
A Deep Neural Differential Distinguisher for
ARX based Block Cipher

Debranjan Pal, Upasana Mandal, Mainak Chaudhury, Abhijit Das, and
Dipanwita Roy Chowdhury

Crypto Research Lab, IIT Kharagpur, India
debranjanpal@iitkgp.ac.in, mandal.up98@gmail.com, mainakcacsgu@gmail.com,

abhij@cse.iitkgp.ac.in, drc@cse.iitkgp.ac.in

Abstract. Over the last few years, deep learning is becoming the most
trending topic for the classical cryptanalysis of block ciphers. Differential
cryptanalysis is one of the primary and potent attacks on block ciphers.
Here we apply deep learning techniques to model differential cryptanaly-
sis more easily. In this paper, we report a generic tool called NDDT1, us-
ing deep neural classifier that assists to find differential distinguishers for
symmetric block ciphers with reduced round. We apply this approach for
the differential cryptanalysis of ARX-based encryption schemes HIGHT,
LEA, SPARX and SAND. To the best of our knowledge, this is the
first deep learning-based distinguisher for the mentioned ciphers. The
result shows that our deep learning based distinguishers work with high
accuracy for 14-round HIGHT, 13-Round LEA, 11-round SPARX and
14-round SAND128. The relationship between the hamming weight of
input difference of a neural distinguisher and the corresponding maxi-
mum round number of the cipher has been justified through exhaustive
experimentation. The lower bounds of data complexity for differential
cryptanalysis have also been improved.

Keywords: HIGHT · LEA · SPARX · SAND · Neural Distinguisher ·
Deep Learning · Differential Cryptanalysis.

1 Introduction

Deep neural networks are known as non-linear classification tools, are famous
for solving a more comprehensive set of data-driven tasks like image processing,
speech recognition, etc. Earlier in the field of cryptanalysis, machine learning
is mainly restricted to side channel analysis and not explored much in classi-
cal cryptanalysis. The direction of research finally gets noticed when a work
on cipher SPECK by Aron Gohr is published in CRYPTO’19 [9], where the
main idea is to perform a key recovery attack on round-reduced SPECK using
ML. The ML model mainly applies the differential distinguisher properties of
differential cryptanalysis. Differential cryptanalysis actually finds an input and
output difference pair that occurs with some higher probability than the random
1 Neural based Differential Distinfuisher searching Tool

2 Debranjan Pal et al.

case. The researchers apply the probability distribution modeling for differential
distinguisher by incorporating machine learning algorithms. Rather than the old
modeling technique with branch number or MILP, the attacker can explore any
other strategy to distinguish the cipher from the random case by collecting the
output differences corresponding to the chosen input differences. The attackers
can also use machine learning based models to reduce the search complexity and
hence the attack time also reduce than the estimation of the existing methods.
In 1993, Ronald L. Rivest first show the relationships between the two fields of
cryptography and machine learning and explains how each area contributes ideas
and techniques to the other. At CRYPTO’19, Aron Gohr proposes a new direc-
tion in the cryptanalysis field based on utilizing machine learning algorithms. He
built a deep neural network based distinguisher that surprisingly surpassed state-
of-the-art cryptanalysis efforts on one of the versions of the NSA block cipher
SPECK [5]. In DATE 2021, A Baksi et al. [3] introduce neural differential distin-
guishers for 10-round Knot-256 permutation, 12-round Knot-512 permutation,
four-round Chaskey-Permutation, eight-round Gimli-Hash/Cipher/permutation,
and three-round Ascon permutation. In LATINCRYPT 2021, Yadav et al[16]
apply the technique to find neural based classifier for 12-round SPECK-32 [5],
eight-round GIFT-64 [4] and 12-round SIMON-32 [5].

1.1 Our Contribution

In this paper we introduce a generic deep learning based automated differen-
tial distinguisher. Using the tool 2 we analyze the differential behaviour of four
ARX-based cipher, HIGHT [12], LEA [11], SPARX [8] and SAND [7]. We found a
14-round neural differential distinguisher for HIGHT, an 13-round distinguisher
for LEA, a nine-round distinguisher for SPARX and a 14-round distinguisher
for SAND128. An experiment also performed to show the relationship between
the hamming weight of input difference of a neural distinguisher and the corre-
sponding maximum round number of the cipher. We achieve a new lower bound
of data complexity for reduced rounds of HIGHT, LEA, SPARX and SAND.

1.2 Organization of the paper

The rest of the paper is organized as follows. Section 2 describes the basic no-
tations we use in our paper and a brief explanation of differential cryptanalysis
and markov cipher. In Section 3, we present our generic tool for constructing the
deep neural classifier. Section 4 presents the model architectures, implementation
details and the experimental results. In Section 5, we conclude the paper.

2 Preliminaries

This section mainly describes the brief specification of the four ciphers and the
literature study of classical differential cryptanalysis for them.
2 Code and data are available on request.

NDDT 3

2.1 Basic Notations

All the basic notations we use throughout this paper are being stated below,

– P , C and T is the plaintext, ciphertext and temporary state value.
– M , W and RK represents the master key, whitening key and the round key.
– δi and δo represents input and output difference for a differential trail.
– CD signifies the set of ciphertext differences from a neural classifier.
– d is a random state difference.
– ⊞ and ⊟ means addition and subtraction in mod 28; ⊕ means exor operation.
– A≪s and A≫s means s-bit left and right rotation of a word A.
– A ≪n/4 s denotes dividing A into four n/4 bit words (A0, A1, A2, A3) and

shift each individual word to s bits left.

2.2 Differential cryptanalysis

Differential cryptanalysis [6] is a chosen-plaintext attack that finds a probabilistic
relation between the penultimate round plaintext difference and the ciphertext
differences by guessing a key.

Definition 1 (Differential Cryptanalysis Attack [14]) Let (X,X ′) be the plain-
text pair and after ith round the corresponding ciphertext pair (Yi, Y

′
i). Then the

differential probability of an i-round differential δ → γ is defined by the condi-
tional probability P (∆Yi = γ |∆X = δ), where ∆X = X⊕X ′ and ∆Yi = Yi⊕Y ′

i

and the sub-keys K1, . . . ,Ki are independent and uniformly random. For mount-
ing an attack, the attacker finds the differential probabilities corresponding to
each round. So, for an n-round differential (δ, γ1, γ2, . . . , γn),

P (∆Y = γ1, ∆Y = γ2, . . . ,∆Y = γn | ∆X = δ)

≈ P (∆Y = γ1, ∆Y = γ2, . . . ,∆Y = γn | ∆X = δ,

K(1) = k1,K
(2) = k2, . . . ,K

(n−1) = kn−1)

for almost all sub-key values k1, k2, . . . , kn−1.

2.3 Lower bound complexity analysis of differential cryptanalysis

The favorable outcome of differential cryptanalysis for a cipher with n-rounds
totally depends on the propagation of non-zero differentials up to (n-1) rounds
with high probability. Using these probabilities, one can compute the lower
bound of data complexity for the attack. Considering definition 1 is correct,
one can mount differential cryptanalysis attack on a cipher with n rounds,
block length m and independent subkeys iff the cipher consists of weak round
keys and an (n-1) round differential characteristics δ → γ is available so that
P (∆Yn−1 = γ | ∆X = δ) > 2−m.

