
Quantum cryptography with classical communication

Parallel remote state preparation for
copy-protection, verification, and more

Alexandru Gheorghiu1, Tony Metger*2, and Alexander Poremba3

1Institute for Theoretical Studies, ETH Zürich, 8092 Zürich, Switzerland
2Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland

3Computing and Mathematical Sciences, California Institute of Technology, CA 91125, United States

Abstract

Quantum mechanical effects have enabled the construction of cryptographic primitives that are im-
possible classically. For example, quantum copy-protection allows for a program to be encoded in a
quantum state in such a way that the program can be evaluated, but not copied. Many of these cryp-
tographic primitives are two-party protocols, where one party, Bob, has full quantum computational
capabilities, and the other party, Alice, is only required to send random BB84 states to Bob. In this work,
we show how such protocols can generically be converted to ones where Alice is fully classical, assum-
ing that Bob cannot efficiently solve the LWE problem. In particular, this means that all communication
between (classical) Alice and (quantum) Bob is classical, yet they can still make use of cryptographic
primitives that would be impossible if both parties were classical. We apply this conversion procedure to
obtain quantum cryptographic protocols with classical communication for unclonable encryption, copy-
protection, computing on encrypted data, and verifiable blind delegated computation.

The key technical ingredient for our result is a protocol for classically-instructed parallel remote
state preparation of BB84 states. This is a multi-round protocol between (classical) Alice and (quantum
polynomial-time) Bob that allows Alice to certify that Bob must have prepared n uniformly random
BB84 states (up to a change of basis on his space). Furthermore, Alice knows which specific BB84
states Bob has prepared, while Bob himself does not. Hence, the situation at the end of this protocol is
(almost) equivalent to one where Alice sent n random BB84 states to Bob. This allows us to replace the
step of preparing and sending BB84 states in existing protocols by our remote-state preparation protocol
in a generic and modular way.

*Corresponding author: tmetger@ethz.ch

mailto:tmetger@ethz.ch

Contents

1 Introduction 3
1.1 Main results . 4
1.2 Related work . 7
1.3 Soundness proof for parallel RSP protocol . 9
1.4 Discussion . 12

I Classically-instructed parallel remote state preparation of BB84 states 14

2 Preliminaries 14
2.1 Notation . 14
2.2 Extended trapdoor claw-free functions . 14
2.3 Computational efficiency and distinguishability . 15
2.4 Distance measures . 15

3 Protocol description and completeness 17

4 Protocol soundness 20
4.1 Modelling devices in Protocol 1 . 21
4.2 Extending Lemma 4.10 to different basis choices . 24
4.3 Pauli group relations for inefficient observables . 28
4.4 Switching to efficient observables . 34
4.5 Preparing BB84 states . 38

II Applications 47

5 Unclonable quantum encryption 47
5.1 Quantum encryption of classical messages . 47
5.2 Unclonable quantum encryption with a classical client . 48
5.3 Conjugate coding encryption with a classical client . 50

6 Quantum copy-protection 53
6.1 Quantum encryption with wrong-key detection . 54
6.2 Quantum copy-protection with a classical client . 58
6.3 Quantum copy-protection of multi-bit point functions with a classical client 59

7 Quantum computing on encrypted data 64
7.1 Quantum computing on encrypted data with a classical client 66

8 Verifiable delegated blind quantum computation 70
8.1 History state construction and post-hoc verification . 72
8.2 Morimae’s verification protocol . 73
8.3 Mahadev’s measurement protocol . 73
8.4 Verifiable delegated blind quantum computation with a classical verifier 74

1 Introduction

A central distinction between classical and quantum information is that a classical string can always be
copied, but a quantum state cannot: the no-cloning theorem states that there cannot exist a procedure that
produces the state ρ⊗ ρ when given as input an arbitrary quantum state ρ [WZ82]. The first cryptographic
protocols that made use of the no-cloning theorem were Wiesner’s proposal to use quantum states as unforge-
able banknotes [Wie83] and Bennett and Brassard’s protocol for information-theoretically secure quantum
key-distribution (the BB84 QKD protocol) [BB84]. These protocols rely on the idea of a conjugate coding
scheme: classical information can be encoded into a quantum state in (at least) two incompatible bases, most
commonly the standard basis {|0〉, |1〉} and the Hadamard basis {|+〉, |−〉}, where |±〉 = 1√

2
(|0〉 ± |1〉).

These four states are commonly referred to as BB84 states. If we encode a bit b ∈ {0, 1} as either |b〉 or
|(−)b〉 = 1√

2
(|0〉+ (−1)b|1〉), then an adversary who does not know which basis we chose for the encod-

ing cannot create a copy of this quantum state. Furthermore, if the adversary tries to measure the state, with
probability 1/2 they will choose the “wrong” measurement basis, which disturbs the state and means that
the adversary’s tampering can be detected.

There is an important conceptual difference between the BB84 protocol and Wiesner’s quantum money
scheme. The former addresses the problem of key-distribution, which is a task that can also be achieved
classically under computational assumptions using public-key cryptography [DH76]. In contrast, Wiesner’s
quantum money scheme achieves a functionality which is entirely impossible classically, even under com-
putational assumptions. Recently there has been renewed interest in this latter kind of application, i.e. to
use BB84 states to construct quantum cryptographic primitives that have no classical analogue. Perhaps the
most striking example of this is the idea of quantum copy-protection [Aar09]. Suppose that a vendor has
created a piece of software (viewed as a function that maps some input to some output) and wants to allow
a user to run it (i.e. to evaluate the function), while preventing the user from producing additional “pirated”
copies of the original software. Clearly, this is impossible classically: any piece of software is specified by
a string of symbols, which can easily be copied. Surprisingly, it has been shown that it is possible to encode
certain narrow classes of functions in the form of a quantum state in such a way that a user can evaluate the
function without being able to copy it [CMP20].

Copy-protection and many related protocols require only limited quantum capabilities from one party,
e.g. the vendor in the case of copy-protection: they only need to prepare random BB84 states and send them
to the other party (e.g. the user in copy-protection), who has full quantum computational capabilities. In
particular, this requires a quantum channel between the two parties to send the BB84 states. The purpose
of this paper is to show that such protocols, where one party’s quantum operations are limited to preparing
and sending random BB84 states, can be converted into protocols where that party is fully classical. This
dequantises such protocols in the sense that all communication becomes classical. To achieve this, we need
to construct a protocol between a classical verifier and a computationally bounded quantum prover that
achieves the same outcome as if the verifier had prepared and sent random BB84 states to the prover. We call
this task classically-instructed parallel remote state preparation of BB84 states, or parallel RSP for short.
Our protocol builds on techniques introduced in [Mah18, BCM+18, GV19] that allow the verifier to use
post-quantum cryptography to constrain the actions of an untrusted (but computationally bounded) prover.
Proving soundness for this parallel RSP protocol is the main technical result of our work. We then use this
result to dequantise a number of cryptographic protocols, namely unclonable quantum encryption, quantum
copy-protection, quantum computing on encrypted data and blind verification of quantum computation. As
an additional contribution, for copy-protection we improve upon a previous result [CMP20] by removing
the use of a quantum random oracle for a certain class of copy-protected functions.

3

1.1 Main results

We start by first describing the soundness guarantee achieved by our parallel RSP protocol. Intuitively,
the goal of our protocol is to guarantee that the prover has prepared a quantum state of the form
Hθ1 |v1〉〈v1|Hθ1 ⊗ . . .⊗ Hθn |vn〉〈vn|Hθn , where ~v,~θ ∈ {0, 1}n. Additionally, the prover should not have
any information about ~v and ~θ beyond what is contained in its BB84 states, while the verifier should know
both ~v and ~θ. Our protocol achieves a guarantee of this kind assuming the quantum-intractability of the
Learning with Errors (LWE) problem introduced by Regev [Reg09]. Our main result is the following (see
Theorem 4.33 for the corresponding formal statement):

Theorem 1.1 (Informal). There exists an interactive protocol between a classical verifier and a computa-
tionally bounded quantum prover such that the following holds assuming the quantum-intractability of LWE.
For any number n of BB84 states and any basis choice~θ ∈ {0, 1}n, the verifier and prover’s final joint state
σWP conditioned on the prover being accepted in the protocol satisfies

psuccessVσWPV† ≈1/ poly(n)
1
2n ∑

~v∈{0,1}n

|v〉〈v|W ⊗
(

Hθ1 |v1〉〈v1|Hθ1 ⊗ . . .⊗ Hθn |vn〉〈vn|Hθn
)
⊗ αP′ .

Here, W is a system in the verifier’s possession, P is in the prover’s possession, V is an isometry from P to
QP′ that is independent of ~v and ~θ, αP′ is some additional (subnormalised) state independent of ~v and ~θ,
and psuccess is the prover’s success probability in the protocol.

We make two remarks regarding this security guarantee. Firstly, the theorem makes a statement about
the joint state of the verifier’s system W and the prover’s system P after applying an isometry V that only
acts on the prover’s space. This additional isometry is unavoidable: it represents the prover’s freedom to
use any basis of its choice on its space. Hence, we cannot guarantee that the prover prepares BB84 states (in
the standard basis), only that it prepares BB84 states up to a change of basis. However, crucially this change
of basis is independent of which BB84 state was supposed to be prepared, i.e., V is independent of ~v and
~θ. Put differently, the theorem guarantees that the prover prepares one of 4n possible states whose relation
to each other is the same as the relation between the 4n BB84 states. This does not affect the utility of the
prover’s state for applications. In fact, this freedom also exists if the verifier sent n BB84 states to the prover
via a quantum channel: the prover could apply an isometry V to these states immediately upon receipt, but
the security of any application using the BB84 states is not impacted by this.

Secondly, the theorem holds for any basis choice ~θ, but on average over the values ~v. In other words,
in the protocol, the verifier gets to choose the bases at will, but the values will be uniformly random and
cannot be chosen by the verifier. Furthermore, the only dependence on~v and~θ in the prover’s state is via the
BB84 states. This means that the protocol forces the prover to prepare these states “blindly”, i.e., the prover
does not know which BB84 states were actually prepared. In contrast, the verifier does know, because they
chose ~θ and are in possession of the system W, which contains information about ~v. This asymmetry of
knowledge about the prover’s state is the same as what is achieved by preparing and sending BB84 states
through a quantum channel and is crucial for applications.

Having introduced our parallel RSP theorem, we can turn to its cryptographic applications. We con-
sider various cryptographic primitives that have previously been defined and constructed in a setting where
one party sends random BB84 states to the other. For each primitive, we give a formal definition of the
“classical-client version” and show that this definition can be satisfied using our parallel RSP protocol
as a building block. Since our parallel RSP protocols relies on the LWE assumption, so do the dequan-
tised protocols we present here. Furthermore, Theorem 1.1 only guarantees the preparation of BB84 states

4

up to an inverse polynomial error, so as a result, the dequantised protocols only have inverse polynomial
security (see Section 1.4 for a discussion of this point). Some of these primitives have previously been
dequantised using an application-specific approach (and similarly relying on computational assumptions)
[GV19, CCKW19, RS19, HMNY21, KNY21]; in contrast, our approach is generic and simply uses RSP to
replace the sending of BB84 states. We give a short overview of the different applications and refer to Part II
for details.

Unclonable quantum encryption. As a first application of our parallel RSP protocol, we consider the no-
tion of unclonable quantum encryption. This cryptographic functionality was coined by Gottesman [Got02]
and then formalised by Broadbent and Lord [BL19]. In a private-key unclonable quantum encryption
scheme, a classical message is encrypted into a quantum state (the quantum ciphertext) with the follow-
ing property: given only a single quantum ciphertext, it is impossible to create two states that can later both
be decrypted with access to the private key. Broadbent and Lord gave an information-theoretic unclonable
encryption scheme based on conjugate coding: a plaintext ~m ∈ {0, 1}n is encrypted with a randomly chosen
secret key k = (~r,~θ) $←−{0, 1}n × {0, 1}n into the quantum ciphertext given by

Enck(~m) =
n⊗

i=1

Hθi |ri ⊕mi〉〈ri ⊕mi|Hθi . (1.1)

To decrypt using the secret key k = (~r,~θ), one applies Hadamard operations Hθ1 ⊗ · · · ⊗ Hθn to the state
Enck(~m), measures in the computational basis with outcome ~x ∈ {0, 1}λ, and outputs ~m′ = ~x⊕~r. The fact
that this scheme is unclonable is a direct consequence of the monogamy of entanglement [BL19, TFKW13].

To dequantise this protocol, we consider a scenario in which a classical client C wishes to delegate an
unclonable ciphertext to a quantum receiver R. As a first step, C and R run our parallel RSP protocol to
delegate a collection of random BB84 states of the form Hθ1 |v1〉 ⊗ · · · ⊗Hθn |vn〉, where~v,~θ ∈ {0, 1}n are
random strings known only to C. Then, C can choose~r ∈ {0, 1}n such that ~v = ~m⊕~r and set~k = (~r,~θ) as
the secret key. With this choice of key, the delegated parallel BB84 states are exactly the ciphertext Enck(~m)
in Equation (1.1). Because the final output state of the protocol is computationally indistinguishable from a
tensor product of BB84 states (known to the client), we can follow a similar proof as in [BL19] to obtain a
classical-client unclonable encryption scheme with inverse-polynomial security.

Quantum copy-protection. In quantum copy-protection (QCP), a vendor wishes to encode a program into
a quantum state in a way that enables a recipient to run the program, but not to create functionally equivalent
“pirated” copies. The notion of QCP was introduced by Aaronson [Aar09], who gave the first construction
for unlearnable and efficiently computable functions in a strong quantum oracle model, which has since been
improved to only requiring classical oracles [ALL+21]. Recent work [CMP20] has also provided the first
construction of QCP for compute-and-compare programs in the quantum random oracle model (QROM)
as well as a construction for multi-bit point functions in the QROM based on unclonable encryption with
wrong-key detection (WKD), a property which enables the decryption procedure to recognise incorrect keys.
In this work, we build on the latter and give a new QCP scheme that does not require the QROM assumption.

Our new QCP scheme for multi-bit point functions relies on pair-wise independent permutations [NR97],
which exist unconditionally and have previously been used in the context of classical obfuscation of point
functions [CKVW10]. The basic idea behind our QCP scheme is as follows. To encode a point function
P~y,~m, which is defined as returning ~m on input~y and 0 otherwise, we sample a random pairwise independent

5

permutation π over {0, 1}4n and a random string~r $←−{0, 1}n, let π(~y) = (~s||~θ), and output the state

ρ = Encπ(~y)(~r||~m)⊗ |~r〉〈~r| ⊗ |π〉〈π| , where Encπ(~y)(~r||~m) =
2n⊗

i=1

Hθi |si ⊕ (ri||mi)〉〈si ⊕ (ri||mi)|Hθi .

To evaluate the program on an input ~x ∈ {0, 1}4n, we compute π(~x) = (~sx||~θx) and apply the decryption
procedure of our aforementioned unclonable encryption scheme using the key (~sx,~θx). Note that it is possi-
ble to coherently check whether a particular input decrypts to a plaintext with pre-fix~r ∈ {0, 1}n. In other
words, the WKD property allows us to check whether an input to the point function Py,m is valid without
irreversibly destroying the state ρ in the process. Our second contribution is to show how to obtain a QCP
scheme with a classical client through the use of our parallel RSP protocol for preparing random BB84
states, similar to our aforementioned classical-client unclonable encryption scheme . Our scheme enables
a classical client to delegate a correct copy-protected program from the class of multi-bit point functions
consisting of uniformly random marked inputs ~y and output strings ~m with inverse-polynomial security.

Quantum computing on encrypted data. Suppose a client wishes to perform some quantum computa-
tion, represented as the action of a quantum circuit C on an input state |x〉, with x ∈ {0, 1}n. For simplicity,
we will assume the desired output is classical and corresponds to a computational basis measurement of
C|x〉. The client only has limited quantum capability and therefore wishes to delegate the computation to a
quantum server while ensuring the privacy of the input |x〉 and the output resulting from the measurement of
C|x〉. Essentially, the client would like to send the server an encryption of the input and, after performing an
interactive protocol, obtain an encryption of the output (which the client can decrypt, but the server cannot)1.
This primitive is called quantum computing on encrypted data (QCED).

Many protocols for QCED with differing quantum requirements on the client have been developed
(see [Fit17] for a survey). Here we will focus on the protocol of Broadbent [Bro15] which achieves QCED
with a client that is only required to prepare BB84 states and send them to the server. This makes the
protocol well-suited for dequantisation via our parallel RSP protocol. Before explaining this dequantisation,
we (informally) define what a QCED protocol with a classical client should achieve. As before, the client’s
input is the string x ∈ {0, 1}n and the goal is to obtain the outcome of measuring C|x〉 in the computational
basis. In contrast to before, this must be achieved using only classical interaction with the quantum server.
The requirement that the client’s input must stay private is captured by the condition that after interacting
with the client, it must be computationally intractable for the server to decide which one of two distinct
inputs the client used.

Our QCED protocol with a classical client works as follows. The client first performs the parallel RSP
protocol with the server, resulting in the preparation of BB84 states (or the client aborting). Provided the
protocol succeeded, the client proceeds to run Broadbent’s protocol [Bro15] as if the server had received
those BB84 states via a quantum channel. The security proof is straightforward. First, we know that after
performing RSP the server’s state is computationally indistinguishable from a tensor product of BB84 states
(known to the client). Furthermore, the interaction in [Bro15] preserves this computational indistinguisha-
bility. Hence, the server’s state at the end of the protocol is indistinguishable from the state the server would
have obtained by executing the protocol with random BB84 states and the security of our protocol follows
from [Bro15].

1This also allows the client to hide the computation itself from the server by suitably encoding it as part of the input x and
taking C to be a universal circuit. When the primary goal of the protocol is to hide the computation, it is referred to as a blind
quantum computing protocol [AS06, BFK09].

6

Verifiable delegated blind quantum computation. The final application we consider is verifiable del-
egated blind quantum computation (VDBQC). VDBQC is an interactive protocol between two parties, in
this case denoted as the verifier and the prover. The verifier delegates a computation to the prover and, in
addition to ensuring input-output privacy as in QCED, the protocol also ensures that the probability for the
verifier to accept an incorrect output is small. In other words, if the prover deviates from the protocol and
does not perform the verifier’s instructed computation, the verifier should be able to detect this and abort
with high probability. As with QCED, a number of such protocols have been developed and we refer the
reader to [GKK19] for a survey.

Here we focus on a protocol by Morimae [Mor18]. This protocol achieves verifiability by combining a
protocol for blind quantum computation (or QCED) with the history state construction, which is a special
encoding of a quantum circuit into a quantum state [KSVV02, KKR06]. In Morimae’s protocol, for a given
circuit C the verifier uses a QCED protocol to delegate to the prover the preparation of two such history
states (one for C and one for the complement of C, where the output qubit is negated). The verifier then
requests these states from the prover and proceeds to measure them in the computational or Hadamard basis.
This allows the verifier to determine the output of the computation. The history state construction guarantees
that malicious behavior on the prover’s part would be detected by the verifier’s measurement. Additionally,
the use of a QCED protocol ensures that the prover is “blind”, i.e. does not know which computation the
verifier delegated.

To dequantise this protocol, we use our QCED protocol with a classical client to delegate the preparation
of the two history states to the quantum prover. We then replace the verifier’s measurements on this state
by a measurement protocol due to Mahadev [Mah18], which allows the classical verifier to delegate these
measurements to the prover in a way that forces the prover to report the correct outcomes. We thus obtain a
VDBQC protocol with a classical verifier. Crucially, through the use of the classical client QCED protocol
and Mahadev’s measurement protocol, the prover is “computationally blind”, i.e. unable to distinguish which
computation the verifier has performed. In contrast, Mahadev’s verification protocol [Mah18] does not have
this property.2

1.2 Related work

A number recent of works starting with [BCM+18, Mah18] have developed techniques that allow a classical
verifier to use post-quantum cryptography to force an untrusted (but computationally bounded) quantum
prover to behave in a certain way. Here, we briefly describe these works and explain their relation to our
parallel RSP protocol.

In a breakthrough result [Mah18], Mahadev introduced a protocol that allows a classical verifier to
delegate a quantum computation to a quantum computer and be able to verify the correctness of the result.
The key ingredient for this protocol is a measurement protocol, which allows the verifier to securely delegate
single-qubit measurements in the standard or Hadamard basis to a quantum prover, assuming that the prover
cannot break the LWE assumption. This can then be applied to so-called prepare-and-measure protocols:
if one has a protocol that involves a quantum prover preparing and sending a quantum state to the verifier
and the verifier performing single-qubit measurements on this state, one can use Mahadev’s measurement
protocol to delegate these quantum measurements to the prover itself. This yields a protocol in which the
prover only sends classical measurement outcomes to the verifier, hence making the verifier classical.

2In [GV19], the authors also construct a blind verification protocol based on RSP. However, they approach the problem in
a composable framework, which requires them to make an additional assumption on the prover (called the measurement buffer
in [GV19]). In contrast, our protocol requires no extra assumptions on the prover. We describe the issue with the measurement
buffer assumption in more detail in Section 1.2.

7

This measurement protocol is in many ways similar to what we seek to do in this paper: it removes the
need for quantum communication between a fully quantum prover and a verifier with very limited quantum
capabilities (only measuring single qubits in the computational or Hadamard basis). The difference to our
work is that we are concerned with prepare-and-send protocols, in which the verifier sends random BB84
states to the prover instead of receiving them.

It turns out that replacing the quantum communication of prepare-and-send protocols requires signifi-
cantly stronger control over the untrusted prover. At a high level, the reason is the following: for Mahadev’s
measurement protocol, it suffices to show that there exists a quantum state that is consistent with the dis-
tribution of measurement outcomes reported by the prover, in the sense that the measurement outcomes for
different bases could have been obtained by measurements on (copies of) the same state. In contrast, if we
want to replace the step of the verifier sending a physical quantum state to the prover, we need to show
that the prover has actually constructed a certain quantum state, not just that such a quantum state exists
mathematically.3 We give a more detailed description of what it means to “actually construct” a quantum
state in Section 1.3.

The first classical protocol that provably forced a quantum prover to prepare a certain quantum state was
the single-qubit RSP protocol of [GV19] (see also [CCKW19] for a related result). This protocol essentially
achieves our informal theorem as stated above for a single qubit, i.e. n = 1.4 We give a brief outline of that
protocol and its soundness proof in Section 1.3.

The main difficulty in going from [GV19] to our parallel RSP result is enforcing a tensor product struc-
ture on the prover’s space: we would like to show that if we execute multiple instances of a single-qubit
RSP protocol in parallel, a successful prover must treat each of these copies independently. Mathematically,
this means that we need to be able to split the prover’s a priori uncharacterised Hilbert space into a tensor
product, where each tensor factor is supposed to correspond to one instance of the RSP protocol. This is a
more demanding version of the classic question of parallel repetition: there, one is interested in showing that
any prover’s winning probability in the protocol decays in essentially the same way as it would for a prover
who executes the instances independently. In contrast, we need to show that the prover really does execute
the different instances independently in a physically meaningful sense. We call this stronger requirement
parallel rigidity.5 The question of parallel rigidity has been studied extensively in the literature on quantum
self-testing [CN16, Col16, NV17, NV18], where one considers a setting of two non-communicating provers.
Unfortunately, those techniques are not immediately transferable to the setting we consider here, namely a
single computationally bounded prover.

Some progress towards the question of parallel rigidity for single computationally bounded provers was

3In fact, in [VZ21] it was shown that Mahadev’s measurement protocol does ensure that the prover knows (in the sense of
a proof of knowledge) the state it is measuring, not just that it exists mathematically. The notion of “knowing” a quantum state
is quite subtle to define and we forego a detailed description here, but point out that this is weaker than showing that the prover
actually constructed the state and (to the best of our knowledge) not sufficient to use Mahadev’s protocol for prepare-and-measure
scenarios.

4The protocol in [GV19] in fact works for a set of 10 states which includes the 4 BB84 states. Here, we only focus on the 4
BB84 states as this is the case we will deal with in our parallel RSP protocol.

5In [GV19], the authors show that their protocol has composable security. This may suggest that one can obtain a parallel
rigidity statement simply by composing the protocol with itself in parallel. However, this is not the case because the composable
security statement in [GV19] requires an additional assumption called a measurement buffer, which effectively acts as a trusted
intermediary between the verifier and the prover. A parallel composition of the protocol in [GV19] would utilise a different
measurement buffer for each instance, thereby forcing the prover to treat the different instances in a (largely) independent way. In
particular, this means that one already assumes a tensor product structure with n separate qubits in the prover’s space, whereas in
our work enforcing this tensor product structure is the key technical challenge. For cryptographic applications, we do not want to
place any such assumption on the prover and instead allow the prover to perform arbitrary global operations involving all instances.
This is what our parallel RSP protocol achieves.

8

made in [MV20], which gives a protocol that allows a classical verifier to certify that a quantum prover
must have prepared and measured a Bell state, i.e. an entangled 2-qubit quantum state. This has since
been applied to device-independent quantum key distribution [MDCAF21] and oblivious transfer [BY21],
and been extended to work for magic states [MTH+21]. The protocol from [MV20] uses a 2-fold parallel
repetition of [GV19] (with additional steps to allow for the certification of an entangled state, not just product
states). As part of their soundness proof, [MV20] do show a kind of parallel rigidity result for 2 instances
of the RSP protocol. However, their method does not generalise to an n-fold parallel repetition without an
exponential decay in parameters. Hence, for our n-fold parallel rigidity proof, new techniques are needed.
We give a more detailed comparison between our new parallel rigidity proof and the method in [MV20] at
the end of Section 1.3.

In addition to this line of work focused on rigidity statements, application-specific dequantisations
were already considered for private-key quantum money [RS19], certifiable deletion of quantum encryp-
tion [HMNY21] and secure software leasing [KNY21]. In all these cases the authors derived the desired
security statement from properties of trapdoor claw-free functions, a cryptographic primitive which is also
the basis of our RSP protocol. While this is less generic and modular than our approach and requires a new
analysis for each application, it does have the advantage that one can obtain negligible security, whereas
with RSP we obtain inverse polynomial security. We comment more on the possibility of negligible security
from RSP-like primitives in Section 1.4.

1.3 Soundness proof for parallel RSP protocol

We give a short sketch of the soundness proof for our parallel RSP protocol. The full protocol is described
as Protocol 3 (though our discussion in the introduction is restricted to Protocol 1) and its soundness proof
is given in Section 4. We briefly explain the difference between Protocol 1 and Protocol 3: Protocol 1 is
a protocol to test the prover, i.e. in this protocol the prover is asked to prepare and measure a quantum
state, and the verifier runs checks on the prover’s answer. The soundness statement for this protocol is
a self-testing statement in the sense of [MV20], which characterises which states and measurements the
prover used in the protocol. Although we do not spell this out in Section 4, it is easy to obtain an explicit
self-testing statement from our proof. In contrast, Protocol 3 is a protocol for remote state preparation, so
the prover is supposed to prepare, but not yet measure, a particular quantum state. Instead, this quantum
state will be used for other applications. This means that we do not want to make a statement about how the
prover measured its state, but rather what state remains in its quantum memory. The soundness of Protocol 3
follows from that of Protocol 1 via a statistical argument. In the following, we focus on Protocol 1. We do
not explain the protocol and the cryptographic primitives underlying it in detail; instead, we give a very
high-level description of the relevant part of the soundness proof of the RSP protocol from [GV19] and then
explain our method for proving a parallel rigidity statement based on that result.

The main cryptographic primitive underlying the RSP protocol is a so-called extended noisy trap-
door claw-free function (ENTCF) family, which can be constructed assuming the quantum hardness of
LWE [Reg09, Mah18]. An ENTCF family is a family of functions indexed by a set of keys K0 ∪ K1. K0
and K1 are disjoint sets of keys with the property that given a k ∈ K0 ∪K1, it is computationally intractable
to determine which set this key belongs to. See [Mah18, Section 4] for further details on ENTCF families.

In the RSP protocol from [GV19], for a given basis choice θ ∈ {0, 1} (where “0” corresponds to the
computational and “1” to the Hadamard basis), the verifier samples a key k ∈ Kθ , alongside some trapdoor
information t. The verifier sends k to the prover and keeps t private. The verifier and prover then interact
classically; for us, the main point of interest is the last round of the protocol. Let us denote the protocol’s
transcript up to the last round by ts. Before the last round, the remaining quantum state of an honest prover

9

is the single-qubit state Hθ |v〉〈v|Hθ for v ∈ {0, 1}. From the transcript and the trapdoor information, the
verifier can compute v; in contrast, the prover, who does not know the trapdoor, cannot efficiently compute θ
or v. In the last round, the verifier sends a random measurement basis θ′ ∈ {0, 1} to the prover, who returns
v′ ∈ {0, 1}. In case θ′ = θ, the verifier then checks whether v′ = v. The honest prover would generate v′

by measuring its remaining qubit Hθ |v〉〈v|Hθ in the basis θ′ and therefore always pass the verifier’s check.
We can model this last round of the protocol (with a potentially dishonest prover) as follows: at the

start, the prover has a state σ(θ,v), which it produced as a result of the previous rounds of the protocol. For
an honest prover, σ(θ,v) = Hθ |v〉〈v|Hθ . Of course, this state can depend on all of ts, but we only make
the dependence on θ and v explicit. Upon receiving θ′ ∈ {0, 1} the prover measures a binary observable
Z (if θ′ = 0) or X (if θ′ = 1) and returns the outcome v′. An honest prover would simply use the Pauli
observables Z = σZ and X = σX. The key step in the proof of [GV19] is to show that, due to the
properties of ENTCF families, for any (potentially dishonest) prover that is accepted with high probability,
the observables X and Z must anti-commute when acting on the prover’s state. Then, Theorem 1.1 (for
n = 1) follows from known results [MYS12, NV17, GH17].

For our parallel RSP protocol we run n independent copies of the protocol from [GV19] in parallel,
except that the basis choice θi is the same for each copy, and likewise all θ′i are the same.6 The prover’s
state before the last round of each copy of the RSP protocol is now denoted by σ(θ,~v), where ~v ∈ {0, 1}n

can be calculated by the verifier from the transcript ts by repeating the same calculation as above for each
parallel copy. Generalising from the single-qubit case, given θ′ ∈ {0, 1} the prover performs a measurement
to generate ~v ∈ {0, 1}n, which we can describe by binary observables Zi, Xi (for θ′ = 0, 1 respectively)
that correspond to the observable used to produce the i-th entry of ~v. (For an honest prover, σ(θ,~v) =
Hθ |v1〉〈v1|Hθ ⊗ . . .⊗ Hθ |vn〉〈vn|Hθ and Zi is a Pauli-Z measurement on the i-th qubit.)

