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Abstract

We present a new framework for building round-optimal one-sided statistically se-
cure two party computation (2PC) protocols in the plain model. We demonstrate that
a relatively weak notion of oblivious transfer (OT), namely a three round elementary
oblivious transfer eOT with statistical receiver privacy, along with a non-interactive
commitment scheme suffices to build a one-sided statistically secure two party com-
putation protocol with black-box simulation. Our framework enables the first instan-
tiations of round-optimal one-sided statistically secure 2PC protocols from the CDH
assumption and certain families of isogeny-based assumptions.

As part of our compiler, we introduce the following new one-sided statistically secure
primitives in the pre-processing model that might also be of independent interest:

1. Three round statistically sender private random-OT where only the last OT mes-
sage depends on the receiver’s choice bit and the sender receives random outputs
generated by the protocol.

2. Four round delayed-input statistically sender private conditional disclosure of
secrets where the first two rounds of the protocol are independent of the inputs
of the parties.

The above primitives are directly constructed from eOT and hence we obtain their
instantiations from the same set of assumptions as our 2PC.
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1 Introduction

Secure two party computation (2PC) enables two mutually distrusting parties to compute
a function on their private inputs without revealing anything beyond their output. An
important question in the study of secure computation has been designing protocols in
minimal rounds. The phenomenal work of Katz and Ostrovsky [KO04] showed that four
rounds are necessary when one party receives the output and five rounds are necessary if
both parties wish to receive output. Starting with [KO04], there has been a large body of
work in designing round-optimal protocols in the plain model, secure against a probabilistic
polynomial time (PPT) malicious adversary, in the two-party setting [ORS15, COSV17,
CCG+21] and the multi-party setting with dishonest majority [GMPP16, BHP17, ACJ17,
BGJ+18, HHPV18, CCG+20].

Statistical Security. A natural question to ask is can we obtain round optimal proto-
cols when the parties are computationally unbounded? For the specific problem of zero
knowledge proofs/arguments, this question has been well studied [GMW91, Nao91, GK96,
BJY97, NOVY98, HNO+09]. In particular, assuming collision resistant hash functions: (i)
Statistical zero knowledge arguments for NP, where soundness is computational and zero
knowledge is statistical, are known in four rounds (round optimal) with black-box simula-
tion [BJY97] and (ii) Computational zero knowledge proofs for NP, that satisfy statistical
soundness and computational zero knowledge, are known in five rounds (round optimal)
with black-box simulation [GK96]. There has also been work on building round-optimal
(two rounds) statistically secure protocols for weaker functionalities like ZAPs and witness
indistinguishable proofs/arguments [DN07, KKS18, BFJ+20, GJJM20].

Handling computationally unbounded adversaries for general two party functionalities is
more challenging. For instance, Katz [Kat08] proved that it is impossible to obtain four
round zero knowledge (ZK) proofs. This immediately rules out statistical security in four
rounds for a two party secure computation protocol where only one party (denoted as the
receiver) wishes to learn the output and the other party (denoted as the sender) is compu-
tationally unbounded. Therefore, the best possible security that one can hope for in four
rounds is security against a computationally unbounded receiver and a PPT sender. This
was termed as one-sided statistical security by Khurana and Mughees [KM20]. The works
of [OPP14, CO17, KKS18] considered weaker notions such as one-sided statistical security
with respect to super-polynomial time simulation. However, the question of obtaining one-
sided statistically secure protocols with (standard) polynomial-time black-box simulation
remained elusive for a long time. Only recently, this question was addressed by the work
of [KM20]. They constructed round-optimal one-sided statistically secure two-party com-
putation protocols with black-box simulation-based security against malicious adversaries:

• A four round statistically sender private (SSP) protocol where the receiver obtains the
output at the end of fourth round,

• A five round statistically sender private protocol where the receiver obtains the output
at the end of fourth round and the sender obtains the output at the end of fifth round.

The underlying building blocks in [KM20] are two-round statistically sender private OT
(SSPOT) [BD18, NP01, HK12] and a non-interactive commitment scheme. They instantiate
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the above protocol based on Learning with Errors (LWE), Decisional Diffie Hellman (DDH)
or Quadratic Residuosity (QR). However, it was left as an open problem in their work
to study the minimal assumptions required to obtain round-optimal 2PC protocols with
one-sided statistical security, following similar investigations on assumptions versus round
complexity in zero knowledge arguments/proofs with statistical security. For instance, it is
unknown whether we can build round-optimal one-sided statistically secure 2PC protocols
from other standard assumptions such as the Computational Diffie-Hellman (CDH) or the
newer class of isogeny-based assumptions. In this work, we ask the following question:

Can we construct round-optimal one-sided statistically secure 2PC protocols with black-box
simulation in the plain model from a wider class of assumptions?

1.1 Our Contributions

We answer the above question in the affirmative. We establish a general compiler to
achieve round-optimal one-sided statistically secure 2PC protocols that relies on poten-
tially weaker (or “less structured”) cryptographic primitives as compared to those used
by [KM20]. These primitives can be instantiated from essentially all commonly used cryp-
tographic assumptions, including new instantiations from the CDH assumption and cer-
tain isogeny-based assumptions such as the Reciprocal CSIDH assumption (which were not
known before and are contributions of this work), as well as instantiations from LWE, LPN
(+ derandomization techniques)1, Quadratic Residuosity, N th Residuosity, and decisional
CSIDH (all of which follow from existing works). In particular, the new instantiations from
CDH and Reciprocal CSIDH are enabled precisely by the usage of potentially weaker (or
“less structured”) cryptographic primitives in our framework as compared to those used
by [KM20]. Our approach is conceptually similar to that taken by the authors of [AMPS21]
to weaken the underlying primitives for round-optimal secure computation (MPC) proto-
cols which are secure against adaptive corruption of parties, but the techniques used by our
compiler are fundamentally different.

Our Ingredients. We introduce the notion of statistically receiver private (SRP) elemen-
tary OT in the plain model following the work of Dottling et al. [DGH+20]. We denote it
as eOT2 throughout the paper. It is a three round OT protocol, where the sender, with no
input, sends the first message that can be viewed as a pre-processing phase, the receiver
sends the second message based on its choice bit, and then, the sender computes random
outputs (which can be viewed as its two input messages in the traditional OT definition)
and sends the final OT message. Elementary security ensures that a maliciously corrupt
receiver is unable to compute both sender outputs. Statistical receiver privacy implies that
the choice bit is statistically hidden from a maliciously corrupt sender, with unbounded
computational power. We show that such an OT protocol combined with a non-interactive
commitment scheme suffices for one-sided statistical security. This yields a four-round 2PC

1Throughout this paper, when we refer to the LPN assumption, we refer to the “extremely low-noise”

variant of LPN with noise parameters in the O
(
(logn)2 /n

)
regime, as used in many recent works, includ-

ing [BF22].
2We consider that our eOT protocol provides statistical receiver privacy, as opposed to the elementary

OT protocol defined in [DGH+20] which only provides computational receiver privacy.
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of knowledge SZK
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tional sender
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Sec. 4.2
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ADMP20, BF22]
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Two-round Statistical Hash Commitments [GJJM20]

Sec. 7.1,7.2Sec. 5

Sec. 6

Note:

Previous work

This work

Figure 1: Roadmap of our compiler

protocol where the receiver obtains the output at the end of the fourth round, and a five-
round protocol where both parties obtain the output. Our contributions are summarized in
Thm. 1 and has been depicted in Fig. 1.

Theorem 1 (Informal) Assuming a non-interactive commitment scheme and a three round
statistically-receiver private elementary OT, denoted as eOT, there exists:

• A four-round 2PC protocol where the receiver obtains the output at the end of the
protocol,

• A five-round 2PC protocol where both parties obtain the output.
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Both our protocols achieve statistical security against a malicious receiver and computational
security against a malicious sender in the plain model3 and require black-box simulation.

We demonstrate that a two-round SSPOT implies eOT and a non-interactive commitment
scheme, hence re-obtaining the results of [KM20] through our compiler. Instantiating the
SSPOT from LPN+Nissan Wigderson style derandomization [BF22] and isogeny-based as-
sumption, like decisional CSIDH [ADMP20], we obtain new instantiations of our compiler.
In addition, we also build eOT and non-interactive commitments from CDH and other
isogeny based assumptions like reciprocal4 CSIDH [LGdSG21]. This gives us one-sided sta-
tistical 2PC from CDH and reciprocal CSIDH which was not known before. Combining the
above results, we obtain one-sided statistical 2PC from most well-studied assumptions in
cryptography.

Theorem 2 (Informal) Assuming CDH, LWE, LPN (+derandomization techniques), QR,
N th Residuosity, or isogeny-based assumptions (decisional CSIDH or Reciprocal CSIDH),
there exists:

• A four-round 2PC protocol where the receiver obtains the output at the end of the
protocol,

• A five-round 2PC protocol where both parties obtain the output.

Both our protocols achieve statistical security against a malicious receiver and computational
security against a malicious sender in the plain model and require black-box simulation.

As part of our building blocks, we introduce the notion of statistically sender private con-
ditional disclosure of secrets CDS in the preprocessing model and demonstrate that eOT
(and information theoretic garbling for NC1 circuits) suffices for its construction. This is a
weakening of two-round statistically sender private conditional disclosure of secrets which
is built from two-round SSPOT. Our primitive could be of independent interest, especially
in constructing one-sided statistically secure MPC protocols from different assumptions.
Formally,

Theorem 3 Assuming a three round statistically-receiver private elementary OT, there ex-
ists a four-round statistically sender private conditional disclosure of secrets CDS for NC1
circuits in the pre-processing model, where the first two rounds of CDS are input-independent.

Instantiating eOT from the above assumptions, we obtain the CDS from most well-studied
assumptions as follows.

Theorem 4 Assuming CDH, LWE, LPN (+derandomization techniques), QR, N th Resid-
uosity, or isogeny-based assumptions (decisional CSIDH or Reciprocal CSIDH), there exists

3For the five round protocol, receiver is the party that obtains output first (at the end of round four)
and sender is the party that obtains output at the end of round five.

4Reciprocal CSIDH is quantum equivalent to computational CSIDH, which is weaker than decisional
CSIDH. However, reciprocal CSIDH and decisional CSIDH assumptions are incomparable in the classical
setting.
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a four-round statistically sender private conditional disclosure of secrets CDS for NC1 cir-
cuits in the pre-processing model, where the first two rounds of CDS are input-independent.

The information theoretic garbling [Kol05] for NC1 circuits is used to construct the above
CDS for NC1 circuits. The above CDS for NC1 circuits suffice for one-sided statistical 2PC
for all circuits.

Roadmap. We provide a detailed overview of our protocols in Sec. 2. Then we define our
building blocks in Sec. 3. We define other OT protocols in Sec. 4 and construct them from
eOT. These OTs protocol would be instrumental in our final compiler. We construct our
round optimal one-sided statistically secure 2PC protocol πexp against explainable parties in
Sec. 5. Finally, we compile πexp to obtain a round optimal one-sided statistically secure 2PC
protocol πmal which is secure against malicious corruptions in Sec. 6. In the same section
we construct statistically sender private CDS in preprocessing model. Finally, we provide
instantiations of eOT from different assumptions in Sec. 7.

2 Technical Overview

In this section we demonstrate that a three round statistically receiver private elementary
OT, denoted as eOT, and a non-interactive commitment scheme suffices to obtain a five
round (which is round optimal) 2PC protocol that obtains security against a computation-
ally unbounded receiver and a PPT sender. Then we instantiate eOT and the commitment
scheme from various assumptions. Along the way, we introduce new primitives of indepen-
dent interest - statistical conditional disclosure of secrets CDS in the preprocessing model
and a three round random SSP-OT, and instantiate them from various assumptions.

2.1 One-Sided Statistical Two-Party Computation Protocol

Our compiler builds upon the compiler of [KM20] by weakening the underlying primitives
in their compiler. We recall their protocol for completeness. [KM20] constructed a five
round 2PC protocol against malicious adversaries. The first party, denoted as the receiver,
is computationally unbounded and obtains the output at the end of fourth round. The
second party, called the sender, is computationally bounded and obtains the output at the
end of fifth round. The protocol proceeds through two transformations- where [KM20] first
constructs a protocol which is secure against explainable adversaries and then compiles it
(interactive proofs) to obtain security against malicious adversaries.

