle when a previous query (j,N,M) to its
j-th MAC oracle returned T . When u = 1, we consider the single-user security
of F , and we simply denote D′’s advantage in distinguishing the real world from
random by Advmac

F (D′).
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2.4 Universal Hash Functions

For n ∈ N, let H : Kh×M→ {0, 1}n such that for Kh ∈ Kh, HKh
(·) = H(Kh, ·)

is called an ϵ-almost XOR universal (ϵ-AXU) hash function [29] if for all distinct
M,M ′ ∈M and all C ∈ {0, 1}n, we have

Pr
[
Kh

$←− Kh : HKh
(M)⊕HKh

(M ′) = C
]
≤ ϵ .

For q ∈ N, fixM1, . . . ,Mq ∈M. ForKh ∈ Kh, letXi = HKh
(Mi) for i = 1, . . . , q.

We define an equivalence relation ∼ on [q] as: α ∼ β if and only if Xα = Xβ ,
for α, β ∈ [q]. For r ∈ N, we denote by P1, . . . ,Pr the non-trivial equivalence
classes of [q] with respect to ∼, and we define νi = |Pi| ≥ 2 for i = 1, . . . , r. Jha
and Nandi [27] proved the following lemmas, that will be useful in our security
proof.

Lemma 1. Let νi, i = 1, . . . , r, be the random variables as defined above. Then,
we have

E
[ r∑

i=1

νi

]
≤ q2ϵ/2 , E

[ r∑
i=1

ν2i

]
≤ 2q2ϵ .

Lemma 2. Let νmax = max{νi : i ∈ [r]}. Then, for some a ≥ 2, we have

Pr[νmax ≥ a] ≤ 2q2ϵ

a2
.

2.5 Expectation Method

In this work, we use the expectation method by Hoang and Tessaro [26], a
generalization of Patarin’s H-coefficient technique [9, 33].

Consider two oracles O and P, and a deterministic distinguisher D that has
query access to either of these oracles. The distinguisher’s goal is to distinguish
both worlds, and we denote by

Adv(D) =
∣∣Pr [DO = 1

]
− Pr

[
DP = 1

]∣∣
its advantage. We define a transcript τ which summarizes all query-response
tuples learned by D during its interaction with its oracle O or P. We denote by
XO and XP the random variables equal to transcript produced when interacting
with O and P, respectively. We call a transcript τ ∈ T attainable if Pr[XP =
τ ] > 0, or in other words if the transcript τ can be obtained from an interaction
with P.
Lemma 3 (expectation method [26]). Consider a deterministic distinguisher
D. Define a partition T = Tgood ⊔ Tbad, where Tgood is the subset of T which
contains all the “good” transcripts and Tbad is the subset with all the “bad” tran-
scripts. Let ϕ : T → [0,∞) be a non-negative function mapping any attainable
transcript to a non-negative real value, such that for all τ ∈ Tgood:

Pr[XO = τ ]

Pr[XP = τ ]
≥ 1− ϕ(τ) . (1)
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Then, we have Adv(D) ≤ E[ϕ(XP)] + Pr[XP ∈ Tbad].
The H-coefficients technique can be seen as a simple corollary of the expectation
method when ϕ is equal to a constant function.

Preliminary Observations. For π
$←− Perm(n) and a permutation queries

transcript τπ, we say that π extends τπ, denoted π ⊢ τπ, if π(u) = v for all

(u, v) ∈ τπ. By extension, for π = (π1, . . . , πr)
$←−

(
Perm(n)

)r

and a tuple of

permutation queries transcript τπ = (τπ1
, . . . , τπr

), we say that π extends τπ,
denoted π ⊢ τπ, if πi ⊢ τπi

for i = 1, . . . , r.
Consider an attainable transcript τ ∈ Tgood, and let P be an uniformly chosen

random oracle. For permutation based constructions, let τ = (τ0, τπ), where τ0
contains queries to the construction oracle O or P, and τπ contains the queries to
the primitive oracles π = (π1, . . . , πr). To compute Pr[XO = τ ] and Pr[XP = τ ],
it suffices to compute the probability of oracles that could result in view τ . We
first consider the ideal world oracle P, and obtain

Pr[XP = τ ] =
1

|K|r
·
( 1

(2n)p

)r

· Pr[P : P ⊢ τ0] .

The first term corresponds to the number of dummy keys that are drawn uni-
formly at random; the second term is the probability that π extends τπ; and the
last term is the probability that P extends τ0.

Similarly we say that a real world oracle O extends τ if it extends τ0 and τπ.

For K
$←− Kr, we have

Pr[XO = τ ] =
1

|K|r
·
( 1

(2n)p

)r

· Pr
[
π

$←−
(
Perm(n)

)r

: Oπ
K ⊢ τ0 | π ⊢ τπ

]
.

The first term corresponds to the number of randomly drawn keys that are used
in the construction; the second term is the probability that π extends τπ; and
the last term is the probability that Oπ

K extends τ0, given that π extends τπ.

Let ρ(τ) = Pr
[
π

$←−
(
Perm(n)

)r

: Oπ
K ⊢ τ0 | π ⊢ τπ

]
. Take for instance

r = 2, and assume that each primitive query transcript contains p queries to
the given permutation. Suppose we sample distinct outputs of π1 (resp., π2)
over for example qV (resp., qY ) distinct inputs. Then, it is easy to see that
ρ(τ) = hq/(2

n − p)qV −p(2
n − p)qY −p, where hq is the number of solutions of

distinct outputs of π1 and π2. Then we have

Pr[XO = τ ]

Pr[XP = τ ]
= ρ(τ)/Pr[P : P ⊢ τ0] ≥ 1− ε1 . (2)

3 (Extended) Mirror Theory in Ideal Permutation Model

We explain the general settings behind the traditional (extended) mirror the-
ory in Section 3.1, which involves only bi-variate affine equations and possible
non-equations. In Section 3.2, we introduce the new public permutation mirror
theory, that takes primitive queries into account by including uni-variate affine
equations.
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3.1 System of Bi-Variate Affine Equations and Non-Equations

Let qm, qa, qV , qY ≥ 1. Let V = {v1, . . . , vqV } be a set of qV unknowns and
Y = {y1, . . . , yqY } be a set of qY unknowns. We consider a system Em of qm
bi-variate affine equations

Em = {vI1 ⊕ yI1 = λ1, . . . , vIqm ⊕ yIqm = λqm} .

In some cases (for example mac security), we also need to consider a system Ea
of qa bi-variate affine non-equations

Ea = {v′J1
⊕ y′J1

̸= λ′
1, . . . , v

′
Jqa
⊕ y′Jqa

̸= λ′
qa} ,

where vIi ’s, yIi ’s, v
′
Jj
’s, and y′Jj

’s are unknowns, and λi’s and λ′
j ’s are knowns,

for i = 1, . . . , qm and j = 1, . . . , qa. We want to state that the sets V and Y are
disjoint.

We define two surjective index mappings:

φV : {I1, . . . , Iqm , J1, . . . , Jqa} → {1, . . . , qV } ,
φY : {I1, . . . , Iqm , J1, . . . , Jqa} → {1, . . . , qY } .

such that qV , qY ≤ qm + qa. Note that Ii and Jj are respectively the indices
of the unknowns in Em and Ea. However, multiple unknowns with different in-
dices can be the same. In that case, these unknown are all mapped to the same
value using φV or φY . The system E = Em ⊔ Ea is uniquely determined by
(φ′

V , φ
′
Y , λ

∗qm , λ′∗qa).
Consider a graph G(E) = (V,Y,S ⊔ S ′), where the edge set is partitioned

into two disjoint sets S and S ′. Here S and S ′ denote the set of λ-labeled edges
and the set of λ′-labeled edges, respectively. The graph G(E) can be seen as a
superposition of two subgraphs G(Em) = (V,Y,S) and G(Ea) = (V,Y,S ′). Let
vsyt ∈ S be an edge for vs ∈ V and yt ∈ Y, then vsyt is labeled with an element
in λ∗qm . If the given edge is labeled with λi (for i = 1, . . . , qm), then this edge
and the connected vertices vs and yt represent the equation vs ⊕ yt = λi, where
s = φV (Ii) and t = φY (Ii). Similarly, let vsyt ∈ S ′ be an edge for vs ∈ V and
yt ∈ Y, then vsyt is labeled with an element in λ′∗qa . If the given edge is labeled
with λ′

j (for j = 1, . . . , qa), then this edge and the connected vertices vs and yt
represent the non-equation vs ⊕ yt ̸= λ′

j , where s = φV (Jj) and t = φY (Jj).
Here, each equation in Em corresponds to a unique λ-labeled edge in G(Em), and
each non-equation in Ea corresponds to a unique λ′-labeled edge in G(Ea). Note
that when the system of non-equations Ea is empty, then the graph G(E) does
not contain isolated vertices, every vertex is incident with at least one λ-labeled
edge. Otherwise, the subgraph G(Em) may contain isolated vertices, and these
vertices are connected with a λ′-labeled edge in G(Ea).

We say two distinct equations in Em are in the same component if and only if
the corresponding edges (or vertices) in G(Em) are in the same component. Let
ℓ > 0 and a path

L : a0
λ1

− a1
λ2

− . . .
λℓ

− aℓ
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in G(Em), for some vertices a0, a1, . . . , aℓ ∈ V⊔Y that are in the same component.
The label of L is defined as

λ(L) = λ1 ⊕ λ2 ⊕ . . .⊕ λℓ .

In case Ea is empty, a graph G(E) is called a good graph if its subgraph G(Em)
satisfies the following properties.

Definition 1 (acyclic). There is an unique path L in the subgraph G(Em) be-
tween any two vertices a and b in the same connected component, for a, b ∈ V⊔Y.

Definition 2 (non-degeneracy). For all paths L of even length at least 2 in
the subgraph G(Em), we have λ(L) ̸= 0.

Definition 3 (ξ-block-maximality). For a component I, we denote its size by
ξ(I), which is the number of vertices in I. We denote the maximum component
size by ξmax such that ξ(I) ≤ ξmax for all I in G(Em).

In case the system Ea contains at least one non-equation, a graph G(E) is called
a good graph if its subgraph G(Em) satisfies the above three properties, and if
G(E) also satisfies the following property.

Definition 4 (non-zero cycle label (NCL)). If vertices v and y are con-
nected with a λ′-labeled edge, then they are not connected by a λ(L)-labeled path
in G(Em) such that λ(L) = λ′, for v ∈ V ′ and y ∈ Y ′.

In an edge-labeled bipartite graph G, we call a component I of G an isolated
component if I only contains a path of length one. So I only contains an edge
(v, y, λ) where both v and y have degree 1. We call a component I of G a star
component if ξ(I) ≥ 3, and if there is an unique vertex in I with degree ξ(I)−1.
We call this vertex the center of I. Further, we call I a v-⋆ (resp., y-⋆) component
if its center lies in v (resp., y).

3.2 System of Bi-Variate and Uni-Variate Affine Equations and
Bi-Variate Affine Non-Equations

In order to handle the primitive queries, we extend the system of bi-variate
affine equations and non-equations with 2p uni-variate affine equations. Each
uni-variate affine equation defines one primitive queries. Let qm, qa, q

p
V , q

p
Y , p ≥ 1.

Let Vp = {v1, . . . , vqpV } be a set of qpV unknowns and Yp = {y1, . . . , yqpY } be a

set of qpY unknowns. The new systems are Epm, that contains qm bi-variate affine
equations and 2p uni-variate affine equations

Epm = {vI1 ⊕ yI1 = λ1, . . . , vIqm ⊕ yIqm = λqm ,

vIqm+1
= λqm+1, . . . , vIqm+p

= λqm+p,

yIqm+1
= λqm+p+1, . . . , yIqm+p

= λqm+2p} .
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In some cases (for example mac security), we also need to consider a system Ea
of qa bi-variate affine non-equations

Ea = {v′J1
⊕ y′J1

̸= λ′
1, . . . , v

′
Jqa
⊕ y′Jqa

̸= λ′
qa} ,

where vIi ’s, yIi ’s, v
′
Jj
’s, and y′Jj

’s are unknowns, and λk’s and λ′
j ’s are knowns,

for i = 1, . . . , qm + p, j = 1, . . . , qa, and k = 1, . . . , qm + 2p, such that λqm+1 ̸=
. . . ̸= λqm+p and λqm+p+1 ̸= . . . ̸= λqm+2p. We want to state that the sets Vp

and Yp are disjoint.
We define two surjective index mappings:

φp
V : {I1, . . . , Iqm+p, J1, . . . , Jqa} → {1, . . . , q

p
V } ,

φp
Y : {I1, . . . , Iqm+p, J1, . . . , Jqa} → {1, . . . , q

p
Y } ,

such that qV , qY ≤ qm+qa+p. The system Ep = Epm⊔Ea is uniquely determined
by (φp

V , φ
p
Y , λ

∗qm+2p, λ′∗qa).
Since the last 2p uni-variate affine equations define the values of the 2p un-

knowns vIi ’s and yIi ’s exactly, for i = qm + 1, . . . , qm + p. Hence, we know that
exactly p unknowns in Vp and p unknowns in Yp are already well defined by the
system Epm. We define

V0 = {vφp
V (Iqm+1), . . . , vφp

V (Iqm+p)} , Y0 = {yφp
Y (Iqm+1), . . . , yφp

Y (Iqm+p)} ,

as the sets that contain these 2p unknowns such that |V0| = p and |Y0| = p. We
are particularly interested in the unknowns from the sets Vp \ V0 and Yp \ Y0,
since these are the unknowns that appear in the qm bi-variate affine equations
and qa bi-variate affine non-equations.

Consider a bipartite edge-labeled graph G(Ep) = (Vp,Yp,S ⊔ S ′), the edge
set is partitioned into two disjoint sets S and S ′ as before. The graph G(Ep)
can be seen as a superposition of two subgraphs G(Epm) = (Vp,Yp,S) and
G(Ea) = (Vp,Yp,S ′). Here, each of the qm bi-variate affine equations in Epm
corresponds to a unique λ-labeled edge in G(Epm), each non-equation in Ea cor-
responds to a unique λ′-labeled edge in G(Ea), and each of the 2p uni-variate
affine equations in Epm corresponds to a vertex with well defined value in G(Ep).
Note that the subgraph G(Epm) may contain isolated vertices, and these ver-
tices are either connected with a λ′-labeled edge in G(Ea) or they are isolated
colliding vertices in G(Ep) with a well-defined value. The subgraph G(Epm) may
also contain components that contain vertices with well defined value. We call
these components the “colliding components”, and the vertices with well defined
values the “colliding vertices”.

We distinguish two different cases. In the first case, assume that Ea is empty,
hence we will focus on a graph G(Ep) where its subgraph G(Epm) satisfies the
(i) acyclic, (ii) non-degeneracy, and (iii) ξ-block-maximality properties (Defini-
tion 1-3). In addition, G(Epm) also needs to satisfy the following property.

Definition 5 (single colliding vertex (SCV)). Each component in the graph
G(Epm) contains at most one colliding vertex.
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Note that Definition 5 is necessary in order to give a unique assignment to
every vertex in the graph, since if a vertex is assigned with any value, then
the labeled edges determine the values of all other vertices in the component
containing this vertex. We call any graph that satisfies these four properties a
good graph. Given a good graph G(Epm) = (Vp,Yp,S), a solution to G(Epm) is an
assignment of distinct values to the v vertices in Vp and distinct values to the y
vertices in Yp satisfying all λ-labeled equations.

We consider a system of bi-variate and uni-variate affine equations Epm, such
that each component in G(Epm) is either an isolated edge, a star, or isolated
colliding vertex. In order to find the number of solutions to G(Epm), we first
decompose the graph G(Epm) into its connected components such that G(Epm) =
I ⊔ A ⊔ B ⊔ C, where

A = A1 ⊔ · · · ⊔ Ac1 ⊔ Ac1+1 ⊔ · · · ⊔ Ac1+c2 ,

B = B1 ⊔ · · · ⊔ Bc3 ⊔ Bc3+1 ⊔ · · · ⊔ Bc3+c4 ,

C = C1 ⊔ · · · ⊔ Cc5 ,

for some c1, c2, c3, c4, c5 ≥ 0. Here I is the union of isolated colliding vertices. A
is the union of colliding components, where A1⊔· · ·⊔Ac1 is the union of colliding
components with a colliding v vertex; and Ac1+1 ⊔ · · · ⊔ Ac1+c2 is the union of
colliding components with a colliding y vertex. B is the union of the remaining
star components (that are not colliding components), where B1 ⊔ · · · ⊔Bc3 is the
union of v-⋆ components, and Bc3+1⊔· · ·⊔Bc3+c4 is the union of y-⋆ components.
C is the union of the remaining isolated components (that are not colliding
components).