The main challenge in the proof is to establish that the prover must treat all of the parallel copies of the
RSP protocol independently, i.e. to show that its (a priori uncharacterised) Hilbert space can be partitioned
into n identical subspaces, one for each copy of the protocol. At first sight, it might look as though for this
it suffices to show that Xi and Zj (approximately) commute for all i 6= j. However, this is not the case
because any such commutation statement can only be shown in a special state-dependent distance [Vid11],
which does not allow us to combine individual commutation statements into the global statement that the
Hilbert space factorises into n subspaces. Instead, we need to consider the family {Z(~a)X(~b)}~a,~b∈{0,1}n

of 4n binary observables, where Z(~a) = Za1
1 · · · Z

an
n . We then have to show that {Z(~a)X(~b)} form an

approximate representation of the Pauli group [GH17, Vid20].7 This means that when acting on the prover’s
(unknown) state σ(θ) (where σ(θ) is like σ(θ,~v), but averaged over all ~v), the operators {Z(~a)X(~b)} behave
essentially like Pauli operators. Formally, this means showing that on average over~a,~b ∈ {0, 1}n,

Tr
[

Z(~a)X(~b)Z(~a)X(~b)σ(θ)
]
≈ (−1)~a·~b . (1.2)

This is the appropriate generalisation of the statement that Z and X anti-commute in the single-qubit case.
It is easy to check that Equation (1.2) holds when Zi and Xi are the Pauli observables.

Our proof of Equation (1.2) has five main steps, which we briefly sketch here with references to the
corresponding parts of the formal proof.

6The advantage of this is that a prover that succeeds with high probability on average over θ must also succeed with high
probability for each θ individually. If we were to sample θ independently for each of the parallel copies we could not conclude that
a prover succeeds with high probability for any particular choice of θ1, . . . , θn as there are exponentially many such choices.

7When we say “Pauli group” we always mean the Pauli group modulo complex conjugation, which is also sometimes called
the Heisenberg-Weyl group.

10

(1) Instead of working with the observables Xi, we define “inefficient observables” X̃i = (−1)vi Xi, where
vi is the i-th bit of the verifier’s string ~v (Definition 4.4). X̃i is not an observable that an efficient prover can
implement because it depends on vi, which requires the trapdoor information to be computed efficiently.
Intuitively, while Xi describes the prover’s answer, X̃i describes whether that answer is accepted by the ver-
ifier. This has the advantage that the state σ(θ=1) (averaged over ~v) of a successful prover is an approximate
+1-eigenstate of X̃i, but not of Xi (Lemma 4.10).

(2) We extend the family of states {σ(θ)}θ∈{0,1} to a larger family of “counterfactual states” {σ(~θ)}~θ∈{0,1}n ,
which are defined as the states the prover would have prepared if the verifier had sent keys ki ∈ Kθi . In
Protocol 1 the basis choice is the same for all i, i.e. ~θ = ~0 or θ = ~1, so for other choices of ~θ these
states are never actually prepared. However, they are still well-defined because for any prover in the actual
protocol, we can fix that prover’s operations (as a quantum circuit acting on a given input) and then consider
what state those operations would produce if given keys with an arbitrary basis choice ~θ. The reason these
counterfactual states are useful is that we can show that, as a consequence of the properties of ENTCF
families, the states {σ(~θ)}~θ are computationally indistinguishable (Section 4.2).

(3) We now want to show various commutation and anti-commutation relations for the observables Z(~a)
and X̃(~b) (Lemma 4.21 and Lemma 4.23). For example, we want to show that Zi and X̃i anti-commute, but
Zi and X̃j commute (for i 6= j). To show these relations, we make use of the counterfactual states σ(~θ) in
the following way: for any particular relation, we can pick a ~θ that makes showing this relation especially
convenient. For example, to show that Zi and X̃j commute, we would choose a ~θ with θi = 0 and θj = 1
since the verifier can check the outcomes of “Z-type observables” for θ = 0 and “X-type observables”
for θ = 1. Using the properties of ENTCF families, we can argue that the prover’s measurements on these
counterfactual states still yield outcomes that would pass the verifier’s checks for each choice of θi. Based on
this, we can show the desired relations for a “convenient” choice of counterfactual state σ(~θ). Then, we can
relate these statements back to the prover’s actual states σ(θ) using the computational indistinguishability of
{σ(~θ)}. This is somewhat delicate because X̃i are inefficient, see Lemma 4.13 for the precise statement.

(4) We can combine the various commutation and anti-commutation statements from the previous step to
show that the observables {Z(~a)X̃(~b)} behave like Pauli observables on σ(θ=1), i.e. we show Equation (1.2)
but with X̃ instead of X (Proposition 4.19). This step relies on the fact that σ(θ=1) is an approximate +1-
eigenstate of X̃(~b) for all~b; see the proof of Proposition 4.19 for details on how this simplifies the analysis.

(5) Since we now know that {Z(~a)X̃(~b)} behave essentially like Pauli observables, we can define an
explicit isometry Ṽ which can be shown to map {Z(~a)X̃(~b)} to the corresponding Pauli observables
(Lemma 4.28). This means that we have good control over these inefficient observables, and we know
how the inefficient and efficient observables are related. We can use this to define a modified isometry V
that maps the efficient observables {Z(~a)X(~b)} to the corresponding Pauli observables (Proposition 4.29).
This is a stronger version of Equation (1.2) and, combined again with the verifier’s checks in the protocol
and properties of ENTCF families, can be used to show that the prover must have prepared BB84 states
(Section 4.5).

We briefly comment on the relation between our soundness proof and that in [MV20]. At a high level,
the soundness proof in [MV20] also shows a kind of “parallel rigidity” of two executions of a remote
state preparation protocol. However, their proof proceeds quite differently from ours: they first show that
observables “on the first qubit” anti-commute, which allows them to make a partial statement about the
prover’s state. This in turn can be used to extend the statement about the prover’s observables to two-qubit

11

observables, which is finally used to prove a statement about the prover’s two-qubit state. This qubit-by-
qubit approach is extremely costly in terms of parameters due to switching back and forth between making
partial statements about the observables and state, and cannot reasonably be extended to n qubits. In contrast,
we can make a global statement about the prover’s 4n possible observables without first characterising parts
of the prover’s state. This allows us to prove a parallel rigidity statement for n qubits without an exponential
degradation of parameters.

1.4 Discussion

We have shown how a classical verifier can certify a tensor product of BB84 states in the memory of a
quantum prover, assuming the quantum-intractability of the LWE problem. Importantly, the prover does
not know which BB84 states it has prepared, whereas the verifier does. Hence, the result at the end of the
protocol is as if the verifier had sent random BB84 states to the prover. This allows us to dequantise a number
of quantum cryptographic primitives, yielding a generic and modular way of translating these protocols to a
setting where only classical communication is used.

Our work raises a number of interesting open problems. Firstly, while our RSP primitive is based on
the hardness of LWE, we can ask whether it is possible to achieve this functionality from weaker computa-
tional assumptions. For instance, would it be possible to perform an RSP-like protocol assuming only the
existence of quantum-secure one-way functions? This is of particular interest because recent results have
shown that secure two-party computation can be achieved from one-way functions and quantum commu-
nication [BCKM21, GLSV21]. These results are based on the fact that an oblivious-transfer protocol can
be implemented from one-way functions and quantum communication that consists of BB84 states. How-
ever, an RSP primitive like ours would allow one to generically dequantise that quantum communication.
Hence if RSP (with sufficiently strong parameters) can be obtained from quantum-secure one-way func-
tions, then secure two-party computation can also be obtained from those functions, together with classical
communication. In light of earlier work [IR89, Rud91] we conjecture that this is impossible. Formalising
this intuition could lead to a better understanding of the minimum assumptions required for performing
RSP-like protocols.

Secondly, a more technical open problem concerns the parameters of our rigidity theorem, Theorem 1.1.
As stated above, provided the prover accepts, the state the verifier certifies is 1/ poly(n)-close to a tensor
product of n BB84 states (up to an isometry). The 1/ poly(n) closeness means that the soundness error of
our dequantised protocols also scales as 1/ poly(n). It would be desirable to achieve negligible soundness
error, particularly when considering composable instances of these protocols. Doing this via RSP would
require a version of the rigidity statement where the prover’s state can be characterised up to negligible
closeness, which seems unlikely. A more promising approach might be to circumvent an explicit RSP
statement: the advantage of the RSP statement in our paper is that one can use it to dequantise existing
protocols easily, but these existing protocols typically only use BB84 states because of their no-cloning
properties. Therefore, instead of using an RSP protocol to prepare those states, one could instead try to show
a “post-quantum cryptographic no-cloning property” directly that could plausibly be used to dequantise
these protocols while preserving negligible soundness.

Finally, we mention that our derivation of the parameters in the rigidity theorem (Theorem 4.33) is likely
not optimal and could be optimised to improve the efficiency of our protocol. The situation here is similar
to that of parallel self-testing in the multi-prover setting, with the first works having round complexity that
scaled as a high-degree polynomial [RUV13] and more recent works achieving quasilinear scaling [NV17,
CGJV19]. It would be interesting to see whether ideas from these newer works are also applicable in the
setting of parallel remote state preparation.

12

Acknowledgements. We thank Thomas Vidick for helpful discussions, and Jeffrey Champion and John
Wright for allowing us to use the results in Section 4.3, which are based on unpublished joint work by them
and the second author. AG is supported by Dr. Max Rössler, the Walter Haefner Foundation and the ETH
Zürich Foundation. TM acknowledges support from the QuantERA project “eDict” and the Air Force Office
of Scientific Research (AFOSR) Grant No. FA9550-19-1-0202. AP is partially supported by AFOSR YIP
award number number FA9550-16-1-0495 and the Institute for Quantum Information and Matter (an NSF
Physics Frontiers Center; NSF Grant PHY-1733907).

During the preparation of this manuscript, we became aware of related independent work by Fu, Wang,
and Zhao, who also show a parallel rigidity statement in the setting of a single computationally bounded
prover. More specifically, they are able to self-test (in the sense of [MV20]), i.e., certify the preparation and
measurement of, two kinds of states: (i) n parallel BB84 states subject to the restriction that only one of
the qubits may be in the Hadamard basis and the remaining n− 1 are in the computational basis, and (ii)
parallel EPR pairs. They also present a dimension testing protocol based on their self-test. We refer to their
paper [FWZ22] for more details and thank them for their cooperation in publishing our respective results at
the same time.

13

Part I

Classically-instructed parallel remote state
preparation of BB84 states
2 Preliminaries

We will follow the notation of [MV20], and also make frequent use of results from the preliminaries of that
paper. We include a copy of the most frequently used notations and lemmas from that paper here for the
reader’s convenience.

2.1 Notation

A function n : N → R+ is called negligible if limλ→∞ n(λ)p(λ) = 0 for any polynomial p. We use
negl(λ) to denote an arbitrary negligible function. We use the notation x $←−S to denote that x is being
sampled from the set S uniformly at random. We denote the concatenation of two strings x and y as x||y .

We use H to denote an arbitrary finite-dimensional Hilbert space, and use indices to differentiate be-
tween distinct spaces. The map Tr : L(H) → C denotes the trace, and TrB : L(HA ⊗HB) → L(HA)
is the partial trace over subsystem B. Pos(H) denotes the set of positive semidefinite operators on H, and
D(H) = {A ∈ Pos(H) | Tr[A] = 1} is the set of density matrices onH.

The single qubit Pauli operators are σX =
(

0 1
1 0

)
and σZ =

(
1 0
0 −1

)
. The Hadamard basis states are

written as |(−)b〉 = 1√
2
(|0〉+ (−1)b|1〉).

An observable onH is a Hermitian linear operator onH. A binary observable is an observable that only
has eigenvalues ∈ {−1, 1}. For a binary observable O and b ∈ {0, 1}, we denote by O(b) the projector
onto the (−1)b-eigenspace of O. For any procedure which takes a quantum state as input and produces a
bit (or more generally an integer) as output, e.g., by measuring the input state, we denote the probability
distribution over outputs b on input state ψ by Pr[b |ψ].

Our main protocol Protocol 1 will be (almost) a parallel repetition of a sub-protocol. We make use
of vector notation to denote tuples of items corresponding to the different copies of the sub-protocol. For
example, if each of the n parallel sub-protocols requires a key ki, we denote~k = (k1, . . . , kn). A function
that takes as input a single value can be extended to input vectors in the obvious way: for example, if f takes
as input a single key k, then we write f (~k) for the vector (f (k1), . . . , f (kn)). We will also use~0 and~1 for
the bitstrings consisting only of 0 and 1, respectively (and whose length will be clear from the context), and
~1i ∈ {0, 1}n for the bitstring whose i-th bit is 1 and whose remaining bits are 0.

2.2 Extended trapdoor claw-free functions

Our remote state preparation protocol is based on a cryptographic primitive called extended noisy trap-
door claw free function families (ENTCF families), which are defined in [Mah18, Section 4] and can be
constructed from the Learning with Errors assumption [Reg09, BCM+18] We use the same notation as
in [Mah18, Section 4], with the exception that we write K0 instead of KG and K1 instead of KF . In addi-
tion, we also define the following functions for convenience:

Definition 2.1 (Decoding maps, [MV20, Definition 2.1]).

14

(i) For a key k ∈ K0 ∪ K1, an image y ∈ Y , a bit b ∈ {0, 1}, and a preimage x ∈ X , we define
CHK(k, y, b, x) to return 1 if y ∈ supp(fk,b(x)), and 0 otherwise. (This definition is as in [Mah18,
Definition 4.1 and 4.2]).

(ii) For a key k ∈ K0 and a y ∈ Y , we define b̂(k, y) by the condition y ∈ ∪xsupp(fk,b̂(k,y)(x)). (This is
well-defined because fk,1 and fk,2 form an injective pair.)

(iii) For a key k ∈ K0 ∪ K1 and a y ∈ Y , we define x̂b(k, y) by the condition y ∈ supp(fk,b(x̂b(k, y))),
and x̂b(k, y) = ⊥ if y /∈ ∪xsupp(fk,b(x)). For k ∈ K0, we also use the shorthand x̂(k, y) =
x̂b̂(k,y)(k, y).

(iv) For a key k ∈ K1, a y ∈ Y , and a d ∈ {0, 1}w, we define û(k, y, d) by the condition
d · (x̂0(k, y)⊕ x̂1(k, y)) = û(k, y, d).

The above decoding maps applied to vector inputs are understood to act in an element-wise fashion. For
example, for~k ∈ K×n

1 ,~y ∈ Y×n, and ~d ∈ {0, 1}w×n, we denote by û(~k,~y, ~d) ∈ {0, 1}n the string defined

by
(

û(~k,~y, ~d)
)

i
= û(ki, yi, di).

2.3 Computational efficiency and distinguishability

Our proof will make a computational assumption, meaning that we assume that a certain problem cannot be
solved by an efficient adversary. To formally define what “efficient” means, one has to introduce a security
parameter λ, which roughly speaking specifies the instance size of a problem. We usually leave this security
parameter implicit, i.e. when we say a procedure is efficient, we mean that there is a family of procedures,
one for each λ, whose complexity has the required scaling in λ. Suppressing the explicit λ-dependence, we
can give the following definitions.

Definition 2.2 (QPT procedure). A procedure (with potentially quantum inputs and outputs and an implicit
dependence on a security parameter λ) is called quantum polynomial-time (QPT) if there exists a (classical)
polynomial-time Turing machine M that, on input 1λ, outputs a description of a circuit (with a fixed gate
set) that implements the procedure. We often use the term “efficient” to mean “implementable by a QPT
procedure”.

Definition 2.3 (Computational (in)distinguishability). We call two (families of) states ψ, ψ′ ∈ D(H) com-
putationally indistinguishable up to O(δ) if for an QPT procedure (called a distinguisher) that takes as input
ψ or ψ′ and produces an output bit b, we have

Pr[b = 0|ψ] ≈δ Pr
[
b = 0|ψ′

]
. (2.1)

2.4 Distance measures

Definition 2.4 (Norms). Let A ∈ L(H) with singular values λ1, . . . , λn ≥ 0. Then, the trace norm is
defined as

‖A‖1 = ∑
i

λi ,

and the spectral norm is

‖A‖∞ = max{λi} .

15

Definition 2.5 (Total variation distance). Let P, Q be probability distributions over a finite alphabet X .
Then, the total variation distance between P and Q is given by

TVD[P, Q] =
1
2 ∑

x∈X
|P(x)−Q(x)| .

Definition 2.6 (Approximate equality, [MV20, Definition 2.8 and Definition 2.14]). We overload the symbol
“≈” in the following ways (leaving the dependence on the security parameter implicit in the quantities on
the left):

(i) Complex numbers: For a, b ∈ C we define:

a ≈ε b ⇐⇒ |a− b| = O(ε) + negl(λ) . (2.2)

(ii) Operators: For A, B ∈ L(H), we define:

A ≈ε B ⇐⇒ ‖A− B‖2
1 = O(ε) + negl(λ) . (2.3)

(We will most frequently use this for (possibly subnormalised) quantum states A, B ∈ Pos(H).)

(iii) Operators on a state: For A, B ∈ L(H) and ψ ∈ Pos(H), we define:

A ≈ε,ψ B ⇐⇒ Tr
[
(A− B)†(A− B)ψ

]
= O(ε) + negl(λ) . (2.4)

(iv) Computationally indistinguishable states: For two (families of) states ψ, ψ′ ∈ D(H) which are
computationally indistinguishable up to δ (i.e., no efficient distinguisher has advantage exceeding δ
in distinguishing ψ from ψ′), we write:

ψ
c≈δ ψ′ . (2.5)

If we write ≈0, we mean that the quantities are negligibly close. All asymptotic statements are understood
to be in the limits ε → 0 and λ → ∞. It is easy to check that all the distance measures underlying the
≈-notation are indeed metrics and in particular satisfy the triangle inequality (see [MV20, Section 2.4] for
details).

Lemma 2.7 ([MV20, Lemma 2.16]). Let H1,H2 be Hilbert spaces with dim(H1) ≤ dim(H2) and V :
H1 → H2 an isometry. Let A and B be unitaries on H1 and H2, respectively, ψ1 ∈ Pos(H1), ψ2 ∈
Pos(H2), and ε ≥ 0. Then:

Tr
[
V†B†VAψ1

]
≈ε Tr[ψ1] =⇒ V†BV ≈ε,ψ1 A , (2.6)

Tr
[
VA†V†Bψ2

]
≈ε Tr[ψ2] =⇒ VAV† ≈ε,ψ2 B . (2.7)

We will also frequently use this lemma in the simpler case where V = 1.

Remark 2.8. In [MV20, Lemma 2.16], this lemma is only stated for the case where A and B are binary
observables (i.e. are Hermitian in addition to being unitary), but it is easy to check that the proof of [MV20,
Lemma 2.16] also goes through in the more general case stated here.

Lemma 2.9 (Replacement lemma, [MV20, Lemma 2.21]). Let ψ ∈ Pos(H), and A, B, C ∈ L(H). If
A ≈ε,ψ B and ‖C‖∞ = O(1), then

Tr[CAψ] ≈ε1/2 Tr[CBψ] , (2.8)

Tr[ACψ] ≈ε1/2 Tr[BCψ] . (2.9)

16

3 Protocol description and completeness

In this section, we introduce our protocol for classically instructed parallel remote state preparation. The
formal description of the protocol is given as Protocol 3. On a high-level, Protocol 3 works as follows:
the verifier first runs a number of test rounds (Protocol 1), where the prover is asked to measure its entire
quantum state. These test rounds are used by the verifier to check whether the prover behaves as intended.
Once the verifier is convinced of this, the verifier runs a preparation round (Protocol 2). Test and preparation
rounds are indistinguishable from the point of view of the prover, except that unlike in a test round, in a
preparation the prover is not asked to measure its final state. Instead, the final state can then be used in
another protocol, as we will do in Part II.

The main guarantee achieved by our protocol is the following: if the prover passed the test rounds with
high probability, then the verifier knows that (up to a change of basis) the prover must have prepared n
parallel random BB84 states. The formal soundness theorem is given in Theorem 4.33. Before we turn to
the soundness proof, we show completeness, i.e., that an honest prover can succeed in our protocol with
overwhelming probability.

Proposition 3.1. There exists an efficient quantum prover that is accepted in Protocol 3 with probability
negligibly close to 1 in the security parameters λ (for parameter choices n at most polynomial in λ and δ at
least inverse polynomial in λ). Furthermore, the final state of such a prover at the end of Protocol 3 is⊗

i∈[n]
Hθi |vi〉〈vi|Hθi , (3.1)

where ~v and~θ are the strings recorded by the verifier in Protocol 3.

Proof. We describe the honest behaviour. An honest prover behaves the same in each of the test rounds
in step 2. of Protocol 3. Hence, to show that an honest prover succeeds in Protocol 3 with probability
negligibly close to 1, it suffices to describe an honest strategy for Protocol 1 that succeeds with probability
negligibly close to 1.8 In Protocol 1, the prover receives n keys k1, . . . , kn and returns answers for each key
ki individually. Since the verifier’s checks are independent for each i, we only need to describe an honest
procedure for one key ki that succeeds in the verifier’s checks for that i with probability negligibly close
to 1.

The honest behaviour for a single key ki is essentially the same as in [GV19, Lemma 3.4] and [MV20,
Proposition 3.1]. For the sake of completeness, we spell out the details, but note that most of the proof is
simply copied from [MV20, Proposition 3.1].

Given a key ki ∈ Kθ , the prover prepares the state

1√
2 · |X | ∑

b∈{0,1}
∑

x∈X , y∈Y

√
fki ,b(x)(y)|b〉|x〉|y〉 .

Preparing this state can be efficiently done (up to negligible error) using the SAMP procedure from the
definition of ENTCF families ([BCM+18, Definition 3.1] and [Mah18, Definition 4.2]). The prover then
measures the “image register” (i.e., the register that store y) to obtain an image yi ∈ Y and sends this back

8In fact, it would suffice to have an honest strategy for Protocol 1 that succeeds with probability 1− δ/2. Then, as long as we
choose N = Ω(λc) for some c > 0, a standard application of Hoeffding’s inequality shows success in Protocol 3 with probability
negligibly close to 1.

17

Protocol 1. Test round protocol.

Let λ ∈ N be the security parameter, (F ,G) an ENTCF family, and n = poly(λ) the number of
BB84 states that the verifier wishes to prepare.

1. The verifier selects a uniformly random basis θ $←−{0, 1}, where 0 corresponds to the compu-
tational and 1 to the Hadamard basis.

2. The verifier samples keys and trapdoors (k1, tk1 ; . . . kn, tkn) by computing (ki, tki) ←
GENKθ

(1λ). The verifier then sends (k1, . . . kn) to the prover (but keeps the trapdoors tki

private).

3. The verifier receives (y1, . . . , yn) ∈ Y×n from the prover.

4. The verifier selects a round type ∈ {preimage round, Hadamard round} uniformly at random
and sends the round type to the prover.

(i) For a preimage round: The verifier receives (b1, x1; . . . bn, xn) from the prover, with
bi ∈ {0, 1} and xi ∈ X . The verifier sets flag← failPre if CHK(ki, yi, bi, xi) = 0.

(ii) For a Hadamard round: The verifier receives d1, . . . dn ∈ {0, 1}w from the prover (for
some w depending on the security parameter). The verifier sends q = θ to the prover,
and receives answers v1, . . . vn ∈ {0, 1}. The verifier performs the following checks:

Case Verifier’s check
q = θ = 0 Set flag← failHad if b̂(ki, yi) 6= vi for some i.
q = θ = 1 Set flag← failHad if û(ki, yi, di) 6= vi.

Note. We denote the “question” separately by q (even though here we always have q = θ) because
when the variant of this protocol in Protocol 2 is used in the context of another cyrptographic task,
the verifier can also send questions q which are different from θ.

18

Protocol 2. Preparation round protocol.

Let λ ∈ N be the security parameter, (F ,G) an ENTCF family, and n = poly(λ) the number of
BB84 states that the verifier wishes to prepare.

1. The verifier selects bases ~θ $←−{0, 1}n, where 0 corresponds to the computational and 1 to the
Hadamard basis.

2. The verifier samples keys and trapdoors (k1, tk1 ; . . . kn, tkn) by computing (ki, tki) ←
GENKθi

(1λ). The verifier then sends (k1, . . . kn) to the prover (but keeps the trapdoors tki

private).

3. The verifier receives y1, . . . yn ∈ Y from the prover.

4. The verifier sends “Hadamard round” to the prover as the round type.

5. The verifier receives d1, . . . dn ∈ {0, 1}w from the prover (for some w depending on the
security parameter). The verifier computes a string ~v according to

vi =

{
b̂(ki, yi) if θi = 0 ,
û(ki, yi, di) if θi = 1 .

Protocol 3. Multi-round protocol for preparation of BB84 states.

Let λ ∈ N be the security parameter, (F ,G) an ENTCF family, n = poly(λ) the number of BB84
states that the verifier wishes to prepare, N = M2 the maximum number of test rounds (for M ∈N),
and δ an error tolerance parameter. For j ∈ [M] we denote by Bj = {(j− 1)M + 1, . . . , jM} the
j-th “block” of M rounds.

1. The verifier (privately) samples S $←−{0, . . . , M− 1} (the number of M-round blocks of test
rounds that will be performed).

2. The verifier performs SM executions of Protocol 1 with the prover. The verifier aborts if for
any j ∈ [S], the fraction of rounds in Bj for which flag = failPre or flag = failHad
exceeds δ.

3. The verifier (privately) samples R $←− [M] and executes Protocol 1 with the prover R− 1 times.
Then, the verifier executes Protocol 2 with the prover and records the basis choice ~θ and the
string ~v from that execution.

19

to the verifier. The post-measurement for each i is{
|b̂(ki, yi)〉|x̂(ki, yi)〉 if ki ∈ K0 ,

1√
2
(|0〉|x̂0(ki, yi)〉+ |1〉|x̂1(ki, yi)〉) if ki ∈ K1 .

(3.2)

If the verifier selects a preimage round, the prover measures both registers in the computational basis
and returns the result. From the states in Equation (3.2) it is clear that the prover succeeds with probability
negligibly close to 1 in the preimage round.

If the verifier selects a Hadamard round, the prover measures the “x-register” in the Hadamard basis to
obtain di and returns this to the verifier. We introduce the shorthand bi = b̂(ki, yi) and ui = û(ki, yi, di). At
this point, the prover’s state for each i is (up to a global phase){

|bi〉 if ki ∈ K0 ,
|(−)ui〉 if ki ∈ K1 .

(3.3)

The prover now receives a question q = θ and measures the remaining qubit in the computational basis if
q = 0 and in the Hadamard basis if qi = 1. Then it is clear from the expression for the prover’s remaining
qubit in Equation (3.3) that the prover will pass the verifier’s check.

Having described the honest behaviour for a test round, we now turn our attention to showing Equa-
tion (3.1). In a preparation round, the prover receives keys k1, . . . , kn with ki ∈ Kθi . For each key ki, an
honest prover performs the same steps as described above for a test round.9 Then, Equation (3.1) follows
immediately from Equation (3.3).

4 Protocol soundness

The purpose of this section is to prove that a prover that succeeds in Protocol 3 must have prepared a
product of BB84 states without knowing which BB84 states it has prepared, which is formally stated as
Theorem 4.33. This means that the situation at the end of Protocol 3 is essentially identical to one in which
the verifier has sent random BB84 states to the prover via a quantum channel. We will make use of this in
Part II.

The structure of the proof is as follows: a prover in Protocol 3 is subjected to multiple test rounds, i.e.,
executions of Protocol 1, by the verifier. We can model the behaviour of an arbitrary prover in a single
test round as a device, defined in Section 4.1. The bulk of the soundness proof is concerned with showing
that any such device that has a high success probability in Protocol 1 must have prepared (and subsequently
measured) a product of BB84 states (Proposition 4.32). For this, we first show that certain “inefficient
observables” associated with a device approximately satisfy the same commutation and anti-commutation
relations as Pauli observables (Proposition 4.19). This allows us to conclude that these inefficient observ-
ables can be mapped to Pauli observables by an isometry (Lemma 4.28).10 Finally, since we now know a lot
about the structure of these inefficient observables, we can relate them to the device’s actual (efficient) ob-
servables in a way that allows us to conclude that the efficient observables can be mapped to Pauli operators,
too, albeit by a slightly different isometry (Proposition 4.29).

9In fact, due to the injective invariance property of ENTCF functions, the prover cannot distinguish keys in K0 from those in
K1. Hence, any (potentially dishonest) prover does not know whether it is in a test or preparation round, so it must perform the
same actions in both. This will play a central role in our soundness proof in Section 4.

10This can be viewed as a specific instantiation of a general stability theorem for approximate group representations due to
Gowers and Hatami [GH17].

20

4.1 Modelling devices in Protocol 1

Definition 4.1 (Devices). A device D = (S, Π, M, P) is specified by the following:

(i) A set S = {ψ(~θ)}~θ∈{0,1}n of states ψ(~θ) ∈ D(HD ⊗HY), where dim(HY) = |Y|n and the states are
classical onHY:

ψ(~θ) = ∑
~y∈Yn

ψ
(~θ)
~y ⊗ |~y〉〈~y|Y . (4.1)

In the context of Protocol 1, ψ(~θ) is the prover’s state after returning ~y for the case where the verifier
makes basis choices~θ.11 Each ψ(~θ) also implicitly depends on the specific keys chosen by the verifier
(not just the basis choice~θ); all the statements we make hold on average over key choices (for a fixed
basis choice~θ).

(ii) A projective measurement Π onHD ⊗HY:

Π =

{
Π(~b,~x) = ∑

~y
Π(~b,~x)

~y ⊗ |~y〉〈~y|Y

}
~b∈{0,1}n; ~x∈X n

. (4.2)

This is the measurement used by the prover to compute his answer (~b,~x) in the preimage challenge.

(iii) A projective measurement M onHD ⊗HY:

M =

{
M(~d) = ∑

~y
M(~d)

~y ⊗ |~y〉〈~y|Y

}
~d∈{0,1}w×n

. (4.3)

This is the measurement used by the prover to compute his answer ~d in the Hadamard challenge.
We use an additional Hilbert spaces HR to record the outcomes of measuring M and write the post-
measurement state after applying M to ψ(~θ) as

σ(~θ) := ∑
~y,~d

M(~d)
~y ψ

(~θ)
~y M(~d)

~y ⊗ |~y, ~d〉〈~y, ~d|YR . (4.4)

(iv) A set P = {Pq}, where for each q ∈ {0, 1}, Pq is a projective measurement onHD ⊗HY ⊗HR:

Pq =

P(~v)
q = ∑

~y,~d

P(~v)
q,~y,~d
⊗ |~y, ~d〉〈~y, ~d|YR


~v∈{0,1}

. (4.5)

In the context of Protocol 1, given question q, the prover will measure {P(~v)
q } and return the outcome

~v as his answer.

11In Protocol 1, the only two basis choices are ~θ =~0 and ~θ =~1. However, ψ(~θ) is still well-defined as the state that the prover
(who is defined in terms of the quantum circuits he runs on a given input) would prepare if given keys of basis choice~θ, even though
this never occurs in Protocol 1. The reason for including all basis choices ~θ is that in Protocol 2, the verifier makes a uniformly
random basis choice~θ, prompting the prover to use the state ψ(~θ).

