
Rate-1 Non-Interactive Arguments for Batch-NP

and Applications ∗

Lalita Devadas
MIT

Rishab Goyal
University of Wisconsin-Madison

Yael Kalai
Microsoft Research and MIT

Vinod Vaikuntanathan
MIT

Abstract

We present a rate-1 construction of a publicly verifiable non-interactive argument system for
batch-NP (also called a BARG), under the LWE assumption. Namely, a proof corresponding to
a batch of k NP statements each with an m-bit witness, has size m+ poly(λ, log k).

In contrast, prior work either relied on non-standard knowledge assumptions, or produced
proofs of size m · poly(λ, log k) (Choudhuri, Jain, and Jin, STOC 2021, following Kalai, Paneth,
and Yang 2019).

We show how to use our rate-1 BARG scheme to obtain the following results, all under the
LWE assumption in the standard model:

• A multi-hop BARG scheme for NP.

• A multi-hop aggregate signature scheme.

• An incrementally verifiable computation (IVC) scheme for arbitrary T -time deterministic
computations with proof size poly(λ, log T).

Prior to this work, multi-hop BARGs were only known under non-standard knowledge assumptions
or in the random oracle model; aggregate signatures were only known under indistinguishability
obfuscation (and RSA) or in the random oracle model; IVC schemes with proofs of size poly(λ, T ϵ)
were known under a bilinear map assumption, and with proofs of size poly(λ, log T) were only
known under non-standard knowledge assumptions or in the random oracle model.

∗All authors were supported in part by DARPA under Agreement No. HR00112020023, and Devadas, Goyal, and
Vaikuntanathan were supported in part by a grant from the MIT-IBM Watson AI, a grant from Analog Devices, a
Microsoft Trustworthy AI grant, and a Thornton Family Faculty Research Innovation Fellowship from MIT. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the United States Government or DARPA. The work of Goyal was done when he
was at MIT.

Contents

1 Introduction 1
1.1 Our Main Technical Result: Rate-1 seBARG for NP 2
1.2 Our Main Tool: Fully-Local Somewhere Extractable Hash (SEH) Families 3
1.3 Applications of seBARGs . 4

2 Technical Overview 9
2.1 Main Ingredient: Flexible RAM SNARGs with Partial Input Soundness 9
2.2 Our Rate-1 seBARG Scheme . 10
2.3 Our Fully-Local SEH Family . 11

3 Preliminaries 13
3.1 Somewhere Extractable Hash (SEH) Families . 13
3.2 Somewhere Extractable Batch Arguments (seBARGs) 15
3.3 Flexible RAM SNARGs with Partial Input Soundness 17
3.4 Homomorphic Encryption with Ciphertext Compression 18

4 Rate-1 Fully-Local SEH (flSEH) Families 21
4.1 Definition . 21
4.2 Construction . 23
4.3 Analysis . 29

5 Rate-1 seBARGs 34

6 Multi-Hop seBARGs 37
6.1 Definition . 38
6.2 Construction and Analysis . 40
6.3 Hashed Multi-Hop seBARGs . 44

6.3.1 Definition . 44
6.3.2 Construction and Analysis . 46

7 Applications 50
7.1 Aggregate Signatures . 50

7.1.1 Definition . 50
7.1.2 Construction and Analysis . 52

7.2 Incrementally Verifiable Computation . 54
7.2.1 Definition . 54
7.2.2 Construction and Analysis . 55

A Homomorphic Encryption with Local Compression Compiler 64

1 Introduction

Succinct non-interactive arguments (SNARGs) and arguments of knowledge (SNARKs) are not only
objects of great importance in the theory of cryptographic proofs, but are also revolutionizing
practical applications such as blockchains and cryptocurrencies [But21]. A vigorous and productive
line of research has resulted in several constructions of SNARGs and SNARKs for NP (e.g., [Mic94,
Gro10,Lip12,BCCT12,GGPR13,BCCT13,BCI+13], to name a few). However, despite decades of
research, all constructions of SNARGs for general NP languages have relied on either the random oracle
model or on non-falsifiable knowledge assumptions. While there are some limited negative results
on constructing SNARGs in the standard model under falsifiable cryptographic assumptions [GW11],
the possibility of achieving them remains tantalizing, indeed a holy grail of this line of research.

Meanwhile, a steady stream of results, starting from [KRR13,KRR14] has showed us how to
achieve SNARGs in the standard model for increasingly more expressive classes of computations.
The initial results in this direction compiled multi-prover interactive proofs into privately verifiable
SNARGs [KRR13,KRR14,BHK17,BKK+18], resulting in privately verifiable SNARGs for P (and
even for NTISP, the class of non-deterministic time and space bounded computations). More recent
incarnations [KPY19,KPY20] of this line of work have resulted in publicly verifiable SNARGs for
P (and NTISP) using hardness assumptions on groups that support bilinear maps. An alternate,
seemingly completely different, route to publicly verifiable SNARGs has proceeded by the round-
compression of interactive proofs via the Fiat-Shamir paradigm [FS87,CCH+19,JKKZ21]. Following
this line of research, the recent breakthrough work of Choudhuri, Jain, and Jin [CJJ21a] constructed
a SNARG for P, under the learning with errors (LWE) assumption; and [KVZ21] achieved a SNARG
for NTISP from the LWE assumption. The key ingredient in their constructions is a SNARG for
batch-NP computations, also referred to as a batch argument or BARG.

BARGs are the central theme in our work. They have recently emerged as a powerful tool for
constructing expressive SNARGs for various classes of computations. A BARG is a proof system for
k NP statements where the size of the proof (resp. the verification time) is proportional to the size of
a single instance-witness pair (resp. the time for a single NP verification). Indeed, [KVZ21,CJJ21a]
showed a “BARG-to-SNARG compiler” that uses any BARG to construct a SNARG for P and one
for NTISP. Together with the construction of BARGs from LWE [CJJ21a], we have SNARGs for
P and NTISP from the LWE assumption. Together with the construction of BARGs from bilinear
maps [KPY19,WW22,KLVW22], and from a combination of the decisional Diffie-Hellman (DDH) and
quadratic residuosity (QR) assumptions [CJJ21b,KLVW22], the aforementioned BARG-to-SNARG
compiler [CJJ21a,KVZ21] gives us SNARGs for P and NTISP from the corresponding assumptions.
Batch proofs have also been studied in the statistical soundness setting; see, e.g., [RRR18,RR20].
In summary, the study of batch proofs and arguments shed new light on the long-running quest to
construct succinct non-interactive arguments for NP.

Our work. In this paper, we advance the study of batch arguments for NP in several directions.
As our main technical contribution, we construct the first rate-1 BARG in the standard model

where the size of the proof for k NP statements is m+ poly(λ, log k), where m is the length of a
single witness and λ is the security parameter. That is, the ratio between the length of the proof to
the length of a single witness is asymptotically 1. In all prior work [CJJ21a,CJJ21b,KVZ21,WW22],
the BARG proof had a multiplicative overhead in the security parameter (whereas our overhead is
additive). Short of attaining the holy grail of constructing a full-fledged SNARG for NP (with proof

1

length sublinear in the witness length), this is the optimal size one can achieve for BARGs. The
soundness of our construction relies on the learning with errors (LWE) assumption.

Our BARG scheme has the following two additional properties (similar to the one from [CJJ21a]).
First, it is somewhere extractable (we call such schemes seBARG) in the sense that given an
appropriate trapdoor, one can extract a single witness from the BARG proof. In addition, it is an
index seBARG, which means that if the k instances can be generated by a size-s circuit that on
input i outputs the i-th instance (where s may be significantly smaller than k) then the verification
time grows with s (and is otherwise independent of k).1

On the way to our construction, we define and construct a fully-local somewhere extractable
hash function (flSEH) family, a significant generalization of the notion of somewhere statistically
binding (SSB) hashing defined by Hubác̆ek and Wichs [HW15]. In SSB hashing, the hash function
description specifies a (hidden) set of m input locations where the hash output is statistically
binding. It is not hard to see that this implies the hash output is at least m bits long. Indeed, in all
prior constructions [HW15,OPWW15a], the hash output had length m · poly(λ). Our construction
improves on this in several ways. First, our construction is rate-1, in the sense that the hash output
consists of m+ poly(λ) bits. Secondly, it is extractable in the sense that given a trapdoor associated
to the hash function, one can extract the m statistically bound bits efficiently2; and finally, it is
fully-locally openable in the sense that the local opening of each bit has size poly(λ), independent
of m. In contrast, the Hubác̆ek-Wichs [HW15] notion of SSB hashing required a weaker version
of local opening: the size of the local opening for a single bit could grow polynomially with m. A
minute of thought reveals that this requirement is highly non-trivial: the local opening needs to be
shorter than the hash function output which, as we observed above, grows with m. We view this
primitive and the construction thereof to be as important as the result itself, and elaborate on it in
Sections 1.2 and 2.3. Indeed, this primitive has already been used in [KLVW22] to compile any
semi-succinct BARG scheme (where the BARG proof of k NP statements has size sublinear in k)
into a (succinct) BARG scheme.

We show a number of applications of our main result. We show a construction of multi-
hop seBARGs from LWE; a construction of multi-hop aggregate signatures from LWE (in the
standard model); and a construction of incrementally verifiable computation for all deterministic
computations from LWE. Previously, such results were known only in idealized models or under
non-standard knowledge assumptions, with the exception of aggregate signatures which was known
assuming indistinguishability obfuscation (iO) and the RSA assumption [HKW15].3 We describe
our contributions in more detail below.

1.1 Our Main Technical Result: Rate-1 seBARG for NP

Our main technical contribution is the construction of a rate-1 seBARG scheme. A somewhere
extractable BARG scheme (seBARG) consists of a setup algorithm Gen; a prover algorithm P; and
a verifier algorithm V. The setup algorithm Gen is given a security parameter 1λ, a parameter k
(which specifies the number of instances in a batch NP statement), an instance size n, and an index
i ∈ [k] (which specifies which witness should be extractable). It generates a common reference string

1From now on, when we refer to an seBARG, we always mean that it is an index seBARG.
2In fact, our construction turns out to have the stronger property of local extraction: that is, the time to extract a

single bit is poly(λ), independent of m. However, we do not need this property for our constructions, and hence do
not pursue it any further.

3We note that the scheme presented in [HKW15] is only selectively secure, whereas our scheme is adaptively secure.

2

crs and a trapdoor td. The prover algorithm P is given the crs and a set of instances x1, . . . , xk ∈ L
together with a set of corresponding witnesses w1, . . . , wk, and generates a proof π. Finally, the
verification algorithm V is given a crs, a set of instances x1, . . . , xk, and a proof π, and outputs 0/1
(indicating accept or reject).

A rate-1 seBARG scheme has the following properties (in addition to the usual notion of
completeness).

1. Semi-adaptive soundness. For any index i ∈ [k] and crs ← Gen(1λ, k, n, i), no probabilistic
polynomial-time adversary can generate a tuple of k NP statements x1, . . . , xk ∈ {0, 1}n
together with a proof π∗, where xi /∈ L and yet, the verifier accepts π∗. Semi-adaptivity here
refers to the fact that the adversary picks i before seeing the common reference string.

2. Somewhere proof-of-knowledge. This is a strengthening of semi-adaptive soundness which
requires an probabilistic polynomial-time extractor algorithm that, given a trapdoor for the
crs, k NP statements, and an accepting proof π∗, extracts a witness wi for the statement xi.

3. Index hiding. The common reference string crs should hide the index i ∈ [k] (which specifies
which witness is extractable).

4. Efficiency. The algorithms Gen,P and V are all probabilistic polynomial-time, and the proof
π has size m + poly(λ, log k) = m + poly(λ). Moreover, if the instances x1, . . . , xk can be
efficiently generated by a size-s circuit that on input i outputs xi, then the run-time of V is
poly(s,m, λ), as opposed to the potentially much larger poly(n, k,m, λ).

We note that, as remarked before, all known constructions of BARGs and seBARGs [CJJ21a,CJJ21b,
WW22] have an inverse polynomial (in λ) rate. Our main result is the following.

Theorem 1.1 (Informal). Under the LWE assumption, for every L ∈ NP, there exists a rate-1
seBARG scheme (Gen,P,V).

We remark that our construction is more general: given a SNARG for an NP language with
proofs of size ℓ(m) for statements with m-bit long witnesses, our construction produces an seBARG
with proofs of size ℓ(m) + poly(λ) for k ≤ 2λ statements. Special-purpose NP languages with such
non-trivial SNARGs exist, e.g. for the non-deterministic class NTISP. Our construction then “lifts”
them into somewhere extractable batch arguments with similarly short proofs. We also note that
short of constructing a non-trivial SNARG for NP, rate-1 seBARGs are the best one can do. We
refer the reader to Section 3.2 for details.

1.2 Our Main Tool: Fully-Local Somewhere Extractable Hash (SEH) Families

The main technical tool that we define, construct, and use is a rate-1 fully-local somewhere
extractable hash (flSEH) function.

Collision-resistant hash functions compress their input, therefore by definition lose information
about it. Hubác̆ek and Wichs [HW15] ask if there is a hash function that is nevertheless guaranteed
to preserve some information about its input. For example, letting the input x be an n-bit string, we
may wish to design a hash function hI so that hI(x) remembers xI = (xi)i∈I for some subset I ⊆ [n].
That is, for every x, x′ such that xI ̸= x′I , hI(x) ̸= hI(x

′). In this sense, the hash function hI is
statistically binding on the locations I ⊆ [n], and hence such a hash family is called a somewhere

3

statistically binding (SSB) hash function. It is not hard to see that for this to happen, the hash
output must have size at least |I|. As stated, however, this is trivial to build: hI could simply
output xI . To be non-trivial (and indeed, useful), an SSB hash function needs to have an additional
hiding property, namely the descriptions of the hash functions hI and hI′ should be computationally
indistinguishable whenever |I|= |I ′|. Hubác̆ek and Wichs [HW15] show how to construct an SSB
hash function family using a leveled fully homomorphic encryption (FHE) scheme, thus relying on
the LWE assumption. Subsequent work showed how to realize SSB hash functions from a wider
class of assumptions [OPWW15a].

Our notion of a rate-1 fully-local somewhere extractable hash function (flSEH) family is a
significant generalization of SSB hashing: it is rate-1, extractable, and fully-locally openable.

For a reader familiar with the Hubác̆ek-Wichs construction, it is not hard to see that their
construction is somewhere extractable, that is, given a trapdoor associated with the hash function,
one can extract the statistically bound value. In the Hubác̆ek-Wichs construction, the trapdoor
is simply the secret key of the FHE scheme. Their construction also has a local opening property,
that is, there is an opening algorithm that, given (x, i) and a description of the hash function,
outputs xi together with a short “certificate” that certifies the correctness of xi. The Hubác̆ek-Wichs
construction is a tree-based hash function, similar to a Merkle hash [Mer88]. Thus, an opening
consists of all the hash values on the path in the tree from the leaf node i to the root, together with
the hash values of all their siblings. The fact that each hash value is of size at least |I| implies that the
size of the opening is at least |I|. We refer to a hash family that satisfies these properties as an SEH
family. Finally, the Hubác̆ek-Wichs construction achieves rate-1, that is, the size of the hash output
is |I|+poly(λ), if one uses a rate-1 FHE scheme such as the one from [BDGM19,GH19a,DGI+19a].

A rate-1 fully-local SEH family is a rate-1 SEH family with the crucial additional property of full
locality. That is, the size of a local opening does not grow with |I|, the number of bits that we are
statistically bound on. In other words, one should be able to open any bit of the input using an
opening of size poly(λ) bits, independent of |I|. Additionally, verification of this opening should be
possible in time poly(λ) as well. In other words, verification should take time smaller than the hash
value itself! A minute of thought reveals that one has to significantly depart from the Merkle tree
paradigm to construct such a hash function. Indeed, the main novelty and technical contribution of
our construction is in building such a seemingly paradoxical hash function with fully local opening
and verification algorithms. We refer the reader to Section 2.3 for details.

Theorem 1.2 (Informal). Under the LWE assumption, there exists a rate-1 fully-local SEH family.

1.3 Applications of seBARGs

We show two ways to strengthen seBARGs, resulting in the new notions of multi-hop seBARG and
hashed (multi-hop) seBARG. We then show how to use rate-1 seBARGs to achieve these stronger
notions. Finally, we show two applications of these stronger notions: constructing a multi-hop
aggregate signature scheme in the standard model, and constructing an incrementally verifiable
computation scheme in the standard model. All schemes are secure under the LWE assumption. We
describe these contributions in more detail below.

Multi-Hop seBARGs. The ability to compose proofs enables mutually distrustful parties to
perform distributed computations in a verifiable manner, and is especially important in decentralized
applications such as blockchains. The importance of proof composition was in fact already realized

4

Figure 1: Each proof πi (resp. π′
i) is an aggregation of 2i many NP statements. A proof of k

NP statements is thus a collection of seBARG proofs (π0, . . . , πlog k) where each πi is a proof of 2i

statements (if the ith digit in the binary expansion of k is 1) or empty (if the ith digit is 0). To
aggregate two such proofs (for k = 7 and k = 5 NP statements respectively, as illustrated above
on the left), we start by combining π0 and π′

0 into a proof π̄1 that certifies the truth of two NP
statements. We then aggregate π1 and π̄1 into a proof π′′

2 which certifies the truth of four NP
statements. Finally, we aggregate π2 and π′

2 into a proof π′′
3 which certifies the truth of eight NP

statements. The final proof consists of (π′′
2 , π

′′
3). Each proof πi is a result of at most i ≤ log k hops

of aggregation.

in Micali’s original work introducing SNARGs [Mic93], and has been extensively studied in the
last two decades [Val08,CT10,BCCT13,BCTV14,COS20,KPY20,BCMS20,BCL+21], leading to
powerful primitives such as incrementally verifiable computation (IVC) [Val08] and proof-carrying
Data (PCD) [CT10], and to many applications, such as enforcing language semantics [CTV13],
verifiable MapReduce computations [CTV15], image authentication [NT16], PPAD hardness [Val08,
BPR15,KPY20], and succinct blockchains [KB20,BMRS20,CCDW20].

We ask whether it is possible to compose BARG proofs. That is, given BARG proofs π1, . . . , πk of
k batches of NP statements x1 = (x1,1, . . . , x1,ℓ1), . . . ,xk = (xk,1, . . . , x1,ℓk), can we create a BARG
proof π for the collection of these NP statements, which certifies that all of the NP statements

x = (x1, . . . ,xk) = (x1,1, . . . , x1,ℓ1 , . . . , xk,1, . . . , xk,ℓk)

are true? Furthermore, the system should support an unbounded polynomial number of such
iterative compositions without the proof size or the verification time growing by too much. We call
such a system a multi-hop batch argument for NP, or a multi-hop BARG for short. If the system
supports somewhere extraction, appropriately defined, it is called a multi-hop seBARG.

It is natural to try to realize a multi-hop BARG by BARGing many BARG proofs. In the example
above, one could try to produce a BARG proof that there exist BARG proofs π1, . . . ,πk certifying the
truth of the collections of NP statements x1, . . . ,xk respectively. The first issue with this approach
is that each composition increases the length of the proofs. For example, if we use a BARG system
where the proof length has a multiplicative overhead of poly(λ) (over the witness length) as is the
case for all known BARG schemes [KPY19,CJJ21a,CJJ21b,WW22], then the size of the proofs
after B hops grows to λΩ(B). By playing with the security parameter, one can make the number of
hops slightly super-constant (see, e.g., [KPY19,KPY20]), but that hits the limit of what is possible.

5

Even if we had a constant-rate BARG (with rate > 1), we could handle at most a logarithmic (in
the security parameter) number of hops. The second issue is one of proving soundness: the most
direct way of proving soundness of the composed proof system is through extraction.

Rate-1 somewhere extractable BARGs (seBARGs) solve both these problems, giving us the
following theorem.

Theorem 1.3 (Informal). Under the LWE assumption, there exists a multi-hop seBARG for NP
statements with m-bit witnesses where the size of the proof after B hops is m+B · poly(λ).

Our proof of this theorem proceeds by showing a way to convert any rate-1 seBARG scheme
into a multi-hop seBARG. We obtain the theorem by using our rate-1 seBARG from Theorem 1.1
which we construct under LWE. Each hop incurs an additive increase of poly(λ) to the proof length,
and hence the total size after B hops is a modest m+B · poly(λ) bits. Our construction does not
require the batch size or the instance length to be fixed in advance, relying on the fact that the
run-time of our rate-1 seBARG setup algorithm grows only poly-logarithmically with the batch size
and the instance length.

Finally, we observe that while the dependence on the number of hops may seem limiting, a simple
extension of our construction allows us to batch an arbitrary polynomial (and even more, upto an
exponential) number of NP proofs. To do so, we maintain the invariant that the batched proof at
any point corresponding to k NP statements consists of a sequence of seBARG proofs (π0, π1, . . . , πℓ)
with ℓ ≤ ⌊log k⌋, where πi is either empty or a batched proof corresponding to exactly 2i NP
statements. It is not hard to see that two such batched proofs (π0, . . . , πℓ) and (π′

0, . . . , π
′
ℓ) can be

combined together into a proof (π′′
0 , . . . , π

′′
ℓ) maintaining the invariant. When batching a total of k

NP statements, our batched proof consists of at most log k multi-hop seBARG proofs, where each
proof certifies the correctness of 2i statements for some unique i ∈ [log k]. Each of these proofs is a
result of at most log k hops of aggregation and thus has size m+ (log k) · poly(λ). Thus, the total
proof size grows with O(log2 k) (ignoring the dependence on the witness size m and the security
parameter λ). See Figure 1 for an illustration.

We refer the reader to Section 6 for more details on the multi-hop seBARG definition and
construction.

Multi-Hop Hashed seBARGs. To realize some of our applications, such as incrementally verifiable
computation, we need a further generalization of (multi-hop) seBARGs, in which the verifier is given
only a (somewhere extractable) hash v of the instances, rather than all the instances in the clear.
The somewhere argument of knowledge property now states that if a proof π verifies with respect to
a hash value v, then we can extract a valid witness ω from π for the instance x which is extractable
from v. We call this a (multi-hop) hashed seBARG. A hashed seBARG is related to, but different
from, an index seBARG: in the latter, there is a compressed representation of the instances from
which each instance can be recovered quickly, whereas in the former, the instances can be arbitrary
without necessarily a short representation. We believe that the notion of a hashed (multi-hop)
seBARG is of independent interest.

We show how to construct a hashed multi-hop seBARG from a rate-1 seBARG. The hashed
multi-hop seBARG proof combiner takes as input, instead of k batches of statements, k hash values
v1, . . . , vk of depth d, and corresponding proofs π1, . . . , πk and outputs a hash value v of depth d+ 1
and corresponding proof π. The construction is similar to the regular multi-hop seBARG, except
that now when aggregating, every witness includes a hash value vi and an opening ρi of vi w.r.t. v,

6

in addition to the proof πi. In the initial aggregation step, the witness is simply an NP witness wi,
and vi is simply xi. In later aggregations, the witness becomes a seBARG proof πi corresponding
to a hash value vi. We rely on the somewhere extraction property of the hash to ensure that the
instance that we recursively extract from the proof (which goes along with the witness ω that we
recursively extract from the proof), matches the instance x that we recursively extract from the
hash value.

Theorem 1.4 (Informal). Under the LWE assumption, there exists a hashed multi-hop seBARG for
NP statements with n-bit instances and m-bit witnesses where the size of the proof after B hops is
m+ n ·B · poly(λ).

We refer the reader to Section 6.3 for more details on hashed (multi-hop) seBARG.

Multi-Hop Aggregate Signature Schemes from LWE. As an immediate application of our
multi-hop seBARG, we construct a multi-hop aggregate signature scheme.

Aggregate signatures were introduced by Boneh, Gentry, Lynn, and Shacham [BGLS03] to
enable the compression of a sequence of signatures σ1, . . . , σk, where each σi is a signature of an
arbitrary message mi w.r.t. an arbitrary verification key vki, into a single aggregated signature σ̂
whose size is independent of k. While the original motivation for aggregate signatures was to
compress certificate chains and to reduce cryptographic overhead in secure BGP, the notion has
recently found a great deal of practical interest in the context of blockchains where they provide
tangible savings in communication and space. Multi-hop aggregate signatures require the ability to
aggregate several aggregate signatures, similar to multi-hop seBARGs.

