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Abstract. For several decades, constructing pseudorandom functions
from pseudorandom permutations, so-called Luby-Rackoff backward con-
struction, has been a popular cryptographic problem. Two methods are
well-known and comprehensively studied for this problem: summing two
random permutations and truncating partial bits of the output from
a random permutation. In this paper, by combining both summation
and truncation, we propose new Luby-Rackoff backward constructions,
dubbed SaT1 and SaT2, respectively.
SaT2 is obtained by partially truncating output bits from the sum of two
independent random permutations, and SaT1 is its single permutation-
based variant using domain separation. The distinguishing advantage
against SaT1 and SaT2 is upper bounded by O(

√
µqmax/2

n−0.5m) and
O(
√
µq1.5max/2

2n−0.5m), respectively, in the multi-user setting, where n
is the size of the underlying permutation, m is the output size of the
construction, µ is the number of users, and qmax is the maximum number
of queries per user. We also prove the distinguishing advantage against
a variant of XORP[3] (studied by Bhattacharya and Nandi at Asiacrypt
2021) using independent permutations, dubbed SoP3-2, is upper bounded
by O(

√
µq2max/2

2.5n).
In the multi-user setting with µ = O(2n−m), a truncated random permu-
tation provides only the birthday bound security, while SaT1 and SaT2
are fully secure, i.e., allowing O(2n) queries for each user. It is the same
security level as XORP[3] using three permutation calls, while SaT1 and
SaT2 need only two permutation calls.
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1 Introduction

Block ciphers are usually considered to be pseudorandom permutations (PRPs)
from a cryptographic perspective. That means someone cannot distinguish a
secure block cipher from a random permutation before performing a certain
number of encryption and decryption queries in a black-box manner. On the
other hand, various cryptographic constructions such as the Wegman-Carter
message authentication scheme use a pseudorandom function (PRF) as their
building primitives to achieve beyond-birthday-bound security. When the un-
derlying PRF is instantiated with a block cipher, the security of the resulting
construction (e.g., the Wegman-Carter-Shoup construction) might be degraded
down to the birthday bound [2,3,4].

In order to address the problem of security degradation, there has been a
significant amount of research on construction of beyond-birthday-bound secure
PRFs from (sufficiently secure) PRPs [1,3,5,9,14,16,19,20,23,30,31]. Among such
Luby-Rackoff backward constructions, two constructions are well-known and have
been comprehensively studied: summing two random permutations and truncat-
ing partial bits of the output from a random permutation.

Sum of Random Permutations. Given two n-bit (keyed) PRPs P1 and P2,
their sum, denoted SoP, maps x ∈ {0, 1}n to

SoP[P1,P2](x)
def
= P1(x)⊕P2(x).

This construction was first introduced by Bellare et al. [3], and its security has
been proved up to 22n/3 queries by Lucks [24]. A series of works followed [11,27,30],
culminating with the proof by Dai et al. [14] that the sum of two n-bit random
permutations is (fully) secure up to O(2n) queries.

Sum of Three or More Random Permutations. SoP[k] is a generalization
of SoP. With k random permutations, SoP[k] returns its output by summing
outputs of k random permutations. Lucks [24] showed that SoP[k] is secure up
to O(2kn/(k+1)) queries, and Mennink and Preneel [27] showed that SoP[k] is
not weaker than SoP. Since SoP is fully secure in terms of indistinguishability,
this problem seemed to be settled. However, a single permutation variant of
SoP[3] with domain separation, originally dubbed XORP[3], but denoted SoP3-1
throughout this paper, was revisited by Bhattacharya and Nandi [6], where they
proved its n-bit security in the multi-user setting with O(2n) users.

Truncated Random Permutations. Let n and m be positive integers such
that m < n. The TRP construction is defined as

TRP[P]
def
= Trm(P(·)),

where P is an n-bit permutation (modeled as a random secret permutation) and

Trm : {0, 1}n −→ {0, 1}m

x 7−→ xL,
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when x ∈ {0, 1}n is written as xL ∥ xR for xL ∈ {0, 1}m and xR ∈ {0, 1}n−m.
Truncating a random permutation was first considered by Hall et al. [20] and
proved secure up to O(2(n+m)/2) adversarial queries [16]. Besides, the authors
realized that their security bound follows from the result of Stam [32] which was
already published in 1978. This bound turns out to be tight as they also present
matching attacks. Mennink [25] generalized truncation functions used in TRP
and showed that the security of such constructions could not exceed that of the
original TRP.

Multi-User Security. In the real world, multiple users use the same crypto-
graphic scheme with independent keys. Even if a cryptographic scheme is proved
to be secure in the single-user setting, it does not generally guarantee its multi-
user security, where an adversary access multiple instances, each of which uses
a distinct key. Multi-user security of symmetric-key constructions was firstly
considered by Mouha et al. [28], by proving the multi-user security of the Even-
Mansour cipher. Since then, various constructions have been analyzed in the
multi-user setting [7,21,22,33].

1.1 Related Work

There have been some other approaches to building a PRF on top of PRPs. In
this section, P1 and P2 are independent n-bit permutations.

Encrypted Davis-Meyer. Cogliati and Seurin [12] introduced a PRF con-
struction, dubbed Encrypted Davis-Meyer (EDM), defined as

EDM[P1,P2](x)
def
= P2(P1(x)⊕x).

They proved PRF-security of EDM up to O
(
22n/3

)
queries. Later, Dai et al. [14]

improved this bound up to O
(
23n/4

)
via the chi-squared method. Mennink and

Neves [26] introduced a dual construction of EDM, dubbed Encrypted Davis-
Meyer Dual (EDMD), defined as

EDMD[P1,P2](x)
def
= P2(P1(x))⊕P1(x).

They claimed both EDM and EDMD are secure up to (almost) 2n queries. How-
ever, the proof depends on Patarin’s Mirror theory, which has not been fully
verified. Cogliati and Seurin [13] proved that the single permutation variant of
EDM is secure up to 22n/3 queries.

Summation-Truncation Hybrid. Gunsing and Mennink [19] proposed the
so-called Summation Truncation Hybrid (STH) construction. The idea of this
construction is concatenating outputs of two independent TRPs and sum of
discarded bits from those TRPs. They proved that STH is asymptotically as
secure as TRP, which implies that the use of discarded bits does not degrade the
security.
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Sum of Even-Mansour. Sum of Even-Mansour (SoEM) [8] is a PRF built from
public permutations. When P1 and P2 are public permutations, the construction
is defined as

SoEM[P1,P2, k1, k2](x)
def
= P1(x⊕ k1)⊕ k1⊕P2(x⊕ k2)⊕ k2,

where k1 and k2 are secret keys. The authors proved that SoEM with independent
permutations and keys achieves 2n/3-bit security, which is tight. They also pro-
posed another PRF construction, dubbed SoKAC, however, Nandi [29] pointed
out a flaw from the security proof of SoKAC and this construction is disclaimed.

1.2 Our Contribution

In this paper, we propose new Luby-Rackoff backward constructions: SaT1 and
SaT2. Let P, P1 and P2 be n-bit permutations. For a positive integer m such
that m < n, SaT1 and SaT2 are defined as follows (see Figure 1).

SaT1[P] : {0, 1}n−1 −→ {0, 1}m

x 7−→ Trm(P(0 ∥ x)⊕P(1 ∥ x)),
SaT2[P1,P2] : {0, 1}n −→ {0, 1}m

x 7−→ Trm(P1(x)⊕P2(x)).

We also propose a variant of SoP[3] using three independent permutations,
dubbed SoP3-2. For n-bit permutations P, P1, P2 and P3, SoP3-1 and SoP3-2
are defined as follows (see Figure 2).

SoP3-1[P] : {0, 1}n−2 −→ {0, 1}n

x 7−→ P(00 ∥ x)⊕P(01 ∥ x)⊕P(10 ∥ x),
SoP3-2[P1,P2,P3] : {0, 1}n −→ {0, 1}n

x 7−→ P1(x)⊕P2(x)⊕P3(x).

