
An extended abstract [DHRR22a] of this article appears in the proceedings of ASIACRYPT 2022. The full
version [DHRR22b] of this article is available in the IACR eprint archive.

Strongly Anonymous Ratcheted Key Exchange

Benjamin Dowling1, Eduard Hauck2 , Doreen Riepel2 , and Paul Rösler3

1 University of Sheffield b.dowling@sheffield.ac.uk
2 Ruhr-Universität Bochum {eduard.hauck,doreen.riepel}@rub.de

3 New York University paul.roesler@cs.nyu.edu

Abstract. Anonymity is an (abstract) security goal that is especially important to threatened user
groups. Therefore, widely deployed communication protocols implement various measures to hide
different types of information (i.e., metadata) about their users. Before actually defining anonymity,
we consider an attack vector about which targeted user groups can feel concerned: continuous,
temporary exposure of their secrets. Examples for this attack vector include intentionally planted
viruses on victims’ devices, as well as physical access when their users are detained.

Inspired by Signal’s Double-Ratchet Algorithm, Ratcheted (or Continuous) Key Exchange
(RKE) is a novel class of protocols that increase confidentiality and authenticity guarantees against
temporary exposure of user secrets. For this, an RKE regularly renews user secrets such that the
damage due to past and future exposures is minimized; this is called Post-Compromise Security
and Forward-Secrecy, respectively.

With this work, we are the first to leverage the strength of RKE for achieving strong anonymity
guarantees under temporary exposure of user secrets. We extend existing definitions for RKE to
capture attacks that interrelate ciphertexts, seen on the network, with secrets, exposed from users’
devices. Although, at first glance, strong authenticity (and confidentiality) conflicts with strong
anonymity, our anonymity definition is as strong as possible without diminishing other goals.

We build strongly anonymity-, authenticity-, and confidentiality-preserving RKE and, along the
way, develop new tools with applicability beyond our specific use-case: Updatable and Randomizable
Signatures as well as Updatable and Randomizable Public Key Encryption. For both new primitives,
we build efficient constructions.

Keywords: RKE, CKE, Ratcheted Key Exchange, Continuous Key Exchange, Anonymity, Secure
Messaging, State Exposure, Post-Compromise Security

1 Introduction

Anonymity. Traditionally, anonymity means that participants of a session cannot be identified. As
we will argue below, this notion of anonymity is very narrow. Furthermore, in the context of this work,
it is not immediately clear what the identity of a session participant actually is. The reason for this is
that we consider a modular protocol stack that consists of a Session Initialization Protocol (SIP; e.g., an
authenticated key exchange) and an independent, subsequent Session Protocol (SP; e.g., a symmetric
channel or a ratcheted key exchange). According to this modular composition paradigm, only the SIP
actually deals with users and their identities, and groups them into session participants who execute the
subsequent SP. While the SP may assign different roles to its session participants, the SP is (usually)
agnostic about their identities. Thus, it cannot reveal identities by definition. Nevertheless, the context of
an SP session and the role of its participant therein may suffice to identify the underlying identity.

Session Protocols. In this work, we focus on anonymity for SPs. Roughly, we call an SP anonymity-
preserving if its execution reveals nothing about its context, including the session participants, the protocol
session itself, the status of a session, etc. We note that real-world deployment of an anonymity-preserving
SP requires more than that—e.g., an anonymous SIP, a delivery protocol that transmits anonymous traffic
across the Internet, or a mechanism that ensures a large enough set of potential protocol users. While
these external components are outside the scope of our work, we mind the broader execution environment
of SPs to direct our definitions.

Exposure of Secrets. Intuitively, anonymity complements standard security goals, such as confiden-
tiality and authenticity, by requiring that publicly observable context data (or metadata) remains hidden.

https://asiacrypt.iacr.org/2022/
https://eprint.iacr.org
http://orcid.org/0000-0001-8691-6754
http://orcid.org/0000-0002-4990-0929
http://orcid.org/0000-0002-2324-5671

More specifically, anonymity means that ciphertexts on the network cannot be interrelated. In this work,
we augment this perspective by considering adversaries against anonymity who can expose information
that is secretly stored by the targeted users. Consequently, our notion of anonymity requires that it is
hard to interrelate these exposed user secrets with publicly visible data.

Temporary exposure of user secrets is a realistic threat, especially against cryptographic protocols with
long-lasting sessions. The most prominent example for this type of long-term protocols is secure messaging
where sessions almost never terminate and, hence, can last for several years. Therefore, anticipating the
exposure of participants’ locally stored secrets during the lifetime of a session is advisable.

Ratcheted Key Exchange. Inspired by Signal’s Double-Ratchet Algorithm [PM16], Ratcheted Key
Exchange (RKE) is an SP primitive that provides security in the presence of adversaries who can expose
session participants’ local secrets. The core idea of RKE is that the participants continuously establish
new symmetric session keys. Following the modular composition paradigm, these keys can be used by
another subsequent SP, for instance, to encrypt payload data symmetrically. While establishing session
keys, the participants update and renew all their local secrets to recover from potential past exposures
(Post-Compromise Security; PCS), and delete old secrets before a potential future exposure occurs
(Forward-Secrecy; FS). So far, RKE was only used for preserving secrecy and authenticity of session keys
under the exposure of secrets. In order to also achieve strong anonymity under exposure of secrets, we
are the first to take advantage of RKE.

Examining RKE constructions, one may doubt that this secrecy- and authenticity-preserving primi-
tive can be extended to also realize strong anonymity: On the one hand, authenticity and anonymity
generally tend to be incompatible security goals. On the other hand, for continuously performing updates,
participants locally store structured information that is often encoded in sent and received ciphertexts, or
has traceable relations to the secrets stored by other session participants. Avoiding this structure (and
hiding all relations between sender secrets, ciphertexts, and receiver secrets) is highly non-trivial.

We start with extending RKE syntactically to account for an environment in which preserving
anonymity is crucial. Then, we specify a security definition that captures strong anonymity under
exposure of secrets. This new definition is compatible with strong secrecy and authenticity notions of
RKE.

Flavors of RKE. To reduce complexity and maintain clarity, we consider unidirectional RKE [BSJ+17,
PR18b, BRV20], which is a simple, natural notion of RKE that restricts communication between two
session participants, Alice and Bob, to flow only from the former to the latter. We leave it an open,
highly non-trivial4 problem for future work to extend our results to more complex bidirectional RKE
(e.g., [PR18b, JS18, PR18a]), RKE with immediate decryption (e.g., [ACD19]), RKE in static groups
(e.g., [CCG+18]) and dynamic groups (e.g., [RMS18,ACDT20,BDG+22]), resilient to concurrent operations
(e.g., [BDR20,AAN+22]), etc. In Appendix G, we take a look at the “unidirectional core” of each two-party
RKE construction from the literature and present successful attacks against anonymity for all of them.
We refrain from also presenting (non-trivial) attacks against constructions from the group setting without
having a suitable anonymity definition that formally separates trivial attacks from non-trivial ones.5

Further Related Work. The literature of anonymity-preserving cryptography ranges from key-private
public key encryption (e.g., [BBDP01,KMO+13,GMP22]) to anonymous signatures (e.g., [YWDW06,
Fis07]) to privacy-preserving key exchange (e.g., [Zha16,SSL20, IY22]) to anonymous onion encryption
(e.g., [DS18, RZ18a]) and many other primitives. In principle, our definitions are in line with these
notions insofar that we require indistinguishability of “everything that the adversary sees” for a real RKE
execution (i.e., ciphertexts and exposed user secrets) from independently sampled equivalents. While some
previous works furthermore cover non-cryptographic properties such as anonymous delivery mechanisms
(see, e.g., [DS18]), our work abstracts these external components. To the best of our knowledge, anonymity
under (temporary and continuous) exposure of user secrets has not been formally studied before.

4 Immediate extension and generalization of our results seems unlikely, given the remarkable gap of complexity
between non-anonymous unidirectional RKE and more advanced non-anonymous types of RKE.

5 Note that all CGKA (or “group RKE”) constructions reveal structural information like the group size via
(publicly) sent ciphertexts. (Moreover, these constructions let users store information about other members in
the local user states, and most constructions rely on an active server that participates in the protocol execution.)
However, without a formal, satisfiable anonymity definition, it is unclear which information can theoretically be
hidden, even by an ideal CGKA construction.

2

Nevertheless, anonymity, privacy, and deniability is generally considered relevant in the domain of
secure messaging. For example, the Signal messenger implements the Sealed Sender mechanism [Sig18] to
hide the identities of senders. Yet, this mechanism is stateless and uses static long-term secrets, which
means that it is insecure under the exposure of receiver secrets. Besides this, several attacks against
the deployment of Sealed Sender [MKA+21,TLMR22] undermine its anonymity guarantees. The Sealed
Sender mechanism is related to instances of the Noise protocol framework [Per18,DRS20] that also claims
to reach various notions of anonymity. Yet, the established symmetric session key in a Noise protocol
session is static, which means that its exposure breaks anonymity, too. Finally, there is an ongoing
discussion about privacy and deniability in the MLS standardization initiative [BBR+22] that is yet to be
concluded.6 Related to this, Emura et al. [EKN+22] informally propose changes to an early version of
MLS by Cohn-Gordon et al. [CCG+18] in order to hide the identities of group members. As mentioned
above, this is a rather weak form of anonymity. Finally, we note that none of our definitions requires
deniability and none of our constructions reaches deniability.

Contributions. Our main contributions are defining anonymity for Ratcheted Key Exchange (RKE)
and designing a construction that provably satisfies this definition. However, we do not naïvely adopt
and extend prior notions of RKE, but we take a fresh look at this primitive, keeping in mind the overall
execution environment in which anonymity is important.

Along the way, we develop two new tools that we use to build our final RKE construction. The
first tool, Updatable and Randomizable Public Key Encryption (urPKE), realizes anonymous PKE with
randomizable encryption keys and updatable key pairs. We believe this has applications beyond our
work, for example, to Updatable PKE [JMM19a, ACDT20, DKW21]. The second tool, Updatable and
Randomizable Signatures (urSIG), simultaneously provides strong anonymity and authenticity guarantees.
Roughly, it achieves strong unforgeability of signatures if the signing key is uncorrupted. Furthermore,
the signer can derive multiple signing keys that work for the same verification key. However, it should be
hard to derive the verification key from a signing key and, beyond that, hard to distinguish whether two
signing keys correspond to the same verification key. Surprisingly, both urPKE and urSIG can be built
efficiently from cryptographic standard components.

We focus on anonymity of RKE and its building blocks in the main body of this paper. All novel
definitions, constructions, and proofs regarding other security goals such as authenticity and secrecy
(which are valuable contributions), are summarized in the subsequent technical overview (Section 1.1).
The full details of these summarized results can be found in the appendix.

1.1 Technical Overview

Unidirectional Ratcheted Key Exchange. Definitions and constructions of Ratcheted Key Exchange
(RKE) in the literature are highly complex. Since we are the first to consider anonymity for this primitive,
we want to focus on the core challenges that arise due to the interplay of strong anonymity, confidentiality,
and authenticity. Furthermore, we present novel, insightful solutions for these challenges. Thus, for
didactic reasons, we condense the question of how to define and construct anonymous RKE by considering
the simplest variant of this primitive—so called Unidirectional RKE (URKE) [BSJ+17,PR18b,BRV20].
As we will see, definitions and constructions of anonymous RKE become complex even for this simple
unidirectional variant.

An RKE session between two users begins with the initialization that produces a secret state
for each user RKE.init →$ (stS, stR). (In practice, this abstract initialization can be instantiated by
using an authenticated key exchange protocol.) The users then continuously use their secret states to
asynchronously send ciphertexts to their partners. These ciphertexts establish fresh symmetric keys
(for the use in subsequent, higher layer SPs) and refresh the secrets in both users’ states. While a fully
bidirectional RKE scheme allows both users to establish new symmetric keys, a unidirectional RKE
scheme assigns different roles to the two users: only one user (Alice) sends ciphertexts to establish new
keys RKE.snd(stS, ad)→$ (stS, c, k) and the other user (Bob) receives these ciphertexts to compute these
(same) established keys RKE.rcv(stR, c, ad) →$ (stR, k). Either way, secrets in both users’ states are
continuously renewed by these operations.

6 See the discussion thread initiated here: https://mailarchive.ietf.org/arch/msg/mls/-1VF95d8od0lF_
AFj2WMvk5SQXE/.

3

https://mailarchive.ietf.org/arch/msg/mls/-1VF95d8od0lF_AFj2WMvk5SQXE/
https://mailarchive.ietf.org/arch/msg/mls/-1VF95d8od0lF_AFj2WMvk5SQXE/

Standard Security Goals. Secrecy and authenticity of established symmetric keys for URKE have
been studied in prior work [BSJ+17,PR18b,BRV20]. These works extend standard secrecy and authenticity
notions by allowing the adversary to expose the secret states of Alice and Bob before and after each of
their send and receive operations, respectively.

Key Secrecy. For secrecy of URKE [PR18b], we require that all symmetric keys established by Alice are
indistinguishable from random keys unless Bob’s corresponding secret state was exposed earlier. More
precisely, the symmetric key established by Alice’s ik-th ciphertext must be secure, unless Bob’s secret
state was exposed already after successfully processing the first ix ciphertexts from Alice, where ix < ik.
By correctness, Bob’s (exposed) state after processing Alice’s first ix ciphertexts can always be used to
successfully process the subsequent ik − ix ciphertexts from Alice and then compute the ik-th symmetric
key. This notion captures post-compromise security (PCS) and forward-secrecy (FS) on Alice’s side, since
all her established symmetric keys must remain secure independent of whether her secret state is ever
exposed. It also captures a strong notion of FS on Bob’s side, since exposures of his state must not impact
the secrecy of a key established with ciphertext ik under two conditions: (1) the exposures occurred after
Bob received ciphertext i′

x, and ik ≤ i′
x, or (2) Bob falsely accepted an earlier ciphertext if , if < ik that

was not sent by Alice and Bob was exposed subsequently at point i′
x, and if ≤ i′

x. This requires that
Bob’s state becomes incompatible with Alice’s state immediately after accepting a forged ciphertext.

Authenticity. Authenticity for URKE [DV19] a ciphertext if , unless Alice’s matching secret state was
exposed. More precisely, after successfully accepting if − 1 ciphertexts from Alice, Bob must reject the
if -th ciphertext if it was not sent by Alice, unless Alice’s secret state was exposed after sending the ix-th
ciphertext, where ix = if − 1. We call such a successful trivial ciphertext forgery a trivial impersonation.

Robustness and Recover Security. We consider two additional properties for URKE: robustness and
recover security. The former requires that Bob will not change his state when rejecting a ciphertext. Thus,
Bob can uphold his communication with Alice even if he sometimes receives (and rejects) false ciphertexts
that did not result in a trivial impersonation. When considering (receiver) anonymity, robustness is a
valuable feature as it allows Bob to perform “trial decryptions” to check if a ciphertext was meant for
him or not. Furthermore, consider a setting in which Bob is the receiver of many independent URKE
sessions. Due to (sender) anonymity, he may not know the sender of a ciphertext, so he can “trial decrypt”
the ciphertext with all of his receiver states until one of them accepts. We conclude that robustness is
a crucial property for anonymous RKE. Recover security [DV19] requires that, whenever Bob falsely
accepts a trivial impersonation ciphertext, he will never again accept a ciphertext sent by Alice. This
ensures that an adversary who conducted a successful trivial impersonation cannot hide this attack by
letting Alice and Bob resume their communication.

For comprehensibility, we make the simplifying assumption that Alice always samples “good” random-
ness for her send operations. While “bad” randomness can be a realistic threat in some scenarios, we note
that URKE under bad randomness—beyond causing more complex definitions and constructions—must
rely on strong and inefficient HIBE-like building blocks as Balli et al. [BRV20] prove. We leave it an open
problem to extend our results to stronger threat models.

Known Constructions. RKE constructions only achieving the above properties can be built from
standard public key encryption (PKE) and one-time signatures (OTS) [PR18b,JS18,DV19]. The idea
is that Alice (1) generates fresh PKE key pair (eki, dki) and OTS key pair (vki, ski) with every send
operation i. She then (2) encrypts the new decryption key dki with the prior encryption key eki−1,
and she (3) signs the resulting PKE ciphertext as well as the new verification key vki with the prior
signing key ski−1. The composed URKE ciphertext consists of PKE ciphertext, new verification key, and
signature. Alice deletes all prior values as well as the new decryption key dki and sends the composed
URKE ciphertext to Bob, who verifies the signature, decrypts the PKE ciphertext, and stores (dki, vki).
An additional hash-chain over the entire sent (resp. received) transcript maintains consistency between
Alice and Bob, and additional encrypted key material sent from Alice to Bob establishes the symmetric
session keys.

Shortcomings. To understand why the above construction does not provide anonymity, note that standard
(one-time) signatures can reveal the corresponding verification key. Thus, it can be easy to link two
subsequent URKE ciphertexts by testing whether the signature contained in one ciphertext verifies

4

under the verification key contained in the other. (More detailed attacks against anonymity of existing
two-party RKE constructions are in Appendix G.) To overcome this limitation, one could simply encrypt
the verification key along with the transmitted decryption key. This prevents adversaries who only see
ciphertexts transmitted on the network from linking these ciphertexts and, thereby, attributing them to
the same URKE session. As we will argue next, this weak level of anonymity is inadequate for settings in
which ratcheted key exchange is deployed.

Defining (Strong) Anonymity. The main goal of ratcheted key exchange is to continuously establish
symmetric keys that remain secure even if the involved users’ secret states are temporarily exposed earlier
(PCS) and/or later (FS). Hence, if temporary state exposure is considered a realistic threat against
secrecy of keys, it is also a realistic threat against anonymity. Consequently, we allow an adversary against
anonymity to expose both Alice’s and Bob’s states.

Ciphertext Anonymity. In a first attempt to define anonymity, we follow the standard concept from the
literature: We require that ciphertexts sent from Alice to Bob cannot be distinguished from ciphertexts
sent in an independent URKE session from Clara to David, even if the adversary can expose Alice’s and
Bob’s secret states. In this preliminary notion that we call ciphertext anonymity, adversaries can perform
a trivial exposure that we have to forbid in order to obtain a sound definition. Forbidding this attack,
ciphertext anonymity requires that Alice’s ic-th ciphertext must be indistinguishable from a ciphertext
sent in an independent URKE session, unless Bob’s secret state was exposed already after successfully
processing the first ix ciphertexts from Alice, where ix < ic. Note that by authenticity, Bob’s (exposed)
state after processing Alice’s first ix ciphertexts can always be used to verify whether the subsequent
ic − ix ciphertexts were sent by Alice or by an independent user. This notion captures post-compromise
anonymity (PCA) and forward-anonymity (FA) on Alice’s side, since all her ciphertexts must remain
anonymous independent of whether her secret state is ever exposed. It also captures a strong notion of
FA on Bob’s side, since exposures of his state must remain harmless for the anonymity of a ciphertext ic
under two conditions: (1) the exposures were conducted after Bob received ciphertext i′

x, and ic ≤ i′
x, or

(2) Alice was trivially impersonated towards Bob with an earlier ciphertext if , and if < ic and Bob was
exposed after ciphertext i′

x, and if ≤ i′
x.

Full Anonymity. Our above description of ciphertext anonymity is not fully formal and the attentive
reader may have identified a gap. Consider an adversary who exposes Alice’s state twice, once before seeing
a ciphertext on the network and once afterwards. By only checking if Alice’s state changed between these
exposures, the adversary can determine if the ciphertext was sent by Alice. (Note that by authenticity,
Alice’s state must change with every send operation whereas the state does not change as long as Alice
remains inactive.)

To mitigate the threat that Alice’s exposed URKE states reveal whether she sent something, we
extend the syntax of URKE by adding algorithm RKE.rr(stS)→$ stS that (re-)randomizes her state on
demand. Executing this algorithm between two exposures, Alice’s state can be changed independent of
whether she sent a ciphertext. Thus, she can hide if she was the sender of a ciphertext that the adversary
observed.

Before specifying a corresponding (stronger) notion of anonymity, we present another threat against
anonymity. Consider an adversary who can observe all URKE ciphertexts sent from Alice’s device. At
some point, this adversary exposes all secrets Alice stores on her device. If Alice has only one stored
URKE state, the adversary knows that all observed URKE ciphertexts were sent with this state in the
same single session. Since Alice may want to hide how many URKE sessions are running on her device, and
how many URKE ciphertexts are sent in each of these sessions, she may want to set up “dummy” URKE
states. This scenario motivates that we require for anonymity that Alice’s and Bob’s secret states must be
indistinguishable from independent secret sender and receiver states, respectively—beyond requiring that
ciphertexts between Alice and Bob must be indistinguishable from ciphertexts sent in an independent
session.

In summary, we require that all secret states that an adversary exposes and all ciphertexts that an
adversary observes on a network must be indistinguishable from independent secret states and ciphertexts,
respectively, unless correctness, secrecy, and authenticity impose conditions that inevitably allow for
distinguishing them. This notion of anonymity is extremely strong and its precise pseudo-code definition
is rather complex. However, the basic concept is relatively simple.

5

Security Experiment. An adversary A against anonymity plays a game in which it has adaptive access to
the following oracles: Snd, RR, Rcv, ExposeS , ExposeR. Internally, these oracles execute Alice’s RKE.snd
algorithm, outputting the resulting ciphertext, Alice’s RKE.rr algorithm, Bob’s RKE.rcv algorithm, and
expose Alice’s and Bob’s current secret states stS and stR, respectively. Access to these oracles is standard
in the literature on RKE (except for oracle RR for the additional RKE.rr algorithm). In addition, the
adversary can adaptively query oracles that depend on a challenge bit b that is randomly sampled at the
beginning of the game:

– ChallSnd equals oracle Snd iff b = 0; otherwise, it temporarily initializes a new, independent URKE ses-
sion with algorithm RKE.init, uses the temporary sender to send a ciphertext with algorithm RKE.snd,
and outputs this ciphertext (the temporary URKE session is discarded immediately afterwards);
oracle Rcv silently ignores ciphertexts created by ChallSnd under b = 1

– ChallExposeS equals oracle ExposeS iff b = 0; otherwise, it initializes a new, independent session
with algorithm RKE.init (as above) and outputs the resulting secret sender state

– ChallExposeR equals oracle ExposeR iff b = 0; otherwise, it behaves as oracle ChallExposeS under
b = 1, except that it outputs the resulting temporary secret receiver state

The adversary wins the game if it determines challenge bit b without performing a trivial attack that
inevitably reveals this challenge bit.

Identifying Trivial Attacks. To complete the above anonymity definition, all attacks that trivially reveal
the challenge bit have to be identified, detected, and forbidden. Our aim is to detect these attacks as
precisely as possible such that the restrictions limit the adversary as little as possible (leading to a strong
definition of anonymity). Interestingly, one class of trivial attacks is particularly hard to detect in a
precise way for the anonymity game: trivial impersonations. To give a simple, clarifying example for this,
we consider the following adversarial schedule of oracle queries: (1) ChallExposeS → stSb, (2) Rcv(c′),
where c′ is crafted by the adversary7, (3) ExposeR → stR.

We begin with the case b = 1, which means that the adversary plays in the random world. In this
world, exposed state stSb = stS1 is a random sender state that corresponds to a hidden temporary receiver
state independent of Bob’s actual receiver state stR at step (1). Thus, by authenticity, Bob should not
accept any adversarially crafted ciphertext c′ in this case. Put differently, impersonating Alice towards
Bob is non-trivial for this adversarial behavior in the random world. This means that Bob will reject c′

with high probability and the exposed receiver state of Bob in step (3) remains stR, which is independent
of the sender state stS1 exposed in step (1).

In contrast, if b = 0, which means that the adversary plays in the real world, exposed sender
state stSb = stS0 corresponds to the real receiver state of Bob stR at step (1). Hence, stS0 can be used to
craft a valid ciphertext forgery c′ that trivially impersonates Alice towards Bob. If the adversary, indeed,
performs such a trivial impersonation by executing RKE.snd(stS0)→$ (stS′, c′, k′) and querying Rcv(c′),
Bob will compute RKE.rcv(stR, c′)→ (stR′, k′).7 The state of Bob stR′ that is exposed in final step (3)
corresponds to the state stS′ that the adversary computed (in their head) during the impersonation. By
authenticity, a pair of corresponding states (stS′, stR′) can always be identified as such by sending with
the sender state and receiving the result with the receiver state.

Our full anonymity game must, consequently, forbid the final exposure in step (3) because otherwise
the adversary can determine the challenge bit from the exposed state.

The presented trivial attack serves as the simplest example for multiple, more complicated trivial
impersonations that our game must detect, which we describe in Section 4.2.

Main Components of Construction. At a first glance, our new URKE construction that fulfills
the above anonymity notion follows the design principle of prior non-anonymous URKE constructions
described earlier. That means intuitively, in every send operation, Alice (1) generates new PKE and
OTS key pairs, (2) encrypts fresh secrets to Bob with which he can compute his matching new PKE
decryption key (and the symmetric session key), and she (3) signs the resulting PKE ciphertext. Yet,
the exact details of our construction are far more sophisticated. We proceed with presenting the most
important anonymity requirements and the corresponding solutions implemented in our construction. A
conceptual visualization of our construction is given in Figure 1.