Let q1, q2, q3, q4, and q5 denote the number of equations (edges) in A1⊔· · ·⊔
Ac1 , Ac1+1⊔· · ·⊔Ac1+c2 , B1⊔· · ·⊔Bc3 , Bc3+1⊔· · ·⊔Bc3+c4 , and C, respectively.
Therefore, we have c5 = q5. Note that the equations in Epm can be arranged
in any arbitrary order without affecting the number of solutions. For the sake
of simplicity, we fix the ordering in such a way that the union I comes first,
followed by A, B, and C. Now, our goal is to give a lower bound on the number
of solutions of Epm.

Theorem 1. For positive integers qm and p, let G(Epm) = (Vp,Yp,S) be a good
graph as described above such that |S| = qm. Assume that p + qm ≤ 2n−2 and
ξmax · (p+ qm) ≤ 2n−1, let h(G(Epm)) denote the number of solutions to G(Epm).

(a) For settings such as (t)sprp, we have

h(G(Epm))
∏

λ′∈λ̂qm (2n)µ(λ∗qm ,λ′)

(2n − p)q2+c3+q4+q5(2
n − p)q1+q3+c4+q5

≥ 1−
∑c1+c2

i=1 qm
2n

− 3q3m
22n

− 2(p+ qm)2

22n

(
η + qm

)
.

(b) For settings such as prf, weak prf, (t)ccr, we have

h(G(Epm))2nqm

(2n − p)q2+c3+q4+q5(2
n − p)q1+q3+c4+q5

≥ 1− 2(p+ qm)2

22n

(
η + qm

)
.
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where η =
∑c1+c2+c3+c4−1

i=c1+c2
(η2i+1 + ηi+1), ηj = ξj − 1 and ξj denotes the size

(number of vertices) of the j-th component, for all j ∈ [c1 + c2 + c3 + c4 + c5].

Proof. The proof is given in Supplementary Material A. ⊓⊔

We will illustrate Theorem 1 (a) to tweakable block ciphers in Section 5, and
Theorem 1 (b) to PRFs in Section 6. Looking back at the discussion given
towards the end of Section 2.5, one can see the motivation behind the difference
between the expressions given in Theorem 1 (a) and Theorem 1 (b).

For the second case, the system Ea contains at least one non-equation. Here
we will focus on a graph G(Ep) such that its subgraph G(Epm) satisfies the (i)
acyclic, (ii) non-degeneracy, (iii) ξ-block-maximality, (v) NCL, and (iv) SCV
properties (Definition 1-5). In addition, G(E) also need to satisfy the following
property.

Definition 6 (non-zero distance label (NDL)). There are no λ′-labeled
edges that connect two vertices v and y from two colliding components I1 and
I2, where the distance between v and y (defined as v ⊕ y) is λ′, for v ∈ V ′p and
y ∈ Y ′p.

Note that if there is a λ′-labeled non-equations between vertices v and y of
two different colliding components, then it means v ⊕ y ̸= λ′. However, for any
colliding component, the values of all vertices in this component are uniquely
defined. If the distance v ⊕ y is equal to λ′, then we will have a contradiction
with the non-equation. Definition 6 actually excludes this situation. We call
any graph that satisfies these six properties a good graph. Given a good graph
G(Ep) = (Vp,Yp,S ⊔ S ′), a solution to G(Ep) is an assignment of distinct values
to the v vertices in Vp and distinct values to the y vertices in Yp satisfying all
λ-labeled equations and λ′-labeled non-equations.

We consider a system Ep with its corresponding graph G(Ep) such that each
component in the subgraph G(Epm) is a star, an isolated edge, or an isolated
vertex. In order to find the number of solutions to G(Ep), we first decompose the
subgraph G(Epm) into its connected components such that G(Epm) = I ⊔ A ⊔ B ⊔
C⊔D, with I,A,B, and C the union of components defined before. Here, D is the
union of isolated vertices in the subgraph G(Epm) that are not colliding vertices,
note that these vertices are connected with λ′-labeled edges in the subgraph
G(Ea). Let c6 be the number of such isolated v vertices, and c7 be the number of
such isolated y vertices. Again, we fix the ordering in such a way that the union
I comes first, followed by A, B, C, and D. Now, our goal is to give a lower bound
on the number of solutions of Ep.

Theorem 2. For positive integers qm, qa and p, let G(Ep) = (V ′p,Y ′p,S ⊔ S ′)
be a good graph as described above such that |S| = qm, |S ′| = qa. Assume that
p + qm ≤ 2n−2 and ξmax · (p + qm) ≤ 2n−1, let h(G(Ep)) denote the number of
solutions to G(Ep).
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(a) For settings such as (t)sprp with non-equations, we have

h(G(Ep))
∏

λ′∈λ̂qm (2n)µ(λ∗qm ,λ′)

(2n − p)q2+c3+q4+q5+c6(2
n − p)q1+q3+c4+q5+c7

≥ 1−
∑c1+c2

i=1 qm
2n

− 3q3m
22n

− 2(p+ qm)2

22n

(
η + qm

)
− 2qa

2n
.

(b) For settings such as mac (prf with non-equations), we have

h(G(Ep))2nqm
(2n − p)q2+c3+q4+q5+c6(2

n − p)q1+q3+c4+q5+c7

≥ 1− 2(p+ qm)2

22n

(
η + qm

)
− 2qa

2n
.

where η =
∑c1+c2+c3+c4−1

i=c1+c2
(η2i+1 + ηi+1), ηj = ξj − 1 and ξj denotes the size

(number of vertices) of the j-th component, for all j ∈ [c1 + c2 + c3 + c4 + c5].

Proof. The proof is given in Supplementary Material B. ⊓⊔

We will illustrate Theorem 2 (b) to nonce-based MAC algorithms in Section 7.

4 A Framework for Security Proof Using Public
Permutation Mirror Theory

The goal of this section is to establish a general framework for (multi-user) secu-
rity proof using Theorem 1-2. Note that a framework for specific security notions
such as sprp, tsprp, prf, mac, . . . can be derived directly from this framework. We
consider an algorithm F which is built on two independent public permutations
with the following special structure.

Let n, s, t ∈ N, and let π1, π2
$←− Perm(n). One can consider the generic

construction Fπ1,π2 : K × I1 × · · · × Is → R1 × · · · × Rt based on π1 and π2,
where K is the key space, I1×· · ·×Is are the input spaces, and R1×· · ·×Rt are
the output spaces. Note that here F can be a tweakable block cipher, a PRF,
a MAC algorithm, etc. In this work, we will focus on algorithms that can be
viewed as the xor of the public permutations

Z = π1(A)⊕ π2(B) ,

for π1, π2
$←− Perm(n). Here A, B, and Z are functions of the secret key K,

the inputs I1, . . . , Is, and the outputs R1, . . . , Rt. Although there are no strict
restrictions for Z, we do require that the equality patterns of A and B satisfy
certain conditions. More precisely, equality pattern of B should not depend on
the value of π1(A) and vice versa. This is the condition to use the mirror theory
based lower bound as formalized in [32].
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4.1 General Setting and Transcripts.

Let u ∈ N, K1, . . . ,Ku
$←− K, and π1, π2

$←− Perm(n). Consider any distin-
guisher D that has access to the oracles: (Om,Oa, π

±
1 , π

±
2 ) in the real world or

(Pm,Pa, π
±
1 , π

±
2 ) in the ideal world. Here we have Om = (Fπ1,π2

K1
, . . . , Fπ1,π2

Ku
),

and Oa is the possible set of verification oracles (for example the case of mac no-
tion in Section 2.3). The oracle Pm is the idealized version of (Fπ1,π2

K1
, . . . , Fπ1,π2

Ku
),

which these idealized oracles are depend on the considered security notion (see
Section 2.1-2.3 for more details), and Pa is the possible set of rejection oracles.
We require that D is computationally unbounded and deterministic. For user in-
dex j ∈ {1, . . . , u}, D makes qm queries to Om or Pm, and these are summarized
in a transcript

τm = {(j(1), I(1)1 , . . . , I(1)s , R
(1)
1 , . . . , R

(1)
t ), . . . ,

(j(qm), I
(qm)
1 , . . . , I(qm)

s , R
(qm)
1 , . . . , R

(qm)
t )} ,

and qa queries to Oa or Pa, these are summarized in a transcript

τa = {(j′(1), I ′(1)1 , . . . , I ′(1)s , R
′(1)
1 , . . . , R

′(1)
t , b′(1)), . . . ,

(j′(qa), I
′(qa)
1 , . . . , I ′(qa)s , R

′(qa)
1 , . . . , R

′(qa)
t , b′(qa))} .

Note that τa is empty for notions where no verification oracles are considered
(such as sprp, tsprp, prf, tccr, etc). D also makes p primitive queries to π±

1 and
p primitive queries to π±

2 , and like before, these are respectively summarized
in transcripts τ1 and τ2. We assume that τm, τa, τ1, and τ2 do not contain
duplicate elements. After D’s interaction with the oracles, but before it outputs
its decision, we disclose the keys K1, . . . ,Ku to the distinguisher. In the real
world, these are the keys used in the construction. In the ideal world, K1, . . . ,Ku

are dummy keys that are drawn uniformly at random. The complete view is
denoted τ = (τm, τa, τ1, τ2,K1, . . . ,Ku).

4.2 Attainable Index Mappings.

In the real world, each query (j(i), I
(i)
1 , . . . , I

(i)
s , R

(i)
1 , . . . , R

(i)
t ) ∈ τm corresponds

to an evaluation of the j(i)-th oracle inOm, each query (j′(a), I
′(a)
1 , . . . , I

′(a)
s , R

′(a)
1 ,

. . . , R
′(a)
t , b′(a)) ∈ τa corresponds to an evaluation of the j′(a)-th oracle in Oa,

and each primitive query (u, v) ∈ τ1 (resp., (x, y) ∈ τ2) corresponds to an
evaluation of the primitive oracle π±

1 (resp., π±
2 ). Note that each algorithm

F consists of an evaluation of π1 and an evaluation of π2. For the queries
in τm, these are of the form A(i) 7→ π1(A

(i)) and B(i) 7→ π2(B
(i)) such that

π1(A
(i))⊕ π2(B

(i)) = Z(i). Likewise, for the queries in τa, there are evaluations
A′(a) 7→ π1(A

′(a)) and B′(a) 7→ π2(B
′(a)), such that π1(A

′(a))⊕π2(B
′(a)) ̸= Z ′(a).

The values of A(i), B(i), Z(i) and A′(a), B′(a), Z ′(a) are specific for the particular
construction, and can be deduced from τ . Without loss of generality, we assume
that all primitive queries are made in the forward direction, then these are of
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the form u 7→ π1(u) or x 7→ π2(x) such that π1(u) = v and π2(x) = y. The
transcript τ defines qm + 2p equations and qa non-equations on the unknowns,
and these (non)-equations are

Epm =



π1(A
(1))⊕ π2(B

(1)) = Z(1),
...

π1(A
(qm))⊕ π2(B

(qm)) = Z(qm),

π1(u) = v for (u, v) ∈ τ1,

π2(x) = y for (x, y) ∈ τ2,

Ea =


π1(A

′(1))⊕ π2(B
′(1)) ̸= Z ′(1),

...

π1(A
′(qa))⊕ π2(B

′(qa)) ̸= Z ′(qa).

(3)

In the above qm+2p equations, some of the unknowns may be equal to each other.
We have that π1(A

(i)) ̸= π1(A
(k)) if and only if A(i) ̸= A(k), and π2(B

(i)) ̸=
π2(B

(k)) if and only if B(i) ̸= B(k). No condition holds for π1(A
(i)) versus

π2(B
(i)), as these are defined by independent permutations. The same holds

for verification queries and primitive queries. However, no a priori condition
holds for (non-)equality between values π1(A

(i)) versus π1(A
′(a)) versus π1(u),

and π2(B
(i)) versus π2(B

′(a)) versus π2(x).
Thus,

{π1(A
(i))}1≤i≤qm ∪ {π1(A

′(a))}1≤a≤qa ∪ {π1(u)}(u,v)∈τ1 ,

{π2(B
(i))}1≤i≤qm ∪ {π2(B

′(a))}1≤a≤qa ∪ {π2(x)}(x,y)∈τ2 ,

are identified with two sets of unknowns V ′p = {v1, . . . , vqp
V ′
} and Y ′p = {y1, . . . ,

yqp
Y ′
}, with qpV ′ , q

p
Y ′ ≤ qm+ qa+ p. Since V ′p and Y ′p are defined by independent

permutations, we know that V ′p and Y ′p are disjoint. We also know that

V0 = {π1(u) | (u, v) ∈ τ1} , Y0 = {π2(x) | (x, y) ∈ τ2} .

are already well defined by the system. Hence the only unknowns that are left
are in the sets V ′p \ V0 and Y ′p \ Y0. For vs ∈ V ′p and yt ∈ Y ′p, we connect vs
and yt with a λ-labeled edge of label Z(i) if π1(A

(i)) = vs and π2(B
(i)) = yt for

some i ∈ [qm]. Similarly, we connect vs and yt with a λ′-labeled edge of label
Z ′(a) if π1(A

′(a)) = vs and π2(B
′(a)) = yt for some a ∈ [qa]. Finally, vs (resp.,

yt) represents an isolated colliding vertex if it is not connected with an edge,
for these vertices we have π1(u) = vs (resp., π2(v) = yt) for (u, vs) ∈ τ1 and
(x, yt) ∈ τ2. In this way, we obtain a graph on V ′p ⊔ Y ′p, called the transcript
graph of τ , and we denote it by Gτ (Ep).

4.3 Bad Transcripts.

Informally, bad events are the properties which would make the public permuta-
tion extended mirror theory inapplicable. One can only apply the mirror theory
if Gτ (Ep) is (1). acyclic, (2). satisfies the non-degeneracy condition, (3). satis-
fies the NCL condition, (4). satisfies the SCV condition, (5). satisfies the NDL
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condition, and (6). is (ξ + 1)-block-maximal. For some parameter ξ that will
be defined later on, we say a system of equations is (ξ + 1)-block-maximal if it
does not contain a (ξ + 1)-block-collision, which means that neither of the two
permutations evaluates the same input more than ξ times. As our security anal-
ysis will cap on 2n/3-bit security only, we can keep it simple by introducing an
event that excludes all alternating paths of length 3, and events that exclude all
v-⋆ component with a y-colliding vertex and y-⋆ component with a v-colliding
vertex. Below, we will give a formal description of the bad events.

For simplicity, we denote by A(i) the i-th input to π1, B
(i) the i-th input to

π2, and Z(i) = π1(A
(i))⊕π2(B

(i)) for the MAC queries. Similarly we have A′(a),
B′(a) and Z ′(a) for the verification queries. Given a parameter ξ ∈ N, we say
that τ ∈ Tbad if and only if one of the following conditions holds:

(i) A component with two colliding vertices.

∃i ∈ [qm], (u, v) ∈ τ1, (x, y) ∈ τ2 such thatA(i) = u ∧ B(i) = x ,

∃i ∈ [qm], (u, v) ∈ τ1, (x, y) ∈ τ2 such thatA(i) = u ∧ Z(i) = v ⊕ y ,

∃i ∈ [qm], (u, v) ∈ τ1, (x, y) ∈ τ2 such thatZ(i) = v ⊕ y ∧ B(i) = x .

(ii) An alternating path of length 3.

∃i ̸= k, k ̸= l ∈ [qm] such thatA(i) = A(k) ∧ B(k) = B(l) .

(iii) An alternating path of length 2 such that λ(L) = 0.

∃i ̸= k ∈ [qm] such thatA(i) = A(k) ∧ Z(i) = Z(k) ,

∃i ̸= k ∈ [qm] such thatZ(i) = Z(k) ∧ B(i) = B(k) .

(iv) A v-⋆ colliding component with y-colliding vertices, or a y-⋆ colliding com-
ponent with v-colliding vertices.

∃i ̸= k ∈ [qm], (u, v) ∈ τ1 such thatA(i) = u ∧ B(i) = B(k) ,

∃i ̸= k ∈ [qm], (x, y) ∈ τ2 such thatB(i) = x ∧ A(i) = A(k) ,

∃i ̸= k ∈ [qm], (u, v), (u′, v′) ∈ τ1 such that

A(i) = u ∧ A(k) = u′ ∧ v ⊕ Z(i) = v′ ⊕ Z(k) ,

∃i ̸= k ∈ [qm], (x, y), (x′, y′) ∈ τ2 such that

B(i) = x ∧ B(k) = x′ ∧ y ⊕ Z(i) = y′ ⊕ Z(k) .