Theorem 1 (Lower bound complexity of differential cryptanalysis attack [14])

4 Debranjan Pal et al.

Let En is the number of encryptions for the differential cryptanalysis attack on
a n-round cipher. We can write

En ≥ 2/(Pmax − 1/(2m − 1)), where
Pmax = max

γ
max

δ
(∆Yn−1 = γ | ∆X = δ)

2.4 Differential cryptanalysis and markov cipher

According to Lai et al. [14] an iterated cipher is a markov cipher if the subkeys
in the cipher path are independent and each of the (r-1) round non-zero output
differences are the part of a markov chain.

Definition 2 (Markov chain [14]) In a cipher the ciphertext differences ∆Y0, ∆Y1, . . . ,∆Yn

generates markov chain. A sequence of discrete random variables u0, u1, . . . , un

forms a markov chain if

P (ui+1 = γi+1 | ui =

γi, ui−1 = γi−1, . . . , u0 = γ0) = P (ui+1 = γi+1 | ui = γi)

A Markov chain is called homogeneous if P (ui+1 = γ | ui = δ) is independent of i
for all δ and γ and the plaintext X is independent of the subkeys K1,K2, . . . ,Kn.

Definition 3 (Markov Cipher [14]) Let Y = f(X,K) be a weak round func-
tion of an iterated cipher. The cipher is Markov if for every pair (X,X ′) and
(Y, Y ′) we define the differences by a group operation ⊗ with ∆X = X⊗X ′ and
∆Y = Y ⊗ Y ′ in such a way that

P (∆Y = γ | ∆X = δ,X = x), where γ ̸= 0 and δ ̸= 0

is independent of x when subkey K is uniformly random.
Theorem 2 [14] If an n-round iterated cipher is a Markov cipher and the n

round keys are independent and uniformly random, then the sequence of dif-
ferences ∆Y0, ∆Y1, . . . ,∆Yn is a homogeneous Markov chain. Moreover, this
Markov chain is stationary if ∆X is uniformly distributed over the non-neutral
elements of the group.

Here our generic deep neural differential classifier tool works under markov
assumption for reduced rounds of HIGHT, LEA, SPARX and SAND64/128 ci-
pher.

3 Modeling Differential Cryptanalysis using Deep
Learning

Aron Gohr [9] first proposes the concept of the deep neural distinguisher, cor-
responding to a classical differential distinguisher for cipher SPECK and SI-
MON [5]. Gohr chooses an input plaintext difference δi and two plaintexts P1

NDDT 5

Algorithm 1 DatasetCreationProcess
Inputs: Input differences(δi) corresponding to a classical differential distinguisher
Outputs: Training/Validation Dataset DS
1: procedure DatasetCreationProcess(δi, Rn, iterations)
2: DS ←Empty Set
3: for i = 1 to iterations do
4: Key ←RandomKey() ▷ Returns a random key
5: P1 ←RandomPlaintext()
6: if i mod 2 = 0 then
7: P2 ←RandomPlaintext()
8: C1 ← RandomOracle(P1,Key,Rn) ▷ Encryption engine for the given

cipher
9: C2 ← RandomOracle(P2,Key,Rn)

10: DS ← DS ∪ (C1, C2, C1 ⊕ C2, 0)
11: else
12: P2 = P1 ⊕ δi
13: C1 ← RandomOracle(P1,Key,Rn)
14: C2 ← RandomOracle(P2,Key,Rn)
15: DS ← DS ∪ (C1, C2, C1 ⊕ C2, 1) ▷ Assume DSTrain be the training

dataset and DSV alid is the validation dataset
16: end if
17: end for
18: Return DS
19: end procedure

and P2 such that P1⊕P2 = δi. We call (P1, P2) as real pairs. Here the main pur-
pose is to classify differently the real pairs with a random plaintext pair (P ′

1, P
′
2)

such that P ′
1⊕P ′

2 = δr, where δr is a random difference. Applying this approach,
he trained a Deep Neural Network (DNN), which performs well in classifying the
real and random ciphertext pairs. He replicates a new difference distribution ta-
ble (DDT) corresponding to the DDT of the classical differential distinguisher
during the training phase of the neural classifier and uses the new DDT to vali-
date data. Gohr also gives a detailed description, comparing the performance of
the classical differential distinguisher with the corresponding neural differential
distinguisher. He proves neural distinguishers work more efficiently.

Our Approach

We propose a method that finds a generic deep neural distinguisher. Algorithm 1
generates the training and validation dataset. It takes input a plaintext difference
δi, the number of rounds for the cipher Rn, and the number of rows in the dataset
ITR. We run the encryption function of a cipher up to Rn rounds and ITR times
and store the ciphertexts. For each iteration, we use a new random key. Assume
P1 is a random plaintext. If the current iteration number is divisible by 2 then we
take another random plaintext P2 and encrypt (P1, P2) to get a ciphertext pair
(C1, C2). Append (C1, C2, C1⊕C2, 0) to dataset DS, where 0 is the label for the

6 Debranjan Pal et al.

Algorithm 2 TrainingProcess
Inputs: Training Data DSTrain

Outputs: Training accuracy ACRTrain

1: procedure TrainingProcess(DSTrain, DSV alid)
2: Create the ML model MLδi .
3: Train MLδi with with train data DSTrain and let ACRTrain be the train

accuracy.
4: if ACRTrain > 0.5 then
5: Create new dataset
6: Call V alidationProcess(MLδi , DSV alid)
7: else
8: Return "No distinguisher found"
9: end if

10: Return ACRTrain

11: end procedure

Algorithm 3 ValidationProcess
Inputs: New Validation Data DSV alid and trained model MLD
Outputs: Validation Accuracy ACRV alid

1: procedure ValidationProcess(MLδi , DSV alid)
2: Load model MLδi .
3: Validate MLδi with with validation data DSV alid and let ACRvalid be the

validation accuracy.
4: if ACRV alid > 0.5 then
5: Distinguisher found for the corresponding cipher
6: else
7: Return "No distinguisher found"
8: end if
9: Return ACRV alid

10: end procedure

random ciphertext pair (C1, C2). But if the iteration number is not divisible by
two then calculate P2 = P1 ⊕ δi. Use encryption oracle to encrypt (P1, P2) and
get ciphertext pair (C1, C2). In this case, add (C1, C2, C1⊕C2, 1) to dataset DS,
where 1 is the label for the known ciphertext pair (C1, C2), generated by using
the plaintext difference δi. Finally, we return the merged dataset DS containing
50% known ciphertexts, and the rest are random.

We use Algorithm 2 for creating a new ML model MLδi and train the model
with dataset DSTrain. If we achieve greater than 50% training accuracy, then
call Algorithm 3 for validation of the dataset DSV alid. If validation accuracy
ACRV alid is more than 50%, then we can claim a valid distinguisher found for
the cipher.