Robust 2PC Secure against Explainable Adversaries. As the first step, [KM20]
considered explainable adversaries5 which generates protocol messages in the support of
the distribution of all honestly generated transcripts, and the simulator needs to extract
the input and randomness of the adversarial party from the transcript. In this setting, the

5It is different from the notion of semi-malicious security [MW16] where the adversary in addition to
generating the the protocol messages in the support of the distribution of all honestly generated transcripts,
also outputs the input and randomness that was used, on a special tape.
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classical garbled circuit based approach of [Yao86], where the receiver is the evaluator and
sender is the garbler, fails since the receiver is computationally unbounded and information
theoretically private garbling scheme is known only for NC1 circuits.

Reversing the Roles. [KM20] takes a different approach where the receiver garbles the
circuit and sender evaluates it. The sender obtains the wire labels corresponding to its
input through a statistical receiver private OT, hence hiding its input against an unbounded
corrupt receiver. The OT protocol takes three rounds, starting from the receiver (acting as
the sender of the OT), and the garbled circuit is sent in the third round by the receiver.

Simulating against Explainable Parties. The simulator needs to simulate against ex-
plainable adversaries by extracting their inputs. To enable extraction of the corrupt sender’s
input the sender is also required to commit to its input using a four round statistically hid-
ing and computationally binding extractable commitment scheme. Similarly, the receiver
commits to its input and randomness using a three round statistically binding and compu-
tationally hiding extractable commitment scheme. These commitments allow a simulator
to extract the input and randomness of the explainable adversarial parties. The simulator
against a corrupt sender’s extracts the sender’s input at the end of fourth round from the
commitment scheme and obtains the correct output only at the end of fourth round. How-
ever, the receiver is required to send the garbled circuit in the third round. This creates a
problem in simulation since a corrupt sender, evaluating the garbled circuit, distinguishes
an interaction with an honest receiver from an interaction with the simulated receiver based
on the garbled circuit output.

One Last Modification. To avoid this, the receiver garbles a different circuit so that the
garbled circuit computes an encryption of the output. The sender obtains the garbled circuit
at the end of third round, evaluates it to obtain the encrypted output and then sends it to
the receiver in the fourth round. The receiver decrypts the output and sends it to the sender
in the fifth round. In the ideal world the simulator sends a simulated garbled circuit which
outputs an encryption of 0 to the corrupt sender, hence providing correct simulation in the
ideal world. [KM20] also ensured that the first two rounds of the protocol are robust - i.e. if
the parties behave maliciously in the first 2 rounds of the protocol then they can influence
the protocol output but they would fail to infer any information about the honest party’s
input. The robustness property is crucial when we upgrade to security against malicious
adversaries.

Summary. To summarize the result of [KM20] they obtain a robust 5-round secure two-
party computation protocol πexp with black-box simulation against unbounded explainable
receivers and PPT explainable senders, where the receiver obtains its output at the end
of fourth round and the sender obtains its output at the end of the fifth round. Their
underlying primitives are as follows:

1. Three round oblivious transfer with statistical privacy for a receiver and computational
privacy for a sender,

2. Three round statistically binding and computationally hiding commitment scheme
satisfying extractability.
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3. Four round statistically hiding and computationally binding commitment scheme sat-
isfying extractability.

4. Information theoretic garbled circuits for NC1 circuits (used by [KM20] to validate a
specific NC1 relation as part of their statistically secure two-round CDS protocol – we
expand more on this subsequently).

Overview of Our Contributions. We demonstrate that an elementary OT protocol
(denoted simply as eOT in rest of the paper) and a non-interactive commitment scheme
suffices to instantiate the above primitives and hence yield the protocol πexp from eOT and
a non-interactive commitment scheme.

1. The three round SRP-OT protocol, denoted as iOT, that satisfies indistinguishability
based sender security is built from eOT in Sec. 4.1 in a round preserving manner. We
discuss it in Sec. 2.2.

2. The three round statistically binding and computationally hiding commitment scheme
can be constructed [PRS02] from any non-interactive commitment scheme.

3. The four round statistically hiding and computationally binding commitment scheme
satisfying extractability can be obtained [KM20] by replacing the non-interactive com-
mitment scheme in [PRS02] with a two round statistically hiding commitment scheme.
We build the two round statistically hiding commitment scheme from SRP iOT in Sec.
5.2 and we briefly discus about it in Sec. 2.2.

4. Garbled circuits can be obtained [Yao86, LP07] from one way functions.

The Final Compiler. Next, the security of πexp is uplifted such that it is secure against
malicious adversaries using zero knowledge protocols as follows.

Tackling a Malicious Sender. The sender is required to prove that it generated the
second and fourth round messages of πexp correctly. This is performed using a four round
delayed-input statistical zero knowledge protocol SZK where the input statement is chosen
by the sender (behaving as the prover) in the last round of SZK. SZK is run in parallel to
πexp and the robustness of the first two rounds of πexp ensures that the input of an honest
receiver is not leaked even if a corrupt sender constructs the second round message of πexp

maliciously. We also require SZK to be an argument of knowledge for reasons, discussed
later. SZK can be built [LS91] from two round statistically hiding commitment scheme.

Tackling a Malicious Receiver. Similar to the sender, the receiver is required to prove
that it generated the first, third and fifth round messages of πexp correctly. This is performed
using a five round delayed-input zero knowledge proof ZKP where the input statement is
chosen by the receiver (behaving as the prover) in the last round of ZKP. ZKP is run in
parallel to πexp and the robustness of the first two rounds of πexp ensures that the input of
an honest sender is not leaked even if a corrupt receiver constructs the first round message
of πexp maliciously. ZKP can be built ( [LS91]+ [GK96]) from two round statistically hiding
commitment scheme. However, a maliciously constructed third round message of πexp could
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leak an honest sender’s input when the sender sends the fourth round message of πexp. ZKP
fails to address this issue since it takes five rounds to complete and an honest sender could
detect the malicious behavior of a corrupt receiver only at the end of the fifth round. This
leaks the honest sender’s inputs.

Conditional Disclosure of Secrets. [KM20] addresses the above situation by using a
two round conditional disclosure of secrets CDS where the receiver sends the public key
for the CDS alongwith the third round message of πexp. The sender encrypts the fourth
round message of πexp under the CDS public key and input statement - the first and third
round message of πexp is constructed in an explainable manner by the receiver. The receiver
successfully decrypts the fourth round message of πexp if it produces a witness attesting to
the fact that the first and third round message of πexp is explainable. If the receiver fails
to produce such a witness, then the CDS plaintext (fourth round message of πexp) remains
statistically hidden. The CDS protocol requires soundness against a statistical receiver
and witness privacy against a semi-honest computationally bounded sender. In the final
protocol, the sender is required to prove in the fourth round that it constructed the CDS
sender message correctly using SZK since the CDS provides security guarantees against a
semi-honest sender. We require the SZK to be argument of knowledge so that the simulator
(against a corrupt sender) is able to extract the encrypted CDS plaintext, which is the fourth
round message of πexp, in order to generate the final message of the protocol.

Note that [KM20] constructs an NC1 circuit which checks the validity of receiver’s witness.
The authors of [KM20] then proceed to construct a (two-round) CDS protocol with statistical
security for the class of relations that are verifiable by NC1 circuits by combining two round
statistically sender private OT with information-theoretic garbled circuits for NC1. In fact,
it can be shown (via dashed lines in Fig. 1) that two-round statistically sender private
OT suffices to instantiate the 2PC protocol of [KM20]. However, two-round statistically
sender private OT is a relatively strong primitive and is not known from many well-studied
assumptions, like CDH.

Our Proposal. We shift our starting point to presumably weaker primitives - a three
round SRP eOT protocol where only the second OT message depends on the receiver’s
input and the sender’s outputs are random. We show that eOT suffices for compiling πexp

to our final protocol πmal which provides statistical security against a malicious receiver and
computational security against a malicious sender as follows:

1. By applying round-preserving transformations on eOT we obtain a three round delayed-
input statistical sender private OT protocol SSPOT - where only the last OT message
depends on the receiver’s input and the sender’s outputs are random. Combining
SSPOT with information theoretic garbling for NC1 we obtain a four round statistical
CDS protocol where the first two rounds, aka preprocessing phase, are independent
of the input statement and the witness. This new primitive suffices for conditional
disclosure of secrets in the above 2PC protocol since the first two rounds can be used
for the preprocessing phase of the SSPOT and the last two rounds can be used to run
the input-dependent phase of CDS.

2. The four round delayed-input statistical zero knowledge SZK can be built [LS91] from
two round statistically hiding commitment.
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3. The five round delayed-input zero knowledge proof ZKP can be obtained [LS91]+
[GK96] from two round statistically hiding commitment.

4. The first two rounds of iOT implies a two round statistically hiding commitment
scheme.

Previously, we have shown that πexp can be obtained from a non-interactive commitment
scheme and eOT. Combining the two results, we obtain our one-sided 2PC protocol from a
non-interactive commitment scheme and eOT.

Instantiations. We demonstrate that a two-round statistical sender private OT imple-
ments eOT (by applying OT reversal techniques [WW06]) and the first message of the
two-round statistical sender private OT is a non-interactive commitment scheme. Hence,
our result generalizes the work of [KM20] and we obtain instantiations from LWE, QR,
N th residuosity, DDH, Decisional CSIDH and LPN+Nissan Wigderson derandomization by
instantiating [BD18, NP01, HK12, HK12, ADMP20, BF22] the underlying two-round sta-
tistical sender private OT from the above assumptions. Furthermore, we build eOT and
the non-interactive commitment scheme from CDH and reciprocal CSIDH [LGdSG21] as-
sumptions. This was not previously known from [KM20]. To summarize, our proposed
framework enables one-sided statistical 2PC from essentially all well-studied cryptographic
assumptions.

2.2 Constructing our Ingredients from eOT

Next, we briefly introduce our ingredient primitives and discuss their constructions. A
roadmap explaining our framework based on these ingredients can be found in Fig. 1.

Three Round Statistically Receiver Private eOT. We introduce the notion of sta-
tistically receiver private elementary OT in plain model following the work of [DGH+20].
It is a three round OT protocol where the sender sends the first message as a preprocessing
phase, the receiver sends the second message based on its choice bit, and the sender sends the
third message. The sender obtains random outputs. The elementary security ensures that a
maliciously corrupt receiver is unable to compute both sender outputs. Statistical receiver
privacy implies that the choice bit is statistically hidden from a maliciously corrupt sender.
We show in Sec. 7.3 that a two round statistically sender private OT can be used to build
eOT through OT reversal techniques [WW06], hence obtaining instantiations from a wide
variety of assumptions (namely LWE, QR, N th residuosity, DDH, Decisional CSIDH and
LPN+Nissan Wigderson derandomization). We also construct eOT from CDH by building
upon the two-round CDH based protocol of [DGH+20] in the crs model. In the CDH-based
eOT instantiation, the sender sends the crs of the CDH based protocol of [DGH+20] as the
OT first message and then their two-round CDH based protocol is run between the parties
using the first message as the crs. The full construction can be found in Sec. 7.1. We also
provide a new construction of eOT based on reciprocal CSIDH assumption in Sec. 7.2 which
was previously not known. 6

6Reciprocal CSIDH assumption is quantum equivalent to computational CSIDH and it is incomparable
to decisional CSIDH,
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Three Round Statistically Receiver Private iOT. We uplift the security of eOT to
construct iOT such that it obtains indistinguishability based security against a malicious
receiver. If the receiver’s choice bit is γ then m1−γ is computationally indistinguishable
from a random string to a malicious receiver. We perform this in a round-preserving way
by applying the elementary OT (via search OT) to indistinguishability-based security OT
transformations from [DGH+20] based on Goldreich-Levin hash function. This yields iOT
from the same set of assumptions as eOT.