(v) A (ξ + 1)-block-collision.

∃i1, . . . , iξ+1 ∈ {1, . . . , qm} such thatA(1) = · · · = A(ξ+1) ,

∃i1, . . . , iξ+1 ∈ {1, . . . , qm} such thatB(1) = · · · = B(ξ+1) .

(vi) An alternating circle of length 2 with a λ′-labeled edge.

∃i ∈ [qm], a ∈ [qa] such thatA(i) = A′(a) ∧ B(i) = B′(a) ∧ Z(i) = Z ′(a) .
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(vii) A λ′-labeled edge between two vertices with distance λ′.

∃a ∈ [qa], (u, v) ∈ τ1, (x, y) ∈ τ2 such that

A′(a) = u ∧ B′(a) = x ∧ Z ′(a) = v ⊕ y ,

∃i ∈ [qm], a ∈ [qa], (u, v), (u
′v′) ∈ τ1 such that

A(i) = u ∧ B(i) = B′(a) ∧ A′(a) = u′ ∧ Z ′(a) = v ⊕ Z(i) ⊕ v′ ,

∃i ∈ [qm], a ∈ [qa], (x, y), (x
′, y′) ∈ τ2 such that

B(i) = x ∧ A(i) = A′(a) ∧ B′(a) = x′ ∧ Z ′(a) = y ⊕ Z(i) ⊕ y′ ,

∃i ̸= k ∈ [qm], a ∈ [qa], (u, v) ∈ τ1, (x, y) ∈ τ2 such thatA(i) = u

∧ B(k) = x ∧ B(i) = B′(a) ∧ A(k) = A′(a) ∧ Z ′(a) = v ⊕ Z(i) ⊕ y ⊕ Z(k) .

Note that by (ii) and (iv), we will end up with a graph that contains only isolated
and v-⋆ colliding components with a v-colliding vertex, isolated and y-⋆ colliding
components with a y-colliding vertex, v-⋆ components, y-⋆ components, isolated
components, and isolated vertices. The resulting graph is good since it

1. satisfies the SCV condition by conditions (i), (ii), and (iv),
2. acyclic by conditions (ii),
3. satisfies the non-degeneracy condition by conditions (ii) and (iii),
4. is (ξ + 1)-block-maximal by conditions (ii) and (v),
5. satisfies the NCL condition by conditions (ii) and (vi),
6. satisfies the NDL condition by conditions (ii), (iv), and (vii).

The probability that τ ∈ Tbad happens, is given by the sum of the probabilities
that each of the above mentioned bad events happens. When the above men-
tioned events can be excluded in the transcript, then Gτ forms a good transcript
graph for τ ∈ Tgood.

4.4 Ratio for Good Transcripts.

Once bad transcripts have been defined, we will show that

Pr[XP ∈ Tbad] ≤ εbad ,

for a small εbad > 0. Next, we fix a good transcript τ . According to (2), we only
have to consider ρ(τ)/Pr[Pm : Pm ⊢ τm ∧ Pa ⊢ τa], with

ρ(τ) = Pr
[
π1, π2

$←− Perm(n) : Om ⊢ τm ∧ Oa ⊢ τa | π1 ⊢ τ1 ∧ π2 ⊢ τ2

]
.

This is exactly the ratio given by Theorem 1 and 2. From (2), we obtain

Pr[XO = τ ]

Pr[XP = τ ]
≥ 1− εratio ,

and by Lemma 3, we have

Advmac
MAC(D) ≤ E[εratio] + εbad .
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5 Multi-User Security of Tweakable Even-Mansour
Cipher

In this section we consider the 2-round Tweakable Even-Mansour (TEM) con-
struction that was proposed by Cogliati et al. [15]. They showed that 2-round
TEM achieves 2n/3-bit security in the single-user setting. Here we show that
same level of security can be achieved in the multi-user setting using the tech-
nique proposed in this work.

Let n ∈ N, let π1, π2
$←− Perm(n), and let H be an ϵ-AXU function family.

One can consider a generic construction TEM: H2 × T × {0, 1}n → {0, 1}n as

TEM(h1, h2, T,M) = π2(π1(M ⊕ h1(T ))⊕ h1(T )⊕ h2(T ))⊕ h2(T ) . (4)

The security of TEM based on π1 and π2 is given in the following Theorem.

Theorem 3. Let n ∈ N and let H be a uniform ϵ-AXU family of functions
from T to {0, 1}n. We consider TEM: H2 × T × {0, 1}n → {0, 1}n based on

two permutations π1, π2
$←− Perm(n) and u pairs of uniform user hash keys

(h1
1, h

1
2), . . . , (h

u
1 , h

u
2 )

$←− H2. For any distinguisher D making at most q con-
struction queries distributed over its u construction oracles, at most p primitive
queries to π±

1 and p primitive queries to π±
2 , we have

Advmu-tsprp
TEM (D) ≤ 3q3ϵ2 + q2pϵ2 + 6

√
qpϵ +

6q3/2

2n
+

2q(p+ q)2

22n

(
1 + 13qϵ

)
.

Proof. Let (h1
1, h

1
2), . . . , (h

u
1 , h

u
2 )

$←− H2, π1, π2
$←− Perm(n), and π̃1, . . . , π̃u

$←−
P̃erm(t, n). Here, we consider any distinguisher D that has access to either

(TEM
π1,π

−1
2

h1
1,h

1
2

, . . . ,TEM
π1,π

−1
2

hu
1 ,h

u
2
, π1, π2) in the real world, or (π̃1, . . . , π̃u, π1, π2) in

the ideal world. The security proof relies on Theorem 1 (a), although this appli-

cation is not straightforward. Most importantly, we consider (TEM
π1,π

−1
2

hj
1,h

j
2

)uj=1 in-

stead of (TEMπ1,π2

hj
1,h

j
2

)uj=1. As π1, π2 are drawn independently, these two construc-

tions are provably equally secure. We can view an evaluation C = TEM
π1,π

−1
2

hj
1,h

j
2

(T,

M) as the xor of two public permutations in the middle of the function, π1(M ⊕
hj
1(T ))⊕π2(M⊕hj

2(T )) = hj
1(T )⊕h

j
2(T ). Therefore, q evaluations of TEM

π1,π
−1
2

hj
1,h

j
2

can be translated to a system of q bi-variate affine equations. Including 2p uni-
variate affine equations that are defined by the primitive queries, these equations
can be written in the form (3).

Pr[XP ∈ Tbad]. Following the framework given in Section 4, we first perform
the bad transcripts analysis. By replacing A = M ⊕ hj

1(T ), B = M ⊕ hj
2(T ),

and Z = hj
1(T ) ⊕ hj

2(T ) in the framework of Section 4.3, we get the following
bad events. Given a parameter ξ ∈ N, we say that τ ∈ Tbad if and only if
there exist construction queries (j, T,M,C), (j′, T ′,M ′, C ′), (j′′, T ′′,M ′′, C ′′) ∈
τm, primitive queries (u, v), (u′, v′) ∈ τ1 and (x, y), (x′, y′) ∈ τ2 such that one of
the following conditions holds:
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(i) A component with two colliding vertices.

bad1 : M ⊕ u = hj
1(T ) ∧ C ⊕ x = hj

2(T ) ,

bad2 : M ⊕ u = hj
1(T ) ∧ v ⊕ y = hj

1(T )⊕ hj
2(T ) ,

bad3 : v ⊕ y = hj
1(T )⊕ hj

2(T ) ∧ C ⊕ x = hj
2(T ) .

(ii) An alternating path of length 3.

bad4 : M ⊕ hj
1(T ) = M ′ ⊕ hj′

1 (T
′) ∧ C ′ ⊕ hj′

2 (T
′) = C ′′ ⊕ hj′′

2 (T ′′) .

(iii) An alternating path of length 2 such that λ(L) = 0.

bad5 : M ⊕ hj
1(T ) = M ′ ⊕ hj′

1 (T
′) ∧ hj

1(T )⊕ hj
2(T ) = hj′

1 (T
′)⊕ hj′

2 (T
′) ,

bad6 : h
j
1(T )⊕ hj

2(T ) = hj′

1 (T
′)⊕ hj′

2 (T
′) ∧ C ⊕ hj

2(T ) = C ′ ⊕ hj′

2 (T
′) .

(iv) A v-⋆ colliding component with y-colliding vertices, or a y-⋆ colliding com-
ponent with v-colliding vertices .

bad7 : M ⊕ u = hj
1(T ) ∧ C ⊕ hj

2(T ) = C ′ ⊕ hj′

2 (T ) ,

bad8 : C ⊕ x = hj
2(T ) ∧ M ⊕ hj

1(T ) = M ′ ⊕ hj′

1 (T
′) ,

bad9 : M ⊕ u = hj
1(T ) ∧ M ′ ⊕ u′ = hj′

1 (T
′)

∧ v ⊕ hj
1(T )⊕ hj

2(T ) = v′ ⊕ hj′

1 (T
′)⊕ hj′

2 (T
′) ,

bad10 : C ⊕ x = hj
2(T ) ∧ C ′ ⊕ x′ = hj′

2 (T )

∧ y ⊕ hj
1(T )⊕ hj

2(T ) = y′ ⊕ hj′

1 (T
′)⊕ hj′

2 (T
′) .

(v) A (ξ + 1)-block-collision.

bad11 : {i1, . . . , iξ+1} ∈ [q] such thatMi1 ⊕ h
ji1
1 (Ti1) = · · · = Miξ+1

⊕ h
jξ+1

1 (Tiξ+1
) ,

bad12 : {i1, . . . , iξ+1} ∈ [q] such thatCi1 ⊕ h
ji1
2 (Ti1) = · · · = Ciξ+1

⊕ h
jξ+1

2 (Tiξ+1
) .

Since there is a
∑c1+c2

i=1 q/2n term in Theorem 1 (a), and we want to get 2n/3-bits
security, we also need the following two bad events

badc1 : c1 = |(j, T,M,C) ∈ τm : M ⊕ hj
1(T ) ∈ τ1| ≥

√
q ,

badc2 : c2 = |(j, T,M,C) ∈ τm : C ⊕ hj
2(T ) ∈ τ2| ≥

√
q .

Lemma 4. For any integers q and p, one has

Pr[τ ∈ Tbad] ≤ 4qp2ϵ2 + 3q3ϵ2 + q2pϵ2 +
q3

22n
+ 2
√
qpϵ+

16q2(p+ q)2ϵ

22n
.

The proof of the lemma is given in Supplementary Material C.
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Pr[XO = τ ]/Pr[XP = τ ]. The next step is the calculate the ratio for good
transcripts. Note that by ¬badc1 and ¬badc2 , we have

∑c1+c2
i=1 q ≤ 2q3/2. We use

Theorem 1 (a) to get

ϵratio ≤
2q3/2

2n
+

3q3

22n
+

2(p+ q)2
∑c1+c2+c3+c4−1

i=c1+c2
(η2i+1 + ηi+1)

22n
+

2q(p+ q)2

22n
.

Let ∼1 (resp., ∼2) be an equivalence relation on [q] as α ∼1 β (resp., α ∼2 β) if
and only if Aα = Aβ (resp. Bα = Bβ). Now, each ηi random variable denotes the
cardinality of some non-singleton equivalence class of [q] with respect to either
∼1 or∼2. For r, s ∈ N, we denote by P1

1 , . . . ,P1
r and P2

1 , . . . ,P2
s the non-singleton

equivalence classes of [q] with respect to ∼1 and ∼2, respectively. Further, for
k ∈ [r] and l ∈ [s], let νk = |P1

k | and ν′l = |P2
l |. Then, we have

E

[
c1+c2+c3+c4−1∑

i=c1+c2

(η2i+1 + ηi+1)

]
≤ E

[
r∑

k=1

ν2k + νk

]
+E

[
s∑

l=1

ν′2l + ν′l

]
≤ 5q2ϵ ,

using Lemma 1 and the fact that (h1
1, h

1
2), . . . , (h

u
1 , h

u
2 )

$←− H2.
Finally, Theorem 3 is proven by combining Lemma 4 and ϵratio with Lemma 3.

⊓⊔

6 Multi-User Security of pEDM PRF

In this section we consider the permutation based version of Encrypted Davies-
Mayer (pEDM) construction, that was proposed by Dutta et al. [22]. They
showed that pEDM based on a single permutation achieves 2n/3-bit security.
Here we will prove the multi-user security of pEDM based on two independent
permutations, and we show that same level of security can be achieved using the
technique proposed in this work. In this case, the multi-user security analysis is
more complex than the single-user analysis, since the inputs to π1 do not need
to be fresh, this leads to more bad events and a more complex good transcripts
ratio analysis when a dedicated proof need to be performed.

Let n ∈ N, let π1, π2
$←− Perm(n). One can consider a generic construction

pEDM: {0, 1}2n × {0, 1}n → {0, 1}n as

pEDM(K1,K2,M) = π2(π1(M ⊕K1)⊕M ⊕K1 ⊕K2)⊕K1 . (5)

The security of pEDM based on π1 and π2 is given in the following Theorem.

Theorem 4. Let n ∈ N and 1 ≤ ξ ≤ 2n−1/(p+q). We consider pEDM: {0, 1}2n×
{0, 1}n → {0, 1}n based on two permutations π1, π2

$←− Perm(n), and u pairs of

uniform user keys (K1
1 ,K

1
2 ), . . . , (K

u
1 ,K

u
2 )

$←− {0, 1}2n. For any distinguisher D
making at most q construction queries distributed over its u construction oracles,
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at most p primitive queries to π±
1 and p primitive queries to π±

2 , we have

Advmu-prf
pEDM (D) ≤ 2

2n
+

4qp2

22n
+

3q2p

22n
+

3p
√
nq

2n
+

2q3

22n

+
p3/2

2n
+

(p+ q)2

22n

(
7q +

5u(u− 1)

2n

)
+

(
q

ξ+1

)
2nξ

.

Proof. Let (K1
1 ,K

1
2 ), . . . , (K

u
1 ,K

u
2 )

$←− {0, 1}2n, π1, π2
$←− Perm(n), and φ1, . . . , φu

$←− Func(n). Here, we consider any distinguisher D that has access to either

(pEDM
π1,π

−1
2

K1
1 ,K

1
2
, . . . ,pEDM

π1,π
−1
2

Ku
1 ,Ku

2
, π1, π2) in the real world, or (φ1, . . . , φu, π1, π2)

in the ideal world. The security proof relies on Theorem 1 (b). As before, we con-

sider (pEDM
π1,π

−1
2

Kj
1 ,K

j
2

)uj=1 instead of (pEDMπ1,π2

Kj
1 ,K

j
2

)uj=1. We can view an evaluation

C = pEDM
π1,π

−1
2

Kj
1 ,K

j
2

(M) as the xor of two public permutations in the middle of the

function, π1(M ⊕Kj
1)⊕π2(C⊕Kj

1) = M ⊕Kj
1⊕Kj

2 . Therefore, q evaluations of

pEDM
π1,π

−1
2

Kj
1 ,K

j
2

can be translated to a system of q bi-variate affine equations. In-

cluding 2p uni-variate affine equations that are defined by the primitive queries.

Pr[XP ∈ Tbad]. Following the framework given in Section 4, we first perform
the bad transcripts analysis. By replacing A = M ⊕ Kj

1 , B = C ⊕ Kj
1 , and

Z = M ⊕ Kj
1 ⊕ Kj

2 in the framework of Section 4.3, we get the following bad
events. Given a parameter ξ ∈ N, we say that τ ∈ Tbad if and only if there ex-
ist construction queries (j,M,C), (j′,M ′, C ′), (j′′,M ′′, C ′′) ∈ τm, and primitive
queries (u, v), (u′, v′) ∈ τ1 and (x, y), (x′, y′) ∈ τ2 such that one of the following
conditions holds:

(i) A component with two colliding vertices.

bad1 : M ⊕ u = Kj
1 ∧ C ⊕ x = Kj

1 ,

bad2 : M ⊕ u = Kj
1 ∧ v ⊕ y = M ⊕Kj

1 ⊕Kj
2 ,

bad3 : v ⊕ y = M ⊕Kj
1 ⊕Kj

2 ∧ C ⊕ x = Kj
1 .

(ii) Alternating paths of length 3 across different users.

bad4 : M ⊕Kj
1 = M ′ ⊕Kj′

1 ∧ C ′ ⊕Kj′

1 = C ′′ ⊕Kj′′

1 .