The multi-user security of SaT1, SaT2, and SoP3-2 is summarized in Table 1.
Note that the single-user security bound of SaT1 and SaT2 can be obtained from
our bound by setting µ = 1, while the generic multi-user bound is obtained by
multiplying µ to the single-user bound. Our security bound is proportional to
µ1/2, which is better than the one from the hybrid argument.

SaT1 and SaT2 can be regarded as the sum of two TRPs. Also, SaT2 (resp.
SaT1) can be obtained by truncating SoP (resp. SoP based on a single permu-
tation with domain separation). If we apply our proof technique to TRP, the
security bound would be

O

(√
µqmax

2n−
m
2

)
.

We omit the proof, but proving the above bound would be straightforward. TRP
cannot achieve full security with respect to the permutation size in the multi-
user setting. For m = n/2 and µ = O(2n/2), TRP is secure up to O(2n/2) queries
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P P

0 ∥ x 1 ∥ x

m m

y

(a) SaT1[P]

P1 P2

x x

m m

y

(b) SaT2[P1,P2]

Fig. 1: SaT1 and SaT2 constructions

P P P

00 ∥ x 01 ∥ x 10 ∥ x

y

(a) SoP3-1[P]

P1 P2 P3

x x x

y

(b) SoP3-2[P1,P2,P3]

Fig. 2: SoP3-1 and SoP3-2 constructions

for each user, while SaT1 and SaT2 are secure up to O(2n) queries for each user.
Compared to SoP3-1, SaT1 and SaT2 can be made more secure at the cost of a
lower rate, or conversely, can be made more efficient according to the acceptable
level of security or the number of users. If µ ≪ 2n/3, SaT1 and SaT2 can allow
O(2n) queries per user and the rate is higher than n/3 (the rate of SoP3-1) by
setting m = n− log2 µ.

As a concrete example, when n = 128, m = 64 and µ = 264, both SaT1
and SaT2 are optimally secure, i.e., (128 − ϵ)-bit secure for all µ = 264 users,
where ϵ is a small constant from our security bounds. If more output bits are
needed, one can truncate only 16 bits (with m = 112), in which case SaT1 enjoys
80-bit security, and SaT2 is even better, enjoying 112-bit security. Hence, SaT2
outputs 112-bit blocks with 112-bit security, while SoP3-1 outputs 128-bit blocks
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Construction Security bound Rate Number of Keys Reference

SaT1
√
µqmax/2

n−0.5m m/2 1 Ours
SaT2

√
µq1.5max/2

2n−0.5m m/2 2 Ours
SoP3-1 √

µqmax/2
n n/3 1 [6]

SoP3-2 √
µq2max/2

2.5n n/3 3 Ours

Table 1: Multi-user security and efficiency of SaT and SoP[3] constructions. Con-
stants are ignored in the security bounds. µ is the number of users and qmax is
the maximum number of queries per user. Rate is the number of output bits per
permutation call.

with 128-bit security for 264 users, at the cost of two primitive calls and three
primitive calls, respectively.

When µ≫ O(2n−m), we note that SaT2 can accept significantly more queries
than SaT1. We also see our security bound of SoP3-2 is better than SoP3-1, while
the tightness of these security bounds is still open.

Proof Technique. Compared to SoP, it is not straightforward to compute the
expectation of the χ2-divergence for truncated values. We addressed this issue by
modifying the domain over which the expectation is taken. Moreover, we had to
precisely compute the expectation rather than loosely upper bounding it, which
was possible by using more involved counting - we take into account almost all
the terms appearing in our computation, and make them cancel out each other.

Application. The key-generation algorithm in AES-GCM-SIV [7,17,18] can be
replaced by SaT1 or SaT2. GCM-SIV and other authenticated encryption schemes
such as CWC+ [15] and SCM [10] use synthetic IVs derived from secure PRFs. We
expect that those constructions would perform better in the multi-user setting
when combined with SaT1 or SaT2, while proving their overall security would
be an independent topic of interest.

2 Preliminaries

Notation. Throughout this paper, we fix positive integers n,m, and µ such that

m < n to denote the block size, the number of output bits (after truncation), and
number of users, respectively. We denote 0m (i.e., m-bit string of all zeros) by
0. Given a non-empty finite set X , x ←$ X denotes that x is chosen uniformly
at random from X . |X | means the number of elements in X . The set of all
permutations of {0, 1}n is simply denoted Perm(n). The set of all functions with
domain {0, 1}n and codomain {0, 1}m is simply denoted by Func(n,m). For a
keyed function F : K ×X → Y with key space K and non-empty sets X and Y,
we will denote F (K, ·) by FK(·) for K ∈ K. A truncating function is defined as
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follows:

Trm : {0, 1}n −→ {0, 1}m

x 7−→ xL,

where x ∈ {0, 1}n is written as xL ∥ xR for xL ∈ {0, 1}m and xR ∈ {0, 1}n−m.

Multi-User Pseudorandom Function. Let C : K × {0, 1}n → {0, 1}m be
a keyed function with key space K. We will consider an information theoretic
distinguisher A that makes oracle queries to C, and returns a single bit. The
advantage of A in breaking the mu-prf security of C, i.e., in distinguishing
C(K1, ·), . . . ,C(Kµ, ·) where K1, . . . ,Kµ ←$ K from uniformly chosen functions
F1, . . . ,Fµ ←$ Func(n,m), is defined as

Advmu-prf
C (A) =

∣∣∣Pr [K1, . . . ,Kµ ←$ K : ACK1
(·),...,CKµ (·) = 1

]
− Pr

[
F1, . . . ,Fµ ←$ Func(n,m) : AF1(·),...,Fµ(·) = 1

]∣∣∣.
We define Advmu-prf

C (µ, qmax, t) as the maximum of Advmu-prf
C (A) over all the

distinguishers against C for µ users making at most qmax queries to each user
and running in time at most t. When we consider information theoretic security,
we will drop the parameter t.

Multi-User Pseudorandom Permutation. Let E : K × {0, 1}n → {0, 1}n
be an n-bit block cipher with key space K. We will consider an information
theoretic distinguisher A that makes oracle queries to E, and returns a single
bit. The advantage of A in breaking the mu-prp security of E is defined as

Advmu-prp
E (A) =

∣∣∣Pr [K1, . . . ,Kµ ←$ K : AEK1
(·),...,EKµ (·) = 1

]
− Pr

[
P1, . . . ,Pµ ←$ Perm(n) : AP1(·),...,Pµ(·) = 1

]∣∣∣.
Similarly to the mu-prf security, we define Advmu-prp

E (µ, qmax, t).

The Chi-squared Method. We give here all the necessary background on the
chi-squared method [14] that we will use throughout this paper.

We fix a set of random systems, a deterministic distinguisher A that makes
q oracle queries to one of the random systems, and a set Ω that contains all
possible answers for oracle queries to the random systems. For a random system
S and i ∈ {1, . . . , q}, let ZS,i be the random variable over Ω that follows the
distribution of the i-th answer obtained by A interacting with S. Let

ZiS
def
= (ZS,1, . . . , ZS,i),

and let
piS(z)

def
= Pr

[
ZiS = z

]
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for z ∈ Ωi. For i ≤ q and z = (z1, . . . , zi−1) ∈ Ωi−1 such that pi−1
S (z) > 0, the

probability distribution of ZS,i conditioned on Zi−1
S = z will be denoted pzS,i(·),

namely for z ∈ Ω,

pzS,i(z)
def
= Pr

[
ZS,i = z | Zi−1

S = z
]
.

For two random systems S0 and S1, and for i < q and z = (z1, . . . , zi−1) ∈
Ωi−1 such that pi−1

S0
(z), pi−1

S1
(z) > 0, the χ2-divergence for pzS0,i

(·) and pzS1,i
(·)

is defined as follows.

χ2
(
pzS1,i(·), p

z
S0,i(·)

) def
=

∑
z∈Ω such that
pzS0,i(z)>0

(
pzS1,i

(z)− pzS0,i
(z)
)2

pzS0,i
(z)

.