Three Round Delayed-input Statistically Sender Private SSPOT. Next, we intro-
duce the notion of delayed-input statistically sender private SSPOT, where only the last OT
message depends on the receiver’s choice bit γ. It is a three round OT protocol where
the receiver sends the first message as a receiver preprocessing phase, the sender sends the
second message as a sender preprocessing phase, and the receiver sends the third message
based on γ. The sender obtains random output strings. We carefully apply OT reversal
techniques on three-round SRP iOT in a round-preserving way to obtain a version of SSPOT

where the sender obtains random output bits. Then we combine multiple such bit SSPOT

protocol with a randomness extractor to obtain the final SSPOT protocol. This yields SSPOT

from the same set of assumptions as iOT (and eOT).

Statistically Sender Private CDS with Preprocessing. We introduce the notion of
conditional disclosure of secrets CDS in the preprocessing phase. The first two rounds of
CDS are input-independent. The receiver sends the third message which depends on the
statement-witness pair. The sender encrypts the plaintext under the statement and sends
the ciphertext as the fourth message.

For our 2PC protocol, we require security against a maliciously corrupted statistical receiver
and a computationally bounded semi-honest sender. We construct an NC1 circuit which
checks the validity of receiver’s witness by relying on the result of [KM20]. Then we pro-
ceed to combine our three round delayed-input SSPOT protocol with information theoretic
garbling scheme [Kol05] for NC1 circuit to construct our CDS, where the first two rounds
of CDS are the preprocessing phases of SSPOT. In the third round of the CDS the receiver
inputs the witness bits as the choice bit of the SSPOT protocol. Upon obtaining the SSPOT

third round messages, the semi-honest sender garbles an NC1 circuit outputs the plaintext
if verification of the receiver’s witness succeeds corresponding to the input statement. The
sender sends a mapping between the random outputs of SSPOT to the wire labels corre-
sponding to the witness bits. The receiver decrypts the wire labels corresponding to the
witness bits and evaluates the garbled circuit to obtain the plaintext. This yields our CDS
protocol from SSPOT and one way functions, obtaining the CDS protocol from the same set
of assumptions as eOT.

Two Round Statistically Hiding Commitment. We show that the first two rounds
of eOT is a two round statistically hiding commitment where the verifier (acting as the
eOT sender) sends the first message as the setup phase. The committer (acting as the
eOT receiver) commits to bit γ using the OT second message. Statistical receiver privacy
of eOT ensures that statistical hiding of γ. If a corrupt committer breaks binding of the
commitment scheme with two valid decommitments corresponding to bits 0 and 1, then those
decommitments can be used to break computational sender privacy of eOT by recovering
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both sender messages of eOT. This yields two round statistically hiding commitments from
the same set of assumptions as eOT.

3 Preliminaries

We present our notations and discuss the building blocks in this section.

3.1 Notations

We denote by a← D a uniform sampling of an element a from a distribution D. The set of
elements {1, . . . , n} is represented by [n]. We denote the computational security parameter
by κ and statistical security parameter by µ respectively. Let Zq denote the field of order
q, where q = p−1

2 and p are primes. Let G be the multiplicative group corresponding to Z∗
p

with generator g, where CDH assumption holds. We denote a field of size O(2µ) as F. For
a bit b ∈ {0, 1}, we denote 1 − b by b̄. In our paper we consider one-sided statistical 2PC
protocol against explainable parties and also against malicious corruption of parties. We
refer to the paper of [KM20] for the one-sided statistical security model against explainable
parties and against malicious adversaries for the sake of completeness.

3.2 Oblivious Transfer Protocols

We define our OT notions - eOT, iOT and SSPOT, as follows.

Elementary OT with Statistical Receiver Privacy (eOT). We denote a three round
OT protocol, where sender sends the first message and the sender receives random outputs,
by a tuple of four algorithms defined as follows:

• OT
(1)
S→R(1

κ) : The sender computes ot1 as the OT sender message and sends it to the
receiver.

• OT
(2)
R→S(1

κ, γ, ot1) : The receiver computes the OT receiver message ot2 and internal
state stR based on choice bit γ and ot1. The receiver sends ot2 to the sender.

• OT
(3)
S→R(1

κ, ot2) : The sender computes (ot3,m0,m1). The sender sends ot3 as the
OT sender message and outputs (m0,m1) ∈ {0, 1}.

• OTR(stR, ot3) : The receiver computes m′ and outputs it.

Correctness. The above three-round OT protocol is said to be correct if for any security
parameter κ ∈ N and any bit γ ∈ {0, 1}, letting

ot1 ← OT
(1)
S→R(1

κ) , (ot2, stR)← OT
(2)
R→S(1

κ, γ, ot1),

(ot3,m0,m1)← OT
(3)
S→R(1

κ, ot2) , m′ ← OTR(stR, ot3),

we have m′ = mγ with overwhelming probability.
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Statistical Receiver Privacy. The above OT protocol satisfies statistical receiver pri-
vacy if the two tuples are statistically close.

{OT(2)
R→S(1

κ, 0, ot1), ot1}
s
≈ {OT(2)

R→S(1
κ, 1, ot1), ot1},

where ot1 ← A(1κ) is generated by an adversary A who maliciously corrupts the sender.

Elementary Sender Security. The work of [DGH+20] introduced the notion of elemen-
tary sender security in the crs model. It is the weakest security notion against a malicious
receiver. We extend their notion to the plain model. Let A = (A1,A2) denote a non-
uniform adversary who maliciously corrupts the receiver. To break elementary security the
adversary is required to output both strings m0 and m1. This is formalized by the following
experiment.

ExpκeOT(A) :

1. Run ot1 ← OT
(1)
S→R(1

κ).

2. Obtain (ot2, stA)← A1(1
κ, ot1).

3. Run (ot3,m0,m1)← OT
(3)
S→R(1

κ, ot2).

4. Obtain (m∗
0,m

∗
1)← A2(stA, ot3) and output 1 iff (m∗

0,m
∗
1) == (m0,m1).

We say that the OT protocol satisfies elementary sender security if Pr[ExpκeOT(A) = 1] =
neg(κ).

Definition 5 We denote a three-round OT protocol with the above algorithms as eOT if it
satisfies sender elementary security and statistical receiver privacy.

Indistinguishability OT with Statistical Receiver Privacy (iOT). We denote a
three round OT protocol, where sender sends the first message and the parties have chosen
inputs, by a tuple of four algorithms defined as follows:

• OT
(1)
S→R(1

κ) : The sender computes ot1 as the OT sender message and sends it to the
receiver.

• OT
(2)
R→S(1

κ, γ, ot1) : The receiver computes the OT receiver message ot2 and internal
state stR based on choice bit γ and ot1. The receiver sends ot2 to the sender.

• OT
(3)
S→R(1

κ, (m0,m1), ot2) : The sender computes ot3 based on ot2 and its inputs
(m0,m1) ∈ {0, 1}. The sender sends ot3 as the OT sender message.

• OTR(stR, ot3) : The receiver computes m′ and outputs it.
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Correctness. The above three-round OT protocol is said to be correct if for any security
parameter κ ∈ N and any bit γ ∈ {0, 1}, letting

ot1 ← OT
(1)
S→R(1

κ) , (ot2, stR)← OT
(2)
R→S(1

κ, γ, ot1),

ot3 ← OT
(3)
S→R(1

κ, (m0,m1), ot2) , m′ ← OTR(stR, ot3),

we have m′ = mγ with overwhelming probability.

Statistical Receiver Privacy. The above OT protocol satisfies statistical receiver pri-
vacy if the two tuples are statistically close.

{OT(2)
R→S(1

κ, 0, ot1), ot1}
s
≈ {OT(2)

R→S(1
κ, 1, ot1), ot1},

where ot1 ← A(1κ) is generated by an adversary A who maliciously corrupts the sender.

Indistinguishability-based Sender Security. Sender’s indistinguishability security was
defined in [DGH+20] in the crs model. We extend it to the plain model via an experiment

Expcrs,r,w,b
iOT (A) between a non-uniform PPT adversary A = (A1,A2) and a challenger, where

the experiment is parameterized by random coins r ∈ {0, 1}κ, a bit w ∈ {0, 1}, and a bit
b ∈ {0, 1}:

Expw,b
iOT(A):

1. Run ot1 ← OT
(1)
S→R(1

κ).

2. Run (m0,m1, ot2, stA)← A1(1
κ, ot1; r).

3. If b = 0, compute ot3 ← OT
(3)
S→R(1

κ, (m0,m1), ot2).

4. If b = 1, compute ot3 ← OT
(3)
S→R(1

κ, (m′
0,m

′
1), ot2) where m′

w ← {0, 1} and m′
1−w :=

m1−w.

5. Output s← A2(stA, ot3).

We say that iOT satisfies sender’s indistinguishability security if for any PPT adversary A,
the following holds where the probability is taken over r ← {0, 1}κ.

|Pr[Expcrs,r,w,0
iOT (A) = 1]− Pr[Expcrs,r,w,1

iOT (A) = 1] ≤ neg(κ).

Definition 6 We denote a three-round OT protocol with the above algorithms as iOT if it
satisfies indistinguishability-based sender security and statistical receiver privacy.

Statistically Sender Private Random OT (SSPOT). We denote a three-round OT
protocol, where the receiver sends the first message and the sender obtains random outputs,
by a tuple of four algorithms defined as follows:
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• OT
(1)
R→S(1

κ): The receiver computes ot1 as the OT receiver message and stR as the
internal state. The receiver sends ot1 to the sender and stores stR as the internal
receiver state.

• OT
(2)
S→R(1

κ, ot1): Given the OT message ot1, the sender outputs a message ot2 and
secret internal state stS.

• OT
(3)
R→S(stR, γ, ot2): Given a secret state stR, choice bit γ and a message ot2, the

receiver computes m′ ∈ {0, 1}ℓ and the OT message ot3. The receiver sends ot3 to the
sender and outputs m′.

• OTS(stS, ot3): Given the secret state stS and a message ot3, it outputs two string-
messages (m0,m1) ∈ {0, 1}ℓ.

Remark. Note that the receiver’s choice bit γ is not included in the first algorithm OT
(1)
R→S

and is only used in the algorithm OT
(3)
R→S thereby allowing the protocol to enjoy a “delayed-

input” feature.

Correctness. The above protocol is said to be correct if for any κ ∈ N and any bit
γ ∈ {0, 1}, letting

(ot1, stR)← OT
(1)
R→S(1

κ) , (ot2, stS)← OT
(2)
S→R(1

κ, ot1),

(ot3,m
′)← OT

(3)
R→S(stR, γ, ot2) , (m0,m1)← OTS(stS, ot3),

we have m′ = mγ with overwhelming probability.

Computational Receiver Privacy. The above protocol satisfies computational receiver
privacy if for any κ ∈ N, any b ∈ {0, 1}, and any non-uniform PPT adversary A = (A1,A2),
letting β = Expκ,b(A), we have

|Pr[β = 0]− Pr[β = 1]| ≤ negl(κ),

where the experiment Expκ,b(A) is defined as follows:

Expκ,b(A):

1. (ot1, stR)← OT
(1)
R→S(1

κ).

2. (ot2, st)← A1(1
κ, ot1).

3. (ot3,m
′)← OT

(3)
R→S(stR, b, ot2).

4. b′ ← A2(ot3, st).

5. If b = b′, output 0. Else, output 1.
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Statistical Sender Privacy. Consider an execution of the above three round protocol
involving an honest sender and an (unbounded, non-uniform) malicious adversary A =
(A1,A2):

(ot1, stR)← A1(1
κ) , (ot2, stS)← OT

(2)
S→R(1

κ, ot1),

(ot3, st)← A2(stR, γ, ot2) , (m0,m1)← OTS(stS, ot3).

Let Viewκ(A) denote the view of the adversaryA = (A1,A2) in the above protocol execution.
A three-round SSP-string-sROT protocol is said to satisfy statistical sender privacy if for
any κ ∈ N and any (unbounded, non-uniform) adversary A = (A1,A2), there exists a bit
β ∈ {0, 1} such that the following two distributions are statistically indistinguishable:

(Viewκ(A),mβ)
s
≈ (Viewκ(A),U),

where U← {0, 1}|mβ | denotes a random bit string of size |mβ |.