(iii) Alternating paths of length 2 such that λ(L) = 0 across different users.

bad5 : M ⊕Kj
1 = M ′ ⊕Kj′

1 ∧ M ⊕Kj
1 ⊕Kj

2 = M ′ ⊕Kj′

1 ⊕Kj′

2 ,

bad6 : M ⊕Kj
1 ⊕Kj

2 = M ′ ⊕Kj′

1 ⊕Kj′

2 ∧ C ⊕Kj
1 = C ′ ⊕Kj′

1 .
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(iv) A v-⋆ colliding component with y-colliding vertices, or a y-⋆ colliding com-
ponent with v-colliding vertices.

bad7 : M ⊕ u = Kj
1 ∧ C ⊕Kj

1 = C ′ ⊕Kj′

1 ,

bad8 : C ⊕ x = Kj
1 ∧ M ⊕Kj

1 = M ′ ⊕Kj′

1 ,

bad9 : M ⊕ u = Kj
1 ∧ M ′ ⊕ u′ = Kj′

1

∧ v ⊕M ⊕Kj
1 ⊕Kj

2 = v′ ⊕M ′ ⊕Kj′

1 ⊕Kj′

2 ,

bad10 : C ⊕ x = Kj
1 ∧ C ′ ⊕ x′ = Kj′

1

∧ y ⊕M ⊕Kj
1 ⊕Kj′

2 = y′ ⊕M ′ ⊕Kj
1 ⊕Kj′

2 .

(v) A (ξ + 1)-block-collision.

bad11 : {i1, . . . , iξ+1} ∈ [q] such thatCi1 ⊕K
ji1
1 = · · · = Ciξ+1

⊕K
jξ+1

1 .

Note that the events bad4-bad6 and bad8 will not appear when the single user
setting is considered, since in that case the distinguisher is not allow to query
the same M to the construction oracle.

Lemma 5. Let 1 ≤ ξ ≤ 2n−1/(p+ q). For any integers q and p, one has

Pr[τ ∈ Tbad] ≤
2

2n
+

4qp2

22n
+

3q2p

22n
+

3p
√
nq

2n
+

2q3

22n
+

p3/2

2n
+

(
q

ξ+1

)
2nξ

.

The proof of the lemma is given in Supplementary Material D.

Pr[XO = τ ]/Pr[XP = τ ]. The next step is the calculate the ratio for good
transcripts. We use Theorem 1 (b) to get

ϵratio ≤
2(p+ q)2

∑c1+c2+c3+c4−1
i=c1+c2

(η2i+1 + ηi+1)

22n
+

2q(p+ q)2

22n
.

As before, for r, s ∈ N, we denote by P1
1 , . . . ,P1

r and P2
1 , . . . ,P2

s the non-singleton
equivalence classes of [q] with respect to ∼1 and ∼2, respectively. Further, for
k ∈ [r] and l ∈ [s], let νk = |P1

k | and ν′l = |P2
l |. Then, we have

E

[
c1+c2+c3+c4−1∑

i=c1+c2

(η2i+1 + ηi+1)

]
≤ E

[
r∑

k=1

ν2k + νk

]
+E

[
s∑

l=1

ν′2l + ν′l

]

≤ 5u(u− 1)

2n−1
+

5q2

2n−1
.

The non-freshness of π1 in the multi-user setting leads to the existence of v-⋆
components (c3 ̸= 0). The difficulty introduced by this can easily be handled
by our new technique without performing a long and complicated analysis. Note
that when u = 1, we are back to the single user setting, then there are no v-⋆
components (c3 = 0), since M is always different. Finally, Theorem 4 is proven
by combining Lemma 5 and ϵratio with Lemma 3. ⊓⊔
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7 Multi-User Security of nEHtMp MAC Algorithm

In this section we consider the public permutation based nonce-based Enhance
Hash-then-Mask (nEHtMp) MAC algorithm, that was proposed by Dutta and
Nandi [20]. They showed that nEHtMp based on a single permutation (using
domain separation) achieves 2n/3-bit security when the number of faulty nonces
µ is sufficiently smaller than 2n/3. However, according to the framework given
in Section 4.3, the authors missed some bad events in their analysis, namely the
two last events of (iv) and the three last events of (vii) of Section 4.3. Taking
into account these missing bad events, the extended mirror theory used in [20]
is not sufficient for the good transcripts ratio analysis of nEHtMp. As a result,
their ratio analysis of the construction is also incomplete. More precisely, non-
equations between a colliding component and a normal component were not
considered in the ratio analysis of [20]. This observation was also verified by the
authors [10].

In this section, we will fix this problem using the techniques proposed in this
work without performing a new complicated analysis, since these non-equations
are already covered in our public permutation extended mirror theory (Theo-
rem 2). Some of these additional bad events, however, require involved arguments
to bound. Since the goal of this work is to illustrate the power of our new mod-
ular proof approaches, rather than presenting strong combinatorial results to
bound these events. We will modify the design of nEHtMp by xoring an uni-
versal hash evaluation of the input message M using an extra hash key h∗ to
the output tag. This modified m-nEHtMp construction uses more randomness,
which in turn enables us to bound the additional bad events easily. We would like
to note that our analysis of m-nEHtMp does not imply infeasibility in fixing the
proof of nEHtMp. In fact, we believe that the security of the original nEHtMp

construction can also be proven with our new approaches in combination with
some strong techniques to bound these bad events. Here we will prove that this
m-nEHtMp construction based on two independent permutations achieves 2n/3-
bit security in the multi-user setting using the technique proposed in this work.

Let n ∈ N, let π1, π2
$←− Perm(n), and letH be an ϵ-AXU function family. One

can consider a generic construction m-nEHtMp : {0, 1}n ×H2 × {0, 1}n ×M→
{0, 1}n as

m-nEHtMp(K,h, h∗N,M) = π1(N ⊕K)⊕ π2(N ⊕ h(M))⊕ h∗(M) . (6)

The security of m-nEHtMp based on π1 and π2 is given in the following Theorem.

Theorem 5. Let n ∈ N, and let H be a uniform ϵ-AXU family of functions from
M to {0, 1}n. We consider m-nEHtMp : {0, 1}n ×H2 × {0, 1}n ×M → {0, 1}n

based on two permutations π1, π2
$←− Perm(n), u uniform user keys K1, . . . ,Ku

$←−
{0, 1}n and u pairs of uniform user hash keys (h1, h

∗
1), . . . , (hu, h

∗
u)

$←− H2. Let µ
be a fixed parameter. For any distinguisher D making at most qm queries with at
most µ faulty nonces distributed over its u construction MAC oracles, qa queries
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distributed over its u construction verification oracles, at most p primitive queries
to π±

1 and p primitive queries to π±
2 , we have

Advmu-mac
m-nEHtMp

(D) ≤ 7
√
qmpϵ+ 2µ2ϵ+ 4q3mϵ2 +

q2mpϵ

2n
+ 2µpϵ+ q2mqaϵ

2 +
qap

2ϵ

2n

+
3qmqapϵ

2n
+ p
√
qmqaϵ

3
2 +

(p+ qm)2

22n

(
5µ2 + 7qm +

5u(u− 1)

2n

)
+

qa
2n

.

Proof. Let K1, . . . ,Ku
$←− {0, 1}n, (h1, h

∗
1), . . . , (hu, h

∗
u)

$←− H2, and π1, π2
$←−

Perm(n). Here, we consider any distinguisherD that has access to either (O, π1, π2)
in the real world or (P, π1, π2) in the ideal world, withO =

(
(m-nEHtMπ1,π2

p(K1,h1,h∗
1)
,

Verπ1,π2

(K1,h1,h∗
1)
), . . . , (m-nEHtMπ1,π2

p(Ku,hu,h∗
u)
,Verπ1,π2

(Ku,hu,h∗
u)
)
)
and P =

(
(Rand1,Rej1),

. . . , (Randu,Reju)
)
. The security proof relies on Theorem 2 (b).

Pr[XP ∈ Tbad]. Following the framework given in Section 4, we first per-
form the bad transcripts analysis. For the notational simplicity, we denote Hj =
hj(M), and By replacing A = N ⊕Kj , B = N ⊕ hj(M), and Z = T ⊕ h∗

j (M)
in Section 4.3, we get the following bad events. Given a parameter ξ ∈ N,
we say that τ ∈ Tbad if and only if there exist construction MAC queries
(j,N,M, T ), (j′, N ′,M ′, T ′), (j′′, N ′′,M ′′, T ′′) ∈ τm, a construction verification
query (j(a), N (a),M (a), T (a), b(a)) ∈ τa and primitive queries (u, v), (u′, v′) ∈ τ1
and (x, y), (x′, y′) ∈ τ2 such that one of the following conditions holds:

(i) A component with two colliding vertices.

bad1 : N ⊕ u = Kj ∧ N ⊕ x = Hj ,

bad2 : N ⊕ u = Kj ∧ v ⊕ y = T ⊕H∗
j ,

bad3 : v ⊕ y = T ⊕H∗
j ∧ N ⊕ x = Hj .

(ii) An alternating path of length 3.

bad4 : N ⊕Kj = N ′ ⊕Kj′ ∧ N ′ ⊕Hj′ = N ′′ ⊕Hj′′ .

(iii) An alternating path of length 2 such that λ(L) = 0.

bad5 : N ⊕Kj = N ′ ⊕Kj′ ∧ T ⊕H∗
j = T ′ ⊕H∗

j′ ,

bad6 : T ⊕H∗
j = T ′ ⊕H∗

j′ ∧ N ⊕Hj′ = N ′ ⊕Hj′ .

(iv) A v-⋆ colliding component with y-colliding vertices, or a y-⋆ colliding com-
ponent with v-colliding vertices.

bad7 : N ⊕ u = Kj ∧ N ⊕Hj = N ′ ⊕Hj′ ,

bad8 : N ⊕ x = Hj ∧ N ⊕Kj = N ′ ⊕Kj′ ,

bad9 : N ⊕ u = Kj ∧ N ′ ⊕ u′ = Kj′ ∧ v ⊕ T ⊕H∗
j = v′ ⊕ T ′ ⊕H∗

j′ ,

bad10 : N ⊕ x = Hj ∧ N ′ ⊕ x′ = Hj′ ∧ y ⊕ T ⊕H∗
j = y′ ⊕ T ′ ⊕H∗

j′ .
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(v) A (ξ + 1)-block-collision.

bad11 : {i1, . . . , iξ+1} ∈ [qm] such thatNi1 ⊕Hji1
= · · · = Niξ+1

⊕Hjiξ+1
.

(vi) An alternating circle of length 2 with a λ′-labeled edge.

bad12 : N ⊕Kj = N (a) ⊕Kj(a) ∧ N ⊕Hj = N (a) ⊕Hj(a)

∧ T ⊕H∗
j = T (a) ⊕H∗

j(a) .

(vii) A λ′-labeled edge between two vertices with distance λ′.

bad13 : N
(a) ⊕ u = Kj(a) ∧ N (a) ⊕ x = Hj(a) ∧ T (a) ⊕H∗

j(a) = v ⊕ y ,

bad14 : N ⊕ u = Kj ∧ N ⊕Hj = N (a) ⊕Hj(a) ∧ N (a) ⊕ u′ = Kj(a)

∧ T (a) ⊕H∗
j(a) = v ⊕ T ⊕H∗

j ⊕ v′ ,

bad15 : N ⊕ x = Hj ∧ N ⊕Kj = N (a) ⊕Kj(a) ∧ N (a) ⊕ x′ = Hj(a)

∧ T (a) ⊕H∗
j(a) = y ⊕ T ⊕H∗

j ⊕ y′ ,

bad16 : N ⊕ u = Kj ∧ N ′ ⊕ x = Hj′ ∧ N ⊕Hj = N (a) ⊕Hj(a) ∧
N ′ ⊕Kj′ = N (a) ⊕Kj(a) ∧ T (a) ⊕H∗

j(a) = v ⊕ T ⊕H∗
j ⊕ y ⊕ T ′ ⊕H∗

j′ .

Note that the events bad9-bad10 and bad14-bad16 are the missing events that
were not considered by the authors of [20].

Lemma 6. For any integers qm, qa and p, then one has

Pr[τ ∈ Tbad] ≤ 7
√
qmpϵ+ 2µ2ϵ+ 4q3mϵ2 +

q2mpϵ

2n
+ 2µpϵ

+
8q2m(p+ qm)2ϵ

22n
+ q2mqaϵ

2 +
qap

2ϵ

2n
+

3qmqapϵ

2n
+ p
√
qmqaϵ

3/2 .

The proof of this Lemma is given in Supplementary Material E.

Pr[XO = τ ]/Pr[XP = τ ]. The next step is the calculate the ratio for good
transcripts. We use Theorem 2 (b) to get

ϵratio ≤
2(p+ qm)2

∑c1+c2+c3+c4−1
i=c1+c2

(η2i+1 + ηi+1)

22n
+

2qm(p+ qm)2

22n
+

2qa
2n

.

As before, for r, s ∈ N, we denote by P1
1 , . . . ,P1

r and P2
1 , . . . ,P2

s the non-singleton
equivalence classes of [qm] with respect to ∼1 and ∼2, respectively. For k ∈ [r]
and l ∈ [s], let νk = |P1

k | and ν′l = |P2
l |. Then, we have

E

[
c1+c2+c3+c4−1∑

i=c1+c2

(η2i+1 + ηi+1)

]
≤ E

[
r∑

k=1

ν2k + νk

]
+E

[
s∑

l=1

ν′2l + ν′l

]

≤ 5µ2

2
+

5u(u− 1)

2n−1
+

5q2mϵ

2
,
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using Lemma 1 and the fact that K1, . . . ,Ku
$←− {0, 1}n and (h1, h

∗
1), . . . , (hu, h

∗
u)

$←− H2. Note that when u = 1, we are back to the single-user setting, in this case
the v-⋆ components (collision in the inputs of π1) can only be formed by queries
with repeated nonces, hereby the 5µ2/2 term in the bound. Finally, Theorem 5
is proven by combining Lemma 6 and ϵratio with Lemma 3. ⊓⊔
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Supplementary Material

A Proof of Theorem 1

Since the isolated vertices in I are already well defined, we focus only on the
vertices in A, B, and C. For readability, we use N = 2n and G instead of G(Epm).
Let i = 1, . . . , c with c = c1 + c2 + c3 + c4 + c5. Hence, we assume that A1 is the
first component and Cc5 is the last component.

– Let ξi be the size (number of vertices) of the i-th component, and ηi = ξi−1
(number of edges in the i-th component).

– for j ∈ [ηi] and r =
∑i−1

k=1 ηk + j,

• λj
i = λr (λ value corresponding to the j-th equation of i-th component).

• δji := µ(λr−1, λj
i ) with δ11 = 0 for prp-like settings.

• δji := 0 for prf-like settings.

When the i-th component only contains one edge, we drop the superscript
j, and use λi and δi instead of λj

i and δji .

– For each component, where one part consists of the vertices in Vp and the
other vertices in Yp; we denote the two parts respectively by Vi and Yi, and
we have ξi = |Vi| + |Yi|. We denote by vji (resp., yji ) the j-th vertex in Vi

(resp., Yi). When Vi (resp., Yi) only contains one vertex, we will drop the
superscript, and write vi (resp., yi).

Recall there are exactly p colliding v vertices and p colliding y vertices in G; and
that q1, q2, q3, q4, and q5 are the number of equations (edges) in A1 ⊔ · · · ⊔Ac1 ,
Ac1+1 ⊔ · · · ⊔ Ac1+c2 , B1 ⊔ · · · ⊔ Bc3 , Bc3+1 ⊔ · · · ⊔ Bc3+c4 , and C, respectively.

Colliding Components. Recall that for a good graph, there is only one col-
liding vertex in each colliding component (Definition 5). For i = 1, . . . , c1, Ai

contains one colliding v vertex and ηi unknown y vertices (ηi = 1 in the case
of isolated components). For i = c1 + 1, . . . , c1 + c2, Ai contains one colliding y
vertex and ηi unknown v vertices (ηi = 1 in the case of isolated components).