21

Definition 4.2 (Efficient devices). A device is called efficient if the states ψ(~θ) can be prepared efficiently
and the measurements Π, M, and Pq1,q2 can be performed efficiently.

Remark 4.3. Throughout this paper, whenever we say that a procedure is “efficient” (e.g. in Definition 4.2,
or in proofs when constructing adversaries that break a property of ENTCF families) we mean a quantum
polynomial-time procedure with advice, i.e. in addition to the input, the procedure also has access to a
quantum state (the “advice state”) which only depends on the input length, but not the input itself. This
advice state need not be efficiently preparable itself. The additional advice state plays no role in the single-
round soundness analysis (i.e. the entire soundness proof up to Theorem 4.33) and hence we do not write it
explicitly. The reason the advice state is required at all is that if we want to model a prover in Protocol 3 as
a sequence of (single-round) devices of the kind in Definition 4.1, we need to account for the fact that the
prover in round i + 1 has access to the final state after round i, which we can view as an advice state for the
device modelling the (i + 1)-th round of the prover. We note that the same convention is (implicitly) used
in [BCM+18, GV19], and that as a result these works and our paper require that the LWE problem is hard
to solve quantumly with quantum advice (see [BCM+18, Definition 2.5] for the precise statement).

Definition 4.4 (Observables). For a device D = (S, Π, M, P) with projective measurements as in Defini-
tion 4.1, we define the following binary observables:

Zi = ∑
~v
(−1)vi P(~v)

0 , (4.6)

Xi = ∑
~v
(−1)vi P(~v)

1 , (4.7)

X̃i = ∑
~v,~y,~d

(−1)vi+û(ki ,yi ,di)P(~v)
1,~y,~d
⊗ |~y, ~d〉〈~y, ~d|YR . (4.8)

We further use the following notation for products of observables: for~a ∈ {0, 1}n, we define

Z(~a) := Za1
1 . . . Zan

n = ∑
~v
(−1)~a·~vP(~v)

0 , (4.9)

and likewise for X(~a) and X̃(~a). Note that it directly follows from the definition that

X̃i,~y,~d = (−1)û(ki ,yi ,di)Xi,~y,~d and X̃(~a)~y,~d = (−1)~a·û(~k,~y,~d)X(~a)~y,~d . (4.10)

Remark 4.5. It is easy to check that the operators defined above are indeed binary observables using that
{P(~v)

q,~y,~d
}~v are projective measurements.

Definition 4.6 (Partial post-measurement states). For k ∈ K0 ∪ K1 and v ∈ {0, 1} define the set Vk,v ⊆
Y × {0, 1}w by the following condition:

(y, d) ∈ Vk,v ⇐⇒
{

b̂(k, y) = v if k ∈ K0 ,
û(k, y, d) = v if k ∈ K1 .

(4.11)

Then for~k,~θ,~v define
σ(~θ,~v) = ∑

y1,d1∈Vk1,v1

· · · ∑
yn,dn∈Vkn ,vn

σ
(~θ)

~y,~d
⊗ |~y, ~d〉〈~y, ~d| . (4.12)

Further for~a ∈ {0, 1}n we define
σ(~θ,v,~a) = ∑

~v:~v·~a=v
σ(~θ,~v) . (4.13)

22

To get an intuition for this definition, consider the case θ =~0. Then for any~a ∈ {0, 1}n, σ(~0,v,~a) is that
part of the state σ(~0) for which the honest device would receive outcome v when measuring the observable
Z(~a).

Definition 4.7 (Success probabilities). For any device D = (S, Π, M, P) we define γP(D) as the device’s
failure probability in a preimage round, and γH(D) as the failure probability in a Hadamard round in
Protocol 1:

γP(D) = Pr[flag = failPre | round type = preimage round] , (4.14)

γH(D) = Pr[flag = failHad | round type = Hadamard round] . (4.15)

The following lemma tells us that for any device that has a non-negligible failure probability in the
preimage test, there is another device that is “close” to the original one in the sense that its measurements
are the same as for the original device and its states only differ by O(γP(D)), but that has a negligible
failure probability in the preimage test. A device with a negligible failure probability in the preimage test
is called perfect. This means that for the soundness proof, it suffices to only consider perfect devices: for
any arbitrary device, we can first switch to the corresponding perfect device at the cost of incurring an
approximation error of O(γP(D)), and then apply our soundness proof to the perfect device. We omit the
proof of Lemma 4.9 as it is essentially identical to that of [MV20, Lemma 4.13].12

Definition 4.8 (Perfect device). We call a device D perfect if γP(D) = negl(λ).

Lemma 4.9. Let D = (S, Π, M, P) be an efficient device with γP(D) < 1, where S =
{

ψ(~θ)
}

. Then

there exists an efficient perfect device D′ = (S′, Π, M, P), which uses the same measurements Π, M, P and

whose states S′ =
{

ψ′(
~θ)
}

satisfy for any~θ ∈ {0, 1}n:

ψ′(
~θ) ≈γP(D) ψ(~θ) . (4.16)

The following lemma shows what outcomes a successful device must produce when measuring the
observables from Definition 4.4 on the partial post-measurement states from Definition 4.6.

Lemma 4.10. For any efficient device D = (S, Π, M, P), string~a ∈ {0, 1}n, and bit v ∈ {0, 1}:

Tr
[

Z(~a)(v)σ(~0,v,~a)
]
≈γH(D) Tr

[
σ(~0,v,~a)

]
, (4.17)

Tr
[

X(~a)(v)σ(~1,v,~a)
]
≈γH(D) Tr

[
σ(~1,v,~a)

]
, (4.18)

Tr
[

X̃(~a)σ(~1)
]
≈γH(D) 1 . (4.19)

Proof. We first prove Equation (4.17). Since the case q = θ = 0 occurs with probability 1/2 in the protocol
in Protocol 1, the device’s failure probability in this case can be at most 2γH(D). Furthermore, since the
device only succeeds if vi = b̂(ki, yi) for all i ∈ [n] in the protocol, it is in particular the case that for any

12To avoid confusion, we point out that [MV20, Lemma 4.13] phrases the approximation in terms of trace distance, but
Lemma 4.9 uses the ≈-notation for states, which corresponds to the square of the trace distance (see Definition 2.6). This is
why we have γP(D) in Lemma 4.9, not γP(D)1/2 as in [MV20, Lemma 4.13].

23

~a ∈ {0, 1}n, ~a · b̂(~k,~y) = ~a · ~v with probability at least 1− 2γH(D). Now comparing the definition of
σ(~0,v,~a) with the verifier’s checks in the protocol, this means that

∑
v′∈{0,1}

Tr
[

Z(~a)(v
′)σ(~0,v′,~a)

]
≥ 1− 2γH(D) . (4.20)

Since Z(~a)(v) is a projector and σ(~0) = σ(~0,v,~a) + σ(~0,v⊕1,~a) is a normalised state,

Tr
[

Z(~a)(v⊕1)σ(~0,v⊕1,~a)
]
≤ Tr

[
σ(~0,v⊕1,~a)

]
= 1− Tr

[
σ(~0,v,~a)

]
. (4.21)

Inserting this into Equation (4.20), we obtain

1− 2γH(D) ≤ Tr
[

Z(~a)(v)σ(~0,v,~a)
]
+ 1− Tr

[
σ(~0,v,~a)

]
, (4.22)

which implies

Tr
[

Z(~a)(v)σ(~0,v,~a)
]
≥ Tr

[
σ(~0,v,~a)

]
− 2γH(D) . (4.23)

For the inequality in the other direction, we note that since Z(~a)(v) is a projector, we immediately have
Tr
[

Z(~a)(v)σ(~0,v,~a)
]
≤ Tr

[
σ(~0,v,~a)

]
, finishing the proof of Equation (4.17).

The proof of Equation (4.18) is completely analogous. Finally, we need to show Equation (4.19). For
this, observe that by definition X̃(~a) returns outcome 0 if the device’s answers satisfy~a ·~v = ~a · û(~k,~y, ~d).
Since this is implied by the checks performed by the verifier in the protocol, we have

Tr
[

X̃(0)σ(~1)
]
≈γH(D) 1 . (4.24)

Since X̃(0) + X̃(1) = 1, this implies Tr
[

X̃(1)σ(~1)
]
≈γH(D) 0. The lemma follows because X̃ = X̃(0) −

X̃(1).

4.2 Extending Lemma 4.10 to different basis choices

In [Mah18], it was shown that keys sampled from K0 and K1 (according to the corresponding sampling
procedures, see [Mah18, Definition 4.3] for details) are computationally indistinguishable (up to negligible
advantage). This property is called injective invariance. In this section, we will use this property to extend
the statement of Lemma 4.10 to basis choices ~θ other than ~θ = ~0 and ~θ = ~1. For this, we need a slight
strengthening of injective invariance to multiple keys, which follows almost immediately from the original
injective invariance property.

Lemma 4.11. For any two ~θ,~θ′ ∈ {0, 1}n, no efficient distinguisher has non-negligible advantage in the
following distinguishing game: the challenger samples a bit b $←−{0, 1}. The challenger then samples keys
~k with ki ∈ Kθi if b = 0 and ki ∈ Kθ′i

if b = 1, and sends~k to the distinguisher. The distinguisher provides
a guess for the bit b.

Proof. First suppose that ~θ and ~θ′ only differ in one position θi 6= θ′i . For convenience, we can assume
that θi = 0 and θ′i = 1 (and swap the labelling of ~θ and ~θ′ if this is not the case). Consider an efficient
distinguisher D for the distinguishing game in the lemma. From such a distinguisher D we can construct a

24

distinguisher D′ for the original injective invariance game: D′ is given a key ki ∈ K0 ∪K1, samples n− 1
further keys k j ∈ Kθj for j ∈ [n] \ {i}, and runs D on the keys~k = (k1, . . . , kn). If D guesses b = 0, then
D′ guesses k ∈ K0, otherwiseD′ guesses k ∈ K1. From the construction it is clear thatD′ guesses correctly
if and only if D guesses correctly. However, from the injective invariance property of the ENTCF family,
no such D′ can succeed with non-negligible advantage. Hence, D also cannot succeed with non-negligible
advantage in the distinguishing game from the lemma.

We can extend this proof to any~θ,~θ′ ∈ {0, 1}n by a simple hybrid argument: for any~θ,~θ′ ∈ {0, 1}n, we
can find ~θ1, . . . ,~θn with ~θ1 = ~θ and ~θn = ~θ′ such that ~θi and ~θi+1 differ on at most one position. Applying
the above argument in each step of the hybrid argument, the advantage in distinguishing~θ from~θ′ can be at
most n · negl(λ), which is still negligible in λ since n = poly(λ).

Lemma 4.12. Consider an efficient device D = (S, Π, M, P). Then, for any~θ,~θ′:

σ(~θ) c≈0 σ(~θ′) . (4.25)

Proof. Since the device D (and hence the preparation of the states σ(~θ)) is efficient, this follows immediately
from Lemma 4.11.

The fact that the states σ(~θ) are computationally indistinguishable allows us to extend relations between
operators that hold on a particular σ(~θ) to other states σ(~θ′). This will be formalised by Lemma 4.13. The
reason that the lemma does not just deal with efficient observables, but also observables which are efficient
only with access to some of the trapdoors, is that the observables X̃(~a) (as defined in Definition 4.4) are
only efficient if one has access to all trapdoors ti for i s.t. ai = 1. Hence, the following lemma will also be
applicable to operator relations involving X̃(~a) (provided the constraint on ~θ and ~θ′ stated in the lemma is
satisfied).

Lemma 4.13. Consider an efficient device D = (S, Π, M, P) and a subset of indices I ⊂ [n]. Suppose
that for any keys~k = (k1, . . . , kn) with corresponding trapdoors~t = (t1, . . . , tn), A and B are observables
which can be efficiently implemented with access to the trapdoors {ti}i∈I . Then for any ~θ,~θ′ ∈ {0, 1}n

such that θi = θ′i for all i ∈ I ,

A ≈
ε,σ(~θ) B ⇐⇒ A ≈

ε,σ(~θ′) B , (4.26)

and

Tr
[

Aσ(~θ)
]
≈0 Tr

[
Aσ(~θ′)

]
. (4.27)

Proof. We first prove Equation (4.26). Fix~θ,~θ′ ∈ {0, 1}n. By Definition 2.6, it suffices to show that

Tr
[
(A− B)†(A− B)σ(~θ)

]
≈0 Tr

[
(A− B)†(A− B)σ(~θ′)

]
. (4.28)

Suppose for the sake of contradiction that there exists a positive non-negligible function µ(λ) such that

Tr
[
(A− B)†(A− B)σ(~θ)

]
− Tr

[
(A− B)†(A− B)σ(~θ′)

]
> µ(λ) . (4.29)

(For the other case where this difference is smaller than a negative non-negligible function the proof is
analogous.) We want to show that this allows us to break the extended injective invariance property of

25

Lemma 4.11. For this, consider the injective invariance game of Lemma 4.11 on the indices [n] \ I : a
challenger chooses b $←−{0, 1} samples a set of keys {ki}i∈[n]\I , where ki ∈ Kθi if b = 0 and ki ∈ Kθ′i

if
b = 1. The keys {ki}i∈[n]\I are sent to a distinguisher D, who is asked to provide a guess for b.

The distinguisher D proceeds as follows: D samples keys k j ∈ Kθj for j ∈ I along with the corre-

sponding trapdoors tj. D then runs the device’s operations on the keys~k = (k1, . . . , kn) and will obtain a

state σ, with σ = σ(~θ) if b = 0 and σ = σ(~θ′) if b = 1.
By [MV20, Lemma 2.6], there exists an efficient procedure that given the state σ and the trapdoors

{tj}j∈I (so that for this procedure, A and B are efficient binary observables) produces a bit b′ with

Pr
[
b′ = 0 | σ

]
=

1
4

Tr
[
(A− B)†(A− B)σ

]
. (4.30)

D runs this procedure on the state σ it produced using the device’s operations and outputs b′ as its guess for
b.

It is clear that D is efficient. Its distinguishing advantage is given by

Pr[D guesses 0 | b = 0]− Pr[D guesses 0 | b = 1] (4.31)

= Pr
[
b′ = 0 | b = 0

]
− Pr

[
b′ = 0 | b = 1

]
(4.32)

= Pr
[
b′ = 0 | σ(~θ)

]
− Pr

[
b′ = 0 | σ(~θ′)

]
(4.33)

=
1
4

Tr
[
(A− B)†(A− B)σ(~θ)

]
− 1

4
Tr
[
(A− B)†(A− B)σ(~θ′)

]
(4.34)

>
1
4

µ(λ) , (4.35)

which is non-negligible by assumption, yielding the desired contradiction.
For Equation (4.27), the proof is analogous, except that instead of using the procedure from [MV20,

Lemma 2.6] to estimate Tr
[
(A− B)†(A− B)σ

]
, in this case the distinguisher can simply measure the

observable A on the state it has produced by running the device’s operations.

We can apply this lemma to extend Equation (4.19) to states other than σ(~1):

Lemma 4.14. For any efficient device D = (S, Π, M, P) and strings~a,~θ ∈ {0, 1}n such that ai = 1 =⇒
θi = 1:

Tr
[

X̃(~a)σ(~θ)
]
≈γH(D) 1 . (4.36)

Proof. We define I = {i ∈ [n] | ai = 1}. The observable X̃(a) is efficient if one has access to the trapdoors
{ti}i∈I . Since further θi = 1 for all i ∈ I by assumption, the lemma follows from Equation (4.19) by means
of Lemma 4.13.

Using Lemma 2.7, we can immediately obtain the following corollary:

Corollary 4.15. For any efficient device D = (S, Π, M, P) and strings~a,~θ ∈ {0, 1}n such that ai = 1 =⇒
θi = 1:

X̃(~a) ≈
γH(D),σ(~θ) 1 . (4.37)

26

We still need to extend Equation (4.17) and Equation (4.18) to different choices of θ. For this, we need
to strengthen the statement of Lemma 4.12 and show that certain partial post-measurement states are also
indistinguishable.

Lemma 4.16. For an efficient device D = (S, Π, M, P) and strings ~b,~θ0,~θ1 ∈ {0, 1}n such that bi =
1 =⇒ θ0

i = θ1
i the following holds for any v ∈ {0, 1}:

σ(~θ0,v,~b) c≈0 σ(~θ1,v,~b) . (4.38)

Proof. Fix v and~b. As a first step, we note that it suffices to show the lemma for the case where ~θ0 and ~θ1

only differ on one bit by the same argument as in the proof of Lemma 4.11.
Hence consider~θ0,~θ1 that only differ on one bit i s.t. bi = 0. Without loss of generality, we can assume

θ0
i = 0 and θ1

i = 1. Further consider an efficient distinguisher D that, given σ(~θc,v,~b), guesses c ∈ {0, 1}.
Let ∆D be the distinguishing advantage of D.

Using D, we construct the following adversary A for the injective invariance game. A is given a
uniformly random key k ∈ K0 ∪K1 and asked to guess θ∗ ∈ {0, 1} such that k ∈ Kθ∗ . A sets ki := k and
samples keys k j ∈ Kθj for j 6= i (along with the corresponding trapdoors tj). Then, A performs the device’s

operations with these keys, obtaining ~y and ~d in the process. Since A knows tj for all j ∈ [n] for which
bj = 1, it can efficiently compute

v′ = ∑
j s.t. θj=0

bj b̂(k j, yj) + ∑
j s.t. θj=1

bj û(k j, yj, dj) mod 2 . (4.39)

If v′ 6= v, A submits a uniformly random guess for θ∗. If v′ = v, A runs the distinguisher D on the
post-measurement state. D outputs c′ ∈ {0, 1}, and A guesses θ∗ = c′.

Let ∆A be the distinguishing advantage of A. Since D is efficient, so is A, so from the injective
invariance property of ENTCF families we get that ∆A ≤ negl(λ), so

Pr[A correct] ≤ 1
2
+ negl(λ) . (4.40)

On the other hand,

Pr[A correct] = Pr
[
v = v′

]
Pr
[
A correct | v = v′

]
+ Pr

[
v 6= v′

]
Pr
[
A correct | v 6= v′

]
. (4.41)

In the case v 6= v′, A guesses uniformly at random , so Pr[A correct | v 6= v′] = 1/2. In the case v = v′,
by constructionA guesses correctly if and only ifD guesses correctly, so Pr[A correct | v = v′] = 1

2 +∆D.
Inserting this, we get

Pr[A correct] = Pr
[
v = v′

] (1
2
+ ∆D

)
+ (1− Pr

[
v = v′

]
)

1
2

(4.42)

=
1
2
+ Pr

[
v = v′

]
∆D . (4.43)

Now notice that

Pr
[
v = v′

]
=

1
2

Tr
[
σ(~θ0,v,~b)

]
+

1
2

Tr
[
σ(~θ1,v,~b)

]
(4.44)

≥ 1
2

∥∥∥σ(~θ0,v,~b) − σ(~θ1,v,~b)
∥∥∥

1
(4.45)

≥ ∆D , (4.46)

27

since the distinguishing advantage of any distinguisher is upper-bounded by the trace distance. Combining
this with Equation (4.40), we get

1
2
+ negl(λ) ≥ 1

2
+
(

∆D
)2

. (4.47)

Since the square root of a negligible function is again negligible, ∆D = negl(λ) as desired.

Since Z(~a) and X(~b) are efficient observables, Lemma 4.16 immediately implies that we can extend
Equation (4.17) and Equation (4.18) to different choices of~θ:

Corollary 4.17. Consider an efficient device D = (S, Π, M, P) and a bit v ∈ {0, 1}.

(i) For any~θ,~a ∈ {0, 1}n such that ai = 1 =⇒ θi = 0:

Tr
[

Z(~a)(v)σ(~θ,v,~a)
]
≈γH(D) Tr

[
σ(~θ,v,~a)

]
. (4.48)

(ii) For any~θ,~a ∈ {0, 1}n such that ai = 1 =⇒ θi = 1:

Tr
[

X(~a)(v)σ(~θ,v,~a)
]
≈γH(D) Tr

[
σ(~θ,v,~a)

]
. (4.49)

Using [MV20, Lemma 2.19], this can also be restated as follows:

Corollary 4.18. Consider an efficient device D = (S, Π, M, P) and a bit v ∈ {0, 1}.

(i) For any~θ,~a ∈ {0, 1}n such that ai = 1 =⇒ θi = 0:

Z(~a) ≈
γH(D),σ(~θ,v,~a) (−1)v1 . (4.50)

(ii) For any~θ,~a ∈ {0, 1}n such that ai = 1 =⇒ θi = 1:

X(~a) ≈
γH(D),σ(~θ,v,~a) (−1)v1 . (4.51)

4.3 Pauli group relations for inefficient observables13

The goal of this section is to prove that the observables {X̃(~a)}~a∈{0,1}n and {Z(~b)}~b∈{0,1}n approximately
satisfy the relations of the n-qubit Pauli observables. More formally, we will show the following proposition:

Proposition 4.19. For any efficient perfect device D = (S, Π, M, P) and any~a,~b ∈ {0, 1}n:

X̃(~a)Z(~b) ≈nγH(D)1/4,σ(~1) (−1)~a·~bZ(~b)X̃(~a) . (4.52)

The proof of this can be found at the end of this section. We first need to show a number of preparatory
results.

13This section is based on unpublished work by Jeffrey Champion, John Wright, and the second author. We thank Jeffrey and
John for allowing us to use these results here.

28

Lemma 4.20. We define
Π(b)

i = ∑
b1,...,bi−1,bi+1,...,bn

∑
~x

Π(~b,~x) , (4.53)

where~b = (b1, . . . , bi−1, b, bi+1, . . . , bn). For any efficient perfect device D = (S, Π, M, P), the following
holds for any i:

∑
b,~d

∥∥∥∥(M(~d)Π(b)
i − Z(b)

i,~d
M(~d)

) (
ψ(~1i)

)1/2
∥∥∥∥2

2
≈γH(D) 0 , (4.54)

where ‖·‖2 denotes the Schatten 2-norm (also called Hilbert-Schmidt norm) and~1i ∈ {0, 1}n is the bitstring
whose i-th bit is 1 and whose remaining bits are 0 (as defined in Section 2.1).

Proof. The proof is analogous to [MV20, Lemma 4.19], but we spell out the details for completeness.
Writing out the definition of the 2-norm and multiplying out terms, we find that the l.h.s. of Equation (4.54)
equals

∑
b,~d

Tr
[

M(~d)Π(b)
i ψ(~1i)Π(b)

i M(~d)
]
+ ∑

b,~d

Tr
[

Z(b)
i,~d

M(~d)ψ(~1i)M(~d)Z(b)
i,~d

]
−∑

b,~d

Tr
[

M(~d)Z(b)
i,~d

M(~d)
(

Π(b)
i ψ(~1i) + ψ(~1i)Π(b)

i

)]
(4.55)

Since {M(~d)}~d, {Π(b)
i }b, and {Z(b)

i,~d
}b form projective measurements, the first two terms equal 1. For the

third term, we note that since Π(0)
i + Π(1)

i = 1,

Π(b)
i ψ(~1i) + ψ(~1i)Π(b)

i = 2 Π(b)
i ψ(~1i)Π(b)

i + Π(0)
i ψ(~1i)Π(1)

i + Π(1)
i ψ(~1i)Π(0)

i . (4.56)

Note that since {Z(b)
i,~d
}b and {M(~d)}~d are projective measurements, we have

∑
b,~d

Tr
[

M(~d)Z(b)
i,~d

M(~d)
(

Π(0)
i ψ(~1i)Π(1)

i + Π(1)
i ψ(~1i)Π(0)

i

)]
= Tr

[
Π(0)

i ψ(~1i)Π(1)
i + Π(1)

i ψ(~1i)Π(0)
i

]
= 0 ,

where the last equality holds because {Π(b)
i }b are orthogonal projectors. Therefore, the third term in Equa-

tion (4.55) equals

2 ∑
b,~d

Tr
[

Z(b)
i,~d

M(~d)Π(b)
i ψ(~1i)Π(b)

i M(~d)
]

. (4.57)

We now want to replace ψ(~1i) by ψ(~0) in the above expression. For this, observe that given any state

ρ, we can efficiently estimate ∑b,~d Tr
[

Z(b)
i,~d

M(~d)Π(b)
i ψ(~1i)Π(b)

i M(~d)
]

by measuring {Π(b)
i }b, {M(~d)}~d, and

{Z(b)
i,~d
}b in sequence and checking whether the Πi- and Zi-measurements yielded the same result. Therefore,

since ψ(~1i) c≈0 ψ(~0) by an argument analogous to Lemma 4.12, we have

∑
b,~d

Tr
[

Z(b)
i,~d

M(~d)Π(b)
i ψ(~1i)Π(b)

i M(~d)
]
≈0 ∑

b,~d

Tr
[

Z(b)
i,~d

M(~d)Π(b)
i ψ(~0)Π(b)

i M(~d)
]

. (4.58)

29

This expression equals 1 if the Πi- and Zi-measurements yield the same result. Since in ψ(~0) the basis choice
for the i-th key is θi = 0 and the device D is perfect, for any image yi the Πi-measurement will output the
bit b̂(ki, yi) with probability negligibly close to 1. Hence, by Definition 4.6,

∑
~d

M(~d)Π(b)
i ψ(~0)Π(b)

i M(~d) ⊗ |~d〉〈~d| ≈0 σ(~0,b,~1i) . (4.59)

With this and noting that Z(~1i) = Zi, we get from Lemma 4.10 that

∑
b,~d

Tr
[

Z(b)
i,~d

M(~d)Π(b)
i ψ(~0)Π(b)

i M(~d)
]
≈0 ∑

b
Tr
[

Z(b)
i σ(~0,b,~1i)

]
(4.60)

≈γH(D) ∑
b

Tr
[
σ(~0,b,~1i)

]
(4.61)

= Tr
[
σ(~0)

]
(4.62)

= 1 , (4.63)

concluding the proof.

Lemma 4.21. For any efficient perfect device D = (S, Π, M, P), the following holds for any i ∈ [n]:

Tr
[

ZiX̃iZiσ
(~1i)
]
≈γH(D)1/2 −1 . (4.64)

Proof. Using that Zi is a binary observable, it is easy to check that

ZiX̃iZi =

(
2 ∑

b
Z(b)

i X̃iZ
(b)
i

)
− X̃i . (4.65)

Since

Tr
[

X̃iσ
(~1i)
]
≈γH(D) 1 (4.66)

by Lemma 4.14, to show the lemma it suffices to show that

∑
b

Tr
[

Z(b)
i X̃iZ

(b)
i σ(~1i)

]
≈γH(D)1/2 0 . (4.67)

Inserting the definition of σ(~1i) from Equation (4.4), we get

∑
b

Tr
[

Z(b)
i X̃iZ

(b)
i σ(~1i)

]
= ∑

b,~d

Tr
[

X̃i,~dZ(b)
i,~d

M(~d)ψ(~1i)M(~d)Z(b)
i,~d

]
(4.68)

Using Lemma 4.20 and the Cauchy-Schwarz inequality, we can show that

∑
b,~d

Tr
[

X̃i,~dZ(b)
i,~d

M(~d)ψ(~1i)M(~d)Z(b)
i,~d

]
≈γH(D)1/2 ∑

b,~d

Tr
[

X̃i,~d M(~d)Π(b)
i ψ(~1i)Π(b)

i M(~d)
]

. (4.69)

This is a standard step in state-dependent distance calculations, but we spell out the details for completeness
in Lemma 4.22.

30

To prove the lemma, it now suffices to show that the r.h.s. of Equation (4.69) is negligible. For the sake
of contradiction, suppose that there exists a non-negligible function µ(λ) such that

∑
b,~d

Tr
[

X̃i,~d M(~d)Π(b)
i ψ(~1i)Π(b)

i M(~d)
]
> µ(λ) . (4.70)

From this, we can construct the following adversary A for the adaptive hardcore bit property: A receives
a key ki ∈ K1 and samples keys k1, . . . , ki−1, ki+1, kn ∈ K0. It then performs the device’s operations with
these keys to obtain ψ(~1i). A now measures the projectors {Π(b,x)

i }b,x and records the result (b, x), where

Π(b,x)
i = ∑

b1,...,bi−1,bi+1,...,bn

∑
x1,...,xi−1,xi+1,...,xn

Π(~b,~x) . (4.71)

A then measures {M(~d)}~d receiving an outcome ~d, followed by {X(c)
i,~d
}c, receiving an outcome c. A submits

(b, x, di, c) as a guess for the adaptive hardcore bit property.
First note that since the device operations are efficient, A is efficient, too. To show that A breaks the

adaptive hardcore bit property, we need to show that on average over ~k, ~y, and ~d, û(ki, yi, di) = c with
non-negligible advantage.

For this, we observe that since the device D is perfect, if the adversary measures (b, x) as described
above, conditioned on receiving the bit b, the preimage x it obtains will be xb(ki, yi) with probability neg-
ligibly close to 1. As a consequence, by the gentle measurement lemma [Win99] the post-measurement
state after measuring {Π(b,x)

i }b,x is negligibly close to the post-measurement state after measuring {Π(b)
i }b

(i.e. it does not matter for the post-measurement state whether A also measures the preimage x or not):

Π(b,x)
i ψ(~1i)Π(b,x)

i ≈0 Π(b)
i ψ(~1i)Π(b)

i . (4.72)

In the next step, the adversary measures {M(~d)}~d, followed by {X(c)
i,~d′
}c. The probability that A guesses

correctly, i.e. that c = û(ki, yi, di), is then given by (up to negligible error from to the approximation

∑b,x Π(b,x)
i ψ(~1i)Π(b,x)

i ≈0 ∑b Π(b)
i ψ(~1i)Π(b)

i)

Pr[A guesses correctly] ≈0 ∑
b,~y,~d

Tr
[

X(û(ki ,yi ,di))

i,~y,~d
M(~d)

~y Π(b)
i,~y ψ

(~1i)
~y Π(b)

i,~y M(~d)
~y

]
. (4.73)

Since Xi,~y,~d is a binary observable, we can express this as

Pr[A guesses correctly] = ∑
b,~y,~d

Tr
[

1
2

(
1 + (−1)û(ki ,yi ,di)Xi,~y,~d

)
M(~d)

~y Π(b)
i,~y ψ

(~1i)
~y Π(b)

i,~y M(~d)
~y

]
(4.74)

Using that M(~d)
~y and Π(b)

i,~y form projective measurements:

=
1
2
+ ∑

b,~y,~d

Tr
[
(−1)û(ki ,yi ,di)Xi,~y,~d M(~d)

~y Π(b)
i,~y ψ

(~1i)
~y Π(b)

i,~y M(~d)
~y

]
(4.75)

31

By Definition 4.4, (−1)û(ki ,yi ,di)Xi,~y,~d = X̃i,~y,~d:

=
1
2
+ ∑

b,~y,~d

Tr
[

X̃i,~y,~d M(~d)
~y Π(b)

i,~y ψ
(~1i)
~y Π(b)

i,~y M(~d)
~y

]
(4.76)

=
1
2
+ ∑

b,~d

Tr
[

X̃i,~d M(~d)Π(b)
i ψ(~1i)Π(b)

i M(~d)
]

. (4.77)

Hence, Equation (4.70) would imply that the adversary has non-negligible advantage in guessing the adap-
tive hardcore bit, a contradiction.