Definition 7 We denote a three-round OT protocol with the above algorithms as SSPOT if
it satisfies statistical sender privacy and computational receiver privacy.

3.3 Garbling Schemes

A garbling scheme [Yao86, LP09, BHR12] consists of the following algorithms: Gb takes
a circuit C as input and outputs a garbled circuit GC, encoding information Keys, and
decoding information d. En takes an input x and encoding information Keys and outputs
a garbled input X. Ev takes a garbled circuit and garbled input X and outputs a garbled
output Y. Finally, De takes a garbled output Y and decoding information and outputs a
plain circuit-output (or an error, ⊥). There is an additional verification algorithm Ve in the
garbling scheme which when accepts a given (GC,Keys, d) signifies that the GC is correct,
and that the garbled output corresponding to any clear output can be extracted. Formally,
a garbling scheme is defined by a tuple of functions Garble = (Gb,En,Ev,De,Ve), described
as follows:

– Gb (1κ, C) = (GC,Keys, d): A randomized algorithm which takes as input the security
parameter and a circuit C : {0, 1}n → {0, 1}m and outputs a tuple of strings (GC,Keys,
d), where GC is the garbled circuit, Keys denotes the input-wire labels, and d denotes
the decoding information.

– En (x,Keys) = X: a deterministic algorithm that outputs the garbled input X corre-
sponding to input x.

– Ev (GC,X) = Y: A deterministic algorithm which evaluates garbled circuit GC on
garbled input X, and outputs a garbled output Y.

– De (Y, d) = y: A deterministic algorithm that outputs the plaintext output corre-
sponding to Y or ⊥ signifying an error if the garbled output Y is invalid.

– Ve (C,GC,Keys, d) = 1or⊥: A deterministic algorithm which takes as input a circuit
C : {0, 1}n 7→ {0, 1}m, a garbled circuit (possibly malicious) GC, encoding information
e and decoding information d. It outputs 1 when GC is a valid garbling of C, and ⊥
otherwise.
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The garbling scheme used in our protocols need to satisfy several properties such as correct-
ness, privacy, verifiability and reconstructability. We borrow the notations from the work
of [HV16].

Definition 8 (Perfect Correctness). A garbling scheme Garble is perfectly correct if for
all input lengths n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m and inputs x ∈ {0, 1}n, the
following holds:

Pr
[
De(Ev(GC,En(Keys, x)), d) ̸= C(x) : (GC,Keys, d)← Gb(1κ, C)

]
= 1.

Definition 9 (Privacy). A garbling scheme Garble is private if for all input lengths n ≤
poly(κ), circuits C : {0, 1}n → {0, 1}m, there exists a PPT simulator Sim such that for all
inputs x ∈ {0, 1}n, for all adversaries A, the following two distributions are statistically
indistinguishable:

– real(C, x) : run (GC,Keys, d)← Gb(1κ, C), and output (GC,En(x,Keys), d).

– idealSim(C, C(x)): Compute (GC′,X, d′, st)← SGC(1κ, C, C(x)) and output (GC′,X, d′).

Definition 10 (Verifiability). A garbling scheme Garble is verifiable if for all input lengths
n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n, and adversary A, the
following probability is negligible in κ:

Pr

(
De(Ev(GC,En(x,Keys)), d) ̸= C(x) :

(GC,Keys, d)← A(1κ, C)
Ve (C,GC,Keys, d) = 1 ̸= ⊥

)
.

We are interested in a class of garbling schemes referred to as projective in [BHR12]. When
garbling a circuit C : {0, 1}n 7→ {0, 1}m, a projective garbling scheme produces encoding
information of the form Keys =

(
Keys0i ,Keys

1
i

)
i∈[n]

, and the encoded input X corresponding

to x = (xi)i∈[n] can be interpreted as X = En(x,Keys) = (Keysxi
i )i∈[n]. Information-theoretic

Garbled circuits for NC1 circuits with information theoretic privacy can be built from one
way functions [Yao86, LP09] based on one-way functions satisfies.

3.4 Zero-Knowledge Proofs and Arguments for NP [KM20]

An n-round delayed-input interactive protocol for deciding a language L corresponding to a
relation R is denoted by ⟨P,V⟩ and it proceeds as follows:

• At the beginning of the protocol, P and V receive the size of the instance and execute
the first n− 1 rounds.

• At the start of the last round, P receives input (x,w) ∈ R and V receives x. Upon
receiving the last round message from P, V outputs 0 or 1.

For our protocols, we rely on proofs and arguments for NP that satisfy delayed-input com-
pleteness, adaptive soundness and adaptive ZK. Fix any language L. Let ⟨P,V⟩ denote the
execution of a protocol between a PPT prover P and a (possibly unbounded) verifier V, let
Vout denote the output of the verifier and let ViewA⟨P,V⟩ denote the transcript together with
the state and randomness of a party A ∈ {P,V} at the end of an execution of a protocol.
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Definition 11 (Statistical Zero Knowledge Argument). For any fixed language L, we
say ⟨P,V⟩ is a delayed-input statistical zero knowledge argument system for L if the following
properties hold:

• Completeness: For all x ∈ L,

Pr[Vout⟨P,V⟩ = 1] = 1− neg(κ),

where the probability is over the random coins of P and V.

• Adaptive Soundness: For all polynomial size P∗ and all x /∈ L sampled by P∗ adaptively
depending upon the first n− 1 rounds,

Pr[Vout⟨P∗,V⟩ = 1] = neg(κ).

• Statistical Zero Knowledge: There exists a PPT simulator Sim such that for all V∗

and all x ∈ L,∣∣Pr[V∗(ViewA⟨P(x,w),V∗⟩) = 1]− Pr[V∗(SimV∗
(x)) = 1]| = neg(κ).

Four round delayed-input statistical zero knowledge arguments can be obtained from [LS91]
by relying on two round statistically hiding commitments.

Definition 12 (Zero Knowledge Proof). For any fixed language L, we say ⟨P,V⟩ is a
delayed-input zero knowledge proof system for L if the following properties hold:

• Completeness: For all x ∈ L,

Pr[Vout⟨P,V⟩ = 1] = 1− neg(κ),

where the probability is over the random coins of P and V.

• Adaptive Soundness: For all P∗ and all x /∈ L sampled by P∗ adaptively depending
upon the first n− 1 rounds,

Pr[Vout⟨P∗,V⟩ = 1] = neg(κ).

• Computational Zero Knowledge: There exists a PPT simulator Sim such that for all
polynomial size V∗ and all x ∈ L,∣∣Pr[V∗(ViewA⟨P(x,w),V∗⟩) = 1]− Pr[V∗(SimV∗

(x)) = 1]| = neg(κ).

Five round delayed-input zero knowledge proofs can be obtained by relying on [GK96], where
the instance is adaptively chosen in the last round by the combining techniques from [LS91].
The proof system can be instantiated from two round statistically hiding commitments.
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3.5 Low Depth-Proofs

The work [KM20] described how any computation that is verifiable by a family of polynomial
sized circuits can be transformed into a proof that is verifiable by a family of circuits in
NC1. Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R, denote x as
the statement and w as the witness. Let L be the language consisting of statements in R.

Definition 13 (Low-Depth Non-Interactive Proofs). A low-depth non interactive
proof with perfect completeness and soundness for a relation R consists of a PPT prover P
and a verifier V that satisfy:

• Perfect completeness: A proof system is perfectly complete if an honest prover with a
valid witness can always convince an honest verifier. For all (x,w) ∈ R we have,

Pr[V(π) = 1|π ← P(x,w)] = 1.

• Perfect soundness: A proof system is perfectly sound if it is infeasible to convince an
honest verifier when the statement is false. For all x /∈ L and all (even unbounded)
adversaries A we have

Pr[V(x, π) = 1|π ← A(x)] = 0.

• Low Depth: The verifier algorithm V can be implemented in NC1.

The works of [GGH+13] and [KM20] presented a simple construction of a low-depth non-
interactive proof for any NP-verification circuit. The prover P executes the NP-verification
circuit on the witness and generates the proof as the sequential concatenation (in some
specified order) of the bit values assigned to the individual wires of the circuit. The verifier
V proceeds by checking consistency of the values assigned to the internal wires of the circuit
for each gate. In particular for each gate in the NP-verification circuit the verifier checks
if the wire vales provided in the proof represent a correct evaluation of the gate. Since the
verification corresponding to each gate can be done independent of every other gate and in
constant depth, we have that V itself is constant depth.

4 Three Round Oblivious Transfer Protocols

In this section, we describe our statistically sender private SSPOT construction from eOT
which satisfies statistical receiver privacy. First, we build iOT from eOT and then we build
SSPOT from iOT. All our protocols are round preserving in nature. The corresponding
definitions of the OT protocols can be found in 3.2. Our SSPOT protocol enjoys a delayed-
input feature since only the last OT protocol message depends on the receiver’s input. This
will be useful later on in obtaining statistically sender private CDS in the preprocessing
model and also our one-sided statistical 2PC.

4.1 Statistically Receiver Private Indistinguishability-based OT

We denote an elementary OT protocol as eOT = (eOT.OT
(1)
S→R, eOT.OT

(2)
R→S, eOT.OT

(3)
S→R,

eOT.OTR). We construct our indistinguishability based SRP-bit OT protocol, denoted as
iOT, as follows:
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• OT
(1)
S→R(1

κ) : The sender obtains eOT.ot1 ← eOT.OT
(1)
S→R(1

κ). The sender sends
ot1 = eOT.ot1 as the OT sender message.

• OT
(2)
R→S(1

κ, γ, ot1) : The receiver computes the OT receiver message as (eOT.ot2, eOT.stR)←
eOT.OT

(2)
R→S(1

κ, γ, ot1). It sends ot2 = eOT.ot2 to the sender and stores stR = eOT.stR.

• OT
(3)
S→R(1

κ, (m0,m1), ot2) : The sender performs the following:

– The sender runs eOT sender protocol for κ times on ot2 to compute

{eOT.ot3,i, (eOT.m0,i, eOT.m1,i)} = eOT.OT
(3)
S→R(1

κ, ot2),

for i ∈ [κ].

– Sender computes eOT.mα = (eOT.mα,1, . . . eOT.mα,κ) for α ∈ {0, 1}.
– Denote the length of eOT.m0 and eOT.m1 as n = n(κ) where n = |eOT.m0| =
|eOT.m1|.

– The sender samples s0, s1 ← {0, 1}n as the description of the Goldreich-Levin
Hash function.

– The sender computes pα = mα ⊕ ⟨eOT.mα, sα⟩ for α ∈ {0, 1}.

The sender sends ot3 = ({eOT.ot3,i}i∈[κ], s0, s1, p0, p1).

• OTR(stR, ot3) : The receiver performs the following:

– The receiver runs eOT decryption algorithm for κ times to compute

{eOT.mγ,i} = eOT.OTR(eOT.stR, eOT.ot3,i),

for i ∈ [κ].

– The receiver sets eOT.mγ = (eOT.mγ,1, . . . , eOT.mγ,κ).

– The receiver outputs mγ = pγ ⊕ ⟨eOT.mγ , sγ⟩.

Correctness. It can be verified in a straightforward manner.

Lemma 14 The above protocol satisfies perfect receiver’s privacy if eOT satisfies perfect
receiver privacy.

Proof. The receiver’s choice bit γ is perfectly hidden in OT message ot2 = eOT.ot2 if
eOT.ot2 perfectly hides γ. 2

Lemma 15 The above protocol satisfies sender’s indistinguishability based security if eOT
satisfies computational sender’s elementary security.

Proof. The work of [DGH+20] showed that the above transformation converts an ele-
mentary OT to an iOT OT protocol (via search OT). By combining Theorems 5.2 and 5.3
of [DGH+20] we prove the above theorem. We refer to their paper for more details regarding
the proof steps. 2
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4.2 Three round Statistically Sender Private OT

Our SSPOT construction relies on randomness extractors and the leftover hash lemma. We
briefly define them as follows for completeness.