We will simply write χ2 (z) = χ2
(
pzS1,i

(·), pzS0,i
(·)
)

when the random systems
are clear from the context. If the support of pi−1

S1
(·) is contained in the support

of pi−1
S0

(·), then we can view χ2
(
pzS1,i

(·), pzS0,i
(·)
)

as a random variable, denoted
χ2
(
Zi−1

S1

)
, where z follows the distribution of Zi−1

S1
.

Then A’s distinguishing advantage is upper bounded by the total variation
distance of pqS0

(·) and pqS1
(·), denoted ∥pqS0

(·)− pqS1
(·)∥, and we also have

∥pqS0
(·)− pqS1

(·)∥ ≤

(
1

2

q∑
i=1

Ex
[
χ2
(
Zi−1

S1

)]) 1
2

. (1)

See [14] for the proof of (1).

3 Summation-and-Truncation

In this section, we propose new PRF constructions based on PRPs. We will prove
that these constructions are fully secure (secure after almost 2n queries made
for each user) with 2n−m users. Let

SaT1[P] : {0, 1}n−1 −→ {0, 1}m

x 7−→ Trm(P(0 ∥ x)⊕P(1 ∥ x))

where Trm is defined in Section 2 and P is an n-bit random permutation from
Perm(n). The mu-prf security of SaT1 is represented by the following theorem.

Theorem 1. Let n, m, µ, and qmax be positive integers such that m < n and
qmax ≤ 2n−3. Then one has

Advmu-prf
SaT1 (µ, qmax) ≤

(
20µq3max

24n−m
+

21µqmax

22n−m

) 1
2

.

The proof is given in Section 4.
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Remark 1. When m = n, it is well known that the mu-prf advantage of SaT1
(equivalently, SoP) is about µqmax/2

n since SaT1 never outputs 0 which is dis-
tinguished from a random function.

We also define SaT2 which is a variant of SaT1 on two independent random
permutations. Let

SaT2[P1,P2] : {0, 1}n −→ {0, 1}m

x 7−→ Trm(P1(x)⊕P2(x))

where Trm is defined in Section 2 and P1 and P2 are two independent random
permutations from Perm(n). The mu-prf security of SaT2 is represented by the
following theorem.

Theorem 2. Let n, m, µ, and qmax be positive integers such that m ≤ n and
qmax ≤ 2n−2. Then one has

Advmu-prf
SaT2 (µ, qmax) ≤

(
2µq3max

24n−m

) 1
2

.

The proof is given in Section 5.
One can consider SaT1 and SaT2 based on an n-bit block cipher E : K ×

{0, 1}n → {0, 1}n with key space K, which is defined as

– For x ∈ {0, 1}n−1 and K ∈ K,

SaT1[E](K,x) = Trm(EK(0 ∥ x)⊕EK(1 ∥ x));

– For x ∈ {0, 1}n and K1,K2 ∈ K,

SaT2[E](K1,K2, x) = Trm(EK1(x)⊕EK2(x)).

Up to the mu-prp security of E, one can derive the multi-user security of SaT1[E]
and SaT2[E].

Advmu-prf
SaT1[E](µ, qmax, t) ≤ Advmu-prp

E (µ, 2qmax, t
′) +

(
20µq3max

24n−m
+

21µqmax

22n−m

) 1
2

,

Advmu-prf
SaT2[E](µ, qmax, t) ≤ Advmu-prp

E (2µ, qmax, t
′) +

(
2µq3max

24n−m

) 1
2

where t′ ≈ t+ 2µqmax.

4 Proof of Theorem 1

Before proving the security of SaT1, we define random experiments to make it
possible to prove it with the chi-squared method in Algorithm 1.
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Algorithm 1 Experiments for SaT1

Experiment B0

1: for j ← 1 to µ do
2: for i← 1 to qmax do
3: yj

i ←$ {0, 1}m

4: Zj ← (yj
1, · · · , yj

qmax
)

5: return (Z1, . . . ,Zµ)

Experiment B1

1: for j ← 1 to µ do
2: Ru ← {0, 1}n
3: for i← 1 to qmax do
4: uj

2i−1 ←$ Ru, Ru ←Ru \ {uj
2i−1}

5: uj
2i ←$ Ru, Ru ←Ru \ {uj

2i}
6: rj2i−1 ← Trm(uj

2i−1), r
j
2i ← Trm(uj

2i)

7: yj
i ← rj2i−1 ⊕ rj2i

8: Zj ← (yj
1, · · · , yj

qmax
)

9: return (Z1, . . . ,Zµ)

Experiment C0
1: for j ← 1 to µ do
2: Ru ← {0, 1}n
3: for i← 1 to qmax do
4: yj

i ←$ {0, 1}m
5: T j

i (y
j
i )← {(u, v) : u, v ∈ Ru, u ̸= v,Trm(u⊕ v) = yj

i }
6: if

∣∣T j
i (y

j
i )
∣∣ > 0 then

7: (uj
2i−1, u

j
2i)←$ T j

i (y
j
i )

8: else
9: (uj

2i−1, u
j
2i)← (⊥,⊥)

10: Ru ←Ru \ {uj
2i−1, u

j
2i}

11: rj2i−1 ← Trm(uj
2i−1), r

j
2i ← Trm(uj

2i)

12: zji ← (rj2i−1, y
j
i )

13: Zj ← (zj1, · · · , zjqmax
)

14: return (Z1, . . . ,Zµ)

Experiment C1
1: for j ← 1 to µ do
2: Ru ← {0, 1}n
3: for i← 1 to qmax do
4: uj

2i−1 ←$ Ru, Ru ←Ru \ {uj
2i−1}

5: uj
2i ←$ Ru, Ru ← Ru \ {uj

2i}
6: rj2i−1 ← Trm(uj

2i−1), r
j
2i ← Trm(uj

2i)

7: yj
i ← rj2i−1 ⊕ rj2i

8: zji ← (rj2i−1, y
j
i )

9: Zj ← (zj1, · · · , zjqmax
)

10: return (Z1, · · · ,Zµ)
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The main purpose of the algorithm is to transform the distinguishing game
between S0 and S1 into the game between C0 and C1 (see equation (2)) in order to
evaluate the distinguishing advantage using the chi-squared method. The game
between C0 and C1 has two major differences from the game between S0 and S1:

1. C0 and C1 take no input, which can be seen as a reduction from an adaptive
adversary to a non-adaptive adversary and this reduction makes it easy to
apply the chi-squared method.

2. The outputs of C0 and C1 have additional information, namely rj2i−1.

Note that B0 and B1 are intermediate games that yield equation (2).
For Experiment C0 in Algorithm 1, the following lemma holds.

Lemma 1. For any qmax ≤ 2n−3, Experiment C0 in Algorithm 1 never returns
(⊥,⊥).

Proof. We suppose any j ∈ [µ] and omit j for simplicity. If i = 1, it is trivial
that |Ti(yi)| > 0 since |Ti(yi)| = 2n(2n−m − 1) for yi = 0 and |Ti(yi)| = 22n−m

for yi ̸= 0. For 2 ≤ i ≤ qmax, we have |Ru| = 2n − 2(i − 1) and therefore
|Ti(yi)| ≥ 22n−m − (4i− 3)2n−m > 0 since i ≤ qmax ≤ 2n−3 by our assumption.

⊓⊔

Let S0 be a random oracle with Func(n − 1,m) and S1 be a random oracle
with SaT1. It is obvious that transcripts for S0 (or S1) has same probability
distribution with the output of B0 (or B1). Secondly, statistical distance between
C0 and C1 is larger than statistical distance between B0 and B1 since the outputs
of C0 (or C1) contains the outputs of B0 (or B1), respectively. The two facts make
following inequality to be held.

∥pqS0
(·)− pqS1

(·)∥ = ∥pqB0
(·)− pqB1

(·)∥ ≤ ∥pqC0
(·)− pqC1

(·)∥. (2)

By (2) and lemma 2, we can prove theorem 1.

Lemma 2. For any qmax ≤ 2n−3, let C0 and C1 be the experiments described in
Algorithm 1. Then we have

∥pqC0
(·)− pqC1

(·)∥ ≤
(
20µq3max

24n−m
+

21µqmax

22n−m

) 1
2

.