The original construction of aggregate signatures [BGLS03] relied on bilinear maps and was proven
secure in the random oracle model. A more recent construction [HKW15] uses indistinguishability
obfuscation and the RSA assumption, and constructs an aggregate signature scheme secure in the
standard model. Finally, it is a folklore observation that SNARKs for NP immediately give us an
aggregate signature scheme. All these schemes support multi-hop aggregation. Thus, with the
exception of [HKW15], all constructions of aggregate signature schemes rely either on random
oracles, or on specialized knowledge-type assumptions.

In this work, we observe that our construction of multi-hop seBARGs immediately gives us a
multi-hop aggregate signature scheme (in the standard model) secure under the LWE assumption.

Theorem 1.5 (Informal). Under the LWE assumption, there exists a multi-hop aggregate signature
scheme in the standard model.

Finally, we note that the “seBARG lens” gives us multi-hop aggregate signatures with several
additional desirable properties. For example:

1. Universal Aggregation: The goal of universal signature aggregation [HKW15], is to be able
to aggregate a collection of signatures produced from any signing algorithm (as long as the
description of the verification algorithm is fixed). Universal signature aggregation allows
real-world systems to continue to use existing signature schemes and public-key infrastructure,
while supporting signature aggregation. The generality of the seBARG methodology lets us
add the signature aggregation feature to any signature scheme by including the description
of the verification algorithm as part of the instance. While [HKW15] and the SNARK-based
construction give us universal signature aggregation, [BGLS03] does not.

7

2. Local Verifiability: A locally verifiable aggregate signature scheme [GV22] allows a verifier
to check, given an aggregate signature σ̂ and a small advice that can be computed from all
the (mi, vki) pairs, whether a particular message m is in the aggregated set (m1, . . . ,mk),
without having to know the entire list of messages. Indeed, the signature verifier runs in time
sublinear in k. We note that using a hashed (multi-hop) seBARG scheme, we can construct a
(multi-hop) locally verifiable aggregate signature scheme by having the small advice be an
opening of the hash value.

We refer the reader to Section 7.1 for more details. While our constructions are not concretely
efficient (as compared to, e.g., [BGLS03]), we believe that a refinement of the seBARG lens can
potentially give us a concretely efficient LWE-based aggregate signature scheme. We leave the
exploration of this line of thought for future work.

Incrementally Verifiable Computation from LWE. Consider the computation of a Turing
machineM on an input x, a computation so long that no single person can finish it all by herself.
Each person thus takes the intermediate state resulting from a partial computation, a Turing
machine configuration conft at time t, and updates it by running ℓ more steps to get a configuration
conft+ℓ. To certify that the computation has been done correctly, one needs to do more. Given a
succinct proof πt certifying that the t-th configuration is conft, one needs to efficiently compute a
new succinct proof πt+ℓ certifying that the (t+ ℓ)-th configuration is conft+ℓ. Importantly, the time
to generate (conft+ℓ, πt+ℓ) should depend only on ℓ, and should be independent of t. In particular,
the length of the proofs does not grow with t; at worst, we allow a poly-logarithmic in t growth.
This is the notion of incrementally verifiable computation (IVC), a notion of great interest in settings
where long ongoing computations are performed by a distributed network of mutually distrusting
parties [Mic94,Val08,BCCT13].

All known constructions of IVC use full-fledged SNARKs for NP as a building block, and thus
rely on non-falsifiable knowledge assumptions. Kalai, Paneth and Yang [KPY20] constructed a weak
form of IVC for deterministic time-T computations with proofs of size poly(λ, T ϵ) for any constant
(or even slightly sub-constant) ϵ > 0, assuming the hardness of problems on elliptic curves that
support bilinear maps. Roughly speaking, in their construction, πt+ℓ simply consists of (πt, π

′) where
π′ certifies the correctness of the computation from cft to cft+ℓ, and after p(λ) many succinct proofs
are accumulated (where λ is the security parameter), they are combined into a single succinct proof
(using a seBARG), where each such combining step incurs a multiplicative blowup of q(λ)≪ p(λ)
to the proof size. Therefore, if this combining step is applied B times then the resulting proof
increases by a factor of q(λ)B which allows for only a constant number of combination steps. Setting
parameters appropriately, this results in a somewhat succinct proof of size T ϵ for any constant
ϵ > 0, where T is the run-time of the computation. (We remark that a careful balancing act with
the security parameter gives them slightly more, namely a slightly sub-constant ϵ, but they are
inherently limited by this exponential growth of the proof in the depth B.)

We note that our rate-1 seBARG scheme allows us to do this combining step while paying only
an additive poly(λ) blowup. In particular, using our seBARG, we can apply this combining step B
times while incurring only an additive blowup of B · poly(λ), and while relying only on the LWE
assumption. This allows us to obtain an IVC scheme for any deterministic computation, even ones in
EXP (e.g., by using a tree-like structure in which the depth, and thus the blowup, is only logarithmic
in the run-time of the computation).

8

Theorem 1.6 (Informal). Under the LWE assumption, there exists an incrementally verifiable
computation scheme for any deterministic computation, where the proofs grow poly-logarithmically
with the run-time of the computation.

Our construction of an IVC scheme uses (hashed) multi-hop seBARGs. In the first hop, we
batch k instances, where the i-th instance is (x, cfi−1, cfi). The witness for this statement is empty
since verifying an instance can be done efficiently. It should be possible to verify the batched proof
given only the initial configuration cf0 and the last configuration computed so far cfk, without
knowing the intermediate configurations. This is crucial to obtain our desired efficiency gain. This
is where our notion of a hashed multi-hop seBARG comes in. Using a hashed multi-hop seBARG, we
can verify proofs without knowing all the corresponding instances, rather only their (somewhere
statistically binding) hashes.

Continuing along these lines, we reach the second stage where we have k proofs π1, . . . , πk and
k hash values v1, . . . , vk, where πi certifies that vi is a hash of consecutive configurations starting
with cfk(i−1)+1 and ending with cfki. We can feed these into the hashed multi-hop seBARG proof
combiner and get an aggregated proof π, but we run into an issue along the “boundaries:” there is
no guarantee that cfk(i−1) actually transitions to cfk(i−1)+1 for i ∈ {2, . . . , k}.

We handle this by overlapping the batches that we aggregate. In the first hop, we actually batch
2k instances at a time, so the second half of each batch overlaps with the first half of the next batch:
The proof πi actually certifies that (vi−1, vi) is a hash of consecutive configurations starting with
cfk(i−2)+1 and ending with cfki, so it indeed certifies that cfk(i−1) actually transitions to cfk(i−1)+1.
This way, the problematic “boundary” of any batch is completely contained within another batch.

We refer the reader to Section 7.2 for more details on the IVC definition and construction.

2 Technical Overview

We sketch our main result that takes any seBARG scheme and converts it into a rate-1 seBARG,
assuming a rate-1 additive homomorphic encryption scheme with certain properties (which in turn
can be constructed based on LWE).

2.1 Main Ingredient: Flexible RAM SNARGs with Partial Input Soundness

The central tool that we use repeatedly in our construction is a flexible RAM SNARG with partial
input soundness, a primitive that was very recently introduced and constructed in [KLVW22].

Remark 2.1. Our work and that of [KLVW22] are intertwined. An earlier (unpublished) version
of this work did not use RAM SNARGs, and used quasi-arguments [KPY19] instead. Following
[KLVW22], we noticed that their notion of flexible RAM SNARG with partial input soundness can
be used to significantly simplify our construction and analysis. It is this simplified version that is
presented in this paper.

The notion of a RAM delegation scheme was introduced and constructed in the work of Kalai
and Paneth [KP16]. A (publicly-verifiable non-interactive) RAM delegation scheme, is a SNARG
for RAM computations where a prover, given a crs, a time-T RAM machine M and an n-bit input
x, can produce a short, poly(λ, log T)-bit, proof that y = M(x). Given a poly(λ)-bit “digest” of
the input x, the verifier runs in time poly(λ, log T), independent of the input length n, and either

9

accepts or rejects the proof. The key difference from a SNARG for P is that the prover runtime is
proportional to the RAM runtime, but more importantly, that the verifier runtime, given the input
digest, is independent of the input length and polylogarithmic in the RAM runtime.

For a formal definition, we refer the reader to Section 3.3.
For our work, the standard notion of a RAM SNARG is insufficient, and we need a RAM SNARG

with two additional properties, as was defined and constructed in [KLVW22]: First, the RAM
SNARG has to be flexible in the sense that any hash family with local opening can be used to digest
the input. Second, it has a stronger soundness guarantee known as partial input soundness. In prior
RAM SNARGs, soundness is guaranteed only if the adversary knows the entire input that is being
digested. Partial input soundness guarantees that if the memory is digested using a somewhere
extractable hash function that is extractable on a set of coordinates S, and if the RAM computation
only reads coordinates in S, then soundness holds.

Such a flexible RAM SNARG with partial input soundness was constructed in [KLVW22] from
any seBARG scheme (and SEH hash) and was used to boost the succinctness of seBARG proofs.

2.2 Our Rate-1 seBARG Scheme

The high level intuition behind our construction is the following. Suppose a prover is given x1, . . . , xk
and corresponding witnesses ω1, . . . , ωk, and wishes to convince the verifier that x1, . . . , xk are all in
the language. The basic idea is to simply hash all the witnesses using a rate-1 SSB hash function, so
that the hash value v is statistically binding on a single witness ωi∗ . The seBARG proof will consist
of v together with a succinct proof π that v is obtained by hashing valid witnesses for x1, . . . , xk.
Importantly, to ensure that the proof (v, π) is of rate-1, i.e., of length m+ poly(λ) where m is the
length of a single witness, the succinct proof π must be of length poly(λ), since v is already of length
m+ poly(λ).

Constructing such a succinct proof is the main technical challenge and novelty of our rate-1
seBARG construction. Jumping ahead, we note that we do not know how to construct such a
succinct proof if v is computed using any rate-1 SSB hash family, and we need to use a (rate-1)
fully-local SEH hash family (flSEH), a primitive described in Section 1.2. Constructing a rate-1 flSEH
hash family is a grand challenge of its own, and we elaborate on it in Section 2.3 and Section 4.

At first it may seem that this approach, of constructing a succinct proof that v is a hash of valid
witnesses, is doomed to fail since it requires a SNARG for NP, which is currently out of our reach.
Yet, on a closer look, we notice that a SNARG for all of NP is not necessary. The reason is that a
witness ωi∗ for xi∗ can be efficiently extracted from the hash value v given the trapdoor td. Indeed
it is this hash value that saves the day!

In order to prove that v is a commitment to valid witnesses, we draw inspiration from the works
on RAM delegation (starting with [KP16]), and in particular, we use the recent notion of a flexible
RAM SNARG with partial input soundness [KLVW22]. Recall that a flexible RAM SNARG allows us
to digest the memory with any hash family with local opening, and in particular with a fully-local
SEH (flSEH) hash family. The partial input soundness property guarantees that if the hash value v
is extractable on wi∗ and the RAM program only touches the memory locations corresponding to
wi∗ then soundness holds.

Given such a RAM SNARG scheme, we proceed as follows: in our seBARG scheme, the prover
generates for every i ∈ [k] a succinct RAM SNARG πi for the RAM computation that checks that the
i-th witness in memory is a valid witness of xi. The size of each such proof grows with the size of a

10

local opening, and moreover, with the time it takes to verify a local opening. This is precisely where
the need for a rate-1 flSEH hash family comes in, as it allows each proof πi to be of size poly(λ).

Note that if the prover would send (π1, . . . , πk) to the verifier then we could argue semi-adaptive
soundness by sampling a hash key where the extractability is on the witness corresponding to the
instance xi∗ which is not in the language, and then use the partial input soundness to argue that
πi∗ would be rejecting with overwhelming probability. The issue is that we want our seBARG to be
succinct and hence cannot afford to send all the proofs (π1, . . . , πk). Instead we will send a seBARG
proof (which need not be rate-1) that for every i ∈ [k] there exists a RAM SNARG πi that is a valid
proof w.r.t. the digest v.

2.3 Our Fully-Local SEH Family

We next describe at a high-level the ideas behind our construction of a rate-1 fully-local SEH (flSEH)
family.

Rate-1 SEH family. As a first step, we focus on achieving the rate-1 property (without the
fully-local property). Our construction uses as a building block the SEH family of Hubác̆ek and
Wichs [HW15], which is a tree-like construction that can be instantiated using any leveled fully
homomorphic encryption (FHE) scheme [BV11,BGV12]. We note that in their construction, the
hash key hk consists of encryptions of the indices {i1 . . . , im} where the hash function is statistically
bound, and the hash value Hash(hk, x) consists of a bit-by-bit encryption of xi1 , . . . , xim .

To make this construction rate-1, we use a rate-1 levelled FHE [BDGM19,GH19b,DGI+19b]
as the underlying encryption. We use the fact that such an FHE scheme can convert any set of
(evaluated) ciphertexts ct1, . . . , ctm, each encrypting a single bit bi, into a ciphertext v of size
m+ poly(λ) encrypting (b1, . . . , bm). Thus, the idea is to output v (which is rate-1), as opposed to
outputting the bit-wise ciphertexts ct1, . . . , ctm. Unfortunately, by outputting only v we lose the
local opening property. This is fixed as follows.

Obtaining fully-local opening. Recall that our goal is to provide a local opening to any bit of
the input that can be verified in time poly(λ) (i.e., significantly less than m). Thus, an opening
needs to be verified without even reading v! To reach this goal, we send in addition to v a somewhere
extractable hash of the ciphertexts ct1, . . . , ctm, denoted by h. Importantly h is statistically binding
on only one ciphertext cti and hence is of size poly(λ).

We use v to extract the m coordinates, and use h to open any desired coordinate. We elaborate
on the opening procedure below, and mention that to verify the validity of an opening we use only h
(which is succinct) and do not use v. This allows us to obtain our fully-local guarantee.

For this approach to work we need a mechanism that checks consistency between v and h. Thus
our hash value actually contains three components (v, h, π), where π is a succinct proof that certifies
the consistency between ct and h. The main technical burden is in constructing such a proof of
consistency. Note that to obtain our promised rate-1 construction this proof must be of size poly(λ).
We defer the description of this proof, and we first discuss the local opening (which is substantially
simpler).

Fully-local opening using h. In the construction of Hubác̆ek and Wichs [HW15], an opening to
a bit b consists of the bit b together with m openings, ρ1, . . . , ρm, where each ρj corresponds to the

11

output ciphertext ctj . Moreover, each ρj is of size poly(λ) and can be verified in time poly(λ) given
ctj . To obtain full succinctness, rather that sending all these openings ρ1, . . . , ρm (together with
local openings of ct1, . . . , ctm), we give a somewhere extractable BARG proof that for every j ∈ [m]
there exists a triplet (ρj , ctj , oj) where ρj is a valid opening to b w.r.t. ctj and that oj is a valid
opening to ctj w.r.t. h.

Thus, our construction uses not only the SEH family corresponding to a rate-1 FHE scheme, but
also uses a somewhere extractable BARG scheme.

Proving consistency between ct and h. The remaining ingredient is the succinct proof π that
certifies the consistency between v and h. Namely, we need to prove that there exist ciphertexts
ct1, . . . , ctm that hash to h and their corresponding rate-1 ciphertext is indeed v. Note that this is
an NP computation and SNARGs for NP are beyond our reach, and is harder than our goal that we
started with. Thus, it seems that we are back to square one.

However, we observe that this NP computation has special properties that will allow us to
construct a SNARG for it. The initial observation is that the NP witness is hashed (via h), and thus
one may hope to use RAM delegation here. Unfortunately, the soundness of RAM delegation is not
strong enough, since it provides soundness only if the adversary knows the memory that is digested.
In our setting the memory is ct1, . . . , ctm and we have no means of extracting these ciphertexts from
the adversary. What saves the day is that we can extract one ciphertext cti (since the underlying
hash is somewhere extractable).

Indeed, to construct this SNARG we use a RAM SNARG from the recent work of [KLVW22].
This RAM SNARG has two properties that are crucial in our setting. First, it is flexible in the sense
that the memory can be digested using any hash family with local opening, and in particular using
any hash family that is also locally extractable. Second, it has a stronger soundness guarantee,
known as partial input soundness which guarantees correctness if the RAM computation only reads
the memory from locations in S ⊆ [N] (where N is the memory length) and the hash function is
extractable on the set S.

At first, it is not clear that this soundness guarantee is helpful since the RAM computation that
computes v from the memory (ct1, . . . , ctm) reads the entire memory. Yet, if we use the scheme
from [BDGM19] (which is based on LWE) then v is computed in the following way, which does allow
us to make use of this underlying RAM SNARG.

1. First, each ciphertext ctj is expanded into a vector ciphertext, denote by ct′j .

2. Second, all these vector ciphertexts are added (over a finite field) to obtain a ciphertext
ct′ =

∑m
j=1 ct

′
j .

3. Finally, each bit of v is computed separately, and depends only on a few bits from ct′.

Note that by the partial input soundness guarantee one can compute a RAM SNARG for each
bit of ct′j that certifies its correctness w.r.t. h, and correctness is guaranteed if h is extractable on
ctj . Denote all the proofs corresponding to ct′j by π′

j .
We append to the hash value a somewhere extractable hash of

(ct′1, π
′
1, . . . , ct

′
m, π′

m)

If Item 2 did not exist and each bit of v depended only on a few bits (ct′1, . . . , ct
′
m) then we would

be done since we could simply add a BARG asserting that each bit of v is computed correctly, where

12

each witness is the relevant bits from (ct′1, . . . , ct
′
m) and the corresponding proofs and all their

openings.
Unfortunately, Item 2 does exist which causes an additional complication, stemming from the

fact that this computation is not local (as opposed to Item 1 and 3 which are local). What saves
the day is the fact that the computation in Item 2 is simply addition, which can be computed in a
tree-like manner where each node computation is a local computations in the nodes of the layer
below. Thus, we add logm hash values h1, . . . , hlogm, where hi is the hash of all the computations
at layer i of the tree along of RAM proofs of correctness, where each computation depends only
on a few coordinates of the memory at layer i− 1 of the tree, so we can rely on the partial input
soundness guarantee.

To summarize, in our construction of a flSEH family, the hash value consists of the following
components:

1. A hash value h, which is a somewhere extractable hash of (ct1, . . . , ctm), which in turn is the
hash value from the construction of [HW15]. The size of h is poly(λ).

2. A rate-1 ciphertext v, which is a rate-1 version of (ct1, . . . , ctm), of size m+ poly(λ).

3. A proof of consistency between h and v which consists of hash values (h′, h0, . . . , hlogm) together
with a seBARG proof. Each of these hash values hashes ciphertexts and proofs of consistency,
and the final seBARG proof proves consistency between hlogm and v and that all the proofs
hashed in hlogm are accepting.

3 Preliminaries

Notations. We use PPT to denote probabilistic polynomial-time, and denote the set of all positive
integers up to n as [n] := {1, . . . , n}. Also, we use [0, n] to denote the set of all non-negative integers
up to n, i.e. [0, n] := {0} ∪ [n]. Throughout this paper, unless specified, all polynomials we consider
are positive polynomials. For any finite set S, x ← S denotes a uniformly random element x
from the set S. Similarly, for any distribution D, x ← D denotes an element x drawn from the
distribution D.

3.1 Somewhere Extractable Hash (SEH) Families

In what follows we recall the definition of a somewhere extractable (SEH) hash family based on
prior works [HW15,OPWW15b].

Syntax. A somewhere extractable hash family SEH consists of the following polynomial time
algorithms:

Gen(1λ, N, I)→ (hk, td). This is a probabilistic setup algorithm that takes as input a security
parameter 1λ in unary, a message length N , and a subset I ⊆ [N]. It outputs a hash key hk
along with trapdoor td.

Hash(hk, x)→ v. This is a deterministic algorithm that takes as input a hash key hk generated by
Gen(1λ, N, I) and an input x ∈ {0, 1}N , and outputs a hash value v ∈ {0, 1}|I|·poly(λ).

13

Open(hk, x, j)→ (b, ρ). This is a deterministic algorithm that takes as input a hash key hk generated
by Gen(1λ, N, I), an input x ∈ {0, 1}N and an index j ∈ [N], and outputs a bit b ∈ {0, 1} and
an opening ρ ∈ {0, 1}≤|I|·poly(λ).

Verify(hk, v, j, b, ρ). This is a deterministic algorithm that takes as input a hash key hk generated
by Gen(1λ, N, I), a hash value v ∈ {0, 1}|I|·poly(λ), an index j ∈ [N], a bit b ∈ {0, 1} and an
opening ρ ∈ {0, 1}≤|I|·poly(λ), and outputs 1 (accept) or 0 (reject).

Extract(td, v, j)→ u. This is a deterministic extraction algorithm that takes as input a trapdoor td
generated by Gen(1λ, N, I), a hash value v, and index j ∈ [|I|] and outputs a bit u.

We sometimes use the notation Extract(td, v) = (Extract(td, v, j))j∈[|I|].

Definition 3.1 (SEH). A somewhere extractable hash family SEH = (Gen,Hash,Open,Verify,Extract)
is required to satisfy the following properties:

Efficiency. The size of the hash key hk and the hash value v is at most |I|·poly(λ).

Index hiding. For any poly-size adversary A, any polynomial N = N(λ), and any I0, I1 ⊆ [N]
such that |I0|= |I1|, there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

[
A(hk) = b :

b← {0, 1}
(hk, td)← Gen(1λ, N, Ib)

]
≤ 1

2
+ negl(λ),

Opening completeness. For any λ ∈ N, any N ≤ 2λ, any subset I ⊆ [N], any index j ∈ [N],
and any x ∈ {0, 1}N ,

Pr

 b = xj
∧ Verify(hk, v, j, b, ρ) = 1

:
(hk, td)← Gen(1λ, N, I),
v = Hash(hk, x),
(b, ρ) = Open(hk, x, j),

 = 1.

Somewhere statistically binding w.r.t. opening. For any λ ∈ N, any N ≤ 2λ, any subset
I ⊆ [N], any index i∗ ∈ I, and any (all powerful) adversary A, there exists a negligible function
negl(·) such that for every λ ∈ N,

Pr

 Verify(hk, v, i∗, b, ρ) = 1
∧ b ̸= bi∗

:
(hk, td)← Gen(1λ, N, I),
(v, b, ρ)← A(hk),
(bi)i∈I = Extract(td, v)

 ≤ negl(λ).

Extraction correctness. For any λ ∈ N, any N ≤ 2λ, any subset I ⊆ [N], and any x ∈ {0, 1}N ,
there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

[
(xi)i∈I ̸= Extract(td, v, I) :

(hk, td)← Gen(1λ, N, I)
v← Hash(hk, x)

]
≤ negl(λ).

Remark 3.1. Note that the index hiding property and the somewhere statistically binding w.r.t.
opening property of a SEH hash family, implies the following property:

14

Computational binding w.r.t opening. For any poly-size adversary A any polynomial N =
N(λ) and any I ⊆ [N], there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

[
∀ b ∈ {0, 1}
Verify(hk, v, i, b, ρb) = 1

:
(hk, td)← Gen(1λ, N, I),
(i, v, ρ0, ρ1)← A(hk)

]
≤ negl(λ).

Lemma 3.2. [KLVW22] Let (E.Gen,Enc,Dec) be any encryption scheme that is either levelled
fully homomorphic or rate-1 additively homomorphic. Then there is a somewhere extractable hash
family with algorithms Gen,Hash that satisfies the following:

1. For every λ ∈ N, any N = N(λ) ≤ 2λ, any m ≤ N , any I = {i1, . . . , im} ⊆ [N], and any
(hk, td)← Gen(1λ, N, I),

hk = (pk, hk1, . . . , hkm)

where for every j ∈ [m], hkj ∈ {0, 1}poly(λ) is an encryption of the index ij ∈ [N] w.r.t. pk,
and td is the secret key corresponding to pk.

In particular, if I consists of m consecutive indices I = {i+ 1, . . . , i+m} then one can set
hk = (pk, hk1), and (hk2, . . . , hkm) can be computed efficiently from hk. In this case, Gen runs
in time poly(λ).

2. There exists a negligible function negl such that for any λ ∈ N, any N = N(λ) ≤ 2λ, any
m ≤ N , any I = {i1, . . . , im} ⊆ [N], any j ∈ [m], and any x ∈ {0, 1}N ,

Pr

[
Dec(td, vj) = xj :

(hk, td)← Gen(1λ, N, I),
(v1, . . . , vm) = Hash(hk, x)

]
≤ negl(λ).

In particular, for every j ∈ [m], vj ∈ {0, 1}poly(λ).

