
Attaining GOD Beyond Honest Majority With
Friends and Foes

Aditya Hegde1⋆, Nishat Koti2, Varsha Bhat Kukkala2, Shravani Patil2, Arpita
Patra2, and Protik Paul2

1 Johns Hopkins University ahegde@cs.jhu.edu
2 Indian Institute of Science, Bangalore

{kotis,varshak,shravanip,arpita,protikpaul}@iisc.ac.in

Abstract. In the classical notion of multiparty computation (MPC), an
honest party learning private inputs of others, either as a part of protocol
specification or due to a malicious party’s unspecified messages, is not
considered a potential breach. Several works in the literature exploit this
seemingly minor loophole to achieve the strongest security of guaranteed
output delivery via a trusted third party, which nullifies the purpose of
MPC. Alon et al. (CRYPTO 2020) presented the notion of Friends and
Foes (FaF) security, which accounts for such undesired leakage towards
honest parties by modelling them as semi-honest (friends) who do not
collude with malicious parties (foes). With real-world applications in
mind, it’s more realistic to assume parties are semi-honest rather than
completely honest, hence it is imperative to design efficient protocols
conforming to the FaF security model.
Our contributions are not only motivated by the practical viewpoint,
but also consider the theoretical aspects of FaF security. We prove the
necessity of semi-honest oblivious transfer for FaF-secure protocols with
optimal resiliency. On the practical side, we present QuadSquad, a ring-
based 4PC protocol, which achieves fairness and GOD in the FaF model,
with an optimal corruption of 1 malicious and 1 semi-honest party. Quad-
Squad is, to the best of our knowledge, the first practically efficient FaF
secure protocol with optimal resiliency. Its performance is comparable
to the state-of-the-art dishonest majority protocols while improving the
security guarantee from abort to fairness and GOD. Further, QuadSquad
elevates the security by tackling a stronger adversarial model over the
state-of-the-art honest-majority protocols, while offering a comparable
performance for the input-dependent computation. We corroborate these
claims by benchmarking the performance of QuadSquad. We also con-
sider the application of liquidity matching that deals with highly sensitive
financial transaction data, where FaF security is apt. We design a range of
FaF secure building blocks to securely realize liquidity matching as well as
other popular applications such as privacy-preserving machine learning
(PPML). Inclusion of these blocks makes QuadSquad a comprehensive
framework.

Keywords: Friends and Foes · Multiparty Computation · Oblivious
Transfer

⋆ Work done while at International Institute of Information Technology Bangalore.

2 Hegde et al.

1 Introduction

The classical notion of multiparty computation (MPC) enables n mutually dis-
trusting parties to compute a function over their private inputs, such that an
adversary controlling up to t parties does not learn anything other than the out-
put. Depending on its behaviour, the adversary can be categorized as semi-honest
or malicious. A maliciously-secure MPC protocol may offer security guarantee
with abort, fairness or guaranteed output delivery (GOD). While security with
abort may allow the adversary alone to receive the output (leaving out the honest
parties), fairness makes sure either all or none receive the output. The strongest
guarantee of GOD ensures that all honest participants receive the output irre-
spective of the adversarial behaviour. It is well known that honest majority is
necessary to achieve GOD, whereas a dishonest majority setting can at best of-
fer security with abort for general functionalities [29]. GOD is undoubtedly one
of the most attractive features of an MPC protocol. Preventing repeated fail-
ures, it upholds the trust and interest of participants in the deployed protocol
and saves a participant’s valuable time and resources. Moreover, it also captures
unforeseeable scenarios such as machine crashes and network delay.

It is well-known that the honest majority setting lends itself well for con-
structing efficient protocols for a large number of parties [34,2,1,18,47] and has
been shown to be practical [68,6]. In this setting, MPC for a small number of
parties [5,41,4,61,28,67,65,51,67,23] has gained popularity over the last few years
due to applications such as financial data analysis [17] and privacy-preserving
statistical studies [15] which typically involve 3 parties. This is corroborated by
the popularity of MPC framework such as Sharemind [16] which works over 3
parties. In the literature, of all MPC protocols for a small population, several
achieve the highest security guarantee of GOD [51,22,46,20,24,58,59]. In most of
these protocols, when any malicious behaviour is detected, parties identify an
honest party, referred to as Trusted Third Party (TTP) and make their inputs
available to it in clear. Thereafter, TTP computes the desired function on par-
ties’ private inputs and returns the respective outputs. Such learning of inputs
by an honest party is allowed in the traditional definition of security, although
it nullifies the main purpose of MPC. In many real-world applications that deal
with highly sensitive data, such as those in financial and healthcare sectors, in-
formation leak, even to an honest party, is unacceptable. Further, in the secure
outsourced computation setting, where servers (typically run by reputed com-
panies such as Amazon, Google, etc.) are hired to carry out the computation, it
may be unacceptable to reveal private inputs to the server identified as a TTP.

Another issue that persists in traditionally secure MPC protocols is the fol-
lowing. The malicious adversary can potentially breach privacy of protocols by
sending its view to some of the honest parties. However, traditional definitions
do not acknowledge this view-leakage as an attack as honest parties are assumed
to discard any non-protocol messages. In this way, traditional definition fails to
account for the possibly curious nature of honest parties, which is a given in real-
world scenarios. Consequently, many well-known protocols relying on threshold
secret sharing (such as BGW [14]), satisfying traditional security against t ma-

Attaining GOD Beyond Honest Majority With Friends and Foes 3

licious corruptions, immediately fall prey to this view-leakage attack. Indeed,
an honest party on receiving the view of any t corrupt parties can learn the
inputs of all the parties. Note that the traditional MPC protocols are vulnerable
to this view-leakage attack which are not just restricted to GOD protocols but
also protocols with weaker security notion of fairness. We emphasize that such
a view-leakage attack is not irrational on the part of adversary’s behaviour as it
can be motivated by monetary incentives.

We showcase how reliance on a TTP and the view-leakage attack inherent in
traditionally secure MPC is detrimental to data privacy in real-world applica-
tions via the example of liquidity matching. Consider a set of banks that have
outstanding transactions that need to be settled among themselves. Liquidity
matching enables settlement of inter-bank transactions while ensuring that each
bank has sufficient liquidity. Here, liquidity means the balance of a bank, and
matching requires that each bank, upon processing of the outstanding transac-
tions, has non-negative balance. Since transactions comprise sensitive financial
data, it is required to perform liquidity matching in a privacy-preserving man-
ner. Hence, when designing MPC protocols for the same. It is imperative for the
protocol to provide GOD, owing to the real-time nature of such transactions.
That is, aborting the execution is not an acceptable option as it may lead to an
indefinite delay in processing the transactions. The work of [7] has explored this
application in the traditionally secure MPC setting. However, given the sensitive
nature of the application, reliance on a TTP to attain GOD, and the view-leakage
attack, render the traditionally secure MPC solution futile.

Inspired by the above compelling concerns of reliance on a TTP and view-
leakage, [3] proposed a newMPC security definition, Friends & Foes (FaF). In this
definition, an honest party’s input is required to be safeguarded from quorums of
other honest parties, in addition to the standard security against an adversary.
This dual need is modelled through a decentralized adversary. Specifically, there
is one malicious adversary that corrupts at most t out of n parties (Foes) and
another semi-honest adversary, controlling at most h∗ parties (Friends) out of
the remaining n− t parties. A protocol secure against such adversaries is said to
be (t, h∗)-FaF secure. Technically, in the FaF model, not only should the views of
t malicious parties, but also the views of every (disjoint) subset of h∗ semi-honest
parties, be simulatable separately (details appear in §A). Moreover, FaF requires
security to hold even when the malicious adversary sends its view to some of the
other parties (semi-honest). Thus, FaF-security is a better fit for applications
that deal with highly sensitive data, as in the case of liquidity matching.

Alon et al. showed in [3] that any functionality can be computed with fairness
and GOD in the (t, h∗)-FaF model, iff 2t+ h∗ < n holds. Since protocols with a
small number of parties are pragmatic, from the above condition it is evident that
a minimum of 4 parties is necessary to achieve the desired level of FaF-security.
This implies that t = 1, h∗ = 1. While the sufficiency of t = 1 is well established
in the literature [62,71,58,59,32,46,20,22,24], we trust that h∗ = 1 also suffices
for most practical purposes, assuming honest parties do not collude. Thus, we
design protocols in the 4PC setting providing (1, 1)-FaF security. It is worth

4 Hegde et al.

noting that relying on a 4PC protocol with 2 malicious corruptions to achieve
this goal is insufficient, since GOD is known to be impossible in this setting. On
the other hand, although the 4 party honest-majority setting tackling a single
corruption can offer GOD security, it is susceptible to the view-leakage attack.

Keeping practicality in mind, for the optimal 4PC setting considered above,
we describe the design choices made to attain an efficient protocol. To obtain
a fast-response time as required for real-time applications, we operate in the
preprocessing paradigm which has been extensively explored [36,9,35,56,58,59].
Here, the protocols are partitioned into two phases, a function dependent (input
independent) preprocessing phase and an input dependent online phase. Also,
following recent works [16,35,37,33] we build our protocols over 32 or 64 bit rings
to leverage CPU optimizations. Further, to aid resource constrained clients in
performing computationally intensive tasks, the paradigm of secure outsourced
computation (SOC) has gained popularity. In this setting, clients can avail the
computationally powerful servers on a ‘pay-per-use’ basis from Cloud service
providers. In this work, we provide secure protocols for performing computations
in the 4-server SOC setting. The servers here are mapped to the parties of our
4PC.

When designing FaF-secure protocols in a given setting, it is both theoreti-
cally profound and practically important to know, whether information-theoretic
security is possible to be achieved. If not, it is important to identify what crypto-
graphic assumption is required. [3] shows impossibility of information-theoretic
FaF-secure MPC with less than 2t+ 2h∗ parties and presents a protocol relying
on semi-honest oblivious transfer (OT) with at least 2t + h∗ + 1 parties. How-
ever, the necessity of OT in the latter setting was not known. We settle this
question, showing the necessity of semi-honest OT. This proves the tightness of
the protocol of [3] in terms of assumption, and implies that any 4PC in (1, 1)-FaF
setting requires semi-honest OT. This requirement puts FaF security closer to
the dishonest majority setting where the same necessity holds [45,52], than the
honest majority setting which is known to offer even the strongest security of
GOD information-theoretically.

1.1 Related Work

We restrict the discussion to practically-efficient secret-sharing based (high through-
put regime) MPC protocols over small population for arithmetic and Boolean
world, since this is the regime of focus in this work.

In the honest-majority setting, we restrict to protocols achieving fairness and
GOD over rings. The GOD protocol offering the best overall communication cost
is that of [20]. [25,71,58], present 3PC protocols in the preprocessing paradigm,
and thus have faster online phase than [20]. Of these, [58] elevates the security
of the former two, from fairness to GOD. In the 4PC regime, [59] presents the
best GOD protocol improving over the previously best-known fair protocol of
[26] and GOD protocol of [22,58].

The work that comes closest to the FaF notion in terms of security in the four
party setting is that of Fantastic Four [32] which is devoid of function dependent

Attaining GOD Beyond Honest Majority With Friends and Foes 5

preprocessing. It attempts to offer a variant of GOD, referred to as private
robustness without the honest party learning other parties’ inputs. However,
this work does not capture the behaviour of a malicious adversary which allows
it to send its complete view to an honest party, thus falling short of satisfying the
FaF security notion. This aspect is captured in the recent work PentaGOD [57]
which achieves (1, 1)-FaF security with GOD in the 5-party setting. However, we
know that 4 parties are sufficient for (1, 1)-FaF secure fair/GOD protocol. [57]
lets go of the optimal resiliency and considers an additional party to move to
honest majority and hence achieves better efficiency. However, keeping the focus
on honest majority, their construction is specifically customised for (1, 1)-FaF
setting. Hence they do not account for a few other FaF corruption scenarios for
which GOD is possible in the 5-party setting.

In the dishonest-majority setting, the study of practically-efficient protocols
started with the work of [36] which was followed by [55,56]. This line of work cul-
minated with [13] which has the fastest online phase. However, these protocols
work over fields. The works that extend over rings are [31,69] and of these the lat-
ter is a better performer. In this regime, all the protocols work in preprocessing
paradigm, where the common trend had been to generate Beaver multiplication
triples [11] in the preprocessing and consume them in the online phase for mul-
tiplication. The majority of the works focus on bettering the preprocessing and
choose either Oblivious Transfer (OT) [55] or Somewhat Homomorphic Encryp-
tion (SHE) [36,31,69] to enable triple generation.

1.2 Our Contribution

QuadSquad: A (1, 1)-FaF Secure 4PC.We propose the first, efficient, (1, 1)-FaF
secure, 4PC protocol in the preprocessing paradigm, over rings (both Z2λ and
Z2), that achieves fairness and GOD. Casting our protocol in the preprocessing
paradigm allows us to obtain a fast online phase, with a cost comparable to
the best-known dishonest as well as honest majority protocols. Furthermore, we
achieve GOD, without incurring any additional overhead in the online phase, in
comparison to our fair protocol. This is depicted in Table 1.

Ref. Preproc. Online Model Security

Comm. Rounds Comm.

Tetrad (Z2λ) 2 1 3 HM GOD

Fantastic Four (Z2λ) NA 1 6 HM GOD

MASCOT (F) 7713 2 12 DM abort

QuadSquad (Z2λ) 1558 3 7 FaF Fair

QuadSquad (Z2λ) 3110 3 7 FaF GOD

– The comm. complexity is given in
terms of elements from Z2λ/F (of size
264), as applicable. HM: Honest ma-
jority; DM: Dishonest majority.

Table 1: Comparison of mult of MAS-
COT, Fantastic Four and Tetrad with
QuadSquad

Here, with respect to honest-
majority protocols, we compare Quad-
Squad’s multiplication with the best-
known 4PC of Tetrad [59] which relies
on a TTP, and the protocol of Fantastic
Four [32] which offers private robustness
without relying on a TTP. With re-
spect to dishonest-majority protocols,
we compare with the best-known OT-
based protocol of MASCOT [55] since
our protocol also relies on OTs in the
preprocessing. While QuadSquad, [32]
and [59] work over ring, [55] exploits

6 Hegde et al.

field (F) structure. Further, the proto-
col in [32] does not have a separate preprocessing phase. We indicate this in
Table 1 by “NA” (Not Applicable). As per the table, QuadSquad is comparable
to both the honest-majority and dishonest-majority protocols in the online phase
and outperforms [55] in the preprocessing. Our offer over [59], [32] is stronger
security against an additional semi-honest corruption, with a comparable on-
line cost. Our offer over [55] is the stronger guarantee of fairness/GOD with
comparable online cost (and better preprocessing cost).

Necessity of OT. FaF is closer to dishonest majority (with 2 corruptions out of
4), and hence, public-key primitives are inevitable. We back this up by proving
the necessity of OT. We prove the necessity of semi-honest OT for (t, h∗)-FaF
(abort) secure protocol with n ≤ 2t+ 2h∗ (by constructing the former from the
latter). The goal of this result is to justify that a protocol, including ours, in
FaF-model will require public-key primitives. Given this, we use semi-honest OT,
but restrict its use to preprocessing alone3.

Building blocks and applications. We consider the application of liquidity
matching where FaF security is more apt. We design a range of FaF secure build-
ing blocks to securely realize liquidity matching, as well as other popular appli-
cations such as privacy-preserving machine learning (PPML). The description of
the building blocks appears in Table 2. Although these can be naively obtained
by extending techniques from the literature, the resultant building blocks have a
heavy communication overhead. We therefore go one step ahead and design cus-
tomised building blocks which are efficient and help in improving the response
time of these applications.

Protocol Input Output Description

J·K-ShSOC v JvK User J·K-shares input v with the servers

J·K-RecSOC JvK v Servers reconstruct v to U

BitExt JvK Jmsb(v)KB Extracts most significant bit of an arithmetic shared value v

Bit2A JbKB JbK Converts boolean sharing of a bit b to arithmetic sharing

BitInj JbKB, JvK Jb · vK Outputs J·K-shares of b · v, where bit b is J·KB-shared and v is J·K-shared

DotPTr {JxsK, JysK}s∈[n] J
∑

s∈[n] x
s · ysK Outputs J·K-shares of dot product of J·K-shared vectors {xs}s∈n, {ys}s∈n

Table 2: Build blocks for various applications

Benchmarks. We showcase the practicality of QuadSquad by benchmarking
its MPC, as well as the performance of secure liquidity matching and PPML
inference for two Neural Networks (NN). We implement and benchmark our
4PC protocol over a WAN network using the ring Z264 , and report the latency,
throughput and communication costs in the preprocessing and online phase. We

3 As mentioned in §1.1, SHE offers an alternative to OT. However, relying on the heels
of recent interesting work on OT [76] and the huge effort on improving OT in the
last decade [19,54], we opt for OT based approach. Translating our approach in the
SHE regime is left for future exploration.

Attaining GOD Beyond Honest Majority With Friends and Foes 7

observe that the throughput of our GOD protocol is comparable to that of the
fair protocol, and has an overhead of up to 4.5× in the online phase over [59]
and [32]. This overhead indicates the cost to achieve the stronger notion of FaF-
security. On the other hand, QuadSquad outperforms [55] by a factor of up to
4.5× in the online phase. With respect to the applications, we observe a runtime
of 6 and 10 seconds for the two NNs, and a runtime of 15 seconds for liquidity
matching. The reported runtime for both applications is practical.

1.3 Technical Highlights

In this section, we elaborate on the design choices of our protocol, the challenges
involved and the approach taken to tackle them. One approach to achieving
(1, 1)-FaF security in the 4PC setting is via a 4-party identifiable abort proto-
col, where upon detecting a misbehaving party, the protocol can be re-run with
a default input for the identified corrupt party. However, we deviate from this
approach and choose dispute pair identification for achieving the desired secu-
rity due to the following reasons. First, note that there is no customised 4PC
identifiable abort protocol in the literature. Moreover, since the threshold of
corruption in (1, 1)-FaF considering malicious as well as semi-honest parties cor-
responds to a dishonest majority setting, we have to consider identifiable abort
protocols in the same setting to prevent susceptibility to view-leakage attack.
This would inherently require us to consider generic n-party dishonest majority
identifiable abort protocols, instantiated for the specific case of n = 4 and t = 2,
which do not offer a practically efficient solution. Specifically, the state-of-the-art
protocol in this setting [10] requires online communication of 24 elements per
multiplication-gate, which is significantly higher than the online communication
cost of our protocol. Designing a customised 4PC identifiable abort protocol is
an orthogonal question which is left as an open problem.

Necessity of OT. To prove the necessity of semi-honest OT for a generic n-party
(t, h∗)-FaF secure (abort) protocol with t+ h∗ < n ≤ 2t+ 2h∗, we construct the
former from the latter. Recall that the necessity of n > t+ h∗ for abort security
and n > 2t+h∗ for GOD in the FaF model is known from [3]. Note that our proof
holds up to n ≤ 2t+2h∗, which subsumes the optimal bound on n for the GOD
setting. We show that an n-party (t, h∗)-FaF secure protocol πf for computing
the function f((m0,m1),⊥, . . . ,⊥, b) = (⊥,⊥, . . . ,⊥,mb), where n ≤ 2t + 2h∗,
can be used to construct a semi-honest OT. We give the formal proof in §3.

QuadSquad: Robust (1, 1)-FaF Secure 4PC. The core idea of our 4PC con-
struction lies in designing the sharing, reconstruction and multiplication primi-
tives.

Sharing: To facilitate operating over rings and to ensure privacy in FaF model
with 1 malicious and 1 semi-honest party, we rely on Replicated Secret Sharing
(RSS) with a threshold of 2. This requires 6 components where each pair of

8 Hegde et al.

parties holds a common component. This is higher compared to the 4 components
for RSS with threshold 1 and 3 which are typically used in honest and dishonest
majority settings respectively. In QuadSquad, each party has only 3 components
of a sharing which poses the challenge in ensuring a communication efficient
reconstruction.

Reconstruction: Although a naive reconstruction towards all would require a
communication of 12 elements, our protocol reduces this to an amortized cost
of 7 elements. Both our sharing and reconstruction protocols extensively rely on
primitives which leverage the honest behaviour of at least 3 parties to ensure
dispute pair (DP) identification.

Multiplication: The higher number of components in our sharing semantics
makes our multiplication protocol non-trivial. At a high level, the multiplica-
tion of 2 shared values results in 36 summands, which we broadly categorize into
3 types based on the number of parties which can locally compute each sum-
mand. We give separate treatment to each category, of which the summands that
can be computed by a single party and those which cannot be computed by any
party are of particular interest. The main challenge in the former is ensuring the
correctness of a party’s computation, for which we build upon the distributed
Zero-Knowledge (ZK) protocol of [20]. The latter requires a new distributed
multiplication protocol where two distinct pairs of parties hold the inputs to the
multiplication and the goal is to additively share the product between the pairs.
This primitive relies on OT. Here, the main challenge is ensuring the correctness
of inputs to OT, for which we leverage the (semi) honest behaviour of at least 3
parties and the fact that every pair of parties holds a common component. Apart
from several optimization techniques, the primary technical highlight in this part
includes the new batch reconstruction and the distributed multiplication, both
of which contribute to a highly efficient multiplication protocol.

Online: To ensure efficiency, we follow the paradigm of masked evaluation by
tweaking the RSS sharing as follows. We share a value by using a mask which is
RSS shared and a masked value which is public. The evaluation of the circuit is
then performed on these publicly held masked values which are required to be
reconstructed in the online phase [46,13,70].

Fair to GOD: In the optimistic run (where all parties behave honestly) of our
4PC protocol the function output is computed correctly. However, in case any
malicious behaviour is detected during protocol execution, a dispute pair (DP) is
identified which is assured to include the malicious party. The protocol that we
obtain by terminating at the earliest point of dispute discovery, offers fairness.
Note that the fair protocols existing in the literature [71,58,59] are susceptible to
the view-leakage attack and thus are not FaF secure. Further, to extend the se-
curity guarantee to GOD without incurring additional communication overhead
in the online phase, we follow the commonly used approach of segmented eval-
uation of a circuit. Specifically, we segment the circuit and execute the above

Attaining GOD Beyond Honest Majority With Friends and Foes 9

protocol in a segment-by-segment manner. In case malicious behaviour is de-
tected in any segment, as in our fair protocol, we identify a DP. Following this,
for computation of the remaining segments, we resort to a single instance of a
semi-honest 2PC which is executed by parties outside DP, which we refer to as
the trusted pair (TP). We use the semi-honest 2PC in a black-box manner, and
this can be instantiated with the state-of-the-art protocol. We use ABY2.0 [70],
for this purpose, which is also designed in the preprocessing paradigm. To extend
support for the online phase of [70], each pair of parties executes an instance
of the preprocessing of [70], along with the preprocessing of QuadSquad. This
ensures that in case DP is identified during the online phase, parties have the
necessary preprocessed data for the 2PC.

Key differences from Tetrad, Fantastic Four and MASCOT. The best
known honest-majority 4PC given in Tetrad differs from our construction in
many aspects starting with reliance on RSS with threshold 1. This ensures every
party misses a single (as opposed to 3 for us) component, offering a very efficient
reconstruction. They further utilize high redundancy (every component is held
by 3 parties) and heavily rely on isolating one of the parties from most of the
computation. This, together with the threshold of 1 guarantees that, in case
malicious behaviour is detected during the computation, the isolated party is
honest. This honest party is then elevated to a TTP. The protocol of [58] follows
a similar approach for efficiency. In FaF-model, we fall short of the first and
the latter paradigm fails due to the presence of an additional semi-honest party.
Thus, our multiplication protocol involves all four parties and enforces different
mechanisms to detect and handle malicious behaviour compared to the Tetrad
protocol. Similar to [59,58], the efficiency of Fantastic Four can be attributed to
the benefits of redundancy offered by RSS with threshold 1. Their work achieves
a variant of GOD referred to as private robustness by first identifying a dispute
pair in the execution involving all 4 parties, followed by reducing the computation
to a 3-party malicious protocol. For this, their work eliminates one party from the
dispute pair arbitrarily. Any malicious behaviour hereafter, asserts that the party
from the dispute pair included in the 3PC is malicious. To achieve robustness,
they execute a semi-honest 2-party protocol using the parties guaranteed to be
honest. Although their approach circumvents revealing private inputs to a TTP
for achieving robustness, it falls short of offering FaF-security. In particular, it
is susceptible to the view-leakage attack in all the instances of its sub-protocols
involving 2, 3 and 4 parties. Moreover, in [32], the switch from 4PC to 3PC
upon identifying malicious behaviour is non-interactive. This can be attributed
to the threshold of 1 which ensures that any three parties together possess all
the components of the sharing. However, in our case, if any malicious behaviour
is detected we fall back on a semi-honest 2PC. The sharing semantics of our
protocol (required to prevent view-leakage attack) are such that a pair of parties
does not hold all the shares. Hence we need additional interaction for converting
from 4PC sharing to a 2PC sharing.

On the other hand, MASCOT [55] relies on RSS with threshold 3 (same as
additive sharing). Though every party misses 3 shares like our case, riding on the

10 Hegde et al.

advantage of shooting for a weaker guarantee of abort, they are able to leverage
king-based approach [34] for reconstruction (only one party/king is enabled to
reconstruct, which later sends the value to the rest) which only ensures detection,
but falls short of recovery, from a malicious behaviour. [55] delegates checks to
detect malicious behaviour to the end of the protocol whereas we need to verify
correct behaviour at each step to ensure fairness/GOD.

Our work leaves open several interesting questions. We elaborate on these
and the challenges involved therein in §D.

2 Preliminaries

Setting and Security. We consider a set of four parties P = {P1, P2, P3, P4}
which are connected by pair-wise private and authenticated channels in a syn-
chronous network. The function to be computed is expressed as a circuit whose
topology is public and is evaluated over a ring Z2λ of size 2λ. Our protocols are
designed in the FaF model with a static malicious adversary and a (different)
semi-honest adversary each corrupting at most one (distinct) party. We make
use of broadcast channel for simplicity of presentation, which can be instantiated
using any protocol such as [39]. Our constructions achieve the strongest security
guarantee of GOD, wherein parties receive the protocol output irrespective of
the malicious adversary’s strategy. We prove the security of our protocols in the
ideal world/real world simulation paradigm, the details appear in §A.1.

In the SOC setting, the four servers execute our protocol. For client-server
based computation, a client secret-shares its data with the servers. Servers per-
form the required operations on secret-shared data and obtain the secret-shared
output. Finally, to provide the client’s output, servers reconstruct the output to-
wards it. The underlying assumption here is that the corrupt server can collude
with a corrupt client. We consider computation over Z2λ and Z21 . To deal with
decimal values, we use Fixed-Point Arithmetic (FPA) [66,64,25,71] in which a
value is represented as a λ-bit integer in signed 2’s complement representation.
The most significant bit (msb) denotes the sign bit, and d least significant bits
are reserved for the fractional part. The λ-bit integer is then viewed as an ele-
ment of Z2λ , and operations are performed modulo 2λ. We set λ = 64, d = 13,
leaving λ − d − 1 bits for the integer part. Our protocols are cast in the pre-
processing paradigm, wherein a protocol is divided into (a) function dependent
(input independent) preprocessing phase and (b) input dependent online phase.

Notation 1 Wherever necessary, we denote P by the unordered set {Pi, Pj , Pk,
Pm} and {Pi, Pi+1, Pi+2, Pi+3}. Note that i, j, k,m ∈ [4] do not correspond to
any fixed ordering, only constraint being i ̸= j ̸= k ̸= m. Similarly for i, i+1, i+
2, i+ 3, corresponding to a Pi, say P2, Pi+1 = P3, Pi+2 = P4, Pi+3 = P1.