4.1 Proof of Lemma 2

Let q = µqmax. For i ∈ [q] where i = (j − 1)qmax + k such that j ∈ [µ] and
k ∈ [qmax], the response of the i-th query is seen as zi = zjk. Then, we can
easily check that the support of pi−1

C1
(·) is contained in the support of pi−1

C0
(·) for

i = 1, . . . , q, allowing us to use the chi-squared method.
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Let Ω = {0, 1}m × {0, 1}m. For fixed i ∈ {1, . . . , q} and z ∈ Ωi−1 such
pi−1
C1

(z) > 0, we will compute

χ2(z) =
∑

z∈Ω such that
pzC0,i(z)>0

(
pzC1,i

(z)− pzC0,i
(z)
)2

pzC0,i
(z)

=
∑

z∈Ω such that
pzC0,i(z)>0

pzC0,i(z)

(
1−

pzC1,i
(z)

pzC0,i
(z)

)2

Firstly, note that z = (z1, . . . , zi−1) and zl = (r2l−1, yl) for l = 1, . . . , i − 1.
Let Ω̂ = {0, 1}n × {0, 1}n, hl = (u2l−1, y

′
l) ∈ Ω̂ and h = (h1, . . . , hi−1) for

l = 1, . . . , i − 1. Note that h includes z. Let HC1,i be the random variable over
Ω̂ that follows the distribution of the internal values (u, y′) in C1 interacting the
i-th query by A. Let

Hi−1
C1

def
= (HC1,1, . . . ,HC1,i−1)

for h ∈ Ω̂i−1. For a fixed z = ((r1, y1), (r3, y2), . . . , (r2i−3, yi−1)), we denote
h ⊢ z if and only if hl = (u2l−1, y

′
l) satisfies Trm(u2l−1) = r2l−1 and Trm(y′l) = yl

for all l = 1, . . . , i− 1, where h = (h1, h2, . . . , hi−1). Then one has

Ex
z

[
χ2(z)

]
=

∑
z∈Ωi−1

piC1
(z) · χ2(z)

=
∑

z∈Ωi−1

∑
h∈Ω̂i−1 such

that h⊢z

piC1
(z) · Pr

[
Hi−1

C1
= h | Zi−1

C1
= z
]
· χ2(z)

=
∑

h∈Ω̂i−1

Pr
[
Hi−1

C1
= h

]
· χ2(z)

= Ex
h

[
χ2(z)

]
(3)

where the last expectation is taken over the distribution Hi−1
C1

. Furthermore, let
i = (j − 1)qmax + k such that j ∈ [µ] and k ∈ [qmax]. For α ∈ {0, 1}m, we define
U jk(α) as the number of elements α in (rjl )l=1,...,2k−2. In other words,

U jk(α) =
∣∣∣{l ∈ [2k − 2] | α = rjl }

∣∣∣ .
Also, for y ∈ {0, 1}m, let T jk (y) =

∣∣∣T jk (y)∣∣∣. Note that, for any j′ ∈ [j − 1], zi is

independent with Zj
′
. Therefore, we see that, for y = 0,

pzC0,i(r,0) =
(2n−m − U jk(r))(2n−m − U

j
k(r)− 1)

2mT jk (0)
,

pzC1,i(r,0) =
(2n−m − U jk(r))(2n−m − U

j
k(r)− 1)

(2n − 2k + 2)(2n − 2k + 1)
,
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and otherwise (y ̸= 0),

pzC0,i(r, y) =
(2n−m − U jk(r))(2n−m − U

j
k(r⊕ y))

2mT jk (y)
,

pzC1,i(r, y) =
(2n−m − U jk(r))(2n−m − U

j
k(r⊕ y))

(2n − 2k + 2)(2n − 2k + 1)
.

For any y ∈ {0, 1}m,

T jk (y) ≥
∑

α∈{0,1}m

(2n−m − U jk(α))(2
n−m − U jk(α⊕ y)− 1)

≥ 22n−m − (4k − 3)2n−m.

Let

Gjk(y)
def
=

(
(2n − 2k + 2)2

2m
− T jk (y)

)2

.

Then we have,

χ2(z) =
∑

z=(r,y)∈Ω such that
pzC0,i(z)>0 and y ̸=0

(2n−m − U jk(r))(2n−m − U
j
k(r⊕ y))

2mT jk (y)

(
1−

2mT jk (y)

(2n − 2k + 2)2

)2

+
∑

z=(r,0)∈Ω such
that pzC0,i(z)>0

(2n−m − U jk(r))(2n−m − U
j
k(r)− 1)

2mT jk (0)

(
1−

2mT jk (0)

(2n − 2k + 2)2

)2

≤
∑

(r,y)∈Ω such
that pzC0,i(r,y)>0

22n−2m
(
(2n − 2k + 2)2 − 2mT jk (y)

)2
2mT jk (y) ((2

n − 2k + 2)2)
2

≤
∑

y∈{0,1}m

7Gjk(y)

24n−m
. (4)

since k ≤ qmax ≤ 2n−3. We claim the following lemma.

Lemma 3. For any y ̸= 0, one has

Ex
h

[
Gjk(y)

]
≤ 8(k − 1)2

2m
+ 3 · 22n−2m,

Ex
h

[
Gjk(0)

]
≤ 8(k − 1)2 + 3 · 22n.
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The proof of Lemma 3 is deferred to Section 7.1. From (4) and Lemma 3, it
follows that

Ex
h

[
χ2(z)

]
≤ 7

24n−m
Ex
h

 ∑
y∈{0,1}m\0

Gjk(y)

+Gjk(0)


≤ 112(k − 1)2

24n−m
+

42

22n−m

and finally, we have

∥pqC0
(·)− pqC1

(·)∥ ≤

(
1

2

q∑
i=1

Ex
[
χ2(z)

]) 1
2

≤

1

2

µ∑
j=1

qmax∑
k=1

Ex
[
χ2(z)

] 1
2

≤

1

2

µ∑
j=1

qmax∑
k=1

112(k − 1)2

24n−m
+

42

22n−m

 1
2

≤
(
20µq3max

24n−m
+

21µqmax

22n−m

) 1
2

.

5 Proof of Theorem 2

Similarly to Section 4, we define random experiments. See Algorithm 2. For
Experiment C0 in Algorithm 2, the following lemma holds.

Lemma 4. For any qmax ≤ 2n−2, Experiment C0 in Algorithm 2 never returns
(⊥,⊥).

Proof. We suppose any j ∈ [µ] and omit y for simplicity. If i = 1, it is trivial
that |Ti(yi)| = 22n−m > 0. For 2 ≤ i ≤ qmax, we have

∣∣RU ∣∣ = ∣∣RV ∣∣ = 2n−(i−1)
and therefore |Ti(yi)| ≥ 22n−m− 2(i− 1)2n−m > 0 since i ≤ qmax ≤ 2n−2 by our
assumption. ⊓⊔

Let S0 be a random oracle with Func(n,m) and S1 be a random oracle with
SaT2. Similarly to the reasoning of (2), one has

∥pqS0
(·)− pqS1

(·)∥ = ∥pqB0
(·)− pqB1

(·)∥ ≤ ∥pqC0
(·)− pqC1

(·)∥. (5)

By (5) and lemma 5, we can prove theorem 2.