7 For simplicity, we ignore the associated data input ad here.

6

OTSLamport

Pairing

uSIG
rPKE

CPA-Elgamal

urSIG
urPKE

Hashed Elgamal

RKE

Fig. 1. Overview of URKE construction RKE from Updatable and Randomizable Signature urSIG as well as
Updatable and Randomizable PKE urPKE with corresponding instantiations.

Hiding the Signature. Without presenting the full details of our anonymity definition yet, we note that it
imposes the following intuitive requirements: (1) adversaries are allowed to see all (challenge) ciphertexts
between sender and receiver; (2) seen (challenge) ciphertexts must remain anonymous even if Alice’s
state was ever exposed by the adversary before; (3) the authenticity notion presented above imposes
the use of asymmetric authentication methods (i.e., signatures) from Alice to Bob. Thus, Alice must
have a signing key stored in her state (due to (3)) that is potentially known by the adversary (due
to (2)) and, simultaneously, her ciphertexts must be authenticated by corresponding signatures in an
anonymous way (due to (1)+(2)+(3)). To ensure that the adversary cannot link matching signing keys
(from Alice’s exposed states) and signatures (in the sent ciphertexts), our construction encrypts signatures.
This encryption of signatures is implemented deterministically with a symmetric key that is encrypted in
the PKE ciphertext. Thus, the signature remains confidential while the signed ciphertext is determined
before the signature is created, which maintains authenticity and anonymity.

Randomizing Signing Keys Anonymously. The second property required by our anonymity notion focuses
on Alice’s sender states before and after executing the RKE.rr algorithm. The two sender states of Alice,
exposed before and after executing the RKE.rr algorithm, respectively, must be indistinguishable from
two freshly generated, independent sender states. That means, an adversary must not learn whether the
signing keys, stored in both states of Alice, produce signatures that are valid under the same verification
key.8 For this, we introduce the new notion of Updatable and Randomizable Signatures (urSIG) below.

Randomizing Encryption Keys Anonymously. Much like the relationship between two signing keys must
be hidden by state randomizations, two PKE encryption keys, stored in Alice’s exposed states, should
not be easily linked. Namely, (a) encryption keys must look random, (b) there must be an routine that
re-randomizes them, and (c) it cannot be determined which ciphertexts were created by them. For this,
we introduce the new notion of Updatable and Randomizable Public Key Encryption (urPKE) below.

Updatable and Randomizable Public Key Encryption. We start with a high level overview of
urPKE. As mentioned above, urPKE encryption keys must look random, be re-randomizable, and look
independent of the ciphertexts that they produce. Our construction is based on ElGamal encryption.
The encryption key consists of ek← (gr, gxr), where r and x are random exponents and x = dk is the
decryption key. For re-randomizing the encryption key, we apply the same random exponent r′ to both of
its components (ekr′

0 , ekr′

1). Encryption of message m takes a random exponent s to create ciphertext
c← (eks

0, H(eks
0, eks

1)⊕m). Decryption follows immediately via m← H(c0, cdk
0)⊕ c1.

This idea has applications beyond our specific use-case. For example, we point out how our construction
can be extended to realize anonymous Updatable PKE [JMM19a,ACDT20,DKW21] that is broadly used
in the literature of RKE and secure messaging.

Updatable and Randomizable Signatures. The security requirements for our new signature
primitive urSIG are more challenging. Concretely, an urSIG scheme must provide the following properties:
(a) verification keys must look random, (b) deriving the matching verification key from a signing key
must be hard, and, beyond this, (c) determining whether two signing keys can produce signatures valid
under the same (unknown) verification key must be hard. While ostensibly related to Designated Verifier
Signatures, urSIG is a novel, incomparable primitive.

Construction Idea. Although the above requirements appear contradictory, we provide a simple construc-
tion. The idea is based on Lamport signatures [Lam79]. Intuitively, we start generating the signing key
by sampling 2 · ℓ pre-images sk′

i,b, (i, b) ∈ [ℓ]× {0, 1}. To derive the matching verification key, we apply a
one-way function on each pre-image vk′

i,b ← f(sk′
i,b). Finally, we generate a PKE key pair (ek, dk) that

8 Note that RKE.rr only randomizes Alice’s state without any interaction with Bob.

7

allows ciphertext re-randomization. The final verification key consists of the decryption key dk and all
images vk′

i,b. The final signing key consists of the encrypted pre-images ski,b ← rPKE.enc(ek, sk′
i,b). To

re-randomize Alice’s verification key, she re-randomizes each component ciphertext ski,b. The signature of
message m = (m1, . . . , mℓ) consists of the respective signing key components σ ← (sk1,m1 , . . . , skℓ,mℓ

).
To verify the signature, Bob decrypts each component and applies the one-way function for comparison
with his verification-key component.

For strong unforgeability, we use a technique similar to the CHK transform [MRY04, CHK04] by
employing a strongly unforgeable OTS that signs the actual message. The scheme above then signs the
verification key of the strongly unforgeable OTS.

Shrinking Signatures. A drawback of this basic urSIG scheme is that it has large verification keys
and large signatures. To mitigate the latter, we instantiate the above construction with a bilinear map
e : G1 ×G2 → GT , where G1 is the ciphertext space of the PKE scheme and G2 and GT are chosen such
that they are of sufficient size. This allows for aggregation of signing key components (sk1,m1 , . . . , skℓ,mℓ

)
to obtain a compact signature σ; this aggregation is inspired by BLS signatures [BLS01,BGLS03]. The
full details of this construction are in Section 6.

Performance. The computational and communication complexities of our overall RKE construction
are dominated by the performance of the underlying urSIG construction. Generating a urSIG key is
dominated by computing 2ℓ pairings, where ℓ can be considered the ‘security parameter’. Signing keys
consist of 4ℓ + 1 group elements in G1 and verification keys consist of 2ℓ group elements in GT and
a scalar in Zp; urSIG signing needs 4ℓ group operations in G1 to produce signatures of size 2 group
elements in G1; urSIG verification is dominated by 2ℓ group operations in G2. This affects the RKE
construction as follows: The computational complexity of RKE.init is dominated by sampling a urSIG
key pair. The communication and computational complexities of RKE.snd are dominated by computing
a urSIG signature and sending a urSIG verification key. The computational complexity of RKE.rcv is
dominated by verifying an urSIG signature.

2 Preliminaries

We write h $← S to denote that the variable h is uniformly sampled from finite set S. For integers N, M ∈ N,
we define [N, M] := {N, N + 1, . . . , M} (which is the empty set for M < N) and [N] := [0, N − 1]. We
use bold notation v to denote vectors. We define ∪← ⊤ as the operation which appends ⊤ to the data
structure it was called upon. If the data structure is a set, then ⊤ is added to the set. If the data structure
is a vector then ⊤ is appended to the end.

We write AB to denote that algorithm A has oracle access to algorithm B during its execution. To
make the randomness ω of an algorithm A on input x explicit, we write A(x; ω). Note that in this notation,
A is deterministic. For a randomised algorithm A, we use the notation y ∈ A(x) to denote that y is a
possible output of A on input x.

Basic cryptographic assumptions and definitions used in our proofs are given in Appendix A.

3 Ratcheted Key Exchange

Throughout this paper, we consider unidirectional communication, as defined in several flavors in previous
works [BSJ+17,PR18b,BRV20]. Thus, messages flow from a fixed sender to a fixed receiver; there is no
communication from the receiver to the sender. We now define the syntax and properties of unidirectional
ratcheted key exchangeand conceptually depict the communication flow in Figure 2.

Syntax. A unidirectional ratcheted key exchange scheme RKE consists of four algorithms RKE.init, RKE.snd,
RKE.rcv and RKE.rr, where the algorithms are defined as follows.

– (stS, stR) $← RKE.init returns a sender and receiver state.
– (stS, c, k) $← RKE.snd(stS, ad) on input a sender state stS and associated data ad, outputs an updated

sender state stS, a ciphertext c, and a key k.
– (stR, k)← RKE.rcv(stR, c, ad) on input a receiver state stR, a ciphertext c and associated data ad,

outputs an updated receiver state stR and a key k or a failure symbol ⊥.

8

init$

stS stR
cad ad

k k
snd$ rcv

stS

stRrr$

stS
cad ad

k k
snd$ rcv

Fig. 2. Conceptual communication flow of anonymous unidirectional RKE: Alice only sends and re-randomizes
her state, and Bob only receives.

– stS $← RKE.rr(stS) on input a sender state stS, outputs an randomized sender state stS.

The encapsulation space C and the key space K are defined via the support of the RKE.snd algorithm.
Let AD := {0, 1}∗ be the space of associated data.

State Randomization. All algorithms except RKE.rr are standard in the literature of RKE. This new
randomization algorithm is designed for settings in which the sender wants strong anonymity. Assume
Alice has at least one running RKE session in which she sends periodically. To obfuscate both the number
of running RKE sessions and the number of real ciphertexts sent in each, Alice can generate “dummy”
RKE sender states. Whenever Alice executes RKE.snd with one of her states, she can re-randomize all
remaining states via RKE.rr. Looking ahead, our definition of anonymity requires that all sender states
are indistinguishable from a freshly generated sender state, ensuring that it is hard to identify the state
that was just used for sending.9

Basic Consistency Requirements. In Appendix B, we specify three basic consistency notions for RKE:
Robustness, Correctness, and Recover Security. Robustness requires that whenever algorithm (stR′, k)←
RKE.rcv(stR, c, ad) rejects a ciphertext c and associated data ad (and outputs k = ⊥), the output
receiver state stR′ must be unchanged (i.e., stR = stR′), which is crucial for ensuring strong anonymity.
Correctness requires that, as long as Bob only accepts ciphertexts sent by Alice (i.e., accepts no forged
messages from the attacker), keys output by Bob match those output by Alice. Finally, recover security
ensures that it is hard to perform a trivial impersonation of Alice towards Bob without being detected
eventually. More concretely, whenever Bob computes a key that does not match the corresponding key
computed by Alice, Bob must never accept another ciphertext from Alice.

3.1 Secrecy and Authenticity

We provide compact notions of key-indistinguishability and authenticity for RKE in B.1 and B.2. In
both games, the adversary can control the protocol execution via oracles Snd, RR, Rcv that internally run
the respective algorithms. Furthermore, the adversary can expose the sender state and receiver state via
oracles ExposeS and ExposeR, respectively.

Secrecy. In game KIND, which models secrecy of session keys, the adversary can additionally query ChallSnd.
This oracle internally executes algorithm RKE.snd and, depending on random challenge bit b, either
outputs the computed key k (if b = 0) or a uniformly random key k′ (if b = 1). To correctly guess
the challenge bit b, the adversary can query all oracles with two limitations. These limitations depend
on whether the receiver accepted a ciphertext (via Rcv) that was not sent by the sender (via Snd
resp. ChallSnd). If the receiver never accepted a malicious ciphertext, we say the receiver is in sync. As
long as the receiver is in sync, querying ExposeR is only permitted if all ciphertexts output by ChallSnd
were given to Rcv in the same order. Otherwise, exposing the receiver would reveal challenges still in
transit. For the same reason, querying ChallSnd is forbidden if the receiver was exposed while in sync.
9 A corresponding randomization algorithm for the receiver state is meaningless in the unidirectional RKE setting

since, as soon as Bob’s state is exposed, he cannot hope for any security guarantees after that.

9

Authenticity. In game AUTH, the adversary wins when the receiver accepts a ciphertext (via Rcv) that
was not sent by the sender (via Snd resp. ChallSnd). The only restriction is that ExposeS must not
have been queried after the last ciphertext, accepted by the receiver in sync (in Rcv), was sent (via Snd
resp. ChallSnd). This condition rules out trivial impersonations.

4 Anonymous Ratcheted Key Exchange

In anonymous ratcheted key exchange, any interaction of a fixed RKE instance, consisting of a fixed
sender and receiver, should be indistinguishable from an interaction of a fresh RKE instance which is
sampled uniformly at random. This includes not only the indistinguishability of ciphertexts and keys, but
also the internal states. We capture these core requirements for our anonymity security experiment in
so-called utopian games below.

As opposed to KIND and AUTH, there are far more trivial attacks that need to be considered.
We elaborate on how we model security such that we can identify and prevent trivial attacks, and
give a detailed security notion for anonymity in this section. Following the approach of Rogaway and
Zhang [RZ18b], we give the core of our definition (which we call utopian games), ignoring trivial attacks
for now.

Utopian Games. The definition of our utopian games U-ANONb is given in Fig. 3. Our definitions are
“real-or-random”-style and games are parameterized by a bit b, where U-ANON0 denotes the real world
execution, and in U-ANON1 all outputs of challenge oracles are random. At the beginning of the game,
U-ANONb

RKE samples the initial sender and receiver states and provides several oracles to the adversary.
As usual for RKE security, the adversary can control the message flow and obtain internal states via
oracles Snd, Rcv, RR, ExposeS and ExposeR.

Game U-ANONb
RKE(A)

00 (stS, stR) $← RKE.init
01 ceStR ← ⊥
02 b′ $← A
03 Stop with b′

Oracle Snd(ad)
04 (stS, c, k) $← RKE.snd(stS, ad)
05 Return (c, k)

Oracle Rcv(c, ad)
06 (stR, k)← RKE.rcv(stR, c, ad)
07 Return Jk ̸= ⊥K :

Oracle RR
08 stS $← RKE.rr(stS)
09 Return

Oracle ChallSnd(ad)
10 If b = 0:
11 (stS, c, k) $← RKE.snd(stS, ad)
12 If b = 1:
13 (stS′, _) $← RKE.init
14 (_, c, k) $← RKE.snd(stS′, ad)
15 Return (c, k)

Oracle ExposeS

16 Return stS

Oracle ChallExposeS

17 If b = 0:
18 Return stS
19 (stS′, ceStR) $← RKE.init
20 Return stS′

Oracle ExposeR

21 Return stR

Oracle ChallExposeR

22 If b = 0:
23 Return stR
24 (_, stR′) $← RKE.init
25 Return stR′

Fig. 3. Utopian games U-ANONb for anonymity, where b ∈ {0, 1} and RKE is a ratcheted key exchange scheme.

The remaining oracles provide the adversary with some challenge depending on b. We define three
different challenge oracles:

– ChallSnd models indistiguishability of ciphertexts and keys. It should be hard to distinguish if the
ciphertexts and keys are produced by running RKE.snd on the real sender state (U-ANON0) or a
random sender state (U-ANON1).

– ChallExposeS models indistinguishability of sender states. In U-ANON0 this oracle outputs the real
sender state, whereas in U-ANON1 it outputs a random sender state. At this point, we store the
corresponding receiver state in an additional variable ceStR which we require later to define trivial
attacks.

– ChallExposeR models indistinguishability of receiver states and is defined as in ChallExposeS , only
it instead outputs the real receiver state (U-ANON0) or a random receiver state (U-ANON1).

10

4.1 Anonymity Definition
In this section, we show how to extend the utopian games to a full anonymity security notion for RKE
(cf. Fig. 4). Since identifying trivial attacks is quite involved and needs a lot of additional book-keeping,
the subsequent text aims to give an in-depth description of our game-based definition on a syntactical
level. It provides the framework to prevent trivial attacks and should help the reader to understand
how all the tracing logic works. Apart from that, the security game ANONb

RKE basically builds upon the
logic of the corresponding utopian game U-ANONb. A more high-level perspective and, in particular,
descriptions of the actual trivial attacks are given in the subsequent Section 4.2.

For comprehensibility, we assume that an RKE scheme, analyzed with our anonymity notion, offers
recover security, correctness, as well as authenticity. It is notable that an adversary breaking authenticity
also trivially breaks anonymity (cf. Appendix C).

Execution Model. Depending on the bit b, game ANONb
RKE either simulates the real world as captured in

utopian game U-ANON0
RKE or the random world as captured in utopian game U-ANON1

RKE (cf. Fig. 3). In
the following, we will write U-ANON0 and U-ANON1 for brevity. Hence, ANONb runs the utopian game
U-ANONb as a subroutine and we allow access to all oracles. For example, we denote oracle access by
U-ANONb.Snd(ad), which will run a send query in U-ANONb on input ad. We also allow access to internal
variables. For example, we write U-ANONb.stR to access the current receiver state in U-ANONb.

To ensure that the game ANONb can identify trivial attacks, we also need to observe what would have
happened if we had run the same sequence of queries in the other utopian game 1− b. We will explain
this in more detail in Section 4.2. First, we introduce additional book-keeping variables and describe our
oracles.

Send Queries. Oracles Snd and ChallSnd take as input a string ad which it forwards to utopian game
U-ANONb to compute a ciphertext and key (c, k). All tuples (c, ad) are stored in a list cad. Additionally,
we have counters (s0, s1) to keep track of the number of ciphertexts sent in game U-ANONb and the
number of ciphertexts that would have been sent in U-ANON1−b. On a Snd query, we increment both
counters. Since Snd results in updated sender states, we already store the corresponding updated receiver
state in a list stR by running the RKE.rcv algorithm locally (line 47). Note that the first entry of stR
at position 0 is set to the initial receiver state U-ANONb.stR when the game is initialized (line 05). We
additionally store the current counter value s0 in a set c.

On a ChallSnd query, we only increment s0 because the real sender state is not used in U-ANON1.
Thus, we also only need to store the corresponding receiver state in case b = 0 (line 54). The value of the
counter s0 is additionally stored in the challenge set cc.

Exposures and Randomizations. Oracles ExposeS and ExposeR forward queries to the utopian game
and output the real sender state stS (resp. receiver state stR). Additionally, the current sender counters
(s0, s1) are added to a set xS. We use boolean flags xS resp. xR to indicate that the sender resp. receiver
was exposed.

Challenge exposures are handled similarly, however now we use a list cxS to store tuples (s0, s1) of a
query to ChallExposeS . Thus, we have another list cstR to additionally store the corresponding receiver
state of the exposed sender state. When b = 0, we simply copy the state stored in stR and for b = 1, we
store the receiver state U-ANON1.ceStR (belonging to the randomly chosen sender state stS1). We use
boolean flags cxS resp. cxR to register a challenge sender resp. receiver exposure.

A randomization query via RR will reset the sender flags to fal, thus modeling post-compromise
anonymity on the sender’s side. Note that we do not need to track the time of a receiver exposure. Once
exposed, all subsequent updated states can be computed locally by the adversary.

Before describing Rcv behaviour, we want to highlight the importance of impersonations. We use
boolean flags imp0, imp1 to indicate an impersonation in U-ANON0 or U-ANON1. Both are initialized
to fal and will be set to tru if a sequence of queries leads to an impersonation in the corresponding
utopian game. Note that sequences of queries may lead to impersonations in both, none or one utopian
game(s).10 Thus, we need track whether an impersonation would have happened. While it is easy to check
the impersonation state of the simulated game U-ANONb, i.e., the value of impb, it is more involved to
determine imp1−b. We will explain how this can be done below.
10 An impersonation may occur in one of the games when sender and receiver states are not updated simultaneously.

The sequence of oracle calls ChallSnd, ExposeS with a subsequent impersonation attempt issued to Rcv will
only impersonate U-ANON1, since in U-ANON0 the challenge ciphertext needs to be received first.

11

Game ANONb
RKE(A)

00 U-ANONb ← U-ANONb
RKE

01 For d ∈ {0, 1} :
02 (sd, rd)← (0, 0)
03 impd ← fal
04 (stR, cstR, cad)← ([·], [·], [·])
05 stR[0]← U-ANONb.stR
06 (c, cc, rcvd)← (∅, ∅, ∅)
07 (xS, cxS)← (∅, [·])
08 (xS, cxS, xR, cxR)← (fal, fal, fal, fal)
09 b′ $← A
10 Stop with b′

Oracle RR
11 U-ANONb.RR
12 · (xS, cxS)← (fal, fal)
13 Return

Oracle ExposeS

14 ▷ If cxS = tru : Require (s0, _) /∈ cxS
15 ▷ If xS = tru ∧ (s0, s1) /∈ xS :
16 ▷ Require (_, s1) /∈ xS
17 ⋄ If imp0 = imp1 = fal :
18 ⋄ Require cxR = fal

19 stS← U-ANONb.ExposeS

20 xS ∪← {(s0, s1)}
21 · xS← tru
22 Return stS

Oracle ExposeR

23 i Require unique = tru
24 ◁ Require cxR = fal
25 ⋄ Require imp0 = imp1
26 If imp0 = imp1 = fal :
27 ⊕ For all ŝ ∈ cc require ŝ ≤ r0
28 ⋄ Require (r0, _) /∈ cxS

29 stR ← U-ANONb.ExposeR

30 · xR ← tru
31 Return stR

Oracle ChallExposeS

32 ▷ If xS = tru ∨ cxS = tru :
33 ▷ Require (s0, _) /∈ cxS ∧ (s0, _) /∈ xS
34 ⋄ If imp0 = imp1 = fal :
35 ⋄ Require xR = cxR = fal

36 stSb ← U-ANONb.ChallExposeS

37 i If b = 0: cstR.append(stR[s0])
38 i If b = 1: cstR.append(U-ANON1.ceStR)
39 cxS.append((s0, s1))
40 · cxS← tru
41 Return stSb

Oracle Snd(ad)
42 ⊕ If imp0 = imp1 = fal: Require cxR = fal

43 (c, k) $← U-ANONb.Snd(ad)
44 cad.append(c, ad)
45 c ∪← {s0}
46 s0

+← 1, s1
+← 1

47 i (stR[sb], _)← RKE.rcv(stR[sb − 1], c, ad)
48 Return (c, k)

Oracle ChallSnd(ad)
49 ⊕ If imp0 = fal : Require xR = cxR = fal

50 (cb, kb) $← U-ANONb.ChallSnd(ad)
51 cad.append(cb, ad)
52 cc ∪← {s0}
53 s0

+← 1
54 i If b = 0: (stR[s0], _)← RKE.rcv(stR[s0 − 1], c0, ad)
55 Return (cb, kb)

Oracle Rcv(c, ad)
56 succb ← U-ANONb.Rcv(c, ad)
57 If ∃r̂ ≥ min(r0, r1) s.t. (c, ad) = cad[r̂]
58 If b = 0:
59 r′

1 ← min(c \ rcvd)
60 succ1 ← ¬imp1 ∧ Jr′

1 = r̂K
61 If succ1 : rcvd ∪← {r̂}
62 If b = 1: succ0 ← ¬imp0 ∧ Jr0 = r̂K
63 If succ1−b : r1−b

+← 1
64 i Else: //check for impersonations
65 i Let S ⊆ xS s.t. (_, r1) ∈ xS
66 i If |S| > 1 ∧ (r0, _) ∈ S : unique← fal
67 i For (r̂0, r̂1) ∈ S
68 i If RKE.rcv(stR[r̂b], c, ad) ̸= (_,⊥) :
69 i imp0 ← imp0 ∨ Jr0 = r̂0K
70 i imp1 ← tru
71 i If imp1−b : r1−b

+← 1
72 i I ← {i | cxS[i] = (r̂0, r̂1) s.t. r̂b = rb}
73 i For i ∈ I :
74 i If RKE.rcv(cstR[i], c, ad) ̸= (_,⊥) :
75 i imp0 ← imp0 ∨ Jr0 = r̂0K, where r̂0 = cxS[i][0]
76 i If imp1−b : r1−b

+← 1
77 If succb : rb

+← 1
78 Return

Oracle ChallExposeR

79 ◁ Require xR = cxR = fal
80 ⋄ Require (r0, _) /∈ xS ∧ (r0, _) /∈ cxS
81 ⋄ Require imp0 = fal
82 ⊕ If imp1 = fal : Require s0 = r0

83 stRb ← U-ANONb.ChallExposeR

84 · cxR ← tru
85 Return stRb

Fig. 4. Full anonymity games ANONb for b ∈ {0, 1}, where lines in dashed boxes disallow trivial attacks. We
further distinguish between different trivial attacks (cf. Section 4.2): Lines marked with⊕ are due to correctness
relations, those marked with ▷ , ◁ are due to state equality relations on sender resp. receiver side, those marked
with ⋄ are due to matching state relations, and i indicates an impersonation requirement.

Receive Queries. Oracle Rcv advances receiver states. Since the adversary only sees ciphertexts of
U-ANONb, we first forward the adversary’s query (c, ad) to U-ANONb. Similarly to the counters (s0, s1),
we use counters (r0, r1) to track the number of successfully received ciphertexts in games U-ANON0 and
U-ANON1. For U-ANON1−b, we can determine these numbers from the sequence of queries. We introduce
another book-keeping set rcvd, which stores the counter values of send queries stored in c that have
been successfully received in U-ANON1, allowing us to keep track of which tuples stored in cad have been

12

processed by U-ANON1. Now, independent of whether this ciphertext has been received successfully, we
proceed in three steps.