NDDT 7

Algorithm 4 GenericDifferentialNeuralClassifier
Inputs: CDOld are the set of ciphertext differences from last model or PDNew are the
set of plaintext differences if available.
Output: Maximum accuracy ACRMax and best difference MAX δi up to Rn rounds.
1: procedure GenericDifferentialNeuralClassifier(PDNew/CDOld, N)
2: if PDNew is empty then
3: PDNew ← CDOld

4: end if
5: Rn ← N
6: accSet ← empty
7: for each δi in PDNew do
8: Set the real plaintext difference as δi.
9: iteration ← 100000

10: Create a new ML model, let MLD.
11: DSTrain ← DatasetCreationProcess(δi, Rn, iterations)
12: ACRTrain ← TrainingProcess(MLD,DSTrain)
13: DSV alid ← DatasetCreationProcess(δi, Rn, iterations)
14: ACRV alid ← ValidationProcess(MLD,DSV alid)
15: ACRSet ← ACRSet ∪ACRV alid

16: end for
17: ACRMax ← MAX(ACRSet)
18: PDBest ← GetPD(ACRMax)
19: CDBest ← GetCD(PDnew, ACRMax) ▷ Returns the plaintext difference

corresponding to an accuracy
20: MLDPDBest ←MLD
21: truePositiveCDSet ← GetCDFromTruePosSet(ACRMax)
22: PDNew ← GetCDSetMinHammingWeight(truePositiveCDSet) ▷ Returns the

minimum hamming weights
23: Rn ← Rn + R
24: repeat steps 7 to 23.
25: Return (MLDPDBest , ACCMax, PDBest,
26: Rn, ITR)
27: end procedure

3.1 Generic differential distinguisher

Here we automate the searching of neural distinguishers of n rounds, where
n ≤ r, r is the maximum round number of a cipher. We propose a generic
neural differential classifier that automatically finds a deep neural distinguisher
for any cipher for a given round. Take one classical differential distinguisher
with differential characteristics δi → δo of m rounds with probability 2−p, where
(m+ n) ≤ r. Now apply δi to a neural distinguisher of one round and check the
accuracy. In case of good validation accuracy, take the ciphertext differences as
δi for the next iteration with one round increase. For each iteration, update and
store the round number and the maximum accuracy. We choose only those new
ciphertext differences which have a minimum hamming difference. The reason is
that the possibility of generating active bits after applying a cipher is less, with

8 Debranjan Pal et al.

Table 1: Hamming weight Vs validation accuracy for HIGHT cipher

Plaintext Difference HW Rnd. Vs Accuracy

Rnd.
(LB)

Acc.
(Max)

Rnd.
(UB)

Acc.
(Min)

8201000000000000 3 5 98.31 9 50.31
0000000082010000 3 6 95.79 9 50.18
4282010000000000 5 3 99.81 5 80.28
0000000042820100 5 3 99.91 4 50.31
118925E2C8010000 16 2 96.92 3 56.25
C8010000118925E2 16 2 96.70 3 56.84
00008227213AEA01 18 3 94.51 6 50.01

80008AC28A01A0BB 19 1 99.55 3 52.61
0000C2080128BB80 14 2 89.32 4 50.36
000008E528E98000 14 2 98.25 4 51.87
0000E5A8E9800000 14 4 95.65 5 51.38
0000A82C80000000 7 4 96.11 5 56.96
00002C8000000000 4 5 99.90 6 50.12
0000800000000000 1 7 99.26 8 50.09
0080000000000000 1 8 99.89 9 50.02
80000000000000C3 5 4 99.88 8 50.01
000000000072C380 9 4 98.42 6 50.89
0000000C72E98000 12 3 97.50 5 50.36
00A70CF2E9800000 18 2 99.90 4 50.00
A700F22A80000002 15 2 92.52 3 54.56
007B2A80009002A7 16 1 99.99 4 50.11

ciphertext differences having less number of active bits. Continue this way until
a round is found with accuracy less than 50%.

We described the procedure in Algorithm 4. Consider CDOld is the set of
ciphertext differences from an earlier distinguisher, and PDNew is a set of plain-
text differences. In the algorithm take as input either CDOld or PDNew. Check if
PDNew is empty, else initialize it by CDOld. For a neural distinguisher, assume
the number of rounds is Rn, which is initialized to a given number N , with N
less than or equal to the maximum number of rounds for the given cipher. Now
choose any difference δi from the set PDNew and assign it as a real plaintext dif-
ference for the current neural distinguisher to be constructed. Next create a new
ML distinguisher MLD. Generate the training data-set by calling the method
DatasetCreationProcess with providing inputs δi, Rn and iteration. Save the
training dataset in DSTrain. Apply DSTrain to train MLD, which output accu-
racy ACRTrain. By calling the procedure DatasetCreationProcess generate the
validation dataset DSV alid. Run the method ValidationProcess by applying the
DSV alid on the trained model MLD and save the accuracy in ACRV alid. For
each δi from PDNew, execute the dataset creation, training, and validation pro-
cess in a loop. In each iteration collect each of the ACRV alid in a set ACRSet.
Now find the maximum accuracy ACRMAX from ACRSet and the best plaintext
difference CDBest corresponding to the ACRMax. Save MLD to MLDCDBest

.
We also need the new ciphertext differences corresponding to the best accuracy.

NDDT 9

Fig. 1: Relation between hamming weight (HW) and
rounds for maximum validation accuracy

(round_accuracy) for HIGHT

Fig. 2: Relation between hamming weight (HW) and
rounds for maximum validation accuracy

(round_accuracy) for LEA

With taking input as ACRMax apply method GetCDFromTruePosSet to get
the plaintext differences and store these to truePositiveCDSet. Store only those
new ciphertext differences which have a minimum hamming difference and for
asing in the next iteration. Update the plaintext difference set PDnew with the
new ciphertext differences, which is the return value of the method GetCDSet-
MinHammingWeight. Now increase the round number by R, 0 ≤ R ≤ r. Also
modify the iteration number ITR(if required). Next, rerun the above procedure
using the new set of plaintext differences PDnew. Repeat the above process until
we get an accuracy value less than 50% from the methods TrainingProcess or
ValidationProcess. Finally return the best ML distinguisher MLDPDBest

with
MAXacc, PDMax, Rn and ITR.

Table 2: Hamming weight Vs validation accuracy for LEA cipher

Plaintext Difference HW Rounds Vs Accuracy
Round
(LB)

Accuracy
(Max)

Round
(UB)

Accuracy
(Min)

80000014 80400014 80400004 80400080 13 3 94.12 6 50.15
80000000 80000000 80000010 80000014 7 3 99.20 7 53.84
00000000 80000000 80000000 80000000 3 5 99.22 8 61.75
00000100 00000000 00000000 00000000 1 5 91.89 7 62.24
00020000 00000000 00000000 00000100 2 4 94.80 7 50.70
04000000 00000000 00000020 00020000 3 4 92.43 7 50.07
00000008 00000001 00004004 04000000 5 3 95.41 7 50.05
00001200 28000200 80800800 00000008 9 2 98.85 5 50.27
00200050 05440050 10100101 00001200 14 1 99.69 5 50.20

3.2 Relation between accuracy and hamming weight

We perform an experiment using our generic distinguisher by varying the plain-
text difference (thus hamming weight) and monitor the upper and lower range of

10 Debranjan Pal et al.

round number to calculate the minimum and maximum validation accuracy. A
relation we can obtain among hamming weight(HW), number of rounds and the
validation accuracy. Using plaintext difference with lower hamming weight re-
sults neural distinguisher of more rounds. Hence decreasing the hamming weight
increases the maximum round with acceptable validation accuracy for a distin-
guisher and the reverse is also true. Figure 1 and 2 describes the relationship
between the hamming weight and number of rounds for the cipher for maxi-
mum validation accuracy for HIGHT and LEA. Table 1 and Table 2 describes
the relation between hamming weights and validation accuracy with different
plaintext/ciphertext difference for HIGHT and LEA.