Standard Building Blocks. Parties make use of a one-time key setup captured
by functionality Fsetup (Fig. 7), to establish pre-shared random keys for pseudo-
random functions (PRF) among them. This functionality incurs a one-time cost,
and thus can be instantiated using any FaF-secure protocol such as that of [3].

Attaining GOD Beyond Honest Majority With Friends and Foes 11

We make use of a collision-resistant hash function H and a commitment scheme
Com. Details appear in §A.2.

Advanced Building Blocks. Here we discuss 4 primitives at a high-level: (a)
3-party joint message passing (jmp) from [58], with minor modifications (b)
a related 4-party jmp primitive, (c) oblivious product evaluation (OPE) and
(d) distributed zero-knowledge protocol. The details, including functionalities,
protocols and proofs are deferred to §A.2.

3-Party Joint Message Passing (jmp3). The jmp primitive from [58] allows
two parties Pi, Pj holding a common value v, to send it to a party Pk such
that either Pk receives the correct v, or TTP is identified. For our purpose,
we trivially modify their protocol to give out a dispute pair (DP) instead of a
TTP to all the 4 parties. In [58], the jmp primitive is invoked for sending each
value independently and the verification is amortized over many sends. Their
protocol allows for such a decoupling due to its asymmetry and a pre-specified
order of verification. For our protocol however, postponing verification causes
security issues. Specifically, batching the verification of different layers of the
circuit together allows an adversary to follow a strategy which ensures that DP
comprises of two (semi) honest parties. This is contrary to the requirement that
DP must include the malicious party. To avoid this problem, we compress the
send and verification of jmp so that an optimistic (no error) run takes one round
and batch them together for many instances corresponding to a pair of senders.
That is, a pair of parties, say Pi, Pj invoke jmp to send a vector −→v to Pk, and
in parallel verification of correctness takes place. We call the modified variant as
jmp3. It requires an amortized communication of 1 element.

4-Party Joint Message Passing (jmp4). Similar to jmp3, jmp4 allows two
parties Pi, Pj holding a common value v, to send it to the other two parties
Pk, Pm such that, either both the parties receive the correct v or all the parties
identify DP.

Notation 2 We refer to the invocation of jmp3(Pi, Pj , v, Pk) as “Pi, Pj jmp3-send
v to Pk” and jmp4(Pi, Pj , v, Pk, Pm) as “Pi, Pj jmp4-send v to Pk, Pm”.

Oblivious Product Evaluation (OPE). OPE (adapted from [55]) allows two
parties holding x ∈ Z2λ and y, z ∈ Z2λ respectively, to compute an additive
sharing of the product xy, such that one party holds xy+ z ∈ Z2λ and the other
holds z ∈ Z2λ . We rely on techniques from [43,55] to obtain an OPE for λ-bit
strings by running a total of λ 1-out-of-2 OTs on λ bits strings (see §A.2). In this
work, we instantiate OTs using the protocol from Ferret [76], which incurs an
(amortized) cost of 0.44 bits for generating one random correlated OT (amortized
over batch generation of 107 correlated OTs). We can obtain an input-dependent
OT (using techniques from [12,50]) at an additional cost of 2 elements and 1 bit.
This results in a cost of 2λ+1.44 bits per OT. So an instantiation of OPE requires
an amortised cost of λ(2λ + 1.44) bits and 4 rounds. Note that we use OT in
a black-box manner; thus, any improvement in OT, will improve the efficiency
of our construction. Further, although OPE can be realised with oblivious linear
evaluation (OLE), we opt for the approach of [55] due to better efficiency of

12 Hegde et al.

OT. Hence, any improvements in OLE that surpasses OT can be translated to
improving our protocol by replacing OPE with OLE.

Distributed Zero-knowledge (ZK). To verify a party Pi’s correct behaviour,
we extend the distributed zero-knowledge proofs introduced first in [18] offering
abort security, and further optimized by Boyle et al. [20] to provide robust veri-
fication of degree-two relations. Such proofs involve a single prover and multiple
verifiers, where the prover intends to prove the correctness of its (degree-two)
computation over data which is additively distributed among the verifiers. In
[20], the authors provide a distributed ZK protocol with sub-linear proof size,
which is adapted for the verification of messages sent in a 3PC protocol with
one corruption. Their ZK protocol extends in a straightforward manner to the
4-party case with one malicious corruption and one semi-honest corruption in
the FaF model where a dispute pair is identified in case the verification fails. This
is identical to extending the distributed ZK protocol to the case of 4 parties with
1 malicious corruption in the classical model and does not incur any overhead in
our setting. Since the protocol in [20], and correspondingly ours, is constructed
over fields, to support verification over rings, as in [20] verification operations
are carried out on the extended ring Z2λ/f(x), which is the ring of all polyno-
mials with coefficients in Z2λ modulo a polynomial f , of degree η, irreducible
over Z21 . Each element in Z2λ is lifted to a η-degree polynomial in Z2λ [x]/f(x)
(which results in blowing up the communication by a factor η).

3 Necessity of Oblivious Transfer

Here, we show that semi-honest OT is necessary for a FaF-secure protocol. Our
claim holds for n ≤ 2t + 2h∗ which subsumes the case of n-party (t, h∗)-FaF
security with optimal threshold of t + h∗ + 1 and 2t + h∗ + 1 for abort and
GOD [3] respectively, and the special case of 4-party (1, 1)-FaF security. The
theorem and proof sketch are given below.

Theorem 3. An n-party (t, h∗)-FaF secure (abort) protocol with n ≤ 2t + 2h∗

implies 2-party semi-honest OT.

Proof. Without loss of generality, we consider n = 2t+2h∗. Let πf be an n-party
(t, h∗)-FaF secure abort protocol for computing the function f((m0,m1),⊥, . . . ,
⊥, b) = (⊥,⊥, . . . ,⊥,mb). We construct a 2-party semi-honest OT protocol πOT

(Fig. 15) between a sender PS with inputs (m0,m1) and a receiver PR with input
b using πf . In πOT, PS emulates the role of QS = {P1, P2, . . . Pt+h∗} while PR

emulates the role of QR = {Pt+h∗+1, . . . , Pn} to run πf . PR outputs the same
mb as output by party Pn which it emulates while PS outputs ⊥. To prove the
security of πOT, we construct simulators SS and SR that generate the view of
PS and PR respectively from their inputs.

Let PS be corrupted by the semi-honest adversary AOT and let H = {P1,
. . . , Ph∗} and I = QS\H. We now map AOT to an adversarial strategy against πf

as follows. Consider a malicious adversary A for πf that corrupts parties in I but
does not deviate from the protocol (since AOT is semi-honest). However, it sends

Attaining GOD Beyond Honest Majority With Friends and Foes 13

the random tape, inputs and messages of all parties in I to every other party
in H at the end of the protocol execution. Note that such an attack of leaking
the view of the maliciously corrupted parties to the semi-honest adversary is
valid in the FaF model. The semi-honest adversary AH for πf runs AOT on
the joint view of the parties in I ∪ H (AH receives the view of parties in I
from A) and outputs the same value as AOT. Since |I| = t and |H| = h∗, the
security of πf ensures that there exist simulators SA and SAH corresponding to
the adversaries A and AH. We construct the simulator SS (Fig. 16) to run SA
followed by SAH on PS ’s input (m0,m1) and output the view generated by SAH .
Since AH receives the view of parties in I, the view generated by SAH includes
the view of parties in I ∪H. Note that although A considered is malicious in πf ,
it is emulated by a semi-honest adversary in the outer πOT protocol and hence
does not deviate from the protocol. Corresponding to such adversarial strategy
of A, the simulator SA may need to choose the input on behalf of A. A simulator
for a semi-honest adversary is not allowed to choose the input on behalf of the
adversary, as discussed in [48]. However, since the parties in I controlled by the
adversary A do not have inputs for f , this does not pose a problem in the proof.
SS can thus use SA without any issues.

This proves the necessity of semi-honest-OT for (t, h∗)-FaF secure protocol
where t+h∗ < n ≤ 2t+2h∗. Moreover, the sufficiency of OT for the same is given
in [3, Theorem 4.1]. The detailed constructions of the OT protocol, simulators
and the corresponding indistinguishabilty argument appears in §B.

Corollary 1. An n-party (t, h∗)-FaF secure abort protocol with n = t + h∗ + 1
implies 2-party semi-honest OT.

Corollary 2. An n-party (t, h∗)-FaF secure GOD protocol with n = 2t+ h∗ + 1
implies 2-party semi-honest OT.

Both Corollary 1 and 2 follow directly from Theorem 3. For Corollary 1, the
sender emulates t+h∗ parties and the receiver emulates 1 party. For the corrupt
receiver we consider I = ϕ and H = {Pn}. For Corollary 2, the sender emulates
t + h∗ parties and the receiver emulates t + 1 parties. For the corrupt receiver
we consider I = {Pt+h∗+1, . . . , P2t+h∗} and H = {Pn}.

4 Input Sharing and Reconstruction

To enforce security, we perform computation on secret-shared data. This section
starts with the various sharing semantics we use, followed by a sharing and
a reconstruction protocol for secret-shared computation. We further present an
efficient batch reconstruction for a second type of sharing, which in turn, will act
as the primary building block for our efficient (batch) multiplication protocol.

We begin with the motivation for the choice of our sharing semantics. As
explained earlier, we rely on RSS with threshold 2 to tackle view-leakage attack
where the semi-honest adversary may receive the view of the malicious adversary.
Instead of using RSS directly, we slightly augment our sharing to RSS-share a

14 Hegde et al.

random mask and make the masked secret available to all. This sharing style
makes the online cost of a multiplication one reconstruction instead of two. If we
use RSS directly for sharing a secret, then relying on the Beaver’s multiplication
triple technique [11], we would need reconstructing x+αx and y+αy, where x, y
are the inputs and αx, αy are the corresponding random masks. However, as per
the latter sharing, we include the masked values βx = x+ αx, βy = y+ αy along
with RSS shares of αx and αy respectively in our sharing semantics. So the only
reconstruction needed now is that of the masked valued of xy. This idea goes
back to [70]. We now describe the sharing semantics.

1. [·]-sharing: A value v ∈ Z2λ is said to be [·]-shared (additively shared) among
parties Pi, Pj , if Pi holds [v]i ∈ Z2λ and Pj holds [v]j ∈ Z2λ such that
v = [v]i + [v]j .

2. ⟨·⟩-sharing: A value v ∈ Z2λ is said to be ⟨·⟩-shared among P if, each pair
of parties (Pi, Pj), where 1 ≤ i < j ≤ 4, holds ⟨v⟩ij ∈ Z2λ such that
v =

∑
(i,j)⟨v⟩ij . This is equivalent to RSS of a value among 4 parties with

threshold 2. Note that since ⟨v⟩ij represents the common share held by Pi, Pj ,
throughout the protocol we assume the invariant that ⟨v⟩ij = ⟨v⟩ji, for all
1 ≤ i < j ≤ 4. ⟨v⟩i denotes Pi’s share in the ⟨·⟩-sharing of v.

3. J·K-sharing: A value v ∈ Z2λ is J·K-shared if
– there exists αv ∈ Z2λ that is ⟨·⟩-shared amongst P and

– each Pi ∈ P holds βv = v + αv.
Note that the value αv acts as the mask for v. We denote by JvKi, Pi’s share
in the J·K-sharing of v.

Note that all these sharings are linear i.e. given sharings of values a1, . . . , am
and public constants c1, . . . , cm, sharing of

∑m
i=1 ciai can be computed non-

interactively for an integer m.

4.1 J·K-sharing: Sharing and Reconstruction

Sharing. Protocol J·K-Sh either allows a party Ps to share a value v or allows for
a dispute pair (DP) detection. To enable Ps to generate JvK, in the preprocessing
phase, Ps together with every other party Pi, samples a random ⟨αv⟩si ∈ Z2λ ,
while Ps samples a random ⟨αv⟩ij ∈ Z2λ with every pair of parties Pi, Pj . This
allows Ps to learn αv in clear. In the online phase, Ps computes βv = v + αv

and sends it to Pt. Parties Ps, Pt then use jmp4-send to send βv to the rest. This
step either allows the sharing to be completed or allows for DP detection. The
protocol appears in Fig. 1.

• Input, Output: Ps has v. The parties output JvK.
• Primitives: jmp4-send (§2).

Preprocessing: Ps together with (a) Pi, for each Pi ∈ P\Ps samples random

⟨αv⟩si ∈ Z2λ ; (b) Pi, Pj ∈ P\Ps, where i ̸= j, samples random ⟨αv⟩ij ∈ Z2λ .

Protocol J·K-Sh

Attaining GOD Beyond Honest Majority With Friends and Foes 15

Online: Ps computes βv = v +
∑

(i,j)⟨αv⟩ij and sends it to Pt, where s ̸= t. Ps, Pt

jmp4-send βv to P\{Ps, Pt}.

Fig. 1: J·K-sharing a value

Reconstruction. Protocol J·K-Rec allows parties to reconstruct v from JvK such
that either v is obtained by all the parties or a DP is identified. As observed, a
party misses three shares of ⟨αv⟩, which are needed for reconstructing v, each
of which is held by two other parties. To reconstruct v towards a party Ps, in
the preprocessing each pair (Pi, Pj) jmp3-send a commitment of their common
share Com(⟨αv⟩ij) to Ps. The common source of randomness (generated via
the shared key setup) can be used for generating the commitments, so that it is
identically generated by both the senders. Then in the online phase all the parties
open the commitments sent in the preprocessing phase. Ps first reconstructs αv

from the consistent openings and then computes v = βv − αv. Due to the use
of jmp3, the preprocessing may fail, however once it is successful the online
phase is robust. Due to this feature, this reconstruction ensures fairness i.e.
either all or none receives the output (in the latter case DP has been identified).
In case the reconstruction protocol terminates with a dispute pair, to extend
security to GOD, parties perform the circuit evaluation using a semi-honest
2PC protocol.

• Input, Output: The parties input JvK. The parties output v.

• Primitives: jmp4-send and Com (§2).

Preprocessing: Each Pi, Pj , 1 ≤ i < j ≤ 4 compute Com(⟨αv⟩ij) and jmp4-send it

to Pk, Pm.

Online: Each Pi, Pj , 1 ≤ i < j ≤ 4 open Com(⟨αv⟩ij) to Pk and Pm. Each Pi

accepts the opening consistent with the commitment received earlier and computes
v = βv −

∑
(i,j)⟨αv⟩ij .

Protocol J·K-Rec

Fig. 2: Reconstructing a J·K-shared value

4.2 ⟨·⟩-sharing: Reconstruction

In our MPC protocol, for each multiplication gate we require to reconstruct a
⟨·⟩-shared value in the online phase. Note that a party misses three shares of
⟨v⟩ needed for reconstruction, each of which is held by two other parties. For
reconstructing v towards all the parties, naively, each pair can jmp4-send their
common share to the other two parties. This requires 6 invocations of jmp4, thus
a communication of 12 elements. Since reconstructing ⟨·⟩-shared value is the only
communication bottleneck in the online phase of our multiplication protocol, it
is imperative to improve its efficiency.

Taking a step towards this, we allow two parties, say P3, P4 (w.l.o.g) to first
reconstruct v and use jmp4-send to send it to the other two parties. Naively,

16 Hegde et al.

the reconstruction towards P3, P4 requires 6 instances of jmp3-send, three per
party to send its missing shares. To improve the communication cost further,
we improve the cost of the second instance of the reconstruction of v (towards
P4 in our case), to 2 jmp3-send instances, leveraging the communication already
done for the reconstruction towards P3. This reduces the communication cost to
7 elements. Our protocol appears in Fig. 3.

Since jmp3 is defined for a vector of values, in ⟨·⟩-Rec, parties execute recon-
struction of multiple values together. The protocol is described for a single value.
Extending it to a vector is straightforward. In our multiplication protocol, this
translates to reconstruction of the output of all multiplication gates in a level of
the circuit simultaneously.

Note that we can reconstruct v from JvK using ⟨·⟩-Rec to reconstruct αv.
However, while J·K-Rec offers fairness, ⟨·⟩-Rec does not. This implies if we use
⟨·⟩-Rec for the final output, it is possible that the adversary gets the output
while the honest parties do not. Further, when the computation is rerun in 2PC
mode, the adversary can use a different input and obtain another evaluation,
thus breaching security.

• Input, Output: The parties input ⟨v⟩. The parties output v.

• Primitives: jmp3-send and jmp4-send (§2).
Online:

– (Reconstructing v to P3.) P1, P2 jmp3-send ⟨v⟩12 to P3. P1, P4

jmp3-send ⟨v⟩14 to P3. P2, P4 jmp3-send ⟨v⟩24 to P3.

– (Reconstructing v to P4.) P1, P3 jmp3-send ⟨v⟩13 to P4. P2, P3

jmp3-send ⟨v⟩12 + ⟨v⟩23 to P4.

– (Reconstructing v to P1, P2.) P3, P4 jmp4-send v =
∑

(i,j)⟨v⟩ij to P1, P2.

Protocol ⟨·⟩-Rec

Fig. 3: Reconstructing a ⟨·⟩-shared value

5 Multiplication

In this section, we present a multiplication protocol. Taking a top-down ap-
proach, we first present our multiplication protocol relying on a triple generation
protocol in a black-box way. We then conclude with a triple generation protocol.
To gain efficiency, several layers of amortisation are used. We mention them on
the go and summarise at the end of the section.

5.1 Multiplication Protocol

The multiplication protocol (Fig. 4) allows parties to compute JzK, given JxK and
JyK, where z = x ·y. We reduce this problem to that of reconstructing a ⟨·⟩-shared
value, assuming that the parties have access to (a) ⟨·⟩-sharing of a multiplication

Attaining GOD Beyond Honest Majority With Friends and Foes 17

triple (αx, αy, αxαy) for random αx, αy and (b) ⟨·⟩-sharing of a random αz. Both
the requirements are input (i.e. x, y) independent and can be fulfilled during the
preprocessing phase. The former requirement is obtained via a triple generation
protocol tripGen (Fig. 6), discussed subsequently. The latter requirement can be
achieved non-interactively using the shared key setup. The reduction works as
follows. The random and independent secret αz is taken as the mask for the J·K-
sharing of product z. Since αz is already ⟨·⟩-shared, to complete JzK, parties only
need to obtain the masked value βz = z+ αz. Since βz takes the following form
βz = z+αz = xy+αz = (βx−αx)(βy−αy)+αz = βxβy−βxαy−βyαx+αxαy+αz

and the parties hold ⟨αx⟩, ⟨αy⟩, ⟨αxαy⟩, ⟨αz⟩, and βx, βy in clear, the parties hold
⟨βz⟩. Parties thus need to reconstruct βz. In order to leverage the amortised
cost of ⟨·⟩-Rec, we batch many multiplications together. While for simplicity, we
present the protocol in Fig. 4 for a single multiplication, our complexity analysis
accounts for amortization.

• Input and Output: The input is JxK, JyK and the output is JxyK.
• Primitives: tripGen (§5.2; Fig. 6) and ⟨·⟩-Rec (§4.2; Fig. 3).
Preprocessing:

– Each Pi, Pj where 1 ≤ i < j ≤ 4 sample random ⟨αz⟩ij ∈ Z2λ .

– Parties invoke tripGen with inputs ⟨αx⟩, ⟨αy⟩ to obtain ⟨αxαy⟩.
Online:

– Each Pi, Pj for 1 ≤ i < j ≤ 4 and (i, j) ̸= (1, 2) compute ⟨βz⟩ij such that
⟨βz⟩ij = −βx⟨αy⟩ij − βy⟨αx⟩ij + ⟨αxαy⟩ij + ⟨αz⟩ij .

– P1, P2 compute ⟨βz⟩12 = βxβy − βx⟨αy⟩12 − βy⟨αx⟩12 + ⟨αxαy⟩12 + ⟨αz⟩12.
– Parties invoke ⟨·⟩-Rec to obtain βz.

Protocol mult

Fig. 4: Multiplication Protocol

5.2 Triple Generation Protocol

As a building block to our triple generation protocol, we first present a dis-
tributed multiplication protocol, where two distinct pairs of parties hold inputs
to the multiplication and the goal is to additively share the product between the
pairs. We build on this protocol to complete our triple generation.

Distributed Multiplication Protocol Let Pi, Pj hold a and Pk, Pm hold b.
The goal of a distributed multiplication is to allow Pi, Pj compute c1 and Pk, Pm

to compute c2 such that c1+ c2 = ab. To achieve this, Pk and Pm locally sample
c2 (using one-time key setup; Fig. 7) then parties engage in an instance of OPE
(§2) where Pi, Pj and respectively Pk, Pm enact the receiver’s and sender’s role.
– Pi, Pj as the receivers input a and output either c1 or DP.

– Pk, Pm as the senders input b, −c2 and output either ⊥ or DP.

18 Hegde et al.

Since the pair of receivers {Pi, Pj} hold identical inputs and use a shared
source of randomness, their corresponding messages in the underlying protocol
for OPE realisation will be identical. They send their messages to the senders via
an instance of jmp4. Recall that the jmp4 primitive ensures that a message com-
monly known to two sender parties is either communicated correctly to both the
receiving parties, or a dispute pair DP is identified. In the former case, the pair
of senders {Pk, Pm}, having the same input and receiver’s message, will prepare
identical sender messages as a part of OPE and communicate to the receivers
via another instance of jmp4 primitive, resulting in either a successful commu-
nication of the sender message to the receivers {Pi, Pj} or identification of DP.
In the former case, OPE is concluded successfully. Note that the verification of
jmp4 tackles any malicious behaviour, thus relying on semi-honest OPE suffices.
Otherwise, DP is identified and the pair is guaranteed to include the malicious
party. If fairness is the end goal, the protocol can terminate at this stage. Oth-
erwise, it switches to an execution of a semi-honest 2PC (such as ABY2.0 [70])
with the parties outside DP to achieve the stronger guarantee of GOD.

• Input and Output: Pi, Pj hold a. Pk, Pm hold b. The first pair outputs c1, the
second pair c2 such that c1 + c2 = ab. Otherwise the parties output DP.

• Primitives: OPE and jmp4 (§2).

– Pk and Pm locally sample a value c2, using their shared key.

– Pi, Pj execute OPE with input a using jmp4 to send messages to Pk, Pm.

– Pk, Pm execute OPE with inputs (b,−c2) using jmp4 to send messages to Pi, Pj .

Protocol disMult

Fig. 5: Distributed Multiplication Protocol

Triple Generation Protocol The triple generation protocol allows parties
holding ⟨αx⟩, ⟨αy⟩ to generate ⟨αxαy⟩. We write the product αxαy as below, con-
sisting of 36 summands, categorizing them into three types as below and as
shown in Table 3.

For the summands in type S0, no single party holds the two constituent shares
of αx, αy. For the summands in S1, exactly one party holds the two constituent
shares, and lastly for the summands in S2, exactly two parties hold the the two
constituent shares. Note that there are 6 summands each, of the types S0 and
S2 and 24 summands of type S1. To generate ⟨αxαy⟩, we generate ⟨·⟩-sharing
of each summand of αxαy and then sum them up to obtain ⟨αxαy⟩. The task of
generating ⟨·⟩-sharing for an individual summand differs based on the class it

Attaining GOD Beyond Honest Majority With Friends and Foes 19

belongs to.

αx · αy =
∑
(i,j)

1≤i<j≤4

⟨αx⟩ij ·
∑
(k,m)

1≤k<m≤4

⟨αy⟩km

=
∑
(i,j)

1≤i<j≤4

⟨αx⟩ij⟨αy⟩ij

︸ ︷︷ ︸
S2

+
∑

(i,j,k)
i,j,k∈[4]

⟨αx⟩ij⟨αy⟩ik

︸ ︷︷ ︸
S1

+
∑

(i,j),(k,m)
1≤i,k<j,m≤4

⟨αx⟩ij⟨αy⟩km

︸ ︷︷ ︸
S0

(1)

Summands of S2. Each summand in this type can be computed locally by
2 parties. For instance, ⟨αx⟩ij⟨αy⟩ij can be computed by Pi and Pj . Denoting
⟨αx⟩ij⟨αy⟩ij as τij , ⟨τij⟩ is computed as follows:

Pi, Pj set ⟨τij⟩ij = ⟨αx⟩ij⟨αy⟩ij and

Pu, Pv set ⟨τij⟩uv = 0,∀(u, v) ̸= (i, j)
(2)

Summands of S1. Each summand here can be computed locally by a single
party. For instance, ⟨αx⟩ij⟨αy⟩ik can be computed by Pi alone. Then Pi’s goal is
to share this amongst the four parties so that one share is held by both Pi, Pk

and the other by Pj , Pm. That is, for δi, δ
1
i , δ

2
i with δi = δ1i + δ2i = ⟨αx⟩ij⟨αy⟩ik,

Pi, Pk intend to obtain δ1i and Pj , Pm intend to obtain δ2i . The pairings {Pi, Pk}
and {Pj , Pm} for various parties are done to balance the share count across the
parties. We say that {Pi, Pk} and respectively {Pj , Pm} pair up for Pi’s instance.
Given this, ⟨δi⟩ can be computed as (we set k = i+ 3):

Pi, Pk set ⟨δi⟩ik = δ1i , Pj , Pm set ⟨δi⟩jm = δ2i

Pu, Pv set ⟨δi⟩uv = 0, for all (u, v) ̸= (i, k), (j,m)
(3)

⟨αx⟩12 ⟨αx⟩13 ⟨αx⟩14 ⟨αx⟩23 ⟨αx⟩24 ⟨αx⟩34
⟨αy⟩12 S2 S1 S1 S1 S1 S0

⟨αy⟩13 S1 S2 S1 S1 S0 S1

⟨αy⟩14 S1 S1 S2 S0 S1 S1

⟨αy⟩23 S1 S1 S0 S2 S1 S1

⟨αy⟩24 S1 S0 S1 S1 S2 S1

⟨αy⟩34 S0 S1 S1 S1 S1 S2

Table 3: The summands of αx ·αy with cat-
egory {S0, S1, S2}

Now to achieve the above dis-
tribution of additive shares (δ1i , δ

2
i),

Pi, Pj , Pm first locally sample δ2i (us-
ing the shared key setup) and further,
Pi computes and sends δ1i to Pk. To
keep Pi’s misbehaviour in check, Pi is
made to prove in zero-knowledge the
correctness of its computation. With
this high-level idea, we introduce two
cost-cutting techniques.

First, recall that there are 24 summands in S1 and every Pi is capable of
locally computing 6 of them. We combine the above procedure for 6 summands
together. That is, δ1i , δ

2
i are additive shares of δi =

∑
(j,k)⟨αx⟩ij⟨αy⟩ik. This cuts

our cost by 1/6th. Next, leveraging the malicious-minority and non-collusion of
the malicious and semi-honest adversaries (implied by FaF model), we customise
disZK of [20] (see §A; Fig. 14) to prove that

∑
(j,k)⟨αx⟩ij⟨αy⟩ik − δ1i − δ2i = 0.

As per the need of such ZK, each term in the statement is additively shared
amongst Pj , Pk, Pm and is possessed in entirety by the prover Pi. For instance,

20 Hegde et al.

⟨αx⟩ij is additively shared amongst Pj , Pk, Pm with Pj ’s share as ⟨αx⟩ij and the
shares of the rest set to 0. Similarly for other shares of αx and αy. δ

2
i is additively

shared amongst Pj , Pk, Pm with Pj ’s share as δ2i and the shares of the rest set
to 0. Lastly, δ1i is additively shared amongst Pj , Pk, Pm with Pk’s share as δ1i
and the shares of the rest set to 0. If the disZK is successful, then Pi, Pk output
δ1i and Pj , Pm output δ2i , using which ⟨δi⟩ an be computed as above. Otherwise,
the disZK returns a dispute pair. This is executed for every party’s collection of
S1 summands.