Remark 3.2. In [KLVW22] a somewhere extractable hash family was constructed from any rate-1
string OT scheme, which is known to imply a rate-1 additively homomorphic encryption scheme.

3.2 Somewhere Extractable Batch Arguments (seBARGs)

Syntax. A (publicly verifiable and non-interactive) somewhere extractable batch argument scheme
seBARG for an NP language L consists of the following polynomial time algorithms:

Gen(1λ, k, n, i∗)→ (crs, td). This is a probabilistic algorithm that takes as input a security parame-
ter 1λ, number of instances k, input length n, and an index i∗ ∈ [k]. It runs in time at most
poly(λ, n, log k) and outputs a crs crs along with a trapdoor td.

P(crs, x1, . . . , xk, ω1, . . . , ωk)→ π. This is a prover algorithm takes as input a crs, k instances
x1, . . . , xk and corresponding witnesses ω1, . . . , ωk, and outputs a proof π.

V(crs, x1, . . . , xk, π)→ 0/1. The verification algorithm takes as input a crs, k instances xi for i ∈ [k],
and a proof π. It outputs a bit to signal whether the proof is valid or not.

Definition 3.3 (seBARG). A somewhere-extractable batch argument scheme seBARG = (Gen,P,V)
for L is required to satisfy the following properties:

15

Efficiency. The size of the CRS and the proof is at most poly(λ, log k, n,m), where m is the
witness length.

Completeness. For any λ ∈ N, and any k = k(λ), n = n(λ) of size at most 2λ, any k instances
x1, . . . , xk ∈ L, and their corresponding witnesses ω1, . . . , ωk ∈ {0, 1}m, and any index i∗ ∈ [k],

Pr

[
V(crs, x1, . . . , xk, π) = 1 :

(crs, td)← Gen(1λ, k, n, i∗),
π ← P(crs, x1, . . . , xk, ω1, . . . , ωk)

]
= 1.

Index hiding. For any poly-size adversary A, any polynomials k = k(λ) and n = n(λ), and any
indices i0, ii ∈ [k] there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

[
A(crs) = b :

b← {0, 1},
(crs, td)← Gen(1λ, k, n, ib)

]
≤ 1

2
+ negl(λ).

Somewhere argument of knowledge. There exists a PPT extractor E such that for any poly-
size adversary A, there exists a negligible function negl(·) such that for any polynomials
k = k(λ) and n = n(λ), and any index i∗ ∈ [k], for every λ ∈ N,

Pr

 V(crs, x1, . . . , xk, π) = 1
∧ ω∗ is not a valid witness for xi∗ ∈ L

:
(crs, td)← Gen(1λ, k, n, i∗)
(x1, . . . , xk, π) = A(crs)
ω∗ ← E

(
td, {xi}i∈[k], π

)
 ≤ negl(λ).

Remark 3.3. We note that the somewhere argument of knowledge property implies the
following semi-adaptive soundness property which asserts that for any poly-size adversary
A, any polynomials k = k(λ) and n = n(λ), and any index i∗ ∈ [k], there exists a negligible
function negl(·) such that for every λ ∈ N,

Pr

[
V(crs, x1, . . . , xk, π) = 1
∧ xi∗ /∈ L :

(crs, td)← Gen(1λ, k, n, i∗)
(x1, . . . , xk, π) = A(crs)

]
≤ negl(λ).

Remark 3.4. In Section 4, we use a seBARG scheme which is somewhere extractable on a set
of indices I = {i1, . . . , iℓ}, where the size of the CRS and proof and runtime of the verifier are
allowed to grow with ℓ. This is trivially achievable using any generic seBARG scheme (Gen,P,V)
which is somewhere extractable on one index by creating ℓ separate parallel CRS and correspond-
ing proof segments. The setup algorithm, given 1λ, k, n, I, samples crsj ← Gen(1λ, k, n, ij) for
each j ∈ [ℓ] and outputs crs = (crsj)j∈[ℓ]. The prover, given crs, x1, . . . , xk, ω1, . . . , ωk, computes
πj ← P(crsj , x1, . . . , xk, ω1, . . . , ωk) for each j ∈ [ℓ] and outputs π = (πj)j∈[ℓ]. The verifier, given
crs, x1, . . . , xk, π, outputs 1 if and only if V(crsj , x1, . . . , xk, πj) for each j ∈ [ℓ]. The extractor, given
td, x1, . . . , xk, π, computes ω∗

j ← E(td, x1, . . . , xk, πj) for each j ∈ [ℓ] and outputs (ω∗
j)j∈[ℓ].

Definition 3.4. A seBARG scheme (Gen,P,V) is said to be an index seBARG if the run-time of V
on instances x1, . . . , xk, where xi = (x, i) for every i ∈ [k], is at most poly(λ, |x|, log k).

Theorem 3.5 ([CJJ21a]). Assuming the hardness of the Learning with Errors (LWE) problem,
there exists an index seBARG scheme with proof length |π|= m · poly(λ, log k).

16

Rate-1 BARGs. In this work, we construct a rate-1 seBARG under the LWE assumption. More-
over, our crs grows only poly-logarithmically in n. Informally, in a rate-1 BARG the proof size is
the size of a single witness with only an additive overhead. Formally, we define it as follows:

Definition 3.6. A seBARG scheme (Gen,P,V) is said to be rate-1 if the following two conditions
are satisfied:

1. Gen runs in time poly(λ, log n, log k),4 and outputs crs of size |crs|= poly(λ, log k, log n).

2. The proof generated by P(crs, x1, . . . , xk, ω1, . . . , ωk) is of length m+ poly(λ, log k).

3.3 Flexible RAM SNARGs with Partial Input Soundness

In this work we use a flexible RAM SNARG with partial input soundness, as defined in [KLVW22].
Such a RAM SNARG is for RAM computations that only read from memory (and do not write).
However, it is flexible with respect to the hash family used to digest the memory, and works with
any hash family with local opening. Jumping ahead, the reason we need this flexibility is that our
rate-1 seBARG construction in Section 5, uses a RAM SNARG which digests its memory using a
rate-1 fully-local somewhere extractable hash function (defined and constructed in Section 4).

Importantly, this RAM SNARG achieves a soundness guarantee known as partial input soundness,
which is stronger than the soundness achieved in the recent works of [KPY19,CJJ21a]. In what
follows, for the sake of simplicity, we define a flexible RAM SNARG, where the flexibility is only
with respect to somewhere extractable hash family (see Section 3.1), as opposed to any hash family
with local opening.

Syntax. Let R be a RAM machine. A flexible (publicly verifiable and non-interactive) RAM
SNARG for R is associated with a somewhere extractable hash family (Section 3.1)

SEH = (SEH.Gen,SEH.Hash,SEH.Open, SEH.Verify,SEH.Extract),

and consists of the following polynomial time algorithms:

Gen(1λ, T)→ crs. This is a probabilistic setup algorithm that takes as input a security parameter
1λ and a time bound T , and outputs a common reference string crs.

Digest(hk, x)→ v. This is a deterministic polynomial-time algorithm that takes as input an SEH
hash key hk, generated by SEH.Gen(1λ, N, I) for some N ∈ N, and a bit string x ∈ {0, 1}N ,
and outputs the digest v = SEH.Hash(hk, x) of size |I|·poly(λ).

P(crs, hk, ximp, xexp)→ (b, π). This is a deterministic prover that takes as input a crs, a hash key
hk, and an input x = (ximp, xexp) which consists of a (long) implicit input ximp and a (short)
explicit input xexp, and outputs a bit b = R(x) ∈ {0, 1} and a proof π.

V(crs, hk, v, xexp, b, π)→ {0, 1}. This is a deterministic verifier that takes as input a crs, an SEH
hash key hk, a digest v of the (long) implicit input, a (short) explicit input xexp, a bit b ∈ {0, 1},
and a proof π, and outputs 1 (accept) or 0 (reject).

4We note that we require that Gen runs in time poly-logarithmically in n. This may not be an inherent requirement
for a rate-1 BARG. We add this requirement since we can achieve it, and we use it in Section 7 where we construct a
multi-hop seBARG scheme and an aggregate signature scheme.

17

Remark 3.5. Sometimes the goal of the prover P is to prove that the RAM computation is
accepting (i.e., outputs 1). In this case we omit the bit b (which is set to 1), and simply think
of V as taking as input the tuple (crs, hk, v, xexp, π). This will indeed be the case in Sections 4
and 5.

Definition 3.7. A flexible RAM SNARG = (Gen,Digest,P,V) associated with a somewhere ex-
tractable hash family (Section 3.1) SEH = (SEH.Gen,SEH.Hash,SEH.Open, SEH.Verify), is required
to satisfy the following properties:

Efficiency. The length of the RAM proof π is at most poly(λ, TV) where TV is a bound on the
run-time of SEH.Verify.

In particular, if the hash key can be partitioned into hk = (hkℓ, hks) and the hash value can be
partitioned into v = (vℓ, vs), and SEH.Verify takes as input only (hks, vs), together with (j, b, ρ),
then |π|≤ poly(|hks|, |vs|, |ρ|, λ), and thus the run-time of V is at most poly(|hks|, |vs|, |ρ|, λ).
Remark 3.6. Jumping ahead, we note that if the underlying SEH hash family is a fully local
SEH family (defined in Section 4) then |hks|, |vs|, |ρ|≤ poly(λ) in which case the length of π
and the run-time of V is at most poly(λ).

Completeness. For any λ,N ∈ N such that N ≤ T (N) ≤ 2λ and any x = (ximp, xexp) ∈ {0, 1}N
such that R(x) halts within T time steps, and any I ∈ [|ximp|] we have that

Pr

 V(crs, hk, v, xexp, b, π) = 1
∧ b = R(x) :

crs← Gen(1λ),
(hk, td)← SEH.Gen(1λ, |ximp|, I),
(b, π) = P(crs, hk, x),
v = Digest(hk, ximp)

 = 1.

Partial-input soundness. For any poly-size adversary A = (A1,A2) and any polynomial T =
T (λ) there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

V(crs, hk, v, xexp, b∗, π) = 1
∧ R(ximp, xexp, T) = 1− b∗

and does not read any
location in [N] \ I

:

crs← Gen(1λ),
(1N , I) = A1(crs),
(hk, td)← SEH.Gen(1λ, N, I),(
v, xexp, b

∗, π
)
= A2(crs, hk),

(bj)j∈I = SEH.Extract(td, v, I),

define ximp ∈ {0, 1}N :
∀j ∈ I, (ximp)j = bj ;∀j ∈ [N] \ I, (ximp)j = 0

≤ negl(λ).

Theorem 3.8 ([KLVW22]). Assuming the hardness of the LWE problem, there exists a flexible
RAM SNARG.

3.4 Homomorphic Encryption with Ciphertext Compression

Below we recall the notion of a homomorphic encryption scheme, and define ciphertext compression
algorithms. These ciphertext compression algorithms are inspired by the rate-1 homomorphic
encryption scheme of Brakerski et al. [BDGM19], and are essential in our construction of a rate-1
fully-local somewhere extractable hash family (defined in section 4). Our compressed ciphertexts
have desired locality properties that are essential to our fully-local somewhere extractable hash
family.

18

Syntax. A homomorphic encryption scheme HE for a circuit class C and message space {0, 1}
consists of the following PPT algorithms:

Gen(1λ)→ (pk, sk). This is a setup algorithm takes as input the security parameter λ, and outputs
a public-secret key pair (pk, sk).

Enc(pk, b)→ ct. The encryption algorithm takes as input a public key pk, message bit b ∈ {0, 1},
and outputs a ciphertext ct.

Eval(pk, C, (ct1, . . . , ctn))→ (ct′1, . . . , ct
′
ℓ). The evaluation algorithm is a deterministic algorithm

that takes as input a public key pk, description of a circuit C ∈ C, and n ciphertexts cti
for i ∈ [n], where n is the input length of the circuit C. It outputs a sequence of evaluated
ciphertexts (ct′1, . . . , ct

′
ℓ), where ℓ is the output length of the circuit C.

Dec(sk, ct)→ b. The decryption algorithm is a deterministic algorithm that takes as input a secret
key sk, a (possibly evaluated) ciphertext ct, and outputs a message bit b.

(Throughout the sequel, we naturally define the decryption algorithm to take as input a
sequence of ciphertexts, and output a sequence of message bits as output.)

Definition 3.9 (Correctness and Compactness of HE). The encryption scheme HE = (Gen,Enc,Eval,Dec)
is said to be correct if for any security parameter λ ∈ N, any circuit C ∈ C with input and output
lengths n and ℓ (respectively), and any sequence of n messages b1, . . . , bn ∈ {0, 1},

Pr[Dec(sk,Eval(pk, C, (ct1, . . . , ctn))) = C(b1, . . . , bn)] = 1

where the probability is over (pk, sk)← Setup(1λ) and cti ← Enc(pk, bi) for i ∈ [n].
The encryption scheme HE is said to be compact if the bit-length of the evaluated ciphertext is

at most poly(λ, ℓ), i.e. its size does not depend on circuit size.

Compressing ciphertexts. In our construction of a rate-1 fully-local SEH (in Section 4), we
use a homomorphic encryption scheme that has a “compression” algorithm which takes a set of
ℓ evaluated ciphertexts (each encrypting a single bit) and compresses them into a single rate-1
ciphertext encrypting these ℓ bits. Moreover, we require this “compression” algorithm to have a
specific form which is needed in order to construct the rate-1 fully-local SEH scheme.

The compression algorithm consists of three parts: Compress1, LinEval,Compress2, which we
elaborate on below.5 We note that in order to compress ℓ ciphertexts we need to generate new
“compression” keys (that depend on ℓ), via an algorithm CompGen and we need a new decryption
algorithm called CompDec. We require this decryption algorithm to be local (as defined below).

CompGen(pk, sk, 1ℓ)→ (pkc, skc). The PPT compression key generator algorithm takes as input
a public-secret key pair (pk, sk), and the compression parameter ℓ, and it outputs a new
public-secret key pair (pkc, skc) that enables ciphertext compression.

(Here ℓ should be regarded as the maximum number of one-bit ciphertexts that can be
compressed to a rate-1 encryption.)

5We note that the properties we specify below are quite specific. We could have specified more general properties
but we chose simplicity over generality.

19

Compress1(pkc, ct, ℓ, i)→ ctc1 . The first part of the compression algorithm is a deterministic poly-
time algorithm that takes as input a compression public key pkc, a (non-compressed) HE
ciphertext ct encrypting a single bit b, a length value ℓ ∈ N, and an index i ∈ [ℓ]. It outputs a
“processed” ciphertext ctc1 , which encrypts the ℓ-bit vector b · ei ∈ {0, 1}ℓ where ei ∈ {0, 1}ℓ
is 1 on its i’th coordinate and zero on all other coordinates.

This processed ciphertext has the form

ctc1 = (sub-ct0, sub-ct1, . . . , sub-ctℓ),

where sub-ct0 is a “preamble” consisting of poly(λ) field elements in a finite field Fq of size
q ≤ 2λ, and each sub-cti for i ∈ [ℓ] consists of a single element in Fq.

6

LinEval(pk, ct
(1)
c1 , . . . , ct

(ℓ)
c1)→ ct′c1 . This linear evaluation algorithm is a deterministic poly-time

algorithm that takes as input a public key pk, and ℓ processed ciphertexts (each encrypting
an ℓ-bit vector), and outputs a single processed ciphertext (encrypting an ℓ-bit vector).

This algorithm simply adds the ℓ ciphertexts ct
(1)
c1 , . . . , ct

(ℓ)
c1 coordinate-wise over Fq. Impor-

tantly, if each ct
(i)
c1 encrypts the vector bi · ei ∈ {0, 1}ℓ then the output ciphertext ct′c1 encrypts

the vector (b1, . . . , bℓ).

Compress2(ctc1)→ ctc. The final compression algorithm is a deterministic poly-time algorithm that
takes as input a processed ciphertext ctc1 and outputs a fully compressed ciphertext ctc.

Importantly, this algorithm can be executed locally in the sense that one can run it on each
sub-ciphertext separately. Namely, Compress2(ctc1) can be computed as follows:

1. Parse ctc1 = (sub-ct0, sub-ct1, . . . , sub-ctℓ).

2. For every j ∈ [ℓ], compute sub-ctc,j = Compress2(sub-ctj) ∈ {0, 1}.
(For the sake of simplicity, we are overloading the notation of Compress2.)

3. Output ctc = (sub-ct0, sub-ctc,1 . . . , sub-ctc,ℓ).

CompDec(skc, ctc)→ (b1, . . . , bℓ). This is a deterministic poly-time decryption algorithm that de-
crypts compressed ciphertexts. It takes as input a compression secret key skc and a compressed
ciphertext ctc and it outputs its decryption (b1, . . . , bℓ).

Importantly, this algorithm is local in the following sense: Parsing ctc = (sub-ct0, sub-ctc,1 . . . , sub-ctc,ℓ)
(and overloading notation),

CompDec(skc, ctc) = (CompDec(skc, sub-ct0, sub-ct1), . . . ,CompDec(skc, sub-ct0, sub-ctℓ)) .

Definition 3.10. [Correctness of Compressed Encryption Scheme] A homomorphic encryption
scheme HE = (Gen,Enc,Eval,Dec) for a circuit class C, with compression algorithms

(CompGen,Compress1, LinEval,Compress2,CompDec)

as defined above, is said to be correct and compact if the encryption scheme is correct and compact
(as per definition 3.9), and there exists a negligible function negl such that for any security parameter

6We note that Fq is the underlying field used in this encryption scheme.

20

λ ∈ N, parameters ℓ, n ≤ 2λ, key pair (pk, sk) ← Setup(1λ), compressed key pair (pkc, skc) ←
CompGen(pk, sk, 1ℓ), any circuit C ∈ C with input and output lengths n and ℓ respectively, any
sequence of n bit messages b1, . . . , bn ∈ {0, 1}, ciphertexts cti ← Enc(pk, bi) for i ∈ [n], evaluated
ciphertext

(ct′1, . . . , ct
′
ℓ) = ct′ ← Eval(pk, C, (ct1, . . . , ctn)),

partially compressed ciphertexts(
sub-ct

(i)
0 , sub-ct

(i)
1 , . . . , sub-ct

(i)
ℓ

)
= ct

(i)
c1 ← Compress1(pkc, ct

′
i, ℓ, i)

for i ∈ [ℓ], letting

ct′c1 = LinEval(pk, ct
(1)
c1 , . . . , ct

(ℓ)
c1),

and ctc = Compress2(ct
′
c1), it holds that

Pr[CompDec(skc, ctc) = C(b1, . . . , bn)] ≥ 1− negl(λ).

where the probability is over the sampling of all the ciphertexts above (including the ciphertexts
ct1, . . . , ctn).

Security. For security of our encryption scheme with compression algorithms, we consider an
extended notion of semantic security, where the attacker gets both the regular and compression
public keys, and it still can not distinguish between two honestly computed ciphertexts.

Definition 3.11 (Semantic Security). A homomorphic encryption scheme (Gen,Enc,Eval,Dec) with
compression algorithms (CompGen,Compress1, LinEval,Compress2, LocDec2) is said to be secure if
for every poly-size adversary A there exists a negligible function negl(·) such that for all λ ∈ N, the
following holds:

Pr

A(pk, pkc, ct) = b :
(pk, sk)← Gen(1λ), 1ℓ ← A(pk)
(pkc, skc)← CompGen(pk, sk, 1ℓ)
b← {0, 1}, ct← Enc(pk, b)

 ≤ 1

2
+ negl(λ).

Later in appendix A, we construct such a homomorphic encryption scheme with compression
algorithms by relying on the rate-1 FHE construction by Brakerski et al. [BDGM19]. Below we
state the main theorem that we prove in appendix A.

Theorem 3.12. Assuming the hardness of the LWE problem, there exists a homomorphic encryption
scheme (Gen,Enc,Eval,Dec) for all circuits of depth poly(λ) (where the public key grows with poly(λ)),
with compression algorithms (CompGen,Compress1, LinEval,Compress2,CompDec) satisfying all the
properties defined above, including correctness, compactness, and security (see Definitions 3.9
to 3.11).

4 Rate-1 Fully-Local SEH (flSEH) Families

4.1 Definition

Syntax. A rate-1 fully-local somewhere extractable hash family consists of the following polynomial
time algorithms:

21

Gen(1λ, N, I)→ (crsℓ, crss, td). This is a probabilistic poly-time setup algorithm that takes as input
security parameter 1λ in unary, message length N , and subset I ⊂ [N]. It runs in time

poly(λ, |I|, logN) and outputs a long crs crsℓ ∈ {0, 1}|I|·poly(λ), a short crs crss ∈ {0, 1}poly(λ),
and a trapdoor td.

Moreover, if the set I consists of consecutive indices I = {i∗ + 1, . . . , i∗ +m} then Gen runs in
time poly(λ, logN, logm) and outputs (crs, td) both of size poly(λ, logN, logm).7

Hash(crsℓ, crss,x)→ (v, rt). This is a deterministic poly-time hash algorithm that takes as input
(long) crsℓ, (short) crs crss, and message x ∈ {0, 1}N , and outputs a long hash value v ∈
{0, 1}|I|+poly(λ) and a short digest rt ∈ {0, 1}poly(λ).

Remark 4.1. We note that we can always assume w.l.o.g. that crsℓ contains crss, in which
case Hash can take as input only crsℓ. However, in our construction (in Section 4.2) crsℓ does
not include crss and hence we give Hash both crsℓ and crss.

Validate(crss, v, rt)→ 0/1. This is a deterministic poly-time validation algorithm that takes as input
(short) crss, hash value v, and (short) digest rt, and outputs 1 (accept) or 0 (reject).

Open(crsℓ, crss,x, i)→ (xi, ρ). This is a deterministic poly-time opening algorithm that takes as
input (long) crsℓ, (short) crs crss, message x ∈ {0, 1}N , and index i ∈ [N], and outputs a bit
xi ∈ {0, 1} and a local opening ρ of length poly(λ, logN).

Verify(crss, rt, i, b, ρ)→ 0/1. This is a deterministic poly-time verification algorithm that takes as
input (short) crss, (short) digest rt (produced by Hash), index i ∈ [N], bit b, and local opening
ρ, and outputs 1 (accept) or 0 (reject).8

Extract(td, v)→ u. This is a deterministic poly-time extraction algorithm that takes as input
trapdoor td, and hash value v, and outputs a string u ∈ {0, 1}|I|.

A rate-1 flSEH family is required to satisfy similar properties to those of a SEH family adapted
to the flSEH setting. The adapted properties are described formally below.

Definition 4.1 (rate-1 flSEH). A rate-1 flSEH family is required to have the following properties:

Index hiding. For any poly-size adversary A, any polynomial N = N(λ), and any subsets
I0, I1 ∈ [N] such that |I0|= |I1|, there exists a negligible function negl(·) such that for every
λ ∈ N,

Pr

[
A(crsℓ, crss) = b :

b← {0, 1}
(crsℓ, crss, td)← Gen(1λ, N, Ib)

]
≤ 1

2
+ negl(λ).

Opening completeness. For any λ ∈ N, any N ≤ 2λ, any subset I ⊂ [N], any index i ∈ [N],
and any x ∈ {0, 1}N ,

Pr

 b = xi
∧ Verify(crss, rt, i, b, ρ) = 1
∧ Validate(crss, v, rt) = 1

:
(crsℓ, crss, td)← Gen(1λ, N, I),
(v, rt) = Hash(crsℓ, crss,x),
(b, ρ) = Open(crsℓ, crss,x, i),

 = 1.

7In this case, there is no reason to distinguish between crsℓ and crss since crs is short.
8Note that the run-time of Verify is poly(λ) assuming N ≤ 2λ.

22

Somewhere statistically binding w.r.t. opening. For any λ ∈ N, any N ≤ 2λ, any subset
I ⊆ [N], any index i ∈ I, and any (all powerful) adversary A, there exists a negligible function
negl(·) such that for every λ ∈ N,

Pr

 Verify(crss, rt, i, b, ρ) = 1
∧ Validate(crss, v, rt) = 1
∧ b ̸= bi

:
(crsℓ, crss, td)← Gen(1λ, N, I),
(v, rt, b, ρ)← A(crsℓ, crss),
(bj)j∈I = Extract(td, v)

 ≤ negl(λ).

Extraction correctness. For any λ ∈ N, any N ≤ 2λ, any subset I ⊆ [N], and any x ∈ {0, 1}N ,
there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

[
xI ̸= Extract(td, v) :

(crsℓ, crss, td)← Gen(1λ, N, I)
v← Hash(crsℓ, crss,x)

]
≤ negl(λ).