Lemma 4.22. With the setup and notation of Lemma 4.21, the following holds:

∑
b,~d

Tr
[

X̃i,~dZ(b)
i,~d

M(~d)ψ(~1i)M(~d)Z(b)
i,~d

]
≈γH(D)1/2 ∑

b,~d

Tr
[

X̃i,~d M(~d)Π(b)
i ψ(~1i)Π(b)

i M(~d)
]

. (4.78)

Proof. To show the lemma, there are two instances where we need to replace terms of the form M(~d)Zi,~d by

Π(b)
i M(~d). As a first step, we will show that

∑
b,~d

Tr
[

X̃i,~dZi,~d M(~d)ψ(~1i)
(

M(~d)Zi,~d −Π(b)
i M(~d)

)]
≈γH(D)1/2 0 , (4.79)

with Π(b)
i defined as in Lemma 4.20. For this, we apply the triangle inequality and write the l.h.s. of

Equation (4.79) as a Hilbert-Schmidt inner product. Then we can apply the Cauchy-Schwarz inequality
twice:∣∣∣∣∣∣∑b,~d

Tr
[

X̃i,~dZi,~d M(~d)ψ(~1i)
(

M(~d)Zi,~d −Π(b)
i M(~d)

)]∣∣∣∣∣∣ (4.80)

≤∑
b,~d

∣∣∣∣〈(Zi,~d M(~d) −M(~d)Π(b)
i

) (
ψ(~1i)

)1/2
, X̃i,~dZi,~d M(~d)

(
ψ(~1i)

)1/2
〉∣∣∣∣ (4.81)

≤∑
b,~d

∥∥∥∥X̃i,~dZi,~d M(~d)
(

ψ(~1i)
)1/2

∥∥∥∥
2

∥∥∥∥(Zi,~d M(~d) −M(~d)Π(b)
i

) (
ψ(~1i)

)1/2
∥∥∥∥

2
(4.82)

≤

∑
b,~d

∥∥∥∥X̃i,~dZi,~d M(~d)
(

ψ(~1i)
)1/2

∥∥∥∥2

2

1/2∑
b,~d

∥∥∥∥(Zi,~d M(~d) −M(~d)Π(b)
i

) (
ψ(~1i)

)1/2
∥∥∥∥2

2

1/2

(4.83)

Writing out the definition of the norm, it is easy to check that the first factor equals 1, and the second factor
is bounded by Lemma 4.20:

≤ O(γH(D)1/2) . (4.84)

Repeating the above steps for the other Z(b)
i,~d

M(~d)-term, we obtain the desired statement.

Lemma 4.23. For any efficient perfect device D = (S, Π, M, P), any index i ∈ [n], and any string~b ∈
{0, 1}n, the following holds:

X̃iZ(~b) ≈γH(D)1/2,σ(~1) (−1)bi Z(~b)X̃i . (4.85)

32

Proof. Since Z(~b) is efficient, X̃i is efficient with access to the trapdoor ti for the i-th key, and ~1 and ~1i

agree on their i-th bit, by Lemma 4.13 it suffices to show that

X̃iZ(~b) ≈γH(D)1/2,σ(~1i) (−1)bi Z(~b)X̃i . (4.86)

By Lemma 2.7, this is implied by

Tr
[

X̃iZ(~b)X̃iZ(~b)σ(~1i)
]
≈γH(D)1/2 (−1)bi . (4.87)

We can use Corollary 4.15 (noting that the i-th bit of~1i is 1) together with Lemma 2.9 to replace the leftmost
X̃i-operator by 1:

Tr
[

X̃iZ(~b)XiZ(~b)σ(~1i)
]
≈γH(D)1/2 Tr

[
Z(~b)X̃iZ(~b)σ(~1i)

]
. (4.88)

For the rest of the proof, we distinguish two cases:

Case bi = 0. In this case, we split σ(~1i) = ∑v∈{0,1} σ(~1i ,v,~b):

Tr
[

Z(~b)X̃iZ(~b)σ(~1i)
]
= ∑

v∈{0,1}
Tr
[

Z(~b)X̃iZ(~b)σ(~1i ,v,~b)
]

(4.89)

Since bi = 0 by assumption, the condition bi = 1 =⇒ θi = 0 (with ~θ =~1i) in Corollary 4.18 is satisfied.
We can therefore use that lemma together with Lemma 2.9 on each term in the sum to get:

≈γH(D)1/2 ∑
v∈{0,1}

(−1)v Tr
[

Z(~b)X̃iσ
(~1i ,v,~b)

]
(4.90)

≈γH(D)1/2 ∑
v∈{0,1}

Tr
[

X̃iσ
(~1i ,v,~b)

]
(4.91)

= Tr
[

X̃iσ
(~1i)
]

(4.92)

Noting that X̃i = X̃(~1i), we can use Corollary 4.15 and Lemma 2.9 to conclude:

≈γH(D)1/2 Tr
[
σ(~1i)

]
(4.93)

= 1 . (4.94)

Case bi = 1. We define ~b′ by b′i = 0 and b′j = bj for j 6= i. Then, by Corollary 4.18 we have that

Z(~b′) ≈
σ(~1i ,v,~b′) (−1)v1. Furthermore, by definition of the Z-observables, Z(~b) = ZiZ(~b′) = Z(~b′)Zi. We

can use this with Lemma 2.9 similarly to the previous case to obtain

Tr
[

Z(~b)X̃iZ(~b)σ(~1i)
]
= ∑

v∈{0,1}
Tr
[

Z(~b′)ZiX̃iZiZ(~b′)σ(~1i ,v,~b)
]

(4.95)

≈γH(D)1/2 ∑
v∈{0,1}

(−1)vTr
[

Z(~b′)ZiX̃iZiσ
(~1i ,v,~b)

]
(4.96)

≈γH(D)1/2 ∑
v∈{0,1}

Tr
[

ZiX̃iZiσ
(~1i ,v,~b)

]
(4.97)

= Tr
[

ZiX̃iZiσ
(~1i)
]

(4.98)

≈γH(D)1/2 −1 , (4.99)

33

where we used Lemma 4.21 in the last line.

Proof of Proposition 4.19. Recall that our goal is to prove that

X̃(~a)Z(~b) ≈nγH(D)1/4,σ(~1) (−1)~a·~bZ(~b)X̃(~a) . (4.100)

By Lemma 2.7, it suffices to show that

Tr
[

Z(~b)X̃(~a)Z(~b)X̃(~a)σ(~1)
]
≈nγH(D)1/4 (−1)~a·~b . (4.101)

As a first step, we apply Corollary 4.15 to obtain

Tr
[

Z(~b)X̃(~a)Z(~b)X̃(~a)σ(~1)
]
≈γH(D)1/2 Tr

[
Z(~b)X̃(~a)Z(~b)σ(~1)

]
. (4.102)

We can write X̃(~a) = ∏n
i=1 X̃ai

i (where X̃ai
i = 1 if ai = 0):

Tr
[

Z(~b)X̃(~a)Z(~b)σ(~1)
]
= Tr

[
Z(~b)

(
n−1

∏
i=1

X̃ai
i

)
Xan

n Z(~b)σ(~1)

]
(4.103)

Applying Lemma 2.9 with Lemma 4.23 (if an = 1; if an = 0, the same step follows trivially and with
equality):

≈γH(D)1/4 (−1)anbn Tr

[
Z(~b)

(
n−1

∏
i=1

X̃ai
i

)
Z(~b)Xan

n σ(~1)

]
(4.104)

Applying Lemma 2.9 with Corollary 4.15 (if an = 1; if an = 0, the same step follows trivially and with
equality):

≈γH(D)1/2 (−1)anbn Tr

[
Z(~b)

(
n−1

∏
i=1

X̃ai
i

)
Z(~b)σ(~1)

]
. (4.105)

Repeating the above steps for each of the remaining X̃ai
i , we find that

Tr
[

Z(~b)X̃(~a)Z(~b)σ(~1)
]
≈nγH(D)1/4

(
n

∏
i=1

(−1)aibi

)
Tr
[

Z(~b)Z(~b)σ(~1)
]
= (−1)~a·~b (4.106)

as desired. The factor of n in the approximation arises because we incur an approximation error of
O(γH(D)1/4) for dealing with each of the n operators X̃ai

i , so by the triangle inequality the total approxi-
mation error is O(nγH(D)1/4).

4.4 Switching to efficient observables

Definition 4.24 (Rounding isometries). For a device D with associated Hilbert space HD and ~y ∈ Y×n,
d ∈ {0, 1}w×n, we define the isometry Ṽy,d : HD → HD ⊗ HA ⊗ HQ by the following action on an
arbitrary state |ϕ〉D:

Ṽ~y,~d|ϕ〉D = E
~a,~b∈{0,1}n

((
X̃(~a)~y,~dZ(~b)~y,~d

)
D
⊗
(

σX(~a)σZ(~b)
)

A

)
|ϕ〉D ⊗

(
|φ(0,0)〉⊗n

)
AQ

, (4.107)

34

where |φ(0,0)〉 = |00〉+|11〉√
2

denotes an EPR pair, and
(
|φ(0,0)〉⊗n

)
AQ

is distributed between A and Q such

that every EPR pair has one qubit in either system. We can combine the different Vy,d into one isometry

Ṽ = ∑
~y,~d

Ṽ~y,~d ⊗ |~y, ~d〉〈~y, ~d| : HD ⊗HY ⊗HR → HD ⊗HY ⊗HR ⊗HA ⊗HQ . (4.108)

We similarly define

V~y,~d|ϕ〉D = E
~a,~b∈{0,1}n

((
X(~a)~y,~dZ(~b)~y,~d

)
D
⊗
(

σX(~a)σZ(~b)
)

A

)
|ϕ〉D ⊗

(
|φ(0,0)〉⊗n

)
AQ

(4.109)

and

V = ∑
~y,~d

V~y,~d ⊗ |~y, ~d〉〈~y, ~d| . (4.110)

Remark 4.25. The fact that Ṽ and V as defined in Definition 4.24 are indeed isometries, i.e. that Ṽ†Ṽ = 1

and V†V = 1 follows straightforwardly from the fact that(
〈φ(0,0)|⊗n

)
AQ

(
σX(~a′)σZ(~b′)

)†

A

(
σX(~a)σZ(~b)

)
A

(
|φ(0,0)〉⊗n

)
AQ

= δ~a,~a′δ~b,~b′ , (4.111)

and X̃(~a)2 = X(~a)2 = Z(~b)2 = 1.

Remark 4.26. The isometry Ṽ is inefficient since X̃ is an inefficient observable and is furthermore only
defined for the basis choice~θ =~1 since X̃ depends on the function û (see Definition 4.4). In contrast, since
X and Z are both efficient observables, V is an efficient isometry and is well-defined for any basis choice.

The following lemma relates Ṽ and V.

Lemma 4.27. For any keys~k ∈ Kn
1 :

V~y,~d = σZ(û(~k,~y, ~d))A ⊗ σZ(û(~k,~y, ~d))QṼ~y,~d . (4.112)

Proof. For any state |ϕ〉D, we have:

σZ(û(~k,~y, ~d))A ⊗ σZ(û(~k,~y, ~d))QṼ~y,~d|ϕ〉D

= E
a,b∈{0,1}n

(
X̃(~a)~y,~dZ(~b)~y,~d

)
D
|ϕ〉D ⊗

[(
σZ(û(~k,~y, ~d))σX(~a)σZ(~b)

)
A
⊗ σZ(û(~k,~y, ~d))Q

(
|φ(0,0)〉⊗n

)
AQ

]
Repeatedly using that (σZ)A |φ(0,0)〉AQ = (σZ)Q |φ(0,0)〉AQ:

= E
a,b∈{0,1}n

(
X̃(~a)~y,~dZ(~b)~y,~d

)
D
|ϕ〉D ⊗

[(
σZ(û(~k,~y, ~d))σX(~a)σZ(~b)σZ(û(~k,~y, ~d))

)
A

(
|φ(0,0)〉⊗n

)
AQ

]
Since σZ(û(~k,~y, ~d))σX(~a)σZ(~b)σZ(û(~k,~y, ~d)) = (−1)a·û(~k,~y,~d)σX(~a)σZ(~b):

= E
a,b∈{0,1}n

(
(−1)a·u(~k,~y,~d)X̃(~a)~y,~dZ(~b)~y,~d

)
D
|ϕ〉D ⊗

[(
σX(~a)σZ(~b)

)
A

(
|φ(0,0)〉⊗n

)
AQ

]

35

Recalling from Definition 4.4 that (−1)~a·û(~k,~y,~d)X̃(~a)~y,~d = X(~a)~y,~d:

= E
a,b∈{0,1}n

(
X(~a)~y,~dZ(~b)~y,~d

)
D
|ϕ〉D ⊗

[(
σX(~a)σZ(~b)

)
A

(
|φ(0,0)〉⊗n

)
AQ

]
= V|ϕ〉D .

Lemma 4.28. For an efficient perfect device D = (S, Π, M, P) and any~a,~b ∈ {0, 1}n we have

Tr
[

Ṽ†
(

σX(~a)σZ(~b)
)†

Q
ṼX̃(~a)DYRZ(~b)DYRσ

(~1)
DYR

]
≈n1/2γH(D)1/8 1 . (4.113)

Proof. Inserting the definition of Ṽ:

Tr
[

Ṽ†
(

σX(~a)σZ(~b)
)†

Q
ṼX̃(~a)DYRZ(~b)DYRσ

(~1)
DYR

]
= E

~a′,~b′
Tr
[

Ṽ†
(

X̃(~a′)Z(~b′)X̃(~a)Z(~b)σ(~1)
)

DYR
⊗
(

σX(~a′)σZ(~b′)
)

A
⊗
(

σX(~a)σZ(~b)
)†

Q

(
|φ(0,0)〉⊗n

)
AQ

]

Using
(

σX(~a)σZ(~b)
)†

Q

(
|φ(0,0)〉⊗n

)
AQ

=
(

σX(~a)σZ(~b)
)

A

(
|φ(0,0)〉⊗n

)
AQ

and the Pauli group relation

σX(~a′)σZ(~b′)σX(~a)σZ(~b) = (−1)~a·~b
′
σX(~a +~a′)σZ(~b +~b′):

= E
~a′,~b′

(−1)~a·~b
′
Tr
[

Ṽ†
(

X̃(~a′)Z(~b′)X̃(~a)Z(~b)σ(~1)
)

DYR
⊗
(

σX(~a +~a′)σZ(~b +~b′)
)

A

(
|φ(0,0)〉⊗n

)
AQ

]
Using Proposition 4.19 with Lemma 2.9 to exchange the order of X̃(~a) and Z(~b) (which act directly on the
state in the above expression), and then combining Z(~b)Z(~b′) = Z(~b +~b′):

≈n1/2γH(D)1/8 E
~a′,~b′

(−1)~a·~b
′+~a·~bTr

[
Ṽ†
(

X̃(~a′)Z(~b +~b′)X̃(~a)σ(~1)
)

DYR
⊗
(

σX(~a +~a′)σZ(~b +~b′)
)

A

(
|φ(0,0)〉⊗n

)
AQ

]
We can now again use Proposition 4.19 with Lemma 2.9 to exchange the order of Z(~b +~b′) and X̃(~a) (and
note that this will cancel the (−1)~a·~b

′+~a·~b pre-factor in the above expression), and combine X(~a)X(~a′) =
X(~a +~a′):

≈n1/2γH(D)1/8 E
~a′,~b′

Tr
[

Ṽ†
(

X̃(~a +~a′)Z(~b +~b′)σ(~1)
)

DYR
⊗
(

σX(~a +~a′)σZ(~b +~b′)
)

A

(
|φ(0,0)〉⊗n

)
AQ

]
If we now shift the indices in the expectation~a′ 7→~a′ −~a and~b′ 7→~b′ −~b, then this simplifies to:

= Tr
[
Ṽ†Ṽσ(~1)

]
= 1 .

36

We can now combine Lemma 4.27 and Lemma 4.28 to show that the isometry V maps the observables
X(~a)Z(~b) to the corresponding Pauli observables.

Proposition 4.29. For an efficient perfect device D = (S, Π, M, P) and any~a,~b ∈ {0, 1}n we have

VX(~a)Z(~b)V† ≈n1/2γH(D)1/8,Vσ(~1)V†

(
σX(~a)σZ(~b)

)
Q
⊗ 1YRDA . (4.114)

Proof. By Lemma 2.7, it suffices to show that

Tr
[(

σX(~a)σZ(~b)
)†

Q
VX(~a)Z(~b)V†Vσ(~1)V†

]
≈n1/2γH(D)1/8 1 . (4.115)

For this, we perform the following calculation. Using V†V = 1, cyclicity of the trace, and tracing over the
registers Y and R:

Tr
[(

σX(~a)σZ(~b)
)†

Q
VX(~a)Z(~b)V†Vσ(~1)V†

]
= ∑

~y,~d

Tr
[

V†
~y,~d

(
σX(~a)σZ(~b)

)†

Q
V~y,~dX(~a)~y,~dZ(~b)~y,~dσ

(~1)
~y,~d

]

Using Lemma 4.27:

= ∑
~y,~d

Tr
[

Ṽ†
~y,~d

σZ(û(~k,~y, ~d))A ⊗ σZ(û(~k,~y, ~d))Q

(
σX(~a)σZ(~b)

)†

Q
V~y,~dX(~a)~y,~dZ(~b)~y,~dσ

(~1)
~y,~d

]

Exchanging the order of σZ(û(~k,~y, ~d))A ⊗ σZ(û(~k,~y, ~d))Q and
(

σX(~a)σZ(~b)
)†

Q
(which produces a factor

of (−1)a·û(~k,~y,~d)):

= ∑
~y,~d

(−1)~a·û(~k,~y,~d)Tr
[

Ṽ†
~y,~d

(
σX(~a)σZ(~b)

)†

Q

[
σZ(û(~k,~y, ~d))A ⊗ σZ(û(~k,~y, ~d))QV~y,~d

]
X(~a)~y,~dZ(~b)~y,~dσ

(~1)
~y,~d

]

By Lemma 4.27, the expression in square brackets is simply Ṽ~y,~d. Additionally recalling from Definition 4.4

that (−1)~a·û(~k,~y,~d)X(~a)~y,~d = X̃(~a)~y,~d:

= ∑
~y,~d

Tr
[

Ṽ†
~y,~d

(
σX(~a)σZ(~b)

)†

Q
Ṽ~y,~dX̃(~a)~y,~dZ(~b)~y,~dσ

(~1)
~y,~d

]

Finally, we can re-introduce the systems Y and R and use Lemma 4.28 to obtain:

= Tr
[

Ṽ†
(

σX(~a)σZ(~b)
)†

Q
ṼX̃(~a)Z(~b)σ(~1)

]
≈n1/2γH(D)1/8 1 .

37

4.5 Preparing BB84 states

Lemma 4.30. For an efficient perfect device D = (S, Π, M, P) and any~θ ∈ {0, 1}n:

(i) If θi = 0, then

∑
~v
|~v〉〈~v| ⊗

(
σ
(vi)
Z,i

)
Q
≈n1/4γH(D)1/16,∑~v′ |~v′〉〈~v′|⊗Vσ(~θ,~v′)V† 1 . (4.116)

(ii) If θi = 1, then

∑
~v
|~v〉〈~v| ⊗

(
σ
(vi)
X,i

)
Q
≈n1/4γH(D)1/16,∑~v′ |~v′〉〈~v′|⊗Vσ(~θ,~v′)V† 1 . (4.117)

Proof. We first prove the first statement. It is easy to check that ∑~v |~v〉〈~v| ⊗
(

σ
(vi)
Z,i

)
Q

is a projector, so we

can expand the definition of the state-dependent distance and compute:

Tr

(∑
~v
|~v〉〈~v| ⊗

(
σ
(vi)
Z,i

)
Q
− 1

)†(
∑
~v
|~v〉〈~v| ⊗

(
σ
(vi)
Z,i

)
Q
− 1

)
∑
~v′
|~v′〉〈~v′| ⊗Vσ(~θ,~v′)V†


= Tr

[(
1−∑

~v
|~v〉〈~v| ⊗

(
σ
(vi)
Z,i

)
Q

)
∑
~v′
|~v′〉〈~v′| ⊗Vσ(~θ,~v′)V†

]

= 1−∑
~v

Tr

[(
|~v〉〈~v| ⊗

(
σ
(vi)
Z,i

)
Q

)
∑
~v′
|~v′〉〈~v′| ⊗Vσ(~θ,~v′)V†

]

= 1−∑
~v

Tr
[(

σ
(vi)
Z,i

)
Q

Vσ(~θ,~v)V†
]

= 1− ∑
vi∈{0,1}

Tr
[(

σ
(vi)
Z,i

)
Q

Vσ(~θ,vi ,~1i)V†
]

,

where for the last line we used that ∑v1,...,vi−1,vi+1,...,vn∈{0,1} σ(~θ,~v) = σ(~θ,vi ,~1i). Therefore, to show the first
part of the lemma, we need to show that

∑
vi∈{0,1}

Tr
[(

σ
(vi)
Z,i

)
Q

Vσ(~θ,vi ,~1i)V†
]
≈n1/4γH(D)1/16 1 . (4.118)

For this, recall from Proposition 4.29 that we have

VZiV† ≈n1/2γH(D)1/8,Vσ(~1)V† (σZ,i)Q ⊗ 1YRDA . (4.119)

Since V and Zi are efficient, by Lemma 4.13 this implies that for any~θ,

VZiV† ≈n1/2γH(D)1/8,Vσ(~θ)V† (σZ,i)Q ⊗ 1YRDA . (4.120)

(Compared to Lemma 4.13, here we have an additional isometry V applied to the state in the approximation.
However, because V is efficient, it is easy to see that the proof of Lemma 4.13 still goes through.) Using
[MV20, Lemma 2.18(ii)] and [MV20, Lemma 2.24], we get for any vi ∈ {0, 1}:

VZ(vi)
i V† ≈

n1/2γH(D)1/8,Vσ(~θ,vi ,~1i)V†

(
σ
(vi)
Z,i

)
Q
⊗ 1YRDA . (4.121)

38

Using the replacement lemma (Lemma 2.9), we obtain

∑
vi∈{0,1}

Tr
[(

σ
(vi)
Z,i

)
Q

Vσ(~θ,vi ,~1i)V†
]
≈n1/4γH(D)1/16 ∑

vi∈{0,1}
Tr
[
VZ(vi)

i V†Vσ(~θ,vi ,~1i)V†
]

(4.122)

= ∑
vi∈{0,1}

Tr
[

Z(vi)
i σ(~θ,vi ,~1i)

]
(4.123)

≈γH(D) 1 , (4.124)

where the last line follows from Equation (4.48) because θi = 0. This finishes the proof of the first statement.
For the second statement, we can perform the same calculation, but use Equation (4.49) instead of

Equation (4.48).

We are now in a position to show that on average over ~v and under the isometry V, an efficient perfect
device must have prepared a product of BB84 states tensored with an additional state α(~θ,~v).

Lemma 4.31. For an efficient perfect device D = (S, Π, M, P) and any ~θ ∈ {0, 1}n, there exists a set of
subnormalised states {α(~θ,~v)}~v∈{0,1}n such that

∑
~v∈{0,1}n

|~v〉〈~v| ⊗Vσ(~θ,~v)V† ≈n5/4γH(D)1/16 ∑
~v∈{0,1}n

|~v〉〈~v| ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α(~θ,~v) . (4.125)

Proof. We define the shorthand

M(θ) =

{
Z if θ = 0 ,
X if θ = 1 .

We can then apply Lemma 4.30 and [MV20, Lemma 2.22] twice to get

∑
~v∈{0,1}n

|~v〉〈~v| ⊗Vσ(~θ,~v)V†

≈n1/4γH(D)1/16

(
∑
~v
|~v〉〈~v| ⊗

(
σ
(v1)
M(θ1),1

)
Q

)
∑

~v∈{0,1}n

|~v〉〈~v| ⊗Vσ(~θ,~v)V†

(
∑
~v
|~v〉〈~v| ⊗

(
σ
(v1)
M(θ1),1

)
Q

)

We can repeat this for the remaining indices i = 2, . . . , n. Since we incur an approximation error of
n1/4γH(D)1/16 for each of the n steps, the total approximation error will be n5/4γH(D)1/16, so we have

∑
~v∈{0,1}n

|~v〉〈~v| ⊗Vσ(~θ,~v)V†

≈n5/4γH(D)1/16

(
∑
~v
|~v〉〈~v| ⊗

(
σ
(v1)
M(θ1),1

)
Q

)
. . .

(
∑
~v
|~v〉〈~v| ⊗

(
σ
(vn)
M(θn),n

)
Q

)
∑

~v∈{0,1}n

|~v〉〈~v| ⊗Vσ(~θ,~v)V†

(
∑
~v
|~v〉〈~v| ⊗

(
σ
(v1)
M(θ1),1

)
Q

)
. . .

(
∑
~v
|~v〉〈~v| ⊗

(
σ
(vn)
M(θn),n

)
Q

)

= ∑
~v∈{0,1}n

|~v〉〈~v| ⊗
(

∏
i

σ
(vi)
M(θi),i

)
Q

Vσ(~θ,~v)V†

(
∏

i
σ
(vi)
M(θi),i

)
Q

.

39

Now noting that ∏i σ
(vi)
M(θi),i

=
⊗

i Hθi |vi〉〈vi|Hθi , we obtain

= ∑
~v∈{0,1}n

|~v〉〈~v| ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗
(⊗

i

〈vi|Hθi

)
Q

Vσ(~θ,~v)V†

(⊗
i

Hθi |vi〉
)

Q

= ∑
~v∈{0,1}n

|~v〉〈~v| ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ TrQ

(⊗
i

Hθi |vi〉〈vi|Hθi

)
Q

Vσ(~θ,~v)V†

(⊗
i

Hθi |vi〉〈vi|Hθi

)
Q


Analogously to how we added the factors ∏i σ

(vi)
M(θi),i

in a previous step, we can now replace the factors(⊗
i Hθi |vi〉〈vi|Hθi

)
Q inside the partial trace by identity, resulting in

≈n1/4γH(D)1/16 ∑
~v∈{0,1}n

|~v〉〈~v| ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ TrQ

[
Vσ(~θ,~v)V†

]
.

We then obtain the desired statement by defining

α(~θ,~v) := TrQ

[
Vσ(~θ,~v)V†

]
. (4.126)

The statement of Lemma 4.31 says that up to an isometry, the device’s state has to be (information-
theoretically) close to a product of BB84 states tensored with an auxiliary state α(~θ,~v). The drawback of this
is that the auxiliary state depends on~θ and~v. For many applications, it is crucial that the only dependence on
~θ and ~v in the prover’s state is in the form of BB84 states, so we want that the auxiliary state be independent
of~θ and~v. This holds in the sense that a computationally bounded device cannot learn anything about~θ and
~v from α(~θ,~v), as formalised in the following proposition.

Proposition 4.32. For an efficient perfect device D = (S, Π, M, P), there exists an efficiently preparable
state α′ such that for any~θ ∈ {0, 1}n:

∑
~v∈{0,1}n

|~v〉〈~v| ⊗Vσ(~θ,~v)V† c≈n5/8γH(D)1/32
1
2n ∑

~v∈{0,1}n

|~v〉〈~v| ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α′ . (4.127)

Proof. Fix~θ. For any~θ′, we define

α(~θ′) = ∑
~v

α(~θ′,~v) , (4.128)

where α(~θ′,~v) are the states in Lemma 4.31. From Lemma 4.12 we know that for any ~θ′,~θ′′, σ(~θ′) c≈0 σ(~θ′′).
Since V is an efficient isometry, it follows from this and Lemma 4.31 that

α(~θ′) c≈n5/4γH(D)1/16 α(~θ′′) . (4.129)

40

We now set α(~θ′′) = α(~0) =: α′ (any other choice also works). From the proof of Lemma 4.31 we see that
this state α′ is efficiently preparable because the prover’s operations are efficient, so the state α′ (which is
averaged over the possible answer’s the prover can give, i.e. no post-selection is needed) can be efficiently
prepared by executing the prover with basis choice~0, applying the (efficient) isometry V, and tracing out
additional registers. Taking~θ′ = ~θ ⊕~1, we have

1
2n ∑

~v∈{0,1}n

|~v〉〈~v| ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α(~θ′) (4.130)

c≈n5/4γH(D)1/16
1
2n ∑

~v∈{0,1}n

|~v〉〈~v| ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α′ . (4.131)

From Lemma 4.31, we have

∑
~v∈{0,1}n

|~v〉〈~v| ⊗Vσ(~θ,~v)V† ≈n5/4γH(D)1/16 ∑
~v∈{0,1}n

|~v〉〈~v| ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α(~θ,~v) . (4.132)

Comparing Equation (4.127), Equation (4.131), and Equation (4.132), we see that to show the lemma it
suffices to show

∑
~v∈{0,1}n

|~v〉〈~v| ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α(~θ,~v)

c≈n5/4γH(D)1/16
1
2n ∑

~v∈{0,1}n

|~v〉〈~v| ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α(~θ′) . (4.133)

To show Equation (4.133), we first note that by tracing out the first system in the statement of
Lemma 4.31, we get that there exists an ε = O(n5/4γH(D)1/16) such that for any~θ′′∥∥∥∥∥∥ ∑

~v∈{0,1}n

Vσ(~θ′′,~v)V† − ∑
~v∈{0,1}n

(⊗
i

Hθ′′i |vi〉〈vi|Hθ′′i

)
Q

⊗ α(~θ′′,~v)

∥∥∥∥∥∥
2

1

≤ ε . (4.134)

Supposing that Equation (4.133) does not hold, there exists an efficient measurement {Λ, 1−Λ} such that

Tr

[
Λ

(
∑

~v∈{0,1}n

|~v〉〈~v| ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α(~θ,~v)

− 1
2n ∑

~v∈{0,1}n

|~v〉〈~v| ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α(~θ′)

)]
≥ 2 ε1/2 + µ(λ) (4.135)

for some non-negligible function µ(λ).
Since both states in the above expression are classical on the first two systems, without loss of generality

we can assume that Λ is classical on the first two systems, too, i.e. we can write (remembering that ~θ is
fixed)

Λ = ∑
~v
|~v〉〈~v| ⊗

(⊗
i

Hθi |vi〉〈vi|Hθi

)
Q

⊗Λ~v . (4.136)

41

With this, we can rewrite Equation (4.135) in a more compact form:

∑
~v

Tr
[

Λ~v

(
α(~θ,~v) − 1

2n α(~θ′)

)]
≥ 2 ε1/2 + µ(λ) . (4.137)

Define

Γ = V†

∑
~v

(⊗
i

Hθi |vi〉〈vi|Hθi

)
Q

⊗Λ~v

V . (4.138)

Since {Λ, 1−Λ} is an efficient measurement and V an efficient isometry, {Γ, 1− Γ} is an efficient mea-
surement, too. We claim that, assuming Equation (4.137) holds, we can use the measurement {Γ, 1− Γ} to
distinguish σ(~θ) from σ(~θ′) with advantage µ(λ), contradicting Lemma 4.12. To show this, we perform the
following calculation:

Tr
[
Γ
(

σ(~θ) − σ(~θ′)
)]

= Tr

∑
~v

(⊗
i

Hθi |vi〉〈vi|Hθi

)
Q

⊗Λ~v

(Vσ(~θ)V† −Vσ(~θ′)V†
)

Now using Equation (4.134) and [MV20, Lemma 2.21(ii)] (in a non-asymptotic form, which is easily seen
to hold from the proof of [MV20, Lemma 2.21(ii)]):

≥ Tr

[∑
~v

(⊗
i

Hθi |vi〉〈vi|Hθi

)
Q

⊗Λ~v


 ∑

~v′∈{0,1}n

(⊗
i

Hθi |v′i〉〈v′i|Hθi

)
Q

⊗ α(~θ,~v′) − ∑
~v′∈{0,1}n

(⊗
i

Hθ′i |v′i〉〈v′i|Hθ′i

)
Q

⊗ α(~θ′,~v′)

]− 2ε1/2

Since θi 6= θ′i for all i, we have that for all~v and~v′, |〈~v′|(⊗i Hθ′i Hθi)|~v〉|2 = 2−n. Then using ∑~v′ α
(~θ′,~v′) =

α(~θ′):

= ∑
~v

Tr
[

Λ~v

(
α(~θ,~v) − 1

2n α(~θ′)

)]
− 2ε1/2

≥ µ(λ) ,

where the last inequality follows from Equation (4.137). This yields the desired contradiction and finishes
the proof.