For i = 1, . . . , c1+c2, let hA(i) be the number of solutions to I⊔A1⊔· · ·⊔Ai.
Then we have that hA(i) = 1 for 1 ≤ i ≤ c1+c2. For 1 ≤ i ≤ c1, let v

∗
i ∈ Vi be the

colliding vertex of Ai such that the value of this vertex is well defined, then the
other ηi unknown y vertices in Ai are uniquely determined, since each y vertex
in Ai is connected with a λ-labeled edge to v∗i . Similarly, for c1+1 ≤ i ≤ c1+c2,
let y∗i ∈ Yi be the colliding vertex of Ai such that the value of this vertex is well
defined, then the other ηi unknown v vertices in Ai are uniquely determined,
since each v vertex in Ai is connected with a λ-labeled edge to y∗i . Then, we
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have

hA(c1 + c2)
∏c1+c2

i=1

∏ηi

j=1(N − δji )

(N − p)q2(N − p)q1
≥

∏c1+c2
i=1

∏ηi

j=1(N − δji )

Nq1+q2

≥
N

∑c1+c2
i=1 ηi −

∑c1+c2
i=1

∑ηi

j=1 δ
j
iN

∑c1+c2
i=1 ηi−1

Nq1+q2

≥
N

∑c1+c2
i=1 ηi(1−

∑c1+c2
i=1

∑ηi

j=1 δ
j
i /N)

Nq1+q2

≥ 1−
∑c1+c2

i=1 δ

N
, (7)

using
∑c1+c2

i=1 ηi = q1 + q2, and
∑ηi

j=1 δ
j
i ≤ δ. Here we have δ = qm in the case of

prp-like settings, and δ = 0 in the case of prf-like settings.
For the further analysis, we define

Vi =
⊔

c1+1≤i≤c1+c2

Vi ⊔
⊔

c1+c2+1≤k≤i

Vk ,

Yi =
⊔

1≤i≤c1

Yi ⊔
⊔

c1+c2+1≤k≤i

Yk .

Star Components. It can be easily seen that the analysis of the v-⋆ compo-
nents and that of the y-⋆ components are symmetric, so we only perform the
analysis for the v-⋆ components. Let i = 1, . . . , c3 and i′ = c1+c2+i, and let hB(i)
be the number of solutions to I ⊔A⊔B1⊔· · ·⊔Bi. Note that hB(0) = h(c1+c2).
Our goal is to derive a recursive formula for hB(i + 1) that depends on hB(i),
such that a lower bound can be found for the expression hB(i + 1)/hB(i). In
order to do that, we fix a solution to I ⊔ A ⊔ B1 ⊔ · · · ⊔ Bi. If we fix the single
vertex vi′+1 ∈ Vi′+1 and assign any value to vi′+1, then the other ηi′+1 unknowns
yji′+1 in the (i′ + 1)-th component (Bi+1) are uniquely determined, since each

yji′+1 vertex in Yi+1 is connected with a λ-labeled edge to vi′+1, for j ∈ [ηi′+1].
Then, hB(i+ 1) is the number of solutions

(V0 ⊔ Vi′ ⊔ vi′+1) ⊔
(
Y0 ⊔ Yi′ ⊔ {y1i′+1, . . . , y

ηi′+1

i′+1 }
)

that satisfies:

(1) (V0 ⊔ Vi′) ⊔ (Y0 ⊔ Yi′) satisfies hB(i);
(2) vi′+1 ⊕ yji′+1 = λj

i′+1 for j ∈ [ηi′+1];
(3) vi′+1 /∈ (V0 ⊔ Vi′);
(4) yji′+1 /∈ (Y0 ⊔ Yi′), for j ∈ [ηi′+1].

Clearly, there are in total NhB(i) solutions that only comply with the conditions
(1) and (2), which do not take the conditions (3) and (4) into account. On the
other hand, condition (3) excludes |V0 ⊔ Vi′ | possible solutions for vi′+1. While
condition (4) excludes |Y0 ⊔ Yi′ | possible solutions for each yji′+1, hence, (4)
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excludes at most |Y0 ⊔ Yi′ | ηi′+1 possible solutions. Further, there are exactly∑ηi′+1

j=1 δji′+1 previous equations that share the same λ value with some equation
in Bi+1. By the principle of inclusion-exclusion, we obtain

hB(i+ 1) ≥
(
N − (p+ |Vi′ |)− (p+ |Yi′ |)ηi′+1 +

ηi′+1∑
j=1

δji′+1

)
hB(i) .

Then for 0 ≤ i ≤ c3 − 1 and i′ = c1 + c2 + i, we have

hB(i+ 1)
∏ηi′+1

j=1 (N − δji′+1)

hB(i)(N − (p+ |Vi′ |))(N − (p+ |Yi′ |))ηi′+1

≥

∏ηi′+1

j=1 (N − δji′+1)
(
N − (p+ |Vi′ |)− (p+ |Yi′ |)ηi′+1 +

∑ηi′+1

k=1 δji′+1

)
(N − (p+ |Vi′ |))(N − (p+ |Yi′ |))ηi′+1

≥ 1− B − C

(N − (p+ |Vi′ |))(N − (p+ |Yi′ |))ηi′+1

, (8)

where

B = (N − (p+ |Vi′ |))(N − (p+ |Yi′ |))ηi′+1

C =

ηi′+1∏
j=1

(N − δji′+1)
(
N − (p+ |Vi′ |)− (p+ |Yi′ |)ηi′+1 +

ηi′+1∑
k=1

δji′+1

)
.

We need both a lower and an upper bound for B. Using the facts that |Vi′ | , |Yi′ |+
ηi′+1 < qm, and ξmax(p+ qm) < 2n−1, we get B ≥ N (ηi′+1+1)/2. We now derive
an upper bound for B.

B ≤ (N − (p+ |Vi′ |))(N − (p+ |Yi′ |))ηi′+1

≤ (N − (p+ |Vi′ |))
(
Nηi′+1 − ηi′+1(p+ |Yi′ |)Nηi′+1−1 + η2i′+1(p+ |Yi′ |)2Nηi′+1−2

)
≤ Nηi′+1+1 − ηi′+1(p+ |Yi′ |)Nηi′+1 + η2i′+1(p+ |Yi′ |)2Nηi′+1−1

− (p+ |Vi′ |)Nηi′+1 + ηi′+1(p+ |Vi′ |)(p+ |Yi′ |)Nηi′+1−1 .

We now derive a lower bound for C.

C ≥
(
Nηi′+1 −

ηi′+1∑
j=1

δji′+1N
ηi′+1−1

)(
N − (p+ |Vi′ |)− (p+ |Yi′ |)ηi′+1 +

ηi′+1∑
k=1

δji′+1

)

≥ Nηi′+1+1 − (p+ |Vi′ |)Nηi′+1 − ηi′+1(p+ |Yi′ |)Nηi′+1 −
( ηi′+1∑

j=1

δji′+1

)2

Nηi′+1−1 .
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On substituting the bounds of B and C in (8), we get

(8) ≥ 1−
η2i′+1(p+ |Yi′ |)2Nηi′+1−1 + ηi′+1(p+ |Vi′ |)(p+ |Yi′ |)Nηi′+1−1

Nηi′+1+1/2

−

(∑ηi′+1

j=1 δji′+1

)2

Nηi′+1−1

Nηi′+1+1/2

≥ 1−
η2i′+1(p+ qm)2Nηi′+1−1 + ηi′+1(p+ qm)2Nηi′+1−1 −

(∑ηi′+1

j=1 δji′+1

)2

Nηi′+1−1

Nηi′+1+1/2

≥ 1−
2(p+ qm)2(η2i′+1 + ηi′+1) + 2δ2

N2
,

using the fact that |Vi′ | = q2 + c3 + q4 ≤ qm, |Yi′ | = q1 + q3 + c4 ≤ qm, and∑ηi′+1

j=1 δji′+1 ≤ δ. Here we have δ = qm in the case of prp-like settings (λj
i′+1 can

occur at most once in any component), and δ = 0 in the case of prf-like settings.
We consider the c3 v-⋆ and the c4 y-⋆ components together

hB(c3 + c4)
∏c1+c2+c3+c4

i=c1+c2+1

∏ηi

j=1(N − δji )

(N − p− q2)c3+q4(N − p− q1)q3+c4

≥
c1+c2+c3+c4−1∏

i=c1+c2

(
1−

2(p+ qm)2(η2i+1 + ηi+1) + 2δ2

N2

)

≥ 1−
c1+c2+c3+c4−1∑

i=c1+c2

(2(p+ qm)2(η2i+1 + ηi+1) + 2δ2

N2

)
≥ 1−

2(p+ qm)2
∑c1+c2+c3+c4−1

i=c1+c2
(η2i+1 + ηi+1) + qmδ2

N2
, (9)

using the fact that c3 + c4 ≤ (q3 + q4)/2 ≤ qm/2.

Isolated components. We now consider the components of the graph that
contain exactly two vertices. Let c′ = c1 + c2 + c3 + c4. For i = 1, . . . , c5 and
i′′ = c1 + c2 + c3 + c4 + i, we will write

Ci : vi′′
λi′′
− yi′′

where vi′′ ∈ Vi′′ and yi′′ ∈ Yi′′ . Let hC(i) be the number of solutions to I ⊔A ⊔
B ⊔C1 ⊔ · · · ⊔ Ci. Note that hC(0) = h(c1 + c2 + c3 + c4) and hC(c5) = h(G). Our
goal is to derive a recursive formula for hC(i + 1) that depends on hC(i), such
that a lower bound can be found for the expression hC(i + 1)/hC(i). In order
to do that, we fix a solution to I ⊔ A ⊔ B ⊔ C1 ⊔ · · · ⊔ Ci. Then, hC(i+ 1) is the
number of solutions

(V0 ⊔ Vc′ ⊔ {vc′+1, . . . , vi′′+1}) ⊔ (Y0 ⊔ Yc′ ⊔ {yc′+1, . . . , yi′′+1})

that satisfies:
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(1) (V0 ⊔ Vc′ ⊔ {vc′+1, . . . , vi′′}) ⊔ (Y0 ⊔ Yc′ ⊔ {yc′+1, . . . , yi′′}) satisfies hC(i);
(2) vi′′+1 ⊕ yi′′+1 = λi′′+1;
(3) vi′′+1 /∈ V0 ⊔ Vc′ ⊔ {vc′+1, . . . , vi′′};
(4) yi′′+1 /∈ Y0 ⊔ Yc′ ⊔ {yc′+1, . . . , yi′′}.

Clearly, there are in total NhC(i) solutions that only comply with the conditions
(1) and (2), which do not take the conditions (3) and (4) into account. On the
other hand, condition (3) excludes |V0 ∪ Vc′ | + i possible solutions for vi′′+1.
While condition (4) excludes |Y0 ∪ Yc′ |+ i possible solutions for yi′′+1. Further,
there are exactly δi′′+1 previous equations that share the same λ value with
the equation in the i′′-th component. By the principle of inclusion-exclusion, we
obtain

hC(i+ 1) ≥
(
N − (p+ |Vc′ |)− i− (p+ |Yc′ |)− i+ δi′′+1

)
hC(i) .

Then for 0 ≤ i ≤ c5 − 1 and i′′ = c1 + c2 + c3 + c4 + i, we have

hC(i+ 1)(N − δi′′+1)

hC(i)(N − (p+ |Vc′ |)− i)(N − (p+ |Yc′ |)− i)

≥
(N − δi′′+1)

(
N − (p+ |Vc′ |)− (p+ |Yc′ |)− 2i+ δi′′+1

)
(N − (p+ |Vc′ |)− i)(N − (p+ |Yc′ |)− i)

≥
(N − δi′′+1)

(
N − (p+ |Vc′ |)− (p+ |Yc′ |)− 2i+ δi′′+1

)
N2 − (2p+ |Vc′ |+ |Yc′ |+ 2i)N + (p+ |Vc′ |+ i)(p+ |Yc′ |+ i)

≥ 1−
(p+ |Vc′ |+ i)(p+ |Yc′ |+ i) + δ2i′′+1

N2 − (2p+ |Vc′ |+ |Yc′ |+ 2i)N + (p+ |Vc′ |+ i)(p+ |Yc′ |+ i)

≥ 1−
(p+ qm)2 + δ2i′′+1

N2/2

≥ 1− 2(p+ qm)2 + 2δ2

N2
,

using that |Vc′ |+ i, |Vc′ |+ i ≤ qm, 2p+ |Vc′ |+ |Yc′ |+2i ≤ 2(p+ qm) ≤ N/2, and
δji′′+1 ≤ δ. Here we have δ = i ≤ qm in the case of prp-like settings, and δ = 0
in the case of prf-like settings.

Since q5 = c5, we get

hC(c5)
∏c

i=c1+c2+c3+c4+1(N − δi)

(N − p− q2 − c3 − q4)q5(N − p− q1 − q3 − c4)q5

≥
c−1∏

i=c1+c2+c3+c4

(
1− 2(p+ qm)2 + 2δ2

N2

)

≥ 1−
c−1∑

i=c1+c2+c3+c4

(2(p+ qm)2 + 2δ2

N2

)
≥ 1− 2qm(p+ qm)2 + 2qmδ2

N2
. (10)
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Conclusion. Putting (11), (13), (14), and (15) together, we have

h(G)
∏c

i=1

∏ηi

j=1(N − δji )

(N − p)q2+c3+q4+q5(N − p)q1+q3+c4+q5

=
hA(c1 + c2)

∏c1+c2
i=1

∏ηi

j=1(N − δji )

(N − p)q2(N − p)q1
·
hB(c3 + c4)

∏c3+c4
i=c1+c2+1

∏ηi

j=1(N − δji )

(N − p− q2)c3+q4(N − p− q1)q3+c4

×
hC(c5)

∏c
i=c1+c2+c3+c4+1(N − δi)

(N − p− q2 − c3 − q4)q5(N − p− q1 − q3 − c4)q5

= 1− 2(p+ qm)2

N2

( c1+c2+c3+c4−1∑
i=c1+c2

(η2i+1 + ηi+1) + qm

)
−

∑c1+c2
i=1 δ

N
− 3qmδ2

N2
.

B Proof of Theorem 2

Since the isolated vertices in I are already well defined, we focus only on the
vertices in A, B, C, and D. For readability, we use N = 2n, G instead of G(Ep),
G= instead of G(Epm), and G ̸= instead of G(Ea). Let i = 1, . . . , c + c6 + c7 with
c = c1 + c2 + c3 + c4 + c5. Hence, we have that A1 is the first component and
Dc7 is the last component, which is an isolated y vertex in G=.

– Let ξi be the size (number of vertices) of the i-th component, and ηi = ξi−1
(number of edges in the i-th component).

– for j ∈ [ηi] and r =
∑i−1

k=1 ηk + j,

• λj
i = λr (λ value corresponding to the j-th equation of i-th component).

• δji := µ(λr−1, λj
i ) with δ11 = 0 for prp-like settings.

• δji := 0 for prf-like settings.

When the i-th component only contains one edge, we drop the superscript
j, and use λi and δi instead of λj

i and δji .

– For each component, where one part consists of the vertices in V ′p and the
other vertices in Y ′p; we denote the two parts respectively by Vi and Yi, and
we have ξi = |Vi| + |Yi|. We denote by vji (resp., yji ) the j-th vertex in Vi

(resp., Yi). When Vi (resp., Yi) only contains one vertex, we will drop the
superscript, and write vi (resp., yi).

– Let avi be the number of λ′-labeled edges that connect a v vertex in the i-th
component with a y vertex in one of the previous components. Similarly,
let ayi be the number of λ′-labeled edges that connect a y vertex in the i-
th component with a v vertex in one of the previous components. We have
ai = avi + ayi and qa =

∑c+c6+c7
i=1 ai.

Recall there are exactly p colliding v vertices and p colliding y vertices in G; and
that q1, q2, q3, q4, and q5 are the number of equations (edges) in A1 ⊔ · · · ⊔Ac1 ,
Ac1+1 ⊔ · · · ⊔ Ac1+c2 , B1 ⊔ · · · ⊔ Bc3 , Bc3+1 ⊔ · · · ⊔ Bc3+c4 , and C, respectively.
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Colliding Components. Recall that for a good graph, there is only one col-
liding vertex in each colliding component (Definition 5). For i = 1, . . . , c1, Ai

contains one colliding v vertex and ηi unknown y vertices (ηi = 1 in the case
of isolated components). For i = c1 + 1, . . . , c1 + c2, Ai contains one colliding y
vertex and ηi unknown v vertices (ηi = 1 in the case of isolated components).