Summands of S0. No single party can compute the summands in this cat-
egory. For instance, ⟨αx⟩ij⟨αy⟩km cannot be computed by any of the parties
locally. We invoke the distributed multiplication protocol disMult (Fig. 5) for
each such term, where the common input of {Pi, Pj} and {Pk, Pm} are ⟨αx⟩ij
and ⟨αy⟩km respectively and their respective outputs are γ1

ij,km, γ2
ij,km, in case

of success, or a dispute pair. Denoting γij,km = γ1
ij,km + γ2

ij,km = ⟨αx⟩ij⟨αy⟩km,
the parties can now generate ⟨γij,km⟩ as:

Pi, Pj set ⟨γij,km⟩ij = γ1
ij,km, Pk, Pm set ⟨γij,km⟩km = γ2

ij,km

Pu, Pv set ⟨γij,km⟩uv = 0, for all (u, v) ̸= (i, j), (k,m)
(4)

• Input and Output: The parties input ⟨αx⟩, ⟨αy⟩. The output is ⟨αxαy⟩.
• Primitives: Protocol disMult (§5.2) and Protocol disZK (§2).

– For each of the 6 summands of the form ⟨αx⟩ij⟨αy⟩km for unordered pairs {Pi, Pj}
and {Pk, Pm} in S0, the parties execute disMult with the inputs of {Pi, Pj}, {Pk, Pm}
as ⟨αx⟩ij and ⟨αy⟩km respectively. The parties either output DP or {Pi, Pj}, {Pk, Pm}
output γ1

ij,km and γ2
ij,km respectively. In the latter case, parties compute ⟨γij,km⟩

as shown in Equation 4.

– For every i, consider all the 6 summands of the form ⟨αx⟩ij⟨αy⟩ik for unordered
pairs {Pi, Pj} and {Pi, Pk} in S1.

1. The parties Pi, Pj , Pm locally sample δ2i (using the shared key setup).
2. Pi computes and sends δ1i =

∑
(j,k)⟨αx⟩ij · ⟨αy⟩ik − δ2i to Pk.

3. Parties invoke disZK to verify if
∑

(j,k)⟨αx⟩ij⟨αy⟩ik−δ1i −δ2i = 0. If disZK returns

success, then Pi, Pj , Pk, Pm output ⟨δi⟩ as shown in Equation 3. Otherwise,
output the DP returned by disZK.

– For each of the 6 summands of S2, of the form ⟨αx⟩ij⟨αy⟩ij , parties compute ⟨τij⟩-
sharing as shown in Equation 2.

– Every Pr for every s ̸= r computes

⟨αxαy⟩rs =
∑

u,v:u̸=v

⟨τu,v⟩rs +
∑

1≤ℓ≤4

⟨δℓ⟩rs +
∑

u,v:u̸=v
p,q:p̸=q

⟨γuv,pq⟩rs

Protocol tripGen

Fig. 6: Triple Generation Protocol

Attaining GOD Beyond Honest Majority With Friends and Foes 21

5.3 Summary

Amortizations We summarise the various layers of amortization we use to get
the best efficiency of our protocols. First, given a circuit with ℓ multiplication
gates, the triple generation protocol creates ⟨·⟩-sharing of ℓ triples at one go.
All the summands of the form ⟨αx⟩ij⟨αy⟩km from S0 category across all the ℓ
instances use jmp4 for communication, whose verification is inherently batched
for amortization. Next, the distributed ZK used for tackling the summands in S1

can be used in an amortized sense as well. Recall that corresponding to a single
triple generation, every Pi runs a single instance of distributed ZK to tackle 6
summands in its possession. However, we can extend this to accommodate 6ℓ
summands across all the ℓ triples to achieve 40 bits of statistical security while
working over a ring, by performing verification on the extended ring [20,1]. This
means that we need to run overall 4 distributed ZK, one for every party. These
cover all the amortizations done in the triple sharing protocol which consti-
tutes the preprocessing of the multiplication protocol. The online phase of the
multiplication protocol too exploits amortization of the batch ⟨·⟩-reconstruction
protocol. In the MPC protocol, we thus proceed level by level and execute all
the multiplications placed in a level at one go.

Achieving Fairness. To obtain fairness, we can stop immediately after sensing
a dispute. This means, in some cases, the effort needed for identifying a dispute
pair, beyond sensing a dispute (which only says something is wrong and nothing
beyond), can be slashed. For instance, in jmp4 parties can terminate immediately
upon detecting conflict without identifying a dispute pair.

6 (1, 1)-FaF Secure 4PC Protocol

Our complete protocol for evaluating a circuit in the (1, 1)-FaF security model
with fairness and GOD is described here as a composition of the protocols dis-
cussed so far and appears in Fig. 34. Recall that our protocol is cast in the
preprocessing paradigm with a function dependent preprocessing phase and an
online phase. In the preprocessing phase, for each input gate u, parties execute
the preprocessing of J·K-Sh to precompute ⟨αu⟩. Further, for each multiplication
gate with input wires u, v and output wire w, parties run the preprocessing of
mult to obtain ⟨αw⟩ and ⟨αuαv⟩ corresponding to the output. This computation
is done in parallel for all the multiplication gates. Finally, for each output gate
of the circuit, parties execute the preprocessing phase of J·K-Rec. This completes
the preprocessing.

In the online phase, parties evaluate the circuit gate-by-gate in the predeter-
mined topological order. For each input gate u, they execute the online phase
of protocol J·K-Sh to obtain βu. Addition gates are performed locally. For each
multiplication gate with input wires u, v and output wire w, parties perform the
online phase of mult to compute βw. Finally, parties reconstruct the value of
an output wire w, by invoking the online phase of J·K-Rec. Recall that, as men-
tioned in §2, we batch the verification of all the parallel instances of jmp3 and

22 Hegde et al.

jmp4 respectively for every pair of parties, and perform it simultaneously with
the send in the same round. In case of malicious behaviour in these instances,
additionally at most 2 rounds are required to identify a dispute pair (§A.2). The
above protocol either succeeds or a dispute pair is identified, which includes the
malicious party. This construction achieves fairness.

To attain GOD without incurring additional overhead in the online phase,
we follow the approach of segmented evaluation described in [32]. Specifically,
we divide the circuit into segments, and the protocol proceeds as described in
a segment-by-segment manner with topological order. As in the case of our fair
protocol, either the execution of a segment completes successfully, or a dispute
pair is identified. In the latter case, the segment where the fault occurs and
all the segments following it are evaluated using a semi-honest 2PC, which is
executed by the parties outside the dispute pair. Using this approach, only the
segment where the fault occurs incurs the cost of 2PC in addition to the cost
of our fair protocol. Hence, this overhead which is limited to a single segment is
insignificant. The cost of evaluating the subsequent segments is solely that of the
semi-honest 2PC which we instantiate with [70]. Note that in segmented evalu-
ation of the circuit, the output of a segment acts as the input to the following
segment. Hence, rerunning the segment where malicious behaviour was detected
requires the outputs from the prior segment with 4PC sharing semantics to be
translated to 2PC sharing semantics. However, due to a threshold of 2 in the
4PC, no pair of parties hold all the components of sharing corresponding to any
secret. This necessitates interaction among parties. Suppose Sm is the segment
where malicious activity is detected and w.l.o.g. {P3, P4} is identified as the dis-
pute pair, which means the evaluation till segment Sm−1 happened correctly.
W.l.o.g let z be the output of the segment Sm−1 which is also an input to the
segment Sm. Since the evaluation of Sm−1 happened correctly, all 4 parties have
the correct J·K sharing of z, which comprises of βz and ⟨αz⟩. But to rerun the
segment with {P1, P2}, they need the 2PC sharing of z. However, {P1, P2} miss
the ⟨αz⟩34 component which is common to P3, P4 and hence cannot obtain the
2PC sharing of z from locally. Making P3, P4 send this value directly to P1 or P2

or both does not suffice. Since either P3 or P4 is malicious, the malicious party
can send a wrong value which will lead to an inconclusive state for {P1, P2}, thus
failing to achieve the end goal of 2PC sharing. To address the above problem, we
resort to the same idea as that of J·K-Rec. That is, for each output wire z of all
the segments, all pairs of parties Pi, Pj commit to their common share ⟨αz⟩ij in
the preprocessing phase and jmp4-send the commitment to the other two parties.
Now with the commitments established, parties in the dispute pair can send the
opening corresponding to their respective commitments to the remaining two
parties. In the above example, this corresponds to P3, P4 sending the opening of
their commitments which contains ⟨αz⟩34 to P1, P2. Following this, P1, P2 can
decide the correct value of ⟨αz⟩34 based on a valid opening, which is guaranteed
to exist since one of P3, P4 is honest. Note that, sending the value ⟨αz⟩34 does
not breach privacy since the malicious party can anyway send this value to any
other party as a part of view-leakage, which is handled by our sharing semantics.

Attaining GOD Beyond Honest Majority With Friends and Foes 23

Now P1 sets its 2PC additive share [αz]1 = ⟨αz⟩12 + ⟨αz⟩13 + ⟨αz⟩14 and P2 sets
[αz]2 = ⟨αz⟩23 + ⟨αz⟩24 + ⟨αz⟩34, where αz = [αz]1 + [αz]2. Note that (βz, [αz]1)
and (βz, [αz]2) is a valid 2PC sharing of z as per the semantics of [70]. However,
as we describe below, this does not suffice to execute the 2PC.

Observe that the preprocessing of 2PC circuit is performed along with the
preprocessing of our 4PC protocol. Therefore, the value of mask corresponding
to a wire z may differ in these two scenarios. To perform the 2PC execution of
the circuit, we need to rely on the mask values selected during preprocessing for
the 2PC. Let α′

z be the mask corresponding to wire z in the 2PC and [α′
z]1 and

[α′
z]2 be the shares corresponding to P1, P2 respectively. Thus, the sharing of z

is required to be updated according to α′
z, which essentially means updating the

corresponding masked value, say β′
z such that β′

z = z + α′
z = (βz − αz) + α′

z.
Towards this, P1 computes v1 = βz − [αz]1 + [α′

z]1 and sends it to P2. Similarly,
P2 computes v2 = [α′

z]2 − [αz]2 and sends it to P1. Then P1, P2 locally obtain
β′
z = v1 + v2 to complete the required 2PC sharing of z. Note that since both

P1, P2 are (semi) honest, they send the correct values. Furthermore, sending v1
or v2 does not breach privacy since they can anyway learn these values from their
own shares (for example, P1 can compute v2 given its shares βz, β

′
z, [αz]1 , [α

′
z]1).

In other words, this is an allowed leakage. We refer to the conversion from 4PC to
2PC sharing semantics as share conversion. The protocol appears in Fig. 34,
with its security stated below.

Theorem 4. Assuming collision resistant hash functions and semi-honest OT
exists, protocol 4PC (Fig. 34) realizes F4PC-FaF (Fig. 33) with computational
(1, 1)-FaF security.

Security against a mixed adversary. A closely related notion of security in
the literature is that of a mixed adversary [27,38,40,8,42,49] which can simul-
taneously corrupt a subset of t parties maliciously and additionally a disjoint
subset of h∗ parties in a semi-honest manner. In contrast to the FaF model, the
adversary here is centralized. Consequently, the mixed security model allows the
view of semi-honest parties to be available to the adversary while determining a
strategy for the malicious parties. Although the mixed adversarial model might
seem to subsume FaF, Alon et al. [3] showed that (t, h∗) mixed security does not
necessarily imply (t, h∗)-FaF security. Given this, we constructed a 4PC protocol
which is secure in the FaF model. However, we go a step beyond and show that
our protocol is additionally secure against a (1, 1)-mixed adversary. For this,
the crucial observation is that our protocol can withstand the scenario where
the malicious adversary is provided with the view of semi-honest parties, which
essentially captures the mixed adversarial model. Details appear in §C.

7 Applications and Benchmarks

This section focuses on evaluating the performance of QuadSquad. We first eval-
uate the performance of the MPC and draw comparisons to concretely efficient
traditional MPC protocols that come closest to our setting. We then establish

24 Hegde et al.

the practicality of QuadSquad via the application of secure liquidity matching
and PPML for neural network inference. The source code of our implementation
is available at quadsquad.

Environment. Benchmarks are performed over WAN using n1-standard-32
instances of Google Cloud, with machines located in East Australia (M0), South
Asia (M1), South East Asia (M2), and West Europe (M3). The machines are
equipped with 2.2GHz Intel Xeon processors supporting hyper-threading and
128GB RAM. Average bandwidth and round-trip time (rtt) between pair of
machines was observed to be 180 Mbps and 158.31 ms respectively; though
these values vary depending on the regions where the machines are located (see
§H for details).

Software. We implement our protocol in C++17 using EMP toolkit [75].
Since we are using OT as a black-box, it can be instantiated with any state-
of-the-art OT protocol such as [30]. Since the public implementation of [30] is
not available, we use EMP toolkit’s Ferret OT [76]. We use the NTL library [72]
for computation over ring extensions for disZK protocol. We will open source
our code upon acceptance. [55] and [32] are benchmarked in the MP-SPDZ [53]
framework. Due to the unavailability of implementation of [59], we estimate its
performance from microbenchmarks. We instantiate the collision resistant hash
function with SHA256 and the PRF with AES-128 in counter mode. Computa-
tion is performed over Z264 for [32,59] and QuadSquad, and over Zp for [55] where
p is a 64-bit prime. We set the computational security parameter to κ = 128
and ensure statistical security of at least 2−40 for all the protocols. In particular,
we set the degree of the polynomial modulus of the extended ring η = 47. We
report the average value over 20 runs for each experiment.

Benchmarking Parameters As a measure of performance, we report the on-
line and overall (preprocessing + online) communication per party and latency
for a single execution. To capture the combined effect of communication and
round complexity, we additionally use throughput (tp) as a benchmark parame-
ter, following prior works [59,64,71]. Here, tp denotes the number of operations
(triples for 4PC preprocessing and multiplications for 4PC online protocol) that
can be performed in one second.

7.1 Performance of 4PC QuadSquad

We compare the performance of our 4PC to Fantastic Four [32], Tetrad [59]
and MASCOT [55]. We evaluate a circuit comprising 106 multiplication gates
distributed over different depths. Recall that the online communication cost
of our GOD protocol is almost similar to the fair protocol due to segment-
wise evaluation. Hence, we only report the cost of the fair protocol for online
comparison.

The performance of the online phase appears in Table 4. The latency of our
protocol (fair and GOD) is up to 3.5× higher compared to honest majority pro-
tocols of [59] and the abort variant of [32]. This captures the overhead required
to achieve the stronger notion of FaF-security. On the other hand, the dishonest
majority protocol of [55] bears an overhead of 4.5× to 1.01× compared to ours.

https://github.com/cris-iisc/quadsquad
https://cloud.google.com/

Attaining GOD Beyond Honest Majority With Friends and Foes 25

Depth Ref.
Online

Latency(s) Comm. (MB) tp

1
Fantastic Four 2.86 12.00 350066.51

Tetrad 1.44 6.00 692947.87
MASCOT 13.88 24.00 72023.80

QS 2.94 14.00 340506.67

20
Fantastic Four 4.04 12.00 247286.04

Tetrad 2.95 6.00 339321.22
MASCOT 25.94 24.00 38554.22

QS 7.42 14.00 134752.73

100
Fantastic Four 11.26 12.00 88771.32

Tetrad 9.28 6.00 107764.43
MASCOT 74.48 24.00 13425.63

QS 30.92 14.00 32337.66

1000
Fantastic Four 87.82 12.00 11387.21

Tetrad 80.52 6.00 12419.36
MASCOT 289.69 24.00 3451.94

QS 287.71 14.06 3475.69

Table 4: Online costs for evaluating circuits
with 106 mult gates over various depths.
(QS denotes QuadSquad.)

The performance of the prepro-
cessing depends only on the number
of multiplication gates, not on the
circuit depth. Hence, only the com-
munication cost and throughput are
reported in Table 5. [32] does not
have a preprocessing and is thus, not
included. Further, unlike the online
phase, Table 5 reports results with
respect to both fair and GOD vari-
ants, independently, since their per-
formance in the preprocessing phase
is different.

The communication bottleneck in
the preprocessing of QuadSquad is
due to computing summands of
S0 which involves running six in-
stances of disMult, while the compu-
tational bottleneck is due to comput-
ing the summands of S1 which involves running four instances of disZK.

Ref. Comm. (KB) tp

Tetrad 0.004 958918.39

MASCOT 67.6 4548.64

QS (Fair) 3.115 8051.27

QS (GOD) 6.22 3934.01

Table 5: Preprocessing phase
cost for generating a triple.

We implement disZK using recursion as in [20]
(see §A.2 for details) which results in lower com-
munication and computation costs at the expense
of higher round complexity. Our benchmarks show
that disMult always tends to have a higher la-
tency than disZK and constitutes the performance
bottleneck (see §H for further details). The GOD
variant requires running the preprocessing of [70]
for every pair of parties which has an overhead of
around 3 KB per multiplication gate per party. This approximately halves the
throughput in the preprocessing phase when compared to the fair variant since
the combined preprocessing across all [70] instances is akin to running six in-
stances of disMult which in turn is the main bottleneck in fair preprocessing.
With respect to throughput, [59] has the highest tp owing to its low communi-
cation costs while the tp of QuadSquad Fair is around 1.8× that of [55]. The tp
of QuadSquad GOD is comparable to that of [55] despite a significantly lower
communication cost because the implementation of [55] distributes the evalua-
tion of OT instances across the available threads while our implementation runs
it in a single thread to allow running the disZK protocol in parallel.

7.2 Applications

We consider applications of secure liquidity matching and PPML inference. Be-
fore describing these and evaluating their performance via QuadSquad, we de-
scribe the building blocks designed for the same.

26 Hegde et al.

#banks #transactions
Online Fair Total∗ GOD Total∗

Latency(s) Comm. (KB) Latency(s) Comm. (MB) Latency(s) Comm. (MB)

256
50 5.23 21.28 9.46 4.75 10.35 14.56
100 5.46 23.71 10.22 5.53 10.64 16.11
250 5.70 32.04 10.56 7.87 11.06 20.77
500 5.94 47.97 10.95 11.77 11.61 28.53
1000 6.18 81.76 11.49 19.56 12.45 44.07

1024
50 5.70 74.41 10.72 7.98 12.17 44.91
100 5.94 76.59 10.99 8.76 12.47 46.46
250 6.18 83.36 11.32 11.10 12.89 51.13
500 6.42 96.13 11.71 15.0 13.43 58.88
1000 6.66 124.36 12.26 22.79 14.28 74.41

Table 6: Liquidity matching

Building blocks Each of these applications requires designing new building
blocks, as described in Table 2. Specifically, we develop the following build-
ing blocks: sharing and reconstruction for SOC setting, dot product (DotP),
dot product with truncation (DotPTr), conversion to arithmetic sharing from
a Boolean shared bit (Bit2A), bit extraction to obtain Boolean sharing of the
most significant bit (msb) from an arithmetic shared value (BitExt), bit injection
to obtain arithmetic sharing of b · v from a Boolean sharing of a bit b and the
arithmetic sharing of v (BitInj). Inclusion of these blocks makes QuadSquad a
comprehensive framework. The details of the constructions and the complexity
analysis are deferred to §F.

Liquidity matching Secure liquidity matching involves executing a privacy-
preserving variant of the gridlock algorithm. This algorithm identifies the set
of transactions among banks which can be executed while ensuring that all the
banks possess sufficient liquidity to process them. The gridlock algorithm can
be considered for the following three scenarios (i) the source and the destination
banks of the transactions are open (non-private) (sodoGR), (ii) the source is open,
but the destination is hidden (secret) (sodsGR), and (iii) both the source and
the destination are hidden (ssdsGR). A secure realization for liquidity matching
was provided in the work of [7], albeit via traditionally secure MPC. Given the
sensitive nature of financial data involved in liquidity matching, clearly, FaF-
security is more apt. Hence, we focus on designing FaF-secure protocols for the
same. Further, with respect to the three scenarios described above, note that
in most practical cases hiding the transaction amount is sufficient. Hence, we
consider only the sodoGR instance (see §G for the secure protocol). However, we
note that extending our techniques to the other two scenarios is also possible.

At a high level, the protocol proceeds in a sequence of iterations where each
iteration attempts to check the feasibility of clearing a subset of transactions.
The protocol terminates with a feasible set or reports a deadlock where no
transactions can be cleared. Since the communication and computation costs
are identical across all iterations, we benchmark the performance for running
one iteration of the protocol and report the results in Table 6. We see similar
trends as observed while evaluating the performance of the MPC, where the
GOD variant is on par with the fair variant with respect to the overall latency.

Attaining GOD Beyond Honest Majority With Friends and Foes 27

Further, we observe that the latency of an iteration for both variants is within
15s even for a large number of banks and set of transactions. This hints towards
the practicality of using QuadSquad for real time liquidity matching systems,
especially considering the advantages of the “stronger” FaF model.

PPML For the application of PPML inference, we consider the popularly
used [59,58,74,71] Neural Network (NN) architectures, given below.
• FCNN : Fully-Connected NN consists of two hidden layers, each with 128 nodes
followed by an output layer of 10 nodes. ReLU is applied after each layer.

• LeNet : This NN consists of 2 convolutional layers and 2 fully connected layers,
each followed by ReLU activation function. Moreover, the convolutional layers
are followed by an average-pooling layer.

The inference task is performed over the publicly available MNIST [60] dataset
which is a collection of 28 × 28 pixel, handwritten digit images with a label
between 0 and 9 for each. We note that our techniques easily extend to securely
evaluating other NN architectures such as convolutional neural network (CNN)
and VGG16 [73] used in other MPC-based PPML frameworks of [58,59,74].

Network Ref. Online Total∗

Latency (s) Comm. (MB) tp (queries/min) Latency (s) Comm. (MB)

FCN Fantastic Four 48.06 27.71 43.75 48.06 27.71
FCN Tetrad 1.66 0.006 47099.05 2.38 0.02
FCN QS Fair 6.00 0.022 3176.65 29.77 371.15
FCN QS GOD 6.00 0.022 3176.65 44.49 746.46

LeNet Fantastic Four 220.17 134.28 84.22 220.17 134.28
LeNet Tetrad 2.45 0.36 787.09 3.25 0.91
LeNet QS Fair 10.36 1.27 64.24 308.89 7251.73
LeNet QS GOD 10.36 1.27 64.24 607.53 14868.07

Table 7: NN inference where QS denotes QuadSquad.

We compare the performance of PPML inference via QuadSquad for the
above mentioned NN with the honest majority protocols of [59] and [32]. PPML
in the 4PC dishonest majority (malicious) setting has not been explored so
far. The results of our experiments are summarised in Table 7. Note that the
latency reported is obtained via a single instance of circuit evaluation, whereas
the throughput is computed by running the inference on larger batches. Here, tp
is the number of queries evaluated in a minute since inference over WAN requires
more than a second to complete. Our fair and GOD variants have an overhead
of 3x–4x in performance respectively. However we provide a stronger adversarial
model compared to [59]. The numbers in Table 7 for [32] from MP-SPDZ [53] are
unexpectedly high. We suspect that this anomaly is due to the preprocessing cost
of [32]. However, the benchmarks seem consistent with those reported in [32] and
pinpointing the exact cause is challenging due to the vast MP-SPDZ codebase.
It is worth noting that the communication cost of [32] per query for larger batch

28 Hegde et al.

sizes decreases to 0.93 MB per party for FCN and 0.46 MB per party for LeNet.
The QuadSquad protocols have higher cost in the preprocessing phase from using
more expensive primitives like OT and the feature dependent preprocessing phase
for dot-product. However, the comparable online performance to [59] and [32]
and the stronger security model make it a viable practical option despite the
overhead in preprocessing.

Acknowledgements

Arpita Patra would like to acknowledge financial support from DST National
Mission on Interdisciplinary Cyber-Physical Systems (NM-ICPS) 2020-2025 and
SERB MATRICS (Theoretical Sciences) Grant 2020-2023. Varsha Bhat Kukkala
would like to acknowledge financial support from National Security Council, In-
dia. Nishat Koti would like to acknowledge support from Centre for Networked
Intelligence (a Cisco CSR initiative) at the Indian Institute of Science, Ben-
galuru. Shravani Patil would like to acknowledge financial support from DST
National Mission on Interdisciplinary Cyber-Physical Systems (NM-ICPS) 2020-
2025. The authors would also like to acknowledge the support from Google Cloud
for benchmarking.