Fig. 3: HIGHT Validation Acc Vs Train
Accuracy (CNN)

Fig. 4: HIGHT Validation loss Vs Train Loss
(CNN)

Table 3: Reduced lower bound of data complexity

Cipher Rounds Best known
Data Complexity

Lower Bound of
Data Complexity
(Our Approach)

HIGHT [17] 13 261 230

LEA [11] 11 298 248

SPARX [1] 9 237 225

SAND-128 [7] 7 224 212

3.3 Estimation of lower bound of data complexity

Choose one classical differential distinguisher with differential characteristics
δi → δo of m rounds with probability 2−p, where m ≤ r. Following Theo-
rem 1, the lower bound of data complexity of the classical differential distin-
guisher is bounded by 2/(2−p−1/2m − 1). Next, form a deep neural distinguisher
MLDPDBest

by taking δo as the input plaintext difference(using Algorithm 4).

NDDT 11

Fig. 5: CNN Architecture

12 Debranjan Pal et al.

Fig. 6: LSTM Architecture

Suppose MLDPDBest
gives a high accuracy up to n rounds. Then we conclude the

lower bound of the data complexity for differential cryptanalysis attack for the
corresponding distinguisher with (m+ n) rounds is approximately 2p. Here, we
apply the Algorithm 4 for approximation of new lower bound of data complexity.
The training and validation data is an one time overhead cost needed during the
learning(applying Algorithm 2) and testing phase(applying Algorithm 3) of the
distinguisher MLDPDBest

. The new lower bound of data complexity estimation
for HIGHT, LEA SPARX and SAND128 is provided in Table 3.

Table 4: Model details for real plaintext difference 0x00800000 of 9 rounds
HIGHT

Network Activation Function No. of Parameters Train Time (s) Valid. Acc.
CNN ReLU/ sigmoid 475,777 309 68.58
LSTM sigmoid 441,921 54 50.33

4 Experimental Results

In this section, we describe the outcome of the generic neural distinguisher after
application on HIGHT, LEA, SPARX and SAND. We use google collab with
installed Keras-GPU for all our ML-related experiments, including data genera-
tion. We run three different models, Convolutional Neural Network (CNN) [15],

NDDT 13

Light Gradient Boosting Machine (LGBM) [13], and Long Short-Term Memory
(LSTM) [10], for training and validation of datasets. In general, we use a total of
105 data samples, of which 50% is applied for training and the rest for validation.

For CNN and LSTM, we varied the number of layers, number of neurons per
layer, and number of blocks per layer. Also, we applied different types of acti-
vation functions. The CNN architecture used for generating our distinguishers
is depicted in Figure 5. In initial convolution block we have applied one dimen-
sional convolution operation with 32 filters and kernel size is one. The activation
function used here is ReLU. For the intermediate convolution blocks we choose
one dimensional convolution operation with 32 filters, kernel size is three and
same activation function. During convolution operation, the regularizationn pa-
rameter value is set to 0.0001. Compilation of the model takes the mean squared
error loss function and adam optimizer. The details of model architecture is
provided in Table 4.

Figure 6 describes the details of LSTM model. Four LSTM layers and one
dense block is applied. For all the dense and LSTM layer output is managed via
sigmoid activation function.

The input for the distinguisher is (C1, C2, C1 ⊕ C2, L), where L is the label
defining true or random plaintext difference is used for dataet creation. During
data preparation we divide the

Fig. 7: HIGHT Validation Accuracy Vs
Training Accuracy (LSTM)

Fig. 8: HIGHT Validation loss Vs Training Loss
(LSTM)

4.1 HIGHT

The designers of HIGHT [12] proposed a reduced round classical differential
distinguisher up to 11-rounds. They find two eight-round distinguisher α → β
of Mini-HIGHT, each of which of probability 2−28. An 11-round characteristics
α → β also given with probability 2−58. Jun Yin et al. [2] proposed a MILP-
based model for finding differential characteristics of 11-round with probability
2−45, 12-round with probability 2−53, and the 13-round with probability 2−61.
The list of differential distinguishers for hight are provided in Table 5. For the
13-round differential distinguisher, we mention the input and output differences

14 Debranjan Pal et al.

Fig. 9: LEA Validation Accuracy Vs Training
Accuracy (LSTM)

Fig. 10: LEA Validation loss Vs Training Loss
(LSTM)

Table 5: Classical distinguishers of round reduced HIGHT

Rnd. Input Difference Output Difference Prob.
5[12] 8201000000000000 009095CA01000000 2−12

5[12] 0000000082010000 01000000009095CA 2−12

6[12] 4282010000000000 009095CA01000000 2−17

6[12] 0000000042820100 01000000009095CA 2−17

11[12] 118925E2C8010000 4502010000912995 2−58

11[12] C8010000118925E2) 0091299545020100 2−58

12[2] 00008227213AEA01 00B6F801009002E8 2−53

13[2] 80008AC28A01A0BB 007B2A80009002A7 2−61

from round one to round 13 in Table 6, where p means the probability of the
differential trail.

Observation

In [12] δi = 0x0800000000000000 is used as a classical distinguisher for the
output difference of sixth round. For the automatic generic neural distinguisher,
we take this δi = 0x0800000000000000 as the input plaintext difference for the
seventh round. Here, we construct a six-round neural distinguisher that provides
high accuracy, and this one works as a 13-round distinguisher. From Table 6, we
can calculate the total data complexity of this distinguisher, which is at least
230.

The LSTM model can classify the corresponding real and random ciphertext
differences up to 14 rounds, whereas the LGBM and CNN model performs better
and allows up to 16 rounds. For all three models, we describe the result using
training accuracy, validation accuracy, true positive rate, and true negative rate.
Table 7 depicts the performance of the CNN and LGBM model. Figure 3, and 7
explains the relation between number of epochs and training/validation accuracy
for CNN and LSTM model. The relation between training/validation loss with
increasing epochs is depicted in Figure 4, and 8 for CNN and LSTM model.

NDDT 15

Table 6: Classical distinguishers of 13-round HIGHT[17]
Rnd. Difference log2p

0 80008AC28A01A0BB 0
1 0000C2080128BB80 -6
2 000008E528E98000 -10
3 0000E5A8E9800000 -1
4 0000A82C80000000 -8
5 00002C8000000000 -2
6 0000800000000000 -3
7 0080000000000000 0
8 80000000000000C3 -3
9 000000000072C380 -4
10 0000000C72E98000 -9
11 00A70CF2E9800000 -4
12 A700F22A80000002 -6
13 007B2A80009002A7 -5

Fig. 11: LEA Validation Acc Vs Train Accuracy
(CNN)

Fig. 12: LEA Validation loss Vs Train Loss
(LSTM)

4.2 LEA

The best differential distinguisher available for LEA [11] is of 11-rounds with
probability at most 2−98, provided by the designers of the cipher. The input dif-
ference is (80000234 α0402214 β0401205 γ0400281), where α ∈ {4, c}, β ∈ {4, c},
and γ = β⊕1, and output difference is (η800000a 88aaa00a 220202ζ0 00200050),
where η ∈ {4, c} and ζ ∈ {2, 6}. The 11-round differential distinguisher, along
with each of the input differences and output differences from round one to
round-11 is shown in Table 9.