For i = 1, . . . , c1+c2, let hA(i) be the number of solutions to I⊔A1⊔· · ·⊔Ai.
Then we have that hA(i) = 1 for 1 ≤ i ≤ c1+c2. For 1 ≤ i ≤ c1, let v

∗
i ∈ Vi be the

colliding vertex of Ai such that the value of this vertex is well defined, then the
other ηi unknown y vertices in Ai are uniquely determined, since each y vertex
in Ai is connected with a λ-labeled edge to v∗i . Similarly, for c1+1 ≤ i ≤ c1+c2,
let y∗i ∈ Yi be the colliding vertex of Ai such that the value of this vertex is well
defined, then the other ηi unknown v vertices in Ai are uniquely determined,
since each v vertex in Ai is connected with a λ-labeled edge to y∗i . Then, we
have

hA(c1 + c2)
∏c1+c2

i=1

∏ηi

j=1(N − δji )

(N − p)q2(N − p)q1
≥

∏c1+c2
i=1

∏ηi

j=1(N − δji )

Nq1+q2

≥
N

∑c1+c2
i=1 ηi −

∑c1+c2
i=1

∑ηi

j=1 δ
j
iN

∑c1+c2
i=1 ηi−1

Nq1+q2

≥
N

∑c1+c2
i=1 ηi(1−

∑c1+c2
i=1

∑ηi

j=1 δ
j
i /N)

Nq1+q2

≥ 1−
∑c1+c2

i=1 δ

N
, (11)

using
∑c1+c2

i=1 ηi = q1 + q2, and
∑ηi

j=1 δ
j
i ≤ δ. Here we have δ = qm in the case of

prp-like settings, and δ = 0 in the case of prf-like settings.

For the further analysis, we define

Vi =
⊔

c1+1≤i≤c1+c2

Vi ⊔
⊔

c1+c2+1≤k≤i

Vk ,

Yi =
⊔

1≤i≤c1

Yi ⊔
⊔

c1+c2+1≤k≤i

Yk .

Star Components. It can be easily seen that the analysis of the v-⋆ compo-
nents and that of the y-⋆ components are symmetric, so we only perform the
analysis for the v-⋆ components. Let i = 1, . . . , c3 and i′ = c1+c2+i, and let hB(i)
be the number of solutions to I ⊔A⊔B1⊔· · ·⊔Bi. Note that hB(0) = h(c1+c2).
Our goal is to derive a recursive formula for hB(i + 1) that depends on hB(i),
such that a lower bound can be found for the expression hB(i + 1)/hB(i). In
order to do that, we fix a solution to I ⊔ A ⊔ B1 ⊔ · · · ⊔ Bi. If we fix the single
vertex vi′+1 ∈ Vi′+1 and assign any value to vi′+1, then the other ηi′+1 unknowns
yji′+1 in the (i′ + 1)-th component (Bi+1) are uniquely determined, since each

yji′+1 vertex in Yi+1 is connected with a λ-labeled edge to vi′+1, for j ∈ [ηi′+1].
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Then, hB(i+ 1) is the number of solutions

(V0 ⊔ Vi′ ⊔ vi′+1) ⊔
(
Y0 ⊔ Yi′ ⊔ {y1i′+1, . . . , y

ηi′+1

i′+1 }
)

that satisfies:

(1) (V0 ⊔ Vi′) ⊔ (Y0 ⊔ Yi′) satisfies hB(i);

(2) vi′+1 ⊕ yji′+1 = λj
i′+1 for j ∈ [ηi′+1];

(3) vi′+1 /∈ (V0 ⊔ Vi′);
(4) yji′+1 /∈ (Y0 ⊔ Yi′), for j ∈ [ηi′+1];

(5) vi′+1 satisfies avi′+1 non-equations to the y vertices in the previous compo-
nents;

(6) yji′+1 satisfies ayi′+1 non-equations to the v vertices in the previous compo-
nents, for j ∈ [ηi′+1].

Clearly, there are in total NhB(i) solutions that only comply with the conditions
(1) and (2), which do not take the conditions (3), (4), (5), and (6) into account.
On the other hand, condition (3) excludes |V0 ⊔ Vi′ | possible solutions for vi′+1.
While condition (4) excludes |Y0 ⊔ Yi′ | possible solutions for each yji′+1, hence,
(4) excludes at most |Y0 ⊔ Yi′ | ηi′+1 possible solutions. Further, there are exactly∑ηi′+1

j=1 δji′+1 previous equations that share the same λ value with some equation
in Bi+1. Moreover, condition (5) excludes avi′+1 possible solutions for vi′+1, and

condition (6) excludes ayi′+1 possible solutions for yji′+1’s. By the principle of
inclusion-exclusion, we obtain

hB(i+ 1) ≥
(
N − (p+ |Vi′ |)− avi′+1 − (p+ |Yi′ |)ηi′+1 − ayi′+1 +

ηi′+1∑
j=1

δji′+1

)
hB(i) .

Then for 0 ≤ i ≤ c3 − 1 and i′ = c1 + c2 + i, we have

hB(i+ 1)
∏ηi′+1

j=1 (N − δji′+1)

hB(i)(N − (p+ |Vi′ |))(N − (p+ |Yi′ |))ηi′+1

≥

∏ηi′+1

j=1 (N − δji′+1)
(
N − (p+ |Vi′ |)− (p+ |Yi′ |)ηi′+1 +

∑ηi′+1

k=1 δji′+1 − ai′+1

)
(N − (p+ |Vi′ |))(N − (p+ |Yi′ |))ηi′+1

≥ 1− B − C

(N − (p+ |Vi′ |))(N − (p+ |Yi′ |))ηi′+1

, (12)

where

B = (N − (p+ |Vi′ |))(N − (p+ |Yi′ |))ηi′+1

C =

ηi′+1∏
j=1

(N − δji′+1)
(
N − (p+ |Vi′ |)− (p+ |Yi′ |)ηi′+1 +

ηi′+1∑
k=1

δji′+1 − ai′+1

)
.
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We need both a lower and an upper bound for B. Using the facts that |Vi′ | , |Yi′ |+
ηi′+1 < qm, and ξmax(p+ qm) < 2n−1, we get B ≥ N (ηi′+1+1)/2. We now derive
an upper bound for B.

B ≤ (N − (p+ |Vi′ |))(N − (p+ |Yi′ |))ηi′+1

≤ (N − (p+ |Vi′ |))
(
Nηi′+1 − ηi′+1(p+ |Yi′ |)Nηi′+1−1 + η2i′+1(p+ |Yi′ |)2Nηi′+1−2

)
≤ Nηi′+1+1 − ηi′+1(p+ |Yi′ |)Nηi′+1 + η2i′+1(p+ |Yi′ |)2Nηi′+1−1

− (p+ |Vi′ |)Nηi′+1 + ηi′+1(p+ |Vi′ |)(p+ |Yi′ |)Nηi′+1−1 .

We now derive a lower bound for C.

C ≥
(
Nηi′+1 −

ηi′+1∑
j=1

δji′+1N
ηi′+1−1

)(
N − (p+ |Vi′ |)− (p+ |Yi′ |)ηi′+1 +

ηi′+1∑
k=1

δji′+1 − ai′+1

)
≥ Nηi′+1+1 − (p+ |Vi′ |)Nηi′+1 − ηi′+1(p+ |Yi′ |)Nηi′+1

−
( ηi′+1∑

j=1

δji′+1

)2

Nηi′+1−1 − ai′+1N
ηi′+1 .

On substituting the bounds of B and C in (12), we get

(12) ≥ 1−
η2i′+1(p+ |Yi′ |)2Nηi′+1−1 + ηi′+1(p+ |Vi′ |)(p+ |Yi′ |)Nηi′+1−1

Nηi′+1+1/2

−

(∑ηi′+1

j=1 δji′+1

)2

Nηi′+1−1 + ai′+1N
ηi′+1

Nηi′+1+1/2

≥ 1−
η2i′+1(p+ qm)2Nηi′+1−1 + ηi′+1(p+ qm)2Nηi′+1−1

Nηi′+1+1/2

−

(∑ηi′+1

j=1 δji′+1

)2

Nηi′+1−1 + ai′+1N
ηi′+1

Nηi′+1+1/2

≥ 1−
2(p+ qm)2(η2i′+1 + ηi′+1) + 2δ2

N2
− 2ai′+1

N
,

using the fact that |Vi′ | = q2 + c3 + q4 ≤ qm, |Yi′ | = q1 + q3 + c4 ≤ qm, and∑ηi′+1

j=1 δji′+1 ≤ δ. Here we have δ = qm in the case of prp-like settings (λj
i′+1 can

occur at most once in any component), and δ = 0 in the case of prf-like settings.
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We consider the c3 v-⋆ and the c4 y-⋆ components together

hB(c3 + c4)
∏c1+c2+c3+c4

i=c1+c2+1

∏ηi

j=1(N − δji )

(N − p− q2)c3+q4(N − p− q1)q3+c4

≥
c1+c2+c3+c4−1∏

i=c1+c2

(
1−

2(p+ qm)2(η2i+1 + ηi+1) + 2δ2

N2
− 2ai+1

N

)

≥ 1−
c1+c2+c3+c4−1∑

i=c1+c2

(2(p+ qm)2(η2i+1 + ηi+1) + 2δ2

N2
− 2ai+1

N

)
≥ 1−

2(p+ qm)2
∑c1+c2+c3+c4−1

i=c1+c2
(η2i+1 + ηi+1) + qmδ2

N2
−

2
∑c1+c2+c3+c4−1

i=c1+c2
ai+1

N
,

(13)

using the fact that c3 + c4 ≤ (q3 + q4)/2 ≤ qm/2.

Isolated components. We now consider the components of the graph that
contain exactly two vertices. Let c′ = c1 + c2 + c3 + c4. For i = 1, . . . , c5 and
i′′ = c1 + c2 + c3 + c4 + i, we will write

Ci : vi′′
λi′′
− yi′′

where vi′′ ∈ Vi′′ and yi′′ ∈ Yi′′ . Let hC(i) be the number of solutions to I ⊔A ⊔
B ⊔ C1 ⊔ · · · ⊔ Ci. Note that hC(0) = h(c1 + c2 + c3 + c4). Our goal is to derive a
recursive formula for hC(i+ 1) that depends on hC(i), such that a lower bound
can be found for the expression hC(i + 1)/hC(i). In order to do that, we fix a
solution to I ⊔A ⊔ B ⊔ C1 ⊔ · · · ⊔ Ci. Then, hC(i+ 1) is the number of solutions

(V0 ⊔ Vc′ ⊔ {vc′+1, . . . , vi′′+1}) ⊔ (Y0 ⊔ Yc′ ⊔ {yc′+1, . . . , yi′′+1})

that satisfies:

(1) (V0 ⊔ Vc′ ⊔ {vc′+1, . . . , vi′′}) ⊔ (Y0 ⊔ Yc′ ⊔ {yc′+1, . . . , yi′′}) satisfies hC(i);
(2) vi′′+1 ⊕ yi′′+1 = λi′′+1;
(3) vi′′+1 /∈ V0 ⊔ Vc′ ⊔ {vc′+1, . . . , vi′′};
(4) yi′′+1 /∈ Y0 ⊔ Yc′ ⊔ {yc′+1, . . . , yi′′};
(5) vi′′+1 satisfies avi′′+1 non-equations to the y vertices in the previous compo-

nents;
(6) yi′′+1 satisfies ayi′′+1 non-equations to the v vertices in the previous compo-

nents.

Clearly, there are in total NhC(i) solutions that only comply with the conditions
(1) and (2), which do not take the conditions (3), (4), (5), and (6) into account.
On the other hand, condition (3) excludes |V0 ∪ Vc′ | + i possible solutions for
vi′′+1. While condition (4) excludes |Y0 ∪ Yc′ | + i possible solutions for yi′′+1.
Further, there are exactly δi′′+1 previous equations that share the same λ value
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with the equation in the i′′-th component. Moreover, condition (5) excludes avi′′+1

possible solutions for vi′′+1, and condition (6) excludes ayi′′+1 possible solutions
for yi′′+1. By the principle of inclusion-exclusion, we obtain

hC(i+ 1) ≥
(
N − (p+ |Vc′ |)− i− avi′′+1 − (p+ |Yc′ |)− i− ayi′′+1 + δi′′+1

)
hC(i) .

Then for 0 ≤ i ≤ c5 − 1 and i′′ = c1 + c2 + c3 + c4 + i, we have

hC(i+ 1)(N − δi′′+1)

hC(i)(N − (p+ |Vc′ |)− i)(N − (p+ |Yc′ |)− i)

≥
(N − δi′′+1)

(
N − (p+ |Vc′ |)− (p+ |Yc′ |)− 2i+ δi′′+1 − (avi′′+1 + ayi′′+1)

)
(N − (p+ |Vc′ |)− i)(N − (p+ |Yc′ |)− i)

≥
(N − δi′′+1)

(
N − (p+ |Vc′ |)− (p+ |Yc′ |)− 2i+ δi′′+1 − ai′′+1

)
N2 − (2p+ |Vc′ |+ |Yc′ |+ 2i)N + (p+ |Vc′ |+ i)(p+ |Yc′ |+ i)

≥ 1−
(p+ |Vc′ |+ i)(p+ |Yc′ |+ i) + δ2i′′+1 + ai′′+1N

N2 − (2p+ |Vc′ |+ |Yc′ |+ 2i)N + (p+ |Vc′ |+ i)(p+ |Yc′ |+ i)

≥ 1−
(p+ qm)2 + δ2i′′+1 + ai′′+1N

N2/2

≥ 1− 2(p+ qm)2 + 2δ2

N2
− 2ai′′+1

N
,

using that |Vc′ |+ i, |Vc′ |+ i ≤ qm, 2p+ |Vc′ |+ |Yc′ |+2i ≤ 2(p+ qm) ≤ N/2, and
δji′′+1 ≤ δ. Here we have δ = i ≤ qm in the case of prp-like settings, and δ = 0
in the case of prf-like settings.

Since q5 = c5, we get

hC(c5)
∏c

i=c1+c2+c3+c4+1(N − δi)

(N − p− q2 − c3 − q4)q5(N − p− q1 − q3 − c4)q5

≥
c−1∏

i=c1+c2+c3+c4

(
1− 2(p+ qm)2 + 2δ2

N2
− 2ai+1

N

)

≥ 1−
c−1∑

i=c1+c2+c3+c4

(2(p+ qm)2 + 2δ2

N2
− 2ai+1

N

)
≥ 1− 2qm(p+ qm)2 + 2qmδ2

N2
−

2
∑c−1

i=c1+c2+c3+c4
ai+1

N
. (14)

Isolated Vertices. Finally, we still need to consider the isolated vertices that
are only connected with λ′-labeled edges. So these are isolated vertices in G=
where the values of the vertices are unknown.

We only consider the case for the isolated v vertices, the analysis of isolated
y vertices can be performed in a similar way. For i = 1, . . . , c6 and i∗ = c + i,
let hD(i) be the number of solutions to I ⊔A ⊔ B ⊔ C ⊔D1 ⊔ · · · ⊔ Di, where Di
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is an isolated vertex in G=, which is connected to λ′-labeled edges in G ̸=. Note
that hD(0) = h(c) and hD(c6 + c7) = h(G). Then, hD(i + 1) is the number of
solutions V0 ⊔ Vc ⊔ {v′c+1, . . . , v

′
i∗+1}, that satisfies:

(1) V0 ⊔ Vc ⊔ {v′c+1, . . . , v
′
i∗} satisfies hD(i);

(2) v′i∗+1 /∈ V0 ⊔ Vc ⊔ {v′c+1, . . . , v
′
i∗};

(3) v′i∗+1 should satisfy avi∗+1 non-equations to the y vertices.

Clearly, there are in total NhD(i) solutions that only comply with the condition
(1), which do not take the conditions (2) and (3) into account. On the other
hand, condition (2) excludes |V0 + Vc| + i possible solutions, and condition (5)

excludes avi∗+1 possible solutions. Therefore, we have hD(c6) ≥
∏c6−1

i=0 (N − p −
|Vc| − i− avi∗+1), which means

hD(c6)

(N − p− q2 − c3 − q4 − q5)c6
≥

c6−1∏
i=0

N − p− |Vc| − i− avi∗+1

N − p− |Vc| − i

≥
c6−1∏
i=0

(
1−

avi∗+1

N − p− |Vc| − i

)
≥ 1−

2
∑c+c6−1

i∗=c avi∗+1

N
.