References

1. Abspoel, M., Cramer, R., Damg̊ard, I., Escudero, D., Yuan, C.: Efficient
information-theoretic secure multiparty computation over Z/pkZ via galois rings.
In: TCC (2019)

2. Abspoel, M., Dalskov, A.P.K., Escudero, D., Nof, A.: An efficient passive-to-active
compiler for honest-majority MPC over rings. In: ACNS (2021)

3. Alon, B., Omri, E., Paskin-Cherniavsky, A.: Mpc with friends and foes. In:
CRYPTO (2020)

4. Araki, T., Barak, A., Furukawa, J., Lichter, T., Lindell, Y., Nof, A., Ohara, K.,
Watzman, A., Weinstein, O.: Optimized honest-majority MPC for malicious ad-
versaries - breaking the 1 billion-gate per second barrier. In: IEEE S&P (2017)

5. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: ACM CCS
(2016)

6. Archer, D.W., Bogdanov, D., Lindell, Y., Kamm, L., Nielsen, K., Pagter, J.I.,
Smart, N.P., Wright, R.N.: From keys to databases—real-world applications of
secure multi-party computation. The Computer Journal (2018)

7. Atapoor, S., Smart, N.P., Alaoui, Y.T.: Private liquidity matching using mpc.
IACR Cryptol. ePrint Arch. (2021)

8. Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Secure mpc: laziness leads
to god. In: ASIACRYPT (2020)

9. Baum, C., Damg̊ard, I., Toft, T., Zakarias, R.W.: Better preprocessing for secure
multiparty computation. In: ACNS (2016)

10. Baum, C., Orsini, E., Scholl, P.: Efficient secure multiparty computation with
identifiable abort. In: Theory of Cryptography Conference (2016)

Attaining GOD Beyond Honest Majority With Friends and Foes 29

11. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
CRYPTO (1991)

12. Beaver, D.: Precomputing oblivious transfer. In: CRYPTO (1995)

13. Ben-Efraim, A., Nielsen, M., Omri, E.: Turbospeedz: Double your online spdz!
improving spdz using function dependent preprocessing. In: ACNS (2019)

14. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC (1988)

15. Bogdanov, D., Kamm, L., Kubo, B., Rebane, R., Sokk, V., Talviste, R.: Students
and taxes: a privacy-preserving social study using secure computation. IACR Cryp-
tology ePrint Archive (2015)

16. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: ESORICS (2008)

17. Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party computa-
tion for financial data analysis - (short paper). In: FC (2012)

18. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge
proofs on secret-shared data via fully linear pcps. In: CRYPTO (2019)

19. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudo-
random correlation generators: Silent ot extension and more. In: CRYPTO (2019)

20. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Practical fully secure three-party compu-
tation via sublinear distributed zero-knowledge proofs. In: ACM CCS (2019)

21. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Efficient fully secure computation via
distributed zero-knowledge proofs. In: ASIACRYPT (2020)

22. Byali, M., Chaudhari, H., Patra, A., Suresh, A.: FLASH: fast and robust framework
for privacy-preserving machine learning. PETS (2020)

23. Byali, M., Hazay, C., Patra, A., Singla, S.: Fast actively secure five-party compu-
tation with security beyond abort. In: ACM CCS (2019)

24. Byali, M., Joseph, A., Patra, A., Ravi, D.: Fast secure computation for small pop-
ulation over the internet. In: ACM CCS (2018)

25. Chaudhari, H., Choudhury, A., Patra, A., Suresh, A.: ASTRA: High Throughput
3PC over Rings with Application to Secure Prediction. In: ACM CCSW@CCS
(2019)

26. Chaudhari, H., Rachuri, R., Suresh, A.: Trident: Efficient 4PC Framework for Pri-
vacy Preserving Machine Learning. NDSS (2020)

27. Chaum, D.: The spymasters double-agent problem: Multiparty computations
secure unconditionally from minorities and cryptographically from majorities;
crypto’89, lncs 435 (1990)

28. Chida, K., Genkin, D., Hamada, K., Ikarashi, D., Kikuchi, R., Lindell, Y., Nof,
A.: Fast large-scale honest-majority MPC for malicious adversaries. In: CRYPTO
(2018)

29. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: ACM STOC (1986)

30. Couteau, G., Rindal, P., Raghuraman, S.: Silver: Silent vole and oblivious transfer
from hardness of decoding structured ldpc codes. In: Annual International Cryp-
tology Conference. pp. 502–534. Springer (2021)

31. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : Efficient
MPC mod 2k for Dishonest Majority. In: CRYPTO (2018)

32. Dalskov, A., Escudero, D., Keller, M.: Fantastic four: Honest-majority four-party
secure computation with malicious security. In: USENIX Security (2021)

30 Hegde et al.

33. Damg̊ard, I., Escudero, D., Frederiksen, T.K., Keller, M., Scholl, P., Volgushev,
N.: New primitives for actively-secure MPC over rings with applications to private
machine learning. IEEE S&P (2019)

34. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: CRYPTO (2007)

35. Damg̊ard, I., Orlandi, C., Simkin, M.: Yet another compiler for active security or:
Efficient MPC over arbitrary rings. In: CRYPTO (2018)

36. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: CRYPTO (2012)

37. Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

38. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
Journal of the ACM (JACM) (1993)

39. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
Journal on Computing (1983)

40. Fitzi, M., Hirt, M., Maurer, U.: Trading correctness for privacy in unconditional
multi-party computation. In: CRYPTO (1998)

41. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: EURO-
CRYPT (2017)

42. Ghodosi, H., Pieprzyk, J.: Multi-party computation with omnipresent adversary.
In: PKC (2009)

43. Gilboa, N.: Two party rsa key generation. In: CRYPTO (1999)
44. Goldreich, O.: Foundations of cryptography: volume 1, basic tools (2007)
45. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A

completeness theorem for protocols with honest majority. In: STOC (1987)
46. Gordon, S.D., Ranellucci, S., Wang, X.: Secure computation with low communica-

tion from cross-checking. In: ASIACRYPT (2018)
47. Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free in honest

majority mpc. In: CRYPTO (2020)
48. Hazay, C., Lindell, Y.: A note on the relation between the definitions of security

for semi-honest and malicious adversaries. IACR Cryptol. ePrint Arch. (2010)
49. Hirt, M., Mularczyk, M.: Efficient mpc with a mixed adversary. LIPIcs (2020)
50. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-

ciently. In: CRYPTO (2003)
51. Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure compu-

tation with minimal interaction, revisited. In: CRYPTO (2015)
52. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious

transfer–efficiently. In: CRYPTO (2008)
53. Keller, M.: MP-SPDZ: A versatile framework for multi-party computation. In:

ACM CCS (2020)
54. Keller, M., Orsini, E., Scholl, P.: Actively secure ot extension with optimal over-

head. In: CRYPTO (2015)
55. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure

computation with oblivious transfer. In: ACM CCS (2016)
56. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In: EU-

ROCRYPT (2018)
57. Koti, N., Kukkala, V.B., Patra, A., Gopal, B.R.: Pentagod: Stepping beyond tra-

ditional god with five parties. Cryptology ePrint Archive (2022)
58. Koti, N., Pancholi, M., Patra, A., Suresh, A.: SWIFT: Super-fast and Robust

Privacy-Preserving Machine Learning. In: USENIX Security (2021)

Attaining GOD Beyond Honest Majority With Friends and Foes 31

59. Koti, N., Patra, A., Rachuri, R., Suresh, A.: Tetrad: Actively secure 4pc for secure
training and inference. arXiv preprint arXiv:2106.02850 (2021)

60. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010), http://yann.
lecun.com/exdb/mnist/

61. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic cir-
cuits with malicious adversaries and an honest-majority. In: ACM CCS (2017)

62. Mazloom, S., Le, P.H., Ranellucci, S., Gordon, S.D.: Secure parallel computation
on national scale volumes of data. In: USENIX Security (2020)

63. Mazloom, S., Le, P.H., Ranellucci, S., Gordon, S.D.: Secure parallel computation
on national scale volumes of data. In: USENIX Security (2020)

64. Mohassel, P., Rindal, P.: ABY3: A mixed protocol framework for machine learning.
In: ACM CCS (2018)

65. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
The garbled circuit approach. In: ACM CCS (2015)

66. Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving ma-
chine learning. In: IEEE S&P (2017)

67. Nordholt, P.S., Veeningen, M.: Minimising communication in honest-majority
MPC by batchwise multiplication verification. In: ACNS (2018)

68. Orlandi, C.: Is multiparty computation any good in practice? In: IEEE ICASSP
(2011)

69. Orsini, E., Smart, N.P., Vercauteren, F.: Overdrive2k: Efficient secure mpc over
Z/2k from somewhat homomorphic encryption. In: CT-RSA (2020)

70. Patra, A., Schneider, T., Suresh, A., Yalame, H.: Aby2. 0: Improved mixed-protocol
secure two-party computation. In: USENIX Security (2021)

71. Patra, A., Suresh, A.: BLAZE: Blazing Fast Privacy-Preserving Machine Learning.
NDSS (2020)

72. Shoup, V.: NTL: A Library for doing Number Theory. https://libntl.org/ (2021)
73. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556 (2014)
74. Wagh, S., Tople, S., Benhamouda, F., Kushilevitz, E., Mittal, P., Rabin, T.: Fal-

con: Honest-majority maliciously secure framework for private deep learning. arXiv
preprint (2020)

75. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: Efficient MultiParty compu-
tation toolkit. https://github.com/emp-toolkit (2016)

76. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for
correlated ot with small communication. In: ACM CCS (2020)

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://libntl.org/
https://github.com/emp-toolkit

32 Hegde et al.

Supplementary Material

A Appendix: Preliminaries

A.1 Security Model

We follow the standard ideal-world/real-world simulation paradigm to prove the
security of our protocols [44]. This security notion is defined by considering an
ideal functionality F wherein the corrupted and the uncorrupted parties send
their inputs to the trusted third party over a perfectly secure channel, which
performs the computation and sends the output to the parties. Informally, a
real-world protocol is deemed to be secure, if whatever the adversary can do in
the real world, can also be done in the ideal world. In the classical definition,
this is captured by designing an ideal-world adversary (simulator) which can
simulate the view of the real-world adversary corrupting a subset of the par-
ties in P. However, in the FaF-security model defined in [3], it is additionally
required that the view of any subset of uncorrupted (or semi-honest) parties
can be simulated. The security of a protocol is thus established by construct-
ing two simulators in the ideal-world, one each for the malicious adversary and
the semi-honest adversary respectively. Moreover, to explicitly capture the fact
that the malicious adversary can arbitrarily deviate from the protocol in the
real-world by sending messages to the uncorrupted (semi-honest) parties, in the
ideal world, the malicious adversary is allowed to send its entire view to the
semi-honest adversary.

Let A denote the probabilistic polynomial time (PPT) malicious adversary in
the real-world corrupting t parties in I ⊂ P, and SA denote the corresponding
ideal-world simulator. Similarly, let AH denote the (PPT) semi-honest adversary
corrupting h∗ parties in H ⊂ P\I in the real-world, and SAH , be the ideal-world
simulator. Note that in the classical definition of ideal-world,H = ϕ. Let F be the
ideal-world functionality. Let viewreal

A,Π(1λ, zA) be the malicious adversary’s (A)
view and outreal

A,Π(1λ, zA) denote the output of the uncorrupted parties (in P\I)
during a random execution of Π, where zA is the auxiliary input of A. Similarly,
let viewreal

A,AH,Π(1λ, zA, zAH) be the semi-honest adversary’s (AH) view during
an execution of Π running alongside A, where zAH is the auxiliary input of
AH. Note that viewreal

A,AH,Π(1λ, zA, zAH) consists of the non-prescribed messages
sent by the malicious adversary to the semi-honest parties. Correspondingly, let
viewideal

A,F (1λ, zA) be the malicious adversary’s simulated view with A corrupting

parties in I and outideal
A,F (1λ, zA) denote the output of the uncorrupted parties

(in P \ I) during a random execution of ideal-world functionality F . Similarly,
let viewideal

A,AH,F (1
λ, zA, zAH) be the semi-honest adversary’s simulated view with

AH corrupting parties in H during an execution of F running alongside A.

Attaining GOD Beyond Honest Majority With Friends and Foes 33

A protocol Π is said to compute F with (weak) computational (t, h∗)-FaF-
security if

(viewideal
A,F (1λ, zA),out

ideal
A,F (1λ, zA)) ≡

(viewreal
A,Π(1λ, zA),out

real
A,Π(1λ, zA)),

(viewideal
A,AH,F (1

λ, zA, zAH),outideal
A,F (1λ, zA)) ≡

(viewreal
A,AH,Π(1λ, zA, zAH),outreal

A,Π(1λ, zA)).

A.2 Building Blocks

Shared Key Setup Let F : {0, 1}κ × {0, 1}κ → X be a secure pseudo-random
function (PRF), with co-domain X being Z2λ . The set of keys established be-
tween the parties for the 4PC protocol is as follows:

– One key shared between every pair– k12, k13, k14, k23, k24, k34 for parties (P1, P2),
(P1, P3), (P1, P4), (P2, P3), (P2, P4), (P3, P4) respectively.

– One key shared between every triple of parties– k123, k124, k134, k234 for parties
(P1, P2, P3), (P1, P2, P4), (P1, P3, P4), (P2, P3, P4) respectively.

– One shared key known to all the parties– kP .

Suppose P1, P2 wish to sample a random value r ∈ Z2λ non-interactively,
they do so by invoking Fk12(id12) and obtain r. Here, id12 denotes a counter
maintained by the parties, and is updated after every PRF invocation. The
appropriate keys used to sample is implicit from the context, from the identities
of the pair (or triple) that sample or from the fact that it is sampled by all, and,
hence, is omitted.

The key setup is modelled via a functionality Fsetup (Fig. 7) that can be
realised using any FaF-secure MPC protocol.

Fsetup interacts with the parties in P and the adversaries SA and SAH . Fsetup picks
random keys kT for every set T ⊆ P.
– Set ys = {kT }∀T ⊆P , when Ps ∈ T .

Output: Send (Output,ys) to Ps ∈ P.

Functionality Fsetup

Fig. 7: Ideal functionality for shared-key setup

Collision Resistant Hash Function Consider a hash function family H(·) : K ×
L → Y. The hash function H is said to be collision resistant if, for all probabilistic
polynomial-time adversaries A, given the description of Hk where k ∈R K, there
exists a negligible function negl() such that Pr[(x1, x2) ← A(k) : (x1 ̸= x2) ∧
Hk(x1) = Hk(x2)] ≤ negl(κ), where m = poly(κ) and x1, x2 ∈R {0, 1}m.

34 Hegde et al.

Commitment Scheme Let Com(x) denote the commitment of a value x. The
commitment scheme Com(x) possesses two properties; hiding and binding. The
former ensures privacy of the value v given just its commitment Com(v), while
the latter prevents a corrupt server from opening the commitment to a different
value x′ ̸= x. The practical realization of a commitment scheme is via a hash
function H() given below, whose security can be proved in the random-oracle
model (ROM)– for (c, o) = (H((x||r)), x||r) = Com(x; r). Throughout the paper,
we abuse the terminology to denote c by Com(x) and o by opening of Com(x).

3 Party Joint Message Passing: The jmp3 primitive enables two parties to relay
a common message to a third party, such that either the relay is successful or
a dispute pair is identified. The ideal functionality appears in Fig. 8 and the
protocol in Fig. 9.

Fjmp3 interacts with the parties in P and the adversaries SA and SAH .
– Fjmp3 receives (Input,−→v s) from Ps for s ∈ {i, j}, while it receives (Select,D) from
SA. Here, D denotes the pair of parties that SA wants to choose as dispute pair.
Let P ∗ be the party corrupted by SA.

– If −→v i =
−→v j and D = ⊥, then msgi = msgj = ⊥, msgk = −→v i.

– Else if, P ∗ ∈ D, then set DP = D and msgi = msgj = msgk = DP.

– Else set DP = {P ∗, Pt}, where Pt ∈R D and msgi = msgj = msgk = DP.

Output: Send (Output,msgs) to Ps, where t ∈ {i, j, k}.

Functionality Fjmp3

Fig. 8: Ideal functionality for jmp3 primitive

– Pi sends v to Pk and Pj sends H(v) to Pk.

– Pk broadcasts (H(vi), H(vj)) if the received values are inconsistent, where vi is the
value that Pk received from Pi, and H(vj) is the value that Pk received from Pj .

– For each s ∈ {i, j}, if Ps disagrees with the broadcast, it broadcasts complaint
against Pk. All the parties set dispute pair as DP = {Ps, Pk}. If both Pi, Pj broadcast
complaint, all parties set DP = {Pi, Pk}.

– If neither Pi nor Pj broadcast complaint then parties set DP = {Pi, Pj}.

Protocol jmp3(Pi, Pj ,
−→v , Pk)

Fig. 9: Pi, Pj send a common list of values to Pk

Lemma 1. Protocol jmp3 (Fig. 9) requires 1 round and an amortized commu-
nication of 1 element for an honest execution. If any malicious behaviour is
identified, it takes 3 rounds of communication.

Attaining GOD Beyond Honest Majority With Friends and Foes 35

Proof. Party Pi sends value v to Pk while Pj sends hash of the same to Pk. This
accounts for one round and communication of 1 element. In the optimistic case,
the protocol terminates at this stage. Otherwise, Pk broadcasts (H(vi), H(vj)),
which leads to identification of a dispute pair. If a malicious Pk falsely broadcast,
then either of Pi or Pj complaint and DP contains Pk.

Note that if the jmp3 execution identifies any malicious activity, then it identifies
a dispute pair (DP), which assured to have the malicious party. So, this 3 rounds
of communication is a one time overhead.

4 Party Joint Message Passing(jmp4): jmp4 allows two parties Pi, Pj holding
a common value v, to send it to the other two parties Pk, Pm such that, either
both the parties receive the correct v or all the parties identify DP. This protocol
invokes jmp3 twice in parallel, with Pi, Pj as the senders in both. The receiver’s
role is performed by Pk in one execution and Pm in the other. An invocation
of jmp3 can either be successful, or DP is identified. If at least one of the jmp3
executions identifies DP, then the parties (deterministically) choose one of them
as the output. Otherwise, both the executions of jmp3 succeed and so does jmp4.
Similar to jmp3, for every pair of parties, we perform the send and verification
of all the parallel executions of jmp4 simultaneously. The ideal functionality
appears in Fig. 10 and the protocol in Fig. 11.

Fjmp4 interacts with the parties in P and the adversaries SA and SAH .
– Fjmp4 receives (Input,−→v s) from Ps for s ∈ {i, j}, while it receives (Select,D) from
SA. Here, D denotes the pair of parties that SA wants to choose as dispute pair.
Let P ∗ be the party corrupted by SA.

– If −→v i =
−→v j and D = ⊥, then msgi = msgj = ⊥, msgk = msgm = −→v i.

– Else if, P ∗ ∈ D, then set DP = D and msgs = DP for each Ps ∈ P.

– Else set DP = P \ D and msgs = DP for each Ps ∈ P.

Output: Send (Output,msgs) to Ps ∈ P.

Functionality Fjmp4

Fig. 10: Ideal functionality for jmp4 primitive

– Pi and Pj jmp3-send −→v to Pk; Pi and Pj jmp3-send −→v to Pm in parallel.

– Let DPk and DPm be the dispute pairs identified in the invocations with Pk and
Pm respectively.

– If DPk = DPm = ϕ, then parties terminate.

– Else, if DPk ̸= ϕ, parties output DPk.

– Else, if DPm ̸= ϕ, parties output DPm.

Protocol jmp4(Pi, Pj ,
−→v , Pk, Pm)

36 Hegde et al.

Fig. 11: Pi, Pj send a common list of values to Pk, Pm

Lemma 2. Protocol jmp4 (Fig. 11) requires 1 round and an amortized commu-
nication of 2 elements. If any malicious behaviour is identified, it takes 3 rounds
of communication.

Proof. The protocol jmp4 is composed of two parallel execution of jmp3, which
together requires communication of 2 elements and 1 round.

Oblivious Product Evaluation (OPE): The ideal functionality for OPE appears
in Fig. 12.

FOPE interacts with two parties in Ps, Pr and the adversaries SA, SAH .
– FOPE receives a value mr from the receiver Pr and two values ms,−αs from the
sender Ps.

– Let P ∗ be the party controlled by SA, SA fixes the input(s) on behalf of P ∗, and
P ∗
H be the party controlled by SAH .

– SA sends it’s view to SAH .

– FOPE sets msgs = ⊥ and msgr = αr = ms ·mr − αs.

– FOPE sends msg of P ∗ to SA, and SA sends accept or abort.

– If FOPE receives abort from SA, it sets msgs = ⊥,msgr = ⊥, else continue.

Output: Send (Output,msgi), for i ∈ {r, s}.

Functionality FOPE

Fig. 12: Ideal functionality for OPE

Technique of [43,55] for reducing OPE to OT. For each i ∈ λ, the sender (say
the party holding y) gives as input to the ith OTi, (zi, y + zi), where z ∈ Z2λ is
a random value and zi is the ith bit of z. Correspondingly, the receiver provides
the bit decomposition of its input x to the OT. That is, it gives xi as the input
to OTi and receives as output xiy+ zi. Parties further set their arithmetic share

of xy as follows: (i) The sender sets its share to be −
λ∑

i=1

zi · 2i−1 and (ii) The

receiver sets its share as
λ∑

i=1

(xiy + zi) · 2i−1.

Depending on the domain, we will use different OT(s) to obtain OPE. cOTλ

implies 1-out-of-2 correlated OT, where the sender’s messages are λ bit strings.
cOT1 implies 1-out-of-2 correlated OT, where the sender’s messages are bits, Note
that both of the OTs described above are input independent. Whereas, OTλ is
1-out-of-2 input dependent OT, where the length of the sender’s messages are
λ, and OT1 is an input dependent bit OT. OT costs from Ferret [76] are given
below, in Table 8, which incurs the same (amortized) costs for semi-honest OT

Attaining GOD Beyond Honest Majority With Friends and Foes 37

and malicious OT. The technique for obtaining combined instance of OPE using
jmp4 is described in §5.2. The cost of this combined instance of OPE in our
disMult protocol (Fig. 5) is 2× the cost of individual OPE instance, that is, 259
elements.

OT Message Length Communication Cost

cOT1 1 0.44 bits

cOTλ λ 0.44 elements

OT1 1 3.44 bits

OTλ λ ∼ 129.5 elements

Table 8: Ferret OT costs

Distributed Zero-Knowledge: In [20], the authors provide a distributed zero-
knowledge protocol with sub-linear proof size, which is adapted for verification of
messages sent in a 3PC protocol with one corruption. To achieve robustness, their
zero-knowledge protocol follows the standard template of identifying a TTP in
case any malicious behaviour is detected during protocol execution. For this, the
protocol relies on the property of recomputable verification, which implies that
during verification, each verifier sends a message computed as a deterministic
function of the messages from the prover and public values. This means that the
prover itself can recompute the messages of each verifier. This property lends
itself well to identifying a dispute pair, and hence in the 3PC case, a TTP. We
extend their zero-knowledge protocol to the 4 party case with one malicious
corruption, and similar to [20], using the property of recomputable verification,
we identify a dispute pair DP in case the verification fails. This perfectly models
the template we require in our constructions to achieve GOD.

As described in §2, in our multiplication protocol, given Pi’s input shares
a1, b1, a2, b2, a3, b3 and its randomness e1, e2 where e = e1 + e2, parties need to
ensure that c(a1, b1, a2, b2, a3, b3, e) evaluates to 0, where

c(a1, b1, a2, b2, a3, b3, e)

= a1b2 + a2b1 + a1b3 + a3b1 + a2b3 + a3b2 − e (5)

As required for the proof, input to c is distributed among the parties such that
Pj holds (a1, b1, 0, 0, 0, 0, e2), Pm holds (0, 0, a2, b2, 0, 0, 0) and (0, 0, 0, 0, a3, b3, e1)
is known to Pk.

The functionality FdisZK appears in Fig. 13 and the protocol in Fig. 14.

FdisZK interacts with the parties in P and the adversaries SA, SAH . FdisZK receives
an index i and a parameter m ∈ N from the honest parties.
– If P ∗ = Pi, then FdisZK receives, for each u ∈ [m],

Simulator FdisZK

38 Hegde et al.

– {au
1 , b

u
1 , e

u
2} from Pj ,

{au
2 , b

u
2} from Pm and

{au
3 , b

u
3 , e

u
1} from Pk

– FdisZK sends au
1 , b

u
1 , a

u
2 , b

u
2 , a

u
3 , b

u
3 , e

u
1 , e

u
2 to SA, and sends inputs of P ∗

H to SAH ,
where P ∗

H is controlled by SAH .

– SA sends FdisZK the command accept or abort with (Select,D) from SA. Here,
D denotes the pair of parties that SA wants to choose as dispute pair.

– If FdisZK receives abort,D, command from SA, then for each s FdisZK sets msgs =
DP, where DP = D if P ∗ ∈ D, else DP = P \ D.

– If FdisZK receives accept from SA and if for some u ∈ [m],∑
j ̸=k

au
j b

u
k − eu1 − eu2 ̸= 0, where j, k ∈ [3], then FdisZK sets msgs = DP to all the

parties, where DP = {P ∗, Pl}, where Pl ̸= P ∗.

– If FdisZK receives accept from SA and if for all u ∈ [m],∑
j ̸=k

au
j b

u
k − eu1 − eu2 ̸= 0, where j, k ∈ [3], holds, then FdisZK sets msgs = accept

for all s.

– If Pi is an honest party. Then for each u ∈ [m],

– Then au
1 , b

u
1 , a

u
2 , b

u
2 , a

u
3 , b

u
3 , e

u
1 , e

u
2 to FdisZK.

– If P ∗ is the corrupted party controlled by SA and P ∗
H is the semi-honest party

controlled by SAH , then FdisZK sends P ∗’s input to SA and P ∗
H ’s input to SAH .

– SA sends accept or abort with (Select,D) from SA. Here, D denotes the pair
of parties that SA wants to choose as dispute pair.

– If SA sends abort,D, FdisZK sets DP = D, if P ∗ ∈ D, else DP = P \D. FdisZK sets
msgs = DP for all s.

– If SA sends accept, FdisZK sets msgs = accept for all s.

– SA sends it’s view to SAH .

Output: Send (Output,msgs) for all Ps ∈ P.

Fig. 13: Ideal functionality for Zero Knowledge Verification

In the triple generation protocol from Fig. 6, as mentioned, there are terms of
the type ⟨αx⟩ij · ⟨αy⟩ik which can be computed and shared by a single party Pi

locally. However, to verify the correctness of Pi’s computation, the protocol relies
on ZK verification. Specifically for this, we extend the distributed ZK protocol
by Boyle et al. for our setting, where Pi acts as the prover and the remaining
three parties participate as the verifiers.

Recall that in tripGen, Pi along with Pj , Pm locally samples α2. Following
this, it computes δ1i =

∑
j,k
j ̸=k

⟨αx⟩ij⟨αy⟩ik − δ2i and sends it to Pk, k = i + 3. Note

that we require each party to act as the prover in exactly one instance of the
ZK protocol, for proving correctness of this aggregated computation. To verify
the correctness of Pi’s computation, the remaining parties have to verify that
the circuit c(⟨αx⟩ij , ⟨αy⟩ij , ⟨αx⟩ik, ⟨αy⟩ik, ⟨αx⟩im, ⟨αy⟩im, δi) evaluates to 0.

Attaining GOD Beyond Honest Majority With Friends and Foes 39

Observe that the input to c is additively distributed among Pj , Pk, Pm. That
is,
– Pj has (a1, b1, e2) = (⟨αx⟩ij , ⟨αy⟩ij , δ2i).
– Pk has (a3, b3, e1) = (⟨αx⟩ik, ⟨αy⟩ik, δ1i).
– Pm has (a2, b2) = (⟨αx⟩im, ⟨αy⟩im).
where δ = δ1i + δ2i .

Note that, this follows the semantics of the circuit c described in (5), and
hence a zero-knowledge proof on this circuit can be used to verify the correctness
of Pi’s computation. Instead of the naive verification, we use the same amorti-
zation used in [20] for verification of m number of c circuits.

For ℓ ∈ [m], let

(xi
7(ℓ−1)+1, . . . , x

i
7(ℓ−1)+7) = (aℓ1, b

ℓ
1, a

ℓ
2, b

ℓ
2, a

ℓ
3, b

ℓ
3, e

ℓ)

(xj
7(ℓ−1)+1, . . . , x

j
7(ℓ−1)+7) = (aℓ1, b

ℓ
1, 0, 0, 0, 0, e

ℓ
2)

(xk
7(ℓ−1)+1, . . . , x

k
7(ℓ−1)+7) = (0, 0, 0, 0, aℓ3, b

ℓ
3, e

ℓ
1)

(xm
7(ℓ−1)+1, . . . , x

m
7(ℓ−1)+7) = (0, 0, aℓ2, b

ℓ
2, 0, 0, 0)

We construct a sub-circuit g that contains L of the smaller c circuits. That
is, it takes 7L inputs and outputs the random linear combination of L outputs
of the corresponding c circuits. Specifically,

g(x1, . . . , x7L) =

L∑
k=1

θk · c(x7(k−1)+1, . . . , x7(k−1)+7L)

Finally, we set M = m/L and define the verification circuit G which outputs a
random linear combination of the g circuits outputs, that is,

G(x1, . . . , x7m) =

M∑
k=1

βk · g(x7L(k−1)+1, . . . , x7L(k−1)+7L)

where θk and βk are uniformly distributed over F and obtained by parties using
FCoin. The protocol outline is similar to the protocol from [20] and the complete
description is given in Fig. 14.

In our implementation, we use the recursive variant of the ZK protocol de-
scribed in [20] which achieves computation and communication efficiency while
trading off the number of rounds of communication. In particular, it incurs a
communication cost of η(1 + 4 logm) elements for verification of m multipli-
cation gates, for η > log(2 + 5 logm+1

ϵ), where each element in Z2λ is lifted
to a η-degree polynomial in Z2λ [x]/f(x). The computational cost the recursive
variant of distributed ZK protocol is similar to [20]. For the verification of m
multiplication, the computational costs are 32m and 7m multiplications over
Z2λ [x]/f(x) for a prover and a verifier respectively. In our protocol, a party acts
as a prover once and thrice as a verifier. Therefore, per party computational cost
is (32m+ 3× 7m) = 53m.