Remark 4.2. One can think of a flSEH as a SEH with a offline/online opening verification, where
in the offline phase Validate is executed and in the online phage Verify is executed.

4.2 Construction

Our construction of a flSEH family uses the following ingredients:

1. A rate-1 linearly homomorphic or levelled fully homomorphic encryption scheme

(Gen,Enc,Eval,Dec)

with compression algorithms

(CompGen,Compress1, LinEval,Compress2,CompDec)

(see Section 3.4). Recall that each ciphertext is a vector over a finite field, denoted by Fq.

2. A somewhere extractable hash family

SEH = (SEH.Gen,SEH.Hash, SEH.Open,SEH.Verify, SEH.Extract)

constructed w.r.t. the rate-1 encryption scheme (Gen,Enc,Eval,Dec) from Item 1 (see Section 3.1
and Lemma 3.2).

3. Two flexible RAM SNARG schemes with partial input soundness (see Section 3.3):

(RAM0.Gen,RAM0.Digest,RAM0.P,RAM0.V)

and
(RAM1.Gen,RAM1.Digest,RAM1.P,RAM1.V),

where the first is w.r.t. the RAM machine R0 that runs in time T0 and the second is w.r.t.
the RAM machine R1 that runs in time T1.

23

(a) The RAM machine R0 is associated with the encryption scheme from Item 1. It
takes as input a sequence of ciphertexts (ct1, . . . , ctm) each encrypting a single bit, the
corresponding public key pk, indices j ∈ [m] and k ∈ [m′], where m′ denotes the number
of field elements in the vector Compress1(pk, ctj ,m, j), and a field element c ∈ Fq, and
outputs 1 if and only if c is the k’th element of Compress1(pkc, ctj ,m, j).

Recall that m′ = m+ poly(λ). We let

∆(λ) ≜ m′ −m = poly(λ) (1)

(b) The RAM machine R1 is specified in Item 6b of the Hash algorithm construction below.

4. Two somewhere extractable BARG schemes (see Section 3.2)

(seBARG0.Gen, seBARG0.P, seBARG0.V)

and
(seBARG1.Gen, seBARG1.P, seBARG1.V)

where the first is for the NP language L0, specified in Item 9 of the Hash algorithm construction
below, and the second is for the NP language L1, specified in Item 5 of the Open algorithm
construction below.

We are now ready to define our flSEH family.

Gen(1λ, N, I)→ (crsℓ, crss, td). This poly-time algorithm does the following:

In what follows we let m = |I| and we assume without loss of generality that m is a power
of 2, and for every t ∈ [0, logm] we denote by mt = m/2t.

1. Generate (hk′, td′)← SEH.Gen(1λ, N, I).

2. Parse hk′ = (pk, hk′1, . . . , hk
′
m).

Recall that td′ = sk where sk is the secret key corresponding to pk, and n ≜ |hk′j |≤ poly(λ)
for every j ∈ [m] (see Lemma 3.2). In addition, recall that each hash value corresponding
to hk′ consists of m = |I| ciphertexts w.r.t. pk, each encrypting a single bit, where the
j’th ciphertext is a function of pk and hk′j . By padding, we can assume w.l.o.g. that the
size of each of these ciphertexts is also n.

3. Generate (pkc, skc)← CompGen(pk, sk, 1m).

4. Set arbitrarily α, β ∈ [m]. For example, set α = β = 1.

5. Generate (hk, td)← SEH.Gen(1λ,m · n, Iβ), where Iβ = {(β − 1) · n+ 1, . . . , β · n}.
6. Let h′ = SEH.Hash

(
hk, (hk′1, . . . , hk

′
m)
)
.

7. For every t ∈ [0, logm], generate (hkt, tdt)← SEH.Gen(1λ,m′ ·mt · nt, Jt,α,β), where the
value nt and the set of coordinates Jt,α,β ⊆ [m′ ·mt · nt] of size poly(λ) are specified in
Item 6a of the Hash algorithm construction below.

8. Generate RAM0.crs← RAM0.Gen(1
λ, T0).

9. Generate RAM1.crs← RAM1.Gen(1
λ, T1).

24

10. Generate (seBARG0.crs, seBARG0.td) ← seBARG0.Gen(1
λ,m′, n′, Sα), where recall that

m′ = ∆(λ) + m is the number of field elements in the vector Compress1(pk, ctj ,m, j),
n′ ≤ poly(λ) is specified in Item 9 of the Hash algorithm construction below, and
Sα = {1, . . . ,∆(λ)} ∪ {∆(λ) + α} ⊆ [m′].

11. Generate (seBARG1.crs, seBARG1.td)← seBARG1.Gen(1
λ,m, n′′, α), where n′′ ≤ poly(λ)

is specified in Item 5 of the Open algorithm construction below.

12. Let crsℓ = hk′ and

crss =
(
pk, pkc, hk, h

′, {hkt}
logm
t=0 ,RAM0.crs,RAM1.crs, seBARG0.crs, seBARG1.crs

)
.

13. Output (crsℓ, crss, td
∗), where td∗ = skc.

Remark 4.3. Note that if I = {i∗ + 1, . . . , i∗ +m} then hk′ can be computed efficiently from
pk and an encryption of i∗, so Gen runs in time poly(λ, logN) (see Lemma 3.2).

Hash(crsℓ, crss,x)→ (v, rt). This poly-time algorithm does the following:

1. Parse crsℓ = hk′ = (pk, hk′1, . . . , hk
′
m) and

crss =
(
pk, pkc, hk, h

′, {hkt}
logm
t=0 ,RAM0.crs,RAM1.crs, seBARG0.crs, seBARG1.crs

)
.

2. Compute
(ct1, . . . , ctm) = SEH.Hash

(
hk′,x

)
.

Denoting by I = {i1, . . . , im} ⊆ [N], note that ctj is a ciphertext encrypting the bit xij
w.r.t. pk (see Lemma 3.2).

3. Compute
h = SEH.Hash (hk, (ct1, . . . , ctm)) .

Note that |h|≤ poly(λ).

4. Compute v which is the compressed ciphertext corresponding to (ct1, . . . , ctm) and pkc,
as follows:

(a) For every j ∈ [m] compute

(ctj)c1 = Compress1 (pkc, ctj ,m, j) .

Note that (ctj)c1 is a ciphertext encrypting the vector xij · ej ∈ {0, 1}m.

(b) Compute
ctc1 = LinEval

(
pk, (ct1)c1 , . . . , (ctm)c1

)
.

(c) Compute
v = Compress2(ctc1).

Note that v = (v1, . . . , vm′) is a ciphertext encrypting the string xI ∈ {0, 1}m, where
vk ∈ Fq for every k ∈ [∆(λ)], and vk ∈ {0, 1} for every k ∈ [∆(λ) + 1,m′].9

In Item 5-Item 10 below we compute a proof that h and v are consistent.

9Using our notation in Section 3.4, sub-ct0 = (v1, . . . , v∆(λ)) ∈ F∆(λ)
q and sub-ctc,j = v∆(λ)+j ∈ {0, 1} for every

j ∈ [m].

25

5. For every j ∈ [m] and k ∈ [m′] let

c
(0)
j,k = k-th element of (ctj)c1 , and

π
(0)
j,k = RAM0.P

(
RAM0.crs, hk, (ct1, . . . , ctm) , (pk, j, k, c

(0)
j,k)
)
.

Note that π
(0)
j,k is a RAM proof that c

(0)
j,k is the k’th element of Compress1(pkc, ctj ,m, j).

6. For t = 0, . . . , logm:

(a) Let

X(t) =
{
c
(t)
j,k, π

(t)
j,k

}
j∈[mt],k∈[m′]

(2)

and compute

ht = SEH.Hash
(
hkt, X

(t)
)
.

where hkt is defined to hash messages of length m′ ·mt ·nt and be statistically binding
on the coordinates in Jt,α,β, where nt and Jt,α,β are defined as follows:

nt = log q +
∣∣∣π(t)

j,k

∣∣∣
where

∣∣∣π(t)
j,k

∣∣∣ is the number of bits in the proof π
(t)
j,k, and Jt,α,β is defined by first

letting
J ′
t,β =

{
⌈β/2t⌉ − 1, ⌈β/2t⌉, ⌈β/2t⌉+ 1

}
∩ [mt]

and letting Jt,α,β be the set of coordinates corresponding to
(
c
(t)
j,k, π

(t)
j,k

)
for j ∈ J ′

t,β

and k ∈ Sα.
10 Note that |Jt,α,β|≤ poly(λ).

(b) If t < logm: For every j ∈ [mt+1] and k ∈ [m′], compute

c
(t+1)
j,k = c

(t)
2j−1,k + c

(t)
2j,k,

where addition is over the finite field Fq used in the underlying encryption scheme
(see Definition 3.10), and compute

π
(t+1)
j,k = RAM1.P

(
RAM1.crs, hkt, X

(t),
(
hk, h, {hkℓ, hℓ}t−1

ℓ=0, pk, j, k, c
(t+1)
j,k

))
.

RAM1 is defined w.r.t. the RAM machine R1 that takes as input X(t) as in Equa-
tion (2), hash keys (hk, hk0, . . . , hkt−1), hash values (h, h0, h1, . . . , ht−1), the public

key pk defined by hk′, indices j ∈ [mt+1] and k ∈ [m′], and field element c
(t+1)
j,k , and

outputs 1 if and only if the following conditions are satisfied:

i. c
(t+1)
j,k = c

(t)
2j−1,k + c

(t)
2j,k over Fq.

ii. For every b ∈ {0, 1}, π(t)
2j−b,k is a valid proof. Namely, if t = 0, then

RAM0.V
(
RAM0.crs, hk, h,

(
pk, 2j − b, k, c

(t)
2j−b,k

)
, π

(t)
2j−b,k

)
= 1

and if t ≥ 1, then

RAM1.V
(
RAM1.crs, hkt−1, ht−1,

(
hk, h, {hkℓ, hℓ}t−2

ℓ=0, pk, 2j − b, k, c
(t)
2j−b,k

)
, π

(t)
2j−b,k

)
= 1.

10Recall that mt = 2logm−t and Sα = {1, . . . ,∆(λ)} ∪ {∆(λ) + α} ⊆ [m′].

26

Note that the RAM proof π
(t+1)
j,k certifies the correctness of the k’th element of c

(t+1)
j

w.r.t. (h, h0, h1, . . . , ht, pk).

7. For k ∈ [m′], let ck ≜ c
(logm)
k and πk ≜ π

(logm)
k .

8. Note that

(ck)k∈[m′] =
m∑
j=1

(ctj)c1 = LinEval
(
pk, (ct1)c1 , . . . , (ctm)c1

)
= ctc1

where addition is coordinate-wise over Fq, and

hlogm = SEH.Hash
(
hklogm, (ck, πk)k∈[m′]

)
.

9. Compute

seBARG0.π = seBARG0.P

seBARG0.crs,
instances =

(
pk, vk, hk, h, {hkt, ht}

logm
t=0 , k

)
k∈[m′]

,

witnesses = (ck, πk, ρk)k∈[m′]

where seBARG0 is defined w.r.t. the NP language L0 that has instances of length

n′ =
∣∣∣(pk, vk, hk, h, {hkt, ht}logmt=0 , k

)∣∣∣ ,
and a valid witness (ck, πk, ρk) satisfies the following conditions:

(a) ρk is a valid opening of (ck, πk) w.r.t. (hklogm, hlogm). Namely,

SEH.Verify
(
hklogm, hlogm, Jk, (ck, πk) , ρk

)
= 1,

where Jk are the coordinates corresponding to (ck, πk) in (ck, πk)k∈[m′].

(b) πk is a valid proof. Namely,

RAM1.V
(
RAM1.crs, hklogm, hlogm,

(
hk, h, {hkt, ht}

logm−1
t=0 , pk, 1, k, ck

)
, πk

)
= 1.

(c) ck is consistent with vk. Namely, if k ∈ [m′ −m], then

vk = ck

and if k > m′ −m, then
vk = Compress2 (ck) .

10. Set π = (h0, h1, . . . , hlogm, seBARG0.π).

11. Output (v, rt = (h, π)).

Validate(crss, v, rt)→ 0/1. This poly-time algorithm does the following:

27

1. Parse

crss =
(
pk, pkc, hk, h

′, {hkt}
logm
t=0 ,RAM0.crs,RAM1.crs, seBARG0.crs, seBARG1.crs

)
,

parse rt = (h, π) where

π = (h0, h1, . . . , hlogm, seBARG0.π),

and parse
v = (v1, . . . , vm′)

where recall that vj ∈ Fq for every j ∈ [m′ − m], and vj ∈ {0, 1} for every j ∈
[m′ −m+ 1,m′].

2. Output 1 if and only if

seBARG0.V
(
seBARG0.crs,

(
pk, vk, hk, h, {hkt, ht}

logm
t=0 , k

)
k∈[m′]

, seBARG0.π

)
= 1.

Open(crsℓ, crss,x, i)→ (xi, ρ). This poly-time algorithm does the following:

1. Parse crsℓ = hk′ = (pk, hk′1, . . . , hk
′
m) and

crs =
(
pk, pkc, hk, h

′, {hkt}
logm
t=0 ,RAM0.crs,RAM1.crs, seBARG0.crs, seBARG1.crs

)
.

2. Compute
(ct1, . . . , ctm) = SEH.Hash

(
hk′,x

)
.

3. Compute
(b, ρ′1, . . . , ρ

′
m) = SEH.Open(hk′,x, i).

Note that (ρ′1, . . . , ρ
′
m) is an opening of xi w.r.t. the hash value (ct1, . . . , ctm). Importantly,

for every j ∈ [m], one can verify ρ′j given only (pk, hk′j , ctj). Namely,

SEH.Verify((pk, hk′j), ctj , i, b, ρ
′
j) = 1.

4. For every j ∈ [m] let

oj = SEH.Open (hk, (ct1, . . . , ctm), [(j − 1) · n+ 1, j · n])

and let
o′j = SEH.Open

(
hk, (hk′1, . . . , hk

′
m), [(j − 1) · n+ 1, j · n]

)
where n = |ctj |.
Note that oj is an opening of ctj w.r.t. the hash value h = SEH.Hash(hk, (ct1, . . . , ctm)),
and o′j is an opening of hk′j w.r.t. the hash value h′ = SEH.Hash(hk, (hk′1, . . . , hk

′
m)).

5. Compute

seBARG1.π = seBARG1.P
(
seBARG1.crs,

instances = (hk, pk, h′, h, i, b, j)j∈[m],

witnesses = (ctj , hk
′
j , ρ

′
j , oj , o

′
j)j∈[m]

)
where seBARG1 is defined w.r.t. the NP language L1 that has instances of length

n′′ =
∣∣(hk, pk, h′, h, i, b, j)∣∣

and a valid witness (ctj , hk
′
j , ρ

′
j , oj , o

′
j) satisfies the following conditions:

28

(a) ρ′j is a valid opening of b w.r.t. (pk, hk′j , ctj). Namely,

SEH.Verify
((
pk, hk′j

)
, ctj , i, b, ρ

′
j

)
= 1.

(b) oj is a valid opening of ctj w.r.t. (hk, h). Namely,

SEH.Verify (hk, h, [(j − 1) · n+ 1, j · n] , ctj , oj) = 1.

(c) o′j is a valid opening of hk′j w.r.t. (hk, h′). Namely,

SEH.Verify
(
hk, h′, [(j − 1) · n+ 1, j · n] , hk′j , o′j

)
= 1.

6. Output (b, ρ = seBARG1.π).

Verify(crss, rt, i, b, ρ)→ 0/1. This poly-time algorithm does the following:

1. Parse

crss =
(
pk, pkc, hk, h

′, {hkt}
logm
t=0 ,RAM0.crs,RAM1.crs, seBARG0.crs, seBARG1.crs

)
,

and parse rt = (h, π), ρ = seBARG1.π.

2. Output
seBARG1.V(seBARG1.crs, (hk, pk, h

′, h, i, b, j)j∈[m], seBARG1.π).

Extract(td, v)→ {0, 1}m. This poly-time algorithm does the following:

1. Output Dec(td, v).11

4.3 Analysis

Theorem 4.2. Assuming hardness of the LWE problem, the scheme defined in Section 4.2 is a
rate-1 fully-local somewhere extractable hash family as in Definition 4.1.

Proof. In what follows we show that our construction satisfies all the desired properties.

Efficiency. Follows immediately from the efficiency of the underlying primitives, namely, the
efficiency of the underlying rate-1 linearly homomorphic encryption scheme, the SEH scheme, the
RAM SNARGs, and the seBARG schemes. If I = {i∗ + 1, . . . , i∗ +m} for some i∗ ∈ [N], then Gen
runs in time poly(λ, logN) (see Remark 4.3).

Index hiding. Follows immediately from the index hiding property of the underlying SEH hash
family (see Definition 3.1).

Completeness. Follows immediately from the completeness property of the underlying RAM0,RAM1

schemes (Definition 3.7), the completeness of the underlying seBARG0, seBARG1 schemes (Defini-
tion 3.3), and the opening completeness of the underlying SEH family (Definition 3.1).

11Recall that the SEH hash family we used has the property that the trapdoor key td is the secret key corresponding
to the underlying encryption scheme (see Lemma 3.2).

29

Somewhere statistically binding w.r.t. opening. Fix any (possibly all-powerful) adversary
A, any polynomial N = N(λ), subset I ⊆ [N], and index i∗ ∈ I. We need to prove that there exists
a negligible function µ such that for every λ ∈ N,

Pr

 Verify(crss, rt, i
∗, b, ρ) = 1

∧ Validate(crss, v, rt) = 1
∧ b ̸= bi∗

:
(crsℓ, crss, td

′)← Gen(1λ, N, I),
(v, rt, b, ρ)← A(crsℓ, crss),
(bi)i∈I = Extract(td, v)

 ≤ µ(λ). (3)

Parse I = {i1, . . . , im} and suppose that i∗ = iα. Let Genα be identical to Gen except that it sets
α as indicated, instead of arbitrarily, and sets β = α. In addition, Genα does not output only td′

as the trapdoor, but also outputs other trapdoors generated during the Gen algorithm. Namely, it
outputs

td∗ =
(
td′, td, seBARG0.td, seBARG1.td

)
.

Below we define an extraction algorithm E , which calls as subroutines the polynomial time extractors
SEHash.Extract, seBARG0.E , and seBARG1.E . E takes as input the trapdoors td∗, short crs crss,
hash value (v, rt), bit b, and opening ρ and does the following:

1. Parse td∗ =
(
td′, td, {tdt}logmt=0 , seBARG0.td, seBARG1.td

)
.

2. Parse crss =
(
pk, pkc, hk, h

′, {hkt}
logm
t=0 ,RAM0.crs,RAM1.crs, seBARG0.crs, seBARG1.crs

)
.

3. Parse rt = (h, π) , π = (h0, . . . , hlogm, seBARG0.π) , ρ = seBARG1.π.

4. Compute hk′α = SEH.Extract(td, h′) and ctα = SEH.Extract(td, h).

5. Compute (ck, πk)k∈Sα
= SEH.Extract(tdlogm, hlogm).

6. Compute ω0 = seBARG0.E(seBARG0.td,
(
pk, vk, hk, h, {hkt, ht}

logm
t=0 , k

)
k∈[m′]

, seBARG0.π).

7. Compute ω1 = seBARG1.E(seBARG1.td, (hk, pk, h
′, h, i∗, b, j)j∈[m] , seBARG1.π).

8. Output
(
hk′α, ctα, (ck, πk)k∈Sα , ω0, ω1

)
.

We define the following experiment:

EXPTα

(crsℓ, crss, td
∗)← Genα(1

λ, N, I)

(v, rt, b, ρ)← A(crsℓ, crss)
(bi)i∈I = Extract(td, v)(
hk′α, ctα, (ck, πk)k∈Sα

, ω0, ω1

)
= E(td∗, crss, v, rt, b, ρ)

By the index hiding property of the underlying SEH family and the underlying seBARG schemes, to
prove Equation (3) it suffices to prove that there exists a negligible function µ0 such that for every
λ ∈ N,

Pr
EXPTα

[
b ̸= biα ∧ Verify(crss, rt, iα, b, ρ) = 1 ∧ Validate(crss, v, rt) = 1

]
≤ µ0(λ). (4)

30

Recall that Verify(crss, rt, iα, b, ρ) = 1 ∧ Validate(crss, v, rt) = 1 if and only if

seBARG0.V
(
seBARG0.crs,

(
pk, vk, hk, h, {hkt, ht}

logm
t=0 , k

)
k∈[m′]

, seBARG0.π

)
= 1

and
seBARG1.V

(
seBARG1.crs,

(
hk, pk, h′, h, iα, b, j

)
j∈[m]

, seBARG1.π
)
= 1.

In what follows, we parse

ω0 =
(
c′k, π

′
k, ρk

)
k∈Sα

and ω1 =
(
ct′α, hk

′′
α, ρ

′
α, oα, o

′
α

)
.

The somewhere argument of knowledge property of the underlying seBARG0, seBARG1 schemes
(Definition 3.3) implies that to prove Equation (4) it suffices to prove that there exists a negligible
function µ1 such that for every λ ∈ N,

Pr
EXPTα

b ̸= biα
∧ ∀ k ∈ Sα : (c′k, π

′
k, ρk) is a valid witness for(

pk, vk, hk, h, {hkt, ht}
logm
t=0 , k

)
∈ L0

∧
(
ct′α, hk

′′
α, ρ

′
α, oα, o

′
α

)
is a valid witness for (hk, pk, h′, h, iα, b, α) ∈ L1

 ≤ µ1(λ). (5)

Recall that
(
ct′α, hk

′′
α, ρ

′
α, oα, o

′
α

)
is a valid witness for (hk, pk, h′, h, iα, b, α) ∈ L1 if and only if

ρ′α, oα, o
′
α are valid openings for b, ct′α, hk

′′
α respectively (see Item 5). The somewhere statistically

binding w.r.t opening property of the underlying SEH family (Definition 3.1) implies that for every
λ ∈ N,

Pr
EXPTα

[(
ct′α, hk

′′
α, ρ

′
α, oα, o

′
α

)
is a valid witness for (hk, pk, h′, h, iα, b, α) ∈ L1

∧ b ̸= SEH.Extract(td′, ctα)

]
≤ negl(λ). (6)

It remains to argue that there exists a negligible function µ2 such that for every λ ∈ N,

Pr
EXPTα

 ∀ k ∈ Sα : (c′k, π
′
k, ρk) is a valid witness for(

pk, vk, hk, h, {hkt, ht}
logm
t=0 , k

)
∈ L0

∧ SEH.Extract(td′, ctα) ̸= biα

 ≤ µ2(λ).

Recall that (c′k, π
′
k, ρk) is a valid witness for

(
pk, vk, hk, h, {hkt, ht}

logm
t=0 , k

)
∈ L0 if and only if

(1) ρk is a valid opening of (c′k, π
′
k) w.r.t.

(
hklogm, hlogm

)
, (2) π′

k is a valid RAM proof, and (3) c′k is
consistent with vk (see Item 9). Thus by the somewhere statistically binding w.r.t. opening property
of the underlying SEH family (Definition 3.1) to prove Equation (5) it suffices to argue that there
exists a negligible function µ3 such that for every λ ∈ N,

Pr
EXPTα

[
∀k ∈ Sα : πk is a valid proof
∧ SEH.Extract(td′, ctα) ̸= CompDec

(
skc, (Compress2 (ck))k∈Sα

)] ≤ µ3(λ). (7)

since if ck is consistent with vk for all k ∈ Sα, then

CompDec
(
skc, (Compress2 (ck))k∈Sα

)
= CompDec

(
skc, (vk)k∈Sα

)
= biα .

31

For any β ∈ [m], let Genα,β be identical to Genα except that it sets β as indicated, instead of setting
β = α. In addition, Genα,β outputs

td∗ =
(
td′, td, {tdt}logmt=0

)
as the trapdoor. Below we define another extraction algorithm E ′, which calls as subroutines the
polynomial time extractor SEHash.Extract. E ′ takes as input the trapdoors td∗, short crs crss, and
short hash value rt and does the following:

1. Parse td∗ =
(
td′, td, {tdt}logmt=0

)
.

2. Parse crss =
(
pk, pkc, hk, h

′, {hkt}
logm
t=0 ,RAM0.crs,RAM1.crs, seBARG0.crs, seBARG1.crs

)
.