Definition 16 (Randomness Extractor.) Ext : {0, 1}n × {0, 1}d → {0, 1}ℓ is a strong (k, ϵ)
randomness extractor if for every k-source X ∈ {0, 1}n the following holds:

{Ud,Ext(X,Ud)}
ϵ
≈ {Ud, Uℓ},

where Ud and Uℓ are uniformly sampled d-bit and ℓ-bit strings respectively.

Definition 17 (Leftover Hash Lemma.) If H = {h : {0, 1}n → {0, 1}ℓ} is a pairwise

independent hash family of hash function where ℓ = k− 2 log2(
1
ϵ ), then Ext(x, h)

def
= h(x) is

a strong (k, ϵ) extractor.

Construction. We denote an iOT protocol as iOT= (iOT.OT
(1)
S→R, iOT.OT

(2)
R→S, iOT.OT

(3)
S→R,

iOT.OTR). We define our SSP-OT SSPOT as a tuple of four algorithms defined as follows:

• OT
(1)
R→S(1

κ) :

– The receiver runs iOT protocol for n times by computing {iOT.ot1,i} = iOT.OT
(1)
S→R(1

κ)
for i ∈ [n].

– The receiver sends ot1 = {iOT.ot1,i}i∈[n] as the OT receiver message.

• OT
(2)
S→R(1

κ, ot1) : The sender performs the following for i ∈ [n]:

– The sender samples γi ← {0, 1}.

– The sender computes (iOT.ot2,i, iOT.stR,i) = iOT.OT
(2)
R→S(1

κ, γi, iOT.ot1,i) with
choice bit set to γi.

– The sender samples a mapping Mapi ← {0, 1}.
– The sender samples a pairwise independent hash function h← Hκ.

The sender sends ot2 = (h, {iOT.ot2,i,Mapi}i∈[n]) as the OT sender message and stores
stS = {iOT.stR,i,Mapi, γi}i∈[n] as the internal state.

• OT
(3)
R→S(1

κ, b, ot2) :

– The receiver samples p0,i ← {0, 1} and sets p1,i = b ⊕ p0,i for every i ∈ [n].

The receiver computes iOT.ot3,i = iOT.OT
(3)
S→R(1

κ, (p0,i, p1,i), iOT.ot2,i) for every
i ∈ [n].

– The receiver sets tb,i = Mapi ⊕ p0,i.

– The receiver sets tb = (tb,1, . . . , tb,n).

– The receiver computes mb = H(tb).
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The receiver sends ot3 = {iOT.ot3,i}i∈[n] as the OT receiver message and outputs mb

as the output.

• OTS(stS, ot3) :

– The sender computes ai = iOT.OTR(iOT.stR,i, iOT.ot3,i) for i ∈ [n].

– The sender computes ti,0 = Mapi ⊕ ai and ti,1 = γi ⊕ ti,0.

– For α ∈ {0, 1}, the sender sets tα = (tα,1, . . . , tα,n).

– For α ∈ {0, 1}, the sender computes mα = H(tα).

The sender outputs (m0,m1).

Correctness. The sender computes pi,γi
from the ith iOT run. The sender sets t0,i =

Mapi ⊕ ai = Mapi ⊕ pγi,i and t1,i = γi ⊕ t0,i = γi ⊕Mapi ⊕ pγi,i. The receiver computes the
following from the ith OT:

(b′, t′bi) = (p0,i ⊕ p1,i,Mapi ⊕ p0,i)

= (p0,i ⊕ p1,i,Mapi ⊕ pγi,i ⊕ (p0,i ⊕ p1,i) · γi)
= (b,Mapi ⊕ pγi,i ⊕ b · γi)
= (b, t0,i ⊕ b · γi)
= (b, tb,i).

The sender outputs mα = H(tα) for α ∈ {0, 1}. And the receiver outputs mb = H(tb) thus
proving correctness.

Lemma 18 The above protocol satisfies statistical sender privacy if iOT satisfies statistical
receiver privacy and H is a (⌈n2 ⌉, ϵ)-randomness extractor.

Proof. The sender’s secret input γi to the ith iOT remains hidden due to statistical receiver
privacy of iOT. Without loss of generality, assuming a corrupt receiver obtains atmost ⌈n2 ⌉
bits of t0 and ⌊n2 ⌋ bits of t1 simultaneously by setting b == 0 for n

2 runs of iOT and setting
b == 1 for the rest n

2 runs of iOT. In such a case, ⌈n2 ⌉ bits of t1 remains hidden and
is uniformly distributed. Thus the input space of the hash function H has an entropy of
k = ⌈n2 ⌉ and ℓ = ⌈n2 ⌉−2 log2(

1
ϵ ). Applying the leftover hash lemma we argue thatH behaves

as a (k, ϵ) randomness extractor and thus statistically hiding m1. The same argument holds
for statistically hiding m0 if the receiver sets b == 1 in ⌈n2 ⌉ runs of iOT. 2

Lemma 19 The above protocol satisfies computational receiver privacy if iOT satisfies com-
putational sender privacy.

Proof. We demonstrate that execution of the protocol with choice bit b == 0 is indis-
tinguishable from the execution of the protocol with choice bit b == 1 through a sequence
of n + 1 hybrids {Hybj}j∈[n+1]. Hyb1 corresponds to execution of the protocol with choice
bit b == 0. Hybn + 1 corresponds to execution of the protocol with choice bit b == 1. We
define the jth hybrid Hybi as follows:

Hybrid Hybj :
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• OT
(1)
R→S(1

κ) :

– The receiver runs iOT protocol for n times by computing {iOT.ot1,i} = iOT.OT
(1)
S→R(1

κ)
for i ∈ [n].

– The receiver sends ot1 = {iOT.ot1,i}i∈[n] as the OT receiver message.

• OT
(2)
S→R(1

κ, ot1) : The sender sends ot2 = (h, {iOT.ot2,i,Mapi}i∈[n]) as the OT sender
message and stores stS = {iOT.stR,i,Mapi, γi}i∈[n] as the internal state.

• OT
(3)
R→S(1

κ, ot2) :

– The receiver computes iOT.ot3,i = iOT.OT
(3)
S→R(1

κ, (p0,i, p1,i), iOT.ot2,i) where
p0,i ← {0, 1} and p1,i = p0,i for i ∈ [j],

– The receiver computes iOT.ot3,i = iOT.OT
(3)
S→R(1

κ, (p0,i, p1,i), iOT.ot2,i) where
p0,i ← {0, 1} and p1,i = p0,i ⊕ 1 for i ∈ [j + 1, n].

The receiver sends ot3 = {iOT.ot3,i}i∈[n] as the OT receiver message and outputs mb

as the output.

• OTS(stS, ot3) : The sender performs its own adversarial algorithm.

A corrupt sender distinguishing between Hybj and Hybj + 1 breaks computational sender
privacy of the jth iOT. 2

5 One-Sided Statistically Secure 2PC against Explain-
able Parties

We describe our one-sided statistically secure 2PC protocol πexp secure against explainable
parties in this section. High level overview can be found in Sec. 2.1.

5.1 Protocol πexp

The work of [KM20] built a 2PC protocol against explainable parties. We recall their result
as follows.

Theorem 20 [KM20] Assuming the following holds:

1. Three round statistically binding and computationally hiding commitment scheme sat-
isfying extractability,

2. Four round statistically hiding and computationally binding commitment scheme sat-
isfying extractability,

3. Information theoretic garbled circuits for NC1 circuits,

4. Three round oblivious transfer with statistical privacy for a receiver and computational
privacy for a sender,
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there exists a robust 5-round secure two-party computation protocol πexp with black-box sim-
ulation against unbounded explainable receivers and PPT explainable senders, where the
receiver obtains its output at the end of fourth round and the sender obtains its output at
the end of the fifth round.

We demonstrate that our elementary OT protocol (with statistical receiver privacy) and a
non-interactive commitment/public key encryption scheme with perfect decryption suffices
to instantiate the above primitives:

1. Three round statistically binding and computationally hiding commitments can be
based on any non-interactive commitment scheme [PRS02], which can itself be based
on any public-key encryption [LS19] (satisfying perfect correctness) or injective one-
way function [Blu81].

2. Four round statistically hiding and computationally binding commitment scheme sat-
isfying extractability can be obtained from two round statistically hiding commitment
schemes which we build from iOT in Sec. 5.2.

3. Garbled circuits can be obtained [Yao86] from one way functions.

4. The three round SRP-OT protocol is instantiated using the iOT protocol from Sec.
4.1.

Non-interactive commitments can be built [Blu81] from injective one-way functions. Injec-
tive OWFs can be constructed from Discrete Log and hence CDH7. Injective OWFs can
also be constructed from computational CSIDH assumption [CLM+18] and hence recipro-
cal and decisional CSIDH assumptions since the former two assumptions imply [CLM+18,
ADMP20, LGdSG21] computational CSIDH. Moreover, it can be shown that the first OT
message from the receiver in a 2 round statistically sender private OT protocol acts as a
non-interactive commitment, hence yielding additional instantiations from LWE, QR, N th

residuosity, DDH, decisional CSIDH and LPN+derandomization. Next, we build two round
statistically hiding commitments from iOT. iOT has been constructed from eOT in Sec. 4.1.

5.2 Two round Statistically Hiding Commitment

We denote an iOT protocol as iOT = (iOT.OT
(1)
S→R, iOT.OT

(2)
R→S, iOT.OT

(3)
S→R, iOT.OTR).

We define a two round statistically hiding commitment Com as tuple of three algorithms
(Com1,Com2,Decom) between a sender and a receiver as follows:

• Com1(1
κ) : The receiver computes c1 = iOT.ot1 = iOT.OT

(1)
S→R(1

κ). The receiver sends
c1 as the first message of the commitment scheme.

• Com2(1
κ, c1, b) : The sender computes (c2, d) = iOT.OT

(2)
R→S(1

κ, b, c1). The sender
sends c2 as the commitment and stores st = (b, d) as the decommitment.

7The adversary is required to output a given tuple (g, ga) where a ∈ Zq and g ∈ G are randomly sampled
by the challenger
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• Decom(st, (c1, c2)) : The sender sends st = (b, d) as the decommitment. The receiver
performs the following for i ∈ [κ] :

– Computes (iOT.oti3, (m
i
0,m

i
1)) = iOT.OT

(3)
S→R(1

κ, c1).

– The receiver aborts if iOT.OTR(st, iOT.ot
i
3) ̸= mi

b.

The receiver outputs accept if the above checks pass.

Theorem 21 Com = (Com1,Com2,Decom) is a two round statistically hiding commitment
scheme with computational binding if iOT satisfies statistical receiver privacy and computa-
tional sender security.

Proof. We argue hiding and binding of Com as follows:

• The sender’s committed bit b remains statistically hidden in c2 since c2 is the output

of iOT.OT
(2)
R→S algorithm and c2 statistically hides b due to statistical receiver privacy

of iOT.

• If a corrupt receiver breaks binding of the protocol by producing two valid openings
(0, d0) and (1, d1) then it breaks sender privacy of the iOT protocol. mi

0 (resp. mi
1)

can be correctly decrypted using (0, d0) (resp. (1, d1)) as the receiver’s decryption
randomness.

2

6 One-Sided Statistically Secure 2PC against Malicious
Corruptions

We describe our one-sided statistically secure 2PC protocol πmal secure against malicious
corruption of parties in this section. We rely on the following primitives for our protocol.

1. Five round one-sided statistically secure 2PC protocol against explainable parties
where both parties get the output. We instantiate it using πexp (Thm. 20) based
on eOT and non-interactive commitments.

2. Four round statistically sender private Conditional Disclosure of Secrets, denoted as
CDS, in the preprocessing phase where the first two rounds are input-independent.

3. Four round delayed-input statistical zero knowledge SZK. This can be built [LS91]
from two round statistically hiding commitment.

4. The five round delayed-input zero knowledge proof ZKP. This can be obtained [LS91]+
[GK96] from two round statistically hiding commitment.