Check for in-order-receive (lines 57-63). If the adversary intends to receive a ciphertext output
by Snd or ChallSnd (which we check by comparing the query to the list cad) we need to decide if this
query would have been accepted in U-ANON1−b. Let r̂ be the index in cad such that the tuple stored in
cad[r̂] matches the adversary’s query. If b = 0, we need to decide whether this query would lead to a
successful receive in U-ANON1. At this point, we only care about ciphertexts from Snd since challenge
ciphertexts in U-ANON1 are produced by a random state. We denote the index of the next ciphertext in
cad that belongs to a send query by r′

1. Note that we can compute r′
1 using sets c and rcvd. We say

that U-ANON1 accepts this ciphertext if r̂ = r′
1 and we will add r̂ to rcvd. If b = 1, it is easy to decide

whether a ciphertext would have been accepted in U-ANON0, since we only need to compare r̂ with r0.
Since any ciphertext stored in cad should not be accepted after an impersonation, the statements in lines
60, 62 will always evaluate to false.

Check for impersonations after ExposeS (lines 65-71). We know that an exposed sender state
can lead to an impersonation, depending on when exposure occurred and which ciphertexts have been
received. Since we require authenticity, an impersonation can only occur after an exposed sender state.
Thus, in U-ANON1 an impersonation will only be successful if the counter value r1 is in the set xS. We
add all the relevant tuples to a set S. Ignore line 66 for now. We iterate over all entries (r̂0, r̂1) ∈ S and
use stR[r̂b] to check if the ciphertext decrypts under that state. If so, this may be an impersonation,
which we will decide next. Since we always have r̂1 = r1, a successful decryption implies an impersonation
in U-ANON1, so we set imp1 to tru. If r̂0 = r0, then we had an impersonation in U-ANON0 as well. By
RECOV security, once a sender is impersonated, the receiver will no longer accept their ciphertexts. Thus
once imp0 ← tru, imp0 will always be tru independent of the counter comparison, which is captured
by the “or” statement in line 69. The result of this check will be the same in both games ANON0 and
ANON1, unless the case in line 66 happens. For an example of a sequence of queries triggering this case,
we refer to Appendix C. Note that if there exist multiple entries such that (r̂0, r̂1) in S, but r0 ̸= r̂0 for
all, then imp0 will always be set to the same value.

Check for impersonations after ChallExposeS (lines 72-76). Impersonation can also occur using
the sender state output by ChallExposeS . Similarly to the previous step, we first identify relevant entries
in the list cxS. In particular, we look for all entries (r̂0, r̂1), where r̂b = rb. Since cxS is a list and we
stored the corresponding receiver states at the same position in list cstR, we need to find the position of
the tuples (r̂0, r̂1) and store these indices in a set I. This structure is needed, since entries in cxS are
not necessarily unique.11 Now we proceed as in the previous step. An impersonation in U-ANON0 has
occurred if the counter r̂0 in cxS equals the current counter r0. Note that in U-ANON1, there will not
be an impersonation since the real receiver state should accept a ciphertext output by a random sender
state. Again, the outcome is the same for both games ANONb. For b = 0, this can be observed by the
fact that I maps to indices where r̂0 = r0 and thus cstR[i] = cstR[j] for all i, j ∈ I and the check only
depends on the successful decryption using the current state. For b = 1, since all entries in cstR contain
different receiver states, there will be at most one state that decrypts the ciphertext. Thus, r̂0 is uniquely
defined and imp0 is only set to tru if r̂0 = r0 (or if it has already been tru before).
We will increase the counter r1−b if the impersonation was successful. At the very end, we will also
increase counter rb if the query was accepted in the first place. This concludes the description of Rcv.

4.2 Identifying Trivial Attacks

If we ignore trivial attacks, the adversary easily distinguishes ANON0 from ANON1, since relations between
outputs differ between games. We group these relations into four categories: ability to decrypt, state
equality, matching states, and impersonations. In our pseudocode, we indicate restrictions on the adversary
with a symbol corresponding to a relation group. We briefly explain the relations below, and we provide
justification for all requirements in Appendix C.

11 Imagine a sequence of queries ChallExposeS , RR, ChallExposeS . In this case, the sender counters s0, s1 do not
change. Also the receiver states appended to cstR0 are the same, but the (random) receiver states appended to
cstR1 are different, which is crucial for identifying impersonations.

13

Ability to Decrypt (marked with ⊕). Our correctness definition captures that a ciphertext computed with
the sender state can always be decrypted with the corresponding receiver state. Due to this, lines marked
with (⊕) trace sequences of oracle queries that allow an adversary to determine if a given ciphertext
decrypts successfully under an exposed receiver state in one game but not the other, revealing the bit b.

Equality of States (marked with ▷ , ◁). For both sender (▷) and receiver (◁) exposures, our anonymity
game allows the direct exposure of a real state and challenge exposures which will output either a real
or random state. Depending on the sequence of queries, the output of two subsequent calls to ExposeS

or ChallExposeS may inevitably be the same in ANON0 but not in ANON1, which we detect with the
marked code lines to prevent that this inconsistency trivially reveals bit b.

Matching States (marked with ⋄). We also consider sequences of queries that may expose one party and
challenge-expose the other. It is easy to see that the adversary can test whether two such states are linked
(which leaks bit b) by creating a ciphertext with the exposed sender state and trial-decrypt with the
receiver state.

Impersonations (marked with i). As argued earlier, it is crucial to determine whether a sequence of
queries leads to an impersonation in any of the games ANON0 and ANON1. Only then, we can detect
whether the relations above lead to a trivial attack. However, sometimes it is not possible to uniquely
determine the impersonation status in game ANON1−b. Whenever this is the case, we need to disallow
receiver exposures since the receiver’s state leaks whether the impersonation attempt was successful.

Finally, we formalise the advantage of an adversary against RKE anonymity.

Definition 1. Consider the games ANONb for b ∈ {0, 1} in Fig. 4. We define the advantage of an
adversary A against anonymity of a ratcheted key exchange scheme RKE as

AdvANON
A,RKE :=

∣∣Pr[ANON0
RKE(A)⇒ 1]− Pr[ANON1

RKE(A)⇒ 1]
∣∣ .

5 Updatable and Randomizable PKE

We construct two types of PKE with related properties: a randomizable PKE scheme (rPKE) and an
updatable and randomizable PKE scheme (urPKE). An rPKE scheme is used in the updatable and
randomizable signature scheme (cf. Section 6.2) and urPKE is a direct building block in the overall
construction of ratcheted key exchange (cf. Section 7).

5.1 Randomizable PKE

In the following, we define the syntax and properties of an rPKE scheme.

Syntax. A randomizable public-key encryption scheme rPKE consists of four algorithms rPKE.gen,
rPKE.enc, rPKE.dec, rPKE.rr, which are defined as follows:

– (ek, dk) $← rPKE.gen outputs an encryption key and a decryption key.
– c $← rPKE.enc(ek, m) takes an ek, message m and returns an encryption c.

– m← rPKE.dec(dk, c) takes dk, c and outputs the decrypted message m.

– (ek, c) $← rPKE.rr(ek, c) returns randomized ek and c.

Compared to a standard public-key encryption scheme, the additional feature lies in the rPKE.rr algorithm
that allows to (re-)randomize encryption keys and ciphertexts while preserving correctness. More formally,
we require that for all (ek, dk) ∈ rPKE.gen, m ∈M, for random c $← rPKE.enc(ek, m) and for an arbitrary
number of randomizations (ek, c) $← rPKE.rr(ek, c), we have that rPKE.dec(dk, c) = m.

We want to use an rPKE scheme as building block of the signature scheme in Section 6. For this, we
will need some additional properties that we define below.

14

Homomorphic Property. An rPKE scheme is called homomorphic if for an arbitrary but fixed public
key (ek, _) ∈ rPKE.gen, there exists a group homomorphism rPKE.enc : (M,⊗)× (R,⊕) 7→ (C,⊗), where
M, R, C are message space, randomness space and ciphertext space of the rPKE and ⊕,⊗ are the
corresponding group operations. More explicitly,

rPKE.enc(ek, m1; r1)⊗ rPKE.enc(ek, m2; r2) = rPKE.enc(ek, m1 ⊗m2; r1 ⊕ r2) ,

where r1, r2 ∈ R and ⊗ is taken component-wise.

Further, we want randomizations to be (computationally) indistinguishable, which we capture in the
following definition.

Definition 2 (IND-R). Let rPKE be a randomizable public key encryption scheme. We require that a pair
of encryption key and ciphertext that has been randomized via rPKE.rr is indistinguishable from a freshly
generated encryption key and ciphertext. More formally, we define the advantage of a distinguisher D for
arbitrary 2ℓ ∈ Zp, (m0, . . . , m2ℓ) ∈M2ℓ as

AdvIND-R
D,rPKE :=

∣∣Pr[D(ek, c0, . . . , cℓ, ek′, c′
0, . . . , c′

ℓ)⇒ 1]

− Pr[D(ek, c0, . . . , cℓ, êk, ĉ0, . . . , ĉℓ)⇒ 1]
∣∣ ,

where (ek, _) $← rPKE.gen, ci
$← rPKE.enc(ek, mi), (ek′, c′

0, . . . , c′
ℓ) ← rPKE.rr(ek, c0, . . . , cℓ), (êk, _) $←

rPKE.gen, ĉ0, . . . , ĉℓ
$← rPKE.enc(ek, mℓ+1, . . . , m2ℓ).

Construction. In Fig. 5, we construct an rPKE scheme based on the ElGamal KEM and PKE scheme.
Thus, we denote the corresponding scheme by rPKEEG. An encryption key basically consists of an ElGamal
encapsulation and KEM key. The encryption and randomization algorithms then use the homomorphic
property of ElGamal.

Proc rPKE.gen
00 x, r $← Zp

01 dk← x
02 ek← (gr, gxr)
03 Return (ek, dk)

Proc rPKE.enc(ek, m)
04 Parse ek as (ek0, ek1)
05 s $← Zp

06 c0 ← eks
0

07 c1 ← eks
1 ·m

08 Return (c0, c1)

Proc rPKE.dec(dk, c)
09 Parse c as (c0, c1)
10 m← c1 · c−dk

0
11 Return m

Proc rPKE.rr(ek, c0, . . . , cℓ)
12 Parse ek as (ek0, ek1)
13 r′ $← Zp

14 ek′ ← (ekr′
0 , ekr′

1)
15 For i ∈ [ℓ] :
16 Parse ci as (c0

i , c1
i)

17 s′
i

$← Zp

18 c′
i ← (c0

i · eks′i
0 , c1

i · eks′i
1)

19 Return (ek′, c′
0, . . . , c′

ℓ)

Fig. 5. Randomizable PKE scheme rPKEEG.

Lemma 1. Scheme rPKEEG is homomorphic. Furthermore, it satisfies indistinguishability of randomiza-
tions under the DDH assumption. In particular, for any adversary A, there exists an adversary B against
DDH such that

AdvIND-R
A,rPKEEG

≤ AdvDDH
B,G .

The proof of this lemma is straight-forward and is given in Appendix D.1.

5.2 Updatable and Randomizable PKE

In this section, we introduce the primitive of an updatable and randomizable PKE, which will be used in
our construction of ratcheted key exchange. The syntax is similar to that of rPKE, but it extends it with
the ability to update the key pair. We briefly sketch the differences below.

Syntax. An updatable and randomizable public-key encryption scheme urPKE consists of six algorithms
urPKE.gen, urPKE.enc, urPKE.dec, urPKE.rr, urPKE.nextDk and urPKE.nextEk, where the first three
algorithms are defined as for rPKE and the remaining ones follow the syntax:

15

– ek $← urPKE.rr(ek) outputs a randomized encryption key ek.
– dk← urPKE.nextDk(dk, r) updates the decryption key with randomness r.
– ek← urPKE.nextEk(ek, r) updates the encryption key with randomness r.

Note that the main difference to rPKE is that the randomization algorithm urPKE.rr randomizes only the
encryption key.

We now require the following additional properties.

Instance Independence. We say a urPKE scheme is instance-independent if for uniformly chosen randomness
r and any key pair (ek, dk) in the support of urPKE.gen, the two distributions (urPKE.nextEk(ek, r),
urPKE.nextDk(dk, r)) and (ek′, dk′) $← urPKE.gen are the same.

Indistinguishability of Randomizations. Similar to rPKE, we require for IND-R (formally defined in
Definition 16 in Appendix E) security that an encryption key that has been randomized is indistinguishable
from a freshly generated encryption key. In particular, the two distributions (ek, ek1) and (ek, ek2),
where (ek, _) $← urPKE.gen, ek1 ← urPKE.rr(ek), (ek2, _) $← urPKE.gen should be (computationally)
indistinguishable under chosen ciphertext attacks.

Ciphertext Anonymity. For ciphertext anonymity of urPKE we require that ciphertexts generated by a
particular (and possibly exposed) encryption key are indistinguishable from ciphertexts generated by a
freshly chosen encryption key under chosen ciphertext attacks. We provide a more fine-grained game-based
definition in Definition 14 in Appendix E.

Construction. We construct an updatable and randomizable PKE scheme based on hashed ElGamal,
which was first proven to be IND-C secure in [ABR01]. The construction is also similar to the secretly
key-updatable encryption scheme of [JMM19a], thus we will only sketch it here. We give the full scheme
in Fig. 14 in Appendix D.3, including the proofs of the properties mentioned above.

Algorithms urPKE.gen, urPKE.enc, urPKE.dec follow the ideas from rPKE, only that they hash the
ElGamal KEM key used for encryption. Since the ciphertext does not need to be randomized, urPKE.rr
can still be performed in the same way as the randomization of the encryption key in rPKE.rr. Algo-
rithms urPKE.nextDk and urPKE.nextEk asynchronously update the decryption and encryption key by
exponentiation with some uniformly chosen randomness.

6 Updatable and Randomizable One-Time Signatures

In this section we introduce our new signature primitive, namely updatable and randomizable one-time
signatures. The property of updatability refers to asynchronous updates of the signing and verification
keys. Randomizability refers to the randomization of signing keys. These will be crucial to provide
anonymity guarantees of our ratcheted key exchange scheme.

Challenges. The main technical difficulty in designing the signature scheme lies in maintaining unforgeabil-
ity while achieving randomizability of signing keys. More specifically, randomization must be implemented
in a way such that both the original signing key and one of its randomized versions produce signatures
that are unforgeable (if neither of both signing keys is corrupted); furthermore, signatures from both
signing keys must verify under the same single verification key. Simultaneously, seeing the original and
the randomized signing key should be indistinguishable from seeing two independently sampled signing
keys. (Note that, by unforgeability, two independent signing keys will not produce signatures valid under
the same verification key.)

We conjecture that updatability of a signature scheme is easy for most algebraic signature schemes.
Unforgeability usually reduces to hardness of inverting some one-way function mapping from signing
keys to verification keys. So it must be hard to invert verification keys to get valid signing keys. Our
randomization requirements, intuitively, demand this for the opposite direction, too: obtaining verification
keys from signing keys must be hard. Strictly speaking, we require an even stronger property: Without
having the verification key, signing keys and their signatures look random, independent of whether they
correspond to the same verification key. This might seem contradictory or, at least, very strong.

Outline. As a warm-up, we start with a definition and construction of updatable one-time signatures in
Section 6.1. Then, we will extend the construction to updatable and randomizable one-time signatures in

16

Section 6.2. To achieve randomizability, we use the ElGamal-based rPKE scheme introduced in Section 5.
For a schematic overview see also Fig. 1 in the introduction.

6.1 Warm-Up: Updatable Signatures
Syntax. An updatable signature scheme uSIG consists of five algorithms uSIG.gen, uSIG.sig, uSIG.vfy,
uSIG.nextSk, uSIG.nextVk. Let M be the message space and R be the randomness space. Then the
algorithms are defined as follows:

– (vk, sk) $← uSIG.gen generates a verification key vk and signing key sk.
– σ $← uSIG.sig(sk, m) takes sk and a message m and returns a signature σ.
– {0, 1} ← uSIG.vfy(vk, m, σ) takes vk, m and σ and returns a bit indicating whether σ is a valid

signature for m.
– sk← uSIG.nextSk(sk, r) asynchronously updates sk with randomness r.
– vk← uSIG.nextVk(vk, r) asynchronously updates vk with randomness r.

Correctness. Apart from the standard correctness requirement, we require that updates yield valid
verification and signing keys. More formally, we require the following:
(1) ∀(sk, vk) ∈ uSIG.gen, m ∈M :

Pr[uSIG.vfy(vk, σ, m) = 1 | σ $← uSIG(sk, m)] = 1

(2) ∀(sk, vk) ∈ uSIG.gen, r ∈ R :

(uSIG.nextSk(sk, r), uSIG.nextVk(vk, r)) ∈ uSIG.gen

Intuition Updatability. At the core of our construction lies a slight variation of Lamport one time signature
scheme, where signing keys are group elements. To shrink the size of signatures and to mitigate the
lack of updateability we instantiate the hash function with a hash function fulfilling one-wayness and
the homomorphic property. By one-wayness the unforgeability property of Lamport signature scheme is
unchanged and by the homomorphic property we can i) optimize the signature length to a single element
in the target group ii) update signing and verification key.

To achieve this we use pairings. Let G be a pairing group with bilinear map e : G1×G2 → GT . By the
XDH assumption, DDH is hard in group G1 and CDH is hard in groups G1 and G2. For fixed g2 ∈ G2, we
then set H(h) := e(h, g2). Clearly the homomorphic property of H follows from bilinearity of the pairing,

e(m1, g2) · e(m2, g2) = e(m1 ·m2, g2) .

By the FAPI-2 Assumption [GHV07], H is a one way function.

Construction. Our construction of an updatable one-time signature scheme is given in Fig. 6.
It follows the idea of the one-time Lamport signature scheme, where we replace the hash function
of the original scheme with a Type-II pairing. Thus, let G be a pairing group (cf. Definition 7) and
H : {0, 1}∗ → {0, 1}ℓ a hash function. Secret keys consist of 2ℓ group elements in G1 and verification keys
consist of 2ℓ group elements in GT . For the signature generation, we borrow the approach of aggregated
BLS signatures [BLS01,BGLS03]. Additionally following the “Hash-and-Sign” approach, we first hash the
message using H and then interpret the hash value bit-wise. For the ith bit we choose the ith element of
the signing key depending on the bit value. The signature σ will then be the product of ℓ group elements.
Verification uses the pairing to compute e(σ, g2) and compares the result to the product of the respective
ℓ target group elements.

The idea for updating the signing and verification key is that we can multiply each group element of
the signing key ski,b with another group element Ri,b. Verification keys can be updated by multiplying
the respective target group element with e(Ri,b, g2).

In Appendix E.2 we prove one-time existential unforgeability of the scheme (cf. Definition 15).

6.2 Extension to Updatable and Randomizable Signatures
Syntax. An updatable and randomizable signature scheme urSIG shares the syntax of an updatable
signature scheme, i.e., the algorithms urSIG.gen, urSIG.sig, urSIG.vfy, urSIG.nextSk, urSIG.nextVk are
defined analogously. Additionally, there is a sixth algorithm urSIG.rr, which is defined as follows

– sk $← urSIG.rr(sk) randomizes the signing key sk.

17

Proc uSIG.gen
00 For b ∈ {0, 1}, i ∈ [ℓ] :
01 xi,b

$← Zp

02 sk←
(

g
x0,0
1 , . . . , g

xℓ−1,0
1

g
x0,1
1 , . . . , g

xℓ−1,1
1

)
03 vk←

(
e(gx0,0

1 , g2), . . . , e(gxℓ−1,0
1 , g2)

e(gx0,1
1 , g2), . . . , e(gxℓ−1,1

1 , g2)

)
04 Return (vk, sk)

Proc uSIG.nextSk(sk, R ∈ G2×ℓ
1)

05 For b ∈ {0, 1}, i ∈ [ℓ] :
06 ski,b ← ski,b ·Ri,b

07 Return sk

Proc uSIG.sig(sk, m)
08 Parse (h0, . . . , hℓ−1)← H(m) as bits

09 σ ←
∏

i∈[ℓ] ski,hi = g

∑
xi,hi

1
10 Return σ ∈ G1

Proc uSIG.vfy(vk, m, σ)
11 Parse (h0, . . . , hℓ−1)← H(m) as bits

12 Return e(σ, g2) =
∏ℓ−1

i=0 vki,hi = e(g
∑

xi,hi
1 , g2)

Proc uSIG.nextVk(vk, R ∈ G2×ℓ
1)

13 For b ∈ {0, 1}, i ∈ [ℓ] :
14 vki,b ← vki,b · e(Ri,b, g2)
15 Return vk

Fig. 6. Updatable one-time signature scheme uSIG for a pairing group G = (p,G1,G2,GT , e, g1, g2), where
H : {0, 1}∗ 7→ {0, 1}ℓ is a hash function.

Correctness. We extend correctness requirements (1), (2) from the previous section by the following:
We require that for all (vk, sk) ∈ urSIG.gen, m ∈ M, an arbitrary number of randomizations result-
ing in an randomized signing key sk $← urSIG.rr(sk), a signature σ $← urSIG.sig(sk, m) still verifies correctly.

Below we define a similar security property as for randomizable PKE schemes, which will be needed in
the anonymity proof of our ratcheted key exchange scheme.

We define additional security properties that are needed for authenticity and recover security in
Appendix E.1.

Definition 3 (Indistinguishability of Randomizations). Let urSIG be a an updatable and ran-
domizable signature scheme. We require that a signing key that has been randomized using urSIG.rr is
indistinguishable from a freshly generated signing key. More formally, we define the advantage of a
distinguisher D as

AdvIND-R
D,urSIG := |Pr[D(sk, sk0)⇒ 1]− Pr[D(sk, sk1)⇒ 1]| ,

where the probability is taken over (sk, vk) $← urSIG.gen, sk0 ← urSIG.rr(sk) and (sk1, _) $← urSIG.gen and
the internal randomness of D.

Our Construction. In Fig. 7 we extend the updatable signature scheme in Fig. 6 by the randomizable
PKE in Fig. 5 to get an updatable and randomizable one-time signature scheme.

Recall that signing keys in our updatable one-time signature scheme are group elements. In order
to achieve signing key randomization, the idea is to encrypt those signing keys with ElGamal. However,
this means that the ElGamal encryption key must be part of the overall signing key and thus in turn
be randomized as well. Therefore, we do not use plain ElGamal encryption, but our randomizable PKE
encryption scheme rPKEEG.

Finally, to achieve strong unforgeability we use the CHK transformation [MRY04,CHK04] using a
strongly unforgeable signature.

7 Construction of Anonymous RKE

Our construction of anonymous unidirectional RKE in Figure 8 elegantly arises from the two primitives
presented in the last sections, urPKE and urSIG. Beyond this, we use a hash function (modeled as a
random oracle) and a pseudorandom generator (PRG).

Construction. On initialization, a urPKE key pair and a urSIG key pair is generated, both of which
are split between Alice’s and Bob’s state. Randomization of Alice’s state works componentwise. When
sending, Alice (1) generates a fresh signature key pair, (2) encrypts the new verification key as well
as random symmetric keys, and (3) signs the resulting ciphertext with her prior signing key. (4) The
signature is encrypted with one of the encrypted symmetric keys. Using the random oracle on input of
the other symmetric key, the composed ciphertext, and the associated data string, Alice (5) derives the

18

Proc urSIG.gen
00 (ek, dk)← rPKE.gen
01 (vk′, sk′)← uSIG.gen
02 For b ∈ {0, 1}, i ∈ [ℓ] :
03 (sk(r)

i,b , sk(x)
i,b)← rPKE.enc(ek, m = sk′

i,b)

04 sk(r) ←
(

sk(r)
0,0, . . . , sk(r)

ℓ−1,0
sk(r)

0,1, . . . , sk(r)
ℓ−1,1

)
=
(

gr0,0 , . . . , grℓ−1,0

gr0,1 , . . . , grℓ−1,1

)
05 sk(x) ←

(
sk(x)

0,0 , . . . , sk(x)
ℓ−1,0

sk(x)
0,1 , . . . , sk(x)

ℓ−1,1

)
=
(

gr0,0dkgx0,0 , . . . , grℓ−1,0dkgxℓ−1,0

gr0,1dkgx0,1 , . . . , grℓ−1,1dkgxℓ−1,1

)
06 vk← (vk′, dk); sk← (ek, (sk(r)

i,b , sk(x)
i,b))

07 Return (vk, sk)

Proc urSIG.sig(sk, m)
08 σr ← uSIG.sig(sk(r), m) =

∏
gri,hi

09 σx ← uSIG.sig(sk(x), m)
=
∏

gri,hi
dkgxi,hi

10 Return (σr, σx)

Proc urSIG.rr(sk)
11 Return rPKE.rr(sk)

Proc urSIG.vfy(vk, m, σ)
12 Parse (vk′, dk)← vk
13 σ′ ← rPKE.dec(dk, σ)=

∏
gxi,hi

14 Return uSIG.vfy(vk′, σ′, m)

Proc urSIG.nextSk(sk, r)
15 Return uSIG.nextSk(sk, r)

Proc urSIG.nextVk(vk, r)
16 Return uSIG.nextVk(vk, r)

Fig. 7. Our updatable and randomizable one-time signature scheme urSIG[rPKE, uSIG].