3. Parse rt = (h, π) , π = (h0, . . . , hlogm, seBARG0.π).

4. Compute ctβ = SEH.Extract(td, h).

5. For t ∈ [0, logm] : Compute
(
c
(t)
j,k, π

(t)
j,k

)
j∈J ′

t,β ,k∈Sα

= SEH.Extract(tdt, ht).

6. Output

(
ctβ,

{(
c
(t)
j,k, π

(t)
j,k

)
j∈J ′

t,β ,k∈Sα

}logm

t=0

)
.

We define the experiment EXPTα,β identically to EXPTα except it calls Genα,β and E ′ instead
of Genα and E . We note that the partial-input soundness property of the underlying RAM1 scheme
(applied logm − t times) implies that there exists a negligible function ν1 such that for every
λ ∈ N, t ∈ [0, logm− 1], k ∈ Sα, and j ∈ J ′

t,β,

Pr
EXPTα,β

[
πk is a valid RAM proof

∧ π
(t)
j,k is not a valid RAM proof

]
≤ (logm− t) · ν1(λ) ≤ negl(λ).

Recall that for k ∈ Sα, c
(logm)
1,k is computed by summing c

(0)
1,k, . . . , c

(0)
m,k in a tree-based fashion, and

E ′ extracts the one path in the tree which the hash keys hk0, . . . , hklogm are somewhere extractable
on. For t ∈ [0, logm], let αt =

⌈
α
2t

⌉
(note that α0 = α and αlogm = 1); then in a correctly computed

tree we have that

CompDec

(
skc,

(
Compress2

(
c
(t)
αt,k

))
k∈Sα

)
= SEH.Extract(td′, ctα) (8)

and

∀ j ∈ [mt] with j ̸= αt : CompDec

(
skc,

(
Compress2

(
c
(t)
j,k

))
k∈Sα

)
= 0. (9)

In what follows, we prove the correctness of c
(logm)
1,k (assuming the validity of π

(logm)
1,k) by inductively

proving eq. (9) in claim 4.2.1 and eq. (8) in claim 4.2.2.

Claim 4.2.1. There exists a negligible function ν2 such that for every λ ∈ N, t ∈ [0, logm− 1], and
j ∈ J ′

t,β with j ̸= αt,

Pr
EXPTα,β

(
π
(t)
j,k

)
k∈Sα

are valid RAM proofs

∧ CompDec

(
skc,

(
Compress2

(
c
(t)
j,k

))
k∈Sα

)
̸= 0

 ≤ ν2(λ).

32

Proof of Claim 4.2.1. We proceed by induction on t.

• Base case (t = 0). By the index hiding property of the underlying SEH family, it suffices to

bound the desired probability over EXPTα,j . Recall that for k ∈ Sα, π
(0)
j,k certifies that c

(0)
j,k is

the k-th element of Compress1(pkc, ctj ,m, j), and that Compress1(pkc, ctj ,m, j) is a ciphertext
encrypting the vector SEH.Extract(td′, ctj) · ej , which is 0 everywhere except at coordinate j.
The correctness of the encryption scheme implies that for all j ̸= α,

CompDec
(
skc,

(
Compress2

(
(Compress1(pkc, ctj ,m, j))k

))
k∈Sα

)
= 0,

except with negligible probability. Thus the partial-input soundness property of the underlying
RAM0 scheme implies that for all λ ∈ N and j ̸= α,

Pr
EXPTα,j

 π
(0)
j,k is valid

∧ CompDec

(
skc,

(
Compress2

(
c
(0)
j,k

))
k∈Sα

)
̸= 0

 ≤ negl(λ).

• Inductive step. Set β′ ∈ [m] so 2j − 1, 2j ∈ J ′
t−1,β′ and j ∈ J ′

t,β′ . By the index hiding
property of the underlying SEH family, it suffices to bound the desired probability over
EXPTα,β′ . The inductive hypothesis implies that for every λ ∈ N and j ̸= αt,

Pr
EXPTα,β′

(
π
(t−1)
2j−1,k, π

(t−1)
2j,k

)
k∈Sα

are valid RAM proofs

∧

(
CompDec

(
skc,

(
Compress2

(
c
(t−1)
2j−1,k

))
k∈Sα

)
̸= 0

∨ CompDec

(
skc,

(
Compress2

(
c
(t−1)
2j,k

))
k∈Sα

)
̸= 0

)

≤ negl(λ).

since j ̸=
⌈
α
2t

⌉
=⇒ 2j − 1 ̸=

⌈
α

2t−1

⌉
= αt−1 and 2j ̸=

⌈
α

2t−1

⌉
= αt−1. Recall that π

(t)
j,k certifies

that c
(t)
j,k = c

(t−1)
2j−1,k + c

(t−1)
2j,k , where addition is over the finite field Fq, and that π

(t−1)
2j−1,k, π

(t−1)
2j,k

are valid RAM proofs. Thus the partial-input soundness property of the underlying RAM1

scheme and the correctness of the encryption scheme implies that for every λ ∈ N,

Pr
EXPTα,β′

(
π
(t)
j,k

)
k∈Sα

are valid RAM proofs

CompDec

(
skc,

(
Compress2

(
c
(t)
j,k

))
k∈Sα

)
̸= 0

 ≤ negl(λ).

Claim 4.2.2. There exists a negligible function ν3 such that for every λ ∈ N, t ∈ [0, logm],

Pr
EXPTα,α

(
π
(t)
αt,k

)
k∈Sα

are valid RAM proofs

∧ CompDec

(
skc,

(
Compress2

(
c
(t)

⌈ α
2t
⌉,k

))
k∈Sα

)
̸= SEH.Extract(td′, ctα)

 ≤ ν3(λ).

33

Proof of Claim 4.2.2. We proceed by induction on t.

• Base case (t = 0). Recall that for k ∈ Sα, π
(0)
α,k certifies that c

(0)
α,k is the k-th element of

Compress1(pkc, ctα,m, α). Thus the correctness of the encryption scheme and the partial-input
soundness property of the underlying RAM0 scheme implies that for all λ ∈ N,

Pr
EXPTα,α

 π
(0)
α,k is valid

∧ CompDec

(
skc,

(
Compress2

(
c
(0)
α,k

))
k∈Sα

)
̸= SEH.Extract(td′, ctα)

 ≤ negl(λ).

• Inductive step. The inductive hypothesis implies that

Pr
EXPTα,α

(
π
(t−1)
αt−1,k

)
k∈Sα

are valid RAM proofs

∧ CompDec

(
skc,

(
Compress2

(
c
(t−1)
αt−1,k

))
k∈Sα

)
̸= SEH.Extract(td′, ctα)

 ≤ negl(λ).

Let α′
t−1 = αt−1 ± 1 be the index of the other child of

(
c
(t)
αt,k

, π
(t)
αt,k

)
. Claim 4.2.1 implies that

Pr
EXPTα,α

(
π
(t−1)
α′
t−1,k

)
k∈Sα

are valid RAM proofs

∧ CompDec

(
skc,

(
Compress2

(
c
(t−1)
α′
t−1,k

))
k∈Sα

)
̸= 0

 ≤ negl(λ).

Recall that π
(t)
αt,k

certifies that c
(t)
αt,k

= c
(t−1)
αt−1,k

+ c
(t−1)
α′
t−1,k

, where addition is over the finite field

Fq, and that π
(t−1)
αt−1,k

, π
(t−1)
α′
t−1,k

are valid RAM proofs. Thus the partial-input soundness property

of the underlying RAM1 scheme and the correctness of the encryption scheme implies that for
every λ ∈ N,

Pr
EXPTα,α

(
π
(t)
αt,k

)
k∈Sα

are valid RAM proofs

CompDec

(
skc,

(
Compress2

(
c
(t)
αt,k

))
k∈Sα

)
̸= SEH.Extract(td′, ctα)

 ≤ negl(λ).

Claim 4.2.2 for t = logm implies eq. (7), so we are done.

Extraction correctness. Follows immediately from the correctness of the encryption scheme
(Definition 3.10).

5 Rate-1 seBARGs

In this section we construct a rate-1 seBARG (Definitions 3.3 and 3.6) for any NP language
L = {Ln}n∈N with witnesses of length m = m(n). Our construction of a rate-1 seBARG uses the
following ingredients:

1. A rate-1 flSEH family (see Section 4)

(H.Gen,H.Hash,H.Extract,H.Digest,H.Open,H.Verify).

34

2. A flexible RAM SNARG scheme with partial input soundness (see Section 3.3)

(RAM.Gen,RAM.Digest,RAM.P,RAM.V)

as in Theorem 3.8 w.r.t. the RAM machine R which takes an implicit input (ω1, . . . , ωk) and
an explicit input (xi, i) and outputs 1 if and only if ωi is a valid witness for xi ∈ L. Let T
denote the run-time of R.

3. An index seBARG scheme with proof length |seB.π|= m · poly(λ, log k) as in Theorem 3.5 (see
Section 3.2)

(seB.Gen, seB.P, seB.V)
for the NP language

L′ =
{

(RAM.crs,H.crs, rt, xi, i)

∣∣∣∣ ∃ RAM.π ∈ {0, 1}poly(λ) s.t.
RAM.V(RAM.crs,H.crs, rt, (xi, i),RAM.π) = 1

}
.

We are now ready to construct our rate-1 seBARG for L.

Gen(1λ, k, n, i∗)→ (crs, td). This poly-time algorithm does the following:

1. Generate (H.crs,H.td)← H.Gen
(
1λ, k ·m, I

)
where I = {(i∗ − 1) ·m+ 1 . . . , i∗ ·m}.12

2. Generate RAM.crs← RAM.Gen(1λ, T).

3. Generate (seB.crs, seB.td)← seB.Gen(1λ, k, n′, i∗)
where n′ = |(RAM.crs,H.crs, rt, i, xi)|.

4. Output crs = (H.crs,RAM.crs, seB.crs) and td = (H.td, seB.td).

P(crs, x1, . . . , xk, ω1, . . . , ωk)→ Π. This poly-time algorithm does the following:

1. Parse crs = (H.crs,RAM.crs, seB.crs).

2. Compute (v, rt) = H.Hash(H.crs, (ω1, . . . , ωk)).

3. For every i ∈ [k] let RAM.πi = RAM.P (RAM.crs,H.crs, (ω1, . . . , ωk), (xi, i)).

4. Compute seB.π ← seB.P
(
seB.crs,

instances = (RAM.crs,H.crs, rt, xi, i)i∈[k],
witnesses = (RAM.πi)i∈[k]

)
.

5. Output Π = (v, rt, seB.π).

V(crs, x1, . . . , xk,Π)→ 0/1. This poly-time algorithm does the following:

1. Parse crs = (H.crs,RAM.crs, seB.crs).

2. Parse Π = (v, rt, seB.π).

3. Output 1 if and only if
H.Validate(H.crs, v, rt) = 1

and
seB.V(seB.crs, (RAM.crs,H.crs, rt, xi, i)i∈[k], seB.π) = 1.

Theorem 5.1. Assuming hardness of the LWE problem, (Gen,P,V) is a rate-1 seBARG as in
Definitions 3.3 and 3.6.

Proof. In what follows we prove that our construction satisfies all the desired properties.

12Recall that a flSEH hash family has the property that if I consists of consecutive indices (which is the case here)
then Gen runs in time poly(λ, log k, logm), and outputs a single (shrot) crs, denoted above by H.crs.

35

Efficiency. We first note that our construction satisfies the efficiency requirement.

1. The fact that Gen is a poly-time algorithm follows from the efficiency guarantee of the key
generation algorithm of the underlying primitives: the flSEH family, the RAM delegation
scheme (Definition 3.7), and the seB scheme (Definition 3.3).

2. The fact that the proof Π = (v, rt, seB.π) is of length m+poly(λ) follows from the fact that the
underlying flSEH family has rate-1, which implies that |v|= m+poly(λ), |rt|≤ poly(λ), and the
time to verify an opening is poly(λ), together with the efficiency guarantees of the underlying
RAM and seB schemes, which ensure that |RAM.πi|≤ poly(λ) and thus |seB.π|≤ poly(λ).

Moreover, Π can be generated in polynomial time, which follows from the polynomial running
time of the underlying algorithms.

Index hiding. The index hiding condition follows directly from the index hiding property of the
underlying flSEH family (Definition 4.1) and the seB scheme (Definition 3.3).

Completeness. The completeness condition follows immediately from the completeness condition
of the underlying RAM delegation scheme (Definition 3.7), the completeness condition of the
underlying seB scheme (Definition 3.3), and the validation/opening completeness condition of the
underlying flSEH scheme (Definition 4.1).

Somewhere argument of knowledge. We define a PPT extractor E that takes as input a tuple
(td, (x1, . . . , xk),Π), and does the following:

1. Parse Π = (v, rt, π), and td = (H.td, seB.td).

2. Output ω = H.Extract(H.td, v).

Suppose for the sake of contradiction that there exists a poly-size adversary A, polynomials k = k(λ)
and n = n(λ), an index i∗ ∈ [k], and a non-negligible function ϵ, such that for every λ ∈ N,

Pr

 V(crs, x1, . . . , xk,Π) = 1
∧ ωi∗ is not a valid witness for xi∗ ∈ L

:
(crs, td)← Gen(1λ, k, n, i∗),
(x1, . . . , xk,Π)← A(crs),
ωi∗ ← E(td, x1, . . . , xk,Π)

 ≥ ϵ(λ). (10)

We abbreviate x = (x1, . . . , xk). Recall that

V(crs = (H.crs,RAM.crs, seB.crs),x,Π = (v, rt, seB.π)) = 1

if and only if
H.Validate(H.crs, v, rt) = 1

and
seB.V(seB.crs, (RAM.crs,H.crs, rt, xi, i)i∈[k], seB.π) = 1.

Thus, Equation (10) implies that for every λ ∈ N,

Pr

H.Validate(H.crs, v, rt) = 1
∧ seB.V(seB.crs,

(RAM.crs,H.crs, rt, xi, i)i∈[k], seB.π) = 1

∧ ωi∗ is not a valid witness for xi∗ ∈ L

:
(crs, td)← Gen(1λ, k, n, i∗),
(x,Π = (v, rt, seB.π)) = A(crs)

 ≥ ϵ(λ).

(11)

36

Recall that seB.π certifies that for all i ∈ [k] there exists a short proof RAM.πi such that
RAM.V(RAM.crs,H.crss, rt, (xi, i),RAM.πi) = 1. Let seB.E be the PPT extractor associated with
seB. Define a PPT extractor E ′ which takes as input crses crs = (H.crs,RAM.crs, seB.crs), trapdoors
td = (H.td, seB.td), instance x, and proof Π = (v, rt, seB.π) and outputs

RAM.π∗ = seB.E(seB.td, (RAM.crs,H.crs, rt, xi, i)i∈[k], seB.π).

By the somewhere argument of knowledge property of seB (Definition 3.3), there exists a negligible
function µ such that for every λ ∈ N,

Pr

 seB.V(seB.crs, seB.x, seB.π) = 1
∧ RAM.V(RAM.crs,H.crs,

rt, (xi∗ , i
∗),RAM.π∗) ̸= 1

:
(crs, td)← Gen(1λ, k, n, i∗),
(x,Π = (v, rt, seB.π)) = A(crs)
RAM.π∗ = E ′(crs, td,x,Π)

 ≤ µ(λ) (12)

Combining Equations (11) and (12) we conclude that there exists a non-negligible function ϵ′(λ) =
ϵ(λ)− µ(λ) such that for every λ ∈ N,

Pr

ωi∗ is not a valid witness for xi∗ ∈ L
∧ H.Validate(H.crs, v, rt) = 1
∧ RAM.V(RAM.crs,H.crs,

rt, (xi∗ , i
∗),RAM.π∗) = 1

:
(crs, td)← Gen(1λ, k, n, i∗),
(x,Π = (v, rt, seB.π)) = A(crs),
RAM.π∗ = E ′(crs, td,x,Π)

 ≥ ϵ′(λ). (13)

Recall that the RAMmachineR associated with the RAM SNARG scheme takes as input (ω1, . . . , ωk), (xi, i)
and outputs 1 if and only if ωi is a valid witness for xi ∈ L. Equation (13) implies that for every
λ ∈ N,

Pr

R((ω1, . . . , ωk), (xi∗ , i

∗)) = 0
∧ H.Validate(H.crs, v, rt) = 1
∧ RAM.V(RAM.crs,H.crs,

rt, (xi∗ , i
∗),RAM.π∗) = 1

:

(crs, td)← Gen(1λ, k, n, i∗),
(x,Π = (v, rt, seB.π)) = A(crs),
RAM.π∗ = E ′(crs, td,x,Π),
ωi∗ = H.Extract(H.td, v),
∀ i ∈ [k] \ {i∗} : ωi = 0m

 ≥ ϵ′(λ)

but this contradicts partial-input soundness of the RAM delegation scheme (Definition 3.7).

6 Multi-Hop seBARGs

In this section, we extend the notion of a seBARG to the multi-hop setting, and describe a generic
construction based on any rate-1 seBARG. In the multi-hop setting, seBARGs can be further batched
with other seBARGs (or even a single instance-witness pair) succinctly. The number of hops (i.e.,
number of times seBARGs can be successively batched) can be any polynomial, and the batch size
in each hop can be set arbitrarily. Each hop increases the proof size by an additive poly(λ) factor.

In Section 6.3 we define and construct a hashed version of a multi-hop seBARG where all the
instances are hashed and are not given explicitly to the verifier. In Section 7 we show how to use a
multi-hop seBARG to construct a multi-hop aggregate signature scheme, and how to used a hashed
multi-hop seBARG to construct an IVC scheme.

37

6.1 Definition

To formally capture the notion of multi-hop seBARGs, we make the following syntactic and semantic
changes to seBARGs, which includes adding a new “proof combiner” procedure that we call AggProve.

Syntax. A rate-1 multi-hop seBARG scheme for an NP language L consists of the following
polynomial time algorithms:

Gen(1λ, d, (i1, . . . , id))→ (crs, td). This is a probabilistic setup algorithm. It no longer takes as
input the number of instances k being batched, nor the length of the instances n.13 Rather,
it takes as input the security parameter 1λ, the maximum number of hops d ∈ [2λ] (i.e., the
number of batch-compositions), and a sequence of d extraction indices I = (i1, . . . , id) ∈ [2λ]d.
It outputs crs which consists of d strings crs = (crs1, . . . , crsd), along with a trapdoor td which
consists of d strings td = (td1, . . . , tdd).

We note that in the multi-hop setting, we need to define a separate extraction index for
each hop. That is, instead of having a single extraction index (as in a standard seBARG), it
takes as input d extraction indices I = (i1, . . . , id). Also, since the batch size in each hop is
unbounded, each index ij is an element in [2λ]. The j’th extraction index ij is interpreted
as saying that, from an accepting seBARG proof π created via j-hops/compositions, we can
efficiently extract the ij ’th witness (which is another accepting seBARG proof π′ created via
(j − 1)-hops/compositions). Thus, the sequence of extraction indices I defines the sequence in
which multi-hop seBARGs can be recursively extracted.

P(crs1, x1, . . . , xk, ω1, . . . , ωk)→ π. The prover P is a poly-time algorithm that takes as input crs1
(which is the first string in crs), any (unbounded) number of instance-witness pairs of arbitrary
size (since the batch size nor the instance size are no longer fixed at setup time). It runs in
time poly

(
λ, (|xi|, |wi|)i∈[k]

)
and outputs a proof π.

AggProve
(
(crsi)i∈[d′], X

(1), . . . , X(ℓ), π(1), . . . , π(ℓ)
)
→ π. This proof combiner is a poly-time algo-

rithm that takes as input the (crs)i∈[d′], a sequence of arbitrarily many instance-treesX(1), . . . , X(ℓ)

(as defined below), of maximal depth d′−1, and corresponding multi-BARG proofs π(1), . . . , π(ℓ).
It outputs a (combined) multi-BARG proof π.

Definition 6.1. An instance-tree X is a tree of varying arity, where each leaf node v is
associated with an instance xv, and each intermediate node u corresponds to a multi-BARG
proof that certifies the validity of the sub-tree rooted at u (these multi-BARG proofs are not
included in X).

We note that the depth of an instance-tree X represents the number of hops taken in order
to compute a proof π for X. Therefore, the proof combiner takes as input a sequence of
instance-trees along with their corresponding multi-BARG proofs, where each instance-tree
encodes not only the instances in the leaves, but also the history of how the previous proofs
were combined, including the number of hops taken so far.

13We note that it was unnecessary for Gen to take k and n as input to begin with, since it could have produced a
crs corresponding to every k, n ∈ {2i}i∈[λ], and by padding we can assume w.l.o.g. that indeed k, n are powers of 2.
Indeed, originally Gen took k, n as input only for the sake of simplicity.

38

V((crsi)i∈[d′], X, π)→ {0, 1}. The verifier V is a poly-time algorithm that takes as input (crsi)i∈[d′],
an instance-tree X of depth d′, and a (combined) proof π, and outputs 0/1 (corresponding to
reject or accept).

Notation 6.2. In what follows, when we refer to a tree T we always think of a tree where each of
its leaves, denoted by v, is associated with a parameter nv = nv(λ).

14 When we refer to a poly-size
tree, we mean that the number of nodes in the tree is ≤ poly(λ) and nv = nv(λ) ≤ poly(λ) for every
leaf v. For any tree T , we let path(T) be the set that consists of all the possible paths from the
root to a leaf in T . We say that an instance-tree X is consistent with T if X has the exact same
tree structure as T and for each leaf v ∈ T the instance xv in X (corresponding to the leaf v) is
of size nv. For any instance-tree X that is consistent with T and any (i1, . . . , id) ∈ path(T) we let
Xi1,...,id denote the instance in the leaf corresponding to the path (i1, . . . , id).

In addition, for any instance-trees X(1), . . . , X(ℓ) we denote by X =
(
X(1), . . . , X(ℓ)

)
the instance-

tree that combines all the ℓ instance-trees X(1), . . . , X(ℓ) by adding a root with arity ℓ, whose i’th
child is the root of X(i).

Definition 6.3. A rate-1 multi-hop seBARG scheme multi-BARG = (Gen,P,AggProve,V) for an
NP language L is required to satisfy the following properties (the same properties in definitions 3.3
and 3.6, adapted to multi-hop syntax, with an additional completeness and compactness guarantee
for combined proofs):

Efficiency. For every i ∈ [d], the size of (crsi, tdi) is at most poly(λ), and the size of a (combined)
proof corresponding to an instance-tree X of depth d′ is at most m+ d′ · poly(λ, log|X|), where
m is the maximal witness length of all the leaf instances in X.

Completeness. For any λ ∈ N, any d ∈ [2λ], any instance-tree X of size ≤ 2λ and depth d′ ≤ d,
and any corresponding valid witness W ,

Pr

 V ((crsi)i∈[d′], X, π
)
= 1 :

(crs, td)← Gen(1λ, d, (i1, . . . , id)),
parse crs = (crsi)i∈[d],
π ← Agg

(
(crsi)i∈[d′], X,W

)
 = 1

where Agg
(
(crsi)i∈[d′], X,W

)
is defined by induction on d′ as follows:

If d′ = 1 then parse X = (x1, . . . , xℓ) and W = (w1 . . . , wℓ) and output

Agg(crs1, X,W) = P(crs1, x1, . . . , xℓ, w1 . . . , wℓ).

If d′ > 1 then parse X =
(
X(1), . . . , X(ℓ)

)
and W =

(
W (1), . . . ,W (ℓ)

)
, where W (i) is the

witness corresponding to the sub-tree instance X(i). Denote by di the depth of X(i).

For every i ∈ [ℓ] compute by induction

π(i) = Agg
(
(crsj)j∈[di], X

(i),W (i)
)

and output

π = AggProve
(
(crsi)i∈[d′], X

(1), . . . , X(ℓ), π(1), . . . , π(ℓ)
)
.

14Different leaves can be associated with different parameters.

39

Index hiding. For any poly-size adversary A, any polynomial d = poly(λ), any poly-size tree T
of depth d′ ≤ d, and any sets of indices I0 = (i0,1, . . . , i0,d), I1 = (i1,1, . . . , i1,d) ∈ path(T),
there exists a negligible function negl(·) such that for every λ ∈ N,

Pr

[
A(crs) = b :

b← {0, 1},
(crs, td)← Gen(1λ, d, Ib)

]
≤ 1

2
+ negl(λ).