We are now ready to prove the main result of this part of the paper, namely that any efficient quantum
prover that does not cause Protocol 3 to abort must have prepared a product of BB84 states (up to an isometry
and an additional state α).

Theorem 4.33. Suppose the verifier executes Protocol 3 with an efficient quantum prover with parameters
n (number of BB84 states the verifier wishes to prepare), N = M2 (maximum possible number of test
rounds), and δ (error tolerance, i.e. proportion of test rounds that a prover is allowed to fail) that satisfy

42

N ≥ C 1
n5/4δ1+1/32 for a sufficiently large constant C. We denote by σ

(~θ)
SWDYR the verifier and prover’s joint

final state at the end of Protocol 3, where~θ is the basis choice recorded by the verifier in Protocol 3, S is set
to |⊥〉〈⊥| by the verifier if the protocol aborts and |>〉〈>| otherwise, W is the register in which the verifier
records the string~v, and DYR are the prover’s registers. Then, denoting the probability of success as Pr[>]
and expanding

σ
(~θ)
SWDYR = Pr[>] |>〉〈>|S ⊗ σ

(~θ)
WDYR|> + (1− Pr[>])|⊥〉〈⊥|S ⊗ σ

(~θ)
WDYR|⊥

there exists an efficiently preparable state α′DYRA such that for any ~θ ∈ {0, 1}n the following holds (with
V : HDYR → HDYRAQ the efficient isometry defined in Definition 4.24):

Pr[>]Vσ
(~θ)
WDYR|>V† c≈n5/8δ1/64 Pr[>] 1

2n ∑
~v∈{0,1}n

|~v〉〈~v|W ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α′DYRA . (4.139)

Remark 4.34. Computational indistinguishability in the above theorem is with respect to a distinguisher that
does not know the trapdoors for the keys used in the protocol. In particular, this includes the quantum prover
with whom the verifier executed the protocol, i.e., the quantum prover itself cannot distinguish the joint state
of the verifier’s output ~v and its own final quantum state from the state on the r.h.s. of Equation (4.139) (up
to the isometry V). Also note that on the prover’s systems QDYRA on the r.h.s. of Equation (4.139), the
only dependence on ~θ and ~v is in form of the BB84 states Hθi |vi〉〈vi|Hθi , i.e. the state α is the same for all
~θ and ~v.

Proof. We will reduce this theorem to Proposition 4.32 in essentially the same manner as in [GV19, Theo-
rem 3.17], but we spell out the details for completeness. Fix a prover strategy for Protocol 3. As a first step,
we observe that we can model any such strategy as a sequence of devices D1, . . . , DN , where Di defines
the prover’s strategy for the i-th test round. Note that these devices need not be independent, i.e. device
Di+1 can depend on the final state of device Di after execution of the i-th test round. Since the prover is
computationally efficient, so are the devices Di (and the input to device Di from device Di−1 is treated as
an advice state as explained in Remark 4.3).

Having fixed such sequence of devices D1, . . . , DN , we can now view an execution of Protocol 3 as a
random experiment with sample space Ω = {0, . . . , M− 1} × [M]× {0, 1}n. We denote by S and R the
random variables that output the first and second component of an element of Ω, respectively, and by Fi the
(bit-valued) random variable that outputs the i-th entry of the the third component. The probability mea-
sure on this space is induced by Pr[S = s, R = r, (F1 = f1, . . . , Fn = fn)] =

1
M2 Pr[F1 = f1, . . . , Fn = fn],

where Pr[F1 = f1, . . . , Fn = fn] is given by the fixed sequence of devices D1, . . . , DN via the condition that
Fi = 1 if the verifier sets flag = failPre or flag = failHad when executing Protocol 1 with Di,
and Fi = 0 otherwise.

We also define random variables that denote whether this sequence of devices causes the verifier to abort
on one of the M blocks of rounds in Protocol 3: for j ∈ [M], we define

FB
j =

{
0 if 1

M ∑i∈Bj
Fi ≤ δ ,

1 else,

where Bj is defined as in Protocol 3. We now denote by Ω′ ⊂ Ω the event that the verifier does not
abort in Protocol 3, i.e., Pr[Ω′] = Pr[>]. By the definition of the abort condition in Protocol 3, ω =

43

(s, r, (f1, . . . , fn)) ∈ Ω′ if and only if FB
j (ω) = 0 for all j ≤ s. For any ω ∈ Ω there can only exist one

index j∗ ∈ [M] such that FB
j∗(ω) = 1 and FB

j (ω) = 0 for j < j∗. Therefore, since S is chosen uniformly at
random by the verifier and Fi are independent of S (since S is unknown to the prover),

Pr
[

FB
S+1 = 1|Ω′

]
=

Pr
[
FB

S+1 = 1∧Ω′
]

Pr[Ω′]
(4.140)

=
Pr
[
FB

S+1 = 1∧ FB
S = 0∧ · · · ∧ FB

1 = 0
]

Pr[Ω′]
(4.141)

≤ 1
M Pr[Ω′]

. (4.142)

Here, FB
S is a random variable defined in the obvious way, i.e.,

FB
S ((s, r, (f1, . . . , fn))) := FB

s ((s, r, (f1, . . . , fn))) =

{
0 if 1

M ∑i∈Bs
fi ≤ δ ,

1 else.
(4.143)

We call a pair (s, r) “bad” if

Pr
[
FMs+r = 1|Ω′ ∧ S = s ∧ R = r

]
≥
√

δ . (4.144)

Then we have that for any s,

Pr
[
(s, R) bad|Ω′ ∧ S = s ∧ FB

s+1 = 0
]
≤
√

δ . (4.145)

Here, we slightly abused notation and used “(s, R) bad” to denote the event consisting of all ω ∈ Ω for
which (s, R(ω)) is bad. To see why the inequality holds, note that the event Ω′ ∧ S = s ∧ FB

s+1 = 0 is
independent of R, so even if we condition on this event, R is still uniform. Then it follows from the definition
of FB

s+1 that conditioned on Ω′ ∧ S = s∧ FB
s+1 = 0, there can be at most a fraction

√
δ of choices of R such

that (s, R) is bad. Since Equation (4.145) holds for any choice of S = s, we also have

Pr
[
(S, R) good|Ω′ ∧ FB

S+1 = 0
]
≥ 1−

√
δ , (4.146)

where “(S, R) good” is defined analogously to before, i.e., it is the complement of the set of ω ∈ Ω for
which (S(ω), R(ω)) is bad. Combining Equation (4.142) and Equation (4.146), we then find that

Pr
[
(S, R) good|Ω′

]
≥ Pr

[
(S, R) good∧ FB

S+1 = 0|Ω′
]

(4.147)

= Pr
[
(S, R) good|Ω′ ∧ FB

S+1 = 0
]

Pr
[

FB
S+1 = 0|Ω′

]
(4.148)

≥ (1−
√

δ)

(
1− 1

M Pr[Ω′]

)
(4.149)

≥ 1−
√

δ− 1
M Pr[Ω′]

. (4.150)

Note that if Pr[Ω′] < O(n5/8δ1/64), Theorem 4.33 becomes trivial. We may therefore assume Pr[Ω′] ≥
O(n5/8δ1/64) ≥ O(1/

√
δN) since we assumed N = M2 ≥ C

n5/4δ1+1/32 for sufficiently large C. In that case
we get that

Pr
[
(S, R) good|Ω′

]
≥ 1−O(

√
δ) . (4.151)

44

If the verifier’s choice of (S, R) in its run of Protocol 3 was “good”, we get from the definition in Equa-
tion (4.144) that for the device D = DMS+R used by the prover in the run of Protocol 2 that occurs as step
3. in Protocol 3, we have γH(D) ≤ O(

√
δ). Hence, we can apply Proposition 4.32 and find that conditioned

on the verifier making a “good” choice of (S, R), the state σ
(~θ)
|(S,R) good at the end of Protocol 3 satisfies

∑
~v∈{0,1}n

|~v〉〈~v| ⊗Vσ
(~θ,~v)
|(S,R) goodV† c≈n5/8δ1/64

1
2n ∑

~v∈{0,1}n

|~v〉〈~v| ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α′DYRA ,

(4.152)

for an efficiently preparable state α′DYRA. On the other hand, if the verifier’s choice of (S, R) was “bad”,
then the computational distinguishability between the prover’s final state and the state on the r.h.s. of Equa-
tion (4.152) is at most 1. Conditioned on the event Ω′, Equation (4.151) tells us that the probability of
the verifier choosing a bad (S, R) is at most

√
δ. Hence, on average over the verifier’s choice of (S, R)

conditioned on Ω′ (with the conditional state σ
(~θ)
|Ω′ = σ

(~θ)
|> as in the theorem statement) we get that

∑
~v∈{0,1}n

|~v〉〈~v|W ⊗Vσ
(~θ,~v)
DYR|>V† c≈n5/8δ1/64+

√
δ

1
2n ∑

~v∈{0,1}n

|~v〉〈~v|W ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α′DYRA .

(4.153)

Noting that
√

δ ≤ O(n5/8δ1/64), we obtain the desired statement.

While Theorem 4.33 does list explicit parameters, we emphasise that we have made no attempt at opti-
mising these, so they can likely be improved. For the proof-of-principle applications in Part II, we typically
want to choose a number of BB84 states n that we want to prepare and use parameters in the protocol that
are polynomial in n. For that use case, we provide the following corollary, which is a simplified version of
Theorem 4.33 in terms of asymptotically polynomial quantities.

Corollary 4.35. For any n ∈ N, there exist choices N = poly(n) and δ = 1/ poly(n) such that if the
verifier executes Protocol 3 with this choice of parameters, the following holds. For any basis choice ~θ by
the verifier, denoting the verifier and prover’s joint final state as

σ
(~θ)
SWDYR = Pr[>] |>〉〈>|S ⊗ σ

(~θ)
WDYR|> + (1− Pr[>])|⊥〉〈⊥|S ⊗ σ

(~θ)
WDYR|⊥

as in Theorem 4.33, the state σ
(~θ)
WDYR|> = ∑~v |~v〉〈~v|W ⊗ σ

(~θ,~v)
DYR|> conditioned on acceptance satisfies

Pr[>]Vσ
(~θ)
WDYR|>V† c≈1/ poly(n) Pr[>] 1

2n ∑
~v∈{0,1}n

|~v〉〈~v|W ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α′B (4.154)

for an efficiently preparable state αB with B := DYRA and the isometry V : DYR → QB as in Theo-
rem 4.33. If furthermore the prover’s success probability is lower-bounded by an inverse polynomial, i.e.,
Pr[>] ≥ 1/ poly(n), then we can choose N = poly(n) and δ = 1/ poly(n) such that an analogous
statement also holds for the normalised conditional state:

Vσ
(~θ)
WDYR|>V† c≈1/ poly(n)

1
2n ∑

~v∈{0,1}n

|~v〉〈~v|W ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α′B . (4.155)

45

Proof. We can choose δ = 1/ poly(n) such that n5/8δ1/64 = 1/ poly(n). Then, we can choose
N = O(1/(n5/4δ1+1/32)) = poly(n) as in Theorem 4.33 and obtain Equation (4.154) directly from
Theorem 4.33. To show Equation (4.155), we note that by renormalising (and noting that in the definition
of computational indistinguishability, the distinguishing advantage for subnormalised states scales propor-
tionally to the normalisation factor), we immediately get

Vσ
(~θ)
WDYR|>V† c≈1/(Pr[>] poly(n))

1
2n ∑

~v∈{0,1}n

|~v〉〈~v|V ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α′B . (4.156)

To finish the proof, we observe that for any Pr[>] ≥ 1/ poly(n) we can choose a sufficiently small δ =
1/ poly(n) such that in the approximation error in Equation (4.156), Pr[>] poly(n) ≥ poly(n).

46

Part II

Applications
5 Unclonable quantum encryption

As a first application of our parallel RSP protocol, we consider the notion of unclonable quantum encryp-
tion. This cryptographic functionality was coined by Gottesman [Got02] and subsequently formalised by
Broadbent and Lord [BL19]. Intuitively, the idea is to create a quantum ciphertext, corresponding to the
encryption of a classical message, that cannot be duplicated. In other words, given the quantum ciphertext,
no adversary can create two ciphertexts that decrypt to the same message as the original ciphertext. Let us
formalise this intuition by introducing a few relevant definitions.

5.1 Quantum encryption of classical messages

A private-key quantum encryption of classical messages (QECM) scheme is a procedure that takes as input
a key and a plaintext in the form of a classical bit string in a quantum register, and produces a ciphertext in
the form of a quantum state. We formalise this notion in Definition 5.1.

Definition 5.1 (QECM scheme).
Let λ ∈ N be the security parameter. A quantum encryption of classical messages (QECM) scheme with
key spaceK and plaintext spaceM is a triplet QECM = (KeyGen,Enc,Dec) consisting of QPT algorithms:

• QECM.KeyGen(1λ)→ k: takes as input the security parameter and outputs a key k ∈ K.

• QECM.Enc(k, m)→ ρ: takes as input a key k and a message m ∈ M and outputs ρ ∈ D(HA).

• QECM.Dec(k, ρ) → σ: takes as input a key k and a quantum ciphertext ρ ∈ D(HA), and outputs a
plaintext in the form of a state σ ∈ D(HM), whereHM = span{|m〉 : m ∈ M}.

We use the notation QECM.Enck for the map m 7→ QECM.Enc(k, m), and likewise for QECM.Deck. The
map QECM.Enck can be extended to quantum inputs σ ∈ D(HM) withHM = span{|m〉 : m ∈ M} via

Enck(σ) = ∑
m∈M

Tr[|m〉〈m|σ]Enck(|m〉〈m|) .

A QECM scheme is called correct if, for all m ∈ M and k ∈ suppQECM.KeyGen(1λ),

Tr[|m〉〈m|QECM.Deck ◦QECM.Enck(m)] ≥ 1− negl(λ).

Note that we typically assume that the key space is given by K = {0, 1}λ and that the plaintext space
M and ciphertext space consist of inputs of at most poly(λ) many bits and qubits, respectively.

We use the following notion of indistinguishable encryptions for QECM schemes which is inspired by
the definition of Alagic et al. [ABF+16].

Definition 5.2 (Indistinguishable security). A QECM scheme Σ = (KeyGen,Enc,Dec) has indistinguish-
able encryptions (or is IND-secure) if, for every QPT adversary A = (M,D),∣∣∣ Pr

[
D
(
(Enck ⊗ idE)ρME

)
= 1

]
− Pr

[
D
(
(Enck ⊗ idE)(|0〉〈0|M ⊗ ρE)

)
= 1

] ∣∣∣ ≤ negl(λ) ,

where we assume that k ← KeyGen(1λ), ρME ←M(1λ) with ρE = TrM[ρME], and where |0〉〈0|M is the
all-0 string in the plaintext register M.

47

Informally, we say that a quantum encryption scheme is unclonable if no QPT adversary can produce
two “copies” of a quantum ciphertext which can each be decrypted with access to the private key. Before
we make the notion of unclonable ciphertexts more precise, let us first introduce the following definition of
a cloning attack due to Broadbent and Lord [BL19].

Definition 5.3 (Cloning attack). Let λ ∈ N be a parameter. A cloning attack (A,B, C) against a QECM
scheme Σ = (KeyGen,Enc,Dec) consists of the following QPT algorithms (which are parameterised by λ)

• (cloning map) A : D(HA)→ D(HB ⊗HC)

• (1st decoder) B : K×D(HB)→ D(HM)

• (2nd decoder) C : K×D(HC)→ D(HM)

where K andHA are defined by the scheme Σ, i.e. K is the set of keys andHA is the ciphertext system.

We remark that we only consider efficient cloning attacks throughout this work. This is in contrast with
the definition of Broadbent and Lord [BL19] who consider CPTP maps more generally.

Definition 5.4 (Cloning experiment). Let Σ = (KeyGen,Enc,Dec) be a QECM scheme and let λ ∈ N be
the security parameter. We define the following security game, called the cloning experiment, which takes
place between a challenger and an efficient adversary who executes a cloning attack (A,B, C):

1. The challenger samples a key k $←−K and message m $←−M, and sends ρA ← Enck(m) to A.

2. A maps ρA into a bipartite state ρBC on systems BC, and sends ρBC to the challenger together with a
pair of circuit descriptions of ensembles of efficient quantum algorithms {Bκ}κ∈K and {Cκ}κ∈K.

3. The challenger runs Bk on system B and Ck on system C of ρBC, measures the output states in the
computational basis to obtain outcomes mB and mC, and outputs 1 if m = mB = mC, and 0 otherwise.

We let the random variable CloneExpΣ
(
1λ, (A,B, C)

)
denote the output bit of the challenger.

Building on the cloning experiment in Definition 5.4, we then define unclonable security as follows.

Definition 5.5 (Unclonable Security). Let λ ∈ N be a security parameter. We say that a QECM scheme
Σ = (KeyGen,Enc,Dec) is t(λ)-unclonable secure if, for all cloning attacks (A,B, C), it holds that

Pr
[
CloneExpΣ

(
1λ, (A,B, C)

)
= 1

]
≤ 2−λ+t(λ) + negl(λ).

5.2 Unclonable quantum encryption with a classical client

Let us now extend the notion of quantum encryption schemes of classical messages from Definition 5.1
to allow for interaction between a classical client and a quantum receiver. In this setting, the encryption
algorithm is replaced by a an interactive protocol which enables the delegation of a ciphertext. Contrary to
the standard notion of QECM schemes in Definition 5.1, our definition of QECM schemes with a classical
client does not feature a key generation procedure; rather, we assume that the key is produced as a result of
the interactive encryption protocol between the client and the receiver. Our definition is the following:

Definition 5.6 (QECM scheme with a classical client).
Let λ ∈ N be a security parameter, let K be the key space and let M be the plaintext space. A QECM
scheme with a classical client (i.e., a QECMCC scheme) consists of a pair QECMCC = (Enc,Dec), where

48

• QECMCC.Enc(C(1λ, m),R(1λ)) → (k, ρ) or⊥: this is an interactive protocol between a classical
client C which takes as input the security parameter 1λ and message m ∈ M, and a quantum receiver
R which takes as input the parameter 1λ. The protocol takes place as follows:

– C and R exchange classical messages only. Once the protocol is complete, C obtains a flag
which is either > (accept) or ⊥ (reject). Provided that the protocol is successful with the flag >,
C obtains an associated secret key k ∈ K, andR is in possession of a state ρ ∈ D(HA) (which
depends on k and m). Otherwise, C outputs ⊥.

• QECMCC.Dec(k, ρ): takes as input a secret key k, a state ρ ∈ D(HA) and outputs a plaintext in the
form of a quantum state σ ∈ D(HM), whereHM = span{|m〉 : m ∈ M}.

We say that QECMCC = (Enc,Dec) is correct if, for all plaintexts m ∈ M, it holds that

Tr[|m〉〈m|QECMCC.Deck(ρ)] ≥ 1− negl(λ),

where (k, ρ) ← QECMCC.Enc(C(1λ, m),R(1λ)) is the final result of the interactive protocol between the
client and the receiver, provided that the protocol is successful.

Similar to Definition 5.3, we now define an analogous security experiment in the classical client setting.

Definition 5.7 (Cloning experiment with a classical client). Let Σ = (Enc,Dec) be a QECMCC scheme
and let λ ∈ N be the security parameter. We define the security game (called the cloning experiment with
a classical client) which takes place between a challenger and an adversary (P ,A,B, C) consisting of an
efficient interactive prover P and an efficient cloning attack (A,B, C) as follows:

1. The challenger samples a random message m $←−M. To classically delegate a ciphertext according
to the scheme Σ, the challenger takes the role of the classical client C, whereas the prover P takes
the role of the (possibly malicious) recipient in the interactive protocol specified by QECMCC.Enc.
Provided that the protocol succeeds with flag = >, C obtains an associated secret key k ∈ K, and
P is in possession of a state ρ ∈ D(HA) (which depends on m and k, as well as any additional
information collected during the protocol). Otherwise, if flag = ⊥, the adversary loses.

2. A maps ρA into a bipartite state ρBC on systems BC, and sends ρBC to the challenger together with a
pair of classical circuit descriptions of efficient quantum algorithms {Bκ}κ∈K and {Cκ}κ∈K.

3. The challenger applies the channel (Bk ⊗ Ck) to the state ρBC, measures in the standard basis with
outcomes mB and mC, and outputs 1 if m = mB = mC and flag = >, and 0 otherwise.

We let the random variable CloneExpΣ,CC
(
1λ, (P ,A,B, C)

)
denote the output bit of the challenger.

Definition 5.8 (Unclonable Security with a Classical Client).
Let λ ∈ N be the security parameter. A QECMCC scheme Σ = (Enc,Dec) with message space {0, 1}λ is
said to be t(λ)-unclonable secure if, for any (interactive) QPT adversary (P ,A,B, C),

Pr
[
CloneExpΣ,CC

(
1λ, (P ,A,B, C)

)
= 1

]
≤ 2−λ+t(λ) + negl(λ).

49

5.3 Conjugate coding encryption with a classical client

In this section, we give a quantum encryption scheme with a classical client based on the notion of conjugate
coding – an idea first proposed by Wiesner [Wie83]. The main idea behind the construction is that it is
possible to encrypt a plaintext m ∈ {0, 1}λ in the form of a quantum ciphertext by first applying a classical
one-time pad, and then making λ uniformly random choices of basis (either computational or Hadamard).

Let us first introduce the basic conjugate cording encryption scheme which was also recently considered
by Broadbent and Lord [BL19] in the context of unclonable encryption.

Construction 1 (Conjugate coding scheme). Let λ ∈ N be the security parameter. The conjugate coding
encryption scheme Σ = (KeyGen,Enc,Dec) consists of the following QPT algorithms:

Σ.KeyGen(1λ): takes as input the parameter 1λ and outputs a key k = (~r,~θ) $←−{0, 1}λ × {0, 1}λ.

Σ.Enc(k, m): takes as input a key k = (~r,~θ) and a message m ∈ {0, 1}λ and outputs the cipherterxt

ρ =
λ⊗

i=1

Hθi |ri ⊕mi〉〈ri ⊕mi|Hθi .

Σ.Dec(k, ρ): takes as input a key k = (~r,~θ) and decrypts a quantum ciphertext ρ as follows:

(i) apply Hθ1 ⊗ · · · ⊗ Hθλ to the state ρ and measure in the standard basis with outcome ~x.

(ii) output the plaintext ~m′ = ~x⊕~r.

Notice that the conjugate coding scheme in Construction 1 is trivially correct and also IND-secure ac-
cording to Definition 5.2. Moreover, the scheme has the following desirable property which was shown by
Broadbent and Lord [BL19]. Namely, the quantum ciphertext is unclonable in the following sense:

Theorem 5.9 ([BL19], Theorem 15). Let λ ∈ N be the security parameter. Then, the conjugate coding
encryption scheme Σ = (KeyGen,Enc,Dec) defined in Construction 1 is t(λ)-unclonable secure, where
t(λ) = λ log(1 + 1/

√
2). In other words, for all cloning attacks (A,B, C),

E
~m

E
~r

E
~θ

Tr
[
(|~m〉〈~m| ⊗ |~m〉〈~m|)(B(~r,~θ) ⊗ C(~r,~θ)) ◦ A ◦ Enc(~r,~θ)(~m)

]
≤
(

1
2
+

1
2
√

2

)λ

.

We define our conjugate coding encrypytion scheme with a classical client in Protocol 4. Let us first
show the correctness of our scheme.

Proposition 5.10 (Correctness). Σ = (Enc,Dec) in Protocol 4 is a correct QECMCC scheme.

Proof. Let λ ∈ N and n(λ) ∈ N be parameters and let Σ = (Enc,Dec) be the QECMCC scheme in
Protocol 4. To prove correctness, we have to show that, for all m ∈ {0, 1}n,

Tr[|m〉〈m|Deck(σ)] ≥ 1− negl(λ), (5.1)

where (k, σ) ← Enc(C(1λ, m),R(1λ)) is the final result of the interactive protocol between the client C
and the receiver R. Note that in this scenario we can assume that the receiver R is honest throughout the
protocol. According to Proposition 3.1,R is accepted in Protocol 3 with probability negligibly close to 1 in

50

Protocol 4. Conjugate Coding Encryption with a Classical Client

Let λ ∈N and n = n(λ) ∈N be parameters. Consider the scheme Σ = (Enc,Dec) defined by:

Σ.Enc(C(1λ, m),R(1λ)) → (k, σ) or⊥: this is the following interactive protocol between a clas-
sical client C (which takes as input the security parameter 1λ and a plaintext m ∈ {0, 1}n) and
a quantum receiverR (which takes as input the parameter 1λ):

(i) C andR run the parallel RSP protocol (Protocol 3) with parameters λ and n for a random
~θ $←−{0, 1}n. If the protocol is successful, C obtains ~v $←−{0, 1}n and R obtains an n-
qubit state σ (which depends on ~v,~θ). Otherwise, if the protocol fails, C outputs ⊥.

(ii) the client lets k = (~r,~θ) be the secret key, where~r satisfies ~v = ~m⊕~r.

Σ.Dec(k, ρ)→ ~m′: takes as input the secret key k = (~r,~θ) and a state ρ and decrypts as follows:

(i) apply Hθ1 ⊗ · · · ⊗ Hθn to the state ρ and measure in the standard basis with outcome ~x.

(ii) output the plaintext ~m′ = ~x⊕~r.

the security parameter λ (for parameter choices n at most polynomial in λ and δ at least inverse polynomial
in λ). Furthermore, provided that Protocol 3 is successful, the final state ofR is given by

σ =
n⊗

i=1

Hθi |vi〉〈vi|Hθi , (5.2)

where ~v and ~θ are the strings recorded by the client C. Hence, the correctness property in Equation (5.1) of
Σ = (Enc,Dec) in Protocol 4 immediately follows from the correctness of the conjugate coding scheme in
Construction 1. This proves the claim.

Theorem 5.11 (Security). Let λ ∈ N and n(λ) ∈ N be parameters. Then, there exist ε(λ) = 1/ poly(λ)
and t(λ) = n(λ) log(1 + 1/

√
2) such that the QECMCC scheme Σ = (Enc,Dec) defined in Protocol 4

is t̃(λ)-unclonable secure, where we let t̃(λ) := t(λ) + log
(
1 + 2n(λ)−t(λ)+log ε(λ)

)
. In other words, for

every efficient interactive quantum prover P and for all QPT cloning attacks (A,B, C), it holds that

Pr
[
CloneExpΣ,CC

(
1λ, (P ,A,B, C)

)
= 1

]
≤ 2−n(λ)+t(λ) + ε(λ) + negl(λ).

Proof. Let us analyze the success probability in the cloning experiment in Definition 5.4. Let (P ,A,B, C)
be an efficient adversary consisting of an efficient interactive prover P and a triplet of QPT algorithms

(A,B, C). Let σ
(~θ)
WDYR|> be the final state at the end of the interactive protocol conditioned on the event that

the challenger outputs flag = > as in Corollary 4.35. Recall that the challenger has access to system W

whereas the prover P has access to systems DYR. Corollary 4.35 then considers the state Vσ
(~θ)
WDYR|>V†

for an efficient isometry V : DYR → QB with B = DYRA. We can argue that w.l.og. we can assume

that the prover’s state is in fact Vσ
(~θ)
WDYR|>V†, not σ

(~θ)
WDYR|>. The reason is that the prover can recover the

51

latter from the former by considering the (efficient) unitary extension U : QB → QB of V, applying U† to

Vσ
(~θ)
WDYR|>V†, and then tracing out systems QA. Hence, slightly abusing notation, we define

σ
(~θ)
WQB|> := Vσ

(~θ)
WDYR|>V†

and assume that the prover has prepared the state σ
(~θ)
WQB|>. We can expand this state as a cq-state as in

Corollary 4.35, and write

σ
(~θ)
WQB|> = ∑

~v∈{0,1}n

|~v〉〈~v|W ⊗ σ
(~v,~θ)
QB|> , (5.3)

where σ
(~v,~θ)
QB|> are subnormalised according to the probability of the verifier receiving outcome ~v. In Pro-

tocol 5, the verifier makes the basis choice ~θ uniformly at random, and in the cloning experiment in Def-
inition 5.4 the verifier chooses a uniformly random message m. Therefore, the success probability in the
cloning experiment can be expressed as

Pr
[
CloneExpΣ,CC

(
1λ, (P ,A,B, C)

)
= 1

]
= ∑

~v
E
~m

E
~θ

Tr
[
(|~m〉〈~m| ⊗ |~m〉〈~m|)(B(~v⊕~m,~θ) ⊗ C(~v⊕~m,~θ)) ◦ A

(
σ
(~v,~θ)
QB|>

)]
. (5.4)

(Here, we sum over ~v because σ
(~v,~θ)
QB|> is subnormalised. Alternatively, one can also renormalise these states

and take an expectation. Both methods are equivalent since the expression in the trace scales linearly in
the normalisation factor.) We can assume that the acceptance probability of P in the interactive protocol
satisfies Pr[>] ≥ 1/ poly(λ) as otherwise, the success probability of the adversary (P ,A,B, C) in the
cloning experiment would decay faster than an inverse polynomial in λ, in which case Theorem 5.11 is
trivially satisfied. Under this assumption, it follows from Corollary 4.35 that there exists ε(λ) = 1/ poly(λ)
such that for any~θ ∈ {0, 1}n,

∑
~v∈{0,1}n

|~v〉〈~v|W ⊗ σ
(~v,~θ)
QB|>

c≈ε(λ)
1
2n ∑

~v∈{0,1}n

|~v〉〈~v|W ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α′B , (5.5)

where α′B is a (normalised) quantum state which is independent of~v and~θ (and ~m). From this it follows that
for any m and~θ,

∑
~v

Tr
[
(|~m〉〈~m| ⊗ |~m〉〈~m|)(B(~v⊕~m,~θ) ⊗ C(~v⊕~m,~θ)) ◦ A

(
σ
(~v,~θ)
QB|>

)]

≤ 1
2n ∑

~v
Tr

(|~m〉〈~m| ⊗ |~m〉〈~m|)(B(~v⊕~m,~θ) ⊗ C(~v⊕~m,~θ)) ◦ A

(⊗
i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α′B

+ ε(λ) .