Proc RKE.init
00 (ek, dk) $← urPKE.gen
01 (vk, sk) $← urSIG.gen
02 stS← (ek, sk)
03 stR ← (dk, vk)
04 Return (stS, stR)

Proc RKE.snd(stS, ad)
05 (ek, sk)← stS
06 kH, kS

$← K
07 (vknext, sknext)← urSIG.gen
08 curPKE

$← urPKE.enc(ek, (kH, kS , vknext))
09 σ $← urSIG.sig(sk, (curPKE, ad))
10 c← (curPKE, σ ⊕ PRG(kS))
11 (k, rurPKE, rurSIG)← H(kH, c, ad)
12 sk← urSIG.nextSk(sknext, rurSIG)
13 ek← urPKE.nextEk(ek, rurPKE)
14 stS← (ek, sk)
15 Return (stS, k, c)

Proc RKE.rr(stS)
16 (ek, sk)← stS
17 ek $← urPKE.rr(ek)
18 sk $← urSIG.rr(sk)
19 stS← (ek, sk)
20 Return stS

Proc RKE.rcv(stR, c, ad)
21 k ← ⊥
22 (dk, vk)← stR
23 (curPKE, σ′)← c
24 (kH, kS , vknext)← urPKE.dec(dk, curPKE)
25 Require (kH, kS , vknext) ̸= ⊥
26 If urSIG.vfy(vk, (curPKE, ad), σ′ ⊕ PRG(kS))
27 (k, rurPKE, rurSIG)← H(kH, c, ad)
28 vk← urSIG.nextVk(vknext, rurSIG)
29 dk← urPKE.nextDk(dk, rurPKE)
30 stR ← (dk, vk)
31 Return (stR, k)

Fig. 8. Construction of our RKE scheme RKE[urPKE, urSIG, H, PRG].

final session key as well as two pseudorandom strings which update her two state components (encryption
key and signing key). Bob performs the corresponding decryption, verification, hash evaluation, and key
updates when receiving.

Consistency and Authenticity. By the correctness properties of urPKE and urSIG, this URKE construction
is correct, too. The construction provides robustness since Bob either accepts with an actual session key
(if decryption and verification succeed) or his state remains unchanged. We formally prove recover security
of this construction in Appendix F.2. On an intuitive level, each fresh signing key is “entangled” with the
ciphertext that transmits it via the key update in line 12. This means that Bob will only accept signatures
from a signing key if he received the corresponding verification key with the originally transmitted
ciphertext. Based on unforgeability of the urSIG scheme and collision resistance of the random oracle,
this mechanism maintains recover security. Authenticity similarly follows from the signature scheme’s
unforgeability, which we prove in Appendix F.3.

Secrecy. In the presence of a passive adversary, the secrecy of session keys follows directly from the
confidentiality of the urPKE scheme. In case of a trivial impersonation—which, by authenticity, is the

19

only successful way to let Bob accept a forged ciphertext—, we need the consistency guarantees of the
urSIG scheme and the hash function to prove that Bob’s state immediately diverges incompatibly from
Alice’s state. We prove this informal claim in Appendix F.4.

Anonymity. Below we establish our main theorem, namely anonymity of our RKE construction. Addi-
tionally, we provide theorems and proofs for robustness, recover security, authenticity and key indistin-
guishability in Appendices F.1 to F.4.

Theorem 1 (Anonymity of RKE[urPKE, urSIG, H, PRG]). Let H : {0, 1}∗ → {0, 1}λ be a random oracle.
Let urPKE be an updatable and randomizable PKE scheme. Let urSIG be an updatable and randomizable one-
time signature scheme. Let PRG be a pseudorandom generator. We show that RKE[urPKE, urSIG, H, PRG]
is secure with respect to ANON, such that

AdvANON
RKE ≤ (qS + qCS) · AdvANON

urPKE + qCS · Adv.
PRG

+ (qCE + qCS) · (AdvIND-R
urSIG + AdvIND-R

urPKEEG
) + 1

2λ
.

where qS, qCS, and qCE are the number of queries to oracles Snd, ChallSnd, and ChallExposeS, respec-
tively.

We provide a proof sketch below and defer the full proof to Appendix F.5.

Proof (Sketch). Conceptually, the proof consists of three steps. First we show on the sender side that
after calls to oracles Snd and ChallSnd, the sender states are statistically independent from prior ones.
Similarly, after successful calls to oracle Rcv, the receiver state is statistically independent from prior ones.
The forward anonymity and post-compromise anonymity guarantees follow from this state independence.
We prove this independence via (qS + qCS) applications of the instance independence of urPKE.

In the second step, we replace all outputs of challenge oracles in the real world with independently
sampled values. We get this for free for oracle ChallExposeR, since, by definition of our trivial attack
detection and instance independence, the adversary may call oracle ChallExposeR only on receiver states
which are statistically independent from any other oracle output. To replace the output of oracle ChallSnd
with random, we employ two hybrid arguments. In the first hybrid argument, we show that the adversary
cannot distinguish whether we replaced challenge ciphertexts curPKE with random ciphertexts, implying a
loss factor of (qS + qCS) · AdvANON

urPKE. In the second hybrid argument, we replace all outputs of the PRG in
oracle ChallSnd with random, implying a loss factor of qCS · AdvPRG. To replace the outputs of oracle
ChallExposeS with uniform random values, we again give two hybrid arguments. Here we loose a total
factor of qCE · (AdvIND-R

urSIG + AdvIND-R
urPKEEG

). Finally, in the third step of the proof, we show that the adversary
cannot distinguish how often the sender state was advanced. Recall that oracle ChallSnd is the only
oracle which updates the sender state depending on bit b. In order for the adversary to see a difference in
updated sender states, the adversary must expose the sender prior to and after a call to oracle ChallSnd.
By definition of the trivial attacks, the adversary must call oracle RR before exposing the sender a second
time. Using a hybrid argument, we replace the sender state after a call to RR by uniform random values in
both worlds. Thus the adversary learns with both sender state exposures two independent distributions
of sender states, which implies a total loss factor of qCS · (AdvIND-R

urSIG + AdvIND-R
urPKEEG

).

Acknowledgments We thank Kenny Paterson, Eike Kiltz, and Joël Alwen for recurring very inspiring
discussions during our work on this article. Special thanks goes to Kenny for hosting Paul as a visitor at
ETH Zürich, which led to launching this research project.

Doreen Riepel was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

References

AAN+22. Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo Pascual-Perez, Krzysztof
Pietrzak, and Michael Walter. CoCoA: Concurrent continuous group key agreement. In EUROCRYPT
2022, LNCS, 2022.

20

ABR01. Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman assumptions and an
analysis of DHIES. In David Naccache, editor, CT-RSA 2001, volume 2020 of LNCS, pages 143–158.
Springer, Heidelberg, April 2001.

ACD19. Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security notions, proofs, and
modularization for the Signal protocol. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part I, volume 11476 of LNCS, pages 129–158. Springer, Heidelberg, May 2019.

ACDT20. Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Security analysis and improve-
ments for the IETF MLS standard for group messaging. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 248–277. Springer, Heidelberg, August
2020.

BBDP01. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-key
encryption. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 566–582. Springer,
Heidelberg, December 2001.

BBR+22. Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad Omara, and Katriel Cohn-
Gordon. The Messaging Layer Security (MLS) Protocol. Internet-Draft draft-ietf-mls-protocol-14,
IETF, 2022. Work in Progress.

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg, August 2004.

BDG+22. Alexander Bienstock, Yevgeniy Dodis, Sanjam Garg, Garrison Grogan, Mohammad Hajiabadi, and
Paul Rösler. On the worst-case inefficiency of CGKA. In TCC 2022, LNCS. Springer, 2022.

BDR20. Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler. On the price of concurrency in group
ratcheting protocols. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume
12551 of LNCS, pages 198–228. Springer, Heidelberg, November 2020.

BGLS03. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 416–432. Springer, Heidelberg, May 2003.

BLS01. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin Boyd,
editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer, Heidelberg, December
2001.

BR04. Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and the security of triple
encryption. Cryptology ePrint Archive, Report 2004/331, 2004. https://eprint.iacr.org/2004/331.

BRV20. Fatih Balli, Paul Rösler, and Serge Vaudenay. Determining the core primitive for optimally secure
ratcheting. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part III, volume 12493
of LNCS, pages 621–650. Springer, Heidelberg, December 2020.

BSJ+17. Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors Stepanovs. Ratcheted
encryption and key exchange: The security of messaging. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages 619–650. Springer, Heidelberg, August
2017.

CCG+18. Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner. On ends-to-ends
encryption: Asynchronous group messaging with strong security guarantees. In David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 1802–1819. ACM
Press, October 2018.

CDV21. Andrea Caforio, F. Betül Durak, and Serge Vaudenay. Beyond security and efficiency: On-demand
ratcheting with security awareness. In Juan Garay, editor, PKC 2021, Part II, volume 12711 of LNCS,
pages 649–677. Springer, Heidelberg, May 2021.

CHK04. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based
encryption. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of
LNCS, pages 207–222. Springer, Heidelberg, May 2004.

DHRR22a. Benjamin Dowling, Eduard Hauck, Doreen Riepel, and Paul Rösler. Strongly anonymous ratcheted
key exchange. In ASIACRYPT 2022, LNCS, 2022.

DHRR22b. Benjamin Dowling, Eduard Hauck, Doreen Riepel, and Paul Rösler. Strongly anonymous ratcheted
key exchange. Cryptology ePrint Archive, 2022.

DKW21. Yevgeniy Dodis, Harish Karthikeyan, and Daniel Wichs. Updatable public key encryption in the
standard model. In Kobbi Nissim and Brent Waters, editors, TCC 2021, volume 13044 of LNCS,
pages 254–285. Springer, 2021.

DRS20. Benjamin Dowling, Paul Rösler, and Jörg Schwenk. Flexible authenticated and confidential channel
establishment (fACCE): Analyzing the noise protocol framework. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS,
pages 341–373. Springer, Heidelberg, May 2020.

DS18. Jean Paul Degabriele and Martijn Stam. Untagging Tor: A formal treatment of onion encryption. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of
LNCS, pages 259–293. Springer, Heidelberg, April / May 2018.

21

https://eprint.iacr.org/2004/331

DV19. F. Betül Durak and Serge Vaudenay. Bidirectional asynchronous ratcheted key agreement with linear
complexity. In Nuttapong Attrapadung and Takeshi Yagi, editors, IWSEC 19, volume 11689 of LNCS,
pages 343–362. Springer, Heidelberg, August 2019.

EKN+22. Keita Emura, Kaisei Kajita, Ryo Nojima, Kazuto Ogawa, and Go Ohtake. Membership privacy
for asynchronous group messaging. Cryptology ePrint Archive, Report 2022/046, 2022. https:
//eprint.iacr.org/2022/046.

Fis07. Marc Fischlin. Anonymous signatures made easy. In Tatsuaki Okamoto and Xiaoyun Wang, editors,
PKC 2007, volume 4450 of LNCS, pages 31–42. Springer, Heidelberg, April 2007.

GHV07. S. D. Galbraith, F. Hess, and F. Vercauteren. Aspects of pairing inversion. Cryptology ePrint Archive,
Report 2007/256, 2007. https://eprint.iacr.org/2007/256.

GMP22. Paul Grubbs, Varun Maram, and Kenneth G. Paterson. Anonymous, robust post-quantum public key
encryption. In EUROCRYPT 2022, LNCS, 2022.

HWZ07. Qiong Huang, Duncan S. Wong, and Yiming Zhao. Generic transformation to strongly unforgeable
signatures. In Jonathan Katz and Moti Yung, editors, ACNS 07, volume 4521 of LNCS, pages 1–17.
Springer, Heidelberg, June 2007.

IY22. Ren Ishibashi and Kazuki Yoneyama. Post-quantum anonymous one-sided authenticated key exchange
without random oracles. In PKC 2022, page 35–65, 2022.

JMM19a. Daniel Jost, Ueli Maurer, and Marta Mularczyk. Efficient ratcheting: Almost-optimal guarantees for
secure messaging. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume
11476 of LNCS, pages 159–188. Springer, Heidelberg, May 2019.

JMM19b. Daniel Jost, Ueli Maurer, and Marta Mularczyk. A unified and composable take on ratcheting. In
Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages 180–210.
Springer, Heidelberg, December 2019.

JS18. Joseph Jaeger and Igors Stepanovs. Optimal channel security against fine-grained state compromise:
The safety of messaging. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part I, volume 10991 of LNCS, pages 33–62. Springer, Heidelberg, August 2018.

KMO+13. Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Björn Tackmann, and Daniele Venturi. Anonymity-
preserving public-key encryption: A constructive approach. In Emiliano De Cristofaro and Matthew K.
Wright, editors, PETS 2013, volume 7981 of LNCS, pages 19–39. Springer, Heidelberg, July 2013.

Lam79. Leslie Lamport. Constructing digital signatures from a one-way function. Technical Report SRI-CSL-
98, SRI International Computer Science Laboratory, October 1979.

MKA+21. Ian Martiny, Gabriel Kaptchuk, Adam Aviv, Dan Roche, and Eric Wustrow. Improving signal’s sealed
sender. 2021.

MRY04. Philip D. MacKenzie, Michael K. Reiter, and Ke Yang. Alternatives to non-malleability: Definitions,
constructions, and applications (extended abstract). In Moni Naor, editor, TCC 2004, volume 2951
of LNCS, pages 171–190. Springer, Heidelberg, February 2004.

Per18. Trevor Perrin. The noise protocol framework. http://noiseprotocol.org/noise.html, 2018. Revi-
sion 34.

PM16. Trevor Perrin and Moxie Marlinspike. The double ratchet algorithm. https://whispersystems.org/
docs/specifications/doubleratchet/doubleratchet.pdf, 11 2016.

PR18a. Bertram Poettering and Paul Rösler. Asynchronous ratcheted key exchange. Cryptology ePrint
Archive, Report 2018/296, 2018. https://eprint.iacr.org/2018/296.

PR18b. Bertram Poettering and Paul Rösler. Towards bidirectional ratcheted key exchange. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages
3–32. Springer, Heidelberg, August 2018.

RMS18. Paul Rösler, Christian Mainka, and Jörg Schwenk. More is less: On the end-to-end security of group
chats in Signal, WhatsApp, and Threema. In IEEE EuroS&P 2018, pages 415–429. IEEE, 2018.

RZ18a. Phillip Rogaway and Yusi Zhang. Onion-ae: Foundations of nested encryption. Proc. Priv. Enhancing
Technol., 2018(2):85–104, 2018.

RZ18b. Phillip Rogaway and Yusi Zhang. Simplifying game-based definitions - indistinguishability up to
correctness and its application to stateful AE. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 3–32. Springer, Heidelberg, August 2018.

Sig18. Signal. Sealed sender. https://signal.org/blog/sealed-sender/, 2018. Blog post.
SSL20. Sven Schäge, Jörg Schwenk, and Sebastian Lauer. Privacy-preserving authenticated key exchange

and the case of IKEv2. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas,
editors, PKC 2020, Part II, volume 12111 of LNCS, pages 567–596. Springer, Heidelberg, May 2020.

TLMR22. Nirvan Tyagi, Julia Len, Ian Miers, and Thomas Ristenpart. Orca: Blocklisting in sender-anonymous
messaging. In USENIX Security 2022, 2022.

VGIK20. Nihal Vatandas, Rosario Gennaro, Bertrand Ithurburn, and Hugo Krawczyk. On the cryptographic
deniability of the Signal protocol. In Mauro Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo
Spognardi, editors, ACNS 20, Part II, volume 12147 of LNCS, pages 188–209. Springer, Heidelberg,
October 2020.

22

https://eprint.iacr.org/2022/046
https://eprint.iacr.org/2022/046
https://eprint.iacr.org/2007/256
http://noiseprotocol.org/noise.html
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://eprint.iacr.org/2018/296
https://signal.org/blog/sealed-sender/

YWDW06. Guomin Yang, Duncan S. Wong, Xiaotie Deng, and Huaxiong Wang. Anonymous signature schemes.
In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006, volume 3958 of
LNCS, pages 347–363. Springer, Heidelberg, April 2006.

Zha16. Yunlei Zhao. Identity-concealed authenticated encryption and key exchange. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS
2016, pages 1464–1479. ACM Press, October 2016.

A Omitted Preliminaries

A.1 Notation for Security Games

We use standard code-based security games [BR04]. A game G is a probability experiment in which an
adversary A interacts with an implicit challenger that answers oracle queries issued by A. The game G
has one main procedure and an arbitrary amount of additional oracle procedures which describe how these
oracle queries are answered. We denote the (binary) output b of game G between a challenger and an
adversary A as GA ⇒ b. A is said to win G if GA ⇒ 1. Unless otherwise stated, the randomness in the
probability term Pr[GA ⇒ 1] is over all the random coins in game G.

A.2 Assumptions

Definition 4 (CDH). Let G be a group of prime order p with generator g. We define the advantage of
an PPT adversary A against the computational Diffie-Hellman (CDH) problem as follows

AdvDDH
D,G := Pr

a,b
$←Zp

[A(g, ga, gb)⇒ gab] . (1)

Definition 5 (DDH). Let G be a group of prime order p with generator g. We define the advantage of
a distinguisher D against the decisional Diffie-Hellman (DDH) problem as follows

AdvDDH
D,G := | Pr

a,b
$←Zp

[D(g, ga, gb, gab)⇒ 1]− Pr
a,b,c

$←Zp

[D(g, ga, gb, gc)⇒ 1]| . (2)

We say (ga, gb, gab) is the real DDH tuple and ga, gb, gc, where c ̸= ab is the random DDH tuple.

Definition 6 (q-GDH). Let G be a group of prime order p with generator g. We define the advantage
of an adversary A against the q-fold gap Diffie-Hellman (q-GDH) problem as follows

Advq-GDH
A,G := Pr

(ai,bi
$←Zp)i∈[q]

[ADDH(·)(g, (gai , gbi)i∈[q]))⇒ gai∗bi∗] , (3)

where i∗ ∈ [q] and oracle DDH(X, Y, Z) is a decisional Diffie-Hellmann oracle which returns a bit indicating
whether (X, Y, Z) is a real or a random DDH tuple.

Definition 7 (Pairing Groups). Let G = (p,G1,G2,GT , e, g1, g2) be a description of a pairing group,
where G1 ̸= G2 and GT are cyclic groups of prime order p. G1 and G2 are generated by g1 and g2,
respectively. e : G1×G2 ⇒ GT is a non-degenerate bilinear map (also called pairing). We consider Type-II
pairing groups, where there is no efficiently computable homomorphism from G1 to G2.

Definition 8 (XDH Assumption [BBS04]). Let G be a description of a pairing group as defined
above. We define the advantage of a distinguisher D against the External Decisional Diffie-Hellmann
Assumption (XDH) as

AdvXDH
D,G := | Pr

a,b
$←Zp

[D(ga
1 , gb

1, gab
1)⇒ 1]− Pr

a,b,c
$←Zp

[D(ga
1 , gb

1, gc
1)⇒ 1]| . (4)

Definition 9 (FAPI-2 Assumption [GHV07]). Let G be a description of a pairing group as defined
above. We define the advantage of an adversary A against the Fixed Argument Pairing Inversion 2
Problem (FAPI-2) as

AdvFAPI-2
A,G := Pr

a
$←Zp

[A(g1, g2, e(ga
1 , g2))⇒ ga

1] . (5)

Note that this assumption is implied by the computational Diffie-Hellman problem in group G1.

23

A.3 Primitives

Pseudorandom Generators. Pseudorandom Generators (PRG) are functions that expand truly random
input to longer pseudorandom output. Let n ∈ N, ℓ = poly(n), ℓ > n, PRGn : {0, 1}n 7→ {0, 1}ℓ. Let A be
an adversary on input ℓ-bit string outputs a bit. For PRG security we require that the adversary cannot
distinguish between distributions {0, 1}ℓ and PRG($← {0, 1}n).

Lemma 2. If 1-GDH is hard then q-GDH is hard, where Advq-GDH
G ≤ Adv1-GDH

G .

Proof. Let A be an adversary against the q-GDH assumption. We show how to construct an adversary B
against 1-GDH. Adversary B is called on an instance g, ga, gb. To simulate, adversary B samples q values
(ri)i∈[q], (si)i∈[q], and computes (gai , gbi)i∈[q] ← ((ga)ri , (gb)si)i∈[q]. To simulate oracle DDH, adversary B
forwards the queries to its own DDH oracle. To extract from A’s output A, which is a solution to the
1-GDH problem, B queries DDH((ga)ri , (gb)si , A

1
risi) for all ri, si until the oracle outputs 1. If this is the

case for some i, adversary B returns A
1

risi .

B Omitted Definitions for Ratcheted Key Exchange

Robustness. Similar to [BSJ+17], we define a robustness requirement.

Definition 10 (Robustness). We require that for every pair of states (stS, stR) in the support of
RKE.init, for all adversaries A, for any (c, ad) $← A(stS, stR) and (stR′, kR)← RKE.rcv(stR, c, ad) :

– stR′ ̸= ⊥, and
– if kR = ⊥, then stR′ = stR.

We say that RKE is robust if it fulfills the robustness requirement.

This models that schemes are robust to bad inputs. In particular, if the receiver rejects an input (c, ad),
then the receiver’s state will not change. In the following, we will only consider robust schemes.

Correctness. We define game CORREC in Fig. 9, where we give the adversary A full control over the
message flows. That is, the game first produces a pair of states (stS, stR) using the RKE.init algorithm
and then the adversary is given access to oracles Snd, RR and Rcv, which will perform the corresponding
algorithm on the game states and adversarial inputs, and oracle Expose, which will output the internal
sender and receiver state.

Intuitively, an RKE scheme is correct if encapsulations output by Snd that are received by Rcv using
the same additional data ad and maintaining the order, produce the same keys kS = kR. To keep track of
the ordering, we use an array cadk which holds a tuple of additional data ad, the encapsulation c and
the key kS for each query to Snd. As long as all outputs of Snd are delivered to Rcv in the same order,
without any interference, sender and receiver are in-sync, indicated by variable is = tru. We additionally
use counters s and r to keep track of the number of Snd queries and in-order Rcv queries. When Rcv
is queried on an input (c, ad), the game runs the RKE.rcv algorithm to obtain a (potentially updated)
receiver state stR and a key kR. If kR = ⊥, the oracle directly returns. Otherwise, we check the ordering
using cadk. That is, we compare the entry in cadk at position r with the input to Rcv. If the order was
changed, we set is = fal. If the order was maintained, we check if the receiver key kR equals the sender
key kS stored in cadk. If kR ̸= kS , then the game returns 1, indicating that correctness does not hold.
Otherwise, we increase the counter r and the oracle returns. We say that an RKE scheme RKE is correct
if Pr[CORRECRKE(A)⇒ 1] = 0.

Recover Security. In similar vein as [DV19], we define recover security in game (q, ε)-RECOV in Fig. 9.
The game proceeds in the same way as CORREC, but we change the winning condition. The adversary
will win if sender and receiver are out-of-sync, but the receiver still accepts an encapsulation that was
produced by the (honest) sender.

Sender and receiver can get out-of-sync by an impersonations. In particular, we say that A trivially
impersonated the sender if it queries the Expose oracle, produces an encapsulation using the state stS
and then receives this encapsulation. A may also non-trivially impersonate the sender without querying
Expose. In either case, is will be set to false whenever Rcv successfully receives an encapsulation which

24

was not delivered in order. For recover security, we now further check if the ciphertext input to Rcv
appears in cadk. From now on, all subsequent calls to Rcv should not accept an encapsulation produced
by the game’s sender state and we say that a scheme RKE is (q, ε)-RECOVRKE(A) if for any limited to q
queries, the advantage is at most ε.

Game CORRECRKE(A) RECOVRKE(A)
00 cadk← [·]
01 (s, r)← (0, 0)
02 is← tru
03 (stS, stR) $← RKE.init
04 Invoke A
05 Stop with 0

Oracle Snd(ad)
06 (stS, c, kS) $← RKE.snd(stS, ad)
07 cadk[s]← (c, ad, kS)
08 s← s + 1
09 Return (c, kS)

Oracle Expose
10 Return (stS, stR)

Oracle Rcv(c, ad)
11 (stR, kR)← RKE.rcv(stR, c, ad)
12 If kR = ⊥ :
13 Return
14 (c′, ad′, kS)← cadk[r]
15 If (c, ad) ̸= (c′, ad′) :
16 is← fal
17 If is = fal ∧ ∃s∗ : (c, _, _) = cadk[s∗]:
18 Stop with 1
19 If (c, ad) = (c′, ad′) :
20 If is ∧ kR ̸= kS : Stop with 1
21 r ← r + 1
22 Return

Oracle RR
23 stS $← RKE.rr(stS)

Fig. 9. Games CORREC and RECOV for RKE scheme RKE defining correctness and recover security. The winning
condition in the dashed box is only present in CORREC and the winning condition in the solid box is only present
in RECOV.

B.1 Key Indistinguishability

The security game for key indistinguishability (KIND) of an RKE scheme is given in Fig. 10, where we
assume the scheme is correct and robust. Intuitively, KIND security guarantees that the adversary cannot
distinguish a key that is output by RKE.snd from a uniformly random key.

As in the previous games, we give the adversary access to oracles Snd, Rcv, RR in order to execute the
algorithms of the RKE scheme, as well as oracles ExposeS and ExposeR which output the current sender
and receiver state, respectively.

We additionally define a challenge oracle ChallSnd which takes an additional data string as input and
returns an encapsulation c together with a key k. Depending on the bit b, k is either the real key (in game
KIND0) or a random key (in game KIND1). Note that we do not define a ChallRcv oracle. Challenges
may be received via the Rcv oracle.