Somewhere argument of knowledge. There exists a PPT extractor E such that for any poly-
size adversary A, there exists a negligible function negl(·) such that for any polynomial
d = poly(λ), any poly-size tree T of depth d′ ≤ d, and any set of indices (i1, . . . , id′) ∈ path(T)
and id′+1 . . . , id ∈ [2λ], for every λ ∈ N,

Pr

 V(crs, X, π) = 1
∧ X is consistent with T
∧ w∗ is not a valid witness for Xi1,...,id′ ∈ L

:
(crs, td)← Gen(1λ, d, (i1, . . . , id))
(X,π) = A(crs)
w∗ ← E (td, X, π)

 ≤ negl(λ).

Remark 6.1. We note that the above somewhere argument of knowledge property implies
the following semi-adaptive soundness property:

For any poly-size adversary A, any polynomial d = poly(λ), any poly-size tree T of depth
d′ ≤ d, and any set of indices (i1, . . . , id′) ∈ path(T) and id′+1 . . . , id ∈ [2λ], there exists a
negligible function negl(·) such that for every λ ∈ N,

Pr

 V(crs, X, π) = 1
∧ X is consistent with T
∧ Xi1,...,id′ /∈ L

:
(crs, td)← Gen(1λ, d, (i1, . . . , id))
(X,π) = A(crs)

 ≤ negl(λ).

6.2 Construction and Analysis

In this section we construct a multi-hop seBARG from any rate-1 seBARG (Definitions 3.3 and 3.6).
We do this in two steps. First, we show how to convert the rate-1 seBARG into an intermediate
primitive that we call a rate-1 single-hop seBARG, denoted by single-seBARG, and then we show
how to convert a rate-1 single-seBARG into a multi-hop seBARG.

Single-hop seBARG. A single-seBARG scheme is very similar to a seBARG scheme, the only
difference being that it enables batching instances and witnesses of varying lengths, and these
lengths, as well as batch size k, can be decided at batching time (and are no longer fixed at setup
time). The reason why a rate-1 single-seBARG can be directly obtained from a rate-1 seBARG
scheme follows from the following two observations about a rate-1 seBARG scheme.

Observation 1. The fact that the running time of a rate-1 seBARG.Gen grows only poly-
logarithmically with the number of instances k and the input length n (see Definition 3.6) implies
that one could generically convert this seBARG into another seBARG scheme in which the number
of instances and the input length are not a priori bounded. To see this, we first observe that by
standard padding we can consider only k and n which are powers of 2. Therefore, we can run
seBARG.Gen λ2 times, one for each k, n ∈ {2i}i∈[λ]. The prover can then compute the seBARG proof
using the crs corresponding to appropriate k, n. This gives a single-hop seBARG scheme for k and n
that are not fixed in advance.

40

Observation 2. Our second observation is that any rate-1 seBARG can be converted into one
that allows batching instances of unequal lengths, by padding all the instances and witnesses to be
of the same length.

By combining the above two observations we can convert our rate-1 seBARG scheme into a
rate-1 single-seBARG scheme, which enables batching instances of varying lengths where the length
of these instances as well as the batch size are not a priori fixed.

The construction of our rate-1 multi-hop seBARG. Fix any NP language L. We construct a
rate-1 multi-hop seBARG scheme for L, denoted by multi-BARG, which uses as a building block a
rate-1 single-seBARG scheme for the NP language L′. This NP language L′ contains L and is defined
recursively below. Loosely speaking, any instance in L′ is an instance-tree X of some depth d′,
along with (crsi)i∈[d′] (if d

′ = 0 then there is no crs associated with the instance) and a valid witness
is a valid aggregated proof corresponding to (crsi)i∈[d′] (where if d′ = 0 then a valid proof is simply
a valid witness corresponding to L).

Gen(1λ, d, I)→ (crs, td). This PPT algorithm parses I = (i1, . . . , id), it samples for every j ∈ [d]

(crsj , tdj)← single-seBARG.Gen(1λ, ij),

and it outputs crs = (crs1, . . . , crsd) and td = (td1, . . . , tdd).

P(crs1, x1, . . . , xk, ω1, . . . , ωk)→ π. This poly-time algorithm outputs

π ← single-seBARG.P(crs1, x1, . . . , xk, ω1, . . . , ωk).

AggProve
(
crs, X(1), . . . , X(ℓ), π(1), . . . , π(ℓ)

)
→ π. For every i ∈ [ℓ] denote by di the depth of X(i)

and let d′ = max{di}+ 1. If d′ > d then abort. Otherwise, output

π ← single-seBARG.P
(
crsd′ ,

(
(crsj)j∈[di], X

(i)
)
i∈[ℓ]

,
(
π(i)
)
i∈[ℓ]

)
where a valid witness corresponding to

(
(crsj)j∈[di], X

(i)
)
∈ L′ is π(i) such that

V
(
(crsj)j∈[di], X

(i), π(i)
)
= 1

where if di = 0 then we define V
(
X(i), π(i)

)
= 1 if and only if π(i) is a valid witness for

X(i) ∈ L.

V(crs, X, π)→ 0/1. Parse crs = (crs1, . . . , crsd′) and parse X =
(
X(1), . . . , X(ℓ)

)
. Let di ∈ [d] be the

depth of the instance-tree X(i). If d′ ̸= max{di}i[ℓ] + 1 then output 0. Else, output

single-seBARG.V
(
crsd′ ,

(
(crsj)j∈[di], X

(i)
)
i∈[ℓ]

, π

)
.

Remark 6.2 (The language L′). At first there may appear to be a circularity in the definition of
the NP language L′, since on the one hand its definition depends on the multi-hop multi-BARG
scheme, and on the other hand, multi-BARG uses as a building block a rate-1 single-seBARG

41

for L′. The reason this is not an issue is that both L′ and multi-BARG are formally defined
by induction on the depth d′ of the instance-trees, starting with d′ = 0. Namely, we define
by induction for every d′ ∈ N, L′d′ and Vd′ , where L′d′ contains only instance-trees of depth
at most d′ (where L′0 = L), and Vd′ takes as input only an instance-tree of depth d′, and it
runs single-seBARG.V with instance-trees of depth d′ − 1 (where Ld′−1 is already defined by
induction).

Theorem 6.4. If single-seBARG is a rate-1 single-hop seBARG scheme then multi-BARG is a rate-1
multi-hop seBARG scheme (definition 6.3).

Proof. In what follows we prove that multi-BARG satisfies all the desired properties:

Efficiency. Follows immediately from the fact that the underlying single-seBARG is rate-1.

Completeness. Follows directly from the completeness of the underlying single-seBARG scheme.

Index-hiding. Follows immediately from the index-hiding property of the underlying single-seBARG
scheme (via a standard hybrid argument).

Somewhere argument of knowledge. Let single-seBARG.E denote the PPT extractor corre-
sponding to the underlying single-seBARG scheme. We define an extractor E that given (td, X, π)
does the following:

1. Parse td = (td1, . . . , tdd) and suppose that td corresponds to indices (i1, . . . , id).

2. Parse X =
(
X(1), . . . , X(ℓ)

)
, and let d′ denote the depth of X.

3. For every j ∈ [d′] we denote by dj the depth of the subtree X(id′ ,...,id′+1−j).

Let j∗ ∈ [d′] be the smallest index such that dj = 0 for for every j ≥ j∗ (i.e., j∗ is the length
of the path (id′ , . . . , i1) in X until we reach a leaf).

4. Compute
π(id′) = single-seBARG.E(tdd′ , X, π).

Intuitively, if π is a valid multi-BARG proof for X then with overwhelming probability π(id′) is
a valid multi-BARG proof for the instance-tree X(id′).

5. For every j ∈ [j∗ − 1] we compute (by induction, starting with j = 1)

π(id′ ,...id′−j) = single-seBARG.E
(
tddj , X

(id′ ,...,id′−j+1), π(id′ ,...id′−j+1)
)

where X(id′ ,...,id′−j) is defined to be the subtree of X obtained by going down from the root on
the path (id′ , . . . , id′−j).

6. Output ω = π(id′ ,...,id′−j∗+1).

42

Fix any poly-size adversary A and any polynomial d = poly(λ). In what follows we argue by
induction that for every d′ ≤ d there exists a negligible function µd′ , such that for any poly-size
tree T of depth d′, and any set of indices (i1, . . . , id′) ∈ path(T) and id′+1 . . . , id ∈ [2λ] it holds that
for every λ ∈ N,

Pr

 V((crsj)j∈[d′], X, π) = 1

∧ X is consistent with T
∧ w∗ is not a valid witness for Xi1,...,id′ ∈ L

:
(crs, td)← Gen(1λ, d, (i1, . . . , id))
(X,π) = A(crs)
w∗ ← E (td, X, π)

 ≤ µd′(λ).

(14)

Base case: d′ = 1: This follows immediately from the somewhere argument of knowledge of the
underlying single-seBARG scheme.

Induction step: Suppose that Equation (14) holds for every j < d′ and we prove that it holds
for d′. To this end, the somewhere argument of knowledge of the underlying single-seBARG scheme
implies that there exists a negligible function ν such that for every λ ∈ N,

Pr

 V((crsj)j∈[d′], X, π) = 1

∧ X is consistent with T

∧ V
(
(crsj)j∈[d1], X

(id′), π(id′)
)
= 1

:

(crs, td)← Gen(1λ, d, (i1, . . . , id))
(X,π) = A(crs)
π(id′) ← single-seBARG.E (tdd′ , X, π)
parse crs = (crs1, . . . , crsd)

 ≤ ν(λ). (15)

Consider the poly-size adversary A′ that given crs does the following:

1. Parse crs = (crs1, . . . , crsd).

2. Generate (crs∗, td∗)← single-seBARG.Gen(1λ, id′).

3. Let crs∗ = (crs1, . . . , crsd′−1, crs
∗, crsd′+1, . . . , crsd).

4. Compute (X,π) = A(crs∗).

5. Compute π(id′) = single-seBARG.E(td∗, X, π).

6. Output
(
X(id′), π(id′)

)
.

By the induction hypothesis there exists a negligible function µ such that for every λ ∈ N,

Pr

 V
(
(crsj)j∈[d1], X

(id′), π(id′)
)
= 1

∧ X(id′) is consistent with T (id′)

∧ V
(
(crsj)j∈[d2], X

(id′ ,id′−1), π(id′ ,id′−1)
)
= 1

:

(crs, td)← Gen(1λ, d, (i1, . . . , id))(
X(id′), π(id′)

)
= A∗(crs)

π(id′ ,id′−1) ← E
(
td∗, X(id′), π(id′)

)
 ≤ ν(λ).

This, together with Equation (15), implies the induction step (i.e., Equation (14)).

43

6.3 Hashed Multi-Hop seBARGs

6.3.1 Definition

A hashed multi-BARG is one where the verifier is required to verify the proof without being given
the instances (in the clear), and instead being given only a hash of the instances. In Section 7 we
use our hashed multi-BARG to construct an IVC scheme. For this application, it suffices to consider
hashed multi-BARG where all the instances are of the same size n and where the number of instances
being BARGed is a fixed parameter k. Therefore, for simplicity we fix n and k in setup time. We
also consider a hashed multi-BARG where the number of hops is at most λ. This suffices for our IVC
application since there we will combine the seBARGs in a tree-like structure with fan-out k, so a
depth λ tree is sufficient to accumulate kλ many proofs.

We note that one could define the more general notion where n and k can vary adaptively (as in
Section 6.1), though we chose simplicity over generality in this section.

Syntax. A hashed multi-BARG scheme corresponding to an NP language L is associated with the
following algorithms:

Gen(1λ, n, k, (i1, . . . , iλ))→ (crs, td). This is a PPT algorithm that takes as input a security param-
eter 1λ, an instance size n, the number of instances k, and a sequence of λ extraction indices
i1, . . . , iλ ∈ [k]. It outputs a crs and a trapdoor key td.

P(crs, x1, . . . , xk, ω1, . . . , ωk)→ (v, π). This is a poly-time prover algorithm that takes as input crs,
instances x1, . . . , xk each of size n, and corresponding witnesses ω1, . . . , ωk, and outputs a
hash value v and a proof π.

AggProve
(
crs, v(1), . . . , v(k), π(1), . . . , π(k)

)
→ (v, π). This proof combiner is a poly-time algorithm

that takes as input crs, a sequence of hash values v(1), . . . , v(k), along with corresponding
proofs π(1), . . . , π(k), and outputs a new hash value v and a corresponding proof π.

V(crs, v, π)→ 0/1. The verifier V is a poly-time algorithm that takes as input crs, a hash value v
and a proof π and outputs a bit to signal whether the proof is valid or not.

Extract(td, v, I)→ x. This is a poly-time extraction algorithm that takes as input a trapdoor td, a
hash value v, and a sequence of indices I = (i1, . . . , iλ) ∈ [k]λ and outputs an instance x.

Remark 6.3. The fact that in a hashed multi-BARG the parameters n and k are fixed in advance,
implies that the instance tree is a k-ary tree where all the leaves correspond to instances of size n.
Since for any number of instances ℓ that are being combined, this tree is fixed, we do not need to
include it as an input; rather it suffices to include only the number of instances ℓ, which we assume
w.l.o.g. is encoded in v. We note that when defining a (regular) multi-BARG in Section 6.1 we did
need to include it as part of the input since n and k were adaptively chosen and were changing from
hop to hop.

In what follows we define the properties of a hashed multi-BARG. In the definition we assume
that the number of instances ℓ is a power of k. This simplifies the definition significantly and is
sufficient for the following reason: In our construction, when we aggregate an arbitrary number
of instances ℓ ∈ [2λ], letting ℓ =

∑λ
i=0 cik

i where ci ∈ {0, 1, . . . , k − 1}, our aggregated proof will

consists of
∑λ

i=0 ci aggregated proofs, where for every i ∈ {0, 1, . . . , λ} we have ci aggregated proofs
for ki instances.

44

Definition 6.5. A rate-1 hashed multi-BARG for an NP language L is required to satisfy the
following properties.

Efficiency. The output (v, π) generated by the prover, or the aggregate prover, is of size at most
n · poly(λ) +m where n is the instance size and m is the witness size.15

Completeness. For any λ ∈ N any n, k, ℓ ∈ [2λ] such that k ≥ 2 and ℓ = kd for some d ∈ N,
any ℓ instances x1, . . . , xℓ each of size n, and corresponding valid witnesses ω1, . . . , ωℓ, and
any i1, . . . , iλ ∈ [k],

Pr

[
V (crs, v, π) = 1 :

(crs, td)← Gen(1λ, n, k, (i1, . . . , iλ)),
(v, π)← Agg (crs, x1, . . . , xℓ, ω1, . . . , ωℓ)

]
= 1

where Agg (crs, x1, . . . , xℓ, ω1, . . . , ωℓ) is defined as follows: If ℓ = k then

Agg (crs, x1, . . . , xℓ, ω1, . . . , ωℓ) ≜ P (crs, x1, . . . , xℓ, ω1, . . . , ωℓ) .

Otherwise, for i ∈ [k] inductively compute(
v(i), π(i)

)
= Agg

(
crs, x(i−1)· ℓ

k
+1, . . . , xi· ℓ

k
, ω(i−1)· ℓ

k
+1, . . . , ωi· ℓ

k

)
and output

AggProve
(
crs, v(1), . . . , v(k), π(1), . . . , π(k)

)
.

Index hiding. For any poly-size adversary A, any polynomials n = n(λ) and k = k(λ), and any
sets of indices I0 = I0(λ) = (i0,1, . . . , i0,λ), I1 = I1(λ) = (i1,1, . . . , i1,λ) ∈ [k]λ, there exists a
negligible function negl(·) such that for every λ ∈ N,

Pr

[
A(crs) = b :

b← {0, 1},
(crs, td)← Gen(1λ, n, k, Ib)

]
≤ 1

2
+ negl(λ).

Extraction correctness. For any λ ∈ N any n, k, ℓ ∈ [2λ] such that k ≥ 2 and ℓ = kd for some
d ∈ N, any ℓ instances x1, . . . , xℓ each of size n, and corresponding valid witnesses ω1, . . . , ωℓ,
any i ∈ [ℓ], letting the k-ary representation of i be i = (i1, . . . , id), for any id+1, . . . , iλ ∈ [k],

Pr

[
xi ̸= Extract(td, v, I) :

(crs, td)← Gen(1λ, n, k, (i1, . . . , iλ)),
(v, π)← AggProve(crs, x1, . . . , xℓ, ω1, . . . , ωℓ)

]
≤ negl(λ).

Somewhere argument of knowledge. There exists a PPT extractor E such that for any poly-
size adversary A, there exists a negligible function negl(·) such that for any polynomials
n = n(λ) and k = k(λ), and any sequence of indices I = I(λ) = (i1, . . . , iλ) ∈ [k]λ, for every
λ ∈ N,

Pr

V(crs, hk, v, π) = 1

∧
(
x ̸= Extract(td, v, I)

∨ w is not a valid witness for x ∈ L
) :

(crs, hk, td)← Gen(1λ, n, k, I)
(v, π) = A(crs, hk)
(x,w)← E (td, v, π)

 ≤ negl(λ).

15Our scheme allows for at most λ hops so we do not need to incorporate the depth as an additional parameter.

45

6.3.2 Construction and Analysis

Fix any NP language L and any rate-1 fully-local somewhere extractable hash family

SEH = (SEH.Gen,SEH.Hash,SEH.Open, SEH.Verify,SEH.Extract).

We construct a hashed multi-BARG scheme for L w.r.t. the SEH family. Our scheme uses as a
building block a rate-1 seBARG scheme

seBARG = (seBARG.Gen, seBARG.P, seBARG.V, seBARG.Extract)

for the NP language L′ defined recursively below.16

Gen(1λ, n, k, (i1, . . . , iλ))→ (crs, td). This PPT algorithm does the following:

1. For every d ∈ [λ] sample (hkd, SEH.tdd)← SEH.Gen(1λ, nd−1 · k, Iid), where n0 = n and
for every d ∈ [λ], nd is the size of hash values outputted by SEH.Hash(hkd, ·), i.e., hash
values of depth d, and

Iid ≜ {nd−1 · (id − 1) + 1, . . . , nd−1 · id}.

Note that nd ≤ nd−1 + poly(λ) and thus nλ ≤ n+ poly(λ).

2. For every d ∈ [λ] sample (crsd, tdd)← seBARG.Gen(1λ, n′
d, k, id), where n′

d for d ∈ [λ] is
defined below.

3. Let crs = (crs1, . . . , crsλ, hk1, . . . , hkλ), and td = (td1, . . . , tdλ,SEH.td1, . . . ,SEH.tdλ).

4. Output (crs, td).

P(crs, x1, . . . , xk, ω1, . . . , ωk)→ (v, π). This poly-time algorithm does the following:

1. Parse crs = (crs1, . . . , crsλ, hk1, . . . , hkλ).

2. Compute v = SEH.Hash(hk1, (x1, . . . , xk)).

Note that |v|≤ n+ poly(λ).

3. For every i ∈ [k] compute ρi = SEH.Open(hk1, (x1, . . . , xk), Ii), where Ii corresponds to
the coordinates of xi, i.e.,

Ii ≜ {n · (i− 1) + 1, . . . , n · i}.

Note that |ρi|≤ poly(λ) (see Lemma 3.2 in Section 3.1).

4. Compute π = seBARG.P
(
crs1, (hk1, v, i)i∈[k] , (xi, ρi, wi)i∈[k]

)
, where instances of L′ have

length
n′
1 = |(hk1, v, i)| ≤ n+ poly(λ)

and a valid witness (xi, ρi, wi) satisfies the following conditions:

SEH.Verify(hk1, v, Ii, xi, ρi) = 1 ∧ (xi, wi) ∈ RL.

The fact that seBARG and SEH both have rate 1 implies that π is of size

|π| ≤ |(xi, ρi, wi)|+poly(λ) ≤ n+m+ poly(λ),

as desired.
16The language L′ is somewhat similar to the NP language L′ defined in the construction of the multi-BARG scheme

in Section 6.2, except that here the instance-tree is hashed.

46

5. Output (v, π).

AggProve
(
crs, v(1), . . . , v(k), π(1), . . . , π(k)

)
→ (v, π). This poly-time algorithm does the following:

1. Parse crs = (crs1, . . . , crsλ, hk1, . . . , hkλ).

2. Check that d
(
v(i)
)
= d

(
v(j)
)
for every i, j ∈ [k] and that this depth, denoted by d, is

smaller than λ. If this is not the case then abort.

3. Compute v = SEH.Hash
(
hkd+1,

(
v(1), . . . , v(k)

))
. Note that

|v| ≤
∣∣∣v(i)∣∣∣+ poly(λ) = nd + poly(λ) ≤ n+ poly(λ).

4. For every i ∈ [k] compute ρi = SEH.Open
(
hkd+1,

(
v(1), . . . , v(k)

)
, Ii
)
, where (as above) Ii

corresponds to the coordinates of v(i); i.e.,

Ii ≜ {nd · (i− 1) + 1, . . . , nd · i}

and |ρi|≤ poly(λ).

5. Compute

π = seBARG.P

(
crsd+1,

instances =
(
(crsj)j∈[d], (hkj)j∈[d+1], v, i

)
i∈[k]

witnesses =
(
v(i), ρi, π

(i)
)
i∈[k]

)
,

where instances of L′ have length

n′
d+1 =

∣∣(crsj)j∈[d], (hkj)j∈[d+1], v, i
∣∣ ≤ n+ poly(λ)

and a valid witness
(
v(i), ρi, π

(i)
)
satisfies the following conditions:

(a) ρi is a valid opening of v(i) w.r.t. (hkd+1, v). Namely,

SEH.Verify(hkd+1, v, Ii, v
(i), ρi) = 1

(b) π(i) is a valid proof w.r.t. v(i). Namely,

seBARG.V
(
crsd,

(
(crsj)j∈[d−1], (hkj)j∈[d], v

(i), j
)
j∈[k]

, π(i)

)
= 1.

Inductively we have that
∣∣π(i)

∣∣ ≤ n · d · poly(λ) +m. The fact that seBARG and SEH
both have rate 1 implies that π is of size

|π| =
∣∣∣(v(i), ρi, π(i)

)∣∣∣+ poly(λ) ≤ nd + poly(λ) + (n · d · poly(λ) +m)

≤ n · (d+ 1) · poly(λ) +m
(16)

as desired.

6. Output (v, π).

V(crs, v, π)→ 0/1. This polynomial time algorithm does the following:

47

1. Parse crs = (crs1, . . . , crsλ, hk1, . . . , hkλ).

2. Let d ∈ [λ] be the depth of v. If d ≥ λ then output 0.

3. Output seBARG.V
(
crsd+1,

(
Z(1), . . . , Z(k)

)
, π
)
, where Z(i) =

(
(crsj)j∈[d], (hkj)j∈[d+1], v, i

)
.

Extract(td, v, I)→ x. This polynomial time algorithm does the following:

1. Parse td = (td1, . . . , tdλ,SEH.td1, . . . ,SEH.tdλ) and I = (i1, . . . , iλ).

2. Let d ∈ [λ] be the depth of v. If d ≥ λ then output 0.

3. Let xid = SEH.Extract(SEH.tdd, v).

4. For j ∈ [d− 1] : Compute x(id,...,id−j) = SEH.Extract(SEH.tdd−j , x(id,...,id−j+1)).

5. Output x(id,...,i1).

Theorem 6.6. The above construction is a hashed multi-BARG scheme (according to Definition 6.5).

Proof. In what follows we prove that our hashed multi-BARG satisfies all the desired properties:

Efficiency. Follows from the construction, together with the fact that the underlying seBARG
scheme and SEH family are both rate-1.

Completeness. Follows directly from the completeness of the underlying seBARG scheme and
the opening completeness of the underlying SEH family, and from the fact that the underlying
single-seBARG scheme is rate-1.

Index-hiding. Follows immediately from the index-hiding property of the underlying single-seBARG
scheme and the SEH family (via a standard hybrid argument).

Extraction correctness. Follows immediately from extraction correctness of the underlying SEH
family.

Somewhere argument of knowledge. Let seBARG.E denote the PPT extractor corresponding
to the underlying seBARG scheme. We define an extractor E that takes as input (td, v, π) and does
the following:

1. Parse td = (td1, . . . , tdλ,SEH.td1, . . . ,SEH.tdλ).

2. Let d ∈ [λ] be the depth of v, and denote by v(d) = v and π(d) = π.

3. For every i ∈ [d− 1] compute by backward induction the triplet(
v(i), ρi, π

(i)
)
= seBARG.E

(
tdi+1,

(
Z(j)

)
j∈[k]

, π(i+1)

)
where

Z(j) =
(
(crsℓ)ℓ∈[d], (hkℓ)ℓ∈[d+1], v

(i+1), j
)

and let (x, ρ, w) = seBARG.E
(
td1, (hk1, v1, j)j∈[k] , π

(i)
)
.