5. Four round statistically sender private Conditional Disclosure of Secrets, denoted as
CDS, in the preprocessing phase where the first two rounds are input-independent.

The two round statistically hiding commitment is built from eOT (via iOT) in Sec. 5.2. Next,
we formally define and construct the CDS protocol before proceeding to the construction of
πmal.
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6.1 Conditional Disclosure of Secrets in the Preprocessing Model

We denote a Conditional Disclosure of Secrets in preprocessing model as a tuple of five
algorithms CDS = (CDS1,CDS2,CDS3,CDS4,CDS5) defined as follows:

• CDS1(1
κ) : The receiver computes (cds1, stR) in the preprocessing phase. The receiver

sends cds1 and stores stR as the internal state.

• CDS2(1
κ, cds1) : The sender computes (cds2, stS) in the preprocessing phase. The

sender sends cds2 and stores stS as internal state.

• CDS3(1
κ, (x,w), stR, cds2) : The receiver computes (cds3, stR) based on the statement

x, witness w and cds2. The receiver sends cds3 and updates stR as the internal state.

• CDS4(1
κ, (x, ptxt), stS, cds3) : The sender encrypts plaintext ptxt based on statement

x and cds3 to compute cds4. The sender sends cds4.

• CDS5(stR, cds4) : The receiver outputs ptxt′ as the decrypted message.

The above algorithms should satisfy the following properties:

Correctness. For any (x,w) ∈ L, and message ptxt ∈ {0, 1}∗ the following holds:

Pr

[
CDS.CDS5(stR, cds4) == ptxt

∣∣(cds1, stR)← CDS1(1
κ), (cds2, stS)← CDS2(1

κ, cds1),

(cds3, stR)← CDS3(1
κ, (x,w), stR, cds2), cds4 ← CDS4(1

κ, (x, ptxt), stS, cds3)

]
== 1

Message Indistinguishability. For any x /∈ L, cds∗3 ∈ {0, 1}∗ and any two equal-length
messages ptxt0, ptxt1, the following distributions are statistically indistinguishable:

CDS4(1
κ, (x, ptxt0), stS, cds

∗
3)

s
≈ CDS4(1

κ, (x, ptxt1), stS, cds
∗
3)

Receiver Simulation. There exists a simulator Sim = (Sim1,Sim2) such that for any
PPT distinguisher D = (D1,D2), such that for any x ∈ L, with R(x,w) = 1 the following
holds:∣∣∣∣Pr[D2(CDS3(1

κ, (x,w), stR, cds2), stD) = 1|(cds1, stR)← CDS1(1
κ), (cds2, stD)← D1(1

κ)]−

Pr[D2(Sim2(x, stSim), stD) = 1|(cds1, stSim)← Sim1(1
κ), (cds2, stD)← D1(1

κ)]

∣∣∣∣ ≤ neg(κ).

It can be observed that cds1 and cds2 are independent of x and hence can be performed
offline in a preprocessing phase.
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Construction. We denote an SSPOT protocol as SSPOT = (SSPOT.OT
(1)
R→S, SSPOT.OT

(2)
S→R,

SSPOT.OT
(3)
R→S, SSPOT.OTS).

• CDS1(1
κ) : For i ∈ [n], the receiver computes cdsi1 = oti1 = SSPOT.OT

(1)
R→S(1

κ). The

receiver sends cds1 = {cdsi}i∈[n] to the sender and stores stR = ⊥ as the internal state.

• CDS2(1
κ, cds1) : For i ∈ [n], the sender performs the following: (cdsi2,SSPOT.st

i
S) =

SSPOT.OT
(2)
S→R(1

κ, cdsi1). The sender sends cds2 = {cdsi2}i∈[n] to the receiver and stores
stS = {SSPOT.st

i
S} as the internal sender’s state.

• CDS3(1
κ, (x,w), stR, cds2) : The receiver denotes w = {wi}i∈[n]. It computes (cdsi3,m

′
i) =

OTR→S(1
κ, wi, cds

i
2) for i ∈ [n]. The receiver sends cds3 = {cdsi3}i∈[n] to sender and

stores stR = (w, {m′
i}i∈[n]) as internal state.

• CDS4(1
κ, (x, ptxt), stS, cds3) : The sender performs the following:

1. Computes the following circuit C:

C(x,w, ptxt) = ptxt iff (R(x,w) == 1)

= 0, otherwise

x is hardcoded in the circuit, w ∈ {0, 1}n and ptxt ∈ {0, 1}ℓ are inputs to the
circuit. The sender garbles circuit C as (GC, lab) ← Garble.Gb(1κ, C). The
computes

2. For i ∈ [n], it computes (mi
0,m

i
1) = SSPOT.OTS(SSPOT.st

i
S, cds

i
3).

3. Parse lab = {lab0i , lab
1
i }i∈[n+ℓ]. For i ∈ [n], α ∈ {0, 1}, the sender computes

yαi = mα
i ⊕ labαi . Set y = {y0i , y1i }i∈[n].

4. Compute the wire labels corresponding to input ptxt ∈ {0, 1}ℓ as follows (Li =
Garble.En(ptxti, {lab

0
n+i, lab

1
n+i})) for i ∈ [ℓ].

The sender sends cds4 = (GC,y, {Li}i∈[ℓ]) to the receiver.

• CDS5(stR, cds4) : For i ∈ [n], the receiver computes lab′i = m′
i ⊕ ywi

i . The receiver
sets lab′n+i = Li for i ∈ [ℓ]. The receiver evaluates the garbled circuit to obtain
ptxt′ = Garble.Ev(GC, {lab′i}i∈[n+ℓ]). The receiver outputs ptxt′ as the decrypted
message.

Correctness. The receiver obtains lab′i = labwi
i for i ∈ [n] from the ith OT protocol

corresponding to witness bit wi. It evaluates the garbled circuit GC to obtain the message
ptxt′ == ptxt if R(x,w) = 1.

Theorem 22 Assuming SSPOT is a four round OT protocol with statistical sender pri-
vacy against a malicious receiver and computational receiver privacy against a semi-honest
sender, and Garble is an information theoretic garbling scheme for NC1 circuits, then CDS
is a conditional disclosure of secrets for statements x ∈ L which are verifiable by relations
R(x, ·) that can be computed by NC1 circuits. Moreover, it provides receiver simulation
against a malicious receiver and message indistinguishability against a semi-honest sender.
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Proof. We argue message indistinguishability and receiver simulation as follows.

Message Indistinguishability. We show the following through a sequence of hybrids.

CDS4(1
κ, (x, ptxt0), stS, cds

∗
3)

s
≈ CDS4(1

κ, (x, ptxt1), stS, cds
∗
3)

We present our hybrids and the indistinguishability argument as follows:

1. Hyb0 : cds4 = CDS4(1
κ, (x, ptxt0), stS, cds

∗
3) and cds2 is computed following the honest

sender algorithm with ptxt0 as the sender’s input message.

2. Hyb1 : Same as Hyb0, except the garbled circuit in cds4 is simulated with output 0

and the simulator obtains simulated wire labels l̂ab = {l̂abi}i∈[n+ℓ]. The simulator

sets Li = l̂abn+i for i ∈ [ℓ]. The simulator sets the sender messages as yαi = mα
i ⊕ l̂abi

for α ∈ {0, 1}, i ∈ [n]. The two hybrids are statistically indistinguishable due to
information theoretic security of the garbling scheme and statistical sender privacy of
the SSPOT.

3. Hyb2 : cds4 = CDS4(1
κ, (x, ptxt1), stS, cds

∗
3) and cds2 is computed following the honest

sender algorithm with ptxt1 as the sender’s input message. The two hybrids are
statistically indistinguishable due to information theoretic security of the garbling
scheme and statistical sender privacy of the SSPOT.

Receiver simulation. The simulator Sim = (Sim1,Sim2) sets w = 0n and performs
the honest receiver algorithm with w. Indistinguishability follows from the computational
receiver privacy of the SSPOT protocol. 2

6.2 Protocol πmal

We compile the 2PC protocol πexp (from Thm. 20), which is secure against unbounded
explainable receiver and PPT explainable sender, to be secure against malicious corruptions.
Our protocol πmal can be found below and the security is summarized in Thm. 23. High
level overview can be found in Sec. 2.1.

Construction. The receiver R has input A and sender S has input B. We present our
compiler πmal = (R1,S1,R2,S2,R3,S3) as follows:

• R1(1
κ,A) : The receiver performs the following:

1. Sample rR ← {0, 1}∗ and compute π1
exp = πexp.R1(A; rR) according to the explain-

able protocol.

2. Set (z1, stZKP,P) ← ZKP.P(1κ) and (z′1, stSZK,V) ← SZK.V1(1
κ) as the first mes-

sages of the ZK proof with R as prover, and SZK argument with R as verifier,
respectively.
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3. Set (cds1, stCDS,R) = CDS.CDS1(1
κ) as the first message of the CDS scheme as

receiver.

4. Send π1
mal = (π1

exp, z1, z
′
1, cds1).

5. Store stR = (A, rR, stZKP,P, stSZK,V, stCDS,R).

• S1(1
κ,B, π1

mal) : The sender performs the following:

1. Sample rS ← {0, 1}∗ and set π2
exp = πexp.S1(π

1
exp,B; rS) according to the explain-

able protocol.

2. Set (z2, stZKP,V) ← ZKP.V1(z1, 1
κ), (z′2, stSZK,P) ← SZK.P1(z

′
1) as the second

message of the ZKPproof with S as verifier, and SZK argument with sender as
prover, respectively.

3. Sample rCDS
S ← {0, 1}∗ and compute (cds2, stCDS,S) = CDS.CDS2(r

CDS
S , cds1) as

the second message of the CDS scheme as sender.

4. Send π2
mal = (π2

exp, z2, z
′
2, cds2).

5. Store stS = (B, rS, stZKP,V, stSZK,P, stCDS,S).

• R2(stR, π
2
mal) : The receiver performs the following:

1. Compute π3
exp = πexp.R2(π

2
exp,A; rR). Set statement xCDS = (π1

exp, π
2
exp, π

3
exp) and

witness wCDS = (A, rR, ldp) where ldp is a low-depth proof of

(π1
exp = πexp.R1(A; rR) ∧ π3

exp = πexp.R2(π
2
exp,A; rR)).

2. Compute (cds3, stCDS,R)← CDS.CDS3(1
κ, (xCDS, wCDS), stCDS,R, cds2).

3. Compute (z3, stZKP,P)← ZKP.P2(z2, stZKP,P) and (z′3, stSZK,V)← SZK.V2(z
′
2, stSZK,V).

4. Send π3
mal = (π3

exp, z3, z
′
3, cds3).

5. Update stR = (A, rR, stZKP,P, stSZK,V, stCDS,R).

• S2(stS, π
3
mal) : The sender performs the following:

1. Set π4
exp = πexp.S2(π

3
exp,B; rS).

2. Set statement xCDS = (π1
exp, π

2
exp, π

3
exp). Compute CDS response

cds4 ← CDS.CDS4(r
CDS
S , (xCDS, π

4
exp), stCDS,S, cds3).

3. Compute (z4, stZKP,V)← ZKP.V2(z3, stZKP,V).

4. Set the statement xSZK = (cds1, cds2, cds3, cds4, xCDS) for witness wSZK = (B, rCDS
S , rS, π

4
exp)

and set z′4 ← SZK.P2(z
′
3, xSZK, stSZK,P).

5. Send π4
mal = (cds4, z4, z

′
4).

6. Update stS = (B, rS, stZKP,V, stSZK,P)

• R3(stR, π
4
mal) : The receiver performs the following:

1. Set the statement as xSZK = (cds1, cds2, cds3, cds4, xCDS). The receiver aborts
if the verification fails as SZK.V3(z

′
4, xSZK, stSZK,V) = 0. Otherwise, decrypt

π4
exp = CDS.CDS5(stCDS,R, cds4) and compute the final message as (π5

exp, out) =
πexp.R3(π

4
exp,A; rR).
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2. Set xZKP = (π1
exp, π

2
exp, π

3
exp, π

4
exp, π

5
exp), wZKP = (A, rR) and compute the ZKP proof

as z5 = ZKP.P3(z4, xZKP, stZKP,P).

