
PEA: Practical Private Epistasis Analysis
using MPC

Kay Hamacher1[0000−0002−6921−8345], Tobias Kussel*,1[0000−0002−9731−7666],
Thomas Schneider1[0000−0001−8090−1316], and Oleksandr

Tkachenko*,(�),2[0000−0001−9232−6902]

1 Technical University of Darmstadt, Germany
2 DFINITY

Abstract. Due to the significant drop in prices for genome sequencing in
the last decade, genome databases were constantly growing. This enabled
genome analyses such as Genome-Wide Association Studies (GWAS) that
study associations between a gene and a disease and allow to improve
medical treatment. However, GWAS fails at the analysis of complex
diseases caused by non-linear gene-gene interactions such as sporadic
breast cancer or type 2 diabetes. Epistasis Analysis (EA) is a more
powerful approach that complements GWAS and considers non-linear
interactions between multiple parts of the genome and environment.
Statistical genome analyses require large, well-curated genomic datasets,
which are difficult to obtain. Hence, the aggregation of multiple databases
is often necessary, but the sharing of genomic data raises severe privacy
concerns and is subject to extensive regulations (e.g., GDPR or HIPAA),
requiring further privacy protection for collaborative analyses.
Although there has been work on private GWAS, there was a lack of
attention to Private EA (PEA). In this work, we design the first secure
and accurate PEA protocol, with security against passive adversaries.
Our efficient PEA protocol consists of two subprotocols: (1) (optional)
feature selection for filtering noisy features to reduce the input size for
better efficiency and (2) finding relevant associations. For feature selection,
we design two protocols based on Secure Multi-Party Computation (MPC)
for Relief-F and TuRF. For finding associations, we design an MPC
protocol for Multifactor Dimensionality Reduction (MDR).
Our private MDR protocol is based on two novel, efficient building blocks,
arithmetic greater than and arithmetic swap, which may be of independent
interest. This approach omits the need for expensive conversions between
sharing types in private MDR and reduces the communication by two
orders of magnitude compared to a naïve design using garbled circuits.
Our private MDR protocol runs in (extrapolated) three days on a practical
database with 10,000 features for all two mutually combined features, i.e.,
considering about 50 million combinations.

Keywords: epistasis · genomic privacy · MPC

(�) Corresponding author: Oleksandr Tkachenko (oleksandr.tkachenko1@gmail.com);
the work presented in this paper was mainly done while the author was a doctoral
researcher at Technical University of Darmstadt
*Equally contributed

1 Introduction

Technical advances and reduced costs in genome sequencing technology will
allow full genome sequencing to become a standard medical procedure in the
near future. This plethora of genomic data opens up interesting possibilities not
only in personalized treatment of diseases, but in a research context as well.
Genome Wide Association Studies (GWAS) allow to statistically link a small
number of genetic variants (e.g., Single Nucleotide Poymorphisms (SNPs)) to
a phenotypical trait, which in medical research is often the manifestation of a
disease like diabetes, hypertension, or cancer.

Due to the sensitive nature of genomic data, which is the ultimate personal
identifier [18], and the vast amount of required data, the need for privacy preserv-
ing analysis methods arises. Non-genomic medical patient data is often analyzed
in anonymized or pseudonymized form. Unfortunately, these traditional and other
approaches like statistical disclosure control [13] are difficult to apply correctly
and in most cases unsuitable for genomic data. More evolved statistical disclosure
methods, like differential privacy, suffer from some loss of utility when applied to
genomic data due to the inherent interactivity in, e.g., tumor boards.

Secure Multi-Party Computation (MPC) is a class of privacy-preserving
techniques that guarantees the privacy of inputs and allows the exact computation
of arbitrary functionalities. MPC has successfully been applied to many different
real-world problems. However, this strong privacy guarantee and flexibility comes
with quite severe limitations. The required computation and communication is
multiple orders of magnitude higher than in the clear text analysis. This renders
this class infeasible in practice for many applications.

Following the success in applying MPC protocols to genomic analysis methods
like GWAS or similar genome queries, we propose, implement, and evaluate
PEA, a suite of MPC protocols that privately analyze the epistasis of SNPs in
connection to the manifestation of a disease. PEA analyzes how the interaction
of multiple SNPs are causally linked to the disease. This is a critical step for the
development of a better understanding of a disease and new treatments. To find
these higher order interactions we privately apply Multifactor-Dimensionality
Reduction (MDR), Relief-F, and Tuned Relief-F Feature Selection (TuRF).

Although gene-gene and gene-environment interactions are still an actively
researched area, most novel research uses established analysis methods like MDR
for specific diseases [30, 46, 43] and statistical tests [29] , or adapts those methods
for novel challenges, like the amount of SNPs in GWAS data sets [22]. No prior
provided privacy-preserving analysis of partitioned data sets.

1.1 Related Work

Recently, a few Differential Privacy (DP) [14]-based works have been published
on Private Epistasis Analysis (PEA) [7] and Private Feature Selection (PFS) [28].
However, DP relies on a trade-off between privacy and utility and cannot achieve
both. Since the genomic data is exceptionally privacy-sensitive, this leads to a
significant utility degradation which is a well-known problem [32].

2

To the best of our knowledge, we provide the first solution for PEA or PFS
without utility degradation. Previous works on private Genome-Wide Association
Studies (GWAS) [8, 40] serve a similar purpose as PEA but can find only
correlations between single SNPs and a trait and have much smaller complexity.

1.2 Our Contributions

Our interdisciplinary work, beyond providing new research opportunities for
biomedical research, makes the following contributions.

– Design and implementation of PEA, the first secure protocol that does not
degrade accuracy for:
• Relief-F [27] and TuRF [31], two popular algorithms for filtering features

in Epistasis Analyses (EAs) that run in less than a day for practical
database sizes containing a=10,000 SNPs and L=100 records [7].

• MDR [36], a popular exponential-time algorithm for EA with (extrap-
olated) runtimes of around three days for practical database sizes con-
taining a=10,000 SNPs [7]. The communication of our PMDR protocol
is independent of the number of records.

– New efficient, generic arithmetic building blocks:
• A 1-out-of-N Oblivious Transfer (OT) [24]-based custom protocol for

Arithmetic Greater Than (AGT), i.e., a GT gate that is computed on
arithmetic shares with 1.5× less communication than the state of the
art [35] but 6 instead of 5 rounds of communication.

• Arithmetic Swap (ASWAP), a generalization of the Boolean swap gates
by Kolesnikov and Schneider [26] for the arithmetic case with 4× less
communication than the naïve design.

• Batched versions of both aforementioned building blocks with O(κ) less
communication, where κ is the symmetric security parameter.

– The first implementation of three-halves garbling [37]3 and its performance
analysis, which shows a greater slowdown than expected due to a higher
degree of branching compared to the prior best garbling scheme. Still, it
optimizes for better network bandwidth which remains the bottleneck.

– The implementation of all our building blocks and protocols are integrated
in the open-source repository of the MOTION framework for MPC4.

2 Preliminaries

In this section, we describe the required basics in genomics. App. A gives an
overview of Secure Multi-Party Computation (MPC) techniques used in this
paper. For more details, we refer the reader to [11].