Observation

For LEA, we use δi = (0x00000000, 0x80000000, 0x80000000, 0x80000000) as
the plaintext difference given by Hong et al. [11] at Table 10. We take the

16 Debranjan Pal et al.

Table 7: Accuracy, true positive rate (TPR)
and true negative rate (TNR) for HIGHT

Model Round
No.

Train.
Acc.

Valid.
Acc. TPR TNR

CNN

5 99.99 99.98 1.0 0.9998
6 100.00 99.99 1.0 0.999
7 98.82 97.023 0.995 0.9449
8 98.98 98.71 0.998 0.9753
9 67.892 50.48 0.5052 0.4942
10 75.90 50.30 0.5221 0.4653

LGBM

5 100.00 99.94 0.9999 0.9988
6 100.00 99.99 1.0 0.9997
7 80.05 78.89 0.985 0.5944
8 99.19 98.56 0.9893 0.981
9 65.31 50.26 0.5656 0.4394
10 66.17 50.01 0.5019 0.5054

LSTM
5 94.76 94.814 0.97343 0.92261
6 82.61 82.16 0.93443 0.7098
7 60.28 60.09 0.5663 0.635
8 66.91 66.36 0.6434 0.684

Table 8: Accuracy, true positive rate (TPR)
and true negative rate (TNR) for LEA cipher

Model Round
No.

Train.
Acc.

Valid.
Acc. TPR TNR

CNN

5 99.87 98.45 0.990 0.978
6 99.39 95.04 0.956 0.944
7 96.08 96.08 0.886 0.812
8 75.60 51.37 0.536 0.491
9 60.58 50.45 0.500 0.505

LGBM

6 92.54 91.83 0.897 0.939
7 87.84 87.62 0.845 0.906
8 66.19 62.51 0.499 0.749
9 65.05 50.18 0.499 0.508

LSTM

5 96.36 96.23 0.960 0.964
6 84.77 84.53 0.846 0.844
7 52.46 52.31 0.649 0.396
8 60.05 59.81 0.570 0.625

Table 9: Classical distinguishers of 11-round LEA[17]
Rnd. Difference log2p

0 80000234 α0402214 β0401205 γ0400281 -22
1 80400080 8a000080 82000210 80000234 -14
2 80000014 80400014 80400004 80400080 -9
3 80000000 80000000 80000010 80000014 -3
4 00000000 80000000 80000000 80000000 0
5 00000100 00000000 00000000 00000000 1
6 00020000 00000000 00000000 00000100 -2
7 04000000 00000000 00000020 00020000 -4
8 00000008 00000001 00004004 04000000 -8
9 00001200 28000200 80800800 00000008 -12
10 00200050 05440050 10100101 00001200 -23
11 η800000a 88aaa00a 220202ζ0 00200050

NDDT 17

Fig. 13: Training/Validation Accuracy vs Epoch
for SPARX(CNN)

Fig. 14: Training/Validation Loss vs Epoch for
SPARX(CNN)

fourth-round output difference from the eleven-round differential characteris-
tics (given in Table 9) and apply our generic distinguisher described Algo-
rithm 4. The CNN and LGBM model provides acceptable results for up to
13 rounds. The LSTM model can classify the cipher up to 12 rounds. We
summarize the results from the CNN, LSTM, and LGBM models in Table 8.
Figure 11, and 9 describes the relation between training/validation accuracy
and the number of epochs for CNN and LSTM model. We get high accu-
racy up to 80% after applying the five round output (0x00000100, 0x00000000,
0x00000000, 0x00000000) from Table 9 to generic neural distinguisher as δi.
The variation of training and validation loss by increasing epoch number is
depicted in Figure 12, and 10 for CNN and LSTM model. In this case, our
generic distinguisher can also classify LEA up to 13 rounds. Here we can re-
define the lower bound of data complexity of 11-round LEA to 249 considering
δi = (0x00000000, 0x80000000, 0x80000000, 0x80000000), provided in Table 9.

Table 10: Accuracy, true positive rate (TPR) and true negative rate (TNR) for
SPARX

Model Rnd.
No.

Train.
Acc.

Valid.
Acc. TPR TNR

CNN

3 99.41 93.27 0.918 0.948
4 97.43 76.61 0.751 0.781
5 66.41 50.38 0.478 0.528
3 90.32 89.90 0.866 0.932

LGBM 4 69.00 67.00 0.616 0.728
5 65.54 50.64 0.520 0.493

LSTM

3 84.17 83.57 0.782 0.889
4 63.35 62.93 0.681 0.578
5 50.94 50.45 0.289 0.717

18 Debranjan Pal et al.

Fig. 15: Training/Validation Loss vs Epoch for
SPARX (LSTM)

Fig. 16: Training/Validation Accuracy vs Epoch
for SPARX(LSTM)

4.3 SPARX

Ralph et al. [1] propose an optimal six-round differential trail of SPARX32/64,
where they uses the input difference as (00000000 02110A04), and the six-round
output difference is (AF1ABF30 850A9520). The probability of the trial is 2−13.
A nine-round trail is also proposed with probability 2−32.87, where the input dif-
ference is (28000010, 28000010) and output difference is (80818283, 80008002).
Ralph et al. [1] presents all the input and output differences for optimal differ-
ential trials up to ten rounds. The 9-round differential distinguisher, along with
each of the input differences and output differences from round one to round-9
is shown in Table 11, where L is a fiestel function.

Table 11: Classical distinguishers of 9-round SPARX [1]
Rounds Difference log2p

0 00000000 00508402 -
1 00000000 24023408 4
2 00000000 50c080e0 7
3 00000000 01810203 5
L 01810203 00000000 0
4 000c0800 00000000 5
5 20000000 00000000 3
6 00400040 00000000 1
L 00400040 00400040 0
7 80408140 80408140 4
8 00400542 00400542 6
9 8542904a 8542904a 8
L 08150815 8542904a 0

NDDT 19

Table 12: Accuracy, true positive rate
(TPR) and true negative rate (TNR) for

SAND64 cipher

Model Round
No.

Train.
Acc.

Valid.
Acc. TPR TNR

CNN

4 99.9 99.9 0.999 0.929
5 99.9 99.94 0.998 1.00
6 97.66 97.61 0.953 0.999
7 50.62 50.58 0.628 0.369
8 50.19 50.25 0.269 0.721

LGBM

4 99.86 99.98 1.00 0.997
5 99.36 99.34 0.999 0.986
6 90.41 90.22 0.994 0.811
7 64.54 51.45 0.467 0.561

LSTM

4 97.00 96.73 0.968 0.967
5 94.99 94.93 0.931 0.967
6 75.69 74.66 0.694 0.799

Table 13: Accuracy, true positive rate
(TPR) and true negative rate (TNR) for

SAND128 cipher

Model Round
No.