We consider the c6 isolated v vertices and the c7 isolated y vertices in D together.

hD(c6 + c7)

(N − p− q2 − c3 − q4 − q5)c6(N − p− q1 − q3 − c4 − q5)c7
≥

(
1−

2
∑c+c6−1

i=c avi+1

N

)(
1−

2
∑c+c6+c7−1

i=c+c6
ayi+1

N

)
. (15)

Conclusion. Putting (11), (13), (14), and (15) together, and using
∑c+c6+c7

i=c1+c2
ai ≤∑c+c6+c7

i=1 ai ≤ qa. We have

h(G)
∏c+c6+c7

i=1

∏ηi

j=1(N − δji )

(N − p)q2+c3+q4+q5+c6(N − p)q1+q3+c4+q5+c7

=
hA(c1 + c2)

∏c1+c2
i=1

∏ηi

j=1(N − δji )

(N − p)q2(N − p)q1
·
hB(c3 + c4)

∏c3+c4
i=c1+c2+1

∏ηi

j=1(N − δji )

(N − p− q2)c3+q4(N − p− q1)q3+c4

×
hC(c5)

∏c
i=c1+c2+c3+c4+1(N − δi)

(N − p− q2 − c3 − q4)q5(N − p− q1 − q3 − c4)q5

× hD(c6 + c7)

(N − p− q2 − c3 − q4 − q5)c6(N − p− q1 − q3 − c4 − q5)c7

= 1− 2(p+ qm)2

N2

( c1+c2+c3+c4−1∑
i=c1+c2

(η2i+1 + ηi+1) + qm

)
−

∑c1+c2
i=1 δ

N
− 3qmδ2

N2
− 2qa

N
.
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C Proof of Lemma 4

The proof generalizes over the single-user proof of Cogliati et al. [15]. We want to
bound the probability Pr[XP ∈ Tbad] that an ideal world transcript τ satisfies one
of the bad events. Therefore, by the union bound, the probability that XP ∈ Tbad
can be bounded as

Pr[XP ∈ Tbad] ≤
∑
i

Pr[badi] .

Events bad1, bad2, and bad3. We consider the event bad1. For any (j, T,M,C) ∈
τm, (u, v) ∈ τ1, and (x, y) ∈ τ2, one has, by the fact that hj

1 and hj
2 are indepen-

dently drawn,

Pr[(hj
1(T ) = M ⊕ u) ∧ (hj

2(T ) = C ⊕ y)] = ϵ2 .

Hence, summing over the q possible (j, T,M,C), p possible (u, v), and p possible
(x, y) yields

Pr[bad1] ≤ qp2ϵ2 ≤ √qpϵ .

Similarly, for bad2 and bad3, one obtains

Pr[bad2] ≤ qp2ϵ2 ≤ √qpϵ ,
Pr[bad3] ≤ qp2ϵ2 ≤ √qpϵ .

Event bad4. For any (j, T,M,C), (j′, T ′,M ′, C ′), (j′′, T ′′,M ′′, C ′′) ∈ τm with
(j′, T ′,M ′, C ′) distinct from (j, T,M,C) and from (j′′, T ′′,M ′′, C ′′), one has, by

the fact that hj
1, h

j′

1 , h
j′

2 , and hj′′

2 are drawn independently,

Pr[(hj
1(T )⊕ hj′

1 (T
′) = M ⊕M ′) ∧ (hj′

2 (T )⊕ hj′′

2 (T ′′) = C ⊕ C ′′)] ≤ ϵ2 .

Hence, summing over at most q3 possible (j, T,M,C), (j′, T ′,M ′, C ′), (j′′, T ′′,M ′′,
C ′′), one obtains

Pr[bad4] ≤ q3ϵ2 .

Events bad5 and bad6. For any two distinct queries (j, T,M,C) ̸= (j′, T ′,M ′, C ′)

∈ τm, one has, by the fact that hj
1, h

j′

1 , h
j
2, and hj′

2 are drawn independently,

Pr[(hj
1(t)⊕ hj′

1 (T
′) = M ⊕M ′) ∧ (hj

2(T )⊕ hj′

2 (T
′) = hj

1(T )⊕ hj′

1 (T
′))] ≤ ϵ2 .

Hence, summing over the q(q−1)/2 possible pairs of (j, T,M,C) ̸= (j′, T ′,M ′, C ′),
we get

Pr[bad5] ≤
q2ϵ2

2
≤ q3ϵ2

2
.

Similarly,

Pr[bad6] ≤
q2ϵ2

2
≤ q3ϵ2

2
.
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Events bad7 and bad8. For any two distinct queries (j, T,M,C) ̸= (j′, T ′,M ′, C ′)

∈ τm and any (u, v) ∈ τ1, one has, by the fact that hj
1, h

j
2, and hj′

2 are drawn
independently,

Pr[(hj
1(T ) = M ⊕ u) ∧ (hj

2(T )⊕ hj′

2 (T
′) = C ⊕ C ′)] ≤ ϵ2 .

Then, summing over q(q − 1)/2 possible pairs of (j, T,M,C) ̸= (j′, T ′,M ′, C ′),
and p possible (u, v),

Pr[bad7] ≤
q2pϵ2

2
.

Similarly,

Pr[bad8] ≤
q2pϵ2

2
.

Events bad9, bad10, badc1 and badc2 . We will deal with the events bad9 and
badc1 together, using the fact that

Pr[bad9 ∨ badc1 ] = Pr[badc1 ] + Pr[bad9 ∧ ¬badc1 ] .

To upper bound Pr[badc1 ], we see c1 as a random variable over the random
choice of hj

1. First, note that we have,

E[c1] =
∑

(j,T,M,C)∈τm

∑
(u,v)∈τ1

Pr[M ⊕ hj
1(T ) = u] = qpϵ ,

so that by Markov’s inequality,

Pr[badc1 ] ≤
√
qpϵ .

For this bad event bad9∧¬badc1 , we need to consider the following cases, namely
when (a) j = j′ (the two queries are made to the same user oracle), and when
(b) j ̸= j′ (the two queries are made to the different user oracles).

1. For case (a), since the j-th and the j′-th user are the same, we have hj
1 =

hj′

1 . Fix any h′
1 ∈ H such that, when hj

1 = h′
1, c1 <

√
q, and fix any

queries (j, T,M,C) ̸= (j′, T ′,M ′, C ′) ∈ τm, (u, v), (u′, v′) ∈ τ1 such that
M ⊕ hj

1(T ) = u and M ′ ⊕ hj
1(T

′) = u′. Note that since c1 <
√
q, there are

at most q/2 such tuple of queries. Then

Pr[(hj
1 = h′

1) ∧ (hj
2(T )⊕ hj

2(T
′) = v ⊕ hj

1(T )⊕ v′ ⊕ hj
1(T

′))] ≤ ϵ

|H|
.

and, by summing over every hj
1 such that c1 <

√
q and every such tuple of

queries, one has

Pr[bad9(a) ∧ ¬badc1 ] ≤
qϵ

2
≤ q3ϵ2

2
.
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2. For case (b), the keys hj
1 and hj′

1 are generated independently of each other.

Using the fact that hj
1, h

j′

1 , h
j
2, and hj′

2 are drawn independently, then, sum-
ming over at most q(q − 1)/2 possible (j, T,M,C), (j′, T ′,M ′, C ′), and p2

possible (u, v), (u′, v′), one obtains

Pr[bad9(b) ∧ ¬badc1 ] = Pr[bad9(b)] ≤ q2p2ϵ3/2 ≤ √qpϵ/2 .

Finally,

Pr[bad9 ∨ badc1 ] ≤
√
qpϵ+

q3ϵ2

2
+
√
qpϵ/2 .

Similarly,

Pr[bad10 ∨ badc2 ] ≤
√
qpϵ+

q3ϵ2

2
+
√
qpϵ/2 .

Events bad11 and bad12. Note that since the hash keys for different users are

generated independently, it is enough to focus on the single user when h
ji1
1 =

· · · = h
jiξ+1

1 and h
ji1
2 = · · · = h

jiξ+1

2 , as this case will yield the dominant term.
For the events bad11, since, (T

(ji),M (ji)) ̸= (T (jk),M (jk)) for all i ̸= k, we can
apply Lemma 2 with a = ξ = 2n/2(p+ q) to get

Pr[bad11] ≤
8q2(p+ q)2ϵ

22n
.

Similarly

Pr[bad12] ≤
8q2(p+ q)2ϵ

22n
.

The result follows by an union bound over all conditions.

D Proof of Lemma 5

The bad transcript analysis relies on the sum-capture theorem proposed by Chen
et al. [8]. Typically, a sum-capture theorem states that for a random subset Z
of {0, 1}n of size q, the quantity

µ(Z,A,B) = |{(z, a, b) ∈ Z ×A×B : z = a⊕ b}|

is not much larger than q |A| |B| /2n for any possible choice of A and B, except
with negligible probability. In our setting, Z will consist of query-response tuples
from a permutation, i.e. Z consists of values ui⊕vi where {(u1, v1), . . . , (uq, vq)}
is a permutation transcript. For this case, Chen et al. [8] proved the following
result.
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Lemma 7 (Chen et al. [8]). Let Γ be an invertible linear map on the F2-

vector space {0, 1}n. Let π
$←− Permn, let D be some probabilistic algorithm

making exactly q distinct two-sided adaptive queries to π. Let Z = {(u1, v1), . . . ,
(uq, vq)} be the transcript of the interaction of D with π, which consists of q ≥ 1
pairs such that either vi = π(ui) or ui = π(vi) for all i = 1, . . . , q. For any two
subsets A,B ⊆ {0, 1}n, let

µ(Z,A,B) = |{((u, v), a, b) ∈ Z ×A×B : u⊕ a = Γ (v ⊕ b)}| .

Then, for 9n ≤ q ≤ 2n−1, we have

Pr

[
µ(Z,A,B) ≥ q |A| |B|

2n
+

2q2
√
|A| |B|
2n

+ 3
√

nq |A| |B|

]
≤ 2

2n
.

The proof generalizes over the single-user proof of Dutta et al. [22]. We
want to bound the probability Pr[XP ∈ Tbad] that an ideal world transcript τ
satisfies one of the bad events. Therefore, by the union bound, the probability
that XP ∈ Tbad can be bounded as

Pr[XP ∈ Tbad] ≤
∑
i

Pr[badi] .

Event bad1. We can rewrite bad1 as

M ⊕ u = C ⊕ x = Kj
1 .

We denote

Ω1 =
∣∣∣{((j,M,C), (u, v), (x, y)

) ∣∣∣ M ⊕ u = C ⊕ y
}∣∣∣ .

Then, using Lemma 7, there are Ω1 possible combinations of M ⊕ C, u and y
that satisfy bad1. Note that in the ideal world, Ω1 only depends on φj , π1, and

π2. Ω1 does not depend on Kj
1 , which is drawn uniformly at random at the end

of the interaction. Hence, for any C1 > 0, we have

Pr[bad1] ≤ Pr[Ω1 ≥ C1] +
C1

2n
.

We thus set C1 = qp2

2n + 2q2p
2n + 3p

√
nq and obtain

Pr[bad1] ≤
2

2n
+

qp2

22n
+

2q2p

22n
+

3p
√
nq

2n
.

Events bad2, and bad3. We consider the event bad2. For any (j,M,C) ∈ τm,
(u, v) ∈ τ1, and (x, y) ∈ τ2, one has, by the fact that Kj

1 and Kj
2 are indepen-

dently drawn,

Pr[(Kj
1 = M ⊕ u) ∧ (Kj

2 = M ⊕ v ⊕ y ⊕Kj
1)] =

1

22n
.
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Hence, summing over the q possible (j,M,C), p possible (u, v), and p possible
(x, y) yields

Pr[bad2] ≤
qp2

22n
.

Similarly, one obtains

Pr[bad3] ≤
qp2

22n
.

Event bad4. Note that this event only holds when j, j′ and j′′ are all distinct
(three distinct users). For any (j,M,C), (j′,M ′, C ′), (j′′,M ′′, C ′′) ∈ τm, one has,

by the fact that Kj
1 , K

j′

1 , Kj′

2 , and Kj′′

2 are drawn independently,

Pr[(Kj
1 ⊕Kj′

1 = M ⊕M ′) ∧ (Kj′

2 ⊕Kj′′

2 = C ⊕ C ′′)] ≤ 1

22n
.

Hence, summing over at most q3 possible (j,M,C), (j′,M ′, C ′), (j′′,M ′′, C ′′),
one obtains

Pr[bad4] ≤
q3

22n
.

Events bad5 and bad6. Note that this event only holds when j ̸= j′ (distinct
users). For any two distinct queries (j,M,C) ̸= (j′,M ′, C ′) ∈ τm, one has, by

the fact that Kj
1 , K

j′

1 , Kj
2 , and Kj′

2 are drawn independently,

Pr[(Kj
1 ⊕Kj′

1 = M ⊕M ′) ∧ (Kj
2 ⊕Kj′

2 = M ⊕M ′ ⊕Kj
1 ⊕Kj′

1 )] ≤ 1

22n
.

Hence, summing over the q(q − 1)/2 possible pairs of (j,M,C) ̸= (j′,M ′, C ′),
we get

Pr[bad5] ≤
q2

22n−1
≤ q3

22n−1
.

Similarly,

Pr[bad6] ≤
q2

22n−1
≤ q2

22n−1
.

Events bad7 and bad8. For the event bad7, we need to consider the following
cases, namely when (a) j = j′ (the two queries are made to the same user oracle),
and when (b) j ̸= j′ (the two queries are made to the different user oracles).

1. For case (a), since the j-th and the j′-th user are the same, we haveKj = Kj′ .
For any two distinct queries (j,M,C) ̸= (j′,M ′, C ′) ∈ τm, one has, by the
fact that Kj

1 , and the output C and C ′ are drawn independently,

Pr[(Kj
1 = M ⊕ u) ∧ (C = C ′)] ≤ 1

22n
.
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Hence, summing over the q(q−1)/2 possible pairs of (j,M,C) ̸= (j′,M ′, C ′),
and p possible pairs of (u, v), we get

Pr[bad7(a)] ≤
q2p

22n−1
.

2. For case (b), the keys Kj and Kj′ are generated independently of each other.
The second equation holds with probability 1/2n. The rest of the analysis is
identical to that of case (a).

Hence

Pr[bad7] ≤
q2p

22n−1
.

For the event bad8, note that this event only holds when j ̸= j′ (distinct users).
The analysis is identical to that of bad7(b).

Pr[bad8] ≤
q2p

22n−1
.

Events bad9 and bad10. For this bad event bad9, we need to consider the fol-
lowing cases, namely when (a) j = j′ (the two queries are made to the same
user oracle), and when (b) j ̸= j′ (the two queries are made to the different user
oracles).

1. For case (a), since the j-th and the j′-th user are the same, we haveKj
1 = Kj′

1

and Kj
2 = Kj′

2 , the event becomes M ⊕ u = Kj
1 ∧ M ′⊕ u′ = Kj

1 ∧ v⊕M =
v′⊕M ′. In order to bound this bad event, we need the following help event:

Z : θ = |{{(u, v), (u′, v′)} : (u, v), (u′, v′) ∈ τp, u⊕ v = u′ ⊕ v′}| ≥ √p .

Then we have the following:

Pr[bad9(a) ∨ Z] ≤ Pr[Z] + Pr[bad9(a) ∧ ¬Z] .

To bound the probability of the event Z, we define an indicator random
variable Iik which is set to 1 if and only if (ui, vi), (uk, vk) ∈ τp such that
ui ⊕ vi = uk ⊕ vk. Therefore, we have

θ =
∑
i,k

Iik .

Now, for a fixed i, k, we have Pr[Iik = 1] = 1/2n. This is due to the fact
that either both of (ui, vi), (uk, vk) are backward queries in which ui, uk are
random values or at least one of them is a forward query (w.l.og we assume
(uk, vk) is a forward query) in which vj is random. Hence, using the linearity
of expectation, we have

E[θ] =
∑
ik

E[Iik] =
∑
ik

Pr[Iik = 1] ≤ p2

2n
.
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Therefore, using Markov’s inequality, we have

Pr[Z] ≤ E[θ]
√
p
≤ p3/2

2n

Now, we bound the probability of bad9∧¬Z. To bound the event, for a fixed
pair of (j,M,C), (j′,M ′, C ′) ∈ τm and for a fixed pair of (u, v), (u′, v′) ∈ τ1,
the probability that the event holds is 1/2n due to the randomness ofKj

1 . The
number of (u, v), (u′, v′) satisfies the the event is at most

√
p. Moreover, the

number of choices for (j,M,C) is q which makes the choice for (j′,M ′, C ′)
at most 1, as choosing an (j,M,C) determines (j′,M ′, C ′), namely, M ′ =
u′ ⊕ u⊕ x. Hence,

Pr[bad9(a) ∧ ¬Z] ≤
q
√
p

2n
.

2. For case (b), the keys Kj
1 , K

j′

1 , Kj
2 , K

j′

2 are generated independently of

each other. Using the fact that Kj
1 , K

j′

1 , Kj
2 , K

j′

2 are drawn independently,
then, summing over at most q(q − 1)/2 possible (j,M,C), (j′,M ′, C ′), and
p2 possible (u, v), (u′, v′), one obtains

Pr[bad9(b)] ≤
q2p2

23n−1
≤ qp2

22n−1
.