3 https://encrypto.de/code/3H-GC
4 https://encrypto.de/code/MOTION

3

https://encrypto.de/code/3H-GC
https://encrypto.de/code/MOTION

2.1 Genomic Primer

The building and functioning “instructions” of all living cells are encoded in
molecular form. This molecular blueprint takes in most organisms the form of the
deoxyribonucleic acid (DNA), a double helical molecule pairing a sequence of nu-
cleotides. The DNA’s alphabet consists of four nucleotides (usually abbreviated by
their first letter): Adenine, Cytosine, Guanine, and Thymine. In double-stranded
DNA (as in humans) a helix and much more involved structures (chromatin,
chromosomes, etc.) are formed by physical interactions between the nucleotides
of the two strands. Typically, Watson-Crick-pairing is observed, where cytosine
pairs with guanine and adenine pairs with thymine forming a base pair with
highest priority. This implies that the information on one strand is encoded in a
1:1 fashion on the other.

In the process of transcription, the defined nucleotide sequence of the DNA (viz.
the genotype) is transcribed to a messenger ribonucleic acid (mRNA) molecule,
which can be thought of as a working copy of a specific gene. These mRNA
molecules are then translated to an amino acid sequence forming proteins neces-
sary for the function of the cell and organism. During this translation every codon,
that is a triplet of nucleotides, is mapped to one of the 20 standard amino acids
observed in nature. Additionally there are codons coding start and stop symbols.

Some of the built proteins inhibit or promote the transcription of DNA
regions encoding other proteins. These proteins are called transcription factors
and thus are responsible for often times complex regulatory networks in which
the interaction of multiple genes are responsible5 for some phenotype, that is
some observable trait (e.g., eye and hair color, or the occurrence of a disease).

The human genome consists of roughly 3.2 billion base pairs, but only 0.1 % of
base pairs vary between two individuals [2]. These variants of a specific locus, i.e.,
position on the DNA strand, are called alleles. Due to the sparsity of the variations
between two humans, it is often useful to store and use only these variations with
regard to a specific reference genome. A Singe-Nucleotide Polymorphism (SNP)
is a variation changing exactly one nucleotide, e.g., G → T. Due to the human’s
diploidity, two alleles are possible of each individual locus. For each gene (or in
case of SNPs for each base) the present allele may be written in the shorthand
form “AA” for the presence of the major allele on both chromosomes, “Aa” for
the presence of both the major and minor allele on one of the chromosomes each
and finally “aa” for the presence of the minor allele on both chromosomes.

2.2 Genome-Wide Association Studies (GWAS) and Epistasis

Genome-Wide Association Studies (GWAS) aim to link specific genotype varia-
tions to phenotype variations. More specifically often times the goal is to link
SNPs to traits like the onset of specific diseases. In the first published GWAS in
2002 [34] five SNPs could be linked to various mechanisms to increase the risk of

5 Further regulatory mechanisms, such as the influences of the chromatin structure,
exist but are not of interest for this work.

4

myocardial infarction. In contrast to candidate-driven analysis, where variations
of specific, pre-determined genes are analysed, GWAS analyse variations of the
complete genome.

Using a labeled data set with regard to the phenotypical trait, statistical
tests are performed to determine the specific SNP’s likelihood to affect the
trait. This likelihood is called penetrance and extends, as described below, to
multidimensional cases. Many different statistical tests are used in practice,
ranging from relatively simple odds ratio analysis to more involved hypothesis
tests, like χ2-tests [41]. In addition to the single SNP’s influence, GWAS can
give a starting point for finding the variation mechanism by associating the
loci to known regulatory pathways [33]. As briefly described in §2.1, genes can
be part of complex regulatory networks promoting or inhibiting other genes.
Due to that it is unsurprising, that complex systematic diseases like cancer are
not directly associated to a single gene, but are caused by possibly non-linear
interactions of many genetic variables, e.g., simultaneously the presence of one
SNP and the absence of two other. This interaction of genes is called epistasis, or
gene-gene interaction. Unfortunately, the analysis of those interactions becomes
computationally very expensive. The algorithmic complexity scales exponentially
with the “interaction depth”, i.e., the number of interacting genes considered.

Consequently, exact analysis methods, analysing each tuple of SNPs, are
only feasible for small sections of a genome or low interaction depths. For large
genome sections, or even whole genome analysis, different methods of reducing
the complexity are applied. In this work we apply (Tuned) Relief-F Feature
Selection (TuRF, cf. §2.3) and Multifactor-Dimensionality Reduction (MDR, cf.
§2.4) to achieve privacy-preserving epistasis analysis with practical performance.

2.3 Feature selection with Relief, Relief-F and TuRF

Typical gene-gene interaction studies analyze datasets with thousands of patients
but hundreds of thousands to millions of SNPs. Most of these features play no
role in the expression of the phenotype of interest. The “Relief” [23] algorithm and
its advancements “Relief-F” [27] (the hyphen is often omitted in literature but is
present in the original work) and “Tuned ReliefF” [31] (TuRF) are feature selection
algorithms to reduce the number of features by estimating the importance of a
feature with respect to the training goal.

The Relief filter works by weighting the importance of a variable by comparing
a randomly chosen sample (patient) with the neighboring samples. Features that
are present in a neighboring sample with the same label gain weight, features
present in a neighboring sample with a different label lose weight. This procedure
is repeated m times. Relief-F extends this algorithm by not only sampling the
nearest neighbor in both categories, but the k nearest neighbors. In the original
work [27], as in our work, the number of neighbors taken into account for the
weight update is k = 10. Furthermore, Relief-F iterates over all n entries in the
dataset, instead of a randomly chosen subset of size m, i.e., m = n. This increases
the robustness of the result against noisy features.

5

1 Input: Attributes A = A1, . . . , Aa,
2 Records R = r1, . . . , rn

3 Wi ← 0,∀i
4 for i = 1 . . .m do

// randomly select record

5 ri ←$ [r1, rn]
6 H,M ← kNN(ri, k)
7 for j = 1 . . . k do
8 for l = 1 . . . a do
9 Wl ←Wl −∆(Al, r

i, Hj)/m+
∆(Al, r

i,Mj)/m

10 return W

(a) Relief-F

1 Input: Attributes A = A1, . . . , Aa,
2 Records R = r1, . . . , rn

3 for i = 1 . . . n do
4 W ← ReliefF(A,R)
5 W ← sort(W)

// remove last α/n attributes

6 W ←W [0 : a− (α/n)]
7 A← A[0 : a− (α/n)]

8 return W

(b) TuRF

Alg. 1: The feature selection algorithms. The original Relief algorithm only uses
the nearest hit/miss, not the k nearest hits/misses.←$ indicates random sampling
from a uniform distribution, m is the number or records used for feature selection,
and a denotes the number of attributes. The used difference-function ∆ measures
differences. Because of that, misses are added and hits subtracted. Using TuRF,
in every iteration the last (worst performing) α/n elements are removed from the
respective arrays.

TuRF modifies the Relief-F filter by removing a constant fraction of the worst
performing attributes after every iteration. This effectively removes the noisiest
and least significant features, speeding up the computation in the subsequent
calculations and increasing robustness against noisy attributes.

The formal details of the Relief-F algorithm are given in Alg. 1a. The used
distance metric takes two patient records r1, r2 and an attribute A (in this work
a locus λ) as an input and returns zero if both records have the same occurrence
of the attribute, otherwise it returns one. The TuRF algorithm is given in Alg. 1b.
Details of our private implementation of TuRF are given in §3.

2.4 Multifactor Dimensionality Reduction (MDR) for Epistasis
Analysis

Multifactor Dimensionality Reduction (MDR) [36] is a model-free and non-
parametric statistical method to detect and model epistasis. Developed in the
early 2000s, it became one standard approach to model epistasis with successful
identification of interactions in datasets including sporadic breast cancer, essential
hypertension [30], and type 2 diabetes [9].