Train.
Acc.

Valid.
Acc. TPR TNR

CNN

5 99.9 99.9 0.999 0.999
6 99.9 99.99 0.999 0.999
7 99.01 99.23 0.979 0.999
8 90.13 89.69 0.769 0.989
9 50.18 50.38 0.701 0.296

LGBM

4 100 100 1.00 0.999
5 100 99.97 0.999 0.999
6 99.56 99.27 0.993 0.991
7 64.01 50.44 0.523 0.486
8 64.52 50.13 0.501 0.402

LSTM

4 98.66 98.33 0.967 0.999
5 98.51 98.66 0.976 0.997
6 92.31 92.17 0.852 0.99

Observation

Ralph et al. [1] found the five round output difference δi = 0x00400040/0x00000000
to describe the six round differential trail(see Table 11). We use the same dif-
ference δi = 0x00400040/0x00000000 as input difference and found a neural
distinguisher up to five rounds with good accuracy. Adding up, we found a neu-
ral distinguisher for SPARX32/64 up to 11 rounds. Here we use three neural
models. The training and validation accuracy of the CNN, LGBM, and LSTM
models with true positive and negative rates is shown in Table 10. The models
also provide good accuracy for input difference δi = 0x00408000/0x00000000
and δi = 0x28000010, 0x28000010 up to six rounds.

Figure 13 and 16 describe the relation between training/validation accuracy
and the number of epochs for the CNN and LSTM model. The variation of
training and validation loss by increasing epoch number is depicted in Figure 14,
and 15 for the CNN and LSTM model. We found the lower bound of data
complexity of 9-round as 225 using δi = 0x00400040/0x00000000(see Table 11).

Fig. 17: Training/Validation Accuracy vs Epoch
for SAND64 (LSTM)

Fig. 18: Training/Validation Loss vs Epoch for
SAND64 (LSTM)

20 Debranjan Pal et al.

Fig. 19: Training/Validation Accuracy vs Epoch
for SAND128 (CNN)

Fig. 20: Training/Validation Loss vs Epoch for
SAND128 (CNN)

4.4 SAND-64/128

The designers of SAND [7] provided a seven round differential characteristics for
SAND128 with probability 2−24 and uses plaintext difference as (0x09000890
88880230).

Observation

In case of SAND-128, we use (0x800000000 00000000) as plaintext difference,
which is the input of the fifth round of the classical distinguisher defined in
Table [7]. We found distinguishers with good accuracy up to nine rounds. The
training and validation accuracy of the CNN, LGBM, and LSTM models with
true positive and negative rates is shown in Table 13. Figure 19, and 21 describes
the relation between training/validation accuracy and the number of epochs for
CNN and LSTM model. Figure 20, and 22 describes the relation between train-
ing/validation loss and the number of epochs for CNN and LSTM model. In
total a 14 round neural distinguisher is achieved. For seven rounds distinguisher
we can compare the data complexity of with the designers claim, which is 224.
In our case the lower bound of data complexity is reduced to 212. For SAND64
we apply (0x80000000) as input difference of our neural distinguisher. In this
case we found distinguishers with good accuracy up to eight rounds. The train-
ing and validation accuracy with true positive and negative rates is shown in
Table 12.Figure 17 describes the relation between training/validation accuracy
and the number of epochs for LSTM model. Figure 18 describes the relation
between training/validation loss and the number of epochs for LSTM model.

5 Conclusion

In this paper, we introduce a novel technique for finding neural differential dis-
tinguishers. Using the tool, we report neural classifiers for the cipher HIGHT up
to 14-rounds, LEA up to 13-rounds, up to nine rounds for SPARX and up to 14
rounds for SAND128, which are the first neural distinguisher for the cipher. To

NDDT 21

Fig. 21: Training/Validation Accuracy vs Epoch
for SAND128 (LSTM)

Fig. 22: Training/Validation Loss vs Epoch for
SAND128 (LSTM)

the best of our knowledge, this is the first neural distinguisher for HIGHT, LEA,
SAND and SPARX. We have performed an experiment to describe the relation-
ship between the hamming weight of input difference of a neural distinguisher
and the corresponding maximum round number of the cipher. A general approach
for finding the lower bound of data complexity for differential cryptanalysis is
also provided. As a future work we want to cover more ciphers applying our tool
for finding new differential distinguishers.

References

1. Ankele, R., List, E.: Differential cryptanalysis of round-reduced sparx-64/128. In:
Preneel, B., Vercauteren, F. (eds.) Applied Cryptography and Network Security
- 16th International Conference, ACNS 2018, Leuven, Belgium, July 2-4, 2018,
Proceedings. Lecture Notes in Computer Science, vol. 10892, pp. 459–475 (2018).
https://doi.org/10.1007/978-3-319-93387-0_24, https://doi.org/10.1007/
978-3-319-93387-0_24

2. Bagherzadeh, E., Ahmadian, Z.: Milp-based automatic differential search
for LEA and HIGHT block ciphers. IET Inf. Secur. 14(5), 595–603
(2020). https://doi.org/10.1049/iet-ifs.2018.5539, https://doi.org/10.
1049/iet-ifs.2018.5539

3. Baksi, A., Breier, J., Chen, Y., Dong, X.: Machine learning assisted differential
distinguishers for lightweight ciphers. In: Design, Automation & Test in Europe
Conference & Exhibition, DATE 2021, Grenoble, France, February 1-5, 2021. pp.
176–181 (2021). https://doi.org/10.23919/DATE51398.2021.9474092, https://
doi.org/10.23919/DATE51398.2021.9474092

4. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A
small present - towards reaching the limit of lightweight encryption. In: Fischer,
W., Homma, N. (eds.) Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Pro-
ceedings. Lecture Notes in Computer Science, vol. 10529, pp. 321–345 (2017).
https://doi.org/10.1007/978-3-319-66787-4_16, https://doi.org/10.1007/
978-3-319-66787-4_16

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd Annual
Design Automation Conference, San Francisco, CA, USA, June 7-11, 2015. pp.

https://doi.org/10.1007/978-3-319-93387-0_24
https://doi.org/10.1007/978-3-319-93387-0_24
https://doi.org/10.1007/978-3-319-93387-0_24
https://doi.org/10.1007/978-3-319-93387-0_24
https://doi.org/10.1049/iet-ifs.2018.5539
https://doi.org/10.1049/iet-ifs.2018.5539
https://doi.org/10.1049/iet-ifs.2018.5539
https://doi.org/10.1049/iet-ifs.2018.5539
https://doi.org/10.23919/DATE51398.2021.9474092
https://doi.org/10.23919/DATE51398.2021.9474092
https://doi.org/10.23919/DATE51398.2021.9474092
https://doi.org/10.23919/DATE51398.2021.9474092
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-66787-4_16

22 Debranjan Pal et al.

175:1–175:6. ACM (2015). https://doi.org/10.1145/2744769.2747946, https:
//doi.org/10.1145/2744769.2747946

6. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Stan-
dard (1993). https://doi.org/10.1007/978-1-4613-9314-6, https://doi.org/
10.1007/978-1-4613-9314-6