3. Send π5
mal = (π5

exp, z5) to the sender and output out.

• S3(stS, π
5
mal) : Set statement xZKP = (π1

exp, π
2
exp, π

3
exp, π

4
exp, π

5
exp) for ZKP proof. If

ZKP.V3(z5, xZKP, stZKP,V) == 0 then abort. Else, output πexp.S3(π
5
exp,B; rS).

We denote the statement for the CDS as follows:

LCDS = {(π1
exp, π

2
exp, π

3
exp) : ∃(A, rR, ldp) s.t. ldp is a low depth proof of

π1
exp = πexp.R1(A; rR) ∧ π3

exp = πexp.R2(π
2
exp,A; rR)}

The SZK statement proven by the sender is as follows:

LSZK = {(cds1, cds2, cds3, cds4, xCDS) : ∃(B, rCDS
S , rS, π

4
exp) s.t. π

2
exp = S1(π

1
exp,B; rS)∧

(cds2, stCDS,S) = CDS.CDS2(r
CDS
S ) ∧ cds4 = CDS.CDS4(r

CDS
S , (xCDS, π

4
exp), stCDS,S, cds3)}.

We denote the ZKP statement proven by the receiver as follows:

LZKP = {(π1
exp, π

2
exp, π

3
exp, π

4
exp, π

5
exp)∃(A, rR) s.t. π1

exp = πexp.R1(A; rR)

∧π3
exp = πexp.R2(π

2
exp,A; rR) ∧ π5

exp = πexp.R3(π
4
exp,A; rR)}.

Theorem 23 Assuming the following holds:

1. Four round delayed-input adaptive statistical zero-knowledge arguments of knowledge
SZK = (V1,P1,V2,P2,V3) with adaptive soundness,

2. Five round delayed-input adaptive computational zero-knowledge proofs ZKP = (P1,V1,
P2,V2,P3,V3) with adaptive soundness,

3. Four round statistical Conditional Disclosure of Secrets CDS = (CDS1, CDS2, CDS3,
CDS4, CDS5) for NP relations verifiable by NC1 circuits with two rounds of prepro-
cessing phase and two rounds of input-dependent phase,

4. Five round robust two-party secure computation protocol πexp=(R1, S1, R2, S2, R3, S3)
against unbounded explainable receiver and PPT explainable sender

there exists a robust 5-round secure two-party computation protocol πmal=(R1, S1, R2, S2,
R3, S3) with black-box simulation against unbounded malicious receivers and PPT malicious
senders, where the receiver obtains its output at the end of fourth round and the sender
obtains its output at the end of the fifth round.

Proof. We first consider the case where the receiver is corrupt and then we focus on the
corruption of the sender.
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Receiver is corrupt. We present our simulation algorithm against a corrupt receiver R∗

as follows.

• R∗
1(1

κ) : The corrupt receiver sends π1
mal = (π1

exp, z1, z
′
1, cds1)

• S1(1
κ, π1

mal) : The sender performs the following:

1. Invoke SimS
exp(π

1
exp) to obtain π2

exp.

2. Set (z2, stZKP,V)← ZKP.V1(z1, 1
κ) as the second message of the ZKPproof with S

as verifier. Set z′2 ← SZK.SimSZK(z
′
1) as the simulated SZK argument with sender

as prover.

3. Set (cds2, stCDS,S) = CDS.CDS2(1
κ) as the second message of the CDS scheme as

sender.

4. Send π2
mal = (π2

exp, z2, z
′
2, cds2).

5. Store stS = (stZKP,V, stCDS,S).

• R∗
2(π

2
mal) : The corrupt receiver sends π3

mal = (π3
exp, z3, z

′
3, cds3).

• S2(stS, π
3
mal) : The sender performs the following:

1. Invoke SimS
exp(π

3
exp) to obtain π4

exp.

2. Set statement xCDS = (π1
exp, π

2
exp, π

3
exp). Compute CDS response

cds4 ← CDS.CDS4(1
κ, (xCDS, π

4
exp), stCDS,S, cds3).

3. Compute (z4, stZKP,V)← ZKP.V2(z3, stZKP,V).

4. Set the statement xSZK = (π2
exp, cds4) and obtain the simulated SZK argument as

set z′4 ← SZK.SimSZK(z
′
3, xSZK).

5. Send π4
mal = (cds4, z4, z

′
4).

6. Update stS = stSZK,P.

• R∗
3(π

4
mal) : The corrupt receiver sends π5

mal = (π5
exp, z5).

• S3(stS, π
5
mal) : If ZKP.V3(z5, xZKP, stZKP,V) == 0 then abort. Else, invoke the ideal

functionality to release the output to honest party.

We present our hybrids and the indistinguishability argument as follows:

1. Hyb0 : Real world execution of the protocol, where the simulator runs the honest
sender algorithm with input B, alongwith the output of the honest sender.

2. Hyb1 : Same as Hyb0, except the simulator generates (z′2, z
′
4) by invoking the statistical

ZK simulator SimSZK. The view also includes the output of the honest sender. The
two hybrids are statistically indistinguishable due to statistical zero knowledge of SZK.

3. Hyb2 : This is the ideal world execution of the protocol alongwith the output of the
honest sender. The only difference between the two hybrids is based on the execution
of πexp. In Hyb1, it is the real world execution of πexp with the honest party’s input
and in Hyb2 it is the simulated execution of πexp against a malicious receiver. The two
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hybrids are statistically indistinguishable if R∗ is explainable. If R∗ is not explainable
then the statistical soundness of ZKP ensures that the sender aborts at the end of fifth
round. If R∗ behaves maliciously in the first three rounds of the protocol then the
robustness of πexp and (statistical) message indistinguishability of CDS ensures that
the two hybrids are statistically indistinguishable.

Sender is corrupt. We present our simulation algorithm against a corrupt sender S∗ as
follows.

• R1(1
κ) : The simulated receiver performs the following:

1. Invoke SimR
exp(1

κ) to obtain π1
exp.

2. Obtain z1 ← ZKP.SimZKP(1
κ) and z′1 ← SZK.ExtSZK(1

κ) as the first messages of
the ZK proof and SZK respectively.

3. Set cds1 = CDS.Sim1(1
κ) as the first message of the CDS scheme as receiver.

4. Send π1
mal = (π1

exp, z1, z
′
1, cds1).

5. Store stR = ⊥.

• S∗1(1
κ, π1

mal) : The corrupt sender sends π2
mal = (π2

exp, z2, z
′
2, cds2).

• R2(stR, π
2
mal) : The simulated receiver performs the following:

1. Invoke SimR
exp(π

2
exp) to obtain π3

exp. Set statement xCDS = (π1
exp, π

2
exp, π

3
exp) follow-

ing honest receiver algorithm.

2. Compute cds3 ← CDS.Sim2(1
κ, xCDS, cds2). Set z3 ← ZKP.SimZKP(z2) and z′3 ←

SZK.ExtSZK(z
′
2).

3. Send π3
mal = (π3

exp, z3, z
′
3, cds3).

• S∗2(π
3
mal) : The corrupt sender sends π4

mal = (cds4, z4, z
′
4).

• R3(stR, π
4
mal) : The simulated receiver performs the following:

1. Set the statement as xSZK = (π2
exp, cds4). The simulated receiver computes π4

exp =
SZK.ExtSZK(z

′
4). Abort if π4

exp = ⊥.

2. Compute π5
exp = SimR

exp(π
4
exp).

3. Set xZKP = (π1
exp, π

3
exp, π

5
exp) and compute the ZKP simulated proof as z5 =

ZKP.SimZKP(z4, xZKP).

4. Send π5
mal = (π5

exp, z5) to the sender.

• S∗3(π
5
mal) : The corrupt sender performs its own adversarial algorithm.

We present our hybrids and the indistinguishability argument as follows:

1. Hyb0 : Real world execution of the protocol where the simulator runs the honest
receiver algorithm with input A, alongwith the output of the honest receiver.
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2. Hyb1 : Same as Hyb0, except the simulated receiver generates (z1, z3, z5) are generated
by invoking the ZK simulator of ZKP. The view also includes the output of the honest
receiver. The two hybrids are computationally indistinguishable due to computational
zero knowledge of ZKP.

3. Hyb2 : Same as Hyb1, except the simulated receiver generates the CDS messages
(cds1, cds3) by invoking the CDS simulator. The view also includes the output of
the honest receiver. The two hybrids are computationally indistinguishable due to
receiver simulation of CDS.

4. Hyb3 : This is the ideal world execution of the protocol together with the output of the
honest receiver. The only difference between the two hybrids is based on the execution
of πexp. In Hyb2 it is the real world execution of πexp with the honest party’s input
and in Hyb2 it is the simulated execution of πexp against a malicious sender. The two
hybrids are computationally indistinguishable whenever the corrupt sender in πexp is
explainable. When the sender is not explainable, the robustness of πexp ensures that the
first three messages (π1

exp, π
2
exp, π

3
exp) are indistinguishable in real world and ideal world

executions, even against malicious adversaries, these hybrids are indistinguishable for
the first three rounds. The soundness of SZK ensures that in both hybrids the sender
algorithm aborts at the end of fourth round if the sender’s messages (π2

exp, π
4
exp) are

not explainable. Thus, a sender (whose messages are not explainable) distinguishes
between the two hybrids by breaking computational soundness of SZK.

2

7 Instantiations of eOT

We instantiate eOTfrom CDH, reciprocal CSIDH assumption and two-round SSPOT as fol-
lows.

7.1 CDH-based Instantiation

We define our elementary OT protocol eOT = (OT
(1)
S→R,OT

(2)
R→S,OT

(3)
S→R,OTR) as a tuple of

four algorithms defined as follows:

• OT
(1)
S→R(1

κ) : The sender samples Q ← G. The sender sends ot1 = Q as the OT
sender message.

• OT
(2)
R→S(1

κ, γ, ot1) : The receiver performs the following with input choice bit γ as
follows:

– Sample sk← Zq.

– Set pkγ = gsk and set pk1−γ = Q
pkγ

.

The receiver sends ot2 = pk0 as the OT receiver message and sets stR = (γ, sk).

• OT
(3)
S→R(1

κ, ot2) : The sender computes following:

33



– Generate pk1 = Q
pk0

.

– Sample r ← Zq. Compute R = gr.

– Compute m0 = pkr0 and m1 = pkr1.

The sender sends ot3 = R as the OT sender message and outputs (m0,m1) as the
output.

• OTR(stR, ot3) : The receiver computes mγ = Rsk and outputs mγ .

Correctness. The sender outputs (m0,m1). The receiver outputs mγ = Rsk = grsk = pkrγ
corresponding to bit γ.

Lemma 24 The above protocol satisfies perfect receiver’s elementary security.

Proof. The distribution of pk0 is randomly distributed over G irrespective of the value of
γ. 2

Lemma 25 The above protocol satisfies computational sender’s elementary security based
on the CDH assumption.

Proof. Let A be an adversary breaking sender privacy of the above OT protocol, then we
build an adversary B breaking the CDH assumption. Recall that A receives Q = gq from
the sender (for an uniformly sampled q ← Zq), sends pk0 to the sender, receives R = gr

from the sender (for an uniformly sampled r ← Zq) and wins if it outputs m0 = pkr0 and
m1 = pkr1. The CDH adversary B (acting as the sender) receives (g,X = gx, Y = gy) as
the CDH challenge. B sets Q = X and sends it to A. Upon receiving pk0 from A, B sends
R = Y to A. If A succeeds then it outputs m0 = pky0 and m1 = pky1. B outputs m0 · m1

to the CDH challenger. Recall that pk0 · pk1 = Q = X. If A succeeds then B breaks CDH
since the following holds:

m0 ·m1 = pky0 · pk
y
1 = (pk0 · pk1)

y
= Xy

2

7.2 Reciprocal CSIDH-based Instantiation

We recall the reciprocal CSIDH assumption and provide an abstraction of the reciprocal
CSIDH assumption in the effective group actions (EGA) framework.