In short the algorithm works by categorizing a group of loci into high and
low risk combinations. This effectively reduces the dimension of the interactions
to one. This new one-dimensional data is then compared among each other to
find the interactions that yield the lowest classification and prediction error.
Usually Leave-one-out cross validation is used. In that cross validation approach
the dataset is divided in n equally large partitions and the model is generated
on n− 1 partitions. The remaining partition is used to calculate the prediction

6

errors. This process is repeated for all n partitions and the prediction errors are
averaged to form a “final” model error. A graphical visualization of the scheme is
given in Fig. 1.

3 Private Tuned Relief-F Feature Selection

1

2
3

4

56

7
8

9

10

Factor
Locus 1
Locus 2
Locus 3
Locus 4

Locus N

Models
Factors Error
2,4 11.24
4,3 14.25
4,27 19.25

1,6 33.64

Locus 3
AA Aa aa

bb

Bb

BB

Lo
cu
s
4

5

4 6 4

6

5 3
10 10 15

12 12 14

121012

Locus 3

Lo
cu
s
4

0.50 0.66 1.66

0.66 3.00 0.85

1.20 0.50

AA Aa aa

bb

Bb

BB

Locus 2

Lo
cu
s
4

AA Aa aa

bb

Bb

BB
2 00

1 1

0

11

0

1

22

0

1 1

0

2 2

AA Aa aa

Step 3Step 2Step 1

Step 4Step 5Step 6

Fig. 1: High-level scheme of the MDR
analysis method (adapted from [17]
and [36]).

As described in §2.3, the main goal of
the feature selection step is to increase
the weight of features (SNPs) linked
to label distinction and reduce the
weight of features irrelevant to these
distinctions. The TuRF algorithm uses
k Nearest Neighbor clustering and it-
erative pruning of features to achieve
this goal. To avoid a biased result in-
curred by the ordering of the records,
our TuRF implementation permutes
the order of the dataset randomly. In
either case only the best a − α fea-
tures are considered in the subsequent
MDR calculation. The formal descrip-
tion of the PReliefF protocol is given
in Prot. 1. PTuRF can be seen as a
straightforward extension of PReliefF,
and the formal description is given in the full version of this paper. Note, that in
combination with Private Multifactor Dimensionality Reduction (PMDR) (see
§4), it is possible to (optionally) reveal the noisy features to reduce the input
size to PMDR.

We implemented an (optional) approximation in the TuRF algorithm. Instead
of recalculating the distance between the records in every iteration, the distance
is considered constant, as only a small number of features are removed in every
iteration. This approximation reduces the computational cost, while only incurring
a small error.

Private kNN. The original Relief algorithm, as well as the improved Relief-F,
require a comparison of the sampled record to the nearest neighbour or the k
nearest neighbours, respectively (cf. Alg. 1a, line 6). We use adapted forms of the
kNN clustering described by Järvinen et al. [20], which can be performed with a
variety of metrics. Due to the comparatively low runtime cost and the nominal
nature of the features, we perform a Hamming distance based clustering, i.e.,
based on the number of set bits (asimilar SNPs).

4 Private Multifactor Dimensionality Reduction

Private Multifactor Dimensionality Reduction (PMDR) requires aggregation of
integers: data owners aggregate the counts of allele frequencies and the counts

7

1 Function PReliefF(R,φ):
2 The dataset R is the concatenation of each data owner’s Pi raw dataset Ri. The dataset

consists of all records R := (r1, . . . , rk), where the record rj := ((gj,1, . . . , gj,m), αj) : rj ∈ R
with each genotype gj,λ ∈ {1, 2, 3} of person j at locus λ and each group α ∈ {+,−},
denotes the case and control group, respectively. The function returns the index positions of
the most weighted genotypes. φ = 1− α/a denotes the ratio of attributes to return.

3 for j = 1 . . . k do // For all records in the Dataset

// Initialize distance and difference matrices to the numerical maximum

// value and zero, respectively

4 ⟨mhit
dist⟩Y ← [⟨MAX VALUE⟩Y , . . . , ⟨MAX VALUE⟩Y]

5 ⟨mhit
ineq⟩Y ← [[⟨0⟩Y , . . . , ⟨0⟩Y], . . . , [⟨0⟩Y , . . . , ⟨0⟩Y]]

6 ⟨mmiss
dist ⟩Y ← [⟨MAX VALUE⟩Y , . . . , ⟨MAX VALUE⟩Y]

7 ⟨mmiss
ineq ⟩Y ← [[⟨0⟩Y , . . . , ⟨0⟩Y], . . . , [⟨0⟩Y , . . . , ⟨0⟩Y]]

8 for i > j do // For all pairs of records

9 ⟨Dji⟩Y ← ∅
10 for λ = 1 . . .m do // For all genotypes

11 ⟨Dji⟩Y .append
(
∆

(
⟨gj,λ⟩Y , ⟨gi,λ⟩Y

))
12 for ∀i ̸= j do // For all (unordered) pairs

13 if j < i then
14 ⟨d⟩Y ← HW(⟨Dji⟩Y)
15 else
16 ⟨d⟩Y ← HW(⟨Dij⟩Y)
17 if ⟨αj⟩Y == ⟨αi⟩Y then // If records have same label

18 ⟨mhit
dist⟩Y , ⟨mhit

ineq⟩Y ← kNN(⟨mhit
dist⟩Y , ⟨mhit

ineq⟩Y , ⟨d⟩Y , k)
19 else
20 ysmmiss

dist , ⟨mmiss
ineq ⟩Y ← kNN(⟨mmiss

dist ⟩Y , ⟨mmiss
ineq ⟩Y , ⟨d⟩Y , k)

21 ⟨W ⟩Y ← ⟨W ⟩Y + ⟨mmiss
ineq ⟩Y − ⟨mhit

ineq⟩Y

22 for ∀j do
// The features are sorted by weight and only the first (best)

// φ · a are retained

23 ⟨g′j⟩Y ← kNN(⟨gj⟩Y , ⟨W ⟩Y , φ · a)
24 ⟨r′j⟩Y ← (⟨g′j⟩Y [1 : φ · a]), ⟨αj⟩Y)
25 ⟨R′⟩Y := {⟨r′1⟩Y , . . . , ⟨r′k⟩Y }
26 return ⟨R′⟩Y

Prot. 1: Private Relief-F protocol. PReliefF takes a dataset R and a ratio φ
as input and returns the most weighted attributes. The referenced k-Nearest
Neighbors function kNN is slightly adapted from [20].

used in precision estimation of the computed models are also aggregated into
one value. Thus, it is beneficial to keep those operations in arithmetic sharing
which allows to perform integer addition locally. However, arithmetic sharing
is restricted to only additions and multiplications, and conversions to and from
Boolean sharing may be more expensive than the evaluation of a purely Boolean
circuit. In the following, we design novel efficient building blocks that improve over
the PMDR protocol that uses only Boolean sharing by two orders of magnitude.

4.1 Secure Arithmetic Greater Than (AGT)

A Boolean Greater Than (GT) gate requires ℓ AND gates if optimized for AND
size [25] and 3ℓ − ⌈log2 ℓ⌉ − 2 if optimized for AND depth [39]. Moreover, the
latter still has ⌈log2 ℓ⌉+ 1 AND depth and incurs the corresponding number of
communication rounds.