40 Hegde et al.

– Step 1
– Parties invoke FCoin and receive random θ1, θ2, . . . , θL ∈ F.
– Pi chooses random ω1, ω2, . . . , ω7L ∈ F.
– Pi defines 7L polynomials f1, f2, . . . , f7L ∈ F[x] of degree M such that for each

j ∈ [7L], fj(0) = ωj and fj(ℓ) = xi
7L(ℓ−1)+j , for all ℓ ∈ [M].

– Pi computes the coefficients of the 2M -degree polynomial p(x) ∈ F[x] defined by

p = g(f1, f2, . . . , f7L) where g(x1, x2, . . . , x7L) =
L∑

k=1

θk·c(x7(k−1)+1, . . . , x7(k−1)+7)

and G(x1, x2, . . . , x7m) =
M∑
k=1

βk · g(x7L(k−1)+1, . . . , x7L(k−1)+7L) and M = m
L
.

– Let a0, a1, . . . , a2M be the coefficients obtained. Pi defines π = (ω1, ω2,
. . . , ω7L, a0, a1, . . . , a2M).

– Pi and Pi+1 randomly pick πi+1 ∈ F7L+2M+1. Similarly, Pi and Pi+2 randomly
pick πi+2 ∈ F7L+2M+1.

– Pi sends π
i+3 = π − πi+1 − πi+2 to Pi+3.

– Step 2
– Parties invoke FCoin and receive random β1, β2, . . . , βM ∈ F and r ∈ F\{0, . . . ,M}.
– Each party Pt, where t ∈ {i+ 1, i+ 2, i+ 3} does the following:
– Parse the message πt as (ωt

1, ω
t
2, . . . , ω

t
7L, a

t
0, a

t
1, . . . , a

t
2M).

– Define 7L polynomials f t
1, f

t
2, . . . , f

t
7L ∈ F[x] of degree M such that for each

j ∈ [7L], f t
j (0) = ωt

j and f t
j (ℓ) = x7L(ℓ−1)+j for all ℓ ∈ [M].

– Compute f t
j (r) for each j ∈ [7L] and ptr =

2M∑
j=0

at
j · rj .

– Compute bt =
M∑
j=1

βj ·
2M∑
k=0

at
k · jk.

– Pt sends f t
1(r), f

t
2(r), . . . , f

t
7L(r), p

t
r, b

t
r to Pi+2, where t ∈ {i+ 1, i+ 3}.

– Step 3
– Upon receiving the message from Pi+1, Pi+3 in round 2, Pi+2 computes f ′

j(r) =
f i+1
j (r) + f i+2

j (r) + f i+3
j (r), pr = pi+1

r + pi+2
r + pi+3

r and b = bi+1 + bi+2 + bi+3.

– Pi+2 checks if pr = g(f ′
1(r), . . . , f

′
7L(r)) and b = 0. If either of the equalities does

not hold, then it outputs abort. Otherwise, it outputs accept.

– If Pi+2 outputs abort, then Pt, t ∈ {i+1, i+2, i+3}, broadcastsH(f t
1(r), . . . , f

t
7L(r),

at
0, . . . , a

t
2M) where H is a CRH.

– Pi, Pi+2 compute H(f t
1(r), . . . , f

t
7L(r), a

t
0, . . . , a

t
2M). If for some Pt, Pi, Pi+2 get

different value, then:
– If Pi accuses Pt, parties output DP = {Pi, Pt}.
– If Pi+2 accuses Pt, parties output DP = {Pi+2, Pt}.
– If Pi, Pi+2 accuse Pt, parties output DP = {Pi, Pt}.
– If neither Pi nor Pi+2 accuses, parties output DP = {Pi, Pi+2}.

Protocol disZK(P, JxK, JyK)

Fig. 14: Distributed Zero-Knowledge Verification Protocol

Attaining GOD Beyond Honest Majority With Friends and Foes 41

Lemma 3 (Communication). Protocol disZK requires a communication of
4(16
√
m+ 5) elements in the preprocessing phase for the verification of m mul-

tiplication gates.

Proof. For one instance of disZK, the prover picks ωj
1, . . . , ω

j
7L for all verifiers Pj ,

and completes the rest of the proof generation computation locally. Finally, the
prover only needs to send the co-efficients to the verifiers. For this, the prover and
two of the verifiers pick random values using their common keys, and then prover
sends the remaining share of the co-efficients to the third verifier. Therefore to
send the proof, the prover communicates (2M +1) elements. Further, two of the
verifiers communicate (7L+2) bits each, thus requiring an overall communication
of ((2M+1)+2(7L+2)) elements for a proof. Since, each party runs the protocol
as a prover, the total communication form gates will be 4(14L+2M+5) elements.
We set the parameters M = L =

√
m, then total communication cost will be

4(16
√
m+ 5) elements.

Therefore, for per multiplication gate communication cost due to disZK is
64√
m

+ 20
m elements, which does not contribute to additional communication cost

for evaluating a multiplication gate in the preprocessing phase for large enough
m.

Lemma 4. The protocol disZK FaF-securely computes FdisZK with identifying a
dispute set if aborts in the presence of one malicious party and one semi-honest
party, with statistical error 2M+1

|F|−M .

Proof. We construct an ideal world simulator SA for two different cases.
Case-I The prover Pi is corrupted. In this case SA receives the inputs of

Pi from FdisZK and so SA knows the inputs of the honest parties. Thus, SA can
simulate exactly the role of the honest parties in the protocol. SA invoke the
real world adversary to receive the proof sent by Pi to the three other parties.
SA simulates FCoin handing r and random co-efficients to the parties and follows
the instruction of three verifiers.

If Pi is acting honestly in the execution of the main protocol and the output
of the circuit is c = 0 for every multiplication, then SA sends FdisZK the output
of the verifiers. The simulation is perfect.

If the output of the circuit c ̸= 0 for some multiplication gate, then FdisZK

outputs aborts to the parties along with a dispute pair DP. Thus, if the honest
parties simulated by SA output accept, then SA outputs fail and halts. The only
difference between the simulation and the real execution is the event that SA
outputs fail. Observe that this happens iff the following events happen:

1. The random co-efficients θ1, . . . , θL were chosen such that the output of the
g gate is 0. OR

2. p(r) = g(f1(r), . . . , f7L(r)) but p(x) ̸= g(f1(x), . . . , f7L(x)). OR
3. If the random linear combination using β1, . . . , βM yields that the output of

G is 0.

42 Hegde et al.

(1) and (3) can happen with probability 1
|F| . (2) can happen if r is a root of

p(x)−g(f1(x), . . . , f7L(x)). Since, p(x)−g(f1(x), . . . , f7L(x)) is a non-zero poly-
nomial of degree at most 2M , the probability that a randomly picked r from
F \ {0, 1, . . . ,M} is a root of the above polynomial is 2M

|F|−M−1 . Therefore, the

probability that SA fails < 2M+1
|F|−M .

If the proof given by Pi is such that the verifiers output reject, then simulation
also does the same, and follow the instructions of the verifiers to generate the
correct messages and broadcast the hash of those messages. Finally, SA outputs
a dispute pair, DP = {Pi, Pv}, if Pi accuses Pv, where v ∈ {i + 1, i + 2, i + 3},
otherwise v = i+ 2.

Subcase 1: Let Pi+1 be the semi-honest party. Let SAH be the simulator.
Since, Pi+1 is not receiving any messages from other verifiers, nothing to simulate
till round 2.

If Pi’s proof is such that Pi+2 outputs reject, SAH broadcasts the hash of the
correct verifiers’ messages on behalf of Pi+2, Pi+3 and outputs DP.

If Pi’s proof is such that Pi+2 outputs accept, then SAH outputs accept. In
both the cases simulation is perfect.

Subcase 2: Let Pi+2 be the semi-honest party. Since, Pi is the malicious
party, SAH has inputs of Pi from SA, and the messages sent to the honest
verifiers. So, the simulator SAH follows the protocol instructions correctly and
sends correct messages on behalf of the Pi+1, Pi+3.

Subcase 3: Let Pi+3 be the semi-honest party. This simulation is the same
as the Subcase 1.

Case-II The prover Pi is honest. In this case the simulator SA receives the
inputs known to the corrupted verifier.
SA simulates FCoin handing θ1, . . . , θL ∈ F to the parties and then it chooses

a random πj ∈ F7L+2M+1, corresponding to the corrupt verifier Pj .
Then it simulates the ideal functionality FCoin handing a random r ∈ F \

{0, 1, . . . ,M} and co-efficients β1, . . . , βM ∈ F to the parties. Since, SA knows
the corrupted party’s inputs, it can compute the message that should be sent by
the corrupted party f j

1 (r), . . . , f
j
7L(r), p

j
r, b

j .
If j = i+1 or i+3 and it sends message at the end of round 2 to the honest

Pi+2, who decides whether to accept or not, then upon receiving the message, SA
can conclude whether Pi+2 will reject or accept by comparing it to the message
that should have sent.

– If the received message on behalf of Pi+2 is the same as the message that
should have sent, the SA outputs accept and the simulation is perfect.

– If not, then Pi+2 would have output reject. So, SA outputs reject and does
the following:

1. SA samples f ′
1(r), . . . , f

′
7L(r) uniformly at random.

2. SA computes gr = g((f j
1 (r) + f ′

1(r)), . . . , (f
j
7L(r) + f ′

7L(r))) and sets
p′r = gr − pjr and b′ = −bj .

3. SA picks f ′′
1 (r), . . . , f

′′
7L(r), p

′′
r , b

′′ uniformly at random and sets as Pi+2’s
message. It computes (f ′

1(r)−f ′′
1 (r)), . . . , (f

′
7L(r)−f ′′

7L(r)), (p
′
r−p′′r), (b′−

Attaining GOD Beyond Honest Majority With Friends and Foes 43

b′′) and sets as Pi+3’s message. Then SA broadcasts hash both the mes-
sages on behalf of the honest verifiers.

4. SA accuses Pj and outputs DP = {Pi, Pj} or {Pi+2, Pj} according to the
protocol instructions.

Without loss of generality, Let us assume that j = i+ 1.

Subcase 1: Let Pi be the semi-honest party. SAH has all the inputs of Pi,
correct simulation is trivial.

Subcase 2: Let Pi+2 be the semi-honest party.

– SAH picks πi+2 ∈ F7L+2M+1 uniformly and sends to Pi+2 on behalf of Pi.

– SAH picks f i+3
1 (r), . . . , f i+3

7L (r) uniformly.

– It computes pi+3
r = g((

3∑
k=1

f i+k
1 (r)), . . . , (

3∑
k=1

f i+k
7L (r)))− pi+2

r − pi+1
r , bi+3 =

−bi+1 − bi+2.

– SAH sends f i+3
1 (r), . . . , f i+3

7L (r), pi+3
r , bi+3 to Pi+2.

If Pi+2 outputs reject, SAH outputs DP according to the protocol instruction.

Subcase 3: Let Pi+3 be the semi-honest party. SAH picks πi+2 ∈ F7L+2M+1

uniformly and sends to Pi+2 on behalf of Pi. If SA output reject at round 3, then
SAH picks f i+3

1 (r), . . . , f i+3
7L (r), pi+3

r , bi+3 similar to Subcase 2 and broadcasts
the hash values. Finally, SAH outputs DP and the simulation is perfect.

If j = i + 2 and thus SA needs to simulate the message sent by the honest
verifiers Pi+1, Pi+3. Thus to compute the message sent by the Pt, t ∈ {i+1, i+3},
SA does the following:

1. It chooses random f t
1(r), . . . , f

t
7L(r) ∈ F, and computes gr = g((

3∑
k=1

f i+k
1 (r)),

. . . , (
3∑

k=1

f i+k
7L (r)))

2. SA picks pi+1
r uniformly and sets pi+3

r = gr − pi+1
r − pi+2

r .

3. SA sets bi+1, bi+3 such that bi+1 + bi+2 + bi+3 = 0

SA sends f t
1(r), . . . , f

t
7L(r), p

t
r, b

t to Pi+2 for t ∈ {i+ 1, i+ 3}.
If Pi+2 outputs accept, then the simulation is perfect.

If Pi+2 outputs reject, SA broadcasts H(f t
1(r), . . . , f

t
7L(r), p

t
r, b

t), for t ∈ {i+
1, i+ 3} and outputs DP = {Pi, Pi+2}.

Subcase 1: Let Pi be the semi-honest party. SAH has all the inputs of the
prover Pi, therefore the simulation is trivial.

Subcase 2: Let Pi+1 be the semi-honest party.

SAH sends πi+1 ∈R F7L+2M+1 to Pi+1.

SAH computes the message of Pi+3 similar to the case when Pi+1 was mali-
cious and Pi+2 was semi-honest.

If Pi+2 outputs reject, SAH broadcasts the hash of the same message and
follows the protocol instructions and outputs DP.

44 Hegde et al.

As described in Section 2, this distributed zero-knowledge can be extended to the
Ring Z2λ , this follows from the [20, Theorem 4.7]. The aforementioned theorem
can be adapted our construction in the following way:

Lemma 5. Let η be such that 2η > 2M + 1. Then, the protocol disZK securely
computes FdisZK with identifying a dispute pair if aborts in the presence of one

malicious party with statistical error 2(λ−1)η·2M+1
2λη−M

Due to this, the communication blows up by a factor of η.

B Proof of Necessity of Oblivious Transfer

In this section, we provide details of the construction of OT protocol πOT (Fig. 15)
from the (t, h∗)-FaF secure protocol πf as described in §3. We also describe
the simulators SS and SR for corrupt sender and corrupt receiver respectively
in Fig. 16 and Fig. 17. We conclude with an indistinguishability argument to
complete the proof of Theorem 3.

• Input, Output: PS has input (m0,m1) and PR has input b. PR outputs mb.

• Primitives: n-party (t, h∗)-FaF secure protocol πf for computing f((m0,m1),⊥,
. . . ,⊥, b) = (⊥,⊥, . . . ,⊥,mb).

– PS emulates the role of QS = {P1, P2, . . . Pt+h∗} in πf .

– PR emulates the role of QR = {Pt+h∗+1, . . . , Pn} in πf .

– PS and PR execute πf emulating the roles of parties in QS and QR respectively.

– PR’s output mb, is the same the output of Pn in πf .

Protocol πOT

Fig. 15: 1-out-of-2 OT Protocol

Let H = {P1, . . . , Ph∗} and I = QS \H.
Let SA be the malicious simulator for I = {Ph∗+1, Ph∗+2, . . . , Pt+h∗} in πf and SAH

be the semi-honest simulator for H = {P1, . . . , Ph∗} in πf .
– SS runs SA, which in turn sends its view to SAH .

– SS runs SAH with (m0,m1) as the input of P1.

– SS outputs the view of SAH .

Simulator SS

Fig. 16: Simulator for corrupt sender PS

Attaining GOD Beyond Honest Majority With Friends and Foes 45

Let H = {P2t+h∗+1, . . . , Pn} and I = QR \H.
Let SA be the malicious simulator for I = {Pt+h∗+1, . . . , P2t+h∗} in πf and SAH be
the semi-honest simulator for H = {P2t+h∗+1, . . . , Pn} in πf .
– SR runs SA, which in turn sends its view to SAH .

– SR runs SAH with b as the input and mb as the output of Pn.

– SR outputs the view of SAH .

Simulator SR

Fig. 17: Simulator for corrupt receiver PR

Indistinguishability Proof. The security of πf guarantees that

{SAH (1κ, (m0,m1)),OutputPn
((m0,m1),⊥, . . . ,⊥, b)}

c
≡ (6)

{Viewπf

A,AH
(1κ, (m0,m1)),Output

πf

Pn
((m0,m1),⊥, . . . ,⊥b)}

where View
πf

A,AH
(1κ, (m0,m1)) denotes the view of AH with the view of A

in πf as input, Output
πf

Pn
((m0,m1),⊥, . . . ,⊥, b) denotes output of the honest

party Pn in πf and OutputPn
((m0,m1),⊥, . . . ,⊥, b) denotes output of Pn in the

functionality f . From construction of PS in Fig. 15 it can be seen that

{Viewπf

A,AH
(1κ, (m0,m1)),Output

πf

Pn
((m0,m1),⊥, . . . ,⊥, b)}≡ (7)

{ViewπOT
AOT

(1κ, (m0,m1)),Output
πOT
PR

((m0,m1), b)}

where AOT is the semi-honest adversary corrupting the sender PS in πOT,
ViewπOT

AOT
(1κ, (m0,m1)) is the view of AOT in πOT and OutputπOT

PR
((m0,m1), b)

is the output of the receiver PR in πOT. Similarly, from the construction of SS
in Fig. 16, we have

{SAH (1κ, (m0,m1)),OutputPn
((m0,m1),⊥, . . . ,⊥, b)}≡ (8)

{SS(1
κ, (m0,m1)),OutputPR

((m0,m1), b)}

where OutputPR
((m0,m1), b) is the output of PR in the 1-out-of-2 OT function-

ality. From equations (6), (7) and (8), we have

{SS(1
κ, (m0,m1)),OutputPR

((m0,m1), b)}
c
≡ {ViewπOT

AOT
(1κ, (m0,m1)),OutputπOT

PR
((m0,m1), b)}

This proves that the view generated by SS is computationally indistinguishable
from the view of PS in πOT. This also proves the correctness of PR’s output in
πOT since πf does not abort when the corrupt parties are semi-honest, since the
output of Pn in πf is indistinguishable from Pn’s output in f as shown.

The simulator SR for the case when PR is corrupted can be constructed
similar to SS with I = {Pt+h∗+1, . . . , P2t+h∗} and H = {P2t+h∗+1, . . . , Pn} and
is provided in Fig. 17. In the case when n < 2t+2h∗, we populate the H set first
with up to h∗ parties and then set I = QR \H. Specifically, since the existence
of a (t, h∗)-FaF secure (abort) protocol requires n ≥ t + h∗ + 1 [3], we have

46 Hegde et al.

0 ≤ |I| ≤ t and 1 ≤ |H| ≤ h∗ in this case and the construction of SR proceeds
similar to that of SS .

This proves the necessity of semi-honest-OT for (t, h∗)-FaF secure protocol
where t + h∗ < n ≤ 2t + 2h∗. Moreover, the sufficiency of OT for the same is
given in [3, Theorem 4.1].

C Functionalities and Security Proofs

In this section, we present simulation-based security proofs of the subprotocols
used as building blocks for this work. For a protocol Π, we have two simulators,
SA, which represents the ideal-world malicious party, and SAH that represents
the ideal-world semi-honest party. Corresponding to the protocol Π, we will call
the simulators as SAΠ and SAHΠ . To relax from the heavy notational burden
while describing the simulators SAΠ SAHΠ , we will refer to them as SA and
SAH . On the other hand, if a simulator for a protocol, say Π1 executes another
simulator for a protocol, say Π2, then we refer to the latter simulator as SAΠ2

and SAHΠ2
. Furthermore, we indicate by SAPi that the simulator corresponding

to the scenario when Pi is maliciously corrupted, and similarly, SAH

Pi indicates
Pi is semi-honest. In the protocols in which parties are either sender or receiver,
we use SAs and SAr for indicating the corrupt sender, Ps or the corrupt receiver,
Pr, respectively. Similar for the SAH as well.

As mentioned, our protocol is secure against a mixed adversary corrupting
one malicious and one semi-honest party. This is due to the fact that the ma-
licious adversary even with the view of the semi-honest party cannot get any
additional advantage. Simulation for mixed security is similar to the simulation
of the FaF-security, we demonstrate this by providing the simulator for the shar-
ing protocol J·K-Sh. Since the simulation is similar we omit the details for the
other protocols.

C.1 Sharing and Reconstruction Protocols

In this section we provide the ideal functionalities and the corresponding simu-
lators for the sharing and reconstruction protocol from §4.

J·K-Sh Functionality: The ideal functionality for J·K-Sh (Fig. 1) appears in Fig. 18.

FSh interacts with the parties in P and the adversaries SA and SAH .
– FSh receives (Input, v) from Pc(client). Let P

∗ be the party corrupted by SA.

– FSh receives continue or abort with (Select,D) from SA. Here, D denotes the pair
of parties that SA wants to choose as dispute pair.

– If FSh receives continue, randomly picks ⟨αv⟩ij ∈ Z2ℓ , for 1 ≤ i < j ≤ 4 and
compute βv = v +

∑
(i,j)

⟨αv⟩ij . Set msgs = (βv, {⟨αv⟩st}t∈[4],s ̸=t), for each Ps ∈ P.

– Else if FSh receives abort, then:

Functionality FSh

Attaining GOD Beyond Honest Majority With Friends and Foes 47

– If P ∗ ∈ D, then set DP = D and msgs = DP for each Ps ∈ P.

– Else set DP = P\D and msgs = DP for each Ps ∈ P.

– SA sends it’s view to SAH .

Output: Send (Output,msgs) to Ps ∈ P.

Fig. 18: Ideal functionality for J·K-Sh

J·K-Sh Simulator: Simulator for J·K-Sh (Fig. 1) is provided in Fig. 19.

Malicious Simulation:

Preprocessing:
– Let Pi be the corrupt party. Then SA emulates Fsetup so that SA and Pi get {⟨αv⟩ij},
where j ̸= i.

– If Pi is the client, then Pi and SA pick ⟨αv⟩jk 1 ≤ j < k ≤ 4.
Online:

– If Pi is the client, then SA either receives βv from Pi outputs DP = {Pi, Pk} , for
some k ̸= i.

– If Pi is not the client. SA invokes FSh and receives βv. It sends βv to Pi.

Semi-Honest Simulation:

Preprocessing:
– Let Pj be the semi-honest party. Then SAH has {⟨αv⟩ik} from SA. SAH and Pj

pick {⟨αv⟩jl}, where l ̸= {i, j}.
– If Pj is the client, then SAH and Pj pick ⟨αv⟩kl, where k, l /∈ {i, j}.

Online:
– If Pj be the client, then SAH either receives βv from Pj or outputs DP = {Pi, Pk},
for some k ̸= i.

– If Pj is not the client. SAH sends βv to Pj , where SAH received βv from SA.

Simulator SA
Pi , SAH

Pj

Fig. 19: Simulator SA for J·K-Sh

Lemma 6 (Security). The protocol J·K-Sh, described in Fig. 1, realizes FSh

(Fig. 18) with computational security in the (Fsetup,Fjmp4)-hybrid model against
(1, 1)-FaF adversaries A, AH, controlling Pi, Pj respectively.

Proof. Claim 1: The simulator SAPi , described in Fig. 19, generates a transcript
that is indistinguishable from A’s view.

Proof of Claim 1: Case I: If Pi is the client, then for all pairs (j, k), ⟨αv⟩jk
are obtained using the corresponding common key, which is indistinguishable
from randomly picked values and Pi computes βv. Therefore, the transcript τ =
{{⟨αv⟩jk}j,k, βv}, generated by SAPi , is indistinguishable from a real transcript.

Case II: If Pi is not the client, then Pi’s view consists of {βv, {⟨αv⟩ij}j ̸=i},
where βv = v −

∑
(j,k)

⟨αv⟩jk. According to Pi, βv remains random, since v, ⟨αv⟩jk,

48 Hegde et al.

for j, k ̸= i, are unknown to Pi. Therefore the transcript generated by SAPi is
indistinguishable from Pi’s view.

Claim 2: The simulator SAH

Pj , that has Pj ’s input, output, and the view

generated by SAPi , generates a transcript which is indistinguishable from Pj ’s
view (view of Pj along with Pi’s view).

Proof of Claim 2: Case I: If Pj is the client, then it is easy to see that the

transcript generated by SAH

Pj is computationally indistinguishable from AH’s
view.

Case II: If Pj is not the client, AH’s view consists of {βv, ⟨αv⟩ij , {⟨αv⟩ik}k ̸=i,j ,
{⟨αv⟩jk}k ̸=i,j}. Since Pj misses the share ⟨αv⟩kl, for (k, l) ̸= (i, j), βv is random

to Pj . Therefore the transcript generated by SAH

Pj is computationally indistin-
guishable from AH’s view.

J·K-Sh Functionality for mixed-security: The ideal functionality for J·K-Sh (Fig. 1)
appears in Fig. 18.

FSh interacts with the parties in P and the adversary S.
– Fmixed

Sh receives (Input, v) from Pc(client). Let P ∗
m be the malicious and P ∗

h be the
semi-honest party corrupted by S.

– Fmixed
Sh receives continue or abort with (Select,D) from S. Here, D denotes the

pair of parties that S wants to choose as dispute pair.

– If Fmixed
Sh receives continue, randomly picks ⟨αv⟩ij ∈ Z2ℓ , for 1 ≤ i < j ≤ 4 and

compute βv = v +
∑
(i,j)

⟨αv⟩ij . Set msgs = (βv, {⟨αv⟩st}t∈[4],s ̸=t), for each Ps ∈ P.

– Else if Fmixed
Sh receives abort, then:

– If P ∗
m ∈ D, then set DP = D and msgs = DP for each Ps ∈ P.

– Else set DP = P\D and msgs = DP for each Ps ∈ P.

Output: Send (Output,msgs) to Ps ∈ P.

Functionality Fmixed
Sh

Fig. 20: Mixed-Secure Ideal functionality for J·K-Sh

Preprocessing:
– Let P ∗

i be the malicious party and P ∗
j be the semi-honest party.

– S emulates Fsetup so that S and P ∗
i get {⟨αv⟩ik}k ̸=i and S and P ∗

j get
{⟨αv⟩jk}k ̸=i,j .

– If P ∗
i or P ∗

j is the client, then the adversary ({P ∗
i , P

∗
j }) and S pick ⟨αv⟩jk

1 ≤ j < k ≤ 4.
Online:
– If P ∗

i is the client, S receives either βv from P ∗
i or outputs DP = {P ∗

i , Pk}, for
some k ̸= i .

Simulator S

Attaining GOD Beyond Honest Majority With Friends and Foes 49

– If P ∗
j is the client, S receives either βv from P ∗

j or outputs DP = {P ∗
i , Pk}, for

some k ̸= i .

– If P ∗
i or P ∗

j is not the client. S invokes Fmixed
Sh and receives βv. It sends βv to

P ∗
i , P

∗
j .

Fig. 21: Simulator S for J·K-Sh

The view generated by the simulator in Fig. 21 is indistinguishable from the
real view and the argument is similar to Lemma 6.

⟨·⟩-Rec Functionality: The ideal functionality for ⟨·⟩-Rec (Fig. 3) appears in
Fig. 22.

F⟨·⟩-Rec interacts with the parties in P and the adversaries SA and SAH .
– F⟨·⟩-Rec receives (Input, ⟨v⟩s) from each Ps ∈ P. Let P ∗ be the party corrupted by
SA.

– F⟨·⟩-Rec sends v =
∑
(i,j)

⟨v⟩ij to SA, SAH and receives continue or abort with

(Select,D) from SA. Here, D denotes the pair of parties that SA wants to choose
as dispute pair.

– If F⟨·⟩-Rec receives continue, set msgs = v, for each Ps ∈ P.

– Else if F⟨·⟩-Rec receives abort, then:
– If P ∗ ∈ D, then set DP = D and msgs = DP for each Ps ∈ P.

– Else set DP = P\D and msgs = DP for each Ps ∈ P.

– SA sends it’s view to SAH .

Output: Send (Output,msgs) to Ps ∈ P.

Functionality F⟨·⟩-Rec

Fig. 22: Ideal functionality for ⟨·⟩-Rec

⟨·⟩-Rec Simulator: Simulators for ⟨·⟩-Rec (Fig. 3) are provided in Fig. 23, Fig. 24,
Fig. 25, Fig. 26.