Lemma 5. For any qmax ≤ 2n−2, let C0 and C1 be the experiments described in
Algorithm 2. Then we have

∥pqC0
(·)− pqC1

(·)∥ ≤
(
2µq3max

24n−m

) 1
2

.
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Algorithm 2 Experiments for SaT2

Experiment B0

1: for j ← 1 to µ do
2: for i← 1 to qmax do
3: yj

i ←$ {0, 1}m

4: Zj ← (yj
1, . . . , y

j
qmax

)

5: return (Z1, . . . ,Zµ)

Experiment B1

1: for j ← 1 to µ do
2: Ru,Rv ← {0, 1}n
3: for i← 1 to qmax do
4: uj

i ←$ Ru, Ru ←Ru \ {uj
i}

5: vji ←$ Rv, Rv ←Rv \ {vji }
6: rji ← Trm(uj

i ), s
j
i ← Trm(vji )

7: yj
i ← rji ⊕ sji

8: Zj ← (yj
1, . . . , y

j
qmax

)

9: return (Z1, . . . ,Zµ)

Experiment C0
1: for j ← 1 to µ do
2: Ru,Rv ← {0, 1}n
3: for i← 1 to qmax do
4: yj

i ←$ {0, 1}m
5: T j

i (y
j
i )← {(u, v) : u ∈ Ru, v ∈ Rv,Trm(u⊕ v) = yj

i }
6: if

∣∣T j
i (y

j
i )
∣∣ > 0 then

7: (uj
i , v

j
i )←$ T j

i (y
j
i )

8: else
9: (uj

i , v
j
i )← (⊥,⊥)

10: Ru ←Ru \ {uj
i}, Rv ←Rv \ {vji }

11: rji ← Trm(uj
i ), s

j
i ← Trm(vji )

12: zji ← (rji , y
j
i )

13: Zj ← (zj1, . . . , z
j
qmax

)

14: return (Z1, . . . ,Zµ)

Experiment C1
1: for j ← 1 to µ do
2: Ru,Rv ← {0, 1}n
3: for i← 1 to qmax do
4: uj

i ←$ Ru, Ru ← Ru \ {uj
i}

5: vji ←$ Rv, Rv ←Rv \ {vji }
6: rji ← Trm(uj

i ), s
j
i ← Trm(vji )

7: yj
i ← rji ⊕ sji

8: zji ← (rji , y
j
i )

9: Zj ← (zj1, . . . , z
j
qmax

)

10: return (Z1, . . . ,Zµ)
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5.1 Proof of Lemma 5

Let q = µqmax. For i ∈ [q], where i = (j − 1)qmax + k such that j ∈ [µ] and
k ∈ [qmax], the response of the i-th query is seen as zi = zjk. Then, we can easily
check that the support of pi−1

C1
(·) is contained in the support of pi−1

C0
(·) for i =

1, . . . , q, allowing us to use the chi-squared method. Let Ω = {0, 1}m × {0, 1}m.
For fixed i ∈ {1, . . . , q} and z ∈ Ωi−1 such pi−1

C1
(z) > 0, we will compute

χ2(z) =
∑

z∈Ω such that
pzC0,i(z)>0

(
pzC1,i

(z)− pzC0,i
(z)
)2

pzC0,i
(z)

=
∑

z∈Ω such that
pzC0,i(z)>0

pzC0,i(z)

(
1−

pzC1,i
(z)

pzC0,i
(z)

)2

Firstly, note that z = (z1, . . . , zi−1) and zl = (rl, yl) for l = 1, . . . , i − 1. Let
Ω̂ = {0, 1}n×{0, 1}n, hl = (ul, y

′
l) ∈ Ω̂ and h = (h1, . . . , hi−1) for l = 1, . . . , i−1.

Let HC1,i be the random variable over Ω̂ that follows the distribution of the
internal values (u, y′) in C1 interacting the i-th query by A. Let

Hi−1
C1

def
= (HC1,1, . . . ,HC1,i−1)

for h ∈ Ω̂i−1. Similarly to (3), one has

Ex
z

[
χ2(z)

]
= Ex

h

[
χ2(z)

]
where the last expectation is taken over the distribution Hi−1

C1
. Furthermore,

let i = (j − 1)qmax + k such that j ∈ [µ] and k ∈ [qmax]. For α ∈ {0, 1}m,
we define U jk(α) and V jk (α) be the number of elements α in (rjl )l=1,...,k−1 and
(sjl )l=1,...,k−1, respectively. In other words,

U jk(α) =
∣∣∣{l ∈ [k − 1] | α = rjl }

∣∣∣ ,
V jk (α) =

∣∣∣{l ∈ [k − 1] | α = sjl }
∣∣∣ .

Also, for y ∈ {0, 1}m, let T jk (y) =
∣∣∣T jk (y)∣∣∣. Note that, for any j′ ∈ [j − 1], zi is

independent with Zj
′
. Therefore, we see that

pzC0,i(r, y) =
(2n−m − U jk(r))(2n−m − V

j
k (r⊕ y))

2mT jk (y)
,

pzC1,i(r, y) =
(2n−m − U jk(r))(2n−m − V

j
k (r⊕ y))

(2n − k + 1)2
,
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and

T jk (y) =
∑

α∈{0,1}m

(2n−m − U jk(α))(2
n−m − V jk (α⊕ y))

= 22n−m − 2(k − 1)2n−m +
∑

α∈{0,1}m

U jk(α)V
j
k (α⊕ y)

≥ 22n−m − 2(k − 1)2n−m.

Therefore,

χ2(z) =
∑

z=(r,y)∈Ω such
that pzC0,i(z)>0

(2n−m − U jk(r))(2n−m − V
j
k (r⊕ y))

2mT jk (y)

(
1−

2mT jk (y)

(2n − k + 1)2

)2

≤
∑

(r,y)∈Ω such
that pzC0,i(r,y)>0

22n−2m
(
(2n − k + 1)2 − 2mT jk (y)

)2
2mT jk (y)(2

n − k + 1)4

≤
∑

(r,y)∈Ω such
that pzC0,i(r,y)>0

7
(
(2n − k + 1)2 − 2mT jk (y)

)2
24n+2m

≤
∑

y∈{0,1}m

7

24n−m

(
(2n − k + 1)2

2m
− T jk (y)

)2

. (6)

since k ≤ qmax ≤ 2n−2. We claim the following lemma.

Lemma 6. One has

Ex
h

[
T jk (y)

]
=

(2n − k + 1)2

2m
,

Var
h

[
T jk (y)

]
≤ (k − 1)2

2m
.

The proof of Lemma 6 is deferred to Section 7.2. From (6) and Lemma 6, it
follows that

Ex
h

[
χ2(z)

]
≤ Ex

h

 ∑
y∈{0,1}m

7

24n−m

(
(2n − k + 1)2

2m
− T jk (y)

)2


≤ 7

24n−m

∑
y∈{0,1}m

Var
h

[
T jk (y)

]
≤ 7(k − 1)2

24n−m
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and finally, we have

∥pqC0
(·)− pqC1

(·)∥ ≤

(
1

2

q∑
i=1

Ex
[
χ2(z)

]) 1
2

≤

1

2

µ∑
j=1

qmax∑
k=1

Ex
[
χ2(z)

] 1
2

≤

1

2

µ∑
j=1

qmax∑
k=1

7(k − 1)2

24n−m

 1
2

≤
(
2µq3max

24n−m

) 1
2

.

6 Multi-user PRF security of SoP3-2

In this section, we prove the security of SoP3-2. Bhattacharya and Nandi [6]
proved mu-prf advantage of SoP3-1 is upper bounded by

20
√
µqmax

2n

for all qmax ≤ 2n/12. However, to the best of our knowledge, the security of
SoP3-2 has not been analyzed. Let

SoP3-2[P1,P2,P3] : {0, 1}n −→ {0, 1}n

x 7−→ P1(x)⊕P2(x)⊕P3(x)

where P1, P2 and P3 are three independent random permutations from Perm(n).
The mu-prf security of SoP3-2 is represented by the following theorem.

Theorem 3. Let n, µ, and qmax be positive integers such that qmax ≤ 2n−2.
Then one has

Advmu-prf
SoP3-2(µ, qmax) ≤

(
3µq4max

25n

) 1
2

.

One can consider SoP3-2 based on an n-bit block cipher E : K × {0, 1}n →
{0, 1}n with key space K, which is defined as

SoP3-2[E](K1,K2,K3, x) = EK1
(x)⊕EK2

(x)⊕EK3
(x).

Up to the mu-prp security of E, one can derive the multi-user security of SoP3-2[E].

Advmu-prf
SoP3-2[E](µ, qmax, t) ≤ Advmu-prp

E (3µ, qmax, t
′) +

(
3µq4max

25n

) 1
2

.

where t′ ≈ t+ 3µqmax.
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6.1 Proof of Theorem 3

Similarly to Section 4, we define random experiments. See Algorithm 3. For
Experiment C0 in Algorithm 3, the following lemma holds.