8

Baseline Arithmetic Greater Than Protocol. Here, we give a baseline
Arithmetic Greater Than (AGT) protocol that compares two integers x0, x1 ∈
Z2ℓ : x0, x1 < 2ℓin in arithmetic sharing, where ℓin = ℓ− 1. The protocol is as
follows: (1) compute ⟨δ⟩A ← ⟨x0⟩A − ⟨x1⟩A, (2) decompose it to single bits as
⟨δ⟩B ← A2B(⟨δ⟩A) (cf. [11]), and (3) return the MSB of ⟨δ⟩B. It requires only
sharing of 2ℓ bits — ℓ bits by the garbler and ℓ bits by the evaluator — and
ℓ− 1 AND gates in Yao sharing. It outputs a bit in Boolean sharing. Later in
this section we show a protocol with even better communication and use this
protocol as a baseline for comparison.

Our baseline protocol requires only one communication round and its only
limitation is that the input values need to be smaller than 2ℓin , where ℓin = ℓ− 1.
It requires ℓ(4.5κ+5)−1.5κ−5 bits of communication in total: 3ℓκ for re-sharing
both arithmetic shares in Yao sharing and (ℓ − 1) · (1.5κ+ 5) for computing the
sum of both shares in a GC using three-halves garbling[37].

Our Novel AGT Construction with Low Communication. Here, we intro-
duce a novel, alternative approach to compute the AGT gate with significantly
lower communication inspired by [12] and [35]. The idea of our protocol is based
on the fact that, in contrast to share reconstruction using an addition circuit, we
only need to compute the MSB, but not the full addition circuit. To compute the
MSB we need ⟨δ⟩0[ℓ], ⟨δ⟩1[ℓ] and the carry bit ⟨c⟩[ℓ], where the latter is computed
from the previous bits in the shares. However, we can skip the computation of the
intermediate carry bits and directly compute the MSB by utilizing 1-out-of-N
OT [24] with less communication than using our baseline protocol shown above.
A batch-mode extension is described in the full version of this paper.

Toy Example. Let ℓ be small, e.g., ℓ=4, and ⟨δ⟩A0 , ⟨δ⟩A1 ∈ Z2ℓ are arithmetic
shares of δ = x1 − x0 : x0, x1 < 2ℓ−1. P0 uses ⟨δ⟩A0 as its choice index in
OT [24]. P1 samples a uniformly random mask bit r ←$ {0, 1} and generates
messages {(i + ⟨δ⟩1 mod 2ℓ > 2ℓ−1 − 1) ⊕ r}2

ℓ−1
i=0 . Then, P0 obtains and sets

⟨MSB⟩B0 := (⟨δ⟩A0 + ⟨δ⟩A1 mod 2ℓ > 2ℓ−1 − 1) ⊕ r, and P1 sets ⟨MSB⟩B1 := r.
The communication complexity of this protocol is 2κ+ 2ℓ bits, which equals 264
bits for bit length ℓ=3 and is 5.8× more efficient than the baseline protocol. The
problem that arises here is that this toy protocol is not practical for large integers,
e.g., the communication for ℓ=31 is 4.29 GB, which is orders of magnitude worse
than our baseline.

Our Novel AGT for Integers of any Bit-Length. To reduce the communication
for integers of arbitrary bit-length, we design an iterative approach that splits
an integer into chunks and, in a nutshell, computes the carry bit for each of the
intermediate chunks and extracts the MSB from the last chunk.

The best amortized per-bit communication in 1-out-of-N OT [24] is achieved
with N=26 and equals (2κ + 26)/6 = 53.3 bits. Although N=27 requires 54.8
bits (amortized), it incurs less communication rounds in our AGT protocol. Our
protocol consists of two subprotocols: (1) OT on the first chunk and (2) OT on

9

1 Function PMDR(Ri):

2 Each data owner Pi locally randomly permutes its raw dataset Ri := (r1i , . . . , r
ki
i), where the

record rji := ((gj,1i , . . . , gj,ai

i), αj
i) : r

j
i ∈ Ri with each genotype gj,λ ∈ {1, 2, 3} of person j at

locus λ and each group α ∈ {+,−}, denotes the case and control group, respectively, and
splits it into s equal parts R1

i , . . . ,R
s
i .

3 for j = 1 . . . s do // For each of s cross-validation steps

4 for i = 1 . . . N do // Each party splits its dataset for cross-validation.

5 Rval
i := {rji }

|Ri|·(j+1)/s
j=|Ri|·j/s

6 Rtest
i := Ri \Rval

i

7 for λ1 ∈ [a] do // For each pair of loci λ1 and λ2

8 for λ2 ∈ [a] \ {λ1} do
// Each party locally counts the observed genotypes

// for test (T) and validation (V) sets.

9 for i = 1 . . . N do

10 (T λ1,λ2,+
i , T λ1,λ2,−

i , V λ1,λ2,+
i , V λ1,λ2,−

i)← Count(Rtest
i ,Rval

i , λ1, λ2)

// All parties share and aggregate their counts using Arithmetic

// sharing. Remark: Sharing is done locally using a PRG.

11 ⟨Xλ1,λ2,g⟩A ←
∑N

i=1⟨X
λ1,λ2,g
i ⟩A for X ∈ {T ,V } and g ∈ {+,−}

// Compute the high risk prediction model as Boolean matrix Hλ1,λ2.

// If #cases/#controls is greater than a public threshold th = t+h /t
−
h ,

// the cell that corresponds to the genotype combination (i, j) is

// marked as high risk, indicated with ⟨1⟩B.
12 for i, j ∈ {1, 2, 3} do // For each combination of genotypes

// This is equivalent to computing (T λ1,λ2,+[i, j]/T λ1,λ2,−[i, j]) > th.

13 ⟨num cases⟩A ← t+h · ⟨T
λ1,λ2,+[i, j]⟩A

14 ⟨num controls⟩A ← t−h · ⟨T
λ1,λ2,−[i, j]⟩A

// Mark this cell as high risk if #cases/#controls > th.

15 ⟨Hλ1,λ2 [i, j]⟩B ← AGT(⟨num cases⟩A, ⟨num controls⟩A)
// Swap validation counts if the current cell is high risk.

16 ASWAP(⟨Hλ1,λ2 [i, j]⟩B , ⟨V λ1,λ2,+[i, j]⟩A, ⟨V λ1,λ2,−[i, j]⟩A)
// Compute number of correcly and incorrectly classified samples.

17 ⟨num correct⟩A ←
∑

i,j⟨V
λ1,λ2,−[i, j]⟩A for i, j ∈ {1, 2, 3}

18 ⟨num wrong⟩A ←
∑

i,j⟨V
λ1,λ2,+[i, j]⟩A for i, j ∈ {1, 2, 3}

// Store a bit indicating good/bad accuracy given a public accuracy

// threshold ta = t+a /t
−
a .

19 Aj [λ1, λ2]← AGT(t+a · ⟨num correct⟩A, t−a · ⟨num wrong⟩A)

20 for λ1 ∈ [a] do // For each pair of loci λ1 and λ2

21 for λ2 ∈ [a] \ {λ1} do
// Output 1 if at least one of the cross validation steps λ1 and λ2

// were marked as high risk.

22 O[λ1, λ2] =
∨s

j=1 A
j [λ1, λ2]

23 return O

Prot. 2: Arithmetic Private Multifactor Dimensionality Reduction (PMDRA+)
protocol for two loci (for simplicity). Notation: N denotes #parties, a denotes
#loci. PMDR outputs all loci combinations with MDR models that have accuracy
greater than a threshold ta. The functionality Count counts genotypes belonging
to cases and controls for the test and validation set.

10

the intermediate chunks and carry bits. We XOR the last computed carry bit
in Boolean sharing with the MSBs of the shares of δ, which yields the shared
comparison result.