Let P1 be the maliciously corrupted party.
– SA executes SA

s
jmp3 for ⟨v⟩12, where s = 1.

– SA executes SA
s
jmp3 for ⟨v⟩14, where s = 1.

– SA executes SA
s
jmp3 for ⟨v⟩13, where s = 1.

– SA calls F⟨·⟩-Rec with inputs ⟨v⟩12, ⟨v⟩13, ⟨v⟩14, and gets the reconstructed value v.

– SA executes SA
r
jmp4 for v, where r = 1.

– Subcase 1: Let P2 be semi-honest.
SAH(⟨v⟩12, ⟨v⟩13, ⟨v⟩14, ⟨v⟩23, ⟨v⟩24, v)
SAH executes SAH

r,r′

jmp4 for v, where r = 1, r′ = 2.

– Subcase 2: Let P3 be semi-honest.

Simulator SA
P1 , SAH

50 Hegde et al.

SAH(⟨v⟩12, ⟨v⟩13, ⟨v⟩14, ⟨v⟩23, ⟨v⟩34, v)
SAH executes SAH

s,r
jmp3 for ⟨v⟩12, where s = 1, r = 3.

SAH executes SAH
s,r
jmp3 for ⟨v⟩14, where s = 1, r = 3.

SAH computes ⟨v⟩24 = v −
∑

(i,j)̸=(2,4)⟨v⟩ij .
SAH executes SAH

r
jmp3 for ⟨v⟩24, where r = 3.

– Subcase 3: Let P4 be semi-honest.
SAH(⟨v⟩12, ⟨v⟩13, ⟨v⟩14, ⟨v⟩24, ⟨v⟩34, v)
SAH computes ⟨v⟩23 = v −

∑
(i,j)̸=(2,3)⟨v⟩ij .

SAH executes SAH
r
jmp3 for ⟨v⟩12 + ⟨v⟩23, where r = 4.

SAH executes SAH
s,r
jmp3 for ⟨v⟩13, where s = 1, r = 4.

Fig. 23: Simulator SAP1 for ⟨·⟩-Rec

Let P2 be the maliciously corrupted party.
– SA executes SA

s
jmp3 for ⟨v⟩12, where s = 2.

– SA executes SA
s
jmp3 for ⟨v⟩12 + ⟨v⟩23, where s = 2.

– SA executes SA
s
jmp3 for ⟨v⟩24, where s = 2.

– SA calls F⟨·⟩-Rec with inputs ⟨v⟩12, ⟨v⟩23, ⟨v⟩24, and gets the reconstructed value v.

– SA executes SA
r
jmp4 for v, where r = 2.

– Subcase 1: Let P1 be semi-honest.
SAH(⟨v⟩12, ⟨v⟩13, ⟨v⟩14, ⟨v⟩23, ⟨v⟩24, v)
SAH executes SAH

r,r′

jmp4 for v, where r = 2, r′ = 1.

– Subcase 2: Let P3 be semi-honest.
SAH(⟨v⟩12, ⟨v⟩13, ⟨v⟩23, ⟨v⟩24, ⟨v⟩34, v)
SAH executes SAH

s,r
jmp3 for ⟨v⟩12, where s = 2, r = 3.

SAH executes SAH
s,r
jmp3 for ⟨v⟩24, where s = 2, r = 3.

SAH computes ⟨v⟩14 = v −
∑

(i,j)̸=(1,4)⟨v⟩ij .
SAH executes SAH

r
jmp3 for ⟨v⟩14, where r = 3.

– Subcase 3: Let P4 be semi-honest.
SAH(⟨v⟩12, ⟨v⟩14, ⟨v⟩23, ⟨v⟩24, ⟨v⟩34, v)
SAH computes ⟨v⟩13 = v −

∑
(i,j)̸=(1,3)⟨v⟩ij .

SAH executes SAH
r
jmp3 for ⟨v⟩13, where r = 4.

SAH executes SAH
s,r
jmp3 for ⟨v⟩12 + ⟨v⟩23, where s = 2, r = 4.

Simulator SA
P2 , SAH

Fig. 24: Simulator SAP2 for ⟨·⟩-Rec

Let P3 be the maliciously corrupted party.
– SA picks ⟨v⟩12 and executes SA

r
jmp3 for ⟨v⟩12, where r = 3.

– SA picks ⟨v⟩14 and executes SA
r
jmp3 for ⟨v⟩14, where r = 3.

– SA calls F⟨·⟩-Rec with inputs ⟨v⟩13, ⟨v⟩23, ⟨v⟩34 and gets the reconstructed value v.

– SA sets ⟨v⟩24 = v −
∑

(i,j) ̸=(2,4)⟨v⟩ij and executes SA
r
jmp3 for ⟨v⟩24, where r = 3.

Simulator SA
P3 , SAH

Attaining GOD Beyond Honest Majority With Friends and Foes 51

– SA executes SA
s
jmp3 for ⟨v⟩13, where s = 3.

– SA executes SA
s
jmp3 for ⟨v⟩12 + ⟨v⟩23, where s = 3.

– SA executes SA
s
jmp4 for v, where s = 3.

– Subcase 1: Let P1 be semi-honest party.
SAH(⟨v⟩12, ⟨v⟩13, ⟨v⟩14, ⟨v⟩23, ⟨v⟩34, v)
SAH executes SAH

s,r
jmp4 for v, where s = 3, r = 1.

– Subcase 2: Let P2 be semi-honest party.
SAH(⟨v⟩12, ⟨v⟩13, ⟨v⟩23, ⟨v⟩24, ⟨v⟩34, v)
SAH executes SAH

s,r
jmp4 for v, where s = 3, r = 2.

– Subcase 3: Let P4 be semi-honest party.
SAH(⟨v⟩13, ⟨v⟩14, ⟨v⟩23, ⟨v⟩24, ⟨v⟩34, v)
SAH computes ⟨v⟩12 = v −

∑
(i,j)̸=(1,2)⟨v⟩ij .

SAH executes SAH
r
jmp3 for ⟨v⟩13, where s = 3, r = 4.

SAH executes SAH
s,r
jmp3 for ⟨v⟩12 + ⟨v⟩23, where s = 3, r = 4.

Fig. 25: Simulator SAP3 for ⟨·⟩-Rec

Let P4 be the maliciously corrupt party.
– SA picks ⟨v⟩12, ⟨v⟩23 and executes SA

r
jmp3 for ⟨v⟩12 + ⟨v⟩23, where r = 4.

– SA calls F⟨·⟩-Rec with inputs ⟨v⟩14, ⟨v⟩24, ⟨v⟩34 and gets the reconstructed value v.

– SA sets ⟨v⟩13 = v −
∑

(i,j) ̸=(1,3)⟨v⟩ij and executes SA
r
jmp3 for ⟨v⟩13, where r = 4.

– SA executes SA
s
jmp3 for ⟨v⟩14, where s = 4.

– SA executes SA
s
jmp3 for ⟨v⟩24, where s = 4.

– SA executes SA
s
jmp4 for v, where s = 4.

– Subcase 1: Let P1 be semi-honest party.
SAH(⟨v⟩12, ⟨v⟩13, ⟨v⟩14, ⟨v⟩24, ⟨v⟩34, v)
SAH executes SAH

s,r
jmp4 for v, where s = 4, r = 1.

– Subcase 2: Let P2 be semi-honest party.
SAH(⟨v⟩12, ⟨v⟩23, ⟨v⟩24, ⟨v⟩14, ⟨v⟩34, v)
SAH executes SAH

s,r
jmp4 for v, where s = 4, r = 2.

– Subcase 3: Let P3 be semi-honest party.
SAH(⟨v⟩13, ⟨v⟩14, ⟨v⟩23, ⟨v⟩24, ⟨v⟩34, v)
SAH computes ⟨v⟩12 = v −

∑
(i,j)̸=(1,2)⟨v⟩ij .

SAH executes SAH
r
jmp3 for ⟨v⟩12, where r = 3.

SAH executes SAH
s,r
jmp3 for ⟨v⟩14, where s = 4, r = 3.

SAH executes SAH
s,r
jmp3 for ⟨v⟩24, where s = 4, r = 3.

Simulator SA
P4 , SAH

Fig. 26: Simulator SAP4 for ⟨·⟩-Rec

Lemma 7 (Security). The protocol ⟨·⟩-Rec, described in Fig. 3, realizes F⟨·⟩-Rec
(Fig. 22) with computational security in the (Fsetup,Fjmp3,Fjmp4)-hybrid model
against (1, 1)-FaF adversaries A, AH, controlling Pi, Pj respectively.

52 Hegde et al.

Proof. Case I: If i = 1, SAP1 generates a transcript τ = {⟨v⟩12, ⟨v⟩14, ⟨v⟩13, v},
which is computationally indistinguishable from P1’s view.

Case II: If i = 2, SAP2 generates a transcript τ = {⟨v⟩12, ⟨v⟩23, ⟨v⟩24, v}, which
is computationally indistinguishable from P2’s view.

Case III: If i = 3, SAP3 generates a transcript τ = {⟨v⟩12, ⟨v⟩13, ⟨v⟩14, ⟨v⟩23,
⟨v⟩24, ⟨v⟩34, v}, where ⟨v⟩12, ⟨v⟩14 are randomly picked. Therefore, the transcript
is indistinguishable from P3’s view in the protocol.

Case IV: If i = 4, SAP4 generates a transcript τ = {⟨v⟩13, ⟨v⟩14, ⟨v⟩12 +
⟨v⟩23, ⟨v⟩24, ⟨v⟩34, v}, where ⟨v⟩12, ⟨v⟩23 are randomly picked. Therefore, the tran-
script is indistinguishable from P4’s view in the protocol.

Suppose Pi is the malicious party and Pj is the semi-honest party. The sim-
ulator, SAH , starts with Pj ’s inputs and output. Additionally, it receives Pi’s

inputs and v from SAPi . The simulated view is thus indistinguishable from the
view of Pj which consists of {{⟨v⟩st}s,t, v}, where (s, t) ̸= (k,m) and Pk, Pm are
the honest parties.

C.2 Multiplication Protocols

In this section, we provide the ideal functionalities and the simulation proofs
corresponding to the multiplication protocols from §5.

Distributed Multiplication Functionality: The ideal functionality for disMult (Fig. 5)
appears in Fig. 27.

FdisMult interacts with the parties in P and the adversaries SA, SAH .
– FdisMult receives a from Pi, Pj and b, c2 from Pk, Pm. Let P ∗ be the party controlled
by SA.

– If P ∗ ∈ {Pi, Pj} FdisMult gives SA a, otherwise b, c2.

– SA gives input to FdisMult on behalf of P ∗.

– If FdisMult receives abort then set DP = D if P ∗ ∈ D, else DP = P\D. And set
msgs = DP ∀Ps ∈ P.

– Else, FdisMult sets msgi = msgj = c1 and msgk = msgm = c2 such that c1 + c2 = ab.

– FdisMult sends msg of P ∗ to SA, receives the command continue or abort with
(Select,D). Here, D denotes the pair of parties that SA wants to choose as dispute
pair.

– If FdisMult receives abort command with D from SA, then FdisMult outputs a dispute
pair DP to all the parties, where DP = D if P ∗ ∈ D, else DP = P\D. And sets
msgs = DP ∀Ps ∈ P. Else continue.

– SA sends it’s view to SAH .

Output: Send (Output,msgs) ∀Ps ∈ P.

Functionality FdisMult

Attaining GOD Beyond Honest Majority With Friends and Foes 53

Fig. 27: Ideal functionality for disMult

Distributed Multiplication Simulator: Simulators for the distributed multiplica-
tion protocol disMult (Fig. 5) are provided in Fig. 28 and Fig. 29. Here, we
provide the simulation for the case of malicious Pi and Pk. The simulations for
malicious Pj and Pm are analogous.

Let Pi be the maliciously corrupted party.
– SA with input a invokes FdisMult and receives c1. It randomly picks b and computes
c2 = ab− c1.

– SA executes SOPE with Pj ’s input a and Pj , Pk’s input b, c
2.

– For every communication from the receiver to the sender, SA invokes SA
s
jmp4 with

s = i.

– For every communication from the sender to the receiver, SA invokes SA
r
jmp4 with

r = i.
– Subcase 1: Let Pj be semi-honest.

SAH(a, b, c
2)

SAH executes SOPE and sends c1 to Pj .
SAH executes SAH

r,r′

jmp4 and SAH
s,s′

jmp4 for every communication accordingly.

– Subcase 2: Let Pk be semi-honest.
SAH(a, b, c

2)
SAH discards b, c2.
SAH computes c1 = ab− c2.
SAH executes SAH

r,s′

jmp4 and SAH
s,r′

jmp4 for every communication accordingly.

Simulator SA
Pi , SAH

Fig. 28: Simulator SAPi for disMult

Let Pk be the maliciously corrupted party.
– SA invokes FdisMult with b, c2 and randomly picks a.

– SA executes SOPE with Pi, Pj ’s input a and Pm’s input b, c2.

– For every communication from the receiver to the sender, SA invokes SA
r
jmp4 with

r = k.

– For every communication from the sender to the receiver, SA invokes SA
s
jmp4 with

s = k.
– Subcase 1: Let Pi be semi-honest.

SAH(a, b, c
2)

SAH discards a.
SAH computes c1 = ab− c2.
SAH executes SAH

r,s′

jmp4 and SAH
s,r′

jmp4 for every communication accordingly.

– Subcase 2: Let Pm be semi-honest.

Simulator SA
Pk , SAH

54 Hegde et al.

SAH(a, b, c
2)

SAH computes c1 = ab− c2.
SAH executes SAH

r,r′

jmp4 and SAH
s,s′

jmp4 for every communication accordingly.

Fig. 29: Simulator SAPk for disMult

Lemma 8 (Security). The protocol disMult, described in Fig. 5, realizes FdisMult

(Fig. 27) with computational security in the (Fsetup,Fjmp4)-hybrid model against
(1, 1)-FaF adversaries A, AH, controlling one one party each when disMult is
instantiated with a secure OPE protocol.

Proof. This follows directly from the security of OPE and jmp4 invocations.
Case I: If one of the receivers Pi or Pj is malicious. By the security of semi-

honest OPE, ∃ a simulator SrOPE, for a corrupt receiver such that with input
a, c1, it generates a view that is indistinguishable from the real view of the
corrupt receiver. Let Sr be the simulator for disMult for a corrupt receiver. Sr
invokes FdisMult with input a. If it receives DP, it outputs DP and terminates.
Else, if it receives c1, then it runs SrOPE and replaces the communications by
Fjmp4 invocations. For this SrOPE executes SAjmp4. The view generated by Sr is
indistinguishable from a corrupt receiver’s view. If not, then it implies that the
view generated by SrOPE is not indistinguishable, which contradicts the security
of OPE.
Subcase I: If the other receiver is semi-honest, the simulation proceeds similar
to the simulation of a malicious receiver.
Subcase II: If one of the senders is semi-honest, since the simulator knows all
the inputs to the FdisMult, the simulation is trivial.

Case II: If one of the senders Pk or Pm is malicious. By the security of semi-
honest OPE, ∃ a simulator SsOPE, for a corrupt sender such that with input b, c2,
it generates a view that is indistinguishable from the real view of the corrupt
sender. Let Ss be the simulator for disMult for a corrupt sender. Sr invokes
FdisMult with input b, c2. If it receives DP, it outputs DP and terminates. Else, it
runs SsOPE and replaces the communications by Fjmp4 invocations. For this SsOPE

executes SAjmp4. The view generated by Ss is indistinguishable from a corrupt
sender’s view. If not, then it implies that the view generated by SsOPE is not
indistinguishable, which contradicts the security of OPE.
Subcase I: If one of the receivers is semi-honest, since the simulator knows all
the inputs to the FdisMult, the simulation is trivial.
Subcase II: If the other sender is semi-honest, the simulation proceeds similar to
the simulation of a malicious sender.

Multiplication Functionality: The ideal functionality for mult (Fig. 4) appears
in Fig. 30.

Attaining GOD Beyond Honest Majority With Friends and Foes 55

Fmult interacts with the parties in P and the adversaries SA and SAH .
– Fmult receives (Input, JxKs, JyKs) from Ps ∈ P.

– Let P ∗ be the malicious party controlled by SA.

– Fmult randomly picks ⟨αz⟩ij ∈ Z2ℓ , for 1 ≤ i < j ≤ 4 and computes αz =
∑
(i,j)

⟨αz⟩ij .

– Fmult computes JzKs = (βz, ⟨αz⟩s) where βz = x · y + αz, for each Ps ∈ P.

– Fmult sends JzKs to SA, SAH , and receives continue or abort with (Select,D) from
SA. Here, D denotes the pair of parties that SA wants to choose as dispute pair.

– If Fmult receives continue, set msgs = JzKs , for each Ps ∈ P.

– Else if Fmult receives abort, then:
– If P ∗ ∈ D, then set DP = D and msgs = DP for each Ps ∈ P.

– Else set DP = P\D and msgs = DP for each Ps ∈ P.

Output: Send (Output,msgs) to Ps ∈ P.

Functionality Fmult

Fig. 30: Ideal functionality for evaluating a multiplication gate

TripGen Simulator: The simulator for tripGen(Fig. 6) appears in Fig. 31.

Malicious Simulation Let Pi be the maliciously corrupt party, and let Pj =

Pi+1, Pm = Pi+2, Pk = Pi+3.
– SA has ⟨αx⟩is, ⟨αy⟩is ∀s ∈ {j, k,m}.
– Simulation for S2 terms: SA initializes ⟨τu,v⟩is = ⟨αx⟩is⟨αy⟩is if (u, v) = (i, s) and
⟨τu,v⟩is = 0, otherwise.

– Simulation for S1 terms:
1. SA receives δ1i from Pi on behalf of Pk. SA executes the simulator SAdisZK for the

malicious prover case. SA sets ⟨δi⟩ik = δ1i and ⟨δi⟩is = 0, for all s ∈ {j,m}.
2. SA sends on behalf of Pj δ1j to Pi, SA executes the simulator SAdisZK where Pj

is the prover and Pi as the corrupted verifier. SA sets ⟨δj⟩ij = δ1j and ⟨δj⟩is = 0,
for all s ∈ {k,m}.

3. SA and Pi pick random δ2m, SA executes the simulator SAdisZK where Pm is the
prover and Pi is the corrupted verifier. SA sets ⟨δm⟩im = δ2m and ⟨δm⟩is = 0, for
all s ∈ {j, k}.

4. SA and Pi pick random δ2k, SA executes the simulator SAdisZK where Pk is the
prover and Pi is the corrupted verifier. SA sets ⟨δk⟩ik = δ2k and ⟨δk⟩is = 0, for
all s ∈ {j,m}.

5. SA continues if DP is not the output

– Simulation for S0 terms:
1. SA executes SAdisMult for all the six terms of the summands S0 for computing the

terms of the ⟨αx⟩uv · ⟨αy⟩pq, with Pi as malicious party.

2. SA sets ⟨γuv,pq⟩is according to the protocol, if SAdisMult does not output DP.

– Pi outputs ⟨αxαy⟩.

Simulator SAtripGen,SAH

56 Hegde et al.

Semi-Honest Simulation Let Pj be the semi-honest party. SAH be the simulator.

– SAH has (⟨αx⟩is, ⟨αx⟩tl), for all s, t and view generated by SA and the output.

– Simulation for S2 terms: SAH initializes ⟨αxαy⟩kl = ⟨αx⟩kl · ⟨αy⟩kl, where l ̸= i, j, k.

– Simulation for S1 terms: SAH executes SAH disZK for maliciously corrupted Pi and
semi-honest Pj . SAH sets the shares according to the protocol execution, for all the
four terms δi, δj , δm, δk.

– Simulation for S0 terms: SA executes SAdisMult for all the six terms of the summands
S0 for computing the terms of the ⟨αx⟩uv · ⟨αy⟩pq, with Pi as malicious party.

Fig. 31: Simulator StripGen for tripGen

Multiplication Simulator: The simulator for mult(Fig. 4) appears in Fig. 32.

Malicious Simulation Let Pi be the maliciously corrupt party. SA invokes Fmult

with input JxKi, JyKi and receives JzKi where JvKi = (βv, ⟨αv⟩i).
Preprocessing:
– SA has ⟨αx⟩ij , ⟨αy⟩ij ∀j ∈ {i+ 1, i+ 2, i+ 3}.
– SA executes SAtripGen on input ⟨αx⟩i, ⟨αy⟩i and ⟨αxαy⟩i, with Pi as the malicious
party.

– SA outputs DP if SAtripGen does, else continue.
Online:
– SA has βx, ⟨αx⟩ij , βy, ⟨αy⟩ij , ⟨αxαy⟩ij , ⟨αz⟩ij ∀j ∈ {i+ 1, i+ 2, i+ 3}.
– SA computes ⟨βz⟩ij correctly, for all j ∈ {i+ 1, i+ 2, i+ 3}.
– SA executes SA⟨·⟩-Rec on input ⟨βz⟩ and output βz, with Pi as the corrupted party.

Semi-Honest Simulation Let Pj be the semi-honest party. SAH be the simulator.

Preprocessing
– SAH has (⟨αx⟩ik, ⟨αx⟩jm, ⟨αy⟩ik, ⟨αy⟩jm ∀j ̸= i&m ̸= i, j, k) and view generated by
SA.

– SAH executes SAH tripGen with Pi as the malicious party and Pj as the semi-honest
party.

Online
– SAH executes SAH J·K-Rec on ⟨βz⟩, with Pi as the malicious party and Pj as the
semi-honest party.

Simulator Smult

Fig. 32: Simulator Smult for mult

Lemma 9 (Security). The protocol mult (Fig. 4), realizes Fmult (Fig. 30)
with computational security in the (Fsetup,F⟨·⟩-Rec,FdisZK,FdisMult)-hybrid model
against (1, 1)-FaF adversaries A, AH, controlling one one party each.

Proof. Let Pi be the malicious party, controlled by A.
Claim: The simulator SA, described in Fig. 32, generates a transcript indis-

tinguishable from Pi’s view.

Attaining GOD Beyond Honest Majority With Friends and Foes 57

The transcript generated by SA in the preprocessing phase is the same as
the transcript generated by SA of tripGen, which is indistinguishable from Pi’s
view of the pre-processing phase.
SA generates the transcript of the online phase by executing the simulator

of ⟨·⟩-Rec. Therefore, the transcript is indistinguishable.
Let Pj be the semi-honest party, controlled by AH.
It is obvious due to the same reason mentioned above that the simulator SAH ,

described in Fig. 32, generates a transcript indistinguishable from Pj ’s view.

C.3 4PC FaF Protocol

4PC FaF Functionality: The ideal functionality for 4PC (Fig. 34) appears in
Fig. 33.

F4PC-FaF interacts with the parties in P and the adversaries SA and SAH . Let xs, ys be
the input and output corresponding to a party Ps respectively, i.e. (y0, y1, y2, y3) =
f(x0, x1, x2, x3).
– F4PC-FaF receives (Input, xs) from Ps ∈ P and computes
(y0, y1, y2, y3) = f(x0, x1, x2, x3).

Output: Send (Output, ys) to Ps ∈ P.

Functionality F4PC-FaF

Fig. 33: Ideal functionality for evaluating f in 4PC FaF Model

4PC FaF Protocol: The 4PC FaF protocol is as shown in Fig. 34.

At each stage, the verification of all parallel instances of jmp3, jmp4 for every pair of
parties is performed simultaneously with the send, in the same round.
Preprocessing Phase:

– For each input gate u, parties execute preprocessing phase of J·K-Sh to obtain ⟨αu⟩.
– For each addition gate with input wires u, v and output wire w, parties locally
compute ⟨αw⟩ = ⟨αu⟩+ ⟨αv⟩.

– For each multiplication gate with input wires u, v and output wire w, parties
execute preprocessing phase of mult to obtain ⟨αw⟩ and ⟨αuαv⟩.

– For each output gate w, parties execute the preprocessing phase of J·K-Rec.
Online Phase:

– For each input v held by a client, parties invoke the online phase of J·K-Sh to obtain
JuK.

– For each addition gate with input wires u, v and output wire w, parties locally
compute JwK = JuK + JvK.

Protocol 4PC

58 Hegde et al.

– For each multiplication gate with input wires u, v and output wire w, parties
holding (JuK, JvK, ⟨αuαv⟩, ⟨w⟩) execute the online phase of mult to obtain JwK.

– For each output gate, parties holding JwK execute the online phase of J·K-Rec to
reconstruct w towards the designated client.

2PC Phase:

If any dispute pair DP is identified either in preprocessing or online phase, execute
ABY2.0 with TP, where in the latter case (dispute is identified in the online), all the
parties perform share conversion as described in §6 to ensure 2PC sharing among
parties in TP.

Fig. 34: 4PC FaF Protocol

Malicious Let Pi be the maliciously corrupted party.

– SA executes SAJ·K (simulator for the input sharing) for the input gates for corrupt
Pi.

– SA calls the functionality F4PC-FaF with Pi’s input, SA holds the inputs of Pi due
to the replication of the sharing semantic. and gets output z (say).

– For each output wire z, SA emulates Fsetup to generate ⟨αz⟩. It computes the com-
mitment of ⟨αz⟩ on behalf of the honest parties and emulates Fjmp4 with respective
inputs. If jmp4 fails, SA emulates 2PC.

– Since addition is local, nothing to simulate.

– SA executes SAmult for corrupt Pi.

– Corresponding to the consistent openings, SA executes SA⟨·⟩-Rec for βz which is
made consistent with the output z for the output wire obtained from F4PC-FaF

a.

– SA opens the commitments of ⟨αz⟩ corresponding to the honest parties shares of
the output wire.

Semi-Honest Let Pj be the semi-honest party.

– SAH has inputs of Pi, Pj and the view of SA, and the outputs of Pi, Pj .

– SAH executes SAH J·K for the input gates for malicious Pi and semi-honest Pj .

– SAH executes SAHmult for malicious Pi, and semi-honest Pj .

a W.l.o.g we assume that the output is a multiplication gate. If not, then we execute
this step for the multiplication gates which act as input to the output gate(s).

Simulator SA
Pi , SAH

Fig. 35: Simulator SAPi for 4PC

The proof sketch of Theorem 4: We provide the proof in (Fsetup,FOPE)-hybrid
model. In particular, the proof follows a sequence of hybrids corresponding to
each subprotocol as shown in Fig. 35. We provide the intuition for FaF security
first followed by the proof. During the preprocessing phase of sharing, each pair
of parties (Pi, Pj) pick a random value ⟨αv⟩ij non-interactively. This ensures that
each party misses 3 shares, and every pair of parties misses 1 share respectively.
Since in the online phase βv received by all the parties (to complete JvK-sharing)

Attaining GOD Beyond Honest Majority With Friends and Foes 59

is computed by masking v with αv, the masked value βv is indistinguishable from
a random value, even for a pair of parties, due to the missing share of αv. This
is precisely the scenario to be tackled for (1, 1)-FaF security, where the malicious
party can send its view to the semi-honest party to breach privacy. The same
argument holds for each addition gate evaluation, since it is performed locally
by parties on their own J·K shares.