In order to prevent trivial attacks, we introduce additional variables. In particular, we need to
make sure that the adversary cannot decrypt a challenge encapsulation using an exposed receiver state.
Therefore, the list cad stores the additional data provided by the adversary and encapsulations computed
in Snd and ChallSnd queries. As in the correctness definition, we use counters s and r to keep track of
all send queries and all in-order receive queries. We additionally store challenge encapsulations in a set cc
and all successfully and in-order received encapsulations in a set rcvd. We also track the impersonation
status by the in-sync flag is, which is initially set to true, and exposures using flag xR, which is initially
set to false. As long as sender and receiver are in-sync, ExposeR can only be queried when all challenges
are also received, i.e., cc ⊆ rcvd. In the same way, ChallSnd may not be queried if the sender and
receiver are in-sync, but the receiver was exposed. Note that we cannot ensure key indistinguishability for
this and future challenges. Once the sender is impersonated (i.e., sender and receiver are out-of-sync), we
allow arbitrary queries to ExposeR and ChallSnd.

Definition 11. Consider the games KINDb for b ∈ {0, 1} in Fig. 10. We define the advantage of an
adversary A against key indistiguishability of a ratcheted key exchange scheme RKE as

AdvKIND
A,RKE :=

∣∣Pr[KIND0
RKE(A)⇒ 1]− Pr[KIND1

RKE(A)⇒ 1]
∣∣ .

25

Game KINDb
RKE(A)

00 · cad← [·]
01 · (cc, rcvd)← (∅, ∅)
02 · is← tru
03 · xR ← fal
04 · (s, r)← (0, 0)
05 (stS, stR) $← RKE.init
06 b′ $← A
07 Stop with b′

Oracle Snd(ad)
08 (stS, c, k) $← RKE.snd(stS, ad)
09 · cad[s]← (c, ad)
10 · s← s + 1
11 Return (c, k)

Oracle RR
12 stS $← RKE.rr(stS)
13 Return

Oracle ExposeS

14 Return stS

Oracle ChallSnd(ad)
15 · Require xR ̸= tru
16 (stS, c, k) $← RKE.snd(stS, ad)
17 · cad[s]← (c, ad)
18 · cc ∪← {s}
19 · s← s + 1
20 If b = 1: k $← K
21 Return (c, k)

Oracle Rcv(c, ad)
22 (stR, k)← RKE.rcv(stR, c, ad)
23 · If (c, ad) ̸= cad[r] ∧ k ̸= ⊥ :
24 · is← fal
25 · If (c, ad) = cad[r] ∧ k ̸= ⊥ :
26 · rcvd ∪← {r}
27 · r ← r + 1
28 Return

Oracle ExposeR

29 · If is = tru:
30 · Require cc ⊆ rcvd
31 · xR ← tru
32 Return stR

Fig. 10. Games KINDb for b ∈ {0, 1} and RKE scheme RKE with a robust correctness notion.

B.2 Authenticity

We define the security game AUTH which models authenticity in Fig. 11. Intuitively, an RKE scheme
satisfies authenticity if for all in-sync sender and receiver states, the adversary cannot break the ordering
of sent and received encapsulations, except for forgeries resulting from a trivial impersonation. We will
analyze authenticity only for robust and correct schemes and we will also enforce recover security.

Game AUTHRKE(A)
00 · cad← [·]
01 · xS ← ∅
02 · is← tru
03 · (s, r)← (0, 0)
04 (stS, stR) $← RKE.init
05 Invoke A
06 Stop with 0

Oracle Snd(ad)
07 (stS, c, k) $← RKE.snd(stS, ad)
08 · cad[s]← (c, ad)
09 · s← s + 1
10 Return (c, k)

Oracle RR
11 stS $← RKE.rr(stS)
12 Return

Oracle Rcv(c, ad)
13 (stR, k)← RKE.rcv(stR, c, ad)
14 · If k ̸= ⊥ ∧ is = tru ∧ (c, ad) ̸= cad[r]:
15 · is← fal
16 · If r /∈ xS: Stop with 1
17 · If k ̸= ⊥ :
18 · r ← r + 1
19 Return

Oracle ExposeS

20 · xS ∪← {s}
21 Return stS

Oracle ExposeR

22 Return stR

Fig. 11. Game AUTH for RKE scheme RKE with a robust correctness notion.

As in KIND, we provide the adversary with oracles Snd, Rcv, RR, ExposeS and ExposeR. We also use
the array cad, counters s and r as well as the in-sync flag is. Recall that a trivial impersonation results
from a call to ExposeS . In order to detect such an impersonation, we additionally introduce the set xS
and we add the value of counter s at the time when ExposeS is queried.

When Rcv is queried on (c, ad), we then check whether this is an impersonation attempt. For a
successful impersonation, the input must be accepted by RKE.rcv, i.e., k ̸= ⊥, and sender and receiver

26

must have been in-sync before that query. Also the query (c, ad) must not be the next in-order tuple
stored in cad[r]. If this is the case, then this is indeed an impersonation and we set is = fal. Now we
check whether this is a trivial or non-trivial impersonation. If the value of counter r is not in the set xS,
then the adversary has come up with a non-trivial forgery and wins the authenticity game. Otherwise,
if the value of counter r is in the set xS, then this is a trivial impersonation and the game continues.
However note that the adversary cannot win by providing a non-trivial forgery anymore, since sender and
receiver will remain out-of-sync.

Definition 12. Consider the game AUTH in Fig. 11. We define the advantage of an adversary A against
authenticity of a ratcheted key exchange scheme RKE as

AdvAUTH
A,RKE := Pr[AUTHRKE(A)⇒ 1] .

C Further Discussion on our Anonymity Defintion

In this section we provide some additional explanation on our anonymity definition. For each requirement
we provide an example on how to break anonymity if we would allow such a query. As elaborated in
Section 4.2, the requirements can explained by different relations: correctness (⊕), sender state equality
(▷), receiver state equality (◁), matching states (⋄) and impersonations (i). At the end of this section,
we also argue why we require authenticity in the first place.

Queries to Snd. For oracle Snd, we have the following requirement.

– Line 42 (⊕): If there has not been an impersonation yet, but a query to ChallExposeR has been
issued, then we cannot allow queries to Snd since the challenge receiver state can be used to decrypt
the ciphertext which will be successful only if b = 0.

Note that we allow queries to Snd after ChallExposeR in case there has been an impersonation. In this
case, the exposed challenge receiver state does not leak b.

Queries to ChallSnd. The restrictions are similar to those of Snd.

– Line 49 (⊕): If there has not been an impersonation in U-ANON0, we require that ExposeR or
ChallExposeR have not been queried as well. Otherwise, the adversary can try to decrypt the
challenge ciphertext with the exposed receiver state. If decryption is successful, it knows that b = 0.

Note that we only have this requirement if imp0 = fal. As soon as U-ANON0 is impersonated, the
challenge ciphertext cannot be decrypted by an exposed (challenge) receiver state, independent of b.

Queries to ExposeS. We have to prevent several trivial attacks for sender exposures.

– Line 14 (▷): In most cases, we need to disallow sender exposures whenever there was a query to
ChallExposeS . However, note that we can allow sender exposures after ChallExposeS if there has
been an update in between or a query to ChallSnd. Due to the progression of the sender state, the
output in ANON0 should be indistinguishable from the output in ANON1.

– Lines 15-16 (▷): We cannot allow two subsequent queries to ExposeS if there has been a query to
ChallSnd in between, without any further update, since the sender states would be the same in b = 0,
but not in b = 1.

– Lines 17-18 (⋄): We do not allow sender exposures if ChallExposeR has been queried and there has
not been an impersonation yet, since the adversary could check whether the exposed states belong
together.

One could assume that we also have to prevent queries to ExposeS after a query to ChallExposeR if
only U-ANON1 has been impersonated. However, note that an impersonation exclusively in U-ANON1
can only happen after a ChallSnd query which in turn disallows a query to ChallExposeR.

27

Queries to ChallExposeS. We need the following restrictions for oracle ChallExposeS .

– Lines 32-33 (▷): We cannot allow a query to ChallExposeS if there has been a query to ExposeS or
ChallExposeS before (without an update in between). Otherwise, the adversary can simply compare
the outputs.

– Lines 34-35 (⋄): As long as there has not been an impersonation yet, we do not allow queries to
ChallExposeS after a receiver exposure via ExposeR or ChallExposeR since in ANON0, sender and
receiver states belong together, which they do not in ANON1.

Queries to ExposeR. For oracle ExposeR, we need the following requirements.

– Line 23 (i): Recall that variable unique is set to fal if the impersonation state in U-ANON0 cannot
be uniquely determined. An example for this case is the following sequence of queries: ExposeS ,
ChallSnd, RR, ExposeS and an impersonation attempt with one of the exposed sender states. Assume
the adversary used the output of the second sender exposure query to impersonate. In ANON1,
the impersonation is successful, but not in ANON0, which means we have to disallow a receiver
exposure. On the other hand, assume the adversary used the output of the first sender exposure
query to impersonate. Then in both ANON0 and ANON1, the impersonation is successful and a
receiver exposure should be allowed. However, in ANON1 we cannot know whether impersonation
was attempted with the sender state of the first or the second exposure query, thus we have disallow
receiver exposures in the first place.

– Line 24 (◁): After a query to ChallExposeR, we need to disallow any subsequent queries to ExposeR

since otherwise the adversary can determine b by simply comparing the exposed states.
– Line 25 (⋄): For receiver exposures, we require that the sequence of queries so far either results in

an impersonation in both utopian games or in none of the utopian games, i.e., imp0 = imp1. If an
impersonation happens only in one of the games, then the adversary knows the corresponding sender
state that it used for an impersonation attempt and thus it can compare whether the two states
belong together. Examples for unallowed sequences are (ExposeS , ChallSnd, Rcv to impersonate,
ExposeR) and (ChallExposeS , Rcv to impersonate, ExposeR).

– Line 27 (⊕): If there has not been an impersonation yet, we require that all challenge ciphertexts have
been received before querying ExposeR. Otherwise, the exposed receiver state will allow to decrypt a
challenge ciphertext in ANON0, but not in ANON1.

– Line 28 (⋄): After a query to ChallExposeS , we cannot allow receiver exposures that would allow to
compare whether the two states belong together.

Queries to ChallExposeR. Receiver exposures via ChallExposeR need to enforce the following require-
ments.

– Line 79 (◁): We do not allow queries to ChallExposeR when the receiver state has already been
exposed either via ExposeR or ChallExposeR, since this would allow to compare the outputs.

– Line 80 (⋄): After a sender exposure via ExposeS or ChallExposeS , we cannot allow a challenge
exposure of the receiver at the same point in time.

– Line 81 (⋄): We cannot allow queries to ChallExposeR if there has been an impersonation in
U-ANON0. Assume there has been an impersonation in U-ANON0, then the adversary knows the
corresponding sender state and can check if the exposed receiver state actually belongs to that sender
state.

– Line 82 (⊕): If there has not been any impersonation yet, we require that all ciphertext (challenges
and non-challenges) have been received before calling ChallExposeR, otherwise the adversary could
simply check if decryption is successful.

Finally, we justify that we require authenticity in our anonymity definition.

Claim. For any adversary that breaks authenticity (cf. Definition 12) of a ratcheted key exchange scheme
RKE, there exists an adversary that breaks anonymity (cf. Definition 1) of that scheme.

Proof. Recall that authenticity means that an adversary cannot perform a non-trivial impersonation, i.e.,
it cannot compute a ciphertext that will be received successfully without the knowledge of the sender state.
Then an adversary against anonymity can query the challenge oracle for receiver exposures ChallExposeR

and check if the given receiver state successfully decrypts the ciphertext of that non-trivial impersonation.

28

D Omitted Definitions and Proofs from Section 5

In Appendix D.1 we give the proofs for the properties of rPKE we use to prove ANON of RKE. In Ap-
pendix D.2 we give the security properties of urPKE we use to prove KIND and ANON of RKE. In Ap-
pendix D.3 we finally give the construction of urPKEEG and all related proofs.

D.1 The Homomorphic property and Indistinguishability of Encryptions of rPKEEG

Proof (of Lemma 1). We first show the homomorphic property of rPKEEG. To this end, observe that for
an encryption key ek = (c0, k0), we have that

rPKE.enc(ek, m1; r1)⊗ rPKE.enc(ek, m2; r2) = (ekr1
0 , ekr1

1 ·m1)⊗ (ekr2
0 , ekr2

1 ·m2)
= (ekr1+r2

0 , ekr1+r2
1 ·m1 ·m2)

= rPKE.enc(ek, m1 ⊗m2; r1 ⊕ r2) .

To show indistinguishability of randomized encryptions we first give a reduction of a multi challenge
version of DDH to standard DDH. Then we reduce the advantage of distinguishing D1 and D2 to the
multi challenge version of DDH. We define the multi challenge version of DDH such that it should be
hard to distinguish between distributions

D′ = (gx0 , . . . , gxℓ , Y := gy, Y x0 , . . . , Y xℓ)
D∗ = (gx0 , . . . , gxℓ , Y, gz0 , . . . , gzℓ)

where x0, . . . , xℓ, y, z0, . . . , zℓ
$← Zp. We have

|Pr[D(D′)]− Pr[D(D∗]| ≤ AdvDDH
B1,G

where we construct B1 as follows: B1 inputs challenge (X, Y, Z). It chooses ri
$← Zℓ

p and forwards
(Xr0 , . . . , Xr0ℓ, Y, Zr0 , . . . , Zr0ℓ) to the distinguisher D. It returns whatever D returns. Note that if
(X, Y, Z) is a DDH tuple, then B1 outputs distribution D′. If (X, Y, Z) is not a DDH tuple, then it outputs
distribution D∗.

Next, we prove indistinguishability of randomized encryptions. We need to show that for all m0, . . . , m2ℓ

the following two distributions are indistinguishable:

D1 = (ek, c0, . . . , cℓ, ek′, d0, . . . , dℓ)
= (ek0, ek1, c0

0, c1
0, . . . , c0

ℓ , c1
ℓ , ek′

0, ek′
1, d0

0, d1
0, . . . , d0

ℓ , d1
ℓ)

= (gr, grx, (grs0 , grs0x ·m0), . . . , (grsℓ , grsℓx ·mℓ), grr′ , grr′x,

(grs0+rr′s′0 , g(rs0+rr′s′0)x ·m0), . . . , (grsℓ+rr′s′ℓ , g(rsℓ+rr′s′ℓ)x ·mℓ))
D2 = (ek, c0, . . . , cℓ, êk, e0, . . . , eℓ)

= (ek0, ek1, c0
0, c1

0, . . . , c0
ℓ , c1

ℓ , êk0, êk1, e0
0, e1

0, . . . , e0
ℓ , e1

ℓ)

= (gr, grx, (grs0 , grs0x ·m0), . . . , (grsℓ , grsℓx ·mℓ), gu, gux′ ,

(guv0 , guv0x′ ·mℓ+1), . . . , (guvℓ , guvℓx′ ·m2ℓ))),

where r, r′, s0, . . . , sℓ, s′
0, . . . , s′

ℓ, u, v0, . . . , vℓ, x, x′ $← Zp.
We replace rr′ in D1 with a new variable u and r′si with a new variable zi. We get

D1 = (gr, grx, (gz0 , gz0x ·m0), . . . , (gzℓ , gzℓx ·mℓ), gu, gux,

(gz0+us′0 , g(z0+us′0)x ·m0), . . . , (gzℓ+us′ℓ , g(zℓ+us′ℓ)x ·mℓ))

Note that s′
i only appears in the last 2ℓ terms and in all cases it appears as us′. As s′

i is uniformly
chosen at random, the term zi + us′

i is distributed as a uniformly random element wi. We get

D1 = (gr, grx, (gz0 , gz0x ·m0), . . . , (gzℓ , gzℓx ·mℓ), gu, gux,

(gw0 , gw0x ·m0), . . . , (gwℓ , gwℓx ·mℓ))

29

Now we use the multi challenge DDH assumption to replace all group elements which are gx raised to
some other element from Zp.

D′ = (gr, ga0 , (gz0 , ga1 ·m0), . . . , (gzℓ , gzℓaℓ+1 ·mℓ), gu, guaℓ+2 ,

(gw0 , gaℓ+3 ·m0), . . . , (gwℓ , gwℓa2ℓ+3 ·mℓ))

We have
|Pr[D(D1)]− Pr[D(D′)]| ≤ AdvDDH

B2,G

where we construct B2 as follows: B2 inputs challenge (X0, . . . , X2ℓ+3, Y, Z0, . . . , Z2ℓ+3). It chooses
(r0, . . . , r2ℓ+3) $← Z2ℓ+3

p , (m0, . . . , mℓ) $←Mℓ and forwards (gr0 , ga0 , (gr1 , Xr1
0 ·m0), . . . , (grℓ+1 , X

rℓ+1
ℓ+1), grℓ+2 ,

X
rℓ+2
ℓ+2 , (grℓ+3 , X

rℓ+3
ℓ+3), . . . , (gr2ℓ+3 , X

r2ℓ+3
2ℓ+3)) to the distinguisher D. It returns whatever D returns. Note

that if (X0, . . . , X2ℓ+3, Y, Z0, . . . , Z2ℓ+3) is a multi challenge DDH tuple, then B2 outputs distribution D1.
Else adversary B2 outputs distribution D′.

D.2 Omitted Security Definitions for urPKE

Below we give the formal security definitions for indistinguishability and anonymity of an updatable
public key encryption scheme.

Definition 13 (Indistinguishability of Ciphertexts). Consider the games in Fig. 12. We define the
advantage of an adversary A against key indistinguishability of a public key encryption scheme urPKE as

AdvIND-C
A,urPKE :=

∣∣Pr[IND-C0
urPKE(A)→ 1]− Pr[IND-C1

urPKE(A)→ 1]
∣∣ .

Game IND-Cb
urPKE(A)

23 (ek, dk) $← urPKE.gen
24 mc← [·]
25 b′ $← AChallSnd,RR(ek)
26 Stop with b′

Oracle RR
27 ek $← urPKE.rr(ek)
28 Return ek

Oracle ChallSnd(m0) //only once
29 m1

$←M
30 c $← urPKE.enc(ek, mb)
31 mc.append(m0, c)
32 Return c

Oracle Dec(c)
33 If (m∗, c) ∈mc :
34 Return m∗

35 Return urPKE.dec(dk, c)

Fig. 12. Security games IND-Cb for an updatable and randomizable PKE scheme urPKE.

Definition 14 (Anonymity). Consider games ANONb
urPKE for b ∈ {0, 1} in Fig. 13. We define the

advantage of an adversary A against anonymity of a public key encryption scheme urPKE as

AdvANON
A,urPKE :=

∣∣Pr[ANON0
urPKE(A)→ 1]− Pr[ANON1

urPKE(A)→ 1]
∣∣ .

D.3 Our Construction of urPKE

Our ElGamal-based construction of an updatable and randomizable PKE scheme urPKEEG is given in
Fig. 14. In Appendix D.3 we prove instance independence and indistinguishability of randomizations.
Then, in Theorems 2 and 3 we prove indistinguishability and anonymity of the scheme.

Theorem 2 (IND-C security of urPKEEG). Let H : {0, 1}∗ → {0, 1}λ be a random oracle. For any
adversary A against IND-C security of urPKEEG, there exists an adversary B against GDH such that

AdvIND-C
A,urPKE ≤ AdvGDH

B,G + 1
2λ

.

Proof. We start by a sequence of games from G0 to G3 given in Fig. 15.

30

Game ANONb
urPKE(A)

00 mc← [·]
01 (ek, dk)← urPKE.gen
02 b′ $← A(ek)
03 Stop with b′

Oracle ExposeS

04 Return ek

Oracle RR
05 ek $← urPKE.rr(ek)
06 Return

Oracle Dec(c)
07 If (m∗, c) ∈mc :
08 Return m∗

09 Return urPKE.dec(dk, c)

Oracle ChallSnd(m) //only once
10 c0

$← urPKE.enc(ek, m)
11 (ek′, _) $← urPKE.gen
12 c1

$← urPKE.enc(ek′, m)
13 mc.append(m0, c)
14 Return cb

Fig. 13. Security games ANONb for an updatable and randomizable PKE urPKE.

Proc urPKE.gen
00 x, r $← Zp

01 ek← (gr, gxr); dk← x
02 Return (ek, dk)

Proc urPKE.enc(ek, m)
03 Parse ek as (ek0, ek1)
04 s $← Zp

05 (c0, c1)← (eks
0, H(eks

0, eks
1)⊕m)

06 Return (c0, c1)

Proc urPKE.dec(dk, c)
07 Parse c as (c0, c1)
08 m← H(c0, cdk

0)⊕ c1
09 Return m

Proc urPKE.rr(ek)
10 Parse ek as (ek0, ek1)
11 r′ $← Zp

12 Return (ekr′
0 , ekr′

1)

Proc urPKE.nextDk(dk, r)
13 dk′ ← dk · r
14 Return dk′

Proc urPKE.nextEk(ek, r)
15 Parse ek as (ek0, ek1)
16 s $← Zp

17 ek′ ← (eks
0, ekrs

1)
18 Return ek′

Fig. 14. Updatable and randomizable PKE scheme urPKEEG.

Experiment Exp0. This game is equivalent to IND-C0.

Experiment Exp1. In this game we exclude the case that the adversary guesses the output to any input of
the random oracle without querying that input. We have

∣∣Pr
[
GA

0 ⇒ 1
]
− Pr

[
GA

1 ⇒ 1
]∣∣ ≤ 1

2λ .

Experiment Exp2. In a call to oracle ChallSnd, we replace the input to the random oracle with uniformly
random values from the input space. To show that no adversary can distinguish games G1 and G2, we
now show that any such adversary A can be turned into an adversary B against GDH in G.

Adversary B is called on distribution D := (X, Y) ∈ G2.
To simulate the game for A, adversary B embeds distribution D as follows. At the beginning of the

experiment, B samples random r $← Zp and sets ek← (gr, Xr). On a call to oracle ChallSnd, adversary B
sets (c1, k)← (Y r, Z), where Z $← G. Since the output of the random oracle is unpredictable, A must call
the random oracle on the correct input to the random oracle in order to distinguish the two distributions.
From that call to the random oracle, adversary B can extract a solution to the GDH problem.

To simulate the random oracle, adversary B checks for every input (Y, Z) to the random oracle,
whether DDH(X, Y, Z) = 1. If so, adversary B returns Z to the GDH experiment.

To simulate queries to oracle Dec(c), adversary B does the following. It parses (c0, c1)← c. Then it
searches the list of random oracle queries until it finds an entry (Y, Z) s.t. DDH(c1, X, Z) = 1. If the adversary
finds such an entry, it outputs m← c2⊕H(Y, Z). Otherwise, it returns a random bitstring. If a ciphertext is
well-distributed, then it must hold that DDH(c1, gx, k) = 1. Thus,

∣∣Pr
[
GA

1 ⇒ 1
]
− Pr

[
GA

2 ⇒ 1
]∣∣ ≤ AdvGDH

G .

Experiment Exp3. In this game we replace c2 with uniform randomness. Since c2 is now independent of
the underlying message, we have Pr[G3

A ⇒ 1] = Pr[IND-C1
A ⇒ 1].

So in total, we have ∣∣Pr
[
GA

0 ⇒ 1
]
− Pr

[
GA

3 ⇒ 1
]∣∣ ≤ AdvGDH

B,G + 1
2λ

,

which concludes the proof.

31

Games G0 = IND-C0, G1, G2, G3 = IND-C1

00 x, r $← Zp

01 mc← [·]
02 ek← (gr, gxr); dk← x
03 b′ $← AChallSnd,RR,Dec(ek)
04 Stop with b′

Random Oracle H(Y, Z)
05 if h[(Y, Z)] ̸= ⊥
06 ABORT //G1-G3
07 Return h[(Y, Z)]
08 c $← {0, 1}λ

09 h[(Y, Z)]← c
10 Return c

Oracle RR
11 ek $← urPKE.rr(ek)
12 Return ek

Oracle ChallSnd(m0) //only once
13 m1

$←M; s $← Zp

14 (ek0, ek1)← ek
15 c2 ← H(eks

0, eks
1)⊕mb //G0-G2

16 c2 ← H($← G×G)⊕mb //G2-G3
17 c2

$← {0, 1}λ //G3
18 mc.append(m0, (c1, c2))
19 Return (c1, c2)

Oracle Dec(c)
20 If (m∗, c) ∈mc :
21 Return m∗

22 Parse c as (c0, c1)
23 m← H(c0, cdk

0)⊕ c1
24 m← h[c0, cdk

0]⊕ c1 //G1-G3
25 m← h[c0, cdk

0]⊕ c1 //G2-G3
26 Return m

Fig. 15. Games G0-G3 for the proof of Theorem 2.

Theorem 3 (ANON security of urPKEEG). Let H : {0, 1}∗ → {0, 1}λ be a random oracle. For any
adversary A against ANON security of urPKEEG, there exist an adversary B against GDH.

AdvIND-C
A,urPKE ≤ AdvGDH

B,G + 1
2λ

.

The proof for this Theorem follows the same steps as the proof of Theorem 2.