7. Chen, S., Fan, Y., Sun, L., Fu, Y., Zhou, H., Li, Y., Wang, M., Wang, W., Guo, C.:
SAND: an AND-RX feistel lightweight block cipher supporting s-box-based security
evaluations. Des. Codes Cryptogr. 90(1), 155–198 (2022). https://doi.org/10.
1007/s10623-021-00970-9, https://doi.org/10.1007/s10623-021-00970-9

8. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.:
Design strategies for ARX with provable bounds: Sparx and LAX. In: Cheon, J.H.,
Takagi, T. (eds.) Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Information Secu-
rity, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 10031, pp. 484–513 (2016). https://doi.org/10.1007/
978-3-662-53887-6_18, https://doi.org/10.1007/978-3-662-53887-6_18

9. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning.
In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology - CRYPTO 2019
- 39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 11693, pp. 150–179 (2019). https://doi.org/10.1007/978-3-030-26951-7_
6, https://doi.org/10.1007/978-3-030-26951-7_6

10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997), https://doi.org/10.1162/neco.1997.9.8.1735

11. Hong, D., Lee, J., Kim, D., Kwon, D., Ryu, K.H., Lee, D.: LEA: A 128-bit block
cipher for fast encryption on common processors. In: Kim, Y., Lee, H., Perrig,
A. (eds.) Information Security Applications - 14th International Workshop, WISA
2013, Jeju Island, Korea, August 19-21, 2013, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 8267, pp. 3–27 (2013). https://doi.org/10.1007/
978-3-319-05149-9_1, https://doi.org/10.1007/978-3-319-05149-9_1

12. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A new block cipher suitable for
low-resource device. In: Goubin, L., Matsui, M. (eds.) Cryptographic Hardware and
Embedded Systems - CHES 2006, 8th International Workshop, Yokohama, Japan,
October 10-13, 2006, Proceedings. Lecture Notes in Computer Science, vol. 4249,
pp. 46–59 (2006). https://doi.org/10.1007/11894063_4, https://doi.org/10.
1007/11894063_4

13. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.:
Lightgbm: A highly efficient gradient boosting decision tree. In: Guyon, I., von
Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Gar-
nett, R. (eds.) Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA. pp. 3146–3154 (2017), https://proceedings.neurips.cc/
paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html

14. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis.
In: Davies, D.W. (ed.) Advances in Cryptology - EUROCRYPT ’91, Workshop
on the Theory and Application of Cryptographic Techniques, Brighton, UK, April
8-11, 1991, Proceedings. Lecture Notes in Computer Science, vol. 547, pp. 17–
38 (1991). https://doi.org/10.1007/3-540-46416-6_2, https://doi.org/10.
1007/3-540-46416-6_2

https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1007/978-1-4613-9314-6
https://doi.org/10.1007/978-1-4613-9314-6
https://doi.org/10.1007/978-1-4613-9314-6
https://doi.org/10.1007/978-1-4613-9314-6
https://doi.org/10.1007/s10623-021-00970-9
https://doi.org/10.1007/s10623-021-00970-9
https://doi.org/10.1007/s10623-021-00970-9
https://doi.org/10.1007/s10623-021-00970-9
https://doi.org/10.1007/s10623-021-00970-9
https://doi.org/10.1007/978-3-662-53887-6_18
https://doi.org/10.1007/978-3-662-53887-6_18
https://doi.org/10.1007/978-3-662-53887-6_18
https://doi.org/10.1007/978-3-662-53887-6_18
https://doi.org/10.1007/978-3-662-53887-6_18
https://doi.org/10.1007/978-3-030-26951-7_6
https://doi.org/10.1007/978-3-030-26951-7_6
https://doi.org/10.1007/978-3-030-26951-7_6
https://doi.org/10.1007/978-3-030-26951-7_6
https://doi.org/10.1007/978-3-030-26951-7_6
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/978-3-319-05149-9_1
https://doi.org/10.1007/978-3-319-05149-9_1
https://doi.org/10.1007/978-3-319-05149-9_1
https://doi.org/10.1007/978-3-319-05149-9_1
https://doi.org/10.1007/978-3-319-05149-9_1
https://doi.org/10.1007/11894063_4
https://doi.org/10.1007/11894063_4
https://doi.org/10.1007/11894063_4
https://doi.org/10.1007/11894063_4
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1007/3-540-46416-6_2

NDDT 23

15. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. CoRR
abs/1511.08458 (2015), http://arxiv.org/abs/1511.08458

16. Yadav, T., Kumar, M.: Differential-ml distinguisher: Machine learning based
generic extension for differential cryptanalysis. In: Longa, P., Ràfols, C. (eds.)
Progress in Cryptology - LATINCRYPT 2021 - 7th International Conference on
Cryptology and Information Security in Latin America, Bogotá, Colombia, Oc-
tober 6-8, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12912,
pp. 191–212 (2021). https://doi.org/10.1007/978-3-030-88238-9_10, https:
//doi.org/10.1007/978-3-030-88238-9_10

17. Yin, J., Ma, C., Lyu, L., Song, J., Zeng, G., Ma, C., Wei, F.: Improved crypt-
analysis of an ISO standard lightweight block cipher with refined MILP mod-
elling. In: Chen, X., Lin, D., Yung, M. (eds.) Information Security and Cryp-
tology - 13th International Conference, Inscrypt 2017, Xi’an, China, November
3-5, 2017, Revised Selected Papers. Lecture Notes in Computer Science, vol.
10726, pp. 404–426 (2017). https://doi.org/10.1007/978-3-319-75160-3_24,
https://doi.org/10.1007/978-3-319-75160-3_24

A Brief Description of HIGHT, LEA, SPARX and SAND

Brief description of HIGHT HIGHT is an ARX-based block cipher proposed
by Hong et al. [12] at CHESS 2006. It is a lightweight cipher, and it performs
fast. The round function consists of simple operations like circular left rotation,
bit-wise xor, and addition in modulo 28. The size of plaintext and ciphertext,
both is 64 bits, and the master key is 128 bits. In the key Scheduling part, eight
bytes whitening key and 128 bytes subkey is being generated.

The encryption procedure of HIGHT mainly consists of four modules: key
schedule, key whitening phase, round function, and final key exoring.

– Key schedule The key schedule function has two main components; the
first is the computation of whitening keys, which finds eight key whitening
bytes, and another is responsible for generating 128 round-key bytes.

– Initial transformation It takes the plaintext P and four whitening keys
W0,W1,W2,W3 and converts the plaintext suitable for the input of the round
function using the following operations.

– Round function Round Function generates Ti = Ti,7|| . . . ||Ti,0 into Ti+1 =
Ti+1,7|| . . . ||Ti+1,0 described in Algorithm 5.

– Final transformation Final transformation generates the ciphertexts using
the temporary plaintext P and four whitening keys W4,W5,W6,W7.

In the decryption process of HIGHT, the key schedule function produces the
128 round keys in reverse order.