1 Function AGT(⟨x0⟩A, ⟨x1⟩A, ℓs):
2 // ⟨x0⟩A, ⟨x1⟩A are secret-shared

// in Z2ℓ with x0, x1 < 2ℓ−1

3 ⟨δ⟩A = ⟨x1⟩A − ⟨x0⟩A
4 sel ← ⟨δ⟩A0 [1 : ℓs]

5 M ← (j + ⟨δ⟩A1 [1 : ℓs] > 2ℓs)
2ℓs
j=1

6 r ←$ {0, 1}
7 c←

(
N
1

)
-OT(sel , {m⊕ r}m∈M)

// Counter for the previous chunk

8 ℓprev ← ℓs + 1
9 while ℓprev < ℓ do

10 ℓ′s ← min(ℓs − 1, ℓ− ℓprev)
11 ℓnext ← ℓprev + ℓ′s − 1

12 sel ← ⟨δ⟩A0 [ℓprev : ℓnext]

13 sel ← sel + c · 2ℓ′s
14 ⟨δ′⟩A1 ← ⟨δ⟩A1 [ℓprev : ℓnext]

15 M0 ← {j + ⟨δ′⟩A1 > 2ℓ
′
s}2ℓ

′
s

j=1

16 M1 ← {j + ⟨δ′⟩A1 + 1 > 2ℓ
′
s}2ℓ

′
s

j=1

17 M ←Mr ∪M1−r

18 r ←$ {0, 1}
19 c←

(
N
1

)
-OT(sel , {m⊕ r}m∈M)

20 ℓprev ← ℓnext + 1

21 ⟨b⟩B = (⟨b⟩B0 , ⟨b⟩B1) :=
(c⊕ ⟨δ⟩A0 [ℓ], r ⊕ ⟨δ⟩A1 [ℓ])

22 return ⟨b⟩B

Prot. 3: Our optimized Arithmetic
Greater Than (AGT) protocol. The
substring bit-length is denoted by ℓs.

The first subprotocol requires (2κ +
2ℓs) bits. The second subprotocol requires
γ(2κ + 2ℓs) + 2κ + 2ϵ bits, where γ =
⌈(ℓ − ℓs)/(ℓs − 1)⌉ − 1 is the number of
the intermediate chunks and ϵ = ℓ− ℓs −
1 mod (ℓs − 1) corresponds to the size of
the remainder. For ℓ ≥ ℓs the total com-
munication is equal to (γ + 1)(2κ+ 2ℓs) +
⌈ϵ/(ℓs−1)⌉(2κ+2ϵ) bits and the number of
communication rounds is γ+⌈ϵ/(ℓs−1)⌉+2
due to sequential calls to the OT function-
ality. More concretely, for ℓs=7 and N=2ℓs

this translates to 384 bits and 2 rounds for
ℓin=7, 1,028 bits and 4 rounds for ℓin=15,
1,920 bits and 6 rounds for ℓin=31, and
4,100 bits and 12 rounds for ℓin=63. Note
that ℓin denotes the maximum bit-length
of the integers, shared in Z2ℓ+1 .

To the best of our knowledge, the only
secure comparison protocol of additively
secret-shared integers was recently intro-
duced by Rathee et al. [35, Algorithm 1]
and showed to be more efficient than the
comparison protocols of XOR-shared inte-
gers [10]. The difference to our protocol is
that their protocol securely compares two
cleartext integers, x and y, and produces a secret-shared result. Inspired by their
construction, we extend their protocol for comparing ⟨x⟩A > ⟨y⟩A by restricting
x, y < 2ℓin and computing the comparison as ⟨x⟩A−⟨y⟩A < 2ℓin , thus “sacrificing”
one bit for the comparison result. Since the subtraction can be done locally,
our protocol can be seen as MSB extraction from a secret-shared integer, which
corresponds to [35, Algorithm 2] which is, in turn, based on [35, Algorithm 1].

We provide a more communication-efficient construction compared to [35,
Algorithm 2] that requires only

(
N
1

)
-OT invocations and no computation of AND

gates. For ℓin=32-bit inputs, our protocol for MSB extraction requires 1.5× less
communication (our 1,920 bits vs. their 2,914 bits), but one more communication
round (our 6 rounds vs. their 5 rounds). The MSB extraction from ℓ=32-bit
integers can be used to realize comparison of ℓin=31-bit integers.

Security. Informally, our AGT protocol only makes multiple consecutive calls to
the

(
N
1

)
-OT functionality in a black-box way, and it produces uniformly distributed

outputs in each step. Concretely, the first call to the
(
N
1

)
-OT functionality takes

in the first ℓs bits of ⟨δ⟩A and produces a secret share (c, r) ∈ {0, 1}2, where

11

c := (⟨δ⟩A0 [1 : ℓs] + ⟨δ⟩A1 [1 : ℓs] ≥ 2ℓs)⊕ r and r is a random bit generated and
known only by the OT sender. Since r is uniformly distributed and c is “masked”
by r, the output is uniformly distributed and thus (c, r) is a secret share. The
further calls to

(
N
1

)
-OT are invoked on the remaining substrings of ⟨δ⟩A. Namely,

P0 and P1 call
(
N
1

)
-OT, which produces a new (c, r) pair, where c := (⟨δ⟩A0 [ℓprev :

ℓprev + ℓ′s − 1] + ⟨δ⟩A1 [ℓprev : ℓprev + ℓ′s − 1] + (cprev ⊕ rprev) ≥ 2ℓ
′
s) ⊕ r, where

(cprev, rprev) are the results of the previous
(
N
1

)
-OT call (for better readability),

and r is again a random bit generated and known only by the OT sender. As in
the first step, the result is a secret share. The final result is computed locally on
the available secret shares. It is easy to see that the result is also a secret share.
A formal security proof for our AGT protocol can trivially be derived from the
security proof of [35, Algorithm 2].

4.2 Secure Arithmetic Swap (ASWAP)

Another important building block in our PMDR protocol is Secure Arithmetic
Swap (ASWAP), which obliviously swaps arithmetic inputs. More formally,
ASWAP takes in a secret-shared bit ⟨b⟩B and a pair of additively shared integers
(⟨x0⟩A, ⟨x1⟩A), and it outputs (⟨x′

0⟩A, ⟨x′
1⟩A) := (⟨xb⟩A, ⟨x1−b⟩A).

A straightforward realization of ASWAP uses four multiplication gates for
computing

i ∈ {0, 1} : ⟨x′
i⟩A := (¬⟨b⟩B · ⟨xi⟩A + ⟨b⟩B · ⟨x1−i⟩A).

Note that the secure multiplication ⟨b⟩B · ⟨x⟩A can be realized using just two
additively correlated OTs (cf. [1]) as described in [38]. This protocol requires
8(κ+ ℓ) bits of communication in total.

In the following, we design an ASWAP protocol that requires only one
multiplication, and consequently 2(κ+ ℓ) bits of communication, and thus yields
a factor 4 communication improvement compared to the naïve protocol. To
construct our efficient protocol for ASWAP, we take inspiration from the Boolean
swap protocol (called “X gate” in their work) by Kolesnikov and Schneider [26],
which requires only one AND gate to perform an oblivious swap conditioned on
⟨b⟩B and can be seen as a special case of ASWAP for integers of bit length ℓ=1.
Unfortunately, their protocol is not trivially generalizable to ASWAP for integers
in Zℓ with ℓ > 1 because it relies on XOR, which is not trivially realizable on
arithmetic shares. Our ASWAP protocol is depicted in Prot. 4. As for AGT, the
batch-mode extension of this building block is described in the full version of this
paper.