Lemma 7. For any qmax ≤ 2n−2, Experiment C0 in Algorithm 3 never returns
(⊥,⊥,⊥).

Proof. We suppose any j ∈ [µ] and omit y for simplicity. If i = 1, it is trivial that
|Ti(yi)| = 22n > 0. For 2 ≤ i ≤ qmax, we have |RU | = |RV | = |RW | = 2n−(i−1)
and therefore |Ti(yi)| ≥ 22n − 3(i − 1) · 2n > 0 since i ≤ qmax ≤ 2n−2 by our
assumption. ⊓⊔

Let S0 be a random oracle with Func(n, n) and S1 be a random oracle with
SoP3-2. Similarly to the reasoning of (2), one has

∥pqS0
(·)− pqS1

(·)∥ = ∥pqB0
(·)− pqB1

(·)∥ ≤ ∥pqC0
(·)− pqC1

(·)∥. (7)

By (7) and lemma 8, we can prove theorem 3.

Lemma 8. For any qmax ≤ 2n−2, let C0 and C1 be the experiments described in
Algorithm 3. Then we have

∥pqC0
(·)− pqC1

(·)∥ ≤
(
3µq4max

25n

) 1
2

.

6.2 Proof of Lemma 8

Let q = µqmax. For i ∈ [q] where i = (j − 1)qmax + k such that j ∈ [µ] and
k ∈ [qmax], the response of the i-th query is seen as zi = zjk. We can easily check
that the support of pi−1

C1
(·) is contained in the support of pi−1

C0
(·) for i = 1, . . . , q,

allowing us to use the chi-squared method. Let Ω = {0, 1}n × {0, 1}n × {0, 1}n.
For a fixed i ∈ {1, . . . , q}, let i ∈ [q] where i = (j − 1)qmax + k such that

j ∈ [µ] and k ∈ [qmax]. Fix z ∈ Ωi−1 such that pi−1
C1

(z) > 0. Then, we will
compute

χ2(z) =
∑

z=(u,v,y)∈Ω such
that pzC0,i(z)>0

(
pzC1,i

(z)− pzC0,i
(z)
)2

pzC0,i
(z)

=
∑

z=(u,v,y)∈Ω such
that pzC0,i(z)>0

pzC0,i(z)

(
1−

pzC1,i
(z)

pzC0,i
(z)

)2
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Algorithm 3 Experiments for SoP3-2
Experiment B0

1: for j ← 1 to µ do
2: for i← 1 to qmax do
3: yj

i ←$ {0, 1}n

4: Zj ← (yj
1, . . . , y

j
qmax

)

5: return (Z1, . . . ,Zµ)

Experiment B1

1: for j ← 1 to µ do
2: Ru,Rv,Rw ← {0, 1}n
3: for i← 1 to qmax do
4: uj

i ←$ Ru, Ru ←Ru \ {uj
i}

5: vji ←$ Rv, Rv ←Rv \ {vji }
6: wj

i ←$ Rw, Rw ←Rw \ {wj
i }

7: yj
i ← uj

i ⊕ vji ⊕ wj
i

8: Zj ← (yj
1, . . . , y

j
qmax

)

9: return (Z1, . . . ,Zµ)

Experiment C0
1: for j ← 1 to µ do
2: Ru,Rv,Rw ← {0, 1}n
3: for i← 1 to qmax do
4: yj

i ←$ {0, 1}n
5: T j

i (y
j
i )← {(u, v, w) : u ∈ Ru, v ∈ Rv, w ∈ Rw, u⊕ v⊕w = yj

i }
6: if

∣∣T j
i (y

j
i )
∣∣ > 0 then

7: (uj
i , v

j
i , w

j
i )←$ T j

i (y
j
i )

8: else
9: (uj

i , v
j
i , w

j
i )← (⊥,⊥,⊥)

10: Ru ←Ru \ {uj
i}, Rv ←Rv \ {vji }, Rw ←Rw \ {wj

i }
11: zji ← (uj

i , v
j
i , y

j
i )

12: Zj ← (zj1, . . . , z
j
qmax

)

13: return (Z1, . . . ,Zµ)

Experiment C1
1: for j ← 1 to µ do
2: Ru,Rv,Rw ← {0, 1}n
3: for i← 1 to qmax do
4: uj

i ←$ Ru, Ru ← Ru \ {uj
i}

5: vji ←$ Rv, Rv ←Rv \ {vji }
6: wj

i ←$ Rw, Rw ← Rw \ {wj
i }

7: zji ← (uj
i , v

j
i , u

j
i ⊕ vji ⊕ wj

i )

8: Zj ← (zj1, . . . , z
j
qmax

)

9: return (Z1, . . . ,Zµ)
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For y ∈ {0, 1}n, let T jk (y) =
∣∣∣T jk (y)∣∣∣. From the proof of Lemma 7, we have

T jk (y) ≥ 22n − 3(k − 1)2n.

Moreover, we see that

pzC0,i(u, v, y) =
1

2nT jk (y)
,

pzC1,i(u, v, y) =
1

(2n − k + 1)3
.

Therefore,

χ2(z) =
∑

z=(u,v,y)∈Ω such
that pzC0,i(z)>0

1

2mT jk (y)

(
1−

2nT jk (y)

(2n − k + 1)3

)2

≤
∑

(u,v,y)∈Ω such
that pzC0,i(u,v,y)>0

(
(2n − k + 1)3 − 2nT jk (y)

)2
2nT jk (y)(2

n − k + 1)S6

≤
∑

(u,v,y)∈Ω such
that pzC0,i(u,v,y)>0

23
(
(2n − k + 1)3 − 2nT jk (y)

)2
29n

≤ 23

25n

∑
y∈{0,1}n

(
(2n − k + 1)3

2n
− T jk (y)

)2

. (8)

since k ≤ qmax ≤ 2n−2. We claim the following lemma.

Lemma 9. One has

Ex
z

[
T jk (y)

]
=

(2n − k + 1)3

2n
,

Var
z

[
T jk (y)

]
≤ (k − 1)3

2n
.

The proof of Lemma 9 is deferred to Section 7.3. From (8) and Lemma 9, it
follows that

Ex
z

[
χ2(z)

]
≤ 23

25n
Ex
z

 ∑
y∈{0,1}n

(
(2n − k + 1)3

2n
− T jk (y)

)2


≤ 23

25n

∑
y∈{0,1}n

Var
z

[
T jk (y)

]
≤ 23(k − 1)3

25n
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and finally, we have

∥pqC0
(·)− pqC1

(·)∥ ≤

(
1

2

q∑
i=1

Ex
[
χ2(z)

]) 1
2

≤

1

2

µ∑
j=1

qmax∑
k=1

Ex
[
χ2(z)

] 1
2

≤

1

2

µ∑
j=1

qmax∑
k=1

23(k − 1)3

25n

 1
2

≤
(
3µq4max

25n

) 1
2

.

7 Proving Expectation Value Lemmas

In this section, we give proof of expectation value lemmas which are used in the
security proofs of our constructions.

7.1 Proof of Lemma 3

First, suppose y ̸= 0. Let Ψ = {0, 1}m × {0, 1}n−m × {0, 1}n−m and fix j, k, h
and y. Let Iψ where ψ = (α, β, γ) ∈ Ψ be an indicator variable

Iψ = 1⇔ (α ∥ β), (α⊕ y ∥ γ) ∈ {0, 1}n \ {ujl }l∈[2k−2].

Observe that

T jk (y) =
∑
ψ∈Ψ

Iψ

and

Ex
h

[Iψ] =
(2n − 2k + 2)(2n − 2k + 1)

2n(2n − 1)
.