Finally,

Pr[bad9 ∨ Z] ≤
q
√
p

2n
+

p3/2

2n
+

qp2

22n−1
.

Similarly,

Pr[bad10 ∨ Z] ≤
q
√
p

2n
+

p3/2

2n
+

qp2

22n−1
.

Event bad11. Note that since the keys for different users are generated inde-
pendently of each other, it is sufficient to consider the single user case when

K
ji1
2 = · · · = K

jiξ+1

2 . Using the fact that in the ideal world the randomness in

the transcript τm is in the values Ci1 , . . . , Ciξ+1

$←− {0, 1}n. We obtain

Pr[bad11] =

(
q

ξ+1

)
2nξ

.

The result follows by an union bound over all conditions.

E Proof of Lemma 6

The bad transcript analysis relies on the alternating events lemma proposed by
Jha and Nandi [27] and Choi et al. [14].
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Lemma 8 (alternating events lemma [14, 27]). Let qi, qj , qk, ql, q ∈ N. Let
Xqi = (X1, . . . , Xqi) be a qi-tuple of random variables, and define the same for
Xqj , Xqk , Xql . For distinct i ∈ [qi], j ∈ [qj ], let Ei,j be events associated with
Xi ∈ Xqi and Xj ∈ Xqj , possibly dependent, which all hold with probability
at most ϵ. For distinct i ∈ [qi], j ∈ [qj ], k ∈ [qk], l ∈ [ql], let Fi,j,k,l be events
associated with Xi ∈ Xqi , Xj ∈ Xqj , Xk ∈ Xqk , and Xl ∈ Xql which all hold
with probability at most ϵ′. Moreover, the collection of events (Fi,j,k,l)i,j,k,l is
independent with the collection of event (Ei,j)i,j. Then,

Pr[∃i ∈ [qi], j ∈ [qj ], k ∈ [qk], l ∈ [ql], Ei,j ∧ Ek,l ∧ Fi,j,k,l] ≤
√
qiqjqkql · ϵ ·

√
ϵ′ .

Jha and Nandi [27] proved the alternating events lemma for qi, qj , qk, ql = q, the
lemma can straightforwardly be generalized to different qi, qj , qk, ql, a similar
proof for this is given in the bad transcripts analysis of the work by Choi et
al. [14].

We want to bound the probability Pr[XP ∈ Tbad] that an ideal world tran-
script τ satisfies one of the bad events. Therefore, by the union bound, the
probability that XP ∈ Tbad can be bounded as

Pr[XP ∈ Tbad] ≤
∑
i

Pr[badi] .

Events bad1, bad2 and bad3. For any possible MAC query (j,N,M, T ) ∈ τm,
(u, v) ∈ τ1 and (x, y) ∈ τ2, one has, by the fact that Kj and hj are independently
drawn,

Pr[(Kj = N ⊕ u) ∧ (hj(M) = N ⊕ x)] =
ϵ

2n
.

Hence, summing over qm possible choices of (j,N,M, T ), p possible (u, v), and
p possible (x, y) yields

Pr[bad1] ≤
qmp2ϵ

2n
.

Similarly

Pr[bad2] ≤
qmp2ϵ

2n
,

Pr[bad3] ≤ qmp2ϵ2 .

Event bad4. For this bad event, we need to consider the following cases, namely
when (a) j = j′ (the two queries are made to the same user oracle), and when
(b) j ̸= j′ (the two queries are made to the different user oracles).

1. For case (a), since the j-th and the j′-th user are the same, we haveKj = Kj′ ,
and the first equation becomes N ̸= N ′. Let N be the set of all MAC
queries such that N ̸= N ′. Event bad4 occurs if N ′ ⊕ hj′(M

′) = N ′ ⊕
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hj′′(M
′′) for some (j′, N ′,M ′, T ′) ̸= (j′′, N ′′,M ′′, T ′′). For any such fixed

(j,N,M, T ), (j′, N ′,M ′, T ′), (j′′, N ′′,M ′′, T ′′) ∈ τm, one has, by the fact that
hj′ and hj′′ are drawn independently, Pr[hj′(M

′)⊕hj′′(M
′′) = N ′⊕N ′] ≤ ϵ.

Hence, summing over at most µ2 possible (j,N,M, T ), (j′, N ′,M ′, T ′), (j′′,
N ′′,M ′′, T ′′), one obtains

Pr[bad4(a)] ≤ µ2ϵ .

2. For case (b), the keys Kj and Kj′ are generated independently of each other.
For any MAC queries (j,N,M, T ), (j′, N ′,M ′, T ′), (j′′, N ′′,M ′′, T ′′) ∈ τm
with (j′, N ′,M ′, T ′) distinct from (j,N,M, T ) and from (j′′, N ′′,M ′′, T ′′),
one has, by the fact that Kj , Kj′ , hj′ , and hj′′ are drawn independently,

Pr[(Kj ⊕Kj′ = N ⊕N ′) ∧ (hj′(M)⊕ hj′′(M
′′) = N ⊕N ′′)] ≤ ϵ

2n
.

Hence, summing over at most q3m possible (j,N,M, T ), (j′, N ′,M ′, T ′), (j′′,
N ′′,M ′′, T ′′), one obtains

Pr[bad4(b)] ≤
q3mϵ

2n
.

Putting the two cases together, we have

Pr[bad4] ≤ µ2ϵ+
q3mϵ

2n
.

Events bad5 and bad6. We consider event bad5. For this bad event, we need to
consider the following cases, namely when (a) j = j′ (the two queries are made
to the same user oracle), and when (b) j ̸= j′ (the two queries are made to the
different user oracles).

1. For case (a), since the j-th and the j′-th user are the same, we haveKj = Kj′ ,
and the first equation becomes N ̸= N ′. For any such fixed (j,N,M, T ), (j′,
N ′,M ′, T ′) ∈ τm, the probability of the event h∗

j (M) ⊕ h∗
j′(M

′) = T ⊕ T ′

is at most ϵ. Number of queries such that N = N ′ is at most µ2. Summing
over all possible (j,N,M, T ), (j′, N ′,M ′, T ′), one obtains

Pr[bad5(a)] ≤ µ2ϵ .

2. For case (b), the keys Kj and Kj′ are generated independently of each other.
For any two distinct MAC queries (j,N,M, T ) ̸= (j′, N ′,M ′, T ′) ∈ τm, one
has, by the fact that Kj , Kj′ , h

∗
j , and hj′ are drawn independently,

Pr[(Kj ⊕Kj′ = N ⊕N ′) ∧ (h∗
j (M)⊕ h∗

j′(M
′) = T ⊕ T ′)] ≤ ϵ

2n
.

Hence, summing over the qm(qm − 1)/2 possible pairs of (j,N,M, T ) ̸=
(j′, N ′,M ′, T ′), we get

Pr[bad5(b)] ≤
q2mϵ

2n−1
≤ q3mϵ

2n−1
.

51



Putting the two cases together, we have

Pr[bad5] ≤ 2µϵ+
q3mϵ

2n−1
.

Similar to bad5(b),

Pr[bad6] ≤
q2mϵ2

2
≤ q3mϵ2

2
.

Events bad7 and bad8. We first consider event bad7. For any two distinct MAC
queries (j,N,M, T ) ̸= (j′, N ′,M ′, T ′) ∈ τm and any (u, v) ∈ τ1, one has, by the
fact that Kj , hj , and hj′ are drawn independently,

Pr[(Kj = N ⊕ u) ∧ (hj(M)⊕ hj′(M
′) = N ⊕N ′)] ≤ ϵ

2n
.

Then, summing over qm(qm−1)/2 possible pairs of (j,N,M, T ) ̸= (j′, N ′,M ′, T ′),
and p possible (u, v),

Pr[bad7] ≤
q2mpϵ

2n−1
.

We now consider event bad8. For this bad event, we need to consider the
following cases, namely when (a) j = j′ (the two queries are made to the same
user oracle), and when (b) j ̸= j′ (the two queries are made to the different user
oracles).

1. For case (a), since the j-th and the j′-th user are the same, we haveKj = Kj′ ,
and the second equation becomes N ̸= N ′. For any two distinct MAC queries
(j,N,M, T ) ̸= (j′, N ′,M ′, T ′) ∈ τm and any (u, v) ∈ τ1, one has, by the
fact that hj is drawn independently, the event N ⊕ hj(M) = u holds with
probability at most ϵ. The number of choices of possible N = N ′ is at most
2µ and summing over p possible (u, v),

Pr[bad8(a)] ≤ 2µpϵ .

2. For case (b), the keys Kj and Kj′ are generated independently of each other.
For any two distinct MAC queries (j,N,M, T ) ̸= (j′, N ′,M ′, T ′) ∈ τm, and
any (u, v) ∈ τ1, one has, by the fact that Kj , Kj′ , and hj are drawn inde-
pendently,

Pr[(hj(M) = N ⊕ x) ∧ (Kj ⊕Kj′ = N ⊕N ′)] ≤ ϵ

2n
.

Then, summing over qm(qm−1)/2 possible pairs of (j,N,M, T ) ̸= (j′, N ′,M ′, T ′),
and p possible (x, y),

Pr[bad8(b)] ≤
q2mpϵ

2n−1
.

Putting the two cases together, we have

Pr[bad8] ≤ 2µpϵ+
q2mpϵ

2n−1
.
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Events bad9 and bad10. In order to bound these two events, we will need the
following two help events

badc1 : c1 = |(j, T,M,C) ∈ τm : N ⊕Kj ∈ τ1| ≥
√
qm ,

badc2 : c2 = |(j, T,M,C) ∈ τm : N ⊕ hj(M) ∈ τ2| ≥
√
qm .

In stead of bounding bad9, we will bound bad9 ∨ badc1

Pr[bad9 ∨ badc1 ] = Pr[badc1 ] + Pr[bad9 ∧ ¬badv1 ] .

To upper bound Pr[badc1 ], we see c1 as a random variable over the random
choice of Kj . First, note that

E[c1] =
∑

(j,N,M,T )∈τm

∑
(u,v)∈τ1

Pr[N ⊕Kj = u] =
qmp

2n
,

so that by Markov’s inequality,

Pr[badc1 ] ≤
√
qmp

2n
.

For this bad event bad9∧¬badc1 , we need to consider the following cases, namely
when (a) j = j′ (the two queries are made to the same user oracle), and when
(b) j ̸= j′ (the two queries are made to the different user oracles).

1. For case (a), since the j-th and the j′-th user are the same, we haveKj = Kj′ .
Note that c1 <

√
qm, and fix any queries (j,N,M, T ) ̸= (j′, N ′,M ′, T ′) ∈

τm, (u, v), (u′, v′) ∈ τ1 such that N ⊕Kj = u and N ′ ⊕Kj = u′. Note that
since c1 <

√
qm, there are at most qm/2 such tuple of queries. Then

Pr[h∗
j (M)⊕ h∗

j (M
′) = v ⊕ T ⊕ v′ ⊕ T ′] ≤ ϵ .

and, by summing over every h∗
j such that c1 <

√
qm and every such tuple of

queries, one has

Pr[bad9(a) ∧ ¬badc1 ] ≤
qmϵ

2
≤ q3mϵ2

2
.

2. For case (b), the keys Kj and Kj′ are generated independently of each other.
Using the fact that Kj , Kj′ , h

∗
j , and h∗

j′ are drawn independently, then, sum-

ming over at most q2m possible (j,N,M, T ), (j′, N ′,M ′, T ′), and p2 possible
(u, v), (u′, v′), one obtains

Pr[bad9(b) ∨ badc1 ] = Pr[bad9(b)] ≤
q2mp2ϵ

22n
≤ qmp2ϵ

2n
.

Finally,

Pr[bad9 ∨ badc1 ] ≤
√
qmp

2n
+

q3mϵ2

2
+

qmp2ϵ

2n
.

Similarly,

Pr[bad10 ∨ badc2 ] ≤
√
qmp

2n
+

q3mϵ2

2
+ qmp2ϵ2 .
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Events bad11. Note that since the hash keys for different users are generated
independently, it is enough to focus on the single user when hji1

= · · · = hjiξ+1
,

as this case will yield the dominant term. Since (N (ji),M (ji)) ̸= (N (jk),M (jk))
for all i ̸= k, we can apply Lemma 2 with a = ξ = 2n/2(p+ qm) to get

Pr[bad11] ≤
8q2m(p+ qm)2ϵ

22n
.

Event bad12. For any MAC query (j,N,M, T ) ∈ τm and any verification query
(j(a), N (a),M (a), T (a)) ∈ τa, one has, by the fact that hj , hj(a) , h∗

j , and h∗
j(a) are

drawn independently,

Pr[(hj(M)⊕ hj(a)(M (a)) = N ⊕N (a)) ∧ (h∗
j (M)⊕ h∗

j(a)(M
(a)) = T ⊕ T (a))] ≤ ϵ2 .

Then, summing over qm possible (j,N,M, T ), and qa possible (j
(a), N (a),M (a), T (a)),

Pr[bad12] ≤ qmqaϵ
2 ≤ q2mqaϵ

2 .

Event bad13. For any possible verification query (j(a), N (a),M (a), T (a)) ∈ τa and
a pair of any possible primitive queries (u, v) ∈ τ1 and (x, y) ∈ τ2, one has, by
the fact that Kj(a) and hj(a) are drawn independently,

Pr[(Kj(a) = N (a) ⊕ u) ∧ (hj(a)(M (a)) = N (a) ⊕ x)] ≤ ϵ

2n
.

Then, summing over qa possible (j(a), N (a),M (a), T (a)), p possible (u, v), and p
possible (x, y),

Pr[bad13] ≤
qap

2ϵ

2n
.

Events bad14 and bad16. We consider event bad14. Note that since our goal is the
prove 2n/3-bit security, it is sufficient the only focus on the first two equations.
For any MAC query (j,N,M, T ) ∈ τm, any verification query (j(a), N (a),M (a), T (a))
∈ τa, and any (u, v) ∈ τ1, one has, by the fact that Kj , hj , and hj(a) are drawn
independently,

Pr[(Kj = N ⊕ u) ∧ (hj(M)⊕ hj(a)(M (a)) = N ⊕N (a))] ≤ ϵ

2n
.

Then, summing over qm possible (j,N,M, T ), qa possible (j(a), N (a),M (a), T (a)),
and p possible (x, y),

Pr[bad14] ≤
pqmqaϵ

2n
.

Similarly,

Pr[bad16] ≤
pqmqaϵ

2n
.
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Event bad15. For this bad event, we need to consider the following cases, namely
when (a) j = j′ (the two queries are made to the same user oracle), and when
(b) j ̸= j′ (the two queries are made to the different user oracles).

1. For case (a), since the j-th and the j′-th user are the same, we have Kj =
Kj(a) . We will use Lemma 8 to bound the event, with qi = qm, qk = qa,

qj = ql = p. We denote Ei,j : N ⊕ x = Hj , Ek,ℓ : N (a) ⊕ x′ = Hj(a) , and

Fi,j,k,ℓ : T
(a) ⊕H∗

j(a) = y ⊕ T ⊕H∗
j ⊕ y′. The probability that Ei,j happens

for fixed i, j is ϵ (same for Ek,ℓ), and the probability that Fi,j,k,ℓ happens
for fixed j, k is ϵ. Hence, summing over at most qm possible (j,N,M, T ), qa
possible (j(a), N (a),M (a), T (a)), and p2 possible (x, y), (x′, y′), one obtains

Pr[bad15(a)] ≤ p
√
qmqaϵ

3/2 .

2. For case (b), the keys Kj and Kj(a) are generated independently of each
other. It is sufficient the only focus on the first two equations. For any MAC
queries (j,N,M, T ) ∈ τm, any verification queries (j(a), N (a),M (a), T (a)) ∈
τa, and any (x, y) ∈ τ2, one has, by the fact that Kj , Kj(a) , and hj are drawn
independently,

Pr[(hj(M) = N ⊕ x) ∧ (Kj ⊕Kj(a) = N ⊕N (a))] ≤ ϵ

2n
.

Hence, summing over at most qm possible (j,N,M, T ), qa possible (j
(a), N (a),

M (a), T (a)), and p possible (x, y), one obtains

Pr[bad15(b)] ≤
pqmqaϵ

2n
.

Putting the two cases together, we have

Pr[bad15] ≤ p
√
qmqaϵ

3/2 +
pqmqaϵ

2n
.

The result follows by an union bound over all conditions.
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