Lemma 3. Scheme urPKEEG is instance-independent.

Proof. Let (ek1, dk1) $← urPKE.gen, r, s $← R, ek2 ← urPKE.nextEk(ek1, r), dk2 ← urPKE.nextDk(dk1, r)
be random, then by definition of urPKE.gen,

D(ek1, dk1, ek2, dk2) = D((c1, k1), dk1, ek2, dk2) = D((gt, gtx), x, ek2, dk2) .

By definition of urPKE.nextEk and urPKE.nextDk,

D((gt, gtx), x, ek2, dk2) = D((gt, gtx), x, (gts, gtxrs), x · r) .

Let x′ ← x · r, t′ ← t · s then x′ and t′ are random values independent of x and t, thus

D((gt, gtx), x, (gts, gtxrs), x · r) = D((gt, gtx), x, (gt′ , gt′x′), x′) = D((gt, gtx), x, ek2, dk2) .

Lemma 4. For any adversary A against indistinguishability of randomizations of urPKEEG, there exists
an adversary B against DDH such that

AdvIND-R
A,urPKEEG

≤ AdvDDH
B,G .

Proof. We need to show that the following two distributions are indistinguishable:

D1 = (gr, gxr, grr′ , grr′x)
D2 = (gr, gxr, gs, gt)

where r, r′, s, t, x $← Zp.
Let h = gr, then

(gr, gxr, grr′ , grr′x) = (h, hx, hr′ , hr′x)

By DDH

(h, hx, hr′ , hr′x) ≈ (h, hx, hr′ , hr′′),

where r′′ $← Zp. So

(h, hx, hr′ , hr′′) = (gr, gxr, grr′ , gr′′r) = (gr, gxr, gs, gt) .

32

E Omitted Definitions and Proofs for Updatable and Randomizable
Signatures

In Appendix E.1 we formally define one-time unforgeability and other properties tailored to our proofs of
authenticity and recover security of RKE. The proof for strong unforgeability of urSIG comes in multiple
steps, which we depict in Fig. 16.

OT-EUF-CMALamport
+

Pairing

OT-EUF-CMAuSIG
+

rPKE

OT-EUF-CMAurSIG
+

SUF-CMASIG

OT-SUF-CMAurSIG
Lemma 6 Lemma 9 Lemma 11

Fig. 16. Overview of the proofs related to unforgeability of urSIG.

E.1 Omitted Definitions

In Definition 15 we give two standard unforgeability definitions for signature schemes, in Definition 17
and Definition 18 we respectively give definitions of properties tailored to our proofs for authenticity and
recover security of RKE.

Definition 15 (One-Time Unforgeability). Consider the OT-EUF-CMA and OT-SUF-CMA security
games for signature schemes in Fig. 17. We define the advantage of an adversary A against OT-EUF-CMA
and OT-SUF-CMA security of an updatable and randomizable one-time signature scheme as

AdvOT-EUF-CMA
A,urSIG := Pr[OT-EUF-CMAurSIG(A)⇒ 1]

and
AdvOT-SUF-CMA

A,urSIG := Pr[OT-SUF-CMAurSIG(A)⇒ 1] .

Game OT-EUF-CMA, OT-SUF-CMA
00 (vk, sk)← urSIG.gen
01 qS ← 0
02 S ← ∅
03 (m∗, σ∗)← ASign(·)(vk)
04 If urSIG.vfy(vk, m∗, σ∗) = 1 ∧ qS ≤ 1:
05 If (m∗, σ∗) ̸∈ S :
06 Return 1
07 Return 0
08 If (m∗, _) ̸∈ S :
09 Return 1
10 Return 0

Oracle Sign(m)
11 σ ← urSIG.sig(sk, m)
12 S ∪← {(m, σ)}
13 qS ← qS + 1
14 Return σ

Fig. 17. Security notions OT-EUF-CMA and OT-SUF-CMA for signature schemes.

Definition 16 (Indistinguishability of Randomizations). We require that a pair of encryption
key and ciphertext that has been randomized via urPKE.rr is indistinguishable from a freshly generated
encryption key and ciphertext. More formally, we define the advantage of a distinguisher D for arbitrary
m0, m1 ∈M as

AdvIND-R
D,urPKE := |Pr[D(ek, c, ek0, c0)⇒ 1]− Pr[D(ek, c, ek1, c1)⇒ 1]| ,

where (ek, _) $← urPKE.gen, c $← urPKE.enc(ek, m0), (ek0, c0)← urPKE.rr(ek, c), (ek1, _) $← urPKE.gen,
c1

$← urPKE(ek1, m1).

33

Definition 17. We say a signature scheme is verification key randomization smooth if there exists an
algorithm findUpdate(vknext)→ (vk, R) which on input a target verification key vknext sampled uniformly
at random from the support of urSIG.gen outputs another verification key vk from the support of urSIG.gen
and a randomness R from the randomization space s.t. vknext = urSIG.nextVk(vk, R) and R is uniformly
distributed in the randomization space and vk is uniformly distributed in the support of urSIG.gen.

Definition 18. We say a updatable signature scheme is ε-unverifiable under random verification keys if
for all (vk, sk) ∈ uSIG.gen, m ∈ {0, 1}∗,

Pr
[
uSIG.vfy(vk′, m, σ) = 1

∣∣∣∣σ $← uSIG.sig(sk, m)
(vk′, _) $← uSIG.gen

]
≤ ε .

E.2 Omitted Theorems and Proofs for uSIG

On the way of proving the security properties defined in Appendix E.1 for urSIG, we give here the proofs
for uSIG and then give in the next subsection generic reductions of the security of urSIG to the security of
uSIG.

Lemma 5. Signature scheme uSIG is verification key randomization smooth.

Proof. We define algorithm findUpdate(vknext) → (vk, R) as follows. Algorithm findUpdate samples R
uniformly from the randomization space, it takes vknext and computes vki,b ← vknexti,b · e(Ri,b, g2)−1

for all b ∈ {0, 1}, i ∈ ℓ. It returns (R, vk). Clearly, R is uniformly distributed in the randomization
space. Therefore, if vknext is uniformly distributed in the support of uSIG.gen, then vk is also uniformly
distributed in the support of uSIG.gen.

Lemma 6 (OT-EUF-CMA security of uSIG). Let H be a random oracle. For any adversary A against
OT-EUF-CMA of uSIG, there exists an adversary B against the fixed argument pairing inversion problem
FAPI-2 such that

AdvOT-EUF-CMA
A,uSIG ≤ 2ℓ · AdvFAPI-2

B,G + (qH + qS)
2λ

.

Proof. Let EUF-CMA′ be the same experiment as EUF-CMA with the only difference that EUF-CMA′

aborts if the hash function outputs a collision. Since H is modeled as a random oracle, this happens with
probability at most (qH +qS)

2λ .
Let A be an adversary against the one-time EUF-CMA′ security of uSIG. We show how to construct

an adversary B which internally runs A and breaks the fixed argument pairing inversion problem FAPI-2.
The proof follows the same proof structure as a proof for Lamport signatures. In the one-time

unforgeability security experiment the adversary obtains a single signature σ for a chosen message m
and at the end it returns a forged signature σ∗ on some message m∗. Note that the security experiment
requires that m and m∗ differ in at least one bit. The reduction guesses the bit position i∗ of the message
m and the value b∗ of that bit in message m. If the reduction guesses the bit correctly, it can simulate all
messages which have that bit set perfectly. The reduction does this by simply following the protocol and
setting the value of the verification key correctly at all positions except value vki∗,b∗ . For this element the
reduction inputs the challenge of the FAPI-2 instance e(g1, g2)a. Thus, the reduction can easily extract
the solution ga

1 from the forgery of the adversary.

E.3 Omitted Theorems and Proofs for urSIG

Lemma 7 (Correctness of urSIG[rPKE, uSIG]). If rPKE is correct and uSIG is correct then construction
urSIG[rPKE, uSIG] in Fig. 7 is correct.

Proof. Let (sk, vk) be in the support of urSIG.gen, message m ∈M and r ∈ R and σ ← urSIG(sk, m).
By definition of urSIG.sig,

σ = (σr, σx) =
(

ℓ−1∏
i=0

g
ri,mi
1 ,

ℓ−1∏
i=0

g
ri,mi

dk
1 Hxi,mi

)
.

34

Adversary B(g1, g2, AT := e(g1, g2)a)
00 b∗ $← [ℓ], i∗ $← {0, 1}
01 For all (i, b) ∈ ([ℓ]× {0, 1}) \ {i∗, b∗} :
02 zi,b

$← Zp

03 vki,b ← e(gzi,b

1 , g2)
04 vki∗,b∗ ← AT

05 (m∗, σ∗)← ASign(·)(vk)
06 If m∗

i∗ = b∗ :
07 Return ga

1 ← σ∗ ·Πi∈[ℓ]\{i∗}g
zi,m∗

i
1

08 Abort

Oracle Sign(m)
09 If mi∗ ̸= b∗ :
10 Return σ ← Πi∈[ℓ]g

zi,mi
1

11 Abort

Fig. 18. Adversary B against the FAPI-2 assumption.

By correctness of rPKE,

urSIG.vfy(vk, m, σ) = uSIG.vfy(vk, m,

ℓ−1∏
i=0

Hxi,mi) .

Algorithm uSIG.vfy tests whether e(σ, g2) ?=
∏ℓ−1

i=0 vk′
i,mi

. We continue,

e(σ, g2) = e(
ℓ−1∏
i=0

Hxi,mi , g2) = e(
ℓ−1∏
i=0

g
xi,mi
1 , H) =

ℓ−1∏
i=0

vk′
i,mi

.

Clearly, by the group structure of the secret/verification key space, (urSIG.nextSk(sk, r), urSIG.nextVk(vk,
r)) ∈ urSIG.gen.

That for all (vk, sk) ∈ urSIG.gen, m ∈ M, an arbitrary number of randomizations resulting in a
randomized secret key sk $← urSIG.rr(sk), a signature σ $← urSIG.sig(sk, m) still verifies correctly follows
directly from the correctness of rPKE.

Lemma 8 (IND-R security of urSIG). Clearly, for any adversary A against indistinguishability of
randomizations of urSIG, there exists an adversary B against indistinguishability of randomizations of
rPKE such that

AdvIND-R
A,urSIG ≤ AdvIND-R

B,rPKE .

Lemma 9 (OT-EUF-CMA security of urSIG[rPKE, uSIG]). Let rPKE be correct and homomorphic. For
any adversary A against OT-EUF-CMA security of urSIG[rPKE, uSIG], there exists an adversary B against
OT-EUF-CMA of uSIG such that

AdvOT-EUF-CMA
A,urSIG ≤ AdvOT-EUF-CMA

B,uSIG .

Proof. Let A be an adversary in the EUF-CMAurSIG security experiment. We show how to construct an
adversary B against EUF-CMAuSIG, which uses A as a subroutine.

To simulate the verification key, adversary B samples a fresh rPKE key pair and forwards its own
verification key input vk∗ appended with dk to A.

To simulate the single query Sign(m) in the EUF-CMAurSIG security experiment to A, adversary
B calls the sign oracle provided by EUF-CMAuSIG on m and encrypts the returned signature with the
rPKE scheme. To show that this is a valid simulation of a urSIG signature we argue as follows. The
signature returned by the EUF-CMAuSIG experiment is of form σ′ := g

∑
xi,hi , where {x}i,hi are some

of the dlogs of the secret key and {h}i are the bits of the hashed message. Encrypting σ′ yields,
rPKE.enc(ek, σ′) = (

∏
gri,hi ,

∏
gri,hi

dkgxi,hi), which is a valid signature (σr, σx) in the EUF-CMAurSIG
security experiment under vk.

To argue that the extraction of adversary B yields a valid forgery in the EUF-CMAuSIG security experi-
ment we argue as follows. Adversary A returns a message signature pair (m, (

∏
g

ri,h′
i ,
∏

g
ri,h′

i
dk

g
xi,h′

i),
where h′ is the hash of m. Thus rPKE.dec(dk, (

∏
g

ri,h′
i ,
∏

g
ri,h′

i
dk

g
xi,h′

i)) = g

∑
xi,h′

i , which is a valid
forgery in the EUF-CMAuSIG security experiment.

Corollary 1. Since uSIG is verification key randomization smooth, so is urSIG.

35

Adversary BSign(·)(vk∗)
00 (ek, dk)← rPKE.gen()
01 vk← (vk∗, dk)
02 (m, σ∗)← ASign(·)(vk)
03 σ ← rPKE.dec(dk, σ∗)
04 Return (m, σ)

Oracle Sign(m)
05 σ′ ← Sign(m)
06 σ ← rPKE.enc(ek, σ′)
07 Return σ

Fig. 19. Adversary B against OT-EUF-CMA of uSIG.

Lemma 10. Signature scheme urSIG is 1
2λ unverifiable under random verification keys.

Proof. Let (vk, sk) by any key pair in the support of urSIG.gen and m and message in {0, 1}∗. To estimate
the probability that a random signature verifies under a random verification key we bound the following
probability.

The signature verification algorithm checks whether e(g, σ) =
∏ℓ−1

i=0 vk′
i,hi

. Since vk′ is an array of
group elements from the target group GT of the pairing,

∏ℓ−1
i=0 vk′

i,hi
takes the value of a random element

from GT . Thus,

Pr
σ $← urSIG.sig(sk, m)
(vk′, _) $← urSIG.gen

[
urSIG.vfy(vk′, m, σ) = 1

]
= Pr

σ $← urSIG.sig(sk, m)
t $← GT

[
e(σ, g2) = t

]
≤ 1

2λ
.

E.4 Final Transformation to Strong Unforgeability of urSIG

To achieve strong unforgeability of urSIG we use the CHK transformation [MRY04, CHK04] using a
strongly unforgeable signature. The full transformation is given in Fig. 20.

Lemma 11 (Strong Unforgeability [HWZ07]). If urSIG′ is OT-EUF-CMA and SIG is SUF-CMA
then transformation urSIG[urSIG′, SIG] given in Fig. 20 is OT-SUF-CMA.

Proc urSIG.gen
00 (sk, vk)← urSIG′.gen()

Proc urSIG.rr(sk)
01 Return sk← urSIG′.rr(sk)

Proc urSIG.nextSk(sk, r)
02 sk← urSIG′.nextSk(sk, r)

Proc urSIG.nextVk(vk, r)
03 sk← urSIG′.nextVk(vk, r)

Proc urSIG.sig(sk, m)
04 (s̄k, v̄k)← SIG.gen()
05 σ1 ← urSIG′.sig(sk, m = v̄k)
06 σ2 ← SIG.sig(s̄k, m||σ1)
07 σ ← (σ1, σ2, v̄k)

Proc urSIG.vfy(vk, m, σ)
08 Return urSIG′.vfy(vk, m = v̄k, σ1)

∧SIG.vfy(v̄k, m||σ1, σ2)

Fig. 20. Transformation of an OT-EUF-CMA secure, one-time signature scheme urSIG′ =
(urSIG′.gen, urSIG′.sig, urSIG′.vfy, urSIG′.rr, urSIG′.nextSk, urSIG′.nextVk) and a OT-SUF-CMA secure one-time
signature scheme SIG = (SIG.gen, SIG.sig, SIG.vfy) to an OT-SUF-CMA secure, updatable and randomizable
one-time signature scheme urSIG = (urSIG′.gen, urSIG.sig, urSIG.vfy, urSIG′.rr, urSIG′.nextSk, urSIG′.nextVk).

Corollary 2. Since the transformation given in Fig. 20 only appends values to the signature and does
not change anything else, all other security properties a urSIG scheme fulfills, still apply.

F Proofs for our RKE Scheme

Here we finally give the full proofs for Robustness, Recover security, Authenticity, Key Indistinguishability
and Anonymity of RKE[urPKE, urSIG, H, PRG].

36

F.1 Robustness

Lemma 12. RKE[urPKE, urSIG, H, PRG] is robust.

Proof. The output (stS, c) of RKE.snd will never be ⊥ by definition of the syntax of urSIG and urPKE. To
show that stR = stR′ if kR = ⊥ we continue as follows. In the beginning of a call to RKE.rcv the key k
is set to ⊥. Only if the one-time signature embedded in the encapsulation does not verify then the key
stays ⊥. If the signature does not verify, then also the receiver state does not change.

F.2 Recover Security

Theorem 4 (Recover Security of RKE[urPKE, urSIG, H, PRG]). Let urPKE be a correct, updatable
and randomizable public key encryption scheme, urSIG a correct, updatable and randomizable one-time
signature and PRG a pseudorandom generator. Let H : {0, 1}∗ 7→ 2λ×RurPKE×RurSIG be a random oracle,
where RurPKE and RurSIG are the randomization spaces of urPKE and urSIG, respectively. We show that
if H is CR then RKE[urPKE, urSIG, H, PRG] is (qH , qH

2

2λ)-RECOV, where qH is the number of calls to the
random oracle.

Proof. Consider the sequence of games in Fig. 21.

Game RECOVRKE(A) = G0, G1
00 cadk← [·]
01 (s, r)← (0, 0)
02 is← tru
03 (stS, stR) $← RKE.init
04 Invoke A
05 Stop with 0

Oracle Snd(ad)
06 (ek, sk)← stS
07 kH, kS

$← K
08 (vknext, sknext)← urSIG.gen
09 curPKE

$← urPKE.enc(ek, (kH, kS , vknext))
10 σ $← urSIG.sig(sk, (curPKE, ad))
11 c← (curPKE, σ ⊕ PRG(kS))
12 (k, rurPKE, rurSIG)← H(kH, c, ad)
13 sk← urSIG.nextSk(sknext, rurSIG)
14 ek← urPKE.nextEk(ek, rurPKE)
15 stS← (ek, sk)
16 cadk[s]← (c, ad, k)
17 s← s + 1
18 Return (c, k)

Oracle H(x)
19 If h[x] ̸= ⊥ :
20 Return h[x]
21 h[x] $← G×KurPKE ×KurSIG
22 If ∃x′ ̸= x s.t. h[x] = h[x′] :
23 ABORT //G1
24 Return h[x]

Oracle Expose
25 Return (stS, stR)

Oracle Rcv(c, ad)
26 k ← ⊥
27 (dk, vk)← stR
28 (curPKE, σ′)← c
29 (kH, kS , vknext)← urPKE.dec(dk, curPKE)
30 Require (kH, kS , vknext) ̸= ⊥
31 If urSIG.vfy(vk, (curPKE, ad), σ′ ⊕ PRG(kS))
32 (k, rurPKE, rurSIG)← H(kH, c, ad)
33 vk← urSIG.nextVk(vknext, rurSIG)
34 dk← urPKE.nextDk(dk, rurPKE)
35 stR ← (dk, vk)
36 If k = ⊥ :
37 Return
38 (c′, ad′, kS)← cadk[r]
39 If (c, ad) ̸= (c′, ad′) :
40 is← fal
41 If is = fal ∧ ∃s∗ : (_, c, _) = cadk[s∗]:
42 Stop with 1
43 If (c, ad) = (c′, ad′) :
44 r ← r + 1
45 Return

Oracle RR
46 stS $← RKE.rr(stS)

Fig. 21. Games for the proof of Theorem 4.

Experiment Exp0. This game is equivalent to RECOVRKE, where H is modeled as a standard lazy sampled
random oracle.

37

Experiment Exp1. In this game we exclude that the adversary can predict the output of the random
oracle. To this end the random oracle aborts if queried on the same value twice. To mitigate trivial aborts
of the game when the game itself should call the random oracle multiple times on the same value we
replace all but the first call on a distinct value with an access to the data structure underlying the random
oracle holding the lazy sampled values.

Since the outputs of the random oracle are uniformly at random, we can bound the probability of an
adversary distinguishing both games as,∣∣Pr

[
GA

0 ⇒ 1
]
− Pr

[
GA

1 ⇒ 1
]∣∣ ≤ qS + qH

2λ
.

Experiment Exp2. In this game we exclude collisions in the random oracle. To this end the random oracle
aborts if queried on two distinct outputs which would result in the same output.

Since the outputs of the random oracle are uniformly at random, we can bound the probability of an
adversary distinguishing both games as,

∣∣Pr
[
GA

1 ⇒ 1
]
− Pr

[
GA

2 ⇒ 1
]∣∣ ≤ (qS + qCS)2

2λ
.

We now argue that the adversary cannot break RECOVRKE security.
By the definition of RECOVRKE security, there exists some (minimum) sender stage s = i such that

cadk[s]← (c, ad, k), and a receiver stage r = i such that Rcv(c′, ad′) is called and (c, ad) ̸= (c′, ad′). For
the adversary to win there must exist some sender stage s = s∗ such that (c∗, _, _) = cadk[s∗] and if
Rcv(c∗, ad∗) is called when receiver stage r = r∗ such that r∗ > i, then the receiver computes k ̸= ⊥.

Note that in stage s = i the sender computes (k, rurPKE, rurSIG) ← H(kH, c, ad), and the receiver
computes (k′, r′

urPKE, r′
urSIG)← H(k′

H, c′, ad′). Since, by the previous game, we abort when collisions occur
in the random oracle and H is modelled as a random oracle, it follows that if (c, ad) ̸= (c′, ad′), then
rurSIG ̸= r′

urSIG, and are random and independent values. Similarly, rurPKE ̸= r′
urPKE are random and

independent values.
As proven earlier, urSIG signatures do not verify under uniformly random keys. The sender computes

the next signing key sk ← urSIG.nextSk(sknext, rurSIG), and the receiver computes the next verification
key as vk← urSIG.nextVk(vknext, r′

urSIG). Since rurSIG, r′
urSIG are both uniformly random and independent

values, vk is now independent of sk, and thus the receiver in stage r = i + 1 will not verify any signature
created by the sender in stage s = i + 1. Since the signature accepted by the receiver in stage r = i + 1
differs from the signature created by the sender in stage i + 1, then the ciphertext created by the sender in
stage s = i + 1 differs from the ciphertext received by the receiver in stage r = i + 1 (since, if σ ̸= σ′, but
σ⊕PRG(kS) = σ′⊕PRG(k′

S), then kS ̸= k′
S and finally curPKE = urPKE.enc(ek, (kH, kS , vknext)) ̸= c′

urPKE).
Applying the same argument, it follows that the sender’s computed sk in stage s = i + 1 is independent
of the vk generated by the receiver in stage r = i, and it follows that no sender ciphertext generated in
stage s = i′ ̸= i will verify in receiver stage r = i.

We now demonstrate that the adversary cannot cause the verification key vk used by the receiver
in stage r = i + 1 to be set to a previous receiver verification key vk. If so, then by applying the
same arguments as before, it follows that the sender’s signatures in all previous stages s = i′′ < i
cannot verify in stage r = i + 1, and thus the receiver will never output k ̸= ⊥ when receiving (c, ad)
where c was output by the sender. The proof is straightforward: to cause a collision on some previously
computed vk, the adversary must generate a kH value such that vk← urSIG.nextVk(vknext, rurSIG) where
(k, rurPKE, rurSIG) ← H(kH, c, ad). Thus, the adversary must have previously queried kH to the random
oracle, which we exclude in Game 1. Thus, the adversary cannot generate such a kH value.

Thus, the adversary cannot cause the receiver to accept in stage r = i + 1 by replaying an old
ciphertext output by the sender, nor will the sender ever generate a new signature that will verify under
the verification key vk used in stage r = i + 1. We note that these arguments apply to all stage r = i∗ > i,
and thus in Game 2 we have that the adversary cannot break RECOVRKE security.

F.3 Authenticity

Intuition. In this proof we reduce the AUTH security of RKE to the SUF-CMA security of urSIG. Since our
construction samples a new urSIG instance at every call to oracle Snd, we start by doing a standard multi

38

instance to single instance reduction. At a randomly selected call to oracle Snd we simulate the underlying
urSIG instance with the oracles of the SUF-CMA security experiment. If the adversary breaks AUTH at
exactly that simulated urSIG session the reduction can extract from that a solution in the SUF-CMA
security experiment of urSIG.

Theorem 5 (Authenticity of RKE[urPKE, urSIG, H, PRG]). Let urPKE be a correct updatable and
randomizable public key encryption scheme, urSIG a correct, updatable and randomizable one-time signature
and PRG a pseudorandom generator. Let H : {0, 1}∗ 7→ 2λ ×RurPKE ×RurSIG be a programmable random
oracle, where RurPKE and RurSIG are the randomization spaces of urPKE and urSIG, respectively. If urSIG
is OT-SUF-CMA secure, H is OW, and RKE[urPKE, urSIG, H, PRG] is (qS + qH , ε)-RECOV we show that
RKE[urPKE, urSIG, H, PRG] is AUTH, with

AdvAUTH
RKE ≤ qS · AdvSUF-CMA

urSIG + 1
2λ

,

where qH and qS are the number of calls to the random oracle and oracle Sign, respectively.

Intuition. In this proof we reduce the AUTH security of RKE to the SUF-CMA security of urSIG. Since our
construction samples a new urSIG instance at every call to oracle Snd, we start by doing a standard multi
instance to single instance reduction. At a randomly selected call to oracle Snd we simulate the underlying
urSIG instance with the oracles of the SUF-CMA security experiment. If the adversary breaks AUTH at
exactly that simulated urSIG session the reduction can extract from that a solution in the SUF-CMA
security experiment of urSIG.