Thus, we have

Ex
h

[
T jk (y)

]
=
∑
ψ∈Ψ

(2n − 2k + 2)(2n − 2k + 1)

2n(2n − 1)

=
2n(2n − 2k + 2)(2n − 2k + 1)

2m(2n − 1)
. (9)

Now, we compute the following expectation

Ex
h

[(
T jk (y)

)2]
= Ex

h


∑
ψ∈Ψ

Iψ

2
 = Ex

h

 ∑
(ψ,ψ′)∈Ψ2

IψIψ′

 .
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For ψ = (α, β, γ) and ψ′ = (α′, β′, γ′), let r be the size of the following set

{α ∥ β, α′ ∥ β′, (α⊕ y) ∥ γ, (α′⊕ y) ∥ γ′}.

We see that, for r = 2, . . . , 4,

Ex
h

[IψIψ′ ] =
(2n − 2k + 2)r

(2n)r
.

For a fixed ψ ∈ Ψ , we have

|{ψ′ ∈ Ψ | r = 2}| = 2,

|{ψ′ ∈ Ψ | r = 3}| = 2n−m+2 − 4,

|{ψ′ ∈ Ψ | r = 4}| = 22n−m − 2n−m+2 + 2.

It follows that

∑
ψ′∈Ψ,
r=2

Ex
h

[IψIψ′ ] = 2
(2n − 2k + 2)2

(2n)2
,

∑
ψ′∈Ψ,
r=3

Ex
h

[IψIψ′ ] = (2n−m+2 − 4)

(
1− 2k − 2

2n − 2

)
(2n − 2k + 2)2

(2n)2
,

∑
ψ′∈Ψ,
r=4

Ex
h

[IψIψ′ ] = (22n−m − 2n−m+2 + 2)

(
1− 2k − 2

2n − 2

)

×
(
1− 2k − 2

2n − 3

)
(2n − 2k + 2)2

(2n)2
.

As Ex
h

[∑
(ψ,ψ′)∈Ψ2 IψIψ′

]
=
∑

(ψ,ψ′)∈Ψ2 Ex
h

[IψIψ′ ] =
∑
ψ∈Ψ

∑
ψ′∈Ψ Ex

h
[IψIψ′ ]

and the sum is divided into three cases according to the value of r, the sum of
the expectations is given as

Ex
h

 ∑
(ψ,ψ′)∈Ψ2

IψIψ′

 = 22n−m

 ∑
ψ′∈Ψ,
r=2

Ex
h

[IψIψ′ ] +
∑
ψ′∈Ψ,
r=3

Ex
h

[IψIψ′ ]

+
∑
ψ′∈Ψ,
r=4

Ex
h

[IψIψ′ ]

. (10)
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Therefore, by (10), we have

Ex
h

 ∑
(ψ,ψ′)∈Ψ2

IψIψ′

 =
(2n − 2k + 2)2

2n − 1

(
23n−2m − (22n−2m+1 + 2n−2m)(2k − 2)

+ 2n−2m(2k − 2)2

+ (22n−2m − 6 · 2n−2m + 2n−m+1)
(2k − 2)(2k − 3)

(2n − 2)(2n − 3)

)
and

Ex
h

[
(2n − 2k + 2)(2n − 2k + 1)

2m
· T jk (y)

]
=

2n(2n − 2k + 2)2(2n − 2k + 1)2

22m(2n − 1)
.

Hence, for y ̸= 0, it follows that

Ex
h

[
Gjk(y)

]
= Ex

h

[(
(2n − 2k + 2)(2n − 2k + 1)

2m
− T jk (y)

)2
]

=
(2n − 2k + 2)2

2n − 1
(Ay +By) (11)

where

Ay = 23n−2m − (22n−2m+1 + 2n−2m)(2k − 2) + 2n−2m(2k − 2)2

+ (22n−2m − 6 · 2n−2m + 2n−m+1)
(2k − 2)(2k − 3)

(2n − 2)(2n − 3)

and

By = −2n+1(2n − 2k + 2)(2n − 2k + 1)

22m
+

(2n − 1)(2n − 2k + 2)(2n − 2k + 1)

22m

= −23n−2m + 4k · 22n−2m − 4 · 22n−2m + 4k · 2n−2m − 3 · 2n−2m

− (2n−2m + 2−2m)(4k2 − 6k + 2).

Therefore, we have

Ay +By = 3 · 2n−2m − 2n−2m+1 − 2−2m+2(k − 1)

+ (2n−m+1 − 2n−2m − 6 · 2−2m)
(2k − 2)(2k − 3)

(2n − 2)(2n − 3)

≤ 8(k − 1)2

2n+m
+ 3 · 2n−2m. (12)

By (11) and (12), conclude that

Ex
h

[
Gjk(y)

]
≤ 8(k − 1)2

2m
+ 3 · 22n−2m. (13)
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On the other hand, suppose y = 0. Note that Iψ = 0 if β = γ. So, for ψ =
(α, β, γ) ∈ Ψ such that β ̸= γ, we have

Ex
h

[Iψ] =
(2n − 2k + 2)(2n − 2k + 1)

2n(2n − 1)
.

Thus, we have

Ex
h

[
T jk (0)

]
=
∑
ψ∈Ψ

(2n − 2k + 2)(2n − 2k + 1)

2n(2n − 1)

=
(2n−m − 1)(2n − 2k + 2)(2n − 2k + 1)

2n − 1
. (14)

Now, we compute the following expectation

Ex
h

[(
T jk (0)

)2]
= Ex

h


∑
ψ∈Ψ

Iψ

2
 = Ex

h

 ∑
(ψ,ψ′)∈Ψ2

IψIψ′

 .
For ψ = (α, β, γ) and ψ′ = (α′, β′, γ′), let r be the size of following set

{α ∥ β, α′ ∥ β′, α ∥ γ, α′ ∥ γ′}.

We see that, for r = 2, . . . , 4,

Ex
h

[IψIψ′ ] =
(2n − 2k + 2)r

(2n)r
.

For a fixed ψ ∈ Ψ , we have

|{ψ′ ∈ Ψ | r = 2}| = 2,

|{ψ′ ∈ Ψ | r = 3}| = 2n−m+2 − 8,

|{ψ′ ∈ Ψ | r = 4}| = 22n−m − 2n−m+2 − 2n + 6.

It follows that∑
ψ′∈Ψ,
r=2

Ex
h

[IψIψ′ ] = 2
(2n − 2k + 2)2

(2n)2
,

∑
ψ′∈Ψ,
r=3

Ex
h

[IψIψ′ ] = (2n−m+2 − 8)

(
1− 2k − 2

2n − 2

)
(2n − 2k + 2)2

(2n)2
,

∑
ψ′∈Ψ,
r=4

Ex
h

[IψIψ′ ] = (22n−m − 2n−m+2 − 2n + 6)

(
1− 2k − 2

2n − 2

)

×
(
1− 2k − 2

2n − 3

)
(2n − 2k + 2)2

(2n)2
.
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Similarly to (10), we have

Ex
h

 ∑
(ψ,ψ′)∈Ψ2

IψIψ′

 =
(2n−m − 1)(2n − 2k + 2)2

2n − 1

(
22n−m − 2n

− (2n−m+1 + 2−m − 2)(2k − 2) + 2−m(2k − 2)2

+ (2n−m − 2n + 6− 6 · 2−m)
(2k − 2)(2k − 3)

(2n − 2)(2n − 3)

)

Also, we have

Ex
h

[
(2n − 2k + 2)(2n − 2k + 1)

2m
· T jk (0)

]
=

(2n−m − 1) ((2n − 2k + 2)2)
2

2m(2n − 1)
.