48

4. Output (x,w).

We need to argue that for any poly-size adversary A there exists a negligible function negl such that
for every λ ∈ N,

Pr

 V(crs, hk, v, π) = 1
∧ x = SEH.Extract(SEH.td, v, i)
∧ w is not a valid witness for x ∈ L

:

(crs, hk, td)← Gen(1λ, n, k, (i1, . . . , iλ))
(v, π) = A(crs, hk)
(x,w)← E (td, v, π)
parse td = (seBARG.td, SEH.td)

 ≤ negl(λ).

(17)
We prove this by induction on the depth d of v output by A.

Induction base: Fix any poly-size adversary that always outputs (v, π) such that d(v) = 1. In
this case, the equation above follows immediately from the somewhere argument of knowledge
property of the underlying seBARG scheme together with the somewhere statistically binding w.r.t.
opening property of the underlying SEH family.

Induction step: Suppose that Equation (17) holds for every poly-size A that outputs (v, π) such
that d(v) < d, and we prove that it holds for any poly-size A that outputs (v, π) such that d(v) ≤ d.
Recall that E(td, v, π) first computes(

v(d−1), ρd−1, π
(d−1)

)
= seBARG.E

(
tdd,

(
Z(j)

)
j∈[k]

, π

)
where

Z(j) =
(
(crsℓ)ℓ∈[d], (hkℓ)ℓ∈[d+1], v, j

)
By the somewhere argument of knowledge property of the underlying seBARG scheme there exists a
negligible function µ such that for every λ ∈ N,

Pr

 V(crs, hk, v, π) = 1

∧
(
v(d−1), ρd−1, π

(d−1)
)
is not

a valid witness for Z(id) ∈ L′
:

(crs, hk, td)← Gen(1λ, n, k, (i1, . . . , iλ))
parse td = (seBARG.td,SEH.td)

 ≤ µ(λ)

By the definition of L′ this implies that for every λ ∈ N,

Pr

V(crs, hk, v, π) = 1

∧
(
SEH.Verify

(
hk, v, Iid , v

(d−1), ρd−1

)
= 0

∨ seBARG.V
(
crsd, Y, π

(d−1)
)
= 0
) :

(crs, hk, td)← Gen(1λ, n, k, (i1, . . . , iλ))
parse td = (seBARG.td,SEH.td)

 ≤ µ(λ)

where Y =
(
Y (1), . . . , Y (k)

)
and for j ∈ [k],

Y (j) =
(
(crsℓ)ℓ∈[d−1], (hkℓ)ℓ∈[d], v

(d−1), j
)
.

This together with our induction hypothesis implies Equation (17), as desired.

49

7 Applications

7.1 Aggregate Signatures

Our first application is to show how multi-hop seBARGs can be used to build an unbounded
(multi-hop, multi-signer) aggregate signature scheme.

7.1.1 Definition

The notion of (multi-signer) aggregate signatures as introduced by Boneh, Gentry, Lynn, and
Shacham [BGLS03] is a digital signature scheme that comes with two poly-time algorithms, Aggregate
and AggVerify, where Aggregate is used to aggregate an arbitrary polynomial number of signatures
{σi} corresponding to messages {mi} generated using verification keys {vki}, into a shorter aggregate
signature σ̂, and AggVerify can be used to verify such aggregate signatures with respect to the
sequence of messages and verification keys.

We want aggregated signatures which can be further aggregated; i.e., that aggregation can be
performed in multiple hops or sequentially, and all the key-message-signature tuples need not be
available at once. Indeed, many existing schemes in the literature give multi-hop aggregation by
default, yet this notion was not formalized. In this work, we give a formal definition of a multi-hop
aggregate signature scheme.

Syntax. A signature scheme S for message space {{0, 1}λ}λ∈N consists of the following polynomial
time algorithms:

Setup(1λ)→ (vk, sk). The setup algorithm, on input the security parameter 1λ, outputs a pair of
signing and verification keys (vk, sk).

Sign(sk,m)→ σ. The signing algorithm takes as input a signing key sk and a message m ∈ {0, 1}λ,
and computes a signature σ.

Verify(vk,m, σ)→ 0/1. The verification algorithm takes as input a verification key vk, a message
m ∈ {0, 1}λ, and a signature σ. It outputs a bit to signal whether the signature is valid or not.

Definition 7.1. A signature scheme S = (Setup,Sign,Verify) for message space {{0, 1}λ}λ∈N is
required to satisfy the following properties:

Correctness. For any λ ∈ N, any (vk, sk)← Setup(1λ), and any m ∈ {0, 1}λ,

Pr
[
Verify(vk,m, σ) = 1 : σ ← Sign(sk,m)

]
= 1.

Unforgeability. For every admissible poly-size attacker A, there exists a negligible function
negl(·) such that for all λ ∈ N,

Pr

[
Verify(vk,m∗, σ∗) = 1 :

(vk, sk)← Setup(1λ),

(m∗, σ∗)← ASign(sk,·)(1λ, vk)

]
≤ negl(λ),

and A is admissible if it did not query m∗ to the Sign(sk, ·) oracle.

50

Syntax. A (multi-hop, multi-signer) aggregate signature scheme S for message space {{0, 1}λ}λ∈N
consists of a signature scheme (Setup,Sign,Verify) and the following polynomial time algorithms:

CRS(1λ)→ crs. The CRS generation algorithm samples global parameters crs.

Aggregate (crs, {(Ti, σi)}i)→ σ̂/⊥. The signature aggregation algorithm takes as input a crs, a
sequence of (verification-)key-message trees along with a (possibly aggregated) signature σi.
It outputs either an aggregated signature σ̂ or a special abort symbol ⊥.

Remark 7.1. Similar to the case of multi-hop BARGs, we define a (verification-)key-message
tree T of key-message pairs as a tree of varying arity each of whose leaf nodes is associated with
a single key-message pair, and each intermediate node corresponds to an aggregated signature
that certifies the validity for all key-message pairs associated with its children. As before, the
signatures at the intermediate nodes are not stored in the tree. (See definition 6.1.)

AggVerify (crs, T, σ̂)→ 0/1. The aggregated verification algorithm takes as input a crs, a key-message
tree T , and an aggregate signature σ̂. It outputs a bit to signal whether the aggregated
signature σ̂ is valid or not.

Definition 7.2. A multi-hop, multi-signer aggregate signature scheme S = (CRS,Setup,Sign,Verify,
Aggregate,AggVerify) for message space {{0, 1}λ}λ∈N is required to satisfy the following properties,
in addition to (Setup,Sign,Verify) being a signature scheme for message space {{0, 1}λ}λ∈N:

Compactness of aggregation. The size of an aggregated signature σ̂ corresponding to a key-
message-tree T of depth d is |σ̂|= maxi|σi|+d ·poly(λ, log|T |), where |σi|= poly(λ) is the length
of a valid signature corresponding to leaf (vki,mi) in T .

Aggregated correctness. For any λ ∈ N and ℓ,N ≤ 2λ, any crs← CRS(1λ), any (vkj , skj)←
Setup(1λ) for j ∈ [N], any key mapping function π : [ℓ]→ [N]17, any messages m1, . . . ,mℓ ∈
{0, 1}λ, and any key-message tree T with ℓ leaves corresponding to key-message pairs

(
vkπ(i),mi

)
i∈[ℓ],

Pr
[
AggVerify (crs, T, σ̂) = 1 : σ̂ ← Agg

(
crs, (vkj , skj)j∈[N] , T

)]
= 1

where Agg
(
crs, (vkj , skj)j∈[N] , T

)
is defined by induction on d = depth(T) as follows:

If d = 1 then parse T = (T1 = (vkπ(1),m1), . . . , Tℓ = (vkπ(ℓ),mℓ)) and output

σ̂ = Aggregate(crs, {(Ti, σi ← Sign(skπ(i),mi))}i∈[ℓ]).

If d > 1 then parse T = (T1, . . . , Tk) and output

σ̂ = Aggregate(crs, {(Ti, σi ← Agg((vkj , skj)j∈[N] , Ti)}i∈[k]).
17The goal behind the key mapping function is to allow aggregation of multiple signatures that come from a

single-signer. That is, an aggregator might want to aggregate signatures from multiple signers, where each signer
might be contributing more than one signature potentially.

51

Aggregated unforgeability. For every admissible poly-size attacker A, there exists a negligible
function negl(·) such that for every λ ∈ N and any poly-size tree T ,

Pr

[
AggVerify(crs, T ∗, σ̂∗) = 1 :

crs← CRS(1λ), (vk, sk)← Setup(1λ),
(T ∗, σ̂∗) = A(crs, vk)

]
≤ negl(λ).

and A is admissible if T ∗ is consistent with T (i.e., they have the same structure, see Nota-
tion 6.2 for a formal definition) and contains a leaf (vki,mi) such that vki = vk and mi was
not queried by A to the Sign(sk, ·) oracle.

7.1.2 Construction and Analysis

In this section we upgrade any signature scheme S = (Setup,Sign,Verify) to a multi-hop, multi-signer
aggregate signature scheme, using any multi-hop seBARG scheme

multi-BARG = (multi-BARG.Gen,multi-BARG.P,multi-BARG.AggProve,multi-BARG.V)

for the NP language

LS = {x = (vk,m) : ∃ σ s.t. Verify(vk,m, σ) = 1} .

We define the CRS, Aggregate, and AggVerify algorithms below.

CRS(1λ)→ crs. This algorithm simply runs the multi-BARG.Gen. It sets the maximum number of
hops to be λ (refer to Remark 7.2 below for details on why λ hops is sufficient for unbounded
signature aggregation), and chooses the extraction indices arbitrarily, e.g., as all ones. Namely,
it samples

(crs, td)← multi-BARG.Gen(1λ, d = λ, I = (1, . . . , 1)).

and outputs crs.

Aggregate
(
crs, {(Ti, σi)}i∈[ℓ]

)
→ σ̂/⊥. The signature aggregator first checks that for all i ∈ [ℓ], Ti is

a well-formed key-message tree and σi is a well-formed (possibly aggregated) signature. If not,
it outputs ⊥, and if so, it simply runs the multi-BARG proof combiner. Namely, it outputs the
aggregated signature

σ̂ ← multi-BARG.AggProve(crs, T1, . . . , Tℓ, σ1, . . . , σℓ).

AggVerify (crs, T, σ̂)→ 0/1. The aggregated verifier simply runs the multi-BARG verifier. Namely, it
outputs the bit

b = multi-BARG.V(crs, T, σ̂).

Remark 7.2 (Unbounded Aggregation using Tree-Based Aggregation). Note that in the above
description we set the number of hops supported by the multi-BARG scheme to be λ. This allows to
aggregate 2λ signatures by aggregating via a binary tree T . Namely, when aggregating signatures
we will ensure that the key-message tree T has the property that if the depth of T is d then the
number of leaves in T (i.e., the number of signatures that are aggregated) is at least 2d−1. This is
done by ensuring (inductively) that any node at any level i ∈ [d] of the tree, satisfies that its left
sub-tree is a complete binary tree (with 2i−1 leaves).

52

Theorem 7.3. Assuming hardness of the LWE problem, if S = (Setup, Sign,Verify) is a signature
scheme, then (CRS,Setup,Sign,Verify,Aggregate,AggVerify) is a multi-hop, multi-signer aggregate
signature scheme as in Definition 7.2.

Proof. In what follows we show our construction satisfies all the desired properties.

Compactness of aggregation. Follows from the efficiency of the underlying multi-hop seBARG
scheme multi-BARG.

Correctness. Follows from the correctness of the underlying signature scheme S.

Unforgeability. Follows from the unforgeability of the underlying signature scheme S.

Aggregated correctness. Follows from the correctness of the underlying signature scheme S
and the completeness of the underlying multi-hop seBARG scheme multi-BARG.

Aggregated unforgeability. Suppose there exists an admissible poly-size attacker A, a poly-size
tree T , and a non-negligible function ϵ such that for every λ ∈ N,

Pr

 AggVerify(crs, T ∗, σ̂∗) = 1 :
crs← CRS(1λ),
(vk, sk)← Setup(1λ),
(T ∗, σ̂∗) = A(crs, vk)

 ≥ ϵ(λ). (18)

Recall that an attacker is admissible if T ∗ is consistent with T and contains a leaf (vki∗ ,mi∗) such
that vki∗ = vk and mi∗ was not queried by A to the Sign(sk, ·) oracle. Let ℓ = poly(λ) be the
number of leaves in the tree T (and thus also in the tree T ∗). For any i ∈ [ℓ], let CRSi be identical
to CRS except that it sets i1, . . . , iλ so that the signature σi corresponding to leaf (vki,mi) is
extractable. In addition, CRSi outputs the multi-BARG trapdoor td. By the index hiding property
of the multi-BARG scheme, Equation (18) implies that there exists a negligible function µ such that
for every λ ∈ N,

Pr

 AggVerify(crs, T ∗, σ̂∗) = 1
∧ i∗ = i

:
i

$← [ℓ], (crs, td)← CRSi(1
λ),

(vk, sk)← Setup(1λ),
(T ∗, σ̂∗) = A(crs, vk)

 ≥ 1

ℓ
· ϵ(λ)− µ(λ). (19)

Let E be the multi-BARG extractor. The somewhere argument of knowledge property of multi-BARG
implies that there exists a negligible function ν such that for every λ ∈ N,

Pr

 AggVerify(crs, T ∗, σ̂∗) = 1
∧ Verify(vki,mi, σ) ̸= 1

:

i
$← [ℓ], (crs, td)← CRSi(1

λ),
(vk, sk)← Setup(1λ),
(T ∗, σ̂∗) = A(crs, vk),
σ = E(td, T ∗, σ̂∗)

 ≤ ν(λ). (20)

Equations (19) and (20) together imply that there exists a non-negligible function ϵ′ such that for
every λ ∈ N,

Pr

AggVerify(crs, T ∗, σ̂∗) = 1
∧ i∗ = i
∧ Verify(vk,mi∗ , σ) = 1

:

i
$← [ℓ], (crs, td)← CRSi(1

λ),
(vk, sk)← Setup(1λ),
(T ∗, σ̂∗) = A(crs, vk),
σ = E(td, T ∗, σ̂∗)

 ≥ ϵ′(λ),

53

but this contradicts the unforgeability of the underlying signature scheme S, since mi∗ was never
queried to the Sign(sk, ·) oracle.

7.2 Incrementally Verifiable Computation

In this section, we construct an incrementally verifiable computation (IVC) scheme for deterministic
computations with proof size poly(λ, log T) using our rate-1 hashed multi-hop BARG scheme (see
Section 6) associated with a rate-1 fully-local somewhere extractable hash function. Intuitively, an
(IVC) scheme is simply an updatable SNARG. Below we recall the formal definition of IVC.

7.2.1 Definition

Language LM. For any deterministic Turing machineM with run-time T = T (n) and configura-
tion size S = S(n), any input z ∈ {0, 1}n, and any t ∈ [T (n)], we denote byM(z; 1t) ∈ {0, 1}S(n)
the configuration ofM when executed on input z after t steps. We consider the following language:

LM =
{
(z, t, c) : t ∈ [T (|z|)] ∧ M(z; 1t) = c ∈ {0, 1}S(|z|)

}
(21)

Notation 7.4. We use nxt-cnfgM(·) as the shorthand denoting the computation of the next configu-
ration from any given valid intermediate configuration of the Turing machineM and an input z.
That is, c0 = nxt-cnfgM(∅, z) is the starting configuration, and ci = nxt-cnfgM(ci−1, z) for i ≥ 1. It
follows by induction that ci =M(z; 1i) for i ≥ 1. We refer to c0 as the initial configuration of the
machine, and z represents the fixed input tape of the Turing machine.

Syntax. An incrementally verifiable computation (IVC) scheme for a Turing machineM consists
of the following polynomial time algorithms:

Gen(1λ, n, 1S)→ crs. The probabilistic setup algorithm takes as input a security parameter 1λ, the
input length n, the maximum configuration size S = S(n) in unary, and outputs a common
reference string crs.

Update(crs, z, ct−1, πt−1)→ (ct, πt). The update algorithm takes as input a CRS crs, an input
z ∈ {0, 1}n, an intermediate configuration ct−1, and a proof πt−1. It outputs the next
configuration ct and an updated proof πt.

V(crs, x = (z, t, ct), π)→ 0/1. The verifier algorithm takes as input a CRS crs, an instance x =
(z, t, ct), and a proof π. It outputs a bit to signal whether the proof is valid or not.

Definition 7.5. An incremental verifiable computation scheme (Gen,P,Update,V) forM is required
to satisfy the following properties:

Efficiency. The running time of the setup algorithm is at most poly(λ, S, log n, log T (n)), the
run-time of verifier and update algorithm is at most poly(λ, S, n, log T (n)), and the prover
runs in time at most t · poly(λ, S, n, log T (n)).

Completeness. For every λ, n ∈ N any z ∈ {0, 1}n, and any time step t ∈ [T (n)],

Pr

[
V(crs, (z, t, c), π) = 1 :

crs← Gen(1λ, n, 1S(n))
(c, π)← P(crs, z, 1t)

]
= 1.

54

where P(crs, z, 1t) is defined by induction on t as follows:

If t = 1 then let c0 = nxt-cnfgM(∅, z) and π0 = ∅ and output

(c, π) = Update(crs, z, c0, π0).

If t > 1 then inductively compute (ct−1, πt−1) = P(crs, z, 1t−1) and output

(c, π) = Update(crs, z, ct−1, πt−1).

Soundness. For any poly-size adversary A = (A1,A2) there exists a negligible function negl(·)
such that for every λ ∈ N,

Pr

 z ∈ {0, 1}n ∧ x /∈ LM
∧ V(crs, x, π) = 1

:

1n ← A1(1
λ),

crs← Gen(1λ, n, 1S(n)),
(x = (z, 1t, ct), π)← A2(crs)

 ≤ negl(λ).

7.2.2 Construction and Analysis

In this section, we construct an IVC scheme from a specific instantiation of our hashed multi-BARG
construction. Let

(multi-BARG.Gen,multi-BARG.P,multi-BARG.AggProve,multi-BARG.V)

be our hashed multi-BARG construction as in Section 6.2 corresponding to the NP language

Lnxt-cnfg,M =
{(

z, c, c′
)
| c′ = nxt-cnfgM(c, z)

}
,

associated with a “segmented” rate-1 fully-local somewhere extractable hash family

(SEH.Gen,SEH.Hash,SEH.Open,SEH.Verify,SEH.Extract),

defined below, which can be trivially instantiated from any rate-1 flSEH family.

Segmented hashes. Given hash key hk1 and instances xi = (z, ci−1, ci) for i ∈ [2k], SEH.Hash
outputs a segmented hash value (v, v′) of depth 1 where v = SEH.Hash(hk1, z, c0, c1, . . . , ck) and
v′ = SEH.Hash(hk1, z, ck, ck+1, . . . , c2k). That is, although each configuration ci is included in two
instances, it is only included once in the string being hashed (except ck). An opening of ci w.r.t.
(v, v′) consists of an opening w.r.t. v if 0 ≤ i < k, an opening w.r.t. v′ if k < i ≤ 2k, and openings
w.r.t. both v and v′ if i = k. We set the hash parameters so v and v′ are each statistically binding
on the input z and two configurations.

Similarly, given hash key hkd+1 and hash values (vi−1, vi) of depth d for i ∈ [2k] , SEH.Hash
outputs a segmented hash value (v, v′) of depth d+ 1 where v = SEH.Hash(hkd+1, v0, v1, . . . , vk) and
v′ = SEH.Hash(hkd+1, vk, vk+1, . . . , v2k). We set the hash parameters so v and v′ are each statistically
binding on one hash value of depth d.

55

Overview. We aggregate in a tree-like structure, and only aggregate configurations (leaves of the
tree) or hash values (non-leaf nodes of the tree) in batches of 2k. We store all the unaggregated
configurations/hash values at each level of the tree while waiting to accumulate enough configura-
tions/hash values to aggregate. In our construction, a proof π =

(
ρ,Π(0),Π(1), . . . ,Π(λ)

)
contains

an opening ρ, a list Π(0) of configurations, and, for every d ∈ λ, a list Π(d) of segmented hash values
of depth d (and corresponding proofs). Each proof certifies that one segmented hash value hashes a
sequence of 2kd consecutive configurations.

Since we need to ensure that the last configuration in one batch and the first configuration in
the next batch are consecutive, we need to overlap our batches. The list Π(d) has the property
that every segmented hash value has its first component in common with the immediately previous
segmented hash value in Π(d) and its second component in common with the immediately subsequent
segmented hash value in Π(d). In our construction, we only need to store one copy of each of these
components.

Initially, ρ and the lists are empty. As we keep updating π for more timesteps, whenever a list
reaches length 2k, we aggregate, add the aggregated hash value/proof to the list one level higher,
and then erase the first half of the list. The second half of the list will be aggregated again once the
list grows (so we can ensure that we’re always aggregating consecutive batches of configurations).
We also maintain ρ so that it always opens the “leftmost” hash value, i.e., the first hash value stored
in the highest nonempty level, to the initial configuration c0.

For example, after updating the proof π for timestep 2k2 + k − 1, the hash tree looks like this
(only the blue boxes are stored in π):

Π(1)

Π(0)

=

=c2k2+k−1· · ·c2k2

v2k−1

· · ·c2k2−k

· · ·

· · ·

vk

ck2+k· · ·ck2

· · ·

· · ·

v1

c2k· · ·

v0

ck· · ·c0

ρ

Note that Π(1) also contains proofs {πi}2k−1
i=1 for instances {(vi−1, vi)}2k−1

i=1 , which are omitted
from the above figure for simplicity. After updating the proof π for the next timestep 2k2 + k, the
hash tree looks like this (again, only the blue boxes are stored in π):

Π(2)

Π(1)

Π(0)

=

=

=

v′1

v2k

c2k2+k· · ·c2k2

v2k−1

· · ·c2k2−k

· · ·

· · ·

v′0

vk

ck2+k· · ·ck2

· · ·

· · ·

v1

c2k· · ·

v0

ck· · ·c0

ρ(1)

ρ(2)

Note that Π(1) also contains proofs {πi}2ki=k+1 for instances {(vi−1, vi)}2ki=k+1, and Π(2) also
contains a proof π′ for instance (v′0, v

′
1), which are omitted from the above figure for simplicity. The

opening ρ, which must open the “leftmost” hash value v′0 to the initial configuration c0, now consists
of
(
ρ(1), v0, ρ

(2)
)
.

We are now ready to define our IVC scheme.

56

Gen(1λ, n, 1S)→ crs. This poly-time algorithm does the following:

1. Set i1, . . . , iλ ∈ [2k] arbitrarily. For example, set i1 = · · · = iλ = 1.

2. Sample (multi-BARG.crs, hk, td)← multi-BARG.Gen(1λ, n+ 2S, 2k, (i1, . . . , iλ)).

3. Output crs = (multi-BARG.crs, hk).

Update(crs, z, ct−1, πt−1)→ (ct, πt). This poly-time algorithm does the following:

1. Parse crs = (multi-BARG.crs, hk = (hk1, . . . , hkλ)).

2. Compute the next configuration ct = nxt-cnfgM(ct−1, z).

3. Parse πt−1 =
(
ρ,Π(0), . . . ,Π(λ)

)
.

4. Append ct to Π(0).

5. If Π(0) is not full, i.e., contains < 2k + 1 configurations, go to Item 11.

6. Parse the list Π(0) = (ct−2k, . . . , ct−1, ct).

7. Compute (v∗, v
′
∗, π∗) = multi-BARG.P(crs, (z, ct−2k+i−1, ct−2k+i)i∈[2k]).

8. Compute ρ(1) = SEH.Open(hk1, (z, ct−2k, . . . , ct−k) , [n + S]). Note that the set [n + S]
corresponds to the coordinates of (z, ct−2k).

9. Erase the first half of Π(0), i.e., let Π(0) = (ct−k, . . . , ct−1, ct).

10. For d = 1, . . . , λ:

• If Π(d) is empty, i.e., v∗ is now the leftmost hash value, then let Π(d) = (v∗) and
append (ρ(d), v∗) to ρ.

• Append v′∗ and π∗ to Π(d).

• If Π(d) is not full, i.e., contains < 2k + 1 hash values of depth d, go to Item 11.

• Parse the list Π(d) = (v0, v1, . . . , v2k, π1, . . . , π2k). Recall that for i ∈ [2k], πi is a
proof for instance (vi−1, vi).