Beyond being useful for PMDR, our ASWAP protocol is of independent
interest, e.g., combined with our AGT protocols, we can efficiently sort arithmetic
values, i.e., using sorting networks on arithmetic circuits. This may be very
beneficial in scenarios where the inputs to the sorting network are aggregated,
since the addition operation is local in arithmetic sharing but costs ℓ− 1 AND
gates in a Boolean circuit [39]. Also, this omits expensive conversions (cf. [11]) if
the further circuit is arithmetic, e.g., for efficient multiplications in Z2ℓ .

12

1 Function ASWAP(〈b〉B , 〈x0〉A, 〈x1〉A):
2 〈δ〉A ← 〈b〉B · (〈x1〉A − 〈x0〉A)
3 〈x′0〉A ← 〈x0〉A + 〈δ〉A
4 〈x′1〉A ← 〈x1〉A − 〈δ〉A
5 return (〈x′0〉A, 〈x′1〉A)

Prot. 4: Secure Arithmetic
Swap (ASWAP) protocol. Note
that addition and subtraction
are free in arithmetic sharing.

Although our ASWAP protocol is admit-
tedly not complex, it has, to the best of our
knowledge, never been used in the literature.
We believe that the reason is that it has only
recently been shown how to compute ⟨b⟩B · ⟨x⟩A
efficiently [38].

Security. Since both ASWAP and batch-
ASWAP operate only on unmodified secret
shares and use the well-known correlated OT
technique [1] to produce the output secret shares
in a black-box way, the security proof for both
our primitives is trivial.

4.3 Communication of PMDR

Here, we evaluate the communication improvement gained by using our opti-
mizations for PMDR. Our bottom line is a one-to-one translation of the PMDR
algorithm (see Fig. 1) to a Boolean circuit (PMDRY that is evaluated in Yao
sharing completely, which is often a very efficient solution due to the constant
number of communication rounds in Yao sharing.

Our optimization of the PMDR protocol using our novel, more efficient
arithmetic building blocks is denoted as PMDRA+, which keeps data in arithmetic
sharing, thus avoiding the costly conversions between different representations,
and performs only very few operations in Boolean sharing. For the concrete
communication costs of the gates, we refer the reader to [39] and [11] for arithmetic
and Boolean sharing, and to [37] for Yao sharing. In the following, we fix the
bit length of the integers to ℓ=32, which allows for up to 231 genome samples in
total with the standard threshold parameters. We, conventionally, always perform
s=10 cross-validation steps.

PMDRY . For each combination of L loci and each of 3L possible combination of
alleles, this protocol requires (1) N − 1 additions for aggregation of allele counts,
(2) two multiplications and one comparison for determining the risk category,
and (3) one swap operation [26] to set low and high risk counts in the validation
set. Afterwards, to determine the accuracy of the model, the validation counts
are summed up, which requires 2 · 3L − 1 additions, two multiplications and one
comparison. For the costs of these operations, see [39]. Finally, s− 1 AND gates
in Boolean sharing are used to compute a secret-shared bit that indicates whether
the model was accurate in at least one cross-validation step. In total, for each
combination of loci the protocols requires

2s(3L(8ℓ2 + s− 1)− ℓ(4ℓ− 1))− s+ 1

AND gates. This corresponds to 1 394 891 AND gates or 34.34 MB of communi-
cation for L=2 loci, and 4 347 251 AND gates or 101.05 MB of communication
for L=3 loci, using three-halves garbling with 1.5κ+ 5 bits per AND gate [37].

13

PMDRA+. For each combination of L loci and each of 3L possible combination of
alleles, our PMDRA+ protocol requires one AGT and one ASWAP gate. Then, for
each combination of L loci, another AGT gate is required. And, finally, s−1 AND
gates in Boolean sharing are needed to compute the secret-shared interaction
indication. All other operations in this protocol are non-interactive.

The total communication translates to s(3L(ℓ(4κ+ 1) + 2(κ+ ℓ)) + ℓ(4κ+
1)) + s− 1 bits, which equals only 208.8 kB of communication for L=2 loci and
585.3 kB for L=3 loci. Compared to PMDRY , this yields an improvement by a
factor of 164× for L=2 and by a factor of 172× for L=3.

5 Implementation

We implement our protocols for Private Epistasis Analysis (PEA)6 using the
MOTION framework [6] for Secure Multi-Party Computation (MPC). The reason
for choosing MOTION is its efficiency and flexibility. Due to the number of new
building blocks that we constructed and/or implemented, e.g., the three-halves
garbling [37] and our new AGT protocol (cf. Prot. 3), we required an MPC
framework that admits changes in its internal infrastructure and protocols with
only moderate implementation overhead. Another selection criterion was the
efficiency of the framework. MOTION satisfies both requirements. We detail and
analyze our implementation of three-halves garbling in App. B.

6 Evaluation

We evaluate PEA on two servers equipped with Intel Core i9-7960X processors
and 128 GB of RAM. We average all our benchmarks over 10 runs.

We use synthetic data as the input in our benchmarks due to two reasons.
(1) MPC is input-oblivious by its security definition and thus the performance of
our protocols is input-independent. (2) Since our protocols are fully accurate, we
can discern no useful insight by using real (and hard to get access to) privacy-
sensitive datasets, and thus, we favor the ethically better decision to use the least
privacy-intrusive data source, i.e., synthetic data.

Settings. We evaluate two settings for Private Epistasis Analysis (PEA):
WAN. Two medical institutions perform PEA directly, aggregating their own
databases in MPC. Our benchmarking environment naturally resembles the
scenario where the two medical institutions are located very close to each other.
However, our PEA protocols are either constant-round or are highly parallelized,
so the most important performance aspect is the network bandwidth. We expect
the medical institutions to have a high-bandwidth Internet connection. In our
benchmarking environment, we use a 10 Gbit/s bandwidth network connection
but conservatively restrict the latency to 50 ms using the tc tool7 to simulate
the WAN setting.
6 https://encrypto.de/code/EPISTASIS
7 https://man7.org/linux/man-pages/man8/tc.8.html

14

https://encrypto.de/code/EPISTASIS
https://man7.org/linux/man-pages/man8/tc.8.html

LAN. Several medical institutions send their secret shared data to outsourcing
servers [21] that aggregate the received data and compute PEA on the aggregated
data and finally send back the shared result. The outsourcing servers cannot infer
any information about the input and output data as well as the intermediate
values, but they are assumed not to collude. Such servers may be two cloud
computing providers located close to each other, e.g., near the same Internet
exchange point, thus having a high-bandwidth, low-latency connection. Thus, in
the LAN setting we do not put additional constraints on the network and use a
network connection with 10 Gbit/s throughput and 0.2 ms latency.

6.1 Performance of PReliefF and PTuRF

The results of our performance benchmarks of the private feature selection
algorithms are shown in Tab. 1.

During our evaluation, RAM utilization was the a bottleneck during feature
selection. This is not surprising, as our implementation was not optimized for
space efficiency, but runtime and communication efficiency. Because of RAM
exhaustion, PTuRF could not be benchmarked across the full parameter space.

As expected, a linear growth pattern, after a steep initial increase, can be
observed in the runtimes of PReliefF and PTuRF. Due to the constant number
of interaction rounds in Yao’s GC protocol, the additional latency in the WAN
setting has no strong effect on the measured runtimes.

Although the number of features to consider is reduced in every iteration,
PTuRF’s higher sorting work load leads to worse performance compared to the
simpler PReliefF algorithm. However, the pruning of noisy features is shown
in [31] to increase the robustness of the results.