Reciprocal EGA and Reciprocal CSIDH. The OT protocol of Lai et al. [LGdSG21]
is based on the reciprocal CSIDH assumption. This assumption is known to be quantum-
equivalent to the computational CSIDH assumption, and does not have an analogue in the
Diffie-Hellman setting. The construction of Lai et al. relies on crucially on the quadratic twist
of an elliptic curve, which can be computed efficiently in the CSIDH setting. In this section,
we present an abstraction of the quadratic twist and the reciprocal CSIDH assumption in the
framework of (R)EGA (Restricted Effective Group Action). In particular, our abstraction
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captures all of the properties of quadratic twist and its associated hardness assumptions
used by Lai et al (see [LGdSG21] for more details on the quadratic twist and its efficient
computation in the CSIDH setting). For the ease of exposition, we present below some
preliminary background material on cryptographic group actions and (restricted) effective
group actions.

Cryptographic Group Actions. We recall some definitions related to cryptographic
group actions from [ADMP20], which provided a framework to construct cryptographic
primitives from certain isogeny-based assumptions (e.g., variants of the CSIDH assumption
[CLM+18, BKV19]). We begin by describing some notations that we use in the rest of this
section. We use (G,X, ⋆) to denote a group action ⋆ : G×X → X. Throughout the section,
we will assume that group actions are abelian and regular, i.e., both free and transitive
(which is the case for CSIDH-style group actions). Note that for regular group actions, we
have |G| = |X|. Thus, if a group action is regular, then for any x ∈ X, the map fx : g → g⋆x
defines a bijection between G and X.

Effective Group Action. We recall the definition of an effective group action (EGA)
from [ADMP20]. In a nutshell, an effective group action allows us to do certain computations
over G efficiently (e.g., group operation, inversion, and sampling uniformly), and there is
an efficient procedure to compute the action of any group element on any set element. As
pointed out by [ADMP20], the CSIDH-style assumption in [BKV19] (called “CSI-FiSh”) is
an instance of effective group action. We refer to [CLM+18, BKV19, ADMP20] for more
details on distributional properties of such group actions.

Definition 26 (Effective Group Action) A group action (G,X, ⋆) is effective if it sat-
isfies the following properties:

1. The group G is finite and there exist efficient (PPT) algorithms for:

(a) Membership testing (deciding whether a binary string represents a group element).

(b) Equality testing and sampling uniformly in G.

(c) Group operation and computing inverse of any element in G.

2. The set X is finite and there exist efficient algorithms for:

(a) Membership testing (to check if a string represents a valid set element),

(b) Unique representation (there is a canonical representation for any set element
x ∈ X).

3. There exists a distinguished element x0 ∈ X with known representation.

4. There exists an efficient algorithm that given any g ∈ G and any x ∈ X, outputs g ⋆x.
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Restricted Effective Group Action. The authors of [ADMP20] pointed out that while
EGA is a useful abstraction, sometimes it is too powerful in comparison to what is achievable
in practice. A Restricted Effective Group Action (REGA) is a weakening of EGA, where we
can only evaluate the action of a generating set of small cardinality.

Definition 27 (Restricted Effective Group Action) Let (G,X, ⋆) be a group action
and let g = (g1, . . . , gn) be a (not necessarily minimal) generating set for G. The action is
said to be g-restricted effective, if the following properties are satisfied:

• G is finite and n = poly(log(|G|)).

• The set X is finite and there exist efficient algorithms for:

1. Membership testing, i.e., to decide if a bit string represents a valid set element.

2. Unique representation, i.e., to compute a string x̂ that canonically represents any
given set element x ∈ X.

• There exists a distinguished element x0 ∈ X, called the origin, such that its bit-string
representation is known.

• There exists an efficient algorithm that given any i ∈ [n] and any bit string represen-
tation of x ∈ X, outputs gi ⋆ x and g−1

i ⋆ x.

Although an REGA is limited to evaluations of the form gi ⋆ x, this is actually enough
to evaluate the action of many, and potentially all elements of G without even needing
axioms on the effectivity of G. Protocols built on REGA will need to sample elements
from G that are statistically close to uniform and for which the group action is efficiently
computable. Prior works suggest sampling from a distribution DG on the words on g in the
non-abelian case, or from a distribution on vectors in Zn in the abelian case (e.g., discrete
Gaussian distributions [DG19]), which is plausibly sufficient for applications that require
group elements to be sampled from distributions statistically close to uniform [DG19].

The Twist Map. Let (G,X, ⋆) be an EGA (equivalently an REGA) as described above.
We define a “twist” as a map T : X → X that satisfies the following properties:

• For any g ∈ G and any x ∈ X we have T (g ⋆ x) = g−1 ⋆ T (x).

• For any x ∈ X and any uniform g ← G, we have: g ⋆ x ≈s T (g ⋆ x).

• There exists a “twist-invariant” element x0 ∈ X such that T (x0) = x0.

The Reciprocal EGA Assumption. Given an EGA (G,X, ⋆), we say that the reciprocal
assumption holds if for any security parameter κ ∈ N and for any PPT adversary A, the
following holds with overwhelmingly large probability:

Pr[ExptrecEGA(κ,A) = 1] < negl(κ),

where the experiment ExptrecEGA(κ,A) is as defined in Figure 2.
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Experiment ExptrecEGA(κ,A):

1. The challenger generates the description of an EGA (G,X, ⋆) along with the
“twist” map T : X → X and a special “twist-invariant” element xT ∈ X.

2. The challenger then samples g ← G, sets x = g⋆xT , and provides to the adversary
A the tuple (G,X, ⋆, T , xT , x).

3. The adversary A outputs an element z ∈ X.

4. The challenger samples s ← G and provides to the adversary A the set element
y = s ⋆ x.

5. The adversary A eventually outputs a pair of set elements (z0, z1) ∈ X ×X.

6. Output 1 if (z0, z1) = (s ⋆ z, s−1 ⋆ z). Output 0 otherwise.

Figure 2: The Reciprocal EGA Experiment

Remark 1 We can similarly define a reciprocal REGA assumption where, in the corre-
sponding experiment, all group elements (more concretely, the group elements g and s) are
sampled from a distribution that is statistically close to uniform over the group G.

Finally, we import the following theorem from [LGdSG21].

Theorem 28 ( [LGdSG21]). Assuming that the reciprocal CSIDH assumption holds, there
exists an REGA satisfying the reciprocal REGA assumption.

Next, we present our protocol. Let x0 be a publicly known twist-invariant set element such
that T (x0) = x0. x0. Our protocol is as follows:

• OT
(1)
S→R(1

κ) : The sender samples g ← G and computes x = g ⋆ x0. The sender sends
ot1 = x as the OT sender message.

• OT
(2)
R→S(1

κ, γ, ot1) : The receiver samples r ← G and computes z ∈ X as follows:

z = r ⋆ x if γ = 0, z = T (r ⋆ x) if γ = 1,

The receiver sends ot2 = z as the OT receiver message and sets stR = (γ, r)

• OT
(3)
S→R(1

κ, ot2) : The sender samples s← G and computes (y,m0,m1) as follows:

y = s ⋆ x, m0 = s ⋆ z, m1 = s ⋆ T (z)

The sender sends ot3 = y as the OT sender message and outputs (m0,m1) as the
output.

• OTR(stR, ot3) : The receiver computes mγ = r ⋆ y and outputs mγ .
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Correctness. The sender outputs (m0,m1). We argue correctness based on γ as follows.
When (γ == 0), m0 = s ∗ z = s ∗ r ∗ x = r ∗ s ∗ x = r ∗ y. When (γ == 1), m1 = s ∗ T (z) =
s ∗ T (T (r ⋆ x)) = s ∗ r ∗ x = r ∗ s ∗ x = r ∗ y. Thus, in both cases the receiver outputs the
correct message as mγ = r ∗ y corresponding to bit γ.

Lemma 29 Given a set element x ∈ X and a group G, let G ⋆ X be the distribution on
X of g ⋆ x for g ← G, and let T (G ⋆ X) be the distribution on x of T (g ⋆ x) for g ← G.
If g ⋆ x and T (g ⋆ x) are statistically indistinguishable the above protocol satisfies statistical
receiver’s elementary security.

Proof. The distribution of r ⋆ x and T (r ⋆ x) is statistically close and hence γ remains
statistically hidden. 2

Lemma 30 The above protocol (resp., its CSIDH-based instantiation) satisfies computa-
tional sender’s elementary security based on the reciprocal EGA assumption in (⋆,G,X) (resp.,
the reciprocal CSIDH assumption).

Proof. Let A be an adversary breaking sender privacy of the above OT protocol, then
we build an adversary B breaking the reciprocal assumption. When B receives x from the
challenger of the reciprocal EGA game, B forwards x to A. A sends z to B and B forwards
it to the challenger of the reciprocal EGA game. The challenger returns a y and B forwards
it to A. When A responds with (m0,m1) to break sender elementary security, B sends
(m∗

0,m
∗
1) = (m0, T (m1)) to the challenger of the reciprocal EGA game as its response. If A

succeeds then B breaks reciprocal EGA assumption since the following holds:

m∗
0 = m0 = s ∗ z, m∗

1 = T (m1) = T (s ⋆ T (z)) = s−1 ⋆ z.

2

7.3 Instantiation from 2-round SSPOT

The 3 round SRP elementary OT eOT can be instantiated from a 2 round SSPOT =

(SSPOT.OT
(1)
R→S,SSPOT.OT

(2)
S→R,SSPOT.OTR) based on OT reversal techniques [WW06].

• OT
(1)
S→R(1

κ) : The sender samples a random α ← {0, 1} and computes the following

- (SSPOT.ot1,SSPOT.stR) = SSPOT.OT
(1)
R→S(1

κ, α). The sender sends ot1 = SSPOT.ot1
as the OT sender message and stores stS = SSPOT.stR as the internal state.

• OT
(2)
R→S(1

κ, γ, ot1) : The receiver computes the following with input choice bit γ :

– Samples r ← {0, 1}.

– Computes (SSPOT.ot2,SSPOT.stS) = SSPOT.OT
(2)
S→R(1

κ, (r, r ⊕ γ), ot1).

The receiver sends ot2 = SSPOT.ot2 and stores stR = r as the internal state.

• OT
(3)
S→R(1

κ, ot2) : The sender computes the following:

– Computes a = SSPOT.OTR(SSPOT.stR, ot2).
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– Samples m0 ← {0, 1} and sets m1 = m0 ⊕ α.

– Sets Map = m0 ⊕ a.

The sender sends ot3 = Map and outputs (m0,m1).

• OTR(stR, ot3) : The receiver outputs mγ = Map⊕ r.

The correctness of the above protocol follows from the correctness of the SSPOT and the OT
reversal trick.

Lemma 31 If SSPOT is a two round statistically sender private oblivious transfer with
computational receiver privacy then the above eOT protocol is statistically receiver private
with computational sender privacy.

Proof. The receiver’s choice bit γ is statistically hidden in ot2 since the sender (acting as
the receiver in SSPOT) either obtains r or r ⊕ γ due to statistical sender privacy of SSPOT.
Similarly, α is computationally hidden from the receiver (acting as the sender in the SSPOT

protocol) due to computational receiver privacy of SSPOT. 2

Next, we instantiate the two round SSPOT protocol based on various assumptions and obtain
the following result.

Theorem 32 Assuming that the Learning with Errors assumption, Decisional Diffie Hell-
man assumption, Quadratic Residuosity assumption, N th residuosity assumption, Learning
parity with Noise + a standard Nisan-Wigderson style derandomization assumption, or deci-
sional CSIDH assumption holds then the above there exists a three round eOT which satisfies
statistical receiver privacy and computational sender privacy.

Proof. The 2 round SSPOT protocol can be instantiated from LWE [BD18], DDH [NP01],
QR [HK12], N th-residuosity [HK12], LPN+derandomization techniques [BF22], or deci-
sional CSIDH assumptions [ADMP20]. 2
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