• Compute ((v∗, v
′
∗, π∗)) = multi-BARG.AggProve(crs, (vi−1, vi)i∈[2k] , (πi)i∈[2k]).

• Compute ρ(d+1) = SEH.Open(hkd+1, (v0, . . . , vk) , [|v0|]).
• Erase the first half of Π(d), i.e., let Π(d) = (vk, vk+1, . . . , v2k, πk+1, . . . , π2k)

11. Output
(
ct, πt =

(
ρ,Π(0),Π(1), . . . ,Π(λ)

))
.

V(crs, x = (z, t, c), π)→ 0/1. This poly-time algorithm does the following:

1. Parse crs = (multi-BARG.crs, hk).

2. Parse π =
(
ρ,Π(0), . . . ,Π(λ)

)
.

3. Parse Π(0) = (ct−ℓ, . . . , ct−1, ct) for some ℓ ≥ 1.

4. If ct ̸= c, output 0.

5. For i ∈ [ℓ], if ct−i+1 ̸= nxt-cnfgM(ct−i, z), output 0.

6. Let c0 = nxt-cnfgM(∅, z).
7. For d = 1, . . . , λ:

• Parse Π(d) = (v0, v1, . . . , vℓ, π1, . . . , πℓ) for some ℓ ≥ 1.

57

• For i ∈ [ℓ], if multi-BARG.V(crs, (vi−1, vi), πi) ̸= 1, output 0.

• If Π(d+1) = ∅, i.e., v0 is the leftmost hash value, go to Item 8.

8. If SEH.Verify(hk, v0, [n+ S], ρ, (z, c0)) = 018, output 0.

9. Output 1.

Theorem 7.6. Assuming hardness of the LWE problem, (Gen,P,Update,V) is an IVC scheme as in
Definition 7.5.

Proof. In what follows we show our construction satisfies all the desired properties.

Efficiency. Follows from efficiency of the underlying SEH and multi-BARG schemes.

Completeness. Follows from the completeness of the underlying multi-BARG scheme.

Soundness. Suppose towards contradiction that there exists a poly-size adversary A = (A1,A2)
and a non-negligible function ϵ such that for every λ ∈ N,

Pr

 z ∈ {0, 1}n ∧ x /∈ LM
∧ V(crs, x, π) = 1

:

1n ← A1(1
λ),

crs← Gen(1λ, n, 1S(n)),
(x = (z, 1t, ct), π)← A2(crs)

 ≥ ϵ(λ). (22)

Let cz0 = nxt-cnfgM(∅, z) and czi = nxt-cnfgM(czi−1, z) for i ∈ [t] beM’s true configurations when
run for t timesteps on input z. For I = (i1, . . . , iλ ∈ [2k]), let GenI be identical to Gen except that
it sets i1, . . . , iλ as above, as opposed to setting i1 = · · · = iλ = 1. In addition, GenI outputs the
multi-BARG trapdoor td = (seBARG.td,SEH.td). By the index hiding property of the multi-BARG
scheme, Equation (22) implies that for any I,

Pr

 z ∈ {0, 1}n ∧ ct ̸= czt
∧ V(crs, x, π) = 1

:

1n ← A1(1
λ),

(crs, td)← GenI(1
λ, n, 1S(n)),

(x = (z, 1t, ct), π)← A2(crs)

 ≥ ϵ(λ). (23)

We define an extractor Extract which takes as input themulti-BARG trapdoor td = (seBARG.td,SEH.td),
an instance x = (z, t, ct), a proof π =

(
Π(0),Π(1), . . . ,Π(λ)

)
, and a timestep i ∈ [t]. If configurations

ci−1 and ci are stored in Π(0), Extract outputs (z, ci−1, ci). If not, Extract locates the hash value
vi which covers timestep i (i.e., vi is a depth d hash of configurations including ci−1 and ci), and
outputs SEH.Extract(SEH.td, vi).

To contradict Equation (23), it suffices to show by induction that for all i ∈ {0, . . . , t}, if we set
I = (i1, . . . , iλ ∈ [2k]) so that the hash value vi which covers timestep i is statistically binding on
configurations (ci−1, ci), then

Pr

 z ∈ {0, 1}n ∧ V(crs, x, π) = 1
∧ ci ̸= czi

:

1n ← A1(1
λ),

(crs, td)← GenI(1
λ, n, 1S(n)),

(x = (z, 1t, ct), π)← A2(crs),
(z′, ci−1, ci) = Extract(td, x, π, i)

 ≤ negl(λ).

18We are abusing notation here – ρ is actually a sequence of openings and hash values which can be verified
inductively using the sequence of hash keys.

58

Induction base. Since V verifies that ρ opens the leftmost hash value to the true initial configu-
ration, the somewhere statistically binding property of SEH implies that

Pr

 z ∈ {0, 1}n ∧ V(crs, x, π) = 1
∧ (z′ ̸= z ∨ c0 ̸= cz0)

:

1n ← A1(1
λ),

(crs, td)← GenI(1
λ, n, 1S(n)),

(x = (z, 1t, ct), π)← A2(crs),
(z′, c0, c1) = Extract(td, x, π, 1)

 ≤ negl(λ),

i.e., the probability that c0 is incorrect is negl(λ).

Induction step. Since the event that

z ∈ {0, 1}n ∧
(
z′ ̸= z ∨ ci−1 ̸= czi−1

)
∧ V(crs, x, π) = 1

is detectable by an efficient distinguisher, the inductive hypothesis and the index hiding property of
multi-BARG imply that

Pr

 z ∈ {0, 1}n ∧ V(crs, x, π) = 1
∧
(
z′ ̸= z ∨ ci−1 ̸= czi−1

) :

1n ← A1(1
λ),

(crs, td)← GenI(1
λ, n, 1S(n)),

(x = (z, 1t, ct), π)← A2(crs),
(z′, ci−1, ci) = Extract(td, x, π, i)

 ≤ negl(λ).

Let multi-BARG.E be the hashed multi-hop BARG extractor given by the somewhere argument of
knowledge property. We define an extractor Extract′ which behaves identically to Extract, except that
if configurations ci−1 and ci are not stored in Π(0), Extract′ locates the hash value vi which covers
timestep i (i.e., vi is a depth d hash of configurations including ci−1 and ci), immediately previous
hash value vi−1, and corresponding proof πi and outputs multi-BARG.E(seBARG.td, (vi−1, vi) , πi).
The somewhere argument of knowledge property of multi-BARG implies that

Pr

z ∈ {0, 1}n ∧ V(crs, x, π) = 1

∧
(
(z′, ci−1, ci) ̸= Extract(td, x, π, i)

∨ ci ̸= nxt-cnfgM(ci−1, z)
) :

1n ← A1(1
λ),

(crs, td)← GenI(1
λ, n, 1S(n)),

(x = (z, 1t, ct), π)← A2(crs),
(z′, ci−1, ci) = Extract′(td, x, π, i)

 ≤ negl(λ),

Note that ci is only incorrect if ci−1 is incorrect or ci is not the next configuration after ci−1. Thus
the probability that ci is incorrect is at most negl(λ) + negl(λ) = negl(λ).

References

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back
again. In Shafi Goldwasser, editor, Innovations in Theoretical Computer Science 2012,
Cambridge, MA, USA, January 8-10, 2012, pages 326–349. ACM, 2012. 1

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composi-
tion and bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 111–120. ACM,
2013. 1, 5, 8

59

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In Amit Sahai, editor,
Theory of Cryptography - 10th Theory of Cryptography Conference, TCC 2013, Tokyo,
Japan, March 3-6, 2013. Proceedings, volume 7785 of Lecture Notes in Computer
Science, pages 315–333. Springer, 2013. 1

[BCL+21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas
Spooner. Proof-carrying data without succinct arguments. In Advances in Cryptology
- CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16-20, 2021, Proceedings, Part I, pages 681–710, 2021. 5

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Recursive
proof composition from accumulation schemes. In Theory of Cryptography - 18th
International Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020,
Proceedings, Part II, pages 1–18, 2020. 5

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero
knowledge via cycles of elliptic curves. In CRYPTO 2014, pages 276–294, 2014. 5

[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear
decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles. In Dennis
Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages
407–437. Springer, Heidelberg, December 2019. 4, 11, 12, 18, 21, 64, 65, 66

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably
encrypted signatures. In Proceedings of Eurocrypt ’03, volume 2656 of LNCS, pages
416–432, 2003. 7, 8, 50

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012,
pages 309–325. ACM, January 2012. 11

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation
and batch NP verification from standard computational assumptions. In Hamed
Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 474–482. ACM, 2017. 1

[BKK+18] Saikrishna Badrinarayanan, Yael Tauman Kalai, Dakshita Khurana, Amit Sahai, and
Daniel Wichs. Succinct delegation for low-space non-deterministic computation. In
Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018, pages 709–721. ACM, 2018. 1

[BMRS20] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decen-
tralized cryptocurrency at scale. Cryptology ePrint Archive, Report 2020/352, 2020.
https://ia.cr/2020/352. 5

60

https://ia.cr/2020/352

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of
finding a nash equilibrium. In Venkatesan Guruswami, editor, IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pages 1480–1498. IEEE Computer Society, 2015. 5

[But21] Vitalik Buterin. An approximate introduction to how zk-snarks are possible, 2021. 1

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE
Computer Society Press, October 2011. 11

[CCDW20] Weikeng Chen, Alessandro Chiesa, Emma Dauterman, and Nicholas P. Ward. Reducing
participation costs via incremental verification for ledger systems. Cryptology ePrint
Archive, Report 2020/1522, 2020. https://ia.cr/2020/1522. 5

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, 51st ACM STOC, pages 1082–1090. ACM Press, June 2019.
1

[CJJ21a] Arka Rai Choudhuri, Abhihsek Jain, and Zhengzhong Jin. Snargs for P from LWE.
In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021,
Denver, CO, USA, February 7-10, 2022, pages 68–79. IEEE, 2021. 1, 2, 3, 5, 16, 17

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch
arguments for np from standard assumptions. Cryptology ePrint Archive, Paper
2021/807, 2021. https://eprint.iacr.org/2021/807. 1, 3, 5

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and
transparent recursive proofs from holography. In Advances in Cryptology - EURO-
CRYPT 2020 - 39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I,
pages 769–793, 2020. 5

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments
from signature cards. In Innovations in Computer Science - ICS 2010, Tsinghua
University, Beijing, China, January 5-7, 2010. Proceedings, pages 310–331, 2010. 5

[CTV13] Stephen Chong, Eran Tromer, and Jeffrey A. Vaughan. Enforcing language semantics
using proof-carrying data. IACR Cryptol. ePrint Arch., page 513, 2013. 5

[CTV15] Alessandro Chiesa, Eran Tromer, and Madars Virza. Cluster computing in zero
knowledge. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part II, pages 371–403, 2015. 5

[DGI+19a] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail
Ostrovsky. Trapdoor hash functions and their applications. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th

61

https://ia.cr/2020/1522
https://eprint.iacr.org/2021/807

Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2019, Proceedings, Part III, volume 11694 of Lecture Notes in Computer Science,
pages 3–32. Springer, 2019. 4

[DGI+19b] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail
Ostrovsky. Trapdoor hash functions and their applications. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 3–32. Springer, Heidelberg, August 2019. 11

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194. Springer, Heidelberg, August 1987. 1

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer,
Heidelberg, May 2013. 1

[GH19a] Craig Gentry and Shai Halevi. Compressible FHE with applications to PIR. In Dennis
Hofheinz and Alon Rosen, editors, Theory of Cryptography - 17th International
Conference, TCC 2019, Nuremberg, Germany, December 1-5, 2019, Proceedings, Part
II, volume 11892 of Lecture Notes in Computer Science, pages 438–464. Springer,
2019. 4

[GH19b] Craig Gentry and Shai Halevi. Compressible FHE with applications to PIR. In Dennis
Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages
438–464. Springer, Heidelberg, December 2019. 11

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340.
Springer, Heidelberg, December 2010. 1

[GV22] Rishab Goyal and Vinod Vaikuntanathan. Locally verifiable signature and key
aggregation, 2022. 8

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM
STOC, pages 99–108. ACM Press, June 2011. 1

[HKW15] Susan Hohenberger, Venkata Koppula, and Brent Waters. Universal signature ag-
gregators. In Annual international conference on the theory and applications of
cryptographic techniques, pages 3–34. Springer, 2015. 2, 7

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function
evaluation with long output. In Tim Roughgarden, editor, ITCS 2015, pages 163–172.
ACM, January 2015. 2, 3, 4, 11, 13

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang. Snargs
for bounded depth computations and PPAD hardness from sub-exponential LWE. In

62

Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual
ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,
2021, pages 708–721. ACM, 2021. 1

[KB20] Assimakis Kattis and Joseph Bonneau. Proof of necessary work: Succinct state
verification with fairness guarantees. Cryptology ePrint Archive, Report 2020/190,
2020. https://ia.cr/2020/190. 5

[KLVW22] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting
batch arguments and ram delegation. Unpublished manuscript, 2022. 1, 2, 9, 10, 12,
15, 17, 18

[KP16] Yael Tauman Kalai and Omer Paneth. Delegating RAM computations. In Theory of
Cryptography - 14th International Conference, TCC 2016-B, Beijing, China, October
31 - November 3, 2016, Proceedings, Part II, pages 91–118, 2016. 9, 10

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations
publicly. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages
1115–1124. ACM Press, June 2019. 1, 5, 9, 17

[KPY20] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. Delegation with updatable unam-
biguous proofs and PPAD-hardness. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 652–673. Springer,
Heidelberg, August 2020. 1, 5, 8

[KRR13] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded space.
In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 565–574, 2013. 1

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations:
the power of no-signaling proofs. In Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014, pages 485–494, 2014. 1

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere
statistical soundness, post-quantum security, and snargs. In Kobbi Nissim and Brent
Waters, editors, Theory of Cryptography - 19th International Conference, TCC 2021,
Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part I, volume 13042 of Lecture
Notes in Computer Science, pages 330–368. Springer, 2021. 1

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive
zero-knowledge arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of
LNCS, pages 169–189. Springer, Heidelberg, March 2012. 1

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption function. In
Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages 369–378. Springer,
Heidelberg, August 1988. 4

[Mic93] Silvio Micali. Fair public-key cryptosystems. In Ernest F. Brickell, editor, CRYPTO’92,
volume 740 of LNCS, pages 113–138. Springer, Heidelberg, August 1993. 5

63

https://ia.cr/2020/190

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th Annual Symposium on Foun-
dations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994,
pages 436–453. IEEE Computer Society, 1994. 1, 8

[NT16] Assa Naveh and Eran Tromer. Photoproof: Cryptographic image authentication for
any set of permissible transformations. In IEEE Symposium on Security and Privacy,
SP 2016, San Jose, CA, USA, May 22-26, 2016, pages 255–271, 2016. 5

[OPWW15a] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New
realizations of somewhere statistically binding hashing and positional accumulators.
In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, volume 9452 of
Lecture Notes in Computer Science, pages 121–145. Springer, 2015. 2, 4

[OPWW15b] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New
realizations of somewhere statistically binding hashing and positional accumulators.
In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452
of LNCS, pages 121–145. Springer, Heidelberg, November / December 2015. 13

[RR20] Guy N. Rothblum and Ron D. Rothblum. Batch verification and proofs of proximity
with polylog overhead. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of
Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, Novem-
ber 16-19, 2020, Proceedings, Part II, volume 12551 of Lecture Notes in Computer
Science, pages 108–138. Springer, 2020. 1

[RRR18] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Efficient batch verification
for UP. In Rocco A. Servedio, editor, 33rd Computational Complexity Conference,
CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume 102 of LIPIcs, pages
22:1–22:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. 1

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Theory of Cryptography, Fifth Theory of Cryptography
Conference, TCC 2008, New York, USA, March 19-21, 2008, pages 1–18, 2008. 5, 8

[WW22] Brent Waters and David J. Wu. Batch arguments for NP and more from standard
bilinear group assumptions. IACR Cryptol. ePrint Arch., page 336, 2022. 1, 3, 5

A Homomorphic Encryption with Local Compression Compiler

In this section, we build a homomorphic encryption scheme (Gen,Enc,Eval,Dec) along with com-
pression algorithms

(CompGen,Compress1, LinEval,Compress2,CompDec)

as defined in section 3.4. Our construction is based on the rate-1 homomorphic encryption by
Brakerski et al. [BDGM19].

64

Construction. Our encryption scheme has a linear decrypt-and-multiply property (see [BDGM19,
Definition 2.9]) for message space {0, 1} and circuit class C, and the linearly homomorphic packed
Regev encryption scheme as in [BDGM19, § 3.3]. Since our usage of the linearly homomorphic
packed Regev encryption scheme is more specific than in [BDGM19], thus we use it directly below
rather than abstracting out the required properties as in their rate-1 homomorphic encryption
construction. Below we describe our homomorphic encryption with the compression compiler.

Gen(1λ)→ (pk, sk). The setup algorithm runs the FHE setup algorithm to sample the key pair as
(pk, sk)← FHE.Setup(1λ, 1d).

Enc(pk, µ)→ ct. The encryption algorithm is the FHE encryption algorithm and computes the
ciphertext as ct← FHE.Enc(pk, µ).

Eval(pk, C, ct)→ ct′. The evaluation algorithm simply runs the FHE evaluation algorithm as ct′ ←
FHE.Eval(pk, C, ct).

Dec(sk, ct)→ µ. The decryption algorithm is also the FHE decryption algorithm and computes the
output as µ = FHE.Dec(sk, ct).

CompGen(pk, sk, 1ℓ)→ (pkc, skc). Let q be the LWE modulus chosen for the FHE scheme. Also, let
χ be a B-bounded error distribution defined on Z, and n,m be the LWE parameters. We
discuss later how the parameters are selected. And, let ℓsk = |sk| denote the length of FHE
secret key interpreted as a vector over Zq. That is, sk ∈ Zℓsk

q .

The compression parameter generator samples a random matrix A← Zn×m
q , a secret matrix

S ← Zℓ×n
q , and an error matrix E ← χℓ×m. It computes matrix B as B = SA + E, and

samples the following sequence of ℓ× ℓsk Regev ciphertexts:

∀ i ∈ [ℓ], j ∈ [ℓsk], cki,j = (ARi,j ,BRi,j + skj · g⊤ ⊗ ei)

where Ri,j ← {0, 1}m×⌈log q⌉, skj ∈ Zq is the j-th element of the secret key sk, g⊤ =
(1, 2, . . . , 2⌈log q⌉−1), and ei ∈ Zℓ

q is the i-th unit vector. It outputs compression key pair
(pkc, skc) as

pkc = (pk, {cki,j}i,j), skc = S.

Compress1(pkc, ct, ℓ, i ∈ [ℓ])→ ctc1 . It parses the compression public key pkc as above, and let
vectorize : [ℓ]× {0, 1} → {0, 1}ℓ denote the function that takes as input an index i ∈ [ℓ], and a
bit µ ∈ {0, 1}, and outputs a length-ℓ vector which contains µ in the i-th position and zeros
everywhere else. Thus, vectorize(i, µ) = µ · ei (i.e., the i-th unit vector mutliplied with bit µ).

The initial compression algorithm homomorphically evaluates vectorize(i, ·) on the ciphertext
ct to compute ctvec = FHE.Eval(pk, vectorize(i, ·), ct), a sequence of ℓ evaluated ciphertexts
ctvec = (ctvec,1, . . . , ctvec,ℓ). Next, let Dec&Mult be the linear function that takes as input an
FHE secret key sk ∈ Zℓsk

q , an FHE ciphertext ct encrypting a single bit µ, and a scaling factor
ω, and outputs a scaled approximation µω in the clear. We use the fact that Dec&Mult is a
linear function in sk over Zq. For more details, we refer the reader to [BDGM19, Definition
2.9]. The algorithm now defines ℓ linear function fi = (fi,1, . . . , fi,ℓsk) ∈ Zℓsk

q for i ∈ [ℓ] such
that ∑

j∈[ℓsk]

fi,j · skj = Dec&Mult(sk, ctvec,i, 2
⌈log q⌉−1).

65

It then homomorphically evaluates the linear functions on the Regev ciphertexts {cki,j}i,j as

c0 =
∑
i,j

cki,j,1 · g−1(fi,j), c1 =
∑
i,j

cki,j,2 · g−1(fi,j)

where cki,j = (cki,j,1, cki,j,2) ∈ Zn×⌈log q⌉
q × Zℓ×⌈log q⌉

q , and g−1(·) is the standard binary ex-
pansion function. Note that we get that c0 ∈ Zn

q , and c1 ∈ Zℓ
q. The algorithm outputs the

compressed ciphertext as ctc1 = (c0, c1). And, it is interpreted as the following sequence of
(ℓ+ 1) sub-ciphertexts

ctc1 = (sub-ct0, sub-ct1, . . . , sub-ctℓ), sub-ct0 = c0 ∈ Zn
q , sub-cti = c1,i ∈ Zq,

where c1,i is the i-th element of the second ciphertext vector.

LinEval(pkc, ct
(1)
c1 , . . . , ct

(ℓ)
c1)→ ct′c1 . It parses the compressed ciphertexts as (ℓ+ 1) sub-ciphertexts

each (as describe above). That is, ct
(i)
c1 = (sub-ct

(i)
0 , sub-ct

(i)
1 , . . . , sub-ct

(i)
ℓ) for i ∈ [ℓ], and

outputs the linearly evaluated ciphertext as

ct′c1 =

(∑
i

sub-ct
(i)
0 ,
∑
i

sub-ct
(i)
1 , . . . ,

∑
i

sub-ct
(i)
ℓ

)
.

That is, each resulting sub-ciphertext is computed by simply adding all the individual under-
lying sub-ciphertexts. Therefore, the linear evaluation algorithm for compressed ciphertexts
satisfies both the ‘locality’ and ‘low depth’ properties as defined in section 3.4. Basically, for
ensuring the low depth property, it is enough to perform the ℓ sub-ciphertext additions in a
tree-like manner.

Compress2(ctc1)→ ctc. The final compression algorithm parses the ciphertext into ℓ+1 components
as above. That is, ctc1 = (sub-ct0, sub-ct1, . . . , sub-ctℓ). And, it compresses each component
individually as follows:

sub-ctc,j = Compress2(sub-ctj) =

{
sub-ctj if j = 0

⌊sub-ctj⌉2 otherwise.

Here ⌊·⌉2 : Zq → {0, 1} outputs the most significant bit of the number. That is, ⌊x⌉2 = 1
for x ≥ 2⌈log q⌉−1 and 0 otherwise. It outputs the fully compressed ciphertext as ctc =
(sub-ctc,0, sub-ctc,1, . . . , sub-ctc,ℓ).

CompDec(skc, ctc)→ (µ1, . . . , µℓ). The decryption algorithm for fully compressed ciphertexts parses
the compressed secret key skc = S, and let s⊤i be the i-th row of the matrix S. It parses the
ciphertext as ctc = (sub-ctc,0, sub-ctc,1, . . . , sub-ctc,ℓ).

It outputs the message bits µi as µi = (sub-ctc,i − ⌊s⊤i · sub-ctc,0⌉2) mod 2 for i ∈ [ℓ].

Security and setting the LWE parameters. The LWE parameters are set exactly as in [BDGM19].
Also, the proof of correctness, compactness, and security are based on [BDGM19], except we do not
have the randomized shift before rounding, thus at the time of proving correctness this leaves a
negligible error over the choice of random coins of setup and encryption.

66

	Introduction
	Our Main Technical Result: Rate-1 seBARG for NP
	Our Main Tool: Fully-Local Somewhere Extractable Hash (SEH) Families
	Applications of seBARGs

	Technical Overview
	Main Ingredient: Flexible RAM SNARGs with Partial Input Soundness
	Our Rate-1 seBARG Scheme
	Our Fully-Local SEH Family

	Preliminaries
	Somewhere Extractable Hash (SEH) Families
	Somewhere Extractable Batch Arguments (seBARGs)
	Flexible RAMSNARGs with Partial Input Soundness
	Homomorphic Encryption with Ciphertext Compression

	Rate-1 Fully-Local SEH (flSEH) Families
	Definition
	Construction
	Analysis

	Rate-1 seBARGs
	Multi-Hop seBARGs
	Definition
	Construction and Analysis
	Hashed Multi-Hop seBARGs
	Definition
	Construction and Analysis

	Applications
	Aggregate Signatures
	Definition
	Construction and Analysis

	Incrementally Verifiable Computation
	Definition
	Construction and Analysis

	Homomorphic Encryption with Local Compression Compiler