We will give an intuition of the multiplication protocol’s security based on its
component subprotocols and using the argument above for privacy of J·K-sharing.
During the preprocessing, tripGen is invoked, which in turn invokes disMult to
compute terms of S0 of the type ⟨αx⟩ij⟨αy⟩km. Here, the security holds in the
FOPE-hybrid model. Following this, the verification phase of disMult requires
broadcasting hash values of the output received by Pi, Pj to check consistency,
whose security is ensured by the underlying hash function. In case any incon-
sistency is identified at this stage, the parties reveal their inputs to the others.
Since the inputs of the parties to this protocol are ⟨αx⟩ij and ⟨αy⟩km, which
are randomly picked even before the inputs to the actual circuit are available,
such a revelation of inputs is secure. Moreover, after this stage a dispute set
is identified which is ensured to include the malicious party, and the protocol
either terminates (fairness) or moves to semi-honest 2PC protocol (GOD). In
the latter case, security of the 2PC protocol ensures the security of our GOD
protocol. Further, computation of summands of S1 of the type ⟨αx⟩ij⟨αy⟩ik is
secure from the perspective of the malicious party, since δ1i (received by Pk)
and δ2i (held by Pj , Pm) are random values, they do not leak Pi’s shares. To
understand its security in the FaF model informally, we consider the following
cases. First, if one of the corrupted parties is Pi, then security trivially holds.
If the corrupted parties are Pj , Pm, together they hold δ2i , which is a random
value. Finally, if the corrupted parties are Pk, Pm, the semi-honest party can
learn δ1i + δ2i which is equivalent to learning

∑
(j,k)

⟨αx⟩ij · ⟨αy⟩ik. However, due

to the term ⟨αx⟩ij · (⟨αy⟩ik + ⟨αy⟩im) + (⟨αx⟩ik + ⟨αx⟩im) · ⟨αy⟩ij , of which 2
terms, specifically ⟨αx⟩ij and ⟨αy⟩ij are unknown to the semi-honest party, thus
ensuring privacy of Pi’s shares. Finally, the summands of S2 require local com-
putation, this privacy holds trivially. During the online phase of multiplication,
parties perform local computation of ⟨βz⟩, which is z masked with αz and open
it towards all the parties. Here, the privacy of z is ensured by the randomness
of αz, which follows from the same argument as described for sharing.

Finally, the last step in protocol 4PC requires reconstruction of the output
towards all the parties. During the preprocessing phase of J·K-Rec to reconstruct
the output v towards all, parties commit to their shares of ⟨αv⟩. The hiding
property of the underlying commitment scheme ensures that the commitment
values don’t leak the shares of individual parties and thus ensures privacy of αv.
As described in §4.1, if the computation during the preprocessing phase fails,
parties do not open the commitments to their shares, thus ensuring v is not
obtained by any party. To extend the security to GOD, parties resort to 2PC
semi-honest protocol, whose security ensures the security of our protocol. On
the other hand, if the preprocessing phase of J·K-Rec succeeds then the protocol

60 Hegde et al.

ensures fairness as follows. In the online phase, each party receives opening of
every share of αv from 2 parties, at least one of which is ensured to be (semi)
honest, and hence provides an opening which is consistent with the commitment
agreed upon in the preprocessing phase. This ensures that every party receives
the output v, thus achieving fairness.

Proof of Theorem 4.

Proof. The simulator for 4PC appears in Fig. 35. The real world view of the pro-
tocol is indistinguishable from the simulated view. We prove it using a sequence
of hybrids. Note that, adversaries’ views in J·K-Sh are indistinguishable from the
simulated views in FSh (Lemma 6) and adversaries’ views in mult are indistin-
guishable from the simulated views in Fmult (Lemma 9). Finally, the simulators
receive the output from the functionality F4PC-FaF, and either simulate J·K-Rec or
execute the simulator for semi-honest 2PC ABY2.0. In both cases, the simulated
views are indistinguishable from the real views. Consider the following hybrids.

Hybrid0: 4PC: Execution of the 4 party protocol in the real world.
Hybrid1: FSh-Computation-Output: In this hybrid, sharing the inputs is

performed using FSh functionality followed by the real execution of the compu-
tation and output reconstruction as per 4PC. The distributions of Hybrid0 and
Hybrid1 are indistinguishable due to Lemma 6.

Hybrid2: FSh-Fmult-Output: In this hybrid, sharing the inputs is done using
FSh functionality and the multiplication is performed using Fmult functionality,
followed by the real execution of the output reconstruction as per as per 4PC. The
distributions of Hybrid1 and Hybrid2 are indistinguishable due to Lemma 9.

Hybrid3: F4PC-FaF - Execution of the 4 party protocol in the ideal world.
The distributions of Hybrid2 and Hybrid3 are indistinguishable, since the
simulator for 4PC internally invokes the simulator for ⟨·⟩-Rec (as described in
Fig. 35) which is indistinguishable from F⟨·⟩-Rec as shown in Lemma 7.

Thus, we conclude that distribution of Hybrid0 which is the protocol execu-
tion in the real world is computationally indistinguishable from the distribution
of Hybrid3 corresponding to the execution in the ideal world.

D Challenges in Extension to nPC

We note that extending our 4PC protocol in FaF-model for arbitrary number of
parties to handle more than one malicious corruption is non-trivial. We list the
challenges involved below:

– Depending on the values of t and h∗, a share will be commonly held by a
larger subset of parties (compared to our protocol where every pair holds a
common share). This will have two immediate implications as below.
• The joint message passing primitives (jmp3, jmp4) in our protocol operate
under the assumption of a pair of parties holding a common value. In
the protocol for n parties, a new joint message passing primitive would
be required for dispute identification.

Attaining GOD Beyond Honest Majority With Friends and Foes 61

• The categorisation of summands in our triple generation protocol (tripGen)
into types S0, S1, S2 depends on the threshold of sharing. In the n party
case, depending on the threshold, the categorisation of summands will
vary and may require additional techniques for tackling each category.

– If the number of malicious parties is more than one, then the disZK protocol
(used for handling summands of S1) must tackle a malicious prover and ma-
licious verifier(s) simultaneously. This may need additional primitives such
as verifiable secret sharing (VSS) as used in [21], which is unknown in the
FaF setting.

– The technique used to tackle summands of type S0, when extended to n par-
ties may require parallel executions of multiple OPEs in disMult. Moreover,
the consistency may now require to hold among a larger subset of parties
(holding a common share). Thus, the identification of a dispute pair is much
more challenging.

– Even after the identification of a dispute pair, an execution of a semi-honest
protocol need not be sufficient in the n party setting if the number of the ma-
licious parties is more than one. A potential approach may require iterative
runs of FaF secure protocols with reduced threshold. For instance, running
a n− 2 party (t− 1, h∗)-FaF secure protocol after eliminating the parties in
dispute pair.

We leave designing an efficient generic protocol in FaF setting as a potential
future work. In fact, it is interesting to even design a (t, 1)-FaF secure protocol,
where the number of semi-honest corruptions h∗ is restricted to 1, as the (semi)
honest parties may not collude.

Secondly, in this work, we design the PPML building blocks necessary for
PPML inference. For training however, additional building blocks such as garbled
circuit based protocols and efficient protocols for conversions betweenArithmetic-
Boolean-Yao [37] domains are required in FaF setting. It is interesting to design
the entire protocol suit to handle PPML training which we leave as a potential
future work.

E Communication Complexity Analysis

In this section, we analyse the communication complexity of our protocols. Note
that the lemmas are described in terms of the OPE instance relying on jmp4
and corresponding to two senders and two receivers described in disMult (§5.2).
Unless stated otherwise, OPE refers to the instance relying on jmp4.

E.1 Sharing and Reconstruction Protocols

Lemma 10 (Communication). Protocol J·K-Sh requires 2 rounds and commu-
nication of 3 elements in the online phase.

Proof. The preprocessing phase is non-interactive. In the online phase, Pi sends
βv to Pj requiring one round and a communication of 1 element. This is followed

62 Hegde et al.

by jmp4-send by Pi, Pj which requires one round and a communication of 2
elements.

Lemma 11 (Communication). Protocol J·K-Rec requires 1 round and a com-
munication of 12κ bits in the preprocessing phase, whereas 1 round and a com-
munication of 24 elements in the online phase, for reconstructing a value towards
all the parties.

Proof. To robustly reconstruct a J·K-shared value v towards all the parties, in the
preprocessing phase, each pair of parties Pi, Pj execute jmp4 to send Com(⟨αv⟩ij)
to the other two parties, in parallel. This together requires one round and a
communication of 12κ bits.

In the online phase, each pair of parties Pi, Pj , where 1 ≤ i < j ≤ 4, open the
commitment to the other two parties in parallel, which requires a communication
of 4 elements from each pair Pi, Pj . Since six distinct Pi, Pj pairs open the com-
mitments in parallel, the online phase requires one round and a communication
of 24 elements.

Lemma 12 (Communication). Protocol ⟨·⟩-Rec requires three rounds and com-
munication of 7 elements to reconstruct a value towards all parties.

Proof. To reconstruct a value v towards all the parties, all the invocations of jmp3
towards P3 are done in parallel, which requires one round and a communication
of 3 elements. Following this, all the invocations of jmp3 towards P4 are done in
parallel, which requires one round and a communication of 2 elements. Now, P3

and P4 can reconstruct the value v. Further, P3, P4 execute jmp4 to send v to
P1, P2, which requires one round and communication of 2 elements.

E.2 Multiplication Protocols

Lemma 13 (Communication). Protocol disMult requires 1 instance of OPE.

Proof. The protocol disMult described in Fig. 5 requires 1 instance of OPE relying
on jmp4. This essentially incurs a cost equivalent to 2 instances of standard OPE.
However, for all the subsequent protocols, we provide the costs in terms of the
instance of OPE relying on jmp4.

Lemma 14 (Communication). Protocol tripGen requires 6 OPE invocations
and a communication of 4 elements.

Proof. Terms in the summand of S2 are computed locally, and parties generate
the ⟨·⟩-share of each of the term non-interactively. The summand of S1 are
computed in 4 parts, each of which is computed by a dedicated party. Each party
adds the 6 terms of the summand and additively shares this computed value
with only 1 element communication, followed by a distributed zero-knowledge
proof, which is amortized across multiple executions of tripGen. Due to this
amortization, disZK does not incur any additional overhead. This incurs a total
cost of 4 elements for the summands of S1. Terms in the summand of S0 are
computed using disMult, the cost for which is given in Lemma 13. There are 6
such terms, that aggregates to 6 invocations of OPEs.

Attaining GOD Beyond Honest Majority With Friends and Foes 63

Lemma 15 (Communication). Protocol mult requires 6 instances of OPE and
a communication of 4 elements in the preprocessing phase, whereas 3 rounds and
a communication of 7 elements in the online phase.

Proof. In the preprocessing phase, parties locally sample ⟨·⟩-sharing of αz, which
is non-interactive. Further, parties invoke tripGen, which requires 6 instances of
OPEs for 6 instances of disMult and a communication of 4 elements for the
summands in S1. In the online phase, parties compute the ⟨·⟩-sharing of βz,
which is non-interactive. This is followed by an invocation of ⟨·⟩-Rec Fig. 3,
which requires three rounds and a communication cost of 7 elements (Lemma
12).

Lemma 16 (Communication). 4PC achieves GOD from our fair protocol § 6;
Fig. 34 without additional overhead in the online phase, and with additional 12
instances of standard OPEs in the preprocessing phase.

Proof. To GOD variant of our protocol evaluates the circuit in segments, where
each segment is executed similar to our fair protocol. Hence, either each segment
succeeds, or a dispute pair is identified. In the former case, the cost of evaluating
the segment is equivalent to that incurred in the fair variant. In the latter case,
to complete the computation, the failed segment is rerun and all the following
segments are executed using the state-of-the-art semi-honest 2PC of [70] with
the parties outside the dispute pair. ABY2.0 [70] operates in the preprocessing
paradigm and has an online cost of 2 elements. Although this may increase the
cost per multiplication gate of the failed segment to 9 elements (7 elements for
our fair protocol, and an additional 2 elements for rerunning 2PC of ABY2.0),
note that this is a one-time cost incurred for a single segment. Every segment fol-
lowing this incurs a cost of only 2 elements per multiplication gate, thus resulting
in a GOD protocol with the same online cost as that of the fair variant. Further,
since [70] operates in the preprocessing paradigm, to complete the computation,
parties need the preprocessing data for the 2PC protocol. Parties cannot do the
preprocessing after identifying the dispute pair, as this may happen in the on-
line phase. To circumvent this, every pair of parties executes the preprocessing
of ABY2.0 [70] along with the preprocessing phase of our protocols. The pre-
processing cost of a multiplication gate in ABY2.0 is 2 instances of OPE. Since
every pair of parties compute the preprocessing data for ABY2.0, our protocol’s
GOD version incurs an extra cost of 12 instances of standard OPEs (without
jmp4) in the preprocessing phase.

F Building Blocks for Applications

We design the following tools for the applications considered, that is, liquidity
matching and PPML inference– (i) input sharing and output reconstruction in
SOC setting, ii) bit extraction, iii) bit to arithmetic conversion, iv) bit injection,
v) ReLU and vi) dot product with truncation. Since we consider the applications
in the SOC setting, we refer the parties who execute the computation as servers.

64 Hegde et al.

The J·K-sharing over Boolean ring is referred as Boolean sharing and denoted
as J·KB. Additionally, our protocols use primitives referred to as joint sharing
(jsh and jshRSS), which allow a pair of servers to generate a J·K and ⟨·⟩-sharing
respectively, of a commonly known value. Below we provide the details of the
building blocks.

F.1 Sharing and Reconstruction Protocol

J·K-ShSOC
(Fig. 36) enables a user U to J·K-share its input v. Similarly, protocol

J·K-RecSOC (Fig. 36) allows the servers to reconstruct a value v towards U. These
are similar in spirit to J·K-Sh (Fig. 1) and J·K-Rec (Fig. 2) respectively.

To facilitate U to share v, servers generate a ⟨·⟩-sharing of a random value
αv non-interactively via shared key setup and reconstruct αv towards U. Then
U can generate and send βv to all the servers to complete JvK. Elaborately, each
pair of servers commit to their common share of αv and jmp4-send it to the other
two servers. For a common share, say between Pi, Pj , the shared key setup is
used to generate a common commitment. At this point either a DP is identified
or every server holds the commitments for all shares of αv. To ensure that the
reconstruction of αv towards U is always successful, each server sends all the
commitments to U (for optimization, two servers can send the commitments and
the remaining two the hash of the commitments). Since at most one server can
be malicious, U accepts the value that forms a majority. Following this, every
pair of servers open their common share of αv to U. U accepts the consistent
opening and reconstructs αv. Finally, U sends βv = v + αv to all the servers.
Servers ensure that the sharing is correct by broadcasting the received value. If
there exists a majority, accept that value, else set a default value.

To reconstruct a value v towards U, servers execute the preprocessing of
J·K-Rec to agree upon the committed values of the shares of αv. Each server
sends βv and the commitment of all the shares of αv. Each pair of servers open
their common share of αv to U. U accepts the consistent opening and reconstructs
αv. Finally, it computes v = βv − αv.

If at any point, a DP is identified in either of the protocols, then servers signal
the DPs’ identity to U. U selects TP = P\DP as the one forming a majority and
shares its input using additive sharing to the servers in TP, who compute the
function output and send it back to U.

• Input, Output: U has v. The servers output JvK.
• Primitives: jmp4-send and Com (§2).

Input Sharing:

– Every pair of severs, (Pi, Pj) sample ⟨αv⟩ij ∈ Z2λ , using their common key.

– Every pair of servers, (Pi, Pj) jmp4-send Com(⟨αv⟩ij) to the remaining two servers.

Protocol J·K-ShSOC(U, v) and J·K-RecSOC(U, JvK)

Attaining GOD Beyond Honest Majority With Friends and Foes 65

– Each server sends Com(⟨αv⟩ij), where 1 ≤ i < j ≤ 4, to U who accepts the values
that form majority.

– Every pair of severs, (Pi, Pj) open ⟨αv⟩ij towards U.

– U accepts the consistent openings, recovers ⟨αv⟩ij for all i, j. It computes βv =
v +

∑
(i,j)

⟨αv⟩ij , and sends βv to all four servers.

– Servers broadcast the received value and accept the majority value if it exists, and
a default value, otherwise.

• Input, Output: The servers input JvK. U outputs v.

• Primitives: jmp4-send and Com (§2).

Output Reconstruction:

– Servers execute the preprocessing of J·K-Rec(P, JvK) to agree upon commitments
of ⟨αv⟩ij , for all i, j.

– Each server sends βv and commitments on ⟨αv⟩ij , for every i, j, to U, who accepts
the values forming majority.

– Pi, Pj for all i, j open ⟨αv⟩ij to U.

– U accepts the consistent opening and computes v = βv −
∑
(i,j)

⟨αv⟩ij .

Fig. 36: 4PC Input Sharing and Output Reconstruction in SOC setting

Lemma 17 (Communication). Protocol J·K-ShSOC
for a value v requires a

communication of 4 rounds and 36κ+ 16λ bits and 4 element broadcasts.

Proof. Every pair of servers, (Pi, Pj) non-interactively sample ⟨αv⟩ij . This is
followed by a jmp4 execution by each pair of servers, that costs 1 round and
6 × 2κ bits of communication. Each server sends Com(⟨αv⟩ij) for all i, j to U,
simultaneously each pair of servers open their common share to U, that adds 1
round and 24κ+ 12λ bits of communication. U computes βv and sends βv to all
the servers in the 3rd round that cost 4λ bits of communication. At the end,
all the servers broadcast their received value to agree on a common value, that
adds 4 element broadcast to the communication.

Lemma 18 (Communication). Protocol J·K-RecSOC for a value v requires a
communication of 2 rounds and 36κ+ 16λ bits.

Proof. Each pair of servers (Pi, Pj) run jmp4 on Com(⟨αv⟩ij), that incurs a cost
of 1 round and 12κ bits. Then every server sends βv and Com(⟨αv⟩ij), for all i, j
to U, that adds 1 round and 4λ+24κ bits of communication, simultaneously, each
pair of servers, (Pi, Pj) open ⟨αv⟩ij to U, that costs 12λ bits of communication.

F.2 Dot Product Protocol

Given the J·K-sharing of vectors −→x and −→y , protocol DotP (Fig. 37) allows servers
to generate J·K-sharing of z = −→x ⊙−→y robustly, where ⊙ represents the dot prod-
uct operation. Here, J·K-sharing of a vector−→x of size n indicates that each element

66 Hegde et al.

xi ∈ Z2λ of −→x , for i ∈ [n], is J·K-shared. We borrow ideas from BLAZE [71] for
obtaining an online communication cost independent of n and use jmp3 and jmp4
primitives to ensure either success or TP selection. At a high-level, n-independent
online phase is achieved by reconstructing the aggregated βz (masked values),
thanks to the linearity of J·K-sharing. Hence, the cost of a dot product is the
same as a robust reconstruction in the online phase. Our dot product protocol
essentially offloads the call to n parallel instances of tripGen to the preprocessing
phase. Contrary to SWIFT, we cannot combine the n instances of tripGen since
it requires OPE executions that are not aggregatable. The protocol appears in
Fig. 37.

• Input and Output: The input is J−→x K = {JxsK}s∈[n], J−→y K = {JysK}s∈[n]. The
output is J−→x ⊙−→y K.

• Primitives: Protocol tripGen (§5.2; Fig. 6) and ⟨·⟩-Rec (§4.2; Fig. 3).

Preprocessing:

– Each Pi, Pj where 1 ≤ i < j ≤ 4 sample random ⟨αz⟩ij ∈ Z2λ .

– Servers invoke tripGen(P, ⟨αs
x⟩, ⟨αs

y⟩) and obtain ⟨αs
xα

s
y⟩, for s ∈ [n].

Online:

– Each Pi, Pj for 1 ≤ i < j ≤ 4 and (i, j) ̸= (1, 2) compute ⟨βz⟩ij such that ⟨βz⟩ij =
n∑

s=1

(−βs
x ⟨αs

y⟩ij − βs
y ⟨αs

x⟩ij + ⟨αs
xα

s
y⟩ij) + ⟨αz⟩ij .

– P1, P2 compute ⟨βz⟩12 =
n∑

s=1

(βs
xβ

s
y − βs

x ⟨αs
y⟩12 − βs

y ⟨αs
x⟩12 + ⟨αs

xα
s
y⟩12) + ⟨αz⟩12.

– Servers invoke ⟨·⟩-Rec and obtain βz.

Protocol DotP(P, (JxsK, JysK)s∈[n])

Fig. 37: Dot Product Protocol

Lemma 19 (Communication). Protocol DotP with feature size n requires a
communication of 4n elements and 6n instances of OPEs in the preprocessing
phase, whereas 3 rounds and a communication of 7 elements in the online phase.

Proof. In the preprocessing phase, servers locally sample ⟨·⟩-sharing of αs
z , which

is non-interactive. Further, servers invoke tripGen for each s ∈ [n], which requires
a communication of 4n elements and 6n instances of OPEs. In the online phase,
servers compute the ⟨·⟩-sharing of βz, which is non-interactive. This is followed
by an invocation of the ⟨·⟩-Rec (Fig. 3) for the aggregated βz, which requires
three rounds and a communication cost of 7 elements (Lemma 12).

F.3 Joint RSS Sharing Protocol

Protocol jshRSS enables a pair of (unordered) servers (Pi, Pj) to jointly generate
a ⟨·⟩-sharing of value v ∈ Z2λ known to both of them. Servers execute the protocol

Attaining GOD Beyond Honest Majority With Friends and Foes 67

non-interactively. This makes the protocol robust. The protocol is described in
Fig. 38.

• Input and Output: The input is v to Pi, Pj . The output is ⟨v⟩ to all the servers.

– Pi, Pj compute ⟨v⟩ij = v.

– All other pair of servers Pk, Pm set ⟨v⟩km = 0, for all (k,m) ̸= (i, j).

Protocol jshRSS

Fig. 38: ⟨·⟩-sharing a value v ∈ Z2λ jointly by Pi, Pj

Lemma 20 (Communication). Protocol jshRSS of a value v is non-interactive.

Proof. All the operations in protocol Fig. 38 are local and do not require any
communication.

F.4 Joint Sharing Protocol

Protocol jsh enables a pair of (unordered) servers (Pi, Pj) to jointly generate a
J·K-sharing of value v ∈ Z2λ known to both of them. Servers execute the protocol
non-interactively. This makes the protocol robust. The protocol is described in
Fig. 39.

• Input and Output: The input is v to Pi, Pj . The output is JvK to all the servers.

– All the servers sample βv using their common key.

– Pi, Pj compute ⟨αv⟩ij = βv − v.

– All other pair of servers Pk, Pm set ⟨αv⟩km = 0, for all (k,m) ̸= (i, j).

Protocol jsh

Fig. 39: J·K-sharing a value v ∈ Z2λ jointly by Pi, Pj

Lemma 21 (Communication). Protocol jsh of a value v is non-interactive.

Proof. All the operations in protocol Fig. 39 are local and do not require any
communication.

F.5 Bit Extraction Protocol

The bit extraction protocol, BitExt allows servers to compute Boolean sharing of
the most significant bit (msb) of a value v from its arithmetic sharing JvK. Our
bit extraction uses the optimized 2-input Parallel Prefix Adder (PPA) circuit
proposed in [64] which works over bits, requiring the given arithmetic sharing to
be converted to Boolean, which is challenging due to the presence of 6 component

68 Hegde et al.

shares, each with λ bits. To tackle this challenge without blowing up the cost,
we use a series of full adders (FAs) in an optimized way as described below.
To compute the msb, servers use the optimized PPA circuit from ABY3 [64]
consisting of 2λ − 2 AND gates and having a multiplicative depth of log λ.
This circuit takes as input two Boolean values and outputs the msb of the sum
of these inputs. The value v whose msb has to be computed is expressed as
v = βv + (−αv) where αv =

∑
(i,j)

⟨αv⟩ij . For brevity of description, let x1 =

⟨αv⟩12, x2 = ⟨αv⟩13, x3 = ⟨αv⟩14, x4 = ⟨αv⟩23, x5 = ⟨αv⟩24, and x6 = ⟨αv⟩34.
Note that βv is held by all the servers and hence they can locally compute

Jβv[i]KB. Here βv[i] represents the ith bit of βv. Further, since each xk is held by
two servers, they execute jsh (Fig. 39) on each bit xk[i] to obtain Jxk[i]KB. Finally,
Jαv[i]KB = J

∑
k∈[6]

xk[i]KB is obtained from Jxk[i]KB using the Full Adder (FA) given

in ABY3. Here, FA(p[i], q[i], r[i])→ (c[i], s[i]), for all i ∈ {0, 1, . . . , λ− 1} is such
that p + q + r = 2c + s. Servers compute Jαv[i]KB simultaneously for all i ∈ [λ]
using FA as follows:

– (1) FA(x1[i], x2[i], x3[i])→ (c1[i], s1[i]); (2) FA(x4[i], x5[i], x6[i])→ (c2[i], s2[i]);
– (3) FA(c1[i− 1], s1[i], c2[i− 1])→ (c3[i], s3[i]); (4) FA(s2[i], c3[i− 1], s3[i])→

(c4[i], s4[i]);
– (5) PPA(2c4, s4)→ αv.

Here, the first two FA evaluations are run in parallel and the next two are
sequentially executed to compute J(2c1+s1+2c2+s2)[i]KB where 2c[i] = c[i−1]
and c[−1] = 0. Finally, servers compute msb(v) by running the optimized PPA
circuit on JβvKB and JαvKB.

• Input and Output: The input is JvK = (βv, ⟨αv⟩). The output is Jmsb(v)KB.
• Primitives: Protocol jsh (§F;Fig. 39), 4PC (§6; Fig. 34).

Preprocessing

– Servers compute Jαv[i]KB, where αv[i] is the ith bit of αv, in the following way: for
each i ∈ {0, . . . , λ− 1},
– Ps, Pt jsh ⟨αv⟩st[i], for all s, t.

– Servers execute FA(⟨αv⟩12[i], ⟨αv⟩13[i], ⟨αv⟩14[i]), FA(⟨αv⟩23[i], ⟨αv⟩24[i], ⟨αv⟩34[i])
parallelly, and obtain (c1[i], s1[i]), (c2[i], s2[i]) respectively.

– Servers execute FA(c1[i− 1], s1[i], c2[i− 1]) and obtain
(c3[i], s3[i]), where c1[−1] = c2[−1] = 0.

– Servers execute FA(s2[i], c3[i−1], s3[i]) and obtain (c4[i], s4[i]), where c3[−1] = 0.

– Servers compute Jαv[i]KB = J(2c4[i] + s4[i])KB, by evaluating PPA circuit on
J2c4[i]KB, Js4[i]KB.

Protocol BitExt

Attaining GOD Beyond Honest Majority With Friends and Foes 69

– Servers execute preprocessing for optimized PPA circuit.

Online

– Servers obtain Jmsb(v)KB by executing online phase of optimized PPA circuit on
βv[i] and αv[i].

Fig. 40: Maximum Bit Extraction of a value v

Lemma 22 (Communication). Protocol BitExt requires a communication cost
of (52λ+11λ log λ−8) bits communication and (72λ+12λ log λ−24) OT1s in the
preprocessing phase and require 3 log λ rounds and an amortized communication
of 14(λ− 1) bits in the online phase.

Proof. In the preprocessing phase, each pair of servers execute jsh, which is non-
interactive. BitExt requires evaluation of 4λ FA. This comprises 4λ AND gates.
Following this, the computation of a PPA circuit, that involves λ log λ AND gates
evaluation. Therefore, servers invoke mult for (4λ + λ log λ) AND gates, where
the cost of mult for a single AND gate is 11 bits and 12OT1s. Since one evaluation
of optimized PPA is required in online, the preprocessing of this is executed in
the offline. Optimized PPA consists of 2(λ − 1) AND gates, corresponding to
which servers execute tripGen for 2(λ−1) AND gates. Cost of tripGen for a single
AND gate is 4 bits and 12 OT1s. In total, this accounts for a communication
cost of 11(4λ + λ log λ) + 4 ∗ 2(λ − 1) bits i.e., (52λ + 11λ log λ − 8) bits and
12(4λ+ λ log λ) + 12 ∗ 2(λ− 1) = (72λ+ 12λ log λ− 24) OT1s.