Due to its linear runtime–size complexity, it is practical to perform PReliefF
on datasets with real-world sizes (e.g., ≈ 100 records with ≈ 10,000 features [7])
in less than a day.

Tab. 1: Runtimes and communication for our private ReliefF (PReliefFY) and
private TuRF (PTuRFY) protocols filtering |R| records with 10 SPNs each.

|R|=4 |R|=8 |R|=20 |R|=40 |R|=60 |R|=80 |R|=100

LAN 1.00 s 1.74 s 5.13 s 13.15 s 21.19 s 33.52 s 50.14 s
Runtime WAN 1.98 s 2.30 s 7.99 s 15.04 s 23.68 s 36.21 s 52.29 s

P
R

el
ie

fF
Y

Comm. 3.75MB 9.63 MB 40.98 MB 138.93MB 294.13MB 506.45 MB 775.93 MB

LAN 1.09 s 2.13 s 13.65 s 83.37 s — — —
Runtime WAN 1.49 s 2.51 s 14.34 s 85.54 s — — —

P
T
uR

F
Y

Comm. 4.11MB 11.13MB 107.15MB 510.77 MB — — —

6.2 Performance of PMDR

The performance of PEA’s Private Multifactor Dimensionality Reduction (PMDR)
is reported in Tab. 2. The exponential scaling in the number of interacting loci

15

L is clearly visible, both in the runtime and the communication, which for
L=3, N=1,000 reaches nearly 100TB.

However, for smaller numbers of SNPs a or lower interaction depths, such as
a=1,000, L=2 or a=100, L=3, our PMDR implementation runs in less than an
hour in both LAN and WAN.

The very low communication overhead for outsourcing leads to a practical
solution for pooling and analyzing multiple institutions’ genomic data.

6.3 Total Performance

Tab. 2: Runtimes and communication for
PEA’s Arithmetic Private Multifactor
Dimensionality Reduction (PMDRA+)
protocol with s=10 cross-validation steps
using an interaction depth of L and a at-
tributes.

depth a=10 a=100 a=1,000

L=2 1.71 s 24.85 s 43.08 minLAN
L=3 3.29 s 33.68min —

L=2 10.88 s 42.71 s 1.04 hWAN
L=3 10.01 s 47.71min —

L=2 9.39 MB 1.03 GB 104.29GBComm.
L=3 70.23 MB 94.64 GB 97.25 TB

Due to the exponential complexity of
(P)MDR, combination with a preced-
ing feature selection algorithm is a sen-
sible practice. At the cost of leaking
the number of filtered features, the re-
duced number of features significantly
improves the efficiency and the result
is more robust against noisy attributes.
As described by Moore and White [31],
it is hard to give a general estimate
on feasible feature reduction, as the re-
sulting accuracy is depending, among
other factors, on the amount of noise,
the size of the data set, and the her-
itability of the trait. However, they
measure 80 % accuracy while using TuRF to remove 950 out of 1,000 features.

As the performance benchmarks in the previous section show, this composi-
tion of both algorithms achieves only a performance gain for large numbers of
features or for interaction depths larger than L=2. In those cases PMDR on itself
becomes prohibitively long running and the reduction of the number of features
by 10 % corresponds to a significant performance gain, e.g., 20 % improvement
for a=10,000 features (40 instead of 50 million considered combinations).

Acknowledgments

This project received funding from the European Research Council (ERC) under
the European Union’s Horizon2020 research innovation program (grant agree-
ment No.850990 PSOTI), and the German Ministry of Education and Research
through the project HiGHmed (funding #01ZZ1802G). It was co-funded by the
Deutsche Forschungsgemeinschaft(DFG) within SFB1119 CROSSING/236615297
and GRK2050 Privacy & Trust/251805230, and by the German Federal Ministry
of Education and Research and the Hessen State Ministry for Higher Education,
Research and the Arts within ATHENE.

16

Bibliography

[1] Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious
transfer extensions. JoC (2017)

[2] Barbujani, G., Colonna, V.: Human genome diversity: Frequently asked
questions. Trends in Genetics (2010)

[3] Beaver, D.: Correlated pseudorandomness and the complexity of private
computations. In: STOC (1996)

[4] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.:
Efficient two-round OT extension and silent non-interactive secure computa-
tion. In: CCS (2019)

[5] Braun, L., Cammarota, R., Schneider, T.: A generic hybrid 2PC framework
with application to private inference of unmodified neural networks. In:
NeurIPS Workshop Privacy in Machine Learning (2021)

[6] Braun, L., Demmler, D., Schneider, T., Tkachenko, O.: MOTION - A
framework for mixed-protocol multi-party computation. TOPS (2022)

[7] Chen, Q., Zhang, X., Zhang, R.: Privacy-preserving decision tree for epistasis
detection. Cybersecurity (2019)

[8] Cho, H., Wu, D.J., Berger, B.: Secure genome-wide association analysis
using multiparty computation. Nature Biotechnology (2018)

[9] Cho, Y.M., Ritchie, M.D., Moore, J.H., Park, J.Y., Lee, K.U., Shin, H.D.,
Lee, H.K., Park, K.S.: Multifactor-dimensionality reduction shows a two-
locus interaction associated with Type 2 diabetes mellitus. Diabetologia
(2004)

[10] Couteau, G.: New protocols for secure equality test and comparison. In:
CANS (2018)

[11] Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient
mixed-protocol secure two-party computation. In: NDSS (2015)

[12] Dessouky, G., Koushanfar, F., Sadeghi, A.R., Schneider, T., Zeitouni, S.,
Zohner, M.: Pushing the communication barrier in secure computation using
lookup tables. In: NDSS (2017)

[13] Duncan, G.: Statistical confidentiality: principles and practice. Springer
(2011)

[14] Dwork, C.: Differential privacy. In: ICALP (2006)
[15] Gilboa, N.: Two party RSA key generation. In: CRYPTO (1999)
[16] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In:

STOC (1987)
[17] Hahn, L.W., Ritchie, M.D., Moore, J.H.: Multifactor dimensionality reduc-

tion software for detecting gene–gene and gene–environment interactions.
Bioinformatics (2003)

[18] Hamacher, K.: PETS Genome Privacy Workshop (2014)
[19] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers

efficiently. In: CRYPTO (2003)

[20] Jarvinen, K., Leppakoski, H., Lohan, E.S., Richter, P., Schneider, T.,
Tkachenko, O., Yang, Z.: PILOT: Practical privacy-preserving Indoor Local-
ization using OuTsourcing. In: EuroS&P (2019)

[21] Kamara, S., Raykova, M.: Secure outsourced computation in a multi-tenant
cloud. In: IBM Workshop on Cryptography and Security in Clouds (2011)

[22] Kim, Y., Park, T.: Robust gene-gene interaction analysis in genome wide
association studies. PloS One (2015)

[23] Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Machine
Learning (1992)

[24] Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring
short secrets. In: CRYPTO (2013)

[25] Kolesnikov, V., Sadeghi, A.R., Schneider, T.: Improved garbled circuit
building blocks and applications to auctions and computing minima. In:
CANS (2009)

[26] Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates
and applications. In: ICALP (2008)

[27] Kononenko, I.: Estimating attributes: Analysis and extensions of RELIEF.
In: ECML (1994)

[28] Le, T.T., Simmons, W.K., Misaki, M., Bodurka, J., White, B.C., Savitz,
J., McKinney, B.A.: Differential privacy-based evaporative cooling feature
selection and classification with Relief-F and random forests. Bioinformatics
(2017)

[29] Lee, S., Son, D., Kim, Y., Yu, W., Park, T.: Unified Cox model based multi-
factor dimensionality reduction method for gene-gene interaction analysis of
the survival phenotype. BioData Mining (2018)