LEA LEA is an ARX-based block cipher proposed by Hong et al. [11]. The
block size of LEA is 128 bits. Mainly, LEA consists of three versions, 128-bit
key size with 24 rounds, 192 bits of key with 28 rounds, and last one is with 256
bits key size for 32 rounds. Assume plaintext be P = P0, P1, P2, P3, master key

http://arxiv.org/abs/1511.08458
https://doi.org/10.1007/978-3-030-88238-9_10
https://doi.org/10.1007/978-3-030-88238-9_10
https://doi.org/10.1007/978-3-030-88238-9_10
https://doi.org/10.1007/978-3-030-88238-9_10
https://doi.org/10.1007/978-3-319-75160-3_24
https://doi.org/10.1007/978-3-319-75160-3_24
https://doi.org/10.1007/978-3-319-75160-3_24

24 Debranjan Pal et al.

Algorithm 5 HIGHT Encryption
Inputs: Plaintext P and Master key M
Outputs: Ciphertext C
1: procedure HIGHT_ENC(P , N)
2: T0,0 ← P0 ⊞W0, T0,1 ← P1

3: T0,2 ← P2 ⊕W1, T0,3 ← P3

4: T0,4 ← P4 ⊞W2, T0,5 ← P5

5: T0,6 ← P6 ⊕W3, T0,7 ← P7

6: for i= 0 to 31 do
7: Ti+1,1 → Ti,0

8: Ti+1,3 → Ti,2

9: Ti+1,5 → Ti,4

10: Ti+1,7 → Ti,6

11: Ti+1,0 = Ti,7 ⊕ (F0(Ti,6)⊞RK4i+3),
12: Ti+1,2 = Ti,1 ⊞ (F1(Ti,0)⊕RK4i+2)
13: Ti+1,4 = Ti,3 ⊕ (F0(Ti,2 ⊞RK4i+1),
14: Ti+1,6 = Ti,5 ⊞ (F1(Ti,4)⊕RK4i).
15: end for
16: C0 ← T32,1 ⊞W4, C1 ← T32,2

17: C2 ← T32,3 ⊕W5, C3 ← T32,4

18: C4 ← T32,5 ⊞W6, C5 ← T32,6

19: C6 ← T32,7 ⊕W7, C7 ← X32,0

20: Return C
21: end procedure

M = M0,M1,M2,M3 and ciphertext is C = C0, C1, C2, C3 with each Pi,Mi, Ci

is a 32 bit word, i ∈ {0, 1, 2, 3}. The encryption process first initializes P to T0.
A round operation of 128 bit LEA we describe in Algorithm 6

SPARX Dinu et al. introduce SPARX [8] at ASIACRYPT’16, which is the first
ARX-based family of block ciphers that provide provable bounds on Linear Trails
and the maximum length of differential cryptanalysis. The SPARX-n/k family
of ciphers includes the SPARX 64/128, SPARX 128/128, and SPARX 128/256,
where n indicates the block size bits and k represents the key block size bits.
Our paper focuses on SPARX 64/128. Mainly SPARX encryption executes ns

steps and each step consists of ra times ARX box and key addition for each
of 32 bit words. Each step also performs a linear mixing operation δ for w-bit
words. The SPARX 64/128 is formed by a Feistel network with two state words
having eight Feistel steps. Each step consists of three rounds of an ARX-based
round function(three-round SPECKEY). The plaintext and ciphertext comprise
w = 2 words of 32 bit each. The key is four words long of the same size as
plaintext/ciphertext. The details of SPARX encryption procedure is described
in Algorithm 7

SAND In 2022 Chen et al. [7] proposes a new AND-RX based family of block
ciphers SAND. Two versions are available for SAND. For SAND64 the size of

NDDT 25

Algorithm 6 LEA Encryption
Inputs: Plaintext P and Master key M
Outputs: Ciphertext C
1: procedure LEA_ENC(P , N)
2:
3: for i= 0 to 23 do
4: T0 = RL<<1(T0 ⊞RL<<i(δi%4)) ▷ δ is an array of constants.
5: T1 = RL<<3(T1 ⊞RL<<(i+1)(δi%4)),
6: T2 = RL<<6(T2 ⊞RL<<(i+2)(δi%4)),
7: T3 = RL<<11(T3 ⊞RL<<(i+3)(δi%4)),
8: RKi = [T0, T1, T2, T1, T3, T1]
9: end for

10: Ti = Pi, i ∈ {0, 1, 2, 3}
11:
12: for i= 0 to 23 do
13: Ti+1,0 = RL<<9((Ti,0 ⊕RKi,0)⊞ (Ti,1 ⊕RKi,1)),
14: Ti+1,1 = RR<<5((Ti,1 ⊕RKi,2)⊞ (Ti,2 ⊕RKi,3)),
15: Ti+1,2 = RR<<3((Ti,2 ⊕RKi,4)⊞ (Ti,3 ⊕RKi,5)),
16: Ti+1,3 = Ti,0

17: end for
18: Set C = [Ti,0, Ti,1, Ti,2, Ti,3].
19: Return C
20: end procedure

block is 64 bits and the round number is 48. For SAND128 the block size is
128 bits and round number is 54. The size is 128 bits for both cases. Assume
P = (Pl, Pr) be the input plaintext with Pl is the left side n bits and Pr be the
right side n bits. We denote C = (Cl, Cr) be the ciphertext with Cl is the left
side n bits and Cr be the right side n bits. Suppose (T r

1 , T
r
2) be the temporary

current state and RKr be the round key for the rth round then the state for the
next round can be determined as, (T r

1 , T
r
2) = (Pn(G0(T

r
1 ≪n/4 α)⊕G1(T

r
1 ≪n/4

β)) ⊕ T r
2 ⊕ RKr, T r

1) Here G0 and G1 are the non-linear functions defined as
follows, G0(x0, x1, x2, x3) = (y0, y1, y2, y3) = (x3 ⊙ x2 ⊕ x0, x1, x2, y0 ⊙ x1 ⊕ x3),
G0(x0, x1, x2, x3) = (y0, y2, y1, y3) = (x0, y3⊙x1⊕x2, y2⊙x0⊕x1, x3). Pn is the
permutation function. The value of rotation variable (α, β) is set to (0, 1).

26 Debranjan Pal et al.

Algorithm 7 SPARX Encryption
Inputs: The plaintext (P0, P1, . . . , Pw−1), Master key (M0,M1, . . . ,Mv−1)
Output: The ciphertext (C0, C1, . . . , Cw−1)
1: procedure SPARX_ENC(P ,C)
2: Let Ci ← Pi ∀i ∈ [0, ..., w − 1]
3: Let RKi ←Mi ∀i ∈ [0, ..., v − 1]
4: for s=0 to ns − 1 do
5: for i = 0 to (w-1) do
6: for r = 0 to ra − 1 do
7: Pi ← Pi ⊕Kr

8: Pi ← A(yi)
9: end for

10: (RK0, RK1, . . . , RKv−1)← KEY _SCH(RK0, RK1, . . . , RKv−1)
11: end for
12: (C0, C1, . . . , Cw−1)← λw(C0, C1, . . . , Cw−1)
13: end for
14: Ci ← Ci ⊕RKi ∀i ∈ [0, ..., w − 1]
15: return (C0, C1, . . . , Cw−1)
16: Return C
17: end procedure

	A Deep Neural Differential Distinguisher for ARX based Block Cipher