In the online phase, servers execute the online phase of the optimized PPA
circuit, that is, the online phase of 2(λ− 1) AND gates, which incurs a commu-
nication cost of 14(λ− 1) bits and it requires 3 log λ rounds.

F.6 Bit to Arithmetic Protocol

Given the Boolean sharing of a bit b, denoted as JbKB, protocol Bit2A allows
servers to compute the arithmetic sharing JbRK where bR denotes the value b
over Z2λ . We present a protocol whose preprocessing cost is approximately half
of our multiplication protocol. Note that, βb is available to all the servers in
clear, so we consider JβbKi = (βb, 0, 0, 0) for all Pi. Servers preprocess ⟨αb

R⟩ and
non-interactively obtain the Jαb

RK. Finally, servers obtain JbRK by performing
a multiplication in the online phase. Thus the main challenge in Bit2A is to
compute ⟨αb

R⟩. We provide an efficient computation of ⟨αb
R⟩.

In the bit to arithmetic protocol, the conversion of Boolean shared value
to the arithmetic domain requires evaluation of arithmetic equivalent of x ⊕ y
which is x+ y− 2xy. Extending this to our protocol involves several sequential
multiplication operations, due to the 6 components in the Boolean sharing each
of which requires to be shared in the arithmetic domain. For efficiency, we make
non-black-box use of our sharing by leveraging the fact that each component is
jointly held by two parties. Here, we give the technical details, followed by the
complete bit to arithmetic protocol in Fig. Fig. 41. Recall that bR = (βb ⊕ αb)

R
=

70 Hegde et al.

βb
R + αb

R − 2βb
Rαb

R, where αb
R = (x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6)

R
. To proceed

with this computation, we denote αb
R = ∆1 + ∆2 − 2∆1 · ∆2 where ∆1 =

(x1 ⊕ x2 ⊕ x3)
R
and ∆2 = (x4 ⊕ x5 ⊕ x6)

R
. Due to the heavy notations involved,

we decompose the protocol into smaller components as described below.

Computation of ∆1: Note that, ∆1 = (x1 + x2 + x3 − 2x1x2 − 2x1x3 − 2x2x3 +
4x1x2x3). Since all the terms in ∆1 are held by P1, it can compute ∆1 locally.
The computation of ∆1 proceeds as follows. Servers first generate ⟨·⟩-sharing of
y1 = x1x2, y2 = x1x3, y3 = x2x3, and z1 = x1x2x3 = y1x3. From the above
shares servers locally obtain ⟨∆1⟩. We will discuss how servers compute ⟨y1⟩, ⟨z1⟩.
For y2 and y3, the computation proceeds similarly.

Computation of y1: Recall that x1 is joint RSS shared among all the servers
such that ⟨x1⟩ij = 0 ∀(i, j) ̸= (1, 2), similarly ⟨x2⟩ij = 0 ∀(i, j) ̸= (1, 3). P1, P2

pick ⟨y1⟩12 using their common key. P1 sends ⟨y1⟩13 = x1x2 − ⟨y1⟩12 to P3.
Furthermore, P1 gives a proof of honest computation using distributed zero-
knowledge protocol disZK (Fig. 14), where P2, P3 act as verifiers.

Computation of z1: Note that z1 = y1x3. ⟨·⟩-sharing of y1 and x3 is such
that ⟨y1⟩ij = 0 for all pairs excluding (i, j) = (1, 2), (1, 3) and ⟨x3⟩ij = 0 for
all pairs excluding (i, j) = (1, 4). P1, P2 and P1, P3 pick ⟨z1⟩12 and ⟨z1⟩13 using
their common keys. P1 computes ⟨z1⟩14 = y1x3 − (⟨z1⟩12 + ⟨z1⟩13) and sends it
to P4. P1 gives a proof of honest computation using distributed zero-knowledge
protocol disZK (Fig. 14), where P2, P3, P4 act as verifiers.

Servers locally obtain ⟨∆1⟩ = ⟨x1⟩+⟨x2⟩+⟨x3⟩−2⟨y1⟩−2⟨y2⟩−2⟨y3⟩+4⟨z1⟩.
Note that, ⟨∆1⟩ij = 0 for all i ̸= 1. Computation of ∆2: ∆2 = (x4 ⊕ x5 ⊕ x6) =
z2 + x6 − 2z2x6, where z2 = x4 + x5 − 2y4, and y4 = x4x5. Let z3 = z2x6. First
we will discuss the computation of y4.

Computation of y4: Note that, x4 and x5 is joint RSS shared among all the
servers such that ⟨x4⟩ij = 0 ∀(i, j) ̸= (2, 3), similarly ⟨x5⟩ij = 0 ∀(i, j) ̸= (2, 4).
The computation is similar to the computation of y1. Finally, servers obtain ⟨y4⟩
such that ⟨y4⟩ij = 0 for all excluding (i, j) = (2, 3), (2, 4).

Computation of z2: Servers compute ⟨z2⟩ = ⟨x4⟩+ ⟨x5⟩ − 2⟨y4⟩.
Computation of z3: Observe that ⟨z2⟩ij = 0 for all pairs (i, j) ̸= (2, 3), (2, 4).

Therefore, z3 = x6(⟨z2⟩23 + ⟨z2⟩24). We set y5 = x6⟨z2⟩23 and y6 = x6⟨z2⟩24 so
that computation of y5 and y6 can be done locally by P3 and P4 respectively. Here
we obtain ⟨z3⟩ by locally adding shares of y5 and y6. Furthermore, ⟨z3⟩ij = 0 for
all pairs (i, j) ̸= (2, 3), (2, 3), (3, 4).

Computation of ∆1 · ∆2: Recall that servers obtain ⟨∆1⟩ and ⟨∆2⟩ such that
⟨∆1⟩ij = 0 if i ̸= 1 and ⟨∆2⟩ij = 0 if i = 1. Therefore, ⟨∆1∆2⟩ has the following
non-zero terms

∑
j∈{2,3,4}

⟨∆⟩1j⟨∆2⟩23 + ⟨∆⟩1j⟨∆2⟩24 + ⟨∆⟩1j⟨∆2⟩34. Out of these

nine terms P2 computes ⟨∆1⟩12⟨∆2⟩23, ⟨∆1⟩12⟨∆2⟩24 and share with P1, P3,
P4. Similarly, P3, P4 computes ⟨∆1⟩13⟨∆2⟩23, ⟨∆1⟩13⟨∆2⟩34 and ⟨∆1⟩14⟨∆2⟩24,
⟨∆1⟩14⟨∆2⟩34 and share with P1, P2, P4 and P1, P2, P3 respectively. For the re-
maining terms servers execute disMult. For each such terms, 2 OPEs are required.
So, total 6 OPEs are needed.

Attaining GOD Beyond Honest Majority With Friends and Foes 71

Finally, servers obtain ⟨αb
R⟩. Now in the online phase, to compute bR =

βb
R+αb

R−2βb
Rαb

R. Since, Jβb
RK = (βb, 0) and Jαb

RK = (0, αb), servers perform
a multiplication and obtain JbRK.

• Input and Output: The input is JbKB and the output is JbRK.
• Primitives: Protocol mult, tripGen, disZK (Section 5;Fig. 6, Fig. 4, Section 2
;Fig. 14).

Preprocessing:

Computation of ∆1:
– P1, P2 pick ⟨y1⟩12, ⟨z1⟩12, P1, P3 pick ⟨y2⟩13, ⟨z1⟩13, and P1, P4 pick ⟨y3⟩14 using
their respective common keys.

– P1 computes ⟨y1⟩13 = x1x2 − ⟨y1⟩12, ⟨y2⟩14 = x2x3 − ⟨y2⟩13, ⟨y3⟩12 = x1x3 −
⟨y3⟩14, ⟨z1⟩14 = x1x2x3 − ⟨z1⟩12 − ⟨z1⟩13.

– P1 sends ⟨y3⟩12 to P2, ⟨y1⟩13 to P3, and ⟨y2⟩14, ⟨z1⟩14 to P4. Rest of the shares of
y1, y2, y3, z1 is set to 0.

– Each pair of servers set ⟨∆1⟩ij = (
3∑

i=1

⟨xi⟩ij)− 2(
3∑

i=1

⟨yi⟩ij) + 4⟨z1⟩ij .

– Servers run disZK to verify P1’s honest behaviour.
Computation of ∆2:

– P2, P3 pick ⟨y4⟩23, ⟨y5⟩23 and P2, P4 pick ⟨y6⟩24 using their respective common keys.

– P2 sends ⟨y4⟩24 = x4x5 − ⟨y4⟩23 to P4. For all other pairs (i, j) ⟨y4⟩ij = 0.

– Every pair of servers locally obtain ⟨z2⟩ij = ⟨x4⟩ij + ⟨x5⟩ij − 2⟨y4⟩ij .
– Servers run disZK to verify P2’s honest behaviour.

– P3 sends ⟨y5⟩34 = x6⟨z2⟩23 − ⟨y5⟩23 to P4 and P4 sends ⟨y6⟩34 = x6⟨z2⟩24 − ⟨y6⟩24
to P3. Remaining pair of servers set the shares as 0.

– Each pair of servers set ⟨∆2⟩ij = ⟨z2⟩ij + ⟨x6⟩ij − 2(⟨y5⟩ij + ⟨y6⟩ij).
– Servers run disZK to verify P3, P4’s honest behaviour.

Computation of ∆1∆2:
– P2 computes and shares ⟨∆1⟩12⟨∆2⟩23 + ⟨∆1⟩12⟨∆2⟩24.
– P3 computes and shares ⟨∆1⟩13⟨∆2⟩23 + ⟨∆1⟩13⟨∆2⟩34.
– P4 computes and shares ⟨∆1⟩14⟨∆2⟩24 + ⟨∆1⟩14⟨∆2⟩34.
– Servers run disZK to verify P2, P3, andP4’s honest behaviour.

– Servers run disMult for ⟨∆1⟩12⟨∆2⟩34, ⟨∆1⟩13⟨∆2⟩24, and ⟨∆1⟩14⟨∆2⟩23.
– From prior steps, each pair of servers locally obtain ⟨∆1∆2⟩.

Each pair of servers set ⟨αb
R⟩ij = ⟨∆1⟩ij + ⟨∆2⟩ij − 2⟨∆1∆2⟩ij .

Online:

– Servers set Jβb
RK = (βb

R, 0) , where ⟨0⟩ = 0 for all pairs, and Jαb
RK = (0, αb

R).

Protocol Bit2A

72 Hegde et al.

– Let w = βb
Rαb

R. Servers non-interactively pick ⟨αw⟩ using their common keys.
Note that ααb

Rαβb
R = 0. Each pair of servers set ⟨βw⟩ij = −βb

R⟨αb
R⟩ij + ⟨αw⟩ij .

– Servers reconstruct βw and obtain JwK.
– Servers locally obtain JbRK = Jβb

RK + Jαb
RK − 2JwK.

Fig. 41: Boolean to Arithmetic Protocol

Simulation: Let P1 be the malicious server. Then SAP1 has x1, x2, x3. It can
correctly simulate computation of ∆1. For ∆2, P1 shares of P1 are all 0s, so
nothing to simulate. To compute ∆1∆2, SAP1 executes SAP1

disZK, SA
P1

disMult, and

for the online part it executes SAP1

⟨·⟩-Rec .

If p2 is semi-honest, SAH has x1, x2, x3, x4, x5, therefore it simulates till com-
putation of z2 by following the protocol correctly. For computing z3 and so ∆2,
it executes SAHdisZK with malicious P1 and semi-honest P2. To simulate the com-
putation of ∆1∆2 and the online phase SAHdisMult and SAH ⟨·⟩-Rec is executed.

Simulation for other corruption scenarios are similar, where appropriate sim-
ulators are executed.

Lemma 23 (Communication). Protocol Bit2A requires 13 elements and 3
OPEs in the pre-processing phase, and 3 rounds and 7 elements in the online
phase.

Proof. In the preprocessing phase, y1, y2, y3, y4, y5, y6 requires 6 elements, z1
requires 1 element, z2, z3 is obtained by local computation. Computation of
∆1∆2 needs 3 disMult and 6 elements communication. That incurs a total cost
of 13 elements and 3 OPEs. In the online phase, reconstruction of βw requires 3
rounds and 7 elements communication, rest of the computation is local.

F.7 Bit Injection Protocol

Given JbKB for a bit b, and JvK for v ∈ Z2λ , BitInj computes J·K-sharing of bv.
Towards this, servers first execute Bit2A on JbKB to generate JbK. This is followed
by servers computing JbvK by executing mult on JbK and JvK.

• Input and Output: The input is JbKB, JvK. The output is JbvK.
• Primitives: Protocol Bit2A (§F.6;Fig. 41), mult (§5; Fig. 4).

– Servers execute Bit2A run on JbKB and obtain JbK.
– Servers execute mult on JbK and JvK and get output JbvK.

Protocol BitInj

Fig. 42: Bit Injection Protocol

Attaining GOD Beyond Honest Majority With Friends and Foes 73

Lemma 24 (Communication). Protocol BitInj requires an amortized commu-
nication cost of 17 elements, 18 OPEs in the preprocessing phase and 6 round
and an amortized cost of 14 elements in the online phase.

Proof. For BitInj, given Boolean sharing of a bit b, Bit2A requires 13 elements,
3 OPEs and in the online phase 3 rounds and 7 elements (23). Bit2A is followed
by an execution of mult requires 4 elements, 6 OPEs in the preprocessing and 7
elements in the online phase. That incurs a total cost of 17 elements, 9 OPEs in
the preprocessing phase and in the online phase incurs a communication cost of
14 elements and 6 rounds.

F.8 ReLU Protocol

The ReLU function, relu(v) = max(0, v), can be viewed as relu(v) = b · v, where
bit b = 1 if v < 0 and 0 otherwise. Here b denotes the complement of b. Given
JvK, servers execute BitExt on JvK to generate JbKB. JbKB is locally computed as
JbKB = 1 ⊕ JbKB. Servers execute BitInj protocol on JbKB and JvK to obtain the
desired result.

Lemma 25 (Communication). Protocol relu requires an amortized commu-
nication cost of (69λ+ 11λ log λ− 8) bits, 9 OPEs, (72λ+ 12λ log λ− 24) OT1s
in the preprocessing phase and requires 3(log λ + 2) rounds and an amortized
communication cost of 28λ− 14 bits with fairness guarantee.

Proof. One instance of relu protocol comprises of execution of one instance
of BitExt, followed by BitInj. The cost, therefore follows from Lemma 22, and
Lemma 24.

F.9 Sigmoid Protocol

sig(v) = b1b2(v+1/2)+b2, where b1 = 1 if v+1/2 < 0 and b2 = 1 if v−1/2 < 0.
The computation of MPC-friendly variant of sigmoid function is similar to the
ReLU function. We follow similar approach of [58].

F.10 Dot Product with Truncation Protocol

In FPA, repeated multiplication causes overflow, resulting in loss of signifi-
cant bits of information, thus affecting accuracy. Truncation tackles this by
re-adjusting the shares after multiplication, such that the loss of information
occurs on the least significant bits, which minimizes the accuracy loss [66]. We
provide a dot product protocol with truncation using techniques form [64]. If xd

denotes the truncated value of x, then given an (r, rd) pair, vd can be obtained
by (v − r)d + rd.

We provide the details of our dot product with truncation protocol which uses
techniques from [64]. Note that, although Mazloom et al. [63] achieve truncation
at no additional overhead, their techniques are customised for a single corruption.

74 Hegde et al.

At a high level, their protocol relies on partitioning the four parties into 2 pairs
such that a value is additively shared among the pairs, which is insecure in the
FaF model due to the presence of the additional semi-honest party. Our dot
product protocol with truncation, thus proceeds as follows.

Given an (r, rd) pair, where rd represents the value of r, right-shifted by d bit
position, the truncated value of v can be obtained by computing (v − r)d + rd.
Note that d is the number of bits allocated for the fractional part of FPA. The
correctness and accuracy of this technique was given in [64]. We use the same
technique to provide a dot product protocol with truncation as described below.

Specifically, given the J·K-sharing of vectors −→x and −→y , protocol DotPTr
(Fig. 43) allows servers to generate JzdK robustly, where zd is the truncated
value of z = −→x ⊙ −→y and ⊙ represents the dot product operation. J·K-sharing
of a vector −→x of size n, means that each element xi ∈ Z2λ of −→x , for i ∈ [n], is
J·K-shared.

During the preprocessing phase, servers compute the (⟨r⟩, JrdK)-sharing of a
random value r ∈ Z2ℓ , by first generating the Boolean sharing of λ random bits
r0, . . . , rλ−1 ∈ Z21 and obtaining their corresponding sharing over Z2ℓ by invoking
Bit2A. Following this, servers locally compute the J·K-sharing of r and rd, using

the fact that r =
λ−1∑
s=0

2srs and rd =
λ−1∑
s=d

2s−drs. Note that the JrK can be locally

converted by the servers to ⟨r⟩ sharing, by any one pair of servers, say Pi, Pj

adding βr to ⟨αr⟩ij .
Similar to the dot product protocol, we borrow ideas from BLAZE for obtain-

ing an online communication cost independent of n and use jmp3 and jmp4 prim-
itives to ensure either success or TP selection. The n-independent online phase
is achieved by reconstructing the aggregated z value, masked with r, which is
reconstructed towards all the servers. Following this, servers can locally truncate
z+ r and compute its J·K-sharing, to finally obtain JzdK = J(z+ r)dK− JrdK locally
using JrK generated during the preprocessing phase.

• Input and Output: The input is J−→x K = {JxsK}s∈[n], J−→y K = {JysK}s∈[n]. The
output is JzdK = J(−→x ⊙−→y)dK.

• Primitives: Protocol tripGen (§5.2; Fig. 6), ⟨·⟩-Rec (§4.2; Fig. 3) and Bit2A
(§F.6;Fig. 41).

Preprocessing:

– Servers compute Jr0KB, Jr1KB, . . . , Jrλ−1KB for random r0, . . . , rλ−1 ∈ Z21 as fol-
lows:

– Pi, Pj where 1 ≤ i < j ≤ 4 sample random ⟨rs⟩ij ∈ Z21 for s ∈ {0, . . . , λ− 1}.

– Servers set βrs = 0, for s ∈ {0, . . . , λ− 1}.

– Servers invoke Bit2A on each JrsKB and obtain JrsK for all s ∈ {0, . . . , λ− 1}.

Protocol DotPTr(P, (JxsK, JysK)s∈[n])

Attaining GOD Beyond Honest Majority With Friends and Foes 75

– Servers compute the JrK =
λ−1∑
s=0

2sJrsK and JrdK =
λ−1∑
s=d

2s−dJrsK.

– Servers locally compute the ⟨r⟩ from JrK.
– Servers invoke tripGen(P, ⟨αs

x⟩, ⟨αs
y⟩) and obtain ⟨αs

xα
s
y⟩, for s ∈ [n].

Online:

– Each Pi, Pj for 1 ≤ i < j ≤ 4 and (i, j) ̸= (1, 2) compute ⟨z − r⟩ij such that

⟨z − r⟩ij =
n∑

s=1

(−βs
x ⟨αs

y⟩ij − βs
y ⟨αs

x⟩ij + ⟨αs
xα

s
y⟩ij)− ⟨r⟩ij .

– P1, P2 compute ⟨z − r⟩12 =
n∑

s=1

(βs
xβ

s
y − βs

x ⟨αs
y⟩12 − βs

y ⟨αs
x⟩12 + ⟨αs

xα
s
y⟩12)− ⟨r⟩12.

– Servers invoke ⟨·⟩-Rec and obtain z − r.

– Servers locally compute (z − r)d and further J(z − r)dK.
– Servers compute JzdK = J(z − r)dK + JrdK

Fig. 43: Dot Product Protocol with Truncation

Lemma 26 (Communication). Protocol DotPTr with feature size n requires
a communication of 4n + 13λ elements and 6n + 3λ instances of OPEs in the
preprocessing phase, whereas 3 rounds and a communication of 7 elements in the
online phase.

Proof. In the preprocessing phase, servers locally generate J·KB-sharing of r0, . . . ,
rλ−1, which is non-interactive. Following this, servers invoke λ instances of Bit2A
(Fig. 41), each of which requires a communication of 13 elements and 3 instances
of OPEs (Lemma 23). Further, servers invoke tripGen for each s ∈ [n], which re-
quires a communication of 4n elements and 6n instances of OPEs. In the online
phase, servers compute the ⟨·⟩-sharing of z − r, which is non-interactive. This is
followed by an invocation of the ⟨·⟩-Rec (Fig. 3) for the aggregated z − r, which
requires three rounds and a communication cost of 7 elements (Lemma 12). Fol-
lowing this, servers truncate z− r and compute its J·K-sharing non-interactively.
Similarly, the JzdK-sharing is obtained by servers without interaction.

G Liquidity Matching

Liquidity matching requires transferring funds across banks. In these systems,
preserving privacy is essential even from honest third parties. Furthermore,
aborting a computation is not acceptable since it fails transactions among the
banks. Thus, it is crucial to have a system where the success of the computation
is guaranteed even if some parties are malicious. The system should preserve
privacy from the malicious party and any third party, even if it is honest. Since
the FaF model captures this exact scenario, we provide a 4 server based FaF

secure protocol for computation of liquidity matching. We follow [7] where the
liquidity matching is performed using the gridlock algorithm. The gridlock al-
gorithm essentially identifies a set of transactions which can be executed while

76 Hegde et al.

ensuring that each bank has sufficient liquidity to process those transactions,
that is while ensuring that each bank has a positive balance upon completion of
the transactions. We adapt the algorithm given in [7] for the 4 server case. In
particular, [7] views a transaction as a tuple consisting of the source bank iden-
tifier, the amount to be transferred, and the destination bank identifier. Here
we consider the open source and open destination setting, where the source and
destination component of the tuple of transactions is visible to all, while the
transaction amount is hidden. In [7], this variant of the algorithm is referred
to as sodoGR. It proceeds by selecting a set of transactions and computing the
potential balance of each bank, where these transactions are to be processed. If
the computed balance of all the banks is positive, then all the transactions are
processed. If not, for some banks, if the potential balance is negative, then trans-
actions cannot be processed. In the latter case, the algorithm considers a reduced
set of transactions for processing by pruning the appropriate transactions as fol-
lows. For banks with negative potential balances, the last outgoing transactions
are removed from the set of transactions being considered for processing. Note
that this may affect the updated balance of some other banks whose incoming
transactions get removed in this process. Thus the algorithm recomputes the
potential balance of each bank with the updated list of transactions. It repeats
the process until we reach a list of transactions for which the updated balances
of all the banks are positive, or no transaction can be processed. If the latter
occurs, then we reach a deadlock. Below we provide the details of the secure
evaluation of sodoGR. It takes a list Q of m transactions where a transaction
is tuple (s, a, d) along with a bit x for every transaction, s is the source bank,
d is the destination bank, and a is the amount of the transaction. Here JaK is
secret-shared among the four servers. The bit x denotes if a transaction is con-
sidered in the computation or not. The bit x is also secret shared. Initially, it
is set to 1, which means all the transactions are considered in the computation.
Furthermore, the protocol takes secret shares of the balance of n banks. JBiK
represents the secret shared value of the ith bank. Note that (i, ·, ·) represents
the list of transactions where ith bank is the sender. Similarly, (·, ·, i) represents
the list of transactions where ith bank is the receiver. For a transaction t in the
list (i, ·, ·) or (·, ·, i), JaKt and JxKt denotes the secret sharing of the amount and
the x bit of the transaction t.

– Input, Output: A set of m transactions Q = {sj , JajK, dj}j∈[m], a set of execute
bits, one corresponding to each transaction {JxjK}j∈[m] and a set of balances, one
corresponding to each of the n banks B = {JBiK}i∈[n]. It outputs a subset T of Q
which can be processed and a boolean value deadLock which is 1 if and only if T is
empty.

– primitives: addition, multiplication, comparison.

REPEAT

Protocol sodoGR

Attaining GOD Beyond Honest Majority With Friends and Foes 77

Update Balance: For all i ∈ [n]:

– JSiK =
∑

t=(i,·,·) mult(JaKt, JxKt)
– JRiK =

∑
t=(·,·,i) mult(JaKt, JxKt)

– JUBiK = JBiK − JSiK + JRiK

Check Balance: For all i ∈ [n]: JhiK = 1−msb(JUBiK)

Allowed List:

– JzK = multi∈[n](JhiK)
– output(z)

– If z = 1 then output T = {t ∈ Q : xt = 1} and deadLock = 0

– Else for all i ∈ [n]: {t1, · · · , tv} = (i, ·, ·) ordered in time of receipt order.

– For all j ∈ [v − 1]: Jxtj K = mult(mult(Jxtj K, Jxtj+1K), JhiK) +mult(Jxtj K, (1− JhiK)

– Jxtv K = mult(Jxtv K, (1− JhiK)

– JdeadLockK = multj∈[m](1− JxjK)
UNTIL deadLock = 1

Output deadLock and T = ϕ

Fig. 44: Secure evaluation of open source open destination GridLock Resolution

It can be observed that we need basic primitives such as addition, multipli-
cation, and comparison to evaluate the above algorithm securely. In §5, we have
discussed how to perform addition and multiplication securely. For comparison
between two values x,y, we compute x − y and check its most significant bit
(msb) as described in §7. If the msb is 1, then it implies that x − y is negative
and hence x < y. Otherwise, when msb = 0, we can conclude that x ≥ y.

As evident from Fig. 44, input-dependent choices are made during the run
of the protocol to optimize the overall complexity of the protocol. Incorporating
this optimization requires input-dependent preprocessing and hence an all online
protocol. Despite this, the reported overall run time showcases the practicality
of using our FaF secure protocols.

H Additional Benchmarks

Table 9 details the average bandwidth and rtt between each pair of machines used
in our experiments as measured by the iperf and irtt programs respectively.

As discussed in Section 7, computing summands of S0 which involves running
six instances of disMult is the communication bottleneck in the preprocessing
phase of QuadSquad while computing summands of S1 which involves running
four instances of disZK is the computational bottleneck. Our implementation
uses 6 threads to run each instance of disMult in a separate thread to parallelize
communication while most of the remaining threads (23 out of a total of 32
threads) are used for computation in the instances of disZK. We microbenchmark

78 Hegde et al.

M0 −M1 M0 −M2 M0 −M3 M1 −M2 M1 −M3 M2 −M3

Bandwidth (Mbps) 140 242 68 390 144 98
rtt (ms) 152.1 91.7 301 59.07 144.5 201.5

Table 9: Average bandwidth and round-trip time (rtt) between each pair of machines.

Number of triples Computing summands of S0 (s) Computing summands of S1 (s)

217 20.94 17.89
218 37.75 32.94
219 70.2 57.39
220 129.65 113.43

Table 10: Comparison of latency for computing summands of S0 and S1 when prepro-
cessing different number of triples.

the performance of computing summands of S0 and S1 for preprocessing triples
and summarize the results in Table 10. We observe that computing summands
of S0 tends to have higher latency than computing summands of S1 and the
difference in latency increases with the number of triples. This strongly suggests
that the instances of disMult are the bottleneck in our implementation.

	Attaining GOD Beyond Honest Majority With Friends and Foes