[30] Meng, Y., Groth, S., Quinn, J.R., Bisognano, J., Wu, T.T.: An exploration
of gene-gene interactions and their effects on hypertension. International
Journal of Genomics (2017)

[31] Moore, J.H., White, B.C.: Tuning ReliefF for genome-wide genetic analysis.
In: European Conference on Evolutionary Computation, Machine Learning
and Data Mining in Bioinformatics (2007)

[32] Naveed, M., Ayday, E., Clayton, E.W., Fellay, J., Gunter, C.A., Hubaux,
J.P., Malin, B.A., Wang, X.: Privacy in the genomic era. ACM Computing
Surveys (2015)

[33] Newton-Cheh, C., Johnson, T., Gateva, V., Tobin, M.D., Bochud, M., Coin,
L., Najjar, S.S., Zhao, J.H., et al.: Genome-wide association study identifies
eight loci associated with blood pressure. Nature Genetics (2009)

[34] Ozaki, K., Ohnishi, Y., Iida, A., Sekine, A., Yamada, R., Tsunoda, T., Sato,
H., Sato, H., Hori, M., Nakamura, Y., Tanaka, T.: Functional SNPs in the
lymphotoxin-αgene that are associated with susceptibility to myocardial
infarction. Nature Genetics (2002)

[35] Rathee, D., Rathee, M., Kumar, N., Chandran, N., Gupta, D., Rastogi, A.,
Sharma, R.: Cryptflow2: Practical 2-party secure inference. In: CCS (2020)

[36] Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Parl,
F.F., Moore, J.H.: Multifactor-dimensionality reduction reveals high-order
interactions among estrogen-metabolism genes in sporadic breast cancer.
The American Journal of Human Genetics (2001)

18

[37] Rosulek, M., Roy, L.: Three halves make a whole? Beating the half-gates
lower bound for garbled circuits. In: CRYPTO (2021)

[38] Schneider, T., Tkachenko, O.: EPISODE: Efficient Privacy-preservIng Similar
sequence queries on Outsourced genomic DatabasEs. In: ASIACCS (2019)

[39] Schneider, T., Zohner, M.: GMW vs. Yao? Efficient secure two-party com-
putation with low depth circuits. In: FC (2013)

[40] Tkachenko, O., Weinert, C., Schneider, T., Hamacher, K.: Large-scale privacy-
preserving statistical computations for distributed genome-wide association
studies. In: ASIACCS (2018)

[41] Wang, M.H., Cordell, H.J., Van Steen, K.: Statistical methods for genome-
wide association studies. Seminars in Cancer Biology (2019)

[42] Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension
for correlated OT with small communication. In: CCS (2020)

[43] Yang, L., Qu, B., Xia, X., Kuang, Y., Li, J., Fan, K., Guo, H., Zheng,
H., Ma, Y.: Impact of interaction between the G870A and EFEMP1 gene
polymorphism on glioma risk in chinese han population. Oncotarget (2017)

[44] Yao, A.C.: How to generate and exchange secrets. In: FOCS (1986)
[45] Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: EURO-

CRYPT (2015)
[46] Zhang, H., Zheng, W., Hua, L., Wang, Y., Li, J., Bai, H., Wang, S., Du,

M., Ma, X., Xu, C., Li, X., Gong, B., Wang, Y.: Interaction between PPAR
γ and SORL1 gene with Late-Onset Alzheimer’s disease in Chinese Han
Population. Oncotarget (2017)

Appendix

A Secure Multi-Party Computation

Secure Multi-Party Computation (MPC) are cryptographic protocols to compute
a joint function over distributed, private data without the need of a trusted
third party. In this work, we consider security against passive (a.k.a. semi-honest)
adversaries, which strictly follow the protocol but try to learn more information.

Oblivious Transfer (OT). In OT [3] the sender inputs messages (m0,m1), and the
receiver inputs a choice bit c. At the end of the protocol, the receiver obtains mc

but no information about m1−c, and the sender does not obtain any information.
OT can be instantiated very efficiently using mostly symmetric cryptography [19]
and it admits optimizations for MPC [1]. OT can be generalized to N instead
of two messages [24], where the receiver holds a choice index c ∈ ZN and
obtains mc. Recently, a “silent” OT [4, 42] was introduced with significantly
less communication at the cost of higher computation. The current silent OT
schemes beat the textbook OT extension [19, 1] in terms of runtime in networks
with limited bandwidth, which is less interesting in our scenario, where medical
institutions performing large-scale MPC likely have a high-bandwidth connection.

19

Yao’s Garbled Circuits (GCs). GCs were introduced in [44]. The state of the
art [37] requires 1.5κ + 5 bits per AND gate, where κ=128 is the symmetric
security parameter. GCs operate on Boolean circuits and work by garbling the
truth tables: a random symmetric encryption key is generated for every possible
value on every wire. The output wire-keys of a gate are doubly encrypted using
the corresponding combination of input wire keys. Only the garbler, i.e., the
party preparing the GC, can connect the entries in the GC to “cleartext” values.
Then, the garbler sends the GC and its input keys to the evaluator. The evaluator
obliviously obtains its input keys using OT. The GC is then evaluated. We denote
a bit b “shared” in a GC as ⟨b⟩Y and call this Yao sharing.

Goldreich-Micali-Wigderson (GMW). Like GCs, the GMW protocol [16], named
after its inventors Goldreich, Micali and Wigderson, operates on Boolean circuits.
It achieves its privacy guarantees by splitting every input bit b in two XOR-
shares and letting party Pi hold share ⟨b⟩Bi . These shares are constructed as
⟨b⟩B0 ←$ {0, 1} and ⟨b⟩B1 ← b⊕ ⟨b⟩B0 and reconstructed by XOR-ing both shares.
XOR gates can be evaluated locally by XOR-ing both local shares and AND
gates are evaluated interactively [1]. We denote this version of GMW as Boolean
sharing. The GMW protocol can be extended to arithmetic circuits with elements
in Z2ℓ . We denote this extension as Arithmetic sharing. Similarly to Boolean
GMW, the shares are generated as ⟨x⟩A0 ←$ Zn and ⟨x⟩A0 ← x − ⟨x⟩A1 . The
addition can be performed locally and the multiplication requires interaction [15].

B Three Halves Make a Whole Garbling Implementation

In order to provide the best possible estimation of our PEA protocols’ efficiency,
we implement in MOTION [6] “three-halves garbling” (3HG) [37]. To the best
of our knowledge, this is the first implementation of 3HG. Our optimized 3HG
engine can garble 11.2 M/s and evaluate 27.5 M/s AND gates. Compared to
“two-halves garbling” (2HG) [45] in MOTION by Braun et al. [5], 3HG is 4.7×
slower in terms of garbling and 2.5× slower in terms of evaluation. This is also a
more significant slowdown of garbling than the factor of 2.1× estimated in [37],
based on the number of hash function calls. Our profiling indicates that the
two main bottlenecks are the 1.5× higher number of AES invocations and the
significantly higher degree of branching in 3HG compared to 2HG. Considering
the garbling rate, we can saturate the 10 Gbit/s network channel with 5 threads.
Furthermore, our benchmark for evaluating 512 AES circuits in parallel in a
GC shows a 2.2× speedup compared to [5] (our 0.22 s vs. their 0.5 s). However,
this result should be taken with a grain of salt, since [5] introduced significant
changes to MOTION, which may have affected the runtimes.

20

	PEA: Practical Private Epistasis Analysisusing MPC