Proof. Let AUTH′ be the same security experiment as AUTH, where the only difference is that AUTH′

aborts if the adversary is able to predict the output of the random oracle. This happens with probability
at most 1

2λ .
Let A be an adversary in the AUTH′ experiment of RKE. We show how to construct an adversary B

against the SUF-CMA security of urSIG. To embed the urSIG instance, adversary B embeds the instance
at an index uniformly at random in the number of queries to oracle Snd. Thus adversary B samples an
index i∗ $← [qS] and samples for all calls to Snd the states according to the construction. The signature
in the i∗th call to oracle Snd however will be replaced by the output of the Sign oracle adversary B is
supplied with by the SUF-CMA security experiment.

For the simulation to be well-distributed the signature embedded in the i∗th call to Snd must verify
under the current verification key vk in the receivers state. We proceed by computing the randomness
rurSIG such that urSIG.nextVk(vk, rurSIG) outputs vk∗ and program the random oracle to output that rurSIG.
By the verification key randomization smoothness there exists an algorithm findUpdate which on input vk∗

outputs well distributed rurSIG and vk s.t. vk∗ = urSIG.nextVk(vk, rurSIG). We program the random oracle
on kH, c, ad to output (_, rurSIG, _). Since vk′ is uniformly at random, rurSIG and vk are well-distributed.

If adversary A produces a forgery while vk∗ is part of stR then we can extract easily.

F.4 Key Indistinguishability

Theorem 6 (Key Indistinguishabilty of RKE[urPKE, urSIG, H, PRG]). Let urPKE be a correct updat-
able and randomizable public key encryption scheme, urSIG a correct updatable and randomizable one-time
signature and PRG a pseudorandom generator. Let H : {0, 1}∗ 7→ 2λ ×RurPKE ×RurSIG be a programmable
random oracle, where RurPKE and RurSIG are the randomization spaces of urPKE and urSIG, respectively.
For any adversary A against KIND security of RKE[urPKE, urSIG, H, PRG], there exists an adversary B
against IND-C security of urPKE and an adversary C against PRG such that

AdvKIND
A,RKE ≤ (qS + qCS)

(
AdvIND-C

B,urPKE + AdvC,PRG

)
+ 1

2λ
.

Proof. Consider the sequence of games in Fig. 23.

Experiment Exp0. This game is the same game as IND-Cb
RKE, where oracle Rcv is changed only notationally.

Since k ̸= ⊥ in IND-Cb
RKE will only be true if the one time signature verifies, the adversary can not

distinguish the rewriting of Rcv.

39

Adversary BSign(·),Up(vk∗)
00 i∗ $← [qS]
01 cad := [·], xS := ∅
02 (s, r)← (0, 0)
03 (ek, dk) $← urPKE.gen
04 (vk, sk) $← urSIG.gen
05 stS← (ek, sk)
06 stR ← (dk, vk)
07 If i∗ = 0:
08 stR ← (dk, vk∗)
09 Invoke A
10 Stop with 0

Oracle RR
11 (ek, sk)← stS
12 ek $← urPKE.rr(ek)
13 If r = i∗ :
14 Up
15 Else :
16 sk $← urSIG.rr(sk)
17 stS← (ek, sk)
18 Return

Oracle ExposeS

19 xS ∪← {s}
20 Return stS

Oracle Snd(ad)
21 (ek, sk)← stS
22 sk′ ← sk
23 kH, kS

$← K
24 (vk′, sk′)← urSIG.gen
25 If s = i∗ :
26 (R, vk′)← findUpdate(vk∗)
27 Program H to R on (kH, c, ad)
28 curPKE

$← urPKE.enc(ek, (kH, kS , vk′))
29 If r = i∗ :
30 σ ← Sign(curPKE, ad)
31 Else
32 σ $← urSIG.sig(sk, (curPKE, ad))
33 c← (curPKE, σ ⊕ PRG(kS))
34 (k, rurPKE, rurSIG)← H(kH, c, ad)
35 sk← urSIG.nextSk(sk′, rurSIG)
36 ek← urPKE.nextEk(ek, rurPKE)
37 stS← (ek, sk)
38 cad ∪← (c, ad, sk′)
39 Return (c, k)

Oracle ExposeR

40 Return stR

Oracle Rcv(c, ad)
41 k ← ⊥
42 (dk, vk)← stR
43 (curPKE, σ′)← c
44 (kH, kS , vk′)← urPKE.dec(dk, curPKE)
45 Require (kH, kS , vk′) ̸= ⊥
46 If urSIG.vfy(vk, (curPKE, ad), σ′ ⊕ PRG(kS))
47 (k, rurPKE, rurSIG)← H(kH, c, ad)
48 vk← urSIG.nextVk(vk′, rurSIG)
49 dk← urPKE.nextDk(dk, rurPKE)
50 stR ← (dk, vk)
51 If is = tru ∧ (c, ad) ̸= cad[r] :
52 is← fal
53 If r ̸∈ xS : Stop with 1
54 r ← r + 1
55 Return

Random Oracle H(x)
56 If h[x] ̸= ⊥ :
57 Return h[x]
58 h[x] $← H
59 Return h[x]

Fig. 22. Adversary B against SUF-CMA for the proof of Theorem 5.

Experiment Exp1. In this game we replace the outputs of random oracle H by uniform random. Since kh

is random, the output of hash function in RKE.snd is unpredictable. So,∣∣Pr
[
GA

0 ⇒ 1
]
− Pr

[
GA

1 ⇒ 1
]∣∣ ≤ 1

2λ
.

Experiment Exp2. In this game we replace the randomized instances of the RKE states with independently
sampled instances. By qS + qCS times application of Instance independence of urPKE, this is undetectable
for the adversary. Since rurSIG is uniformly at random, all independently sampled urSIG instances stay
independent. Since Instance independence holds statistically,

Pr
[
GA

1 ⇒ 1
]

= Pr
[
GA

2 ⇒ 1
]

.

Note that since the individual RKE instances are independent, any corruption of a receiver state does
not reveal anything about prior receiver states and any sender state corruption does not reveal anything
about prior and future sender states.

Experiment Exp3. in this game we replace the encapsulation output of urPKE with uniform randomness
and subsequently the whole ciphertext c with uniform randomness. To show that no adversary is able
to detect this we distinguish the behavior of the adversary. If the adversary queries at any point oracle
ExposeR then the adversary can not distinguish statistically. If at query time of ExposeR the in sync
variable is true then all challenge ciphertexts must be received. Since after a successful receive the game
receiver state is statistically independent of prior states, the adversary learns only a state which can
not decrypt any prior challenge ciphertexts. Since any call to ExposeR while is = tru sets the exposed
receiver variable xR to be always true, there can no be future calls to oracle ChallSnd. So all future
outputs of the game are statistically independent of bit b. If at query time of ExposeR the in sync variable
is set to false then we further distingusih the relative order of impersonation an call to oracle ChallSnd. If
the adversary i) impersonated, ii) called oracle ChallSnd→ c, iii) called oracle ExposeR → stR then by
instance independence stR is statistically independent from the game’s sender state at time ii). Thus the
output of oracle ExposeR can not be used to decrypt c. If the adversary i) called oracle ChallSnd→ c,
ii) impersonated, iii) called oracle ExposeR → stR then by instance independence stR is statistically

40

Game KINDb
RKE(A) = G0, G1, G2, G3

00 · I ← [·]
01 · For i ∈ [qS + qCS] :
02 · I.append(RKE.init())
03 · (stS, stR)← I[s]
04 · cad← [·]
05 · (cc, rcvd)← (∅, ∅)
06 · is← tru
07 · xR ← fal
08 · (s, r)← (0, 0)
09 b′ $← A
10 Stop with b′

Oracle Snd(ad)
11 (ek, sk)← stS
12 kH, kS

$← K
13 (vk′, sk′)← urSIG.gen
14 curPKE

$← urPKE.enc(ek, (kH, kS , vk′))
15 σ $← urSIG.sig(sk, (curPKE, ad))
16 (stS′, (sk′, vk′))← I[s] //G2
17 c← (curPKE, σ ⊕ PRG(kS))
18 (k, rurPKE, rurSIG)← H(kH, c, ad)
19 (k, rurPKE, rurSIG) $← (G×K ×K) //G1
20 sk← urSIG.nextSk(sk′, rurSIG)
21 ek← urPKE.nextEk(ek, rurPKE)
22 stS← (ek, sk)
23 · cad[s]← (c, ad)
24 · s← s + 1
25 Return (c, k)

Oracle RR
26 ek $← urPKE.rr(ek)
27 Return

Oracle ExposeS

28 Return stS

Oracle ChallSnd(ad)
29 · Require xR ̸= tru
30 (ek, sk)← stS
31 kH, kS

$← K
32 (vk′, sk′)← urSIG.gen
33 (stS′, (sk′, vk′))← I[s] //G2
34 curPKE

$← urPKE.enc(ek, (kH, kS , vk′))
35 curPKE

$← G2 //G3
36 σ $← urSIG.sig(sk, (curPKE, ad))
37 c← (curPKE, σ ⊕ PRG(kS))
38 c← (curPKE, $← S) //G3
39 (k, rurPKE, rurSIG)← H(kH, c, ad)
40 (k, rurPKE, rurSIG) $← (G×K ×K) //G1
41 sk← urSIG.nextSk(sk′, rurSIG)
42 ek← urPKE.nextEk(ek, rurPKE)
43 stS← (ek, sk)
44 · cad[s]← (c, ad)
45 · cc ∪← {s}
46 · s← s + 1
47 If b = 1: k $← K
48 Return (c, k)

Oracle Rcv(c, ad)
49 k ← ⊥
50 (dk, vk)← stR
51 (curPKE, σ′)← c
52 (kH, kS , vknext)← urPKE.dec(dk, curPKE)
53 Require (kH, kS , vknext) ̸= ⊥
54 If urSIG.vfy(vk, (curPKE, ad), σ′ ⊕ PRG(kS))
55 (k, rurPKE, rurSIG)← H(kH, c, ad)
56 vk← urSIG.nextVk(vknext, rurSIG)
57 dk← urPKE.nextDk(dk, rurPKE)
58 stR ← (dk, vk)
59 · If (c, ad) ̸= cad[r] :
60 · is← fal
61 · If (c, ad) = cad[r] :
62 · rcvd ∪← {r}
63 · r ← r + 1
64 If is = tru :
65 (_, stR)← I[r] //G2
66 Return

Oracle ExposeR

67 · If is = tru:
68 · Require cc ⊆ rcvd
69 · xR ← tru
70 Return stR

Fig. 23. Games for the proof of Theorem 6.

independent from the game’s sender state at time i). Thus the output of oracle ExposeR can not be used
to decrypt c.

If the adversary does not call oracle ExposeR at all then we show in Lemma 13 how the hardness of
distinguishing between G2 and G3 is bounded by AdvIND-C

B,urPKE + AdvC,PRG.

Lemma 13. The advantage of any PPT adversary distinguishing between games G2 and G3 is bounded
by (qS + qCS) ·

(
AdvIND-C

B,urPKE + AdvC,PRG

)
.

Proof. Let A be an adversary distinguishing G2 and G3. Assume that A does not call oracle ExposeR.
We then show how to construct an adversay B against IND-C of urPKE.

41

To this end we give a hybrid argument where hybrids are defined over every independent RKE instance.
So in Fig. 24 we introduce hybrids Hq, where q ∈ [qS + qCS]. We define the hybrids s.t. H0 := G3 and
HqS+qCS

:= G2.
We show in Fig. 25 how to construct adversaries Bq which bound the advantage of any adversary

distinguishing hybrids Hq and Hq+1, with the advantage of breaking IND-CurPKE.
In the following we show that if adversary Bq is executed in the real or random version of IND-CurPKE

then Bq simulates the hybrid Hq or Hq+1, respectively.
Hybrid Hq expects after the q − 1th call to oracle Snd that the underlying sender state is independent

from previous sender states. Thus adversary Bq can forward all oracles calls to the oracles provided by
the IND-CurPKE security experiment up until adversary A queries Snd for the qth time.

Oracle ChallSnd provided by IND-Cb
urPKE returns only if b = 0, ciphertexts which are a function of

its underlying encryption key ek. Thus the output of ChallSnd is consistent with the outputs of oracles
RR, ExposeS and ChallExposeS .

Oracle Rcv behaves as follows. If the adversary calls oracle Rcv after the q-th successful receive of a
ciphertext, adversary B forwards the underlying curPKE ciphertext to its decryption oracle only if is = tru.
Only if there were no impersonations in KINDRKE, the q-th updated receiver state would match the q-th
updated sender state. If there was an impersonation then oracle Rcv advances the receiver state according
to the construction. If the adversary calls oracle Rcv on a challenge then oracle Dec returns the adversaries
input to a call to oracle ChallSnd. Thus the output of Dec is well-defined and the state progression of the
receiver state is indistinguishable.

Finally, since kS is now statistically independent from curPKE, by PRG security of PRG, the adversary
can not distinguish.

In total,

AdvKIND
A,RKE ≤ (qS + qCS)

(
AdvIND-C

B,urPKE + AdvC,PRG

)
+ 1

2λ
.

F.5 Anonymity

Proof (Theorem 1). Consider the sequence of games in Fig. 26.

Experiment Exp0. This game is equivalent to ANONb
RKE.

Experiment Exp1. In this game we replace the outputs of random oracle H by uniform random. Since kh

is random, the outputs of hash function in RKE.snd are random. So,∣∣Pr
[
GA

0 ⇒ 1
]
− Pr

[
GA

1 ⇒ 1
]∣∣ ≤ 1

2λ
.

Experiment Exp2. In this game we replace the randomized instances of the RKE states with independently
sampled instances. By qS + qCS times application of Instance independence of urPKE, this is undetectable
for the adversary. Since rurSIG is uniformly at random, all independently sampled urSIG instances stay
independent. Since Instance independence holds statistically,

Pr
[
GA

1 ⇒ 1
]

= Pr
[
GA

2 ⇒ 1
]

.

Note that since the individual RKE instances are independent any corruption of a receiver state does
not reveal anything about prior receiver states and any sender state corruption does not reveal anything
about prior and future sender states.

Experiment Exp3. This game always outputs the random utopian world output in oracle ChallExposeR.
We now argue that the adversary can not distinguish this game from the prior game. Therefore we first
exclude the case that the adversary did not call ChallExposeR. If so, the adversary clearly can not
distinguish between G2 and G3. Further, if the adversary were to call ChallExposeR more than once then
this would constitute a trivial attack.

Let the adversary w.l.o.g. call ChallExposeR on some instance. By definition of our requirements for
trivial attacks there must be no unreceived ciphertexts output by either Snd or ChallSnd. Thus there is

42

Hybrids Hq

00 · I ← [·]
01 · For i ∈ [qS + qCS] :
02 · I.append(RKE.init())
03 · i← 0
04 · (stS, stR)← I[s]
05 · cad← [·]
06 · (cc, rcvd)← (∅, ∅)
07 · is← tru
08 · xR ← fal
09 · (s, r)← (0, 0)
10 b′ $← A
11 Stop with b′

Oracle Snd(ad)
12 (ek, sk)← stS
13 kH, kS

$← K
14 (vk′, sk′)← urSIG.gen
15 curPKE

$← urPKE.enc(ek, (kH, kS , vk′))
16 σ $← urSIG.sig(sk, (curPKE, ad))
17 (stS′, (sk′, vk′))← I[s]
18 c← (curPKE, σ ⊕ PRG(kS))
19 (k, rurPKE, rurSIG)← H(kH, c, ad)
20 (k, rurPKE, rurSIG) $← (G×K ×K)
21 stS← stS′

22 · cad[s]← (c, ad)
23 · s← s + 1
24 Return (c, k)

Oracle H(x)
25 If r[x] ̸= ⊥ :
26 Return r[x]
27 r[x] $← G×K ×K
28 If ∃x′ ̸= x s.t. r[x] = r[x′] :
29 ABORT
30 Return r[x]

Oracle RR
31 (ek, sk)← stS
32 If s ≤ q :
33 ek $← urPKE.rr(ek)
34 If s ̸= q :
35 ek $← E
36 sk $← urSIG.rr(sk)
37 stS← (ek, sk)
38 Return stS
39 Return

Oracle ExposeS

40 Return stS

Oracle ChallSnd(ad)
41 · Require xR ̸= tru
42 (ek, sk)← stS
43 kH, kS

$← K
44 (vk′, sk′)← urSIG.gen
45 (stS′, (sk′, vk′))← I[s]
46 curPKE

$← urPKE.enc(ek, (kH, kS , vk′))
47 If s > q :
48 curPKE

$← urPKE.enc(ek, $← K)
49 σ $← urSIG.sig(sk, (curPKE, ad))
50 c← (curPKE, σ ⊕ PRG(kS))
51 (k, rurPKE, rurSIG)← H(kH, c, ad)
52 (k, rurPKE, rurSIG) $← (G×K ×K)
53 stS← stS′

54 · cad[s]← (c, ad)
55 · cc ∪← {s}
56 · s← s + 1
57 Return (c, k)

Oracle Rcv(c, ad)
58 k ← ⊥
59 (dk, vk)← stR
60 (curPKE, σ′)← c
61 (kH, kS , vknext)← urPKE.dec(dk, curPKE)
62 Require (kH, kS , vknext) ̸= ⊥
63 If urSIG.vfy(vk, (curPKE, ad), σ′ ⊕ PRG(kS))
64 (k, rurPKE, rurSIG)← H(kH, c, ad)
65 vk← urSIG.nextVk(vknext, rurSIG)
66 dk← urPKE.nextDk(dk, rurPKE)
67 stR ← (dk, vk)
68 · If (c, ad) ̸= cad[r] :
69 · is← fal
70 · If (c, ad) = cad[r] :
71 · rcvd ∪← {r}
72 · r ← r + 1
73 If is = tru :
74 (_, stR)← I[r]
75 Return

Oracle ExposeR

76 · If is = tru:
77 · Require cc ⊆ rcvd
78 · xR ← tru
79 Return stR

Fig. 24. Hybrids Hq for the proof of Lemma 13.

nothing besides impersonation ciphertexts or not authentic ciphertexts for the adversary to deliver to Rcv.
By definition of the requirements against matching trivial attacks, the adversary must not have corrupted
the sender before calling oracle ChallExposeR → stR, such that the prior exposed sender state and stR
match in the real world. Since the adversary does not know an exposed sender state which could have
been used to impersonate the real utopian game, the real world utopian game can not be impersonated
before and after calling oracle ChallExposeR.

We now distinguish the two cases whether the random world was impersonated. Assume the adversary
did not attempt to impersonate the random world execution and calls oracle ChallExposeR. The game

43

Adversary BSnd,ChallSnd,RR,Dec
q (ek∗)

00 · I ← [·]
01 · For i ∈ [qS + qCS] :
02 · I.append(RKE.init())
03 · (stS, stR)← I[s]
04 · cad← [·]
05 · (cc, rcvd)← (∅, ∅)
06 · is← tru
07 · xR ← fal
08 · (s, r)← (0, 0)
09 b′ $← A
10 Stop with b′

Oracle Snd(ad)
11 (ek, sk)← stS
12 kH, kS

$← K
13 (vk′, sk′)← urSIG.gen
14 curPKE

$← urPKE.enc(ek, (kH, kS , vk′))
15 σ $← urSIG.sig(sk, (curPKE, ad))
16 (stS′, (sk′, vk′))← I[s]
17 c← (curPKE, σ ⊕ PRG(kS))
18 (k, rurPKE, rurSIG)← H(kH, c, ad)
19 (k, rurPKE, rurSIG) $← (G×K ×K)
20 stS← stS′

21 · cad[s]← (c, ad)
22 · s← s + 1
23 Return (c, k)

Oracle RR
24 If s = q :
25 RR()
26 Else:
27 stS← RKE.rr(stS)
28 Return

Oracle ExposeS

29 If s = q :
30 (_, sk)← stS
31 return (ek∗, sk)
32 Return stS

Oracle ChallSnd(ad)
33 · Require xR ̸= tru
34 (ek, sk)← stS
35 kH, kS

$← K
36 (vk′, sk′)← urSIG.gen
37 (stS′, (sk′, vk′))← I[s]
38 curPKE

$← urPKE.enc(ek, (kH, kS , vk′))
39 If s = q :
40 curPKE

$← ChallSnd(kH, kS , vk′)
41 If s > q :
42 curPKE

$← urPKE.enc(ek, $← K)
43 σ $← urSIG.sig(sk, (curPKE, ad))
44 c← (curPKE, σ ⊕ PRG(kS))
45 (k, rurPKE, rurSIG)← H(kH, c, ad)
46 (k, rurPKE, rurSIG) $← (G×K ×K)
47 stS← stS′

48 · cad[s]← (c, ad)
49 · cc ∪← {s}
50 · s← s + 1
51 Return (c, k)

Oracle Rcv(c, ad)
52 k ← ⊥
53 (dk, vk)← stR
54 (curPKE, σ′)← c
55 If r = q ∧ is = tru :
56 (kH, kS , vknext)← Dec(curPKE)
57 Else
58 (kH, kS , vknext) $← urPKE.dec(dk, curPKE)
59 Require (kH, kS , vknext) ̸= ⊥
60 If urSIG.vfy(vk, (curPKE, ad), σ′ ⊕ PRG(kS))
61 (k, rurPKE, rurSIG)← H(kH, c, ad)
62 vk← urSIG.nextVk(vknext, rurSIG)
63 dk← urPKE.nextDk(dk, rurPKE)
64 stR ← (dk, vk)
65 · If (c, ad) ̸= cad[r] :
66 · is← fal
67 · If (c, ad) = cad[r] :
68 · rcvd ∪← {r}
69 · r ← r + 1
70 If is = tru :
71 (_, stR)← I[r]
72 Return

Oracle ExposeR

73 · If is = tru:
74 · Require cc ⊆ rcvd
75 · xR ← tru
76 Return stR

Fig. 25. Adversary Bq against IND-C security of urPKE for the proof of Lemma 13.

states of both utopian games fulfill correctness. Thus the adversary must not call ExposeS or ChallExposeS

for the same instance prior to the call to ChallExposeR. Further, the adversary must not call ExposeS

or ChallExposeS after the call to ChallExposeR(violates matching). Since the adversary must not call
any sender state exposure oracles and since there are no non-trivial, by robustness the adversary can
not call oracle Rcv s.t. the game’s receiver state changes. Since the adversary must not call any sender
state exposure oracles, oracle RR does not yield any useful information and is independent of the game’s
receiver state. Since the adversary can only call oracle RR after the only call to oracle ChallExposeR it

44

Game Gb
0 = ANONb, Gb

1, Gb
2, G0

3, G0
4, G0

5, G0
6, G0

7, G0
8

00 I ← [·]
01 For i ∈ [qS + qCS] :
02 I.append(RKE.init())
03 (stS, stR)← I[0]
04 ceStR← ⊥
05 b′ $← A
06 Stop with b′

Oracle Snd(ad)
07 (stS, _)← I[sb] //G2
08 (stSnext, (_, vknext))← I[sb + 1] //G2
09 (stSnext, (_, vknext))← I[s1 + 1] //G8
10 (ek, sk)← stS
11 kH, kS

$← K
12 (vknext, sknext)← urSIG.gen
13 curPKE

$← urPKE.enc(ek, (kH, kS , vknext))
14 σ $← urSIG.sig(sk, (curPKE, ad))
15 c← (curPKE, σ ⊕ PRG(kS))
16 (k, rurPKE, rurSIG)← H(kH, c, ad)
17 sk← urSIG.nextSk(sknext, rurSIG)
18 ek← urPKE.nextEk(ek, rurPKE)
19 stS← (ek, sk)
20 stS← stSnext //G2
21 Return (c, k)

Oracle Rcv(c, ad)
22 k ← ⊥
23 (dk, vk)← stR
24 (_, (dk, vk))← I[rb] //G2
25 (_, (dk, vk))← I[r1] //G8
26 (curPKE, σ′)← c
27 (kH, kS , vknext)← urPKE.dec(dk, curPKE)
28 Require (kH, kS , vknext) ̸= ⊥
29 If urSIG.vfy(vk, (curPKE, ad), σ′ ⊕ PRG(kS))
30 (k, rurPKE, rurSIG)← H(kH, c, ad) //G0
31 (k, rurPKE, rurSIG)← h[kH, c, ad] //G1
32 vk← urSIG.nextVk(vknext, rurSIG)
33 dk← urPKE.nextDk(dk, rurPKE)
34 stR ← (dk, vk)
35 (_, stR)← I[rb + 1] //G2
36 (_, stR)← I[r1 + 1] //G8
37 Return Jk ̸= ⊥K :

Oracle ChallSnd(ad)
38 (stS, _)← I[sb] //G2
39 (stS, _)← I[s1] //G8
40 (stSnext, (_, vknext))← I[sb + 1] //G2
41 (stSnext, (_, vknext))← I[s1 + 1] //G8
42 If b = 1:
43 (stS, _) $← RKE.init
44 (ek, sk)← stS
45 kH, kS

$← K
46 (vknext, sknext)← urSIG.gen
47 curPKE

$← urPKE.enc(ek, (kH, kS , vknext))
48 curPKE

$← G2 //G4
49 σ $← urSIG.sig(sk, (curPKE, ad))
50 c← (curPKE, σ ⊕ PRG(kS))
51 c← (curPKE, $← S) //G5
52 (k, rurPKE, rurSIG)← H(kH, c, ad)
53 sk← urSIG.nextSk(sknext, rurSIG)
54 ek← urPKE.nextEk(ek, rurPKE)
55 If b = 0:
56 stS← (ek, sk)
57 stS← stSnext //G2
58
59 Return (c, k)

Oracle H(x)
60 If h[x] ̸= ⊥ :
61 ABORT //G1
62 Return h[x]
63 h[x] $← G×K ×K
64 Return h[x]

Oracle RR
65 (ek, sk)← stS
66 ek $← urPKE.rr(ek)
67 sk $← urSIG.rr(sk)
68 stS← (ek, sk)
69 Return

Oracle ExposeS

70 Return stS

Oracle ChallExposeS

71 (ek, sk)← stS
72 ((ek′, sk′), ceStR) $← RKE.init()
73 Return (ek′, sk′) //G7
74 Return (ek′, sk) //G6
75 If b = 0:
76 Return stS
77 Return stS′

Oracle ExposeR

78 Return stR

Oracle ChallExposeR

79 (_, stR′) $← RKE.init()
80 Return stR′ //G3
81 If b = 0:
82 Return stR
83 Return stR′

Fig. 26. Games for the proof of Theorem 1.

can not learn any differences in the receiver state. Thus the output of oracle ChallExposeR is statistically
indistinguishable from random.