(5.6)

This is the case because the adversary (P ,A,B, C) is efficient, so given the state on the l.h.s. or r.h.s. of
Equation (5.5), one can efficiently estimate the quantity on the l.h.s. or r.h.s. of Equation (5.6), respectively.

52

Since α′B is a fixed and efficiently preparable state, we can consider a modified cloning map Ã that only
acts on system Q (rather than on QB) and is defined by

Ã(ρQ) = A
(
ρQ ⊗ α′B

)
Using Equation (5.6), we can bound the cloning advantage as follows:

Pr
[
CloneExpΣ,CC

(
1λ, (P ,A,B, C)

)
= 1

]
≤ E

~m
E
~v

E
~θ

Tr

(|~m〉〈~m| ⊗ |~m〉〈~m|)(B(~v⊕~m,~θ) ⊗ C(~v⊕~m,~θ)) ◦ A

(⊗
i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α′B

+ ε(λ)

= E
~m

E
~r

E
~θ

Tr

(|~m〉〈~m| ⊗ |~m〉〈~m|)(B(~r,~θ) ⊗ C(~r,~θ)) ◦ Ã

(⊗
i

Hθi |ri ⊕mi〉〈ri ⊕mi|Hθi

)
Q

+ ε(λ)

We can now use the fact that Theorem 5.9 must hold for the cloning attack (Ã,B, C), and get:

≤
(

1
2
+

1
2
√

2

)n(λ)

+ ε(λ)

= 2−n(λ)+t̃(λ),

where we defined t̃(λ) := t(λ) + log
(
1 + 2n(λ)−t(λ)+log ε(λ)

)
and t(λ) = n(λ) log(1 + 1/

√
2).

6 Quantum copy-protection

Our second application of our parallel RSP protocol for BB84 states is the task of quantum copy-protection
– an idea first proposed by Aaronson [Aar09]. Here, we imagine that a vendor wishes to encode a program
into a quantum state in a way that enables a recipient to run the program, but not to create functionally
equivalent “pirated” copies. Let us begin by introducing a few relevant definitions.

Definition 6.1 (Quantum copy-protection scheme). Let F =
⋃

λ∈N Fλ be a class of efficiently computable
functions f : X → Y with domain X and range Y . A quantum copy-protection (QCP) scheme for the class
F is a pair of QPT algorithms QCP = (Protect,Eval) defined as follows:

QCP.Protect(1λ, d f) → ρ : takes as input the security parameter 1λ and a classical description d f of a
function f ∈ Fλ, and outputs a (possibly mixed) quantum state ρ.

QCP.Eval(1λ, ρ, x) → ρ′ ⊗ |y〉〈y| : takes as input the security parameter 1λ, a quantum state ρ and an
input x ∈ X , and outputs a bipartite state ρ′ ⊗ |y〉〈y| with y ∈ Y .

Slightly abusing notation, we occasionally ignore the post-evaluation state ρ′ and simply identify the
output of the procedure QCP.Eval(1λ, ρ, x) with a classical outcome denoted by y ∈ Y .

We say that a QCP scheme is δ-correct if, for any λ ∈N, any f ∈ Fλ, and any input x ∈ X to f :

Pr
[
QCP.Eval(1λ, ρ, x) = f (x) : ρ← QCP.Protect(1λ, d f)

]
≥ 1− δ(λ).

53

Note that the probability above comes from the procedure QCP.Eval of the QCP scheme. If δ(λ) = negl(λ),
we simply call a copy-protection scheme correct. By the Gentle Measurement Lemma [Win99] it is easy to
see that a δ-correct scheme is reusable in the following sense: after performing QCP.Eval to ρ it is possible
to rewind the procedure to obtain a state that is within trace distance

√
δ of the original state ρ.

Informally, we say that a QCP scheme QCP = (Protect,Eval) is secure if no QPT adversary can pro-
duce two “copies” of a copy-protected program ρ← QCP.Protect(1λ, d f) that can both be used to evaluate
f . We formalise the security of copy-protection schemes by means of the following security experiment.

Definition 6.2 (Piracy experiment). Let QCP = (Protect,Eval) be a copy-protection scheme for a class
of functions F =

⋃
λ∈N Fλ with domain X and range Y . Let DF = {DFλ

}λ∈N be an ensemble of
distributions over Fλ and let DX = {DX (f)} f∈Fλ

be an ensemble of distributions over function inputs X .
The security game (which we call the piracy experiment) takes place between a challenger and an adversary
consisting of a triplet of QPT algorithms (A,B, C):

1. The challenger samples f ← DFλ
and sends the program ρ← QCP.Protect(1λ, d f) to A.

2. A applies an efficient CPTP map to map ρ into a bipartite state ρBC on systems BC, and sends system
B to B and system C to C (who are not allowed to communicate from this step onward).

3. The challenger samples a pair (xB, xC)← DX (f)×DX (f), and sends xB to B and xC to C.

4. B and C output values yB ∈ Y and yC ∈ Y , respectively, and send them to the challenger. The
challenger outputs 1, if yB = f (xB) and yC = f (xC) (i.e., the adversary has succeeded) and 0,
otherwise (i.e., the adversary has failed).

We let the random variable PiracyExpQCP
DF ,DX

(
1λ, (A,B, C)

)
denote the output bit of the challenger.

Definition 6.3 (Secure quantum copy-protection). Let QCP = (Protect,Eval) be a QCP scheme for a class
of functions F =

⋃
λ∈N Fλ. Let DF = {DFλ

}λ∈N be an ensemble of distributions over Fλ and let
DX = {DX (f)} f∈Fλ

be an ensemble of distributions over X . Then, QCP = (Protect,Eval) is called
(DF ,DX , γ)-secure if, for any triplet of QPT algorithms (A,B, C), it holds that

Pr
[
PiracyExpQCP

DF ,DX
(
1λ, (A,B, C)

)
= 1

]
≤ ptriv

DF ,DX + γ(λ),

where ptriv
DF ,DX is the trivial winning probability that is always possible due to correctness: A forwards the

original copy-protected program to one of the parties, say B (who then evaluates it to obtain the correct
output), and the other party, say C, has to guess at random [CMP20].

6.1 Quantum encryption with wrong-key detection

Recent work [CMP20] has introduced a QCP scheme for multi-bit point functions in the QROM based on
unclonable encryption with wrong-key detection (WKD), a property which enables the decryption procedure
to recognise incorrect keys. Contrary to [CMP20], our new QCP scheme for multi-bit point functions
does not require the QROM assumption and instead relies on pair-wise independent permutations [NR97],
which exist unconditionally and have previously been used in the context of classical obfuscation of point
functions [CKVW10]. Let us first introduce some relevant definitions.

Definition 6.4 (Pair-wise independent permutation family). Let n ∈N be an integer. A set of functions Pn
is called a pair-wise independent permutation family over {0, 1}n if

54

• every π ∈ Pn is a permutation on {0, 1}n, and

• for any distinct x1, x2 ∈ {0, 1}n and random function π $←−Pn, the pair
(
π(x1), π(x2)

)
is uniformly

distributed on the set of distinct pairs Sn = {(x, y) ∈ {0, 1}n × {0, 1}n : x 6= y}.

To give an example, we consider the following simple construction of a pair-wise independent permuta-
tion family due to Naor and Reingold [NR97]. Let n ∈ N be an integer and let GF(2n) be a finite field of
order 2n. For a, b ∈ GF(2n), we consider the family of functions defined by

f(a,b)(x) := a · x + b, ∀x ∈ GF(2n) .

Then, the following set of functions Pn forms a pair-wise independent permutation family:

Pn =
{

f(a,b) : GF(2n)→ GF(2n) : a, b ∈ GF(2n) , a 6= 0
}

.

Because the finite field GF(2n) of order 2n can be identified with {0, 1}n, we conclude that the above
construction yields a pairwise independent permutation family over the set of binary strings {0, 1}n.

We make the following simple observation about pair-wise independent permutation families which we
later make use of in the section on quantum copy-protection with a classical client.

Lemma 6.5. Let n ∈ N and let Pn be a pairwise independent permutation family. Then, the family of
inverse permutations P−1

n = {π−1 : π ∈ Pn} is also a pairwise independent permutation family.

Proof. Let us verify the two properties in Definition 6.4. Fix a pairwise independent permutation family Pn.
For every π−1 ∈ P−1

n , the function π−1 is clearly a permutation whenever π is a permutation. This proves
the first property. For the second property, we fix distinct x1, x2 ∈ {0, 1}n and a random permutation π−1

in the family P−1
n . This implies that π is also a random permutation with π ◦ π−1 = id, and(

π−1(x1), π−1(x2)
)
=
(
(π ◦ π−1 ◦ π−1)(x1), (π ◦ π−1 ◦ π−1)(x2)

)
=
(
π(y1), π(y2)

)
,

where y1 := (π−1 ◦ π−1)(x1) and y2 := (π−1 ◦ π−1)(x2) are distinct values in {0, 1}n. Thus, by the
assumption that Pn is a pairwise independent permutation family, the pair

(
π(y1), π(y2)

)
is uniform in

Sn = {(x, y) ∈ {0, 1}n × {0, 1}n : x 6= y}. This proves the claim.

We use the following definition of wrong-key detection for QECM schemes, inspired by [CMP20] who
consider quantum secret-key encryption schemes, more generally.

Definition 6.6 (Wrong-key detection for QECM schemes). A QECM scheme Σ = (KeyGen,Enc,Dec)
satisfies the wrong-key detection (WKD) property if, for every k′ 6= k← KeyGen(1λ) and plaintext m,

Tr[(1− |⊥〉〈⊥|)Deck′ ◦ Enck(m)] ≤ negl(λ).

Using the notion of pair-wise independent permutations, we can now state the following transformation
which enables us to turn any QECM scheme into another QECM scheme with wrong-key detection.

Our construction is inspired by Canetti et al. [CKVW10] who previously introduced the same transfor-
mation in the context classical obfuscation of point functions.

55

Construction 2 (Generic transformation for WKD). Let λ ∈ N be the security parameter. Let Σ =
(KeyGen,Enc,Dec) be a QECM scheme with key spaceK = {0, 1}λ and let Pλ be a pair-wise independent
permutation family. Consider the following QECM scheme Σ′ = (KeyGen′,Enc′,Dec′) defined by:

KeyGen′(1λ)→ k : this is the same as KeyGen(1λ).

Enc′(k, m)→ ct: takes as input a key k ∈ {0, 1}λ and plaintext m ∈ {0, 1}λ and proceeds as follows:

1. Sample a uniformly random string r $←−{0, 1}λ.
2. Sample a random pair-wise independent permutation π $←−Pλ.
3. Output the ciphertext ct = Encπ(k)(r||m)⊗ |r〉〈r| ⊗ |π〉〈π|.

Dec′(k, ct)→ m′ or ⊥ : on input key k ∈ {0, 1}n and ciphertext ct, decrypt as follows:

1. Parse the ciphertext as ρ⊗ |r〉〈r| ⊗ |π〉〈π| ← ct.
2. Compute |r′〉〈r′| ⊗ |m′〉〈m′| ← Decπ(k)(ρ).
3. Output m′ if r′ = r, and output ⊥ otherwise.

Proposition 6.7. Let Σ = (KeyGen,Enc,Dec) be any IND-secure QECM scheme and let Σ′ =
(KeyGen′,Enc′,Dec′) be the associated transformation in Construction 2. Then, the QECM scheme Σ′

is correct, IND-secure and has the WKD property from Definition 6.6.

Proof. The correctness of the scheme Σ′ = (KeyGen′,Enc′,Dec′) is immediate. Let us first show that Σ′

is IND-secure according to Definition 5.2. To this end, we fix a QPT adversary A = (M,D) and let
ρME ← M(1λ). Let k ← KeyGen′(1λ) and ρE = TrM[ρME]. In what follows, we let r $←−{0, 1}n be a
random string and let π $←−Pn be a pair-wise independent permutation. Note that, since π is a pair-wise
independent permutation, π(k) is uniform in {0, 1}n and thus has the same distribution as a uniformly
random string k $←−{0, 1}n. We can now verify the IND-security of Σ′ as follows:∣∣∣ Pr

[
D
(
(Enc′k ⊗ idE)ρME

)
= 1

]
− Pr

[
D
(
(Enc′k ⊗ idE)(|0〉〈0|M ⊗ ρE)

)
= 1

] ∣∣∣
=

∣∣∣∣∣ Pr
[
D
(

∑
m∈M

Encπ(k)(r||m)⊗ |r〉〈r| ⊗ |π〉〈π| ⊗ TrM

[
(|r, m〉〈r, m|M ⊗ 1E)ρME

])
= 1

]

− Pr
[
D
(
Encπ(k)(r||0)⊗ |r〉〈r| ⊗ |π〉〈π| ⊗ ρE

)
= 1

]∣∣∣∣∣
=

∣∣∣∣∣ Pr
[
D
(

∑
m∈M

Enck(r||m)⊗ |r〉〈r| ⊗ |π〉〈π| ⊗ TrM

[
(|r, m〉〈r, m|M ⊗ 1E)ρME

])
= 1

]

− Pr
[
D
(
Enck(r||0)⊗ |r〉〈r| ⊗ |π〉〈π| ⊗ ρE

)
= 1

]∣∣∣∣∣
=

∣∣∣∣∣ Pr
[
D
(

∑
m∈M

Enck(r||m)⊗ |r〉〈r| ⊗ TrM

[
(|r, m〉〈r, m|M ⊗ 1E)ρME

])
= 1

]

− Pr
[
D
(
Enck(r||0)⊗ |r〉〈r| ⊗ ρE

)
= 1

]∣∣∣∣∣
= negl(λ) .

56

The second to last inequality follows from the fact that π is completely independent of the ciphertext. In the
last step, we used the assumption that the QECM scheme Σ = (KeyGen,Enc,Dec) is IND-secure.

To verify the WKD property of Σ′ we have to show that, for any k′ 6= k ← KeyGen′(1λ) and plaintext
m ∈ {0, 1}λ,

Tr
[
(1− |⊥〉〈⊥|)Dec′k′ ◦ Enc′k(m)

]
≤ negl(λ).

By the assumption that π is a random pair-wise independent permutation, it follows for any pair of distinct
keys k′ 6= k← KeyGen′(1λ) and any plaintext m ∈ {0, 1}λ:

Tr
[
(1− |⊥〉〈⊥|)Dec′k′ ◦ Enc′k(m)

]
= Pr

π
$←− Pλ,r

$←− {0,1}λ

[
Decπ(k′) ◦ Encπ(k)(r||m) has pre-fix r

]

= Pr
r,k,k′

$←− {0,1}λ

[
Deck′ ◦ Enck(r||m) has pre-fix r

]
≤ negl(λ).

Notice that the last inequality is a simple consequence of the IND-security of the QECM scheme given by
Σ = (KeyGen,Enc,Dec); namely, if the above experession were non-negligible with respect to Σ, one could
construct an efficient adversary that could distinguish between encryptions of m as well as encryptions of
the all-zero string, thereby violating the IND-security of Σ. This proves the claim.

Hybrid encryption with wrong-key detection. We conclude our section on quantum encryption with
wrong-key detection with the following simple private-key hybrid encryption scheme, which we make use
of in our section on QCP schemes with a classical client. Our hybrid encryption scheme combines a standard
QECM scheme with the classical one-time pad given by OTP = (KeyGen,Enc,Dec). Here, an encryption
of a plaintext ~m ∈ {0, 1}λ via a key~k ∈ {0, 1}λ is generated as OTP.Enck(~m) =~k⊕ ~m.

Construction 3 (Hybrid encryption scheme). Let λ ∈ N be the security parameter. Let QECM =
(KeyGen,Enc,Dec) be a QECM scheme and let OTP = (KeyGen,Enc,Dec) be the classical one-time
pad. We define the hybrid encryption scheme HE = (KeyGen,Enc,Dec) as follows:

HE.KeyGen(1λ): this is the same procedure as QECM.KeyGen(1λ).

HE.Enc(k, m): given as input a key k and a plaintext m ∈ {0, 1}λ, encrypt as follows:

(i) sample a random string r $←−{0, 1}λ.

(ii) output the ciphertext (QECM.Enck(r),OTP.Encr(m)).

HE.Dec(k, c): given as input a key k and ciphertext c = (c0, c1), decrypt as follows:

(i) compute r′ = QECM.Deck(c0)

(ii) output the plaintext OTP.Decr′(c1).

The following statement is a simple consequence of Proposition 6.7.

Corollary 6.8. Let Σ = (KeyGen,Enc,Dec) be an arbitrary QECM scheme and suppose that Σ is IND-
secure. Further, let Σ′ = (KeyGen′,Enc′,Dec′) be the associated WKD transformation in Construction 2.
Then, the hybrid encryption scheme HE = (KeyGen,Enc,Dec) in Construction 3 instantiated with Σ′ is
correct, IND-secure and has the WKD property.

57

6.2 Quantum copy-protection with a classical client

Let us now define the notion of quantum copy-protection with a classical client. This notion is similar to
Definition 6.1 and enables a classical client to delegate a copy-protected program to a quantum receiver
in a way that allows the receiver to execute the program, but prevents it from creating additional “pirated”
copies.

Definition 6.9 (Quantum copy-protection scheme with a classical client). Let F =
⋃

λ∈N Fλ be a class of
efficiently computable functions f : X → Y . A QCP scheme with a classical client (or, QCPCC scheme)
for the class F is a pair of efficient interactive quantum algorithms QCPCC = (Protect,Eval):

QCPCC.Protect(C(1λ, d f),R(1λ)) → ρ or⊥: this is an interactive protocol between a classical client
C (who takes as input the parameter 1λ and a classical description d f of a function f ∈ Fλ) and a
quantum receiverR (who takes as input 1λ). Provided that the protocol is successful with the flag >,
R is in possession of a quantum state ρ (which depends on f). Otherwise, C outputs ⊥.

QCPCC.Eval(1λ, ρ, x) : takes as input the security parameter 1λ, a quantum state ρ and an input x ∈ X ,
and outputs a bipartite state ρ′ ⊗ |y〉〈y| for an outcome y ∈ Y .

Similar to Definition 6.1, we occasionally ignore the post-evaluation state ρ′ and simply identify the
output of the procedure QCPCC.Eval(1λ, ρ, x) with a classical outcome y ∈ Y . We say that a QCPCC
scheme is δ-correct, if, for any λ ∈N, any f ∈ Fλ, and any input x ∈ X to f :

Pr
[
QCPCC.Eval(1λ, ρ, x) = f (x) : ρ← QCPCC.Protect(C(1λ, d f ,), R(1λ))

]
≥ 1− δ(λ).

Let us now define a piracy experiment with a classical client, similar to Definition 6.2.

Definition 6.10 (Piracy experiment with a classical client). Let QCPCC = (Protect,Eval) be a QCPCC
scheme for a class of functions F =

⋃
λ∈N Fλ with domain X and range Y . Let DF = {DFλ

}λ∈N be
an ensemble of distributions over Fλ and let DX = {DX (f)} f∈Fλ

be an ensemble of distributions over X .
The security game (called piracy experiment with a classical client) takes place between a challenger and an
adversary consisting of an efficient interactive quantum prover P and triplet of QPT algorithms (A,B, C):

(i) The challenger samples a function f ← DFλ
. To classically delegate a program for the functionality f

according to QCPCC, the challenger takes the role of the classical client C and the prover P takes the
role of the (possibly malicious) receiver R in the interactive protocol specified by QCPCC.Protect.
Provided that the protocol succeeds with flag = >, P is in possession of a quantum state ρA
(which depends on f , as well as any additional information the adversary has collected throughout the
protocol). Otherwise, if flag = ⊥, the adversary loses.

(ii) A applies an efficient CPTP map to map ρA into a bipartite state ρBC on systems BC, and sends
system B to B and system C to C (who are not allowed to communicate from this step onward).

(iii) The challenger samples a pair (xB, xC)← DX (f)×DX (f), and sends xB to B and xC to C.

(iv) B and C output values yB ∈ Y and yC ∈ Y , respectively, and send them to the challenger. The
challenger outputs 1 if it holds that yB = f (xB), yC = f (xC) and flag = > (i.e., the adversary has
succeeded), and 0 otherwise (i.e., the adversary has failed).

58

We let the random variable PiracyExpQCPCC
DF ,DX

(
1λ, (P ,A,B, C)

)
denote the output bit of the challenger.

We formalise the notion of security with a classical client similar to Definition 6.3.

Definition 6.11 (Secure quantum copy-protection with a classical client). Let QCPCC = (Protect,Eval)
be a QCPCC scheme for a class of functions F =

⋃
λ∈N Fλ with domain X and range Y . Further, let

DF = {DFλ
}λ∈N be an ensemble of distributions over Fλ and let DX = {DX (f)} f∈Fλ

be an ensemble
of distributions overX . Then, QCPCC is called (DF ,DX , γ)-secure if, for any efficient interactive quantum
prover P and any triplet of QPT algorithms (A,B, C), it holds that

Pr
[
PiracyExpQCPCC

DF ,DX
(
1λ, (P ,A,B, C)

)
= 1

]
≤ ptriv

DF ,DX + γ(λ).

6.3 Quantum copy-protection of multi-bit point functions with a classical client

In this section, we combine our parallel RSP protocol for BB84 states with a QECM scheme with wrong-key
detection to construct a QCPCC scheme for multi-bit point functions, which is described in Protocol 5. We
begin with a formal definition. For integers µ ∈ N and ` ∈ N, the class of multi-bit point functions Pµ,`

consists of functions Py,m ∈Pµ,`, where for a marked input ~y ∈ {0, 1}µ and output ~m ∈ {0, 1}`,

Py,m(~x) =

{
~m, if ~x = ~y,
~0`, if ~x 6= ~y.

Let λ ∈ N be the security parameter and let µ = 4λ and ` = 2λ. Our construction in Protocol 5 enables a
classical client to remotely prepare a copy-protected program for a multi-bit point function of the form Py,m,
where y $←−{0, 1}µ and m $←−{0, 1}` are uniformly random. We first prove the correctness of Protocol 5.

Proposition 6.12 (Correctness). Let λ ∈ N be the security parameter and let µ = 4λ and ` = 2λ. Then,
the scheme QCPCC = (Protect,Eval) in Protocol 5 is a correct QCPCC scheme for the class Pµ,`.

Proof. To prove correctness, we show that for any λ ∈N, Py,m ∈Pµ,` and any input ~x ∈ {0, 1}4λ to Py,m,

Pr
[
QCPCC.Eval(1λ, σ,~x) 6= Py,m(~x) : σ← QCPCC.Protect(C(1λ, dPy,m),R(1λ))

]
≤ negl(λ).

Note that in this scenario we can assume that the receiver R is honest throughout Protocol 5. According
to Proposition 3.1, R is accepted in the interactive protocol QCPCC.Protect(C(1λ, dPy,m),R(1λ)) with
probability negligibly close to 1 in the parameter λ (for parameter choices n at most polynomial in λ and δ
at least inverse polynomial in λ). Provided that the protocol successful, the final state ofR is given by

σ =
2λ⊗
i=1

Hθi |vi〉〈vi|Hθi ⊗ |~r〉〈~r| ⊗ |π〉〈π| ⊗ |~u⊕ ~m〉〈~u⊕ ~m|. (6.1)

where ~v and~θ are the strings recorded by the client C, and where π $←−P4λ. We remark that π(~y) = (~s||~θ)
with~s = (~s0||~s1), and that~r = ~v0 ⊕~s0 and ~u = ~v1 ⊕~s1, for a uniformly random string ~v = (~v0||~v1).

Let Σ = (KeyGen,Enc,Dec) be the QECM scheme with WKD in Construction 2 instantiated with
the conjugate coding encryption scheme in Construction 1. Further, let HE = (KeyGen,Enc,Dec) be the

59

Protocol 5. Quantum Copy-Protection of Multi-bit Point Functions with a Classical Client

Let λ ∈ N be the security parameter and let µ = 4λ and ` = 2λ. Let Pµ,` be the class of multi-bit
point functions with input length µ and output length `. We define the QCPCC scheme consisting of
a pair of efficient (interactive) algorithms QCPCC = (Protect,Eval) for the class Pµ,` as follows:

• QCPCC.Protect(C(1λ, dPy,m),R(1λ)): this is an interactive protocol between a classical client
C and a quantum receiver R. The client C takes as input the security parameter 1λ and a
succinct classical description dPy,m of a multi-bit point function Py,m ∈ Pµ,`, whereas the
receiverR takes as input the security parameter 1λ. The protocol takes place as follows:

(i) C samples a random pair-wise independent permutation π $←−P4λ and lets (~s||~θ) ←
π(~y), where~s ∈ {0, 1}2λ and~θ ∈ {0, 1}2λ are strings of length 2λ.

(ii) The client C and the receiverR run the interactive RSP protocol for BB84 states (Proto-
col 3) with security parameter 1λ, n = 2λ and choice of basis~θ ∈ {0, 1}2λ.

(iii) Provided the protocol is successful, C obtains ~v $←−{0, 1}2λ and the receiverR obtains a
2λ-qubit state σ (which depends on ~v and~θ). Otherwise, C outputs ⊥.

(iv) C parses (~s0||~s1) ← ~s with~s0,~s1 ∈ {0, 1}λ and (~v0||~v1) ← ~v with ~v0,~v1 ∈ {0, 1}λ,
and then sends (~r, π,~u⊕ ~m) toR, where~r = ~v0 ⊕~s0 and ~u = ~v1 ⊕~s1.

• QCPCC.Eval(1λ, ρ; x): takes as input 1λ, an alleged program σ, and a string x ∈ {0, 1}4λ (the
input on which the program is to be evaluated), and runs the program as follows:

(i) Parse the program as σ⊗ |~r〉〈~r| ⊗ |π〉〈π| ⊗ |~t〉〈~t| ← ρ.

(ii) Compute (~sx||~θx)← π(~x) and parse (~sx,0||~sx,1)←~sx with~sx,0,~sx,1 ∈ {0, 1}λ.

(iii) Append an ancillary qubit in the state |0〉〈0|.
(iv) Apply Hadamard operations Hθx,1 ⊗ · · · ⊗ Hθx,2λ to the state ρ.

(v) Coherently perform a two-outcome measurement of the resulting state to check whether
the state has the pre-fix~r⊕~sx,0 or not, and store the resulting bit in the ancilla.

(vi) If false, output 0`. Otherwise, if true, rewind the procedure and measure the state in the
standard basis to obtain an outcome ~w = (~w0||~w1). Output ~m′ = ~w1 ⊕~sx,1 ⊕~t.

60

hybrid encryption scheme in Construction 3 instantiated with Σ. Notice that the state σ in Equation (6.1)
corresponds precisely to a ciphertext generated by HE.Enc~y(~m) with randomness ~u, where

HE.Enc~y(~m) = Σ.Enc~y(~u)⊗ |OTP.Enc~u(~m)〉〈OTP.Enc~u(~m)|. (6.2)

Let us now show the correctness of the program. We distinguish between two different types of inputs.
Suppose that ~x = ~y. Using that HE = (KeyGen,Enc,Dec) is a correct scheme, we get

Pr
[
QCPCC.Eval(1λ, σ,~x) 6= Py,m(~x) : σ← QCPCC.Protect(C(1λ, dPy,m),R(1λ))

]
= Pr

[
HE.Dec~y ◦

(
2λ⊗
i=1

Hθi |vi〉〈vi|Hθi ⊗ |~r〉〈~r| ⊗ |π〉〈π| ⊗ |~u⊕ ~m〉〈~u⊕ ~m|
)
6= ~m

]

= Pr
[
HE.Dec~y ◦ (Σ.Enc~y(~u)⊗ |OTP.Enc~u(~m)〉〈OTP.Enc~u(~m)|) 6= ~m

]
= Pr

[
HE.Dec~y ◦HE.Enc~y(~m) 6= ~m

]
≤ negl(λ).

Finally, suppose that ~x 6= ~y. By Corollary 6.8, HE = (KeyGen,Enc,Dec) has the WKD property. Thus,

Pr
[
QCPCC.Eval(1λ, σ,~x) 6= Py,m(~x) : σ← QCPCC.Protect(C(1λ, dPy,m),R(1λ))

]
= Pr

[
HE.Dec~x ◦

(
2λ⊗
i=1

Hθi |vi〉〈vi|Hθi ⊗ |~r〉〈~r| ⊗ |π〉〈π| ⊗ |~u⊕ ~m〉〈~u⊕ ~m|
)
6= ⊥

]

= Pr
[
HE.Dec~x ◦ (Σ.Enc~y(~u)⊗ |OTP.Enc~u(~m)〉〈OTP.Enc~u(~m)|) 6= ⊥

]
= Pr

[
HE.Dec~x ◦HE.Enc~y(~m) 6= ⊥

]
≤ negl(λ).

This proves the claim.

Let us now prove the security of our QCPCC scheme Protocol 5 for the class of point functions Pµ,` of
the form Py,m, where the marked strings y $←−{0, 1}µ and m $←−{0, 1}` are chosen uniformly random.

Proposition 6.13 (Security). Let λ ∈ N be the security parameter and let µ = 4λ and ` = 2λ. Let
Pµ,` be the class of multi-bit point functions with input X = {0, 1}µ output Y = {0, 1}`. Let DX be
an arbitrary ensemble of challenge distributions over X and let DPµ,` be the ensemble of multi-bit point
functions that samples both the marked input and the marked output uniformly at random. Then, there exists
γ(λ) = 1/ poly(λ) such that the scheme QCPCC = (Protect,Eval) in Protocol 5 is a (DPµ,` ,DX , γ)-
secure QCPCC scheme for the class of multi-bit point functions Pµ,`. In other words, for any (interactive)
QPT algorithms (P ,A,B, C), it holds that

Pr
[
PiracyExpCPCC

DPµ,`
,DX
(
1λ, (P ,A,B, C)

)
= 1

]
≤ ptriv

DPµ,`
,DX + γ(λ).