So, for y = 0, we have

Ex
h

[
Gjk(0)

]
= Ex

h

[(
(2n − 2k + 2)2

2m
− T jk (0)

)2
]

=
(2n − 2k + 2)2

2n − 1
(A0 +B0) (15)

where

A0 = (2n−m − 1)

(
22n−m − 2n − (2n−m+1 + 2−m − 2)(2k − 2) + 2−m(2k − 2)2

+ (2n−m − 2n + 6− 6 · 2−m)
(2k − 2)(2k − 3)

(2n − 2)(2n − 3)

)
= 23n−2m − 22n−m+1 + 2n + (2n−2m − 2−m)(2k − 2)2

− (22n−2m+1 − 2n−m+2 + 2n−2m − 2−m + 2)(2k − 2)

+ (2n−m − 1)(2n−m − 2n + 6− 6 · 2−m)
(2k − 2)(2k − 3)

(2n − 2)(2n − 3)

and

B0 = − (2n+1 − 2m+1)(2n − 2k + 2)2
22m

+
(2n − 1)(2n − 2k + 2)2

22m

= − (2n − 2m+1 + 1)(2n − 2k + 2)2
22m

= −23n−2m + 4k · 22n−2m − 4 · 22n−2m + 22n−m+1 − 4k · 2n−m+1 + 6 · 2n−m

+ 4k · 2n−2m − 3 · 2n−2m − (2n−2m − 2−m+1 + 2−2m)(2k − 2)(2k − 1).



Title Suppressed Due to Excessive Length 27

Therefore, we have

A0 +B0 = 2n − 2n−m+1 + 2n−2m − 4

(
1− 1

2m

)2

(k − 1)

+

(
1− 1

2m

)
(2n + 2n−m − 6 + 6 · 2−m)

(2k − 2)(2k − 3)

(2n − 2)(2n − 3)

≤ 8(k − 1)2

2n
+ 3 · 2n. (16)

By (15) and (16), conclude that

Ex
h

[
Gjk(0)

]
= 8(k − 1)2 + 3 · 22n. (17)

By (13) and (17), the proof completes.

7.2 Proof of Lemma 6

Let Ψ = {0, 1}m × {0, 1}n−m × {0, 1}n−m and fix j, k, h and y. Let Iψ where
ψ = (α, β, γ) ∈ Ψ be an indicator variable such that

Iψ = 1⇔ (α ∥ β ∈ {0, 1}n \ {ujl }l∈[k−1]) ∧ (α⊕ y ∥ γ ∈ {0, 1}n \ {vjl }l∈[k−1]).

Observe that

T jk (y) =
∑
ψ∈Ψ

Iψ

and

Ex
h

[Iψ] =
(2n − k + 1)2

22n
.

Thus, we have

Ex
h

[
T jk (y)

]
=
∑
ψ∈Ψ

(2n − k + 1)2

22n
=

(2n − k + 1)2

2m
(18)

To compute the variance, we compute the following expectation

Ex
h

[(
T jk (y)

)2]
= Ex

h


∑
ψ∈Ψ

Iψ

2
 = Ex

h

 ∑
(ψ,ψ′)∈Ψ2

IψIψ′

 .
For ψ = (α, β, γ) and ψ′ = (α′, β′, γ′), let r be the number of distinctness
conditions among

1. α ∥ β ̸= α′ ∥ β′,
2. α ∥ γ ̸= α′ ∥ γ′.
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Note that ψ = ψ′ if r = 0. We see that, for r = 0, 1, 2,

Ex
h

[IψIψ′ ] =
(2n − k)r(2n − k + 1)2

(2n − 1)r22n
=

(
1− k − 1

2n − 1

)r (
2n − k + 1

2n

)2

.

For a fixed ψ ∈ Ψ , we have

|{ψ′ ∈ Ψ | r = 0}| = 1,

|{ψ′ ∈ Ψ | r = 1}| = 2n−m+1 − 2,

|{ψ′ ∈ Ψ | r = 2}| = 22n−m − 2n−m+1 + 1.

It follows that

∑
ψ′∈Ψ,
r=0

Ex
h

[IψIψ′ ] =

(
2n − k + 1

2n

)2

,

∑
ψ′∈Ψ,
r=1

Ex
h

[IψIψ′ ] = (2n−m+1 − 2)

(
1− k − 1

2n − 1

)(
2n − k + 1

2n

)2

,

∑
ψ′∈Ψ,
r=2

Ex
h

[IψIψ′ ] = (22n−m − 2n−m+1 + 1)

(
1− k − 1

2n − 1

)2(
2n − k + 1

2n

)2

.

Similarly to (10), we have

Ex
h

∑
ψ′∈Ψ

IψIψ′

 =

(
2n − k + 1

2n

)2(
22n−m − 2n−m+1(k − 1)

+ (22n−m − 2n−m+1 + 1)

(
k − 1

2n − 1

)2)
=

(
2n − k + 1

2n

)2(
(2n − k + 1)2

2m
+

(
1− 1

2m

)(
k − 1

2n − 1

)2)
≤ (2n − k + 1)4

22n+m
+

(k − 1)2

22n

for a fixed ψ. By (18), conclude that

Var
h

[
T jk (y)

]
= Ex

h

 ∑
(ψ,ψ′)∈Ψ2

IψIψ′

−
Ex

h

∑
ψ∈Ψ

Iψ

2

≤ (k − 1)2

2m
. (19)

By (18) and (19), the proof completes.
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7.3 Proof of Lemma 9

Let Ψ = {0, 1}n × {0, 1}n and fix j, k, z and y. Let Iψ where ψ = (α, β) ∈ Ψ be
an indicator variable such that

Iψ = 1⇔ (α ∈ {0, 1}n \ {ujl }l∈[k−1]) ∧ (β ∈ {0, 1}n \ {vjl }l∈[k−1])

∧ (α⊕β⊕ y ∈ {0, 1}n \ {wjl }l∈[k−1]).

Observe that

T jk (y) =
∑
ψ∈Ψ

Iψ

and

Ex
z

[Iψ] =
(2n − k + 1)3

23n
. (20)

Thus, we have

Ex
z

[
T jk (y)

]
=
∑
ψ∈Ψ

(2n − k + 1)3

23n
=

(2n − k + 1)3

2n
.

To compute the variance, we compute the following expectation

Ex
z

[(
T jk (y)

)2]
= Ex

z


∑
ψ∈Ψ

Iψ

2
 = Ex

z

 ∑
(ψ,ψ′)∈Ψ2

IψIψ′

 .
For ψ = (α, β, γ) and ψ′ = (α′, β′, γ′), let r be the number of distinctness
conditions among

1. α ̸= α′,
2. β ̸= β′,
3. α⊕β ̸= α′⊕β′.

Note that ψ = ψ′ if r = 0. Note that r ̸= 1 since two of the equality conditions
implies the remaining equality. We see that, for r = 0, 2, 3,

Ex
z

[IψIψ′ ] =
(2n − k)r(2n − k + 1)3

(2n − 1)r23n
=

(
1− k − 1

2n − 1

)3(
2n − k + 1

2n

)3

.

For a fixed ψ ∈ Ψ , we have

|{ψ′ ∈ Ψ | r = 0}| = 1,

|{ψ′ ∈ Ψ | r = 2}| = 3 · 2n − 3,

|{ψ′ ∈ Ψ | r = 3}| = 22n − 3 · 2n + 2.
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It follows that∑
ψ′∈Ψ,
r=0

Ex
z

[IψIψ′ ] =

(
2n − k + 1

2n

)3

,

∑
ψ′∈Ψ,
r=2

Ex
z

[IψIψ′ ] = (3 · 2n − 3)

(
1− k − 1

2n − 1

)2(
2n − k + 1

2n

)3

,

∑
ψ′∈Ψ,
r=3

Ex
z

[IψIψ′ ] = (22n − 3 · 2n + 2)

(
1− k − 1

2n − 1

)3(
2n − k + 1

2n

)3

.

Similarly to (10), we have

Ex
z

∑
ψ′∈Ψ

IψIψ′

 =

(
2n − k + 1

2n

)3(
22n − 3 · 2n(k − 1) + 3(k − 1)2

− (22n − 3 · 2n + 2)

(
k − 1

2n − 1

)3)
=

(
2n − k + 1

2n

)3(
(2n − k + 1)3

2n
+

(k − 1)3

2n(2n − 1)2

)
≤ (2n − k + 1)6

24n
+

(k − 1)3

23n

for a fixed ψ. By (20), conclude that

Var
z

[
T jk (y)

]
= Ex

z

 ∑
(ψ,ψ′)∈Ψ2

IψIψ′

−
Ex

z

∑
ψ∈Ψ

Iψ

2

≤ (k − 1)3

2n
. (21)

By (20) and (21), the proof completes.
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