Assume the adversary tries to impersonate the random world and then call oracle ChallExposeR.
Recall that for the adversary to impersonate the random world it must expose the sender state of the
random world utopian game and compute the RKE.snd function on it. By definition of the requirements for
matching trivial attacks, the adversary must not call any expose sender oracle after a call to ChallExposeR.
So the sender corruption must take place beforehand. Recall that prior to calling oracle ChallExposeR,
the adversary must not know the real world sender state matching the real world receiver state. So prior
to exposing the receiver, the adversary must advance the real world utopian game’s receiver state to the
point such that an call to ChallExposeR can not be used any more to match that previously exposed
sender state in the real world. In order to impersonate the random world, the adversary must not advance
the random world utopian games’s receiver state and must corrupt the sender state with an expose
oracle which also returns the random world utopian game’s receiver state. Thus the only strategy left
for the adversary is to corrupt the sender via a call to oracle ExposeS , call oracle ChallSnd(ad)→ c on
any additional data ad and deliver all ciphertexts including (c, ad) in order to oracle Rcv before calling
oracle ChallExposeR. Any future calls to oracles ExposeS and ChallExposeS are prohibited, as their
outputs match the receiver state the adversary learned as output of ChallExposeR only in the real world.
Since the adversary must not call any sender state exposure oracles, oracle RR does not yield any useful
information and is independent of the game’s receiver state. Thus the outputs the adversary learns from
oracle ChallExposeR are independent from any other value the adversary sees.

45

Since the output of oracle ChallExposeR is statistically independent of every other output, Pr
[
GA

2 ⇒ 1
]

=
Pr
[
GA

3 ⇒ 1
]

.

Experiment Exp4. In this game we replace values curPKE in oracle ChallSnd with values drawn uniformly
at random from the ciphertext space. By a standard hybrid argument over the number of queries to
oracles Snd and ChallSnd, we show in Lemma 14 that the advantage of an adversary distinguishing the
real versions of this game from the previous games is upper bounded as,

∣∣Pr
[
GA

3 ⇒ 1
]
− Pr

[
GA

4 ⇒ 1
]∣∣ ≤

(qS + qCS) · AdvANON
urPKE.

Note that the random world versions are already statistically equivalent.
To show that no adversary can distinguish this game and the prior game we argue as follows. We first

exclude the case where the adversary does not call oracle ExposeR. If so, the adversary can not observe
any state changes due to impersonations. So for this case we give an reduction of the indistinguishability
of both games to ANON of urPKE in Lemma 14.

Assume the adversary calls oracle ExposeR on some instance. Since the utopian game is run on
independent RKE instances, the exposure of the receiver returns a receiver state which is statistically
independent from prior receiver states.

We now distinguish all combinations of impersonations. If there were no impersonations at all then
by the definitions of our requirements against decryptability trivial attacks, all challenge ciphertexts
must be received successfully before calling ExposeR. In our construction this means that the current
receiver state instance must be statistically independent of prior instances. Thus if the adversary calls
ExposeR on some instance then the adversary must not call oracle ChallSnd on this instance and any
subsequent instances. Further, by definition of the trivial attacks there must be no prior exposed sender
states which only match in one world the current receiver state. Since the current receiver state is instance
separated this translates in our construction to the requirement that the adversary must not have called
ChallExposeS on this and any subsequent instance. Since the adversary neither called ChallSnd nor
ChallExposeS on this or any subseqnet instances, the adversary can not distinguish.

If the adversary impersonated exclusively one world then the adversary must have known a sender
state which matches the current receiver state in exclusively one world. By definition of our requirements
against trivial matching attacks the adversary never learns such a sender state. Thus this case does not
occur.

If the adversary impersonated both worlds then the receiver states in both worlds can neither be used
to decrypt ciphertexts produced in any world nor to match sender states in any world. Thus the outputs
of oracles ChallSnd and ChallExposeS are statistically indistingusihable from uniform randomness.

Lemma 14. Let A be an adversary which distinguishes games G3 and G4. We show how to construct an
adversary B, s.t. the advantage of adversary A is upper bounded by (qS + qCS) · AdvANON

urPKE.

Proof. Let A be an adversary distinguishing G3 and G4. Assume that A does not call oracle ExposeR.
We then show how to construct an adversay B against ANON of urPKE.

To this end we give a hybrid argument where hybrids are defined over every independent RKE instance.
So in Fig. 27 we introduce hybrids Hq, where q ∈ [(qS + qCS)]. We define the hybrids s.t. H0 := G4 and
H(qS+qCS) := G3.

We show in Fig. 28 how to construct adversaries Bq which bound the advantage of any adversary
distinguishing hybrids Hq and Hq+1, with the advantage of breaking ANONurPKE.

In the following we show that if adversary Bq is executed in the real or random version of ANONurPKE
then Bq simulates the hybrid Hq or Hq+1, respectively.

Since every call to oracle Snd and ChallSnd makes the sender state statistically independent from
previous sender states, adversary B can embed ek∗ in the sender state after the q − 1th query to oracles
Snd and ChallSnd. Adversary B checks whether the current call to oracle Snd or ChallSnd was the qth
call by comparing q and s0.

To answer queries to oracle Snd, adversary B can use ek∗ in the qth query to produce ciphertext
curPKE.

To answer queries to oracle ChallSnd, adversary B uses oracle ChallSnd provided by the ANONurPKE
security experiment.

To answer queries to oracle Rcv the adversary B does the following. We distinguish the inputs to oracle
Rcv. If the inputs to oracle Rcv are in order and there are no impersonations until the qth ciphertext
output by oracles Snd and ChallSnd then adversary B must by able to decrypt a curPKE ciphertext for the

46

decryption key matching ek∗. To do so it calls oracle Dec provided by the ANONurPKE security experiment.
To check for the qth ciphertext produced by the game, B checks whether r0 = q. Recall that r0 counts the
number of successful receive operations in the real world execution. If prior to receiving the qth ciphertext
there was an impersonation then adversary B produces the same distribution as the respective hybrid.

To simulate queries to oracles ExposeS and ChallExposeS , the adversary outputs on the qth instance
ek∗ and behaves indistinguishable from the hybrid distributions.

To simulate queries to oracle RR, adversary B behaves as follows. After the qth call to oracles Snd and
ChallSnd, the adversary randomizes the encryption key by calling oracles RR and ExposeS.

Hybrids Hq

00 I ← [·]
01 For i ∈ [qS + qCS] :
02 I.append(RKE.init)
03 (stS, stR)← I[0]
04 ceStR← ⊥
05 b′ $← A
06 Stop with b′

Oracle Snd(ad)
07 (stS, _)← I[s0]
08 (stSnext, (_, vknext))← I[s0 + 1]
09 (ek, sk)← stS
10 kH, kS

$← K
11 curPKE

$← urPKE.enc(ek, (kH, kS , vknext))
12 σ $← urSIG.sig(sk, (curPKE, ad))
13 c← (curPKE, σ ⊕ PRG(kS))
14 stS← stSnext
15 Return (c, k)

Oracle Rcv(c, ad)
16 k ← ⊥
17 (_, (dk, vk))← I[r0]
18 (curPKE, σ′)← c
19 (kH, kS , vknext)← urPKE.dec(dk, curPKE)
20 Require (kH, kS , vknext) ̸= ⊥
21 If urSIG.vfy(vk, (curPKE, ad), σ′ ⊕ PRG(kS))
22 (k, rurPKE, rurSIG)← h[kH, c, ad]
23 (_, stR)← I[r0 + 1]
24 Return Jk ̸= ⊥K :

Oracle ChallSnd(ad)
25 (stS, _)← I[s0]
26 (stSnext, (_, vknext))← I[s0 + 1]
27 If i > q :
28 (stS, _) $← RKE.init
29 (ek, sk)← stS
30 kH, kS

$← K
31 (vknext, sknext)← urSIG.gen
32 curPKE

$← urPKE.enc(ek, (kH, kS , vknext))
33 σ $← urSIG.sig(sk, (curPKE, ad))
34 c← (curPKE, σ ⊕ PRG(kS))
35 (k, rurPKE, rurSIG)← H(kH, c, ad)
36 sk← urSIG.nextSk(sknext, rurSIG)
37 ek← urPKE.nextEk(ek, rurPKE)
38 If i ≤ q :
39 stS← stSnext
40 If i > q :
41 (stS,)← I[s0]
42 Return (c, k)

Oracle H(x)
43 If h[x] ̸= ⊥ :
44 ABORT
45 Return h[x]
46 h[x] $← G×K ×K
47 Return h[x]

Oracle RR
48 (ek, sk)← stS
49 ek $← urPKE.rr(ek)
50 sk $← urSIG.rr(sk)
51 stS← (ek, sk)
52 Return

Oracle ExposeS

53 Return stS

Oracle ChallExposeS

54 Return stS

Oracle ExposeR

55 Return stR

Oracle ChallExposeR

56 (_, stR′) $← RKE.init
57 Return stR′

Fig. 27. Hybrids Hq for the proof of Lemma 14.

Experiment Exp5. In this game we replace the remaining output of oracle ChallSnd with values drawn
uniformly at random from the respective space. By a standard hybrid argument one can upper bound∣∣Pr
[
GA

4 ⇒ 1
]
− Pr

[
GA

5 ⇒ 1
]∣∣ by qCS times the advantage of breaking PRG security.

Experiment Exp6. In this game we replace the secret key output by oracle ChallExposeS with uniform
randomness. To show that the adversary can not distinguish this game from the previous game we argue
as follows.

By the same argument as given in G4 argue that if the adversary would call oracle ExposeR it would
see only statistically independent values. For the case where the adversary does not call oracle ExposeR

we give an reduction of the indistinguishability of both games to IND-R of urSIG in Lemma 15.
Thus,

∣∣Pr
[
GA

5 ⇒ 1
]
− Pr

[
GA

6 ⇒ 1
]∣∣ ≤ qCE · AdvIND-R

urSIG .

Lemma 15. The advantage of any PPT adversary distinguishing between games G5 and G6 is bounded
by qCE · AdvIND-R

urSIG .

Proof. Let A be an adversary distinguishing G5 and G6. Assume that A does not call oracle ExposeR.
We then show how to construct an adversay B against IND-R of urSIG.

47

Adversary BChallSnd,RR,Dec,ExposeS
q (ek∗)

00 I ← [·]
01 For i ∈ [qS + qCS] :
02 I.append(RKE.init)
03 (stS, stR)← I[s0]
04 ceStR← ⊥
05 b′ $← A
06 Stop with b′

Oracle Snd(ad)
07 (stS, _)← I[s0]
08 (_, (_, vknext))← I[s0 + 1]
09 (ek, sk)← stS
10 (ek, sk)← stS
11 kH, kS

$← K
12 curPKE

$← urPKE.enc(ek, (kH, kS , vknext))
13 If s0 = q :
14 curPKE

$← urPKE.enc(ek∗, (kH, kS , vknext))
15 σ $← urSIG.sig(sk, (curPKE, ad))
16 c← (curPKE, σ ⊕ PRG(kS))
17 If s0 = q − 1:
18 ((ek′, sk′), stR′)← I[s0 + 1]
19 ek′ ← ek∗

20 I[s0 + 1]← ((ek′, sk′), stR′)
21 stS← (ek′, sk′)
22 Return (c, k)

Oracle Rcv(c, ad)
23 k ← ⊥
24 (dk, vk)← stR
25 (_, (dk′′, vk′′))← I[r0 + 1]
26 (curPKE, σ′)← c
27 (kH, kS , vknext)← urPKE.dec(dk, curPKE)
28 If r0 = q ∧ imp0 = fal :
29 (kH, kS , vknext)← Dec(ctrurPKE, c)
30 Require (kH, kS , vknext) ̸= ⊥
31 If urSIG.vfy(vk, (curPKE, ad), σ′ ⊕ PRG(kS))
32 (k, rurPKE, rurSIG)← h[[kH, c, ad]
33 vk← urSIG.nextVk(vknext, rurSIG)
34 dk← urPKE.nextDk(dk, rurPKE)
35 Return Jk ̸= ⊥K :

Oracle ChallSnd(ad)
36 (stS, _)← I[s0]
37 (stSnext, (_, vknext))← I[s0 + 1]
38 If s0 > q :
39 (stS, _) $← RKE.init
40 (ek, sk)← stS
41 kH, kS

$← K
42 (vknext, sknext)← urSIG.gen
43 curPKE

$← urPKE.enc(ek, (kH, kS , vknext))
44 If s0 = q :
45 curPKE ← ChallSnd(kH, kS , vknext)
46 σ $← urSIG.sig(sk, (curPKE, ad))
47 c← (curPKE, σ ⊕ PRG(kS))
48 (k, rurPKE, rurSIG)← H(kH, c, ad)
49 sk← urSIG.nextSk(sknext, rurSIG)
50 ek← urPKE.nextEk(ek, rurPKE)
51 If s0 ≤ q :
52 stS← (ek, sk)
53 stS← stSnext
54 If s0 > q :
55 (stS, _)← I[s0]
56 If s0 = q − 1:
57 ((_, sk), _)← I[s0 − 1]
58 ek′ ← ek∗

59 stS← (ek, sk)
60 Return (c, k)

Oracle H(x)
61 If h[x] ̸= ⊥ :
62 ABORT
63 Return h[x]
64 h[x] $← G×K ×K
65 Return h[x]

Oracle RR
66 (ek, sk)← stS
67 sk $← urSIG.rr(sk)
68 If s0 ̸= q :
69 ek $← urPKE.rr(ek)
70 stS← (ek, sk)
71 If s0 = q :
72 RR()
73 ek∗ ← ExposeS
74 stS← (ek∗, sk)
75 Return

Oracle ExposeS

76 If s0 ̸= q :
77 Return stS
78 If s0 = q :
79 Return (ek∗, sk)

Oracle ChallExposeS

80 If s0 ̸= q :
81 Return stS
82 If s0 = q :
83 Return (ek∗, sk)

Oracle ExposeR

84 Return stR

Oracle ChallExposeR

85 (_, stR′) $← RKE.init
86 Return stR′

Fig. 28. Adversary Bq against ANON security of urPKE for the proof of Lemma 14.

In Fig. 29 we introduce hybrids Hq, where q ∈ [qCE]. We define the hybrids s.t. H0 := G6 and
HqCE

:= G5.

Clearly the advantage differentiating hybrids Hq and H1+q is bounded by IND-RurSIG.

Experiment Exp7. In this game we replace the encryption key output of oracle ChallExposeS with
uniform randomness. Similar to the last game we exclude the case, where the adversary called oracle
ExposeR and give a reduction of the indistinguishability of both games to IND-R of urPKE in Lemma 16.

Thus,
∣∣Pr
[
GA

6 ⇒ 1
]
− Pr

[
GA

7 ⇒ 1
]∣∣ ≤ qCE · AdvIND-R

A,urPKEEG
.

Lemma 16. The advantage of any PPT adversary distinguishing between games G6 and G7 is bounded
by qCE · AdvIND-R

A,urPKEEG
.

Proof. Let A be an adversary distinguishing G6 and G7. Assume that A does not call oracle ExposeR.
We then show how to construct an adversay B against IND-R of urSIG.

In Fig. 29 we introduce hybrids Iq, where q ∈ [qCE]. We define the hybrids s.t. I0 := G7 and IqCE
:= G6.

Clearly the advantage differentiating hybrids Iq and I1+q is bounded by IND-RurSIG.

48

Hybrid Hq, Iq
00 I ← [·]
01 For i ∈ [qS + qCS] :
02 I.append(RKE.init())
03 j ← 0
04 (stS, stR)← I[0]
05 ceStR← ⊥
06 b′ $← A
07 Stop with b′

Oracle Snd(ad)
08 (stS, _)← I[s0]
09 (_, (_, vknext))← I[s0 + 1]
10 (ek, sk)← stS
11 kH, kS

$← K
12 (vknext, sknext)← urSIG.gen
13 (stS′, (_, vknext))← I[sb]
14 curPKE

$← urPKE.enc(ek, (kH, kS , vknext))
15 σ $← urSIG.sig(sk, (curPKE, ad))
16 c← (curPKE, σ ⊕ PRG(kS))
17 (k, rurPKE, rurSIG)← H(kH, c, ad)
18 sk← urSIG.nextSk(sknext, rurSIG)
19 ek← urPKE.nextEk(ek, rurPKE)
20 stS← (ek, sk)
21 stS← stS′

22 Return (c, k)

Oracle ChallSnd(ad)
23 (stS′, _) $← RKE.init
24 (_, c, k) $← RKE.snd(stS′, ad)
25 Return (c, k)

Oracle Rcv(c, ad)
26 k ← ⊥
27 (dk, vk)← stR
28 (_, (dk′′, vk′′))← I[rb]
29 (curPKE, σ′)← c
30 (kH, kS , vknext)← urPKE.dec(dk, curPKE)
31 Require (kH, kS , vknext) ̸= ⊥
32 If urSIG.vfy(vk, (curPKE, ad), σ′ ⊕ PRG(kS))
33 (k, rurPKE, rurSIG)← h[kH, c, ad]
34 vk← urSIG.nextVk(vknext, rurSIG)
35 dk← urPKE.nextDk(dk, rurPKE)
36 stR ← (dk, vk)
37 Return Jk ̸= ⊥K :

Oracle H(x)
38 If h[x] ̸= ⊥ :
39 ABORT
40 h[x] $← G×K ×K
41 Return h[x]

Oracle RR
42 (ek, sk)← stS
43 ek $← urPKE.rr(ek)
44 sk $← urSIG.rr(sk)
45 stS← (ek, sk)
46 Return

Oracle ExposeS

47 Return stS

Oracle ChallExposeS

48 (ek, sk)← stS
49 ((ek′, sk′), ceStR) $← RKE.init()
50 If j ≤ q :
51 Return (ek, sk)
52 If j > q :
53 Return (ek′, sk′)
54 Return (ek′, sk)
55 If b = 0:
56 Return stS
57 Return stS′

Oracle ExposeR

58 Return stR

Oracle ChallExposeR

59 (_, stR′) $← RKE.init()
60 Return stR′

Fig. 29. Hybrids Hq, Iq for the proof of Lemmas 15 and 16.

Experiment Exp8. In this game we set sb to s1 and rb to r1. Effectively this sets number of sender state
updates by oracle ChallSnd and the receiver state updates by receiving in-order challenges in oracle Rcv
in both worlds alike.

We now argue that there exists no adversary which distinguishes this game from G7. For the adversary
to observe the change in both games it must query oracle ChallSnd. By definition of our trivial attacks the
adversary must not call oracle ExposeR on that instance. Recall that the outputs of oracle ChallExposeS

are indistinguishable from random to the adversary. Since the output of oracle ChallSnd itself is
indistinguishable from random to the adversary, the adversary can only observe a difference in the updates
of the sender state if it queries on a single instance i)ExposeS ii)a nearly arbitrary combinations of oracles
RR and ChallSnd iii)ExposeS . The only restriction for ii) is that the adversary must query RR after the
last query to oracle ChallSnd. If so oracle RR randomizes the sender state in both worlds. Thus by IND-R
of urPKE and by IND-R of urSIG the distribution of both exposed sender states is indistinguishable from
random. By similar hybrids as in the last two games, one can show that,

∣∣Pr
[
GA

7 ⇒ 1
]
− Pr

[
GA

8 ⇒ 1
]∣∣ ≤

qCS ·
(

AdvIND-R
A,urPKEEG

+ AdvIND-R
urSIG

)
.

G Attacks Against RKE Constructions

Existing constructions of RKE fail to fulfill the requirements of our anonymity notion for several reasons.
Most trivially, multiple RKE constructions in the literature are already insecure with respect to key secrecy
(see Definition 11), which also leads to attacks against anonymity. Beyond that, many constructions that
offer strong key secrecy and authenticity have highly structured ciphertexts or let senders sign these
ciphertexts. Without using advanced tools comparable to urSIG, this breaks anonymity, too.

As mentioned in the introduction, we refrain from breaking anonymity of RKE schemes designed
for the group setting. It is meaningless to present (non-trivial) attacks against anonymity of CGKA (or
“group RKE”) constructions without having a satisfiable definition for the group setting that separates
non-trivial attacks from trivial ones. Nevertheless, it is obvious that all known CGKA constructions
leak information via (publicly) sent ciphertexts and exposed user states, which allows for identifying
the respective CGKA session or even a specific user in a session. This is particularly true for all CGKA
constructions that rely on an actively participating server.

49

Constructions with Weak Secrecy. The most prominent RKE protocol, the Double Ratchet Algo-
rithm [PM16], only relies on a symmetric hash-chain for unidirectional communication. That is, as
long as Alice only sends to Bob without receiving a reply, she will continuously compute each new
symmetric session key deterministically from the respective prior one. Thus, by exposing Alice’s state
before she sends, an adversary can pre-compute her next state, which violates our notion of anonymity.
However, we want to note that Vatandas et al. [VGIK20] prove deniability for the Double Ratchet
Algorithm, which means that Alice can deny her participation in a session if her state is exposed after
the session terminated.

The unidirectional RKE protocol proposed by Bellare et al. [BSJ+17] overcomes the limitation of the
Double Ratchet Algorithm by sampling asymmetric keys for every send operation and probabilistically
updating the sender state. However, as discovered by Poettering and Rösler [PR18b,PR18a], the construc-
tion in [BSJ+17] does not offer forward-secrecy on the receiver side. For this, consider an adversary who
first exposes Alice’s sender state, then lets Alice send a couple of ciphertext (ci)i∈[l] one after another and
forwards all of them honestly to Bob, who receives them. Finally, the adversary exposes Bob’s receiver
state. This adversary can compute all symmetric session keys, established by the transmitted ciphertexts.
The reason for this is that Bob has an almost static receiver state. Coming back to anonymity, this means
that the same adversary can also verify whether the ciphertexts seen on the network were sent from Alice
to Bob or whether they were sent in an independent RKE session, which again violates anonymity.

Constructions with Structured States and Ciphertexts. Constructions with stronger secrecy and anonymity
guarantees, such as [PR18b,JS18,JMM19a,JMM19b,BRV20,CDV21], fail to achieve anonymity because
it is trivial to link their ciphertexts within single sessions, or link ciphertexts with the corresponding
sender states.

Tracing Ciphertexts. Many constructions [JS18,JMM19a,JMM19b,CDV21] embed a continuously
incremented integer (counting the number of send operations) or a transcript hash in the ciphertexts sent
from Alice to Bob. Both values, especially a publicly computable transcript hash, can be used to identify
a session and its participants, even without exposing their local states.

Tracing States. While not all constructions publicly reveal transcript hashes or counters in the sent
ciphertexts, all constructions [PR18b, JS18, JMM19a, JMM19b, BRV20, CDV21] let senders store this
information locally in the secret sender states. Since counters or publicly computable transcript hashes
can be precomputed (see our attack against anonymity of the Double Ratchet Algorithm), verifying that
two exposed states belong to the same sender breaks anonymity.

Tracing via Authentication. Finally, as mentioned in the introduction (see Section 1.1), employed
authentication mechanisms can reveal the sender of a ciphertext. For example, using the symmetric
message authentication key exposed from the sender state [PR18b,BRV20], an adversary can simply verify
the message authentication tag of a subsequently sent ciphertext, which breaks anonymity. Similarly, the
signing key exposed from the sender state [JS18,JMM19a,JMM19b,CDV21] can (usually) be used to
verify a signature of a subsequently sent ciphertext.

Our construction overcomes all these shortcomings by having a re-randomizable sender state and a
randomly looking receiver state. Furthermore, ciphertexts on the network do not reveal a relation to their
senders, even if these senders were exposed before or afterwards.

Although, we may have missed a published RKE construction when compiling the list of related
articles from the literature, we believe that at least one of the presented attack strategies is successful
against all known constructions.

50

	Strongly Anonymous Ratcheted Key Exchange