61

Proof. Let Adv = (A,B, C) denote the adversary in the challenge phase of the piracy experiment
PirExpCPCC

DPµ,`
,DX . We consider two cases, namely when ptriv

DPµ,`
,DX = 1 and when ptriv

DPµ,`
,DX < 1 (de-

pending on the challenge distribution DX). In the former case, the scheme is trivially secure by definition
and we are done. Hence, we will assume that ptriv

DPµ,`
,DX < 1 for the remainder of the proof. Note that in

this case, the distribution DX has non-zero weight on the marked input y of a random point function Py,m.
Let (xB, xC) ← DX denote the inputs received by the algorithms B and C during the challenge phase,

and let yB and yC be the outputs returned by B and C, respectively. We can express the probability that Adv
succeeds at the challenge phase (i.e., that yB = Py,m(xB) and yC = Py,m(xC)) as follows:

Pr[Adv wins]=Pr[Adv wins | xB 6=y 6= xC]·Pr[xB 6=y 6= xC]+Pr[Adv wins | xB =y 6= xC]·Pr[xB =y 6= xC]

+Pr[Adv wins | xB 6=y= xC]·Pr[xB 6=y= xC]+Pr[Adv wins | xB =y= xC]·Pr[xB =y= xC].

Without loss of generality, we assume that Pr[xB = y 6= xC] ≤ Pr[xB 6=y = xC]. Hence,

Pr[Adv wins] ≤ Pr[Adv wins | xB 6=y 6= xC] · Pr[xB 6=y 6= xC]

+
(

Pr[Adv wins | xB = y 6= xC] + Pr[Adv wins | xB 6=y = xC]
)
· Pr[xB 6=y = xC]

+ Pr[Adv wins | xB = y = xC] · Pr[xB = y = xC]. (6.3)

Let us now state the following simple inequality. By first applying the union bound and then using that B
and C are non-signalling, we find that:

Pr[Adv wins | xB = y = xC]

= Pr[B succeeds∧ C succeeds | xB = y = xC]

≥ Pr[B succeeds | xB = y = xC] + Pr[C succeeds | xB = y = xC]− 1
= Pr[B succeeds | xB = y 6= xC] + Pr[C succeeds | xB 6= y = xC]− 1
≥ Pr[Adv wins | xB = y 6= xC] + Pr[Adv wins | xB 6= y = xC]− 1. (6.4)

Plugging this into Equation (6.3), we obtain the following upper bound:

Pr[Adv wins] ≤ Pr[Adv wins | xB 6= y 6= xB] · Pr[xB 6= y 6= xC]

+
(
1 + Pr[Adv wins | xB = y = xC]

)
· Pr[xB 6= y = xC]

+ Pr[Adv wins | xB = y = xC] · Pr[xB = y = xC]

≤ Pr[xB 6= y 6= xC] + Pr[xB 6= y = xC] + 2 Pr[Adv wins | xB = y = xC]

= ptriv
DPµ,`

,DX + 2 Pr[Adv wins | xB = y = xC]. (6.5)

In the last line, we used the assumption that Pr[xB = y 6= xC] ≤ Pr[xB 6= y = xC] together with the
following simple identity for the trivial guessing probability:

ptriv
DPµ,`

,DX = Pr[xB 6= y 6= xC] + max
{

Pr[xB 6= y = xC], Pr[xB = y 6= xC]
}

.

We complete the proof by showing that Pr[Adv wins | xB = y = xC] ≤ ε(λ) + negl(λ), for some function
ε(λ) = 1/ poly(λ). This implies that

Pr[Adv wins] ≤ ptriv
DPµ,`

,DX + ε(λ) + negl(λ). (6.6)

62

We will now use the adversary (P ,A,B, C) against the scheme QCPCC who receives the challenge pair
consisting of xB = y and xC = y to construct an adversary (P ′,A′,B′, C ′) against the unclonable security
of the classical-client QECM scheme Σ = (Enc,Dec) in Protocol 4.

The adversary (P ′,A′,B′, C ′) against the unclonable security of Σ proceeds as follows:

(i) P ′ runs the prover P during the execution of Protocol 4, resulting in a state σ
(~vR,~θR)
QRB|> in systems QRB

conditioned on the event that protocol is successful with flag > and that the classical system W takes
the random value ~vR

$←−{0, 1}λ, where ~vR =~sR ⊕ ~u for some ~u $←−{0, 1}λ.

(ii) A′ samples a random string~r $←−{0, 1}λ, a random pairwise-independent permutation π $←−P4λ, and
random strings~sL,~θL,~t $←−{0, 1}λ, lets ~vL =~sL ⊕~r and runs A on the quantum state⊗

i

HθL,i |vL,i〉〈vL,i|QL HθL,i ⊗ σ
(~vR,~θR)
QRB|> ⊗ |~r〉〈~r| ⊗ |π〉〈π| ⊗ |~t〉〈~t|.

and sends the outcome to the challenger, together with the circuit descriptions{
B′
(~sR,~θR)

}
~sR,~θR∈{0,1}λ

and
{
C ′
(~sR,~θR)

}
~sR,~θR∈{0,1}λ

which are defined as the following procedures:

• on input (~sR,~θR), B′(~sR,~θR)
runs Bπ−1(~sL||~sR||~θL||~θR)

to obtain an outcome ~m, and outputs ~m⊕~t.

• on input (~sR,~θR), C ′(~sR,~θR)
runs Cπ−1(~sL||~sR||~θL||~θR)

to obtain an outcome ~m, and outputs ~m⊕~t.

Let σ|> ← QCPCC.Protect(C(1λ, dPy,m),R(1λ)) denote the final state of the interactive protocol condi-
tioned on the event that challenger outputs the flag ⊥. Because π $←−P4λ is a random pairwise-independent
permutation, so is its inverse π−1 (by Lemma 6.5). Hence, the string π−1(~sL||~sR||~θL||~θR) has the same dis-
tribution as a uniformly random string~y $←−{0, 1}4λ. Notice also that by definition, we have that~t = ~u⊕ ~m,
for some ~m $←−{0, 1}λ. Thus, bounding the success probability of the adversary (P ,A,B, C) against
QCPCC who receives the challenge pair consisting of xB = y and xC = y in terms of the the adversary
(P ′,A′,B′, C ′) against Σ, we find

Pr[Adv wins | xB = y = xC]

= E
~y

Tr
[
(|~m〉〈~m| ⊗ |~m〉〈~m|)(B~y ⊗ C~y) ◦ A ◦ σ|>

]
= E

~u
E
~vR

E
~θR

Tr
[
(|~u〉〈~u| ⊗ |~u〉〈~u|)(B′(~vR⊕~u,~θR)

⊗ C ′(~vR⊕~u,~θR)
) ◦ A′ ◦ σ

(~vR,~θR)
QRB|>

]
= Pr

[
CloneExpCC,Σ

(
1λ, (P ′,A′,B′, C ′)

)
= 1

]
≤
(

1
2
+

1
2
√

2

)2λ

+ ε(λ),

for some function ε(λ) = 1/ poly(λ) according to Theorem 5.11. Putting everything together, we find that
there exists γ = 1/ poly(λ) such that the advantage in the piracy experiment is at most

Pr
[
PiracyExpCPCC

DPµ,`
,DX
(
1λ, (P ,A,B, C)

)
= 1

]
≤ ptriv

DPµ,`
,DX + γ(λ).

63

7 Quantum computing on encrypted data

The next application of parallel RSP we consider is quantum computing on encrypted data. At a high level,
this is a protocol between a weakly-quantum client, C, and a quantum server, S . By “weakly-quantum”
we mean that the client can perform some quantum operations (preparing, storing and applying unitaries on
quantum states) but does not have the ability to evaluate a generic quantum circuit, C. For this reason, it
will interact with S in order to delegate the application of C on some input quantum state, ρC . Before doing
so, however, the client will encrypt ρC , yielding a quantum ciphertext ct. In addition, it will also generate a
quantum state, π, which will aid in evaluating the circuit C on the encrypted input, but does not require full
quantum capabilities to prepare. Both ct and π are sent to the server and the two parties exchange classical
(or quantum) messages for a number of rounds that is polynomial in the size of the input. At the end of the
interaction, the client obtains a state ct∗, which, ideally, is an encryption of CρCC†. Decrypting this state,
should result in the client’s desired output. The fundamental property of such a scheme is that, throughout
the protocol, the server learns nothing about the client’s input state, ρC (or the output state). This should be
true even if the server deviates from the client’s instructions and behaves maliciously.

Formalizing this intuition, we have the following:

Definition 7.1 (Quantum Computing on Encrypted Data). A protocol for quantum computing on encrypted
data is a tuple of QPT algorithms QCED = (Setup,Enc,Evaluate,Dec), where

QCED.Setup(C, 1n) → (sk = (skin, skcomp), π): takes as input a quantum circuit C, acting on n qubits,
and outputs two classical keys skin, skcomp ∈ {0, 1}poly(n), jointly denoted as sk, and a quantum state
π, on poly(n) qubits.

QCED.Enc(sk, ρC) → ct: takes as input a key sk and an n-qubit state ρC and outputs an n-qubit state, ct,
representing an encrypted version of ρC .

QCED.Evaluate(C(C, sk, ct, π),S(ρS)) → (sk∗, ct∗, τS): is an interactive protocol between a client, C,
and a server, S . The client’s input consists of the circuit C, a classical key sk, and two quantum states
ct and π. The server’s input is the quantum state14 ρS . At the end of the interaction, the client obtains
an output key sk∗ and the n-qubit quantum state ct∗. The server obtains the quantum state τS .

QCED.Dec(sk∗, ct∗) → τC : takes as input a key, sk∗ and a state ct∗ and either outputs an n-qubit state τC
or sets τC to an abort symbol |⊥〉〈⊥|.

We now define the following properties associated with a QCED protocol:

(i) δ-correctness: for every quantum circuit C and every n-qubit client input ρC , provided the server
follows the instructions of the interactive protocol, QCED.Evaluate, we have that

‖QCED.Dec(sk∗, ct∗)− CρCC†‖1 ≤ δ(n)

where,
(sk∗, ct∗)← QCED.Evaluate

(
C(C, sk, ct, π),S

(
|0〉〈0|⊗ poly(n)

))
ct← QCED.Enc(sk, ρC)

(sk, π)← QCED.Setup(C, 1n)

14While in what follows we take ρS to be |0〉〈0|⊗ poly(n), it should be noted that ρS can in principle be any state that depends
only on n. It can be thought of as a quantum advice state of the prover (in the sense of [NY04]), so that the overall security of the
protocol holds against non-uniform adversaries.

64

(ii) ε-security: for each quantum circuit C and each QPT server S , there exists a QPT algorithm known
as a simulator, denoted Sim, such that for every n-qubit client input ρC and every server input ρS it is
the case that

‖Sim(ρS)−QCED.Evaluate(C(C, sk, ct, π),S(ρS))‖1 ≤ ε(n)

with
ct← QCED.Enc(sk, ρC)

(sk, π)← QCED.Setup(C, 1n)

where Sim and QCED.Evaluate are CPTP maps of the form ρS 7→ (ct∗, τS), mapping states from
the server’s input register to its output space (which comprises the quantum ciphertext returned to the
client, ct∗, and any side information the server retains, τS)15.

A number of QCED protocols have been proposed [AS06, BFK09, Fit17]. Most of these have as a
primary objective to not only hide the input to the computation C, but to also hide the computation itself.
For this reason, such protocols are referred to as blind quantum computing protocols. Of course, it should be
clear that a QCED protocol, as defined above, also allows for hiding of the computation C. This is done by
delegating to the server a universal circuit CU and with the encrypted input consisting of not just the client’s
state ρC but also a description of the circuit C, to be applied on ρC .

It should also be noted that the definition of a QCED can be easily satisfied by a protocol in which the
client performs the quantum computation itself and never interacts with the server. Naturally, this requires
the client to have the capability of performing universal quantum computations. Instead, the QCED protocols
that have been proposed are such that the client only needs to prepare or measure single qubit states and
otherwise has no quantum capabilities. Here we focus on one such protocol from [Bro15]. For a formal
description of the protocol, we refer to [Bro15]. For our purposes, the important feature of this protocol that
we use is that the client encrypts its input using a quantum one-time pad (QOTP) and the state π it generates
is a tensor product of BB84 states. More formally:

Theorem 7.2 ([Bro15]). There exists a (δ, ε)-QCED protocol, with δ(n) = ε(n) = 0, for which:

1. QCED.Setup(C, 1n)→ ((skin, skcomp), π) with

skin = (~a,~b), ~a,~b $←−{0, 1}n

skcomp = (~v,~θ), ~v,~θ $←−{0, 1}|C|

π =
|C|⊗
i=1

Hθi |vi〉〈vi|Hθi .

where |C| denotes the size, or number of gates16, in |C|.

2. QCED.Enc(((~a,~b), skcomp), ρC)→ ct with

ct = σX(~a)σZ(~b) ρC σZ(~b)σX(~a).
15Note that the states ct∗ and τS can be entangled.
16Strictly speaking, in the protocol of [Bro15], the length of skcomp and the number of qubits in π are equal to the number of T

gates in the circuit C.

65

3. QCED.Dec(sk∗, ct∗)→ σC with

σC = σX(~a∗)σZ(~b∗) ct∗ σZ(~b∗)σX(~a∗),

whenever sk∗ = (((~a∗,~b∗), sk∗comp) and otherwise the client sets σC = |⊥〉〈⊥|.

For the special case in which the client’s input (the state ρC) is entirely classical, note that it needs to prepare
only BB84 states and the quantum one-time pad becomes a classical one-time pad. This will be the case of
interest for us when switching to a completely classical client in the next subsection.

The security achieved by schemes for QCED is known as simulation security, owing its name to the
existence of the simulator, Sim, which reproduces the behavior of S . This notion of security is equivalent
to composable security [Can01, MR11], allowing for the protocol to be composed in sequence or in parallel
with other protocols.

Let us also consider another version of security that is standard in the cryptography literature, namely
that of indistinguishability under chosen-plaintext-attacks:

Definition 7.3 ((Adaptive) ε-IND-CPA-security of QCED). Let QCED = (Setup,Enc,Evaluate,Dec) be a
protocol for quantum computing on encrypted data. For some quantum circuit C acting on n qubits, consider
the following security experiment between a computationally unbounded adversary A and a referee,R:

1. A generates two n-qubit quantum states ρ0 and ρ1. It sends these states to the referee.

2. The referee chooses b $←−{0, 1} and keeps ρb. It then performs QCED.Setup(C, 1n) → (sk, π) and
QCED.Enc(sk, ρb)→ ct.

3. The referee and A engage in the interactive protocol defined by QCED.Evaluate(R,A).

4. The adversary A outputs a bit b′ ∈ {0, 1}.

It should be the case that
Pr
[
b′ = b

]
≤ 1

2
+ ε(n) (7.1)

where ε(n) is referred to as the adversary’s advantage in the security experiment.

Note that in the above definition the adversary is assumed to be computationally unbounded. When we
transition to the setting of poly-time-bounded adversaries, we can simply modify this definition so as to con-
sider only QPT adversaries A. It should be clear that simulation security is the stronger notion of security,
in the sense that simulation security implies IND-CPA-security, while the converse is not true. However, for
the purpose of designing quantum protocols that use only classical communication, we will use IND-CPA-
security, as in the previous schemes. The reason for this stems from the difficulties in achieving simulation
security in the setting where the client and server interact classically, as explained in [GV19, BCC+20].
However, we expect that with ideas from [GV19] and the additional assumption of a measurement buffer
introduced in that paper, one could strengthen our security proof to satisfy the simulation based criterion.

7.1 Quantum computing on encrypted data with a classical client

We start by defining a QCED protocol that only involves classical communication between the client and
the server (and where, additionally, the client is entirely classical).

66

Definition 7.4 (Quantum Computing on Encrypted Data with a Classical Client). A protocol for quantum
computing on encrypted data with a classical client is a tuple of polynomial-time classical and quantum
algorithms QCED = (Setup, StatePrep,Evaluate,Dec), where

QCEDCC.Setup(C, 1n) → (sk, pk): takes as input a quantum circuit C, acting on n qubits and with
|C| = poly(n), and outputs two classical keys sk, pk ∈ {0, 1}poly(n), referred to as the secret and
public key, respectively.

QCEDCC.StatePrep(C(sk, pk),S(pk))→ (τ, σS): is an interactive protocol between a PPT client, C, and
a QPT server S . The client’s input consists of a secret key sk and a public key pk. The server’s input
is the public key pk. At the end of the interaction both parties either obtain the classical transcript
τ ∈ {0, 1}poly(n) and the server also obtains the quantum state σS or the client aborts.

QCEDCC.Evaluate(C(C, mC , sk, pk, τ),S(pk, τ, σS)) → (sk∗, ct∗, γS): is an interactive protocol be-
tween a PPT client, C, and a QPT server, S . The client’s input consists of the circuit C, an input
for that circuit denoted as the string mC ∈ {0, 1}n, the secret key sk, the public key pk and the clas-
sical transcript τ. The server’s input is the quantum state σS as well as the public key pk and the
transcript τ. At the end of the interaction, the client obtains an output key sk∗ ∈ {0, 1}poly(n) and a
classical ciphertext ct∗ ∈ {0, 1}poly(n). The server obtains the quantum state γS .

QCEDCC.Dec(sk∗, ct∗) → r: takes as input a key, sk∗ and ciphertext ct∗ and outputs the string r ∈
{0, 1}poly(n). If the string ct∗ is not of the appropriate size, the client aborts.

We now define the following properties associated with a QCEDCC protocol:

(i) δ-correctness: for every quantum circuit C, with |C| = poly(n), and every input mC ∈ {0, 1}n,
provided the server follows the instructions of the interactive protocol, QCEDCC.Evaluate, we have
that

TVD[QCEDCC.Dec(sk∗, ct∗), M(C|mC〉〈mC |C†)] ≤ δ(n)

where M(·) denotes the process of measuring a quantum state in the computational basis and where,

(sk∗, ct∗)← QCEDCC.Evaluate(C(C, mC , sk, pk, τ),S(pk, τ, σS)) ,
(τ, σS)← QCEDCC.StatePrep(C(sk, pk),S(pk)) ,
(sk, pk)← QCEDCC.Setup(C, 1n) .

(ii) (Adaptive) ε-IND-CPA security: For a quantum circuit C acting on n qubits, consider the following
security experiment between a QPT adversary A and a referee,R:

1. A generates two n-bit strings m0 and m1. It sends these to the referee.

2. The referee chooses b $←−{0, 1} and keeps mb. It then performs QCEDCC.Setup(C, 1n, 1λ) →
(sk, pk).

3. The referee and the adversary engage in the protocol
QCEDCC.StatePrep(R(sk, pk),A(pk))→ (τ, σA).

4. Provided the referee did not abort in step 3, the referee and A engage in the interactive protocol
defined by QCEDCC.Evaluate(R(C, mb, sk, pk, τ),A(pk, τ, σA)).

5. The adversary A outputs a bit b′ ∈ {0, 1}.

67

It should be the case that

|Pr
[
b′ = 0 ∧ R did not abort|b = 0

]
− Pr

[
b′ = 0 ∧ R did not abort|b = 1

]
| ≤ ε(n) (7.2)

where ε(n) is referred to as the adversary’s advantage in the security experiment.

Note that unlike Definition 7.3, the security definition for QCEDCC includes a condition about whether
the referee (or client) aborted in the protocol or not. This is because the state preparation subroutine,
QCEDCC.StatePrep, that is meant to mimic the sending of quantum states, can fail if the adversary (or
server) behaves maliciously. As such, the security definition in this case states that the adversary cannot
both convince the referee to accept in QCEDCC.StatePrep and learn something about the referee’s chosen
input.

We now turn our attention to constructing a protocol that satisfies Definition 7.4. At a high level, the
idea is to start from the protocol from [Bro15] described in Theorem 7.2 for the special case of classical
inputs mC and replace the step of sending random BB84 states with our parallel RSP protocol (Protocol 3)
We give a formal description of this protocol in Protocol 6. The following theorem asserts that Protocol 6
indeed satisfies the conditions in Definition 7.4.

Protocol 6. Protocol for Quantum Computing on Encrypted Data with a Classical Client

Let C be a circuit acting on n qubits. Additionally, take δ = 1/ poly(n) to be some error tolerance
parameter. Define the following algorithms.

QCEDCC.Setup(C, 1n) → (sk, pk): Run the procedure to sample keys and trapdoors
(k1, tk1 ; . . . kM, tkM), as in Protocol 1 and Protocol 2, M = poly(n) is the total amount of keys
used, as determined by Protocol 3, with error tolerance δ. In addition, take skin

$←−{0, 1}n. Set
pk = {ki}i, sk = {{tki}i, skin}.

QCEDCC.StatePrep(C(sk, pk),S(pk)) → (τ, σS): The client runs Protocol 3 with security pa-
rameter λ = poly(n) with the server. Here, τ will denote the transcript of this protocol and σS
will be the server’s state upon completing the protocol (in the case where the client accepts).

QCEDCC.Evaluate(C(C, mC , sk, pk, τ),S(pk, τ, σS)) → (sk∗, ct∗, γS): The client and server per-
form QCED.Evaluate from Broadbent’s protocol [Bro15], mentioned in the previous section.
Specifically, the client uses sk and τ to determine the BB84 states the server should have (upon
completing QCEDCC.StatePrep). The key skin is used as a one-time pad for the input mC . The
client then performs the classical interaction from Broadbent’s protocol with the server, as if
the BB84 states determined by sk and τ were sent via a quantum channel.

QCEDCC.Dec(sk∗, ct∗) → r: Same as the QCED.Dec operation in Broadbent’s protocol, but re-
stricted to classical outputs.

Theorem 7.5. Protocol 6 is a protocol for Quantum Computing on Encrypted Data with a Classical Client
having negl(n) correctness and 1/ poly(n) adaptive IND-CPA security.

68

Proof. Correctness follows from the completeness of Protocol 3 (see Proposition 3.1) together with the
correctness of Broadbent’s QCED protocol.

To show IND-CPA security, let us consider the security experiment in Definition 7.4. The adversary (or
the server) chooses two inputs, m0 and m1 and sends them to the referee (or the client). The referee picks a
random bit b ∈ {0, 1} and then selects mb. This is followed by QCEDCC.Setup and the interactive protocol
QCEDCC.StatePrep between the referee and the adversary. As follows from Corollary 4.35 we have that
the shared state between the two is:

σ
(~θ)
SWDYR = Pr[>] |>〉〈>|S ⊗ σ

(~θ)
WDYR|> + (1− Pr[>])|⊥〉〈⊥|S ⊗ σ

(~θ)
WDYR|⊥

where we recall that S is the register denoting acceptance or rejection in the protocol, W is a register of the
referee and DYR are registers of the adversary. As in the proof of Theorem 5.11, we can assume w.l.o.g. that

conditioned on acceptance, the prover in fact has prepared the state Vσ
(~θ)
WDYR|>V†, not σ

(~θ)
WDYR|>, where V

is the isometry from Corollary 4.35. Slightly abusing notation, we denote this state as

σ
(~θ)
WQB|> := Vσ

(~θ)
WDYR|>V† ,

with B := DYRA and V : DYR→ QB as in Corollary 4.35. Then, Corollary 4.35 states that for any~θ,

Pr[>] σ
(~θ)
WQB|>

c≈1/ poly(n) Pr[>] 1
2n ∑

~v∈{0,1}n

|~v〉〈~v|W ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α′B

for some efficiently preparable state α′B
Next, conditioned on having accepted in QCEDCC.StatePrep, the refereeR and the adversaryA engage

in the protocol QCEDCC.Evaluate. As mentioned, this procedure is identical to the one in Broadbent’s
protocol, except for the fact that the referee, in this case, does not send BB84 states to the adversary, instead
assuming those states were prepared via QCEDCC.StatePrep. Upon completing this step, the adversary will
output the bit b′. We are interested in the adversary’s advantage in guessing the referee’s chosen input. We
proceed via an argument by contradiction. Suppose the adversary guesses the referee’s input with advantage
greater than ε(n), i.e.

|Pr
[
b′ = 0 ∧ R did not abort|b = 0

]
− Pr

[
b′ = 0 ∧ R did not abort|b = 1

]
| > ε(n). (7.3)

We will consider two cases. First, suppose the referee’s probability of not aborting is less than ε(n), or,
using the notation from Corollary 4.35, Pr[>] < ε(n). Then, using the fact that the referee aborting in
QCEDCC.StatePrep is independent of the choice of b, we immediately find a contradiction to Equation (7.3).

In what follows, we will assume Pr[>] ≥ ε(n) and take ε(n) = 1/ poly(n). In this case, we get
from Corollary 4.35 that

σ
(~θ)
WQB|>

c≈1/ poly(n)
1
2n ∑

~v∈{0,1}n

|~v〉〈~v|W ⊗
(⊗

i

Hθi |vi〉〈vi|Hθi

)
Q

⊗ α′B , (7.4)

where α′B is an efficiently preparable (normalised) quantum state.
We would now like to construct a new adversary, A′, that breaks the security of Broadbent’s QCED

protocol. First, suppose A′ interacts with the referee in the security experiment of Definition 7.3, up to step

69

3.17 At this point, the adversary has received random BB84 states from the referee. After adding to this
the (fixed and efficiently preparable) state α′B, adversary A′ has a state that is 1/ poly(n) computationally

indistinguishable from σ
(~θ)
WQB|>. Now,A′ runs the original adversaryA. We know thatA achieves advantage

greater than ε(n) in the security experiment when run on the state σ
(~θ)
WQB|>. Since A is computationally

efficient, it follows that its distinguishing advantage can change by at most 1/ poly(n) when run on the state
prepared by A′. By choosing appropriate parameters for the execution of Protocol 3, this 1/ poly(n) error
can be made sufficiently small, e.g. less than ε(n)/2. This immediately implies that A′ obtains advantage
greater than ε(n)/2 in the security experiment of Definition 7.3, which contradicts the adaptive IND-CPA
security of Broadbent’s QCED protocol. It follows that A’s advantage must be upper bounded by ε(n),
concluding the proof.

8 Verifiable delegated blind quantum computation

Our final application of parallel RSP is verifiable delegated blind quantum computation (VDBQC). We start
with an overview of VDBQC and then show how one can obtain such a protocol which uses only classi-
cal communication. Much like quantum computing on encrypted data, VDBQC protocols are interactive
protocols between two parties that are here referred to as verifier and prover. The verifier delegates some
quantum computation, in the form of a quantum circuit C, to a QPT prover. The “blindness” of VDBQC
protocols refers to the fact that the verifier’s input should remain hidden from the prover18, just like in QCED
protocols. In addition to this condition, it must also be the case that the verifier accepts with high probabil-
ity when the output it obtains after interacting with the prover is the correct one (corresponding to having
performed the computation C), and otherwise it rejects with high probability (this is called verifiability).

Formalizing this intuition, we have the following:

Definition 8.1 (Verifiable Delegated Blind Quantum Computing). A protocol for verifiable delegated blind
quantum computing is a tuple of QPT algorithms VDBQC = (Setup,Enc,Evaluate,Dec), where

VDBQC.Setup(C, 1n) → (sk, π): takes as input a quantum circuit C, acting on n qubits, and outputs a
classical key sk ∈ {0, 1}poly(n), and a quantum state π, on poly(n) qubits.

VDBQC.Enc(sk, ρV) → ct: takes as input a key sk and an n-qubit state ρV and outputs an n-qubit state,
ct, representing an encrypted version of ρV .

VDBQC.Evaluate(V(C, sk, ct, π),P(ρP))→ (sk∗, ct∗, τP): is an interactive protocol between a verifier,
V , and a prover, P . The verifier’s input consists of the circuit C, a classical key sk, and two quantum
states ct and π. The prover’s input is the quantum state ρP . At the end of the interaction, the verifier
obtains an output key sk∗ and a quantum state ct∗. The prover obtains the quantum state τP .

VDBQC.Dec(sk∗, ct∗) → τV : takes as input a key sk∗ and an n-qubit state ct∗ and outputs an poly(n)-
qubit state τV such that τV = σ⊗ φ, and either ct∗ ← VDBQC.Enc(sk∗, σ) and φ = |>〉〈>| or σ is
an arbitrary state and φ = |⊥〉〈⊥|.

17We are assuming that possible inputs of that security experiment are the classical strings m0 and m1 in order to match the
experiment where the two interact classically.

18As mentioned in Section 7, the original definition of blind quantum computing [AS06, BFK09] refers to hiding both the input
to the circuit and the circuit itself from the prover. However, this is equivalent to keeping only the input hidden, as the verifier can
always delegate some universal circuit CU , which takes as input a description of a circuit C and an input string x.

70

We now define the following properties associated with a VDBQC protocol:

(i) δ-correctness: for every quantum circuit C and every n-qubit verifier input ρV , provided the prover
follows the instructions of the interactive protocol, VDBQC.Evaluate, we have that

‖VDBQC.Dec(sk∗, ct∗)− CρVC† ⊗ |>〉〈>|‖1 ≤ δ(n),

where,

(sk∗, ct∗)← VDBQC.Evaluate
(
V(C, sk, ct, π),P

(
|0〉〈0|⊗ poly(n)

))
ct← VDBQC.Enc(sk, ρV)

(sk, π)← VDBQC.Setup(C, 1n)

(ii) ε-blind-verifiability: for each quantum circuit C and each QPT prover P , there exists a QPT algorithm
known as a simulator, denoted Sim, such that for every n-qubit verifier input ρV and every prover input
ρP it is the case that

‖Sim(ρP)− VDBQC.Evaluate(V(C, sk, ct, π),P(ρP))‖1 ≤ ε(n)

and there exist 0 ≤ p ≤ 1 and a state ρinc on poly(n) qubits such that

‖τV − ρver‖1 ≤ ε(n)

with
ρver = pCρVC† ⊗ |>〉〈>|+ (1− p)ρinc ⊗ |⊥〉〈⊥| ,

τV ← VDBQC.Dec(sk∗, ct∗)

(sk∗, ct∗, τP)← VDBQC.Evaluate (V(C, sk, ct, π),P (ρP))

ct← VDBQC.Enc(sk, ρV)

(sk, π)← QCED.Setup(C, 1n)

where Sim and VDBQC.Evaluate are CPTP maps of the form ρP 7→ (ct∗, τP), mapping states from
the prover’s input register to its output space (which comprises the quantum ciphertext returned to the
verifier, ct∗, and any side information the prover retains, τP).

There are a number of protocols that satisfy the above definition and we refer the reader to [GKK19]
for an overview. We should also note that the above definition does not apply to all VDBQC protocols in
the literature. In a bit more detail, using terminology from [GKK19], the above definition generally refers
to single-prover prepare-and-send protocols,19 where the verifier sends quantum states to the prover. This
is precisely the setting we are interested in. Specifically, we would like a VDBQC protocol in which the
verifier has to prepare and send only BB84 states to the prover. As far as we are aware, there is no protocol
that achieves this directly. However, it can be achieved indirectly using a protocol of Morimae [Mor18]. To
explain, we need to give a high-level description of that protocol. We start by first explaining the history
state construction [KSVV02, KKR06].

19The definition also applies for single-prover receive-and-measure protocols [GKK19].

71

8.1 History state construction and post-hoc verification

The history state construction, introduced in [KSVV02, KKR06], was used to show that the local Hamil-
tonian problem is complete for the complexity class QMA (the quantun analogue of NP). For our purposes,
we forego the definition of QMA and instead explain how the history state construction can be used to verify
general quantum computations.

Given a circuit C = UTUT−1...U1 acting on n qubits and an input x ∈ {0, 1}n, where T = |C| and Ui
denotes the i’th gate in C (and with U0 = id), consider the state

|ψC,x〉 =
1√

T + 1

T

∑
t=0
|t〉UtUt−1...U0|x〉. (8.1)

This is referred to as the history state of C on input x. Importantly, |ψC,x〉 is the ground state of a k-local
Hamiltonian denoted HC,x, with k = O(1). Whenever C accepts x (i.e. measuring the first qubit of C|x〉
yields outcome 1 with probability greater than 2/3) the state |ψC,x〉 has low energy with respect to HC,x
otherwise it has high energy. More precisely, the gap between accepting and rejecting instances (referred to
as the promise gap) is at least 1/ poly(n). It should also be noted that |ψC,x〉 can be prepared efficiently,
with a circuit of size poly(|C|, |x|) applied to a |00...0〉 state.

This yields a simple protocol for verifying quantum computations: a quantum prover is instructed to
prepare |ψC,x〉 and send the state to the verifier, who will then measure it with one of the local terms of
HC,x. The local term will be chosen with a probability proportional to its “weight” in HC,x. In other words,
it should be the case that the expectation of the verifier’s measurement is 〈ψC,x|HC,x|ψC,x〉. This provides
an estimate for the state’s energy which can be used to decide acceptance or rejection. Thus, if C accepts x,
the history state (when measured according to HC,x) will have low energy. In contrast, whenever C rejects x
all states will have high energy with respect to HC,x so that a malicious prover cannot convince the verifier
to accept. It should also be noted that one can construct local Hamiltonians that are 2-local and for which
the non-trivial components of the Hamiltonian terms are either Pauli σX or σZ [BL08].

The protocol we sketched above is referred to as post-hoc verification of quantum computation and was
introduced in [MF16, FHM18]. We can summarise this result with the following theorem.

Theorem 8.2 ([FHM18]). Let C be a T-gate quantum circuit acting on n qubits such that C = UTUT−1...U1
where T = |C| and Ui denotes the i’th gate in C (and where we take U0 = id). Suppose it is the case that
for any input x ∈ {0, 1}n either |〈0|C|x〉|2 ≥ 2/3 or |〈0|C|x〉|2 ≤ 1/3. Then, there exists a collection of
n-qubit observables {Oi}i≤m, with m = poly(n), of the form Oi =

⊗n
j=1 Pj, with Pj ∈ {σX, σZ, id} (and

with at most two Pj’s not equal to id), a probability distribution p : [m] → [0, 1], and values α, β > 0 with
β− α > 1/ poly(n) (referred to as the promise gap), such that

• if |〈0|C|x〉|2 ≥ 2/3 then ∑m
i=1 p(i)〈ψC,x|Oi|ψC,x〉 ≤ α,

• if |〈0|C|x〉|2 ≤ 1/3 then for all states |ψ′〉, ∑m
i=1 p(i)〈ψ′|Oi|ψ′〉 ≥ β,

where

|ψC,x〉 =
1√

T + 1

T

∑
t=0
|t〉UtUt−1...U0|x〉. (8.2)

Here the observables Oi are the local terms of the Hamiltonian HC,x, whose groundstate is the history
state |ψC,x〉. The probability distribution p(i) is simply the weight of each local term in the Hamiltonian,
suitably normalised. In the post-hoc protocol, the verifier samples an observable according to that distribu-
tion and measures the state received from the prover with that observable.

72

Remark 8.3 (Instance independence). An important observation about the post-hoc verification protocol,
first made in [ACGH20], is that the sampling of an observable Oi and the measurement performed by the
verifier can be made independent of each other. This is done as follows. The verifier will measure each
qubit of the state received from the prover uniformly at random with either the σX or σZ observable and then
sample an observable Oi according to the distribution p. Assuming the underlying Hamiltonian is 2-local,
let 1 ≤ j, k ≤ n denote the indices of the qubits acted upon by non-trivial operators in Oi (i.e. operators
not equal to id). If these operators match the observables the verifier used when measuring qubits i and j
(which happens with probability 1/4), the verifier keeps the measurement outcome, discarding it otherwise
(and rejecting). As shown in [ACGH20], the effect of this is to reduce the promise gap by a constant factor
of 1/4, so that overall the promise gap is still 1/ poly(n).

8.2 Morimae’s verification protocol

The post-hoc protocol described in the previous subsection is a simple protocol for verifying general quan-
tum computations. Note, however, that it is not a VDBQC protocol according to our definition. This is
because the protocol is not blind—the prover is told both the computation C and the input x so as to prepare
the history state.

While the post-hoc protocol does not satisfy the blindness property, Morimae recently proposed a mod-
ified version of the protocol that is blind [Mor18]. This main idea of Morimae’s protocol is to instruct the
prover to prepare the history state using a QCED protocol.20 In fact, the verifier delegates to the prover
the preparation of the state |ψC,x〉 as well as |ψC̄,x〉, where C̄ is the same as C except the output qubit is
negated (that is, an additional σX gate is added to the output qubit of C). As the states are prepared via a
QCED scheme, they will be encrypted and the prover learns nothing about the input x or the circuit C. The
prover then sends these states to the verifier who proceeds to decrypt and measure them using the observ-
ables from Theorem 8.2. In this way, the verifier is able certify the outcome of the computation C on input
x while also keeping C and x hidden from the prover. We can also see that if the QCED scheme that is
used in the first part of the protocol is Broadbent’s scheme [Bro15], mentioned in the previous section, the
verifier will only be required to send BB84 states to the prover. Moreover, in that scheme, the encryption
of the states is done via a quantum one-time pad. As this consists of the application of Pauli σX and σZ
operations, these can be absorbed into the observables that the verifier measures, so that the overall protocol
requires the verifier to send BB84 states and measure qubits in the standard and Hadamard bases (or with
the observables σZ, σX, respectively).

Our goal is to dequantise this protocol. As we can see, however, this requires one to not only dequantise
the sending of quantum states, but also the process of performing σX and σZ measurements. For this, we
make use of the measurement subprotocol from Mahadev’s verification protocol [Mah18]. This is described
in the next subsection.

8.3 Mahadev’s measurement protocol

In [Mah18], Mahadev introduced the first protocol allowing a classical verifier to delegate and verify arbi-
trary quantum computations to a quantum prover. At the core of that protocol is a primitive for classically
instructing a quantum prover to perform measurements in the standard and Hadamard bases. Importantly,

20Strictly speaking, the preparation should be done with a blind quantum computing protocol, i.e. a protocol that explicitly hides
the computation from the prover. However, as mentioned previously, a QCED protocol also yields blind quantum computation by
having the QCED computation be a universal circuit, U, with the property that that U|C, x〉 = C|x〉 ⊗ |00...0〉, for some quantum
circuit C and input x.

73

this is done in a “verifiable way”, so that if the prover does not perform the correct measurements, the ver-
ifier can detect this and abort. Combined with the idea of post-hoc verification, we can see how this yields
a protocol for verifying general quantum computations: simply instruct the prover to measure observables
from Theorem 8.2 on the history state of the computation.

For our purposes, we are only interested in the measurement subprotocol. For a detailed description of
that protocol, we refer the reader to [Mah18]. At a high level, the protocol works in a similar way to our
RSP protocol (which was directly inspired by Mahadev’s result): the verifier uses an ENTCF family (based
on the quantum intractability of LWE) to delegate the chosen measurement to the prover. As a result of
interacting with the prover, the verifier obtains a purported measurement outcome and can decide whether
to accept or reject. This decision is performed using the ENTCF family’s trapdoor, which allows the verifier
to check whether the prover performed the measurements as instructed or not. The main result of this
protocol is summarised in the following two theorems, taken from [Mah18, Sections 5.4, 7], that capture the
completeness and soundness of the protocol:

Theorem 8.4 (Completeness of measurement protocol [Mah18]). For all n-qubit states ρ and all basis
choices h ∈ {0, 1}n (where hi = 0 denotes measurement of qubit i in the standard basis and hi = 1
denotes measurement in the Hadamard basis), an honest QPT prover, P , is accepted by the verifier in the
measurement protocol with probability 1− negl(n). Additionally, it is the case that

TVD[DP ,h, Dρ,h] ≤ negl(n), (8.3)

where DP ,h is the probability distribution resulting from the verifier having delegated the measurement h to
P and having accepted in the protocol; Dρ,h is the distribution resulting from measuring the state ρ in the
bases determined by h.

Theorem 8.5 (Soundness of measurement protocol [Mah18]). Assuming the quantum intractability of LWE,
for a QPT prover P , let 1− p be the probability that the verifier accepts the prover in the measurement
protocol.21 Then, there exists an n-qubit state ρ and a prover P ′ such that for all basis choices h,

TVD[DP ,h, DP ′,h] ≤ p +
√

p + negl(n), (8.4)

and with DP ′,h being computationally indistinguishable from Dρ,h.

8.4 Verifiable delegated blind quantum computation with a classical verifier

Let us start by defining VDBQC with a classical verifier. Throughout this section we are considering
VDBQC protocols for decision problems, i.e. problems where the output is a single classical bit. In other
words, for some computation C and input x, we are only interested in the result of measuring the first qubit
of C|x〉 in the standard basis.

Definition 8.6 (Verifiable Delegated Blind Quantum Computing with a Classical Verifier). A protocol for
verifiable delegated blind quantum computing (of decision problems) with a classical verifier is a tuple of
QPT algorithms VDBQCCV = (StatePrep,Evaluate,Dec), where

21Strictly speaking, the measurement protocol has two types of rounds (a test round and a Hadamard round) and one should
consider the probabilities of acceptance in each of these rounds. See [Mah18, Section 7] for more details. Here we take p to be the
maximum of the two probabilities.

74

VDBQCCV.StatePrep(V(C, 1n),P(ρP)) → (sk, pk, τ, σP): is an interactive protocol between a PPT
verifier, V , and a QPT prover P . The verifier’s input consists of a description of a circuit C acting on
n qubits. The prover has as input some poly(n)-qubit quantum state ρP . The protocol either aborts
or succeeds22. If the protocol succeeds the verifier obtains as an output a secret key sk ∈ {0, 1}poly(n)

and the prover obtains a poly(n)-qubit quantum state σP . Additionally, they both obtain a public key
pk ∈ {0, 1}poly(n) and a classical transcript τ ∈ {0, 1}poly(n).

VDBQCCV.Evaluate(V(C, mV , sk, pk, τ),P(pk, τ, σP)) → (sk∗, ct∗, γP): is an interactive protocol be-
tween a PPT verifier, V , and a QPT prover, P . The verifier’s input consists of the circuit C, an
input for that circuit denoted as the string mV ∈ {0, 1}n, the secret key sk, the public key pk and the
classical transcript τ. The prover’s input is the quantum state σP as well as the public key pk and the
transcript τ. At the end of the interaction, the verifier obtains an output key sk∗ ∈ {0, 1}poly(n) and a
classical ciphertext ct∗ ∈ {0, 1}poly(n). The prover obtains the quantum state γP .

VDBQCCV.Dec(sk∗, ct∗) → r: takes as input a key, sk∗, and a ciphertext ct∗ and either outputs the bit
r ∈ {0, 1} or the protocol aborts.

We now define the following properties associated with a VDBQCCV protocol:

(i) δ-correctness: for every quantum circuit C, with |C| = poly(n), and every input mV ∈ {0, 1}n,
provided the prover follows the instructions of the interactive protocol, VDBQCCV.Evaluate, we have
that

Pr[r = M(C|mV 〉〈mV |C†) ∧>] ≥ 1− δ(n)

where M(·) denotes the process of measuring the first qubit of a quantum state in the standard basis
and outputting that result, ⊥ denotes the event of the protocol aborting and where,

r ← VDBQCCV.Dec(sk∗, ct∗)
(sk∗, ct∗, γP)← VDBQCCV.Evaluate(V(C, mV , sk, pk, τ),P(pk, τ, σP))

(sk, pk, τ, σP)← VDBQCCV.StatePrep(V(C, 1n),P(|0〉〈0|⊗ poly(n)))

(ii) ε-blind-verifiability: the protocol satisfies the ε-IND-CPA security condition of Definition 7.4 and in
addition, for each quantum circuit C, each verifier input mV , each QPT prover P and each state ρP it
is the case that

Pr[r 6= M(C|mV 〉〈mV |C†) ∧>] ≤ ε(n)

where M(·) denotes the process of measuring the first qubit of a quantum state in the standard basis
and outputting that result, > denotes the event of the protocol not aborting and where,

r ← VDBQCCV.Dec(sk∗, ct∗)
(sk∗, ct∗, γP)← VDBQCCV.Evaluate(V(C, mV , sk, pk, τ),P(pk, τ, σP))

(sk, pk, τ, σP)← VDBQCCV.StatePrep(V(C, 1n),P(ρP))

22Here we are assuming that there is a global abort flag for the entire protocol.

75

To obtain a protocol satisfying the above definition, for some computation C on input x, we follow
the ideas in Morimae’s protocol and have the verifier first perform a QCEDCC protocol with the prover,
instructing it to prepare the states |ψC,x〉 and |ψC̄,x〉, as described in Section 8.2. The verifier must then
instruct the prover to perform the measurement of local terms from the Hamiltonian HC,x. We do this by
making use of Mahadev’s measurement protocol from Section 8.3. An important point to note here is that
because the states |ψC,x〉 and |ψC̄,x〉 were prepared via the VDBQCCV protocol, they will be encrypted and
so it’s not a priori clear whether the subsequent measurement is useful for the verifier. But this will indeed be
the case, as the encryption of the states is given a by a quantum one-time pad (that is known to the verifier)
which can be absorbed into the measurements by suitably flipping measurement outcomes. The protocol is
described more formally in Protocol 7 and the following theorem shows that it satisfies Definition 8.6

Protocol 7. Protocol for Verifiable Delegated Blind Quantum Computation with a Classical
Verifier

Let C be a circuit acting on n qubits. Additionally, take δ = 1/ poly(n) to be some error tolerance
parameter. Define the following algorithms.

VDBQCCV.StatePrep(V(C, 1n),P(ρP) → (sk, pk, τ, σP): The verifier runs Protocol 3 with the
prover, taking the security parameter λ = poly(n). Here, pk and sk denote the public and
secret keys generated in that protocol, τ denotes the transcript of the protocol and σP is the
prover’s state upon completing the protocol (in the case where the verifier accepts).

VDBQCCV.Evaluate(V(C, mV , sk, pk, τ),P(pk, τ, σP)) → (sk∗, ct∗, γP): The verifier first per-
forms the QCEDCC.Evaluate(V(C′, mV , {sk, skin}, pk, τ),P(pk, τ, σP)) subprotocol, where
the circuit C′ is one that prepares the history states |ψC,mV 〉 and |ψC̄,mV 〉 and where
skin

$←−{0, 1}poly(n) (see Protocol 6 for details). It then performs Mahadev’s measurement
protocol, instructing the prover to measure each qubit of the (encrypted) history states in either
the standard basis or the Hadamard basis, chosen uniformly at random. The string ct∗ is set
to be the transcript of that protocol. The verifier also samples a local term from each of the
Hamiltonians HC,mV and HC̄,mV with probability proportional to the weight of that term (as in
the post-hoc protocol mentioned in Section 8.1). The string sk∗ is set to the choices of these
local terms, together with the strings sk and skin.

VDBQCCV.Dec(sk∗, ct∗)→ r: The verifier uses sk∗ to decrypt the results in ct∗, corresponding to
the measurements of local terms of the Hamiltonians HC,mV and HC̄,mV on the states |ψC,mV 〉
and |ψC̄,mV 〉

23. If the tests of the Mahadev’s measurement protocol failed, the verifier aborts.
Otherwise, if, according to the measurements, |ψC,mV 〉 has low energy with respect to HC,mV
and |ψC̄,mV 〉 has high energy with respect to HC̄,mV

24, it sets r = 0 and accepts. If |ψC,mV 〉 has
high energy with respect to HC,mV and |ψC̄,mV 〉 has low energy with respect to HC̄,mV , it sets
r = 1 and accepts. Otherwise, it aborts.

Theorem 8.7. Protocol 7 is a protocol for Verifiable Delegated Blind Quantum Computation with a Classi-
cal Verifier having negl(n) correctness and 1/ poly(n) blind-verifiability.

76

Proof. We start by showing the protocol’s correctness. The prover will first engage in the QCEDCC protocol
with the verifier, resulting in the preparation of BB84 states in its memory, followed by the application of the
unitary for preparing the (encrypted) history states |ψC,mV 〉 and |ψC̄,mV 〉. As explained in Section 7, these
states are encrypted via a quantum one-time pad known to the verifier. The verifier then uses Mahadev’s
measurement protocol to instruct the prover to measure the states according to randomly chosen terms
from the Hamiltonians HC,x and HC̄,x, respectively (using the instance-independent idea from Remark 8.3).
Again, as the prover is assumed to behave correctly, this will result in the correct measurements being
performed, as follows from Theorem 8.4. Recall that the terms of the Hamiltonian comprise only Pauli σX
and σZ operators (and so the measurements performed via Mahadev’s protocol will also be a measurements
of σX or σZ observables). Since the history states have a quantum one-time pad applied, we can “absorb”
the pad into the measurement by suitably flipping the measurement outcomes. More precisely, if a qubit has
a σX (σZ, respectively) applied in the one-time pad and the qubit is measured with the σZ (σX, respectively)
observable, then the outcome should be flipped. Otherwise, the outcome is not flipped. Once the verifier
has decrypted the measurement outcomes in this way, it will then test the energy condition to estimate the
energies of the two states relative to the Hamiltonians HC,x and HC̄,x. The correctness of the history state
construction (Theorem 8.2) ensures that the verifier obtains the correct outcome with high probability25.

We would now like to show that the protocol also satisfies 1/ poly(n) blind-verifiability. The blind-
ness condition, which is identical to that of QCEDCC, is clearly satisfied up to the point where the verifier
performs Mahadev’s measurement protocol. This is because until that point, the protocol is simply an
application of QCEDCC for a specific computation (that of preparing the two history states). Using the
instance-independent version of the history state construction (see Remark 8.3), Mahadev’s measurement
protocol also satisfies the IND-CPA condition. This is due to the fact that the instructions the verifier sends
to the prover in the measurement protocol are independent of the input.

Verifiability follows from the soundness of the measurement protocol (Theorem 8.5) together with the
properties of the history state construction (Theorem 8.2). The proof is identical to the proof of Theorem
8.6 from [Mah18], which we will not restate here. It follows that

| Pr[r 6= M(C|mV 〉〈mV |C†) ∧>]− 1/ poly(n)| ≤ negl(n),

which then implies that

Pr[r 6= M(C|mV 〉〈mV |C†) ∧>] ≤ 1/ poly(n) + negl(n).

This yields the desired condition of 1/ poly(n) verifiability that, when combined with the blindness condi-
tion (i.e. the IND-CPA security) yields 1/ poly(n) blind-verifiability, concluding the proof.

References

[Aar09] Scott Aaronson. Quantum copy-protection and quantum money. 2009 24th Annual IEEE
Conference on Computational Complexity, Jul 2009.

[ABF+16] Gorjan Alagic, Anne Broadbent, Bill Fefferman, Tommaso Gagliardoni, Christian Schaffner,
and Michael St. Jules. Computational security of quantum encryption. Information Theoretic
Security, page 47–71, 2016.

25We are assuming here that the verifier and prover are performing the parallel-repeated version of these protocols, as described
in [ACGH20], hence why correctness is negligible.

77

[ACGH20] Gorjan Alagic, Andrew M Childs, Alex B Grilo, and Shih-Han Hung. Non-interactive clas-
sical verification of quantum computation. In Theory of Cryptography Conference, pages
153–180. Springer, 2020.

[ALL+21] Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. New approaches
for quantum copy-protection. In Annual International Cryptology Conference, pages 526–
555. Springer, 2021.

[AS06] Pablo Arrighi and Louis Salvail. Blind quantum computation. International Journal of Quan-
tum Information, 4(05):883–898, 2006.

[BB84] C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and coin
tossing. In Proceedings of IEEE International Conference on Computers, Systems and Signal
Processing, pages 8, vol. 175, 1984.

[BCC+20] Christian Badertscher, Alexandru Cojocaru, Léo Colisson, Elham Kashefi, Dominik Leichtle,
Atul Mantri, and Petros Wallden. Security limitations of classical-client delegated quantum
computing. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 667–696. Springer, 2020.

[BCKM21] James Bartusek, Andrea Coladangelo, Dakshita Khurana, and Fermi Ma. One-way functions
imply secure computation in a quantum world. In Annual International Cryptology Confer-
ence, pages 467–496. Springer, 2021.

[BCM+18] Z. Brakerski, P. Christiano, U. Mahadev, U. Vazirani, and T. Vidick. A cryptographic test of
quantumness and certifiable randomness from a single quantum device. IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS), pages 320–331, 2018.

[BFK09] Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum compu-
tation. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages
517–526. IEEE, 2009.

[BL08] Jacob D Biamonte and Peter J Love. Realizable hamiltonians for universal adiabatic quantum
computers. Physical Review A, 78(1):012352, 2008.

[BL19] Anne Broadbent and Sébastien Lord. Uncloneable quantum encryption via random oracles.
IACR Cryptol. ePrint Arch., page 257, 2019.

[Bro15] Anne Broadbent. Delegating private quantum computations. Canadian Journal of Physics,
93(9):941–946, 2015.

[BY21] Anne Broadbent and Peter Yuen. Device-independent oblivious transfer from the bounded-
quantum-storage-model and computational assumptions. arXiv preprint arXiv:2111.08595,
2021.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages 136–145.
IEEE, 2001.

78

[CCKW19] Alexandru Cojocaru, Léo Colisson, Elham Kashefi, and Petros Wallden. QFactory:
Classically-instructed remote secret qubits preparation. Advances in Cryptology - ASI-
ACRYPT 2019, Lecture Notes in Computer Science, Springer, pages 615–645, 2019.

[CGJV19] Andrea Coladangelo, Alex B Grilo, Stacey Jeffery, and Thomas Vidick. Verifier-on-a-leash:
new schemes for verifiable delegated quantum computation, with quasilinear resources. In An-
nual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 247–277. Springer, 2019.

[CKVW10] Ran Canetti, Yael Tauman Kalai, Mayank Varia, and Daniel Wichs. On symmetric encryption
and point obfuscation. In Theory of Cryptography Conference, pages 52–71. Springer, 2010.

[CMP20] Andrea Coladangelo, Christian Majenz, and Alexander Poremba. Quantum copy-protection
of compute-and-compare programs in the quantum random oracle model. arXiv preprint
arXiv:2009.13865, 2020.

[CN16] Matthew Coudron and Anand Natarajan. The parallel-repeated magic square game is rigid.
arXiv preprint arXiv:1609.06306, 2016.

[Col16] Andrea W Coladangelo. Parallel self-testing of (tilted) EPR pairs via copies of (tilted) CHSH.
arXiv preprint arXiv:1609.03687, 2016.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Informa-
tion Theory, 22(6):644–654, 1976.

[FHM18] Joseph F Fitzsimons, Michal Hajdušek, and Tomoyuki Morimae. Post hoc verification of
quantum computation. Physical review letters, 120(4):040501, 2018.

[Fit17] Joseph F Fitzsimons. Private quantum computation: an introduction to blind quantum com-
puting and related protocols. npj Quantum Information, 3(1):1–11, 2017.

[FWZ22] Honghao Fu, Daochen Wang, and Qi Zhao. Computational self-testing of multi-qubit states
and measurements, 2022. Manuscript forthcoming.

[GH17] William Timothy Gowers and Omid Hatami. Inverse and stability theorems for approximate
representations of finite groups. Sbornik: Mathematics, 208(12):1784, 2017.

[GKK19] Alexandru Gheorghiu, Theodoros Kapourniotis, and Elham Kashefi. Verification of quantum
computation: An overview of existing approaches. Theory of computing systems, 63(4):715–
808, 2019.

[GLSV21] Alex B Grilo, Huijia Lin, Fang Song, and Vinod Vaikuntanathan. Oblivious transfer is in
miniqcrypt. In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 531–561. Springer, 2021.

[Got02] Daniel Gottesman. Uncloneable encryption. arXiv preprint quant-ph/0210062, 2002.

[GV19] Alexandru Gheorghiu and Thomas Vidick. Computationally-secure and composable re-
mote state preparation. IEEE 60th Annual Symposium on Foundations of Computer Science
(FOCS), pages 1024–1033, 2019.

79

[HMNY21] Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa. Quantum en-
cryption with certified deletion, revisited: Public key, attribute-based, and classical commu-
nication. arXiv preprint arXiv:2105.05393, 2021.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way
permutations. In Proceedings of the twenty-first annual ACM symposium on Theory of com-
puting, pages 44–61, 1989.

[KKR06] Julia Kempe, Alexei Kitaev, and Oded Regev. The complexity of the local hamiltonian prob-
lem. Siam journal on computing, 35(5):1070–1097, 2006.

[KNY21] Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa. Secure software leasing from
standard assumptions. In Theory of Cryptography Conference, pages 31–61. Springer, 2021.

[KSVV02] Alexei Yu Kitaev, Alexander Shen, Mikhail N Vyalyi, and Mikhail N Vyalyi. Classical and
quantum computation. Number 47. American Mathematical Soc., 2002.

[Mah18] Urmila Mahadev. Classical verification of quantum computations. IEEE 59th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 259–267, 2018.

[MDCAF21] Tony Metger, Yfke Dulek, Andrea Coladangelo, and Rotem Arnon-Friedman. Device-
independent quantum key distribution from computational assumptions. New Journal of
Physics, 23(12):123021, 2021.

[MF16] Tomoyuki Morimae and Joseph F Fitzsimons. Post hoc verification with a single prover. arXiv
preprint arXiv:1603.06046, 2016.

[Mor18] Tomoyuki Morimae. Blind quantum computing can always be made verifiable. arXiv preprint
arXiv:1803.06624, 2018.

[MR11] Ueli Maurer and Renato Renner. Abstract cryptography. In In Innovations in Computer
Science. Citeseer, 2011.

[MTH+21] Akihiro Mizutani, Yuki Takeuchi, Ryo Hiromasa, Yusuke Aikawa, and Seiichiro Tani. Com-
putational self-testing for entangled magic states. arXiv preprint arXiv:2111.02700, 2021.

[MV20] Tony Metger and Thomas Vidick. Self-testing of a single quantum device under computational
assumptions. arXiv preprint arXiv:2001.09161, 2020.

[MYS12] M McKague, T H Yang, and V Scarani. Robust self-testing of the singlet. Journal of Physics
A: Mathematical and Theoretical, 45(45):455304, oct 2012.

[NR97] Moni Naor and Omer Reingold. On the construction of pseudo-random permutations: Luby-
Rackoff revisited (extended abstract). In Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on Theory of Computing, STOC ’97, page 189–199, New York, NY, USA, 1997.
Association for Computing Machinery.

[NV17] Anand Natarajan and Thomas Vidick. A quantum linearity test for robustly verifying entan-
glement. Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
(STOC), pages 1003–1015, 2017.

80

[NV18] Anand Natarajan and Thomas Vidick. Low-degree testing for quantum states, and a quantum
entangled games PCP for QMA. In 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pages 731–742. IEEE, 2018.

[NY04] Harumichi Nishimura and Tomoyuki Yamakami. Polynomial time quantum computation with
advice. Information Processing Letters, 90(4):195–204, 2004.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J.
ACM, 56(6), 2009.

[RS19] Roy Radian and Sattath. Semi-quantum money. In Proceedings of the 1st ACM Conference
on Advances in Financial Technologies, AFT ’19, page 132–146, New York, NY, USA, 2019.
Association for Computing Machinery.

[Rud91] Steven Rudich. The use of interaction in public cryptosystems. In Annual International
Cryptology Conference, pages 242–251. Springer, 1991.

[RUV13] Ben W Reichardt, Falk Unger, and Umesh Vazirani. Classical command of quantum systems.
Nature, 496(7446):456–460, 2013.

[TFKW13] Marco Tomamichel, Serge Fehr, Jedrzej Kaniewski, and Stephanie Wehner. A monogamy-
of-entanglement game with applications to device-independent quantum cryptography. New
Journal of Physics, 15(10):103002, Oct 2013.

[Vid11] Thomas Vidick. The complexity of entangled games. PhD thesis, UC Berkeley, 2011.

[Vid20] Thomas Vidick. Course FSMP, Fall’20: Interactions with quantum devices. http:
//users.cms.caltech.edu/˜vidick/teaching/fsmp/fsmp.pdf, 2020.

[VZ21] Thomas Vidick and Tina Zhang. Classical proofs of quantum knowledge. In Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques, pages
630–660. Springer, 2021.

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, jan 1983.

[Win99] A. Winter. Coding theorem and strong converse for quantum channels. IEEE Transactions on
Information Theory, 45(7):2481–2485, 1999.

[WZ82] William K Wootters and Wojciech H Zurek. A single quantum cannot be cloned. Nature,
299(5886):802–803, 1982.

81

http://users.cms.caltech.edu/~vidick/teaching/fsmp/fsmp.pdf
http://users.cms.caltech.edu/~vidick/teaching/fsmp/fsmp.pdf

	Introduction
	Main results
	Related work
	Soundness proof for parallel RSP protocol
	Discussion

	I Classically-instructed parallel remote state preparation of BB84 states
	Preliminaries
	Notation
	Extended trapdoor claw-free functions
	Computational efficiency and distinguishability
	Distance measures

	Protocol description and completeness
	Protocol soundness
	Modelling devices in 1
	Extending 4.10 to different basis choices
	Pauli group relations for inefficient observablesThis section is based on unpublished work by Jeffrey Champion, John Wright, and the second author. We thank Jeffrey and John for allowing us to use these results here.
	Switching to efficient observables
	Preparing BB84 states

	II Applications
	Unclonable quantum encryption
	Quantum encryption of classical messages
	Unclonable quantum encryption with a classical client
	Conjugate coding encryption with a classical client

	Quantum copy-protection
	Quantum encryption with wrong-key detection
	Quantum copy-protection with a classical client
	Quantum copy-protection of multi-bit point functions with a classical client

	Quantum computing on encrypted data
	Quantum computing on encrypted data with a classical client

	Verifiable delegated blind quantum computation
	History state construction and post-hoc verification
	Morimae's verification protocol
	Mahadev's measurement protocol
	Verifiable delegated blind quantum computation with a classical verifier

