
META-BTS: Bootstrapping Precision Beyond the Limit
Youngjin Bae

youngjin.bae@cryptolab.co.kr

CryptoLab. Inc.

Jung Hee Cheon

jhcheon@snu.ac.kr

The Seoul National

University/CryptoLab. Inc.

Wonhee Cho

wony0404@snu.ac.kr

The Seoul National University

Jaehyung Kim

jaehyungkim@cryptolab.co.kr

CryptoLab. Inc.

Taekyung Kim

taekyung.kim@cryptolab.co.kr

CryptoLab. Inc.

ABSTRACT
Bootstrapping, which enables the full homomorphic encryption

scheme that can perform an infinite number of operations by restor-

ing the modulus of the ciphertext with a small modulus, is an es-

sential step in homomorphic encryption. However, bootstrapping

is the most time and memory consuming of all homomorphic op-

erations. As we increase the precision of bootstrapping, a large

amount of computational resources is required. Specifically, for any

of the previous bootstrap designs, the precision of bootstrapping is

limited by rescaling precision.

In this paper, we propose a new bootstrapping algorithm of the

Cheon-Kim-Kim-Song (CKKS) [11] scheme to use a known boot-

strapping algorithm repeatedly, so called Meta-BTS. By repeating

the original bootstrapping operation twice, one can obtain another

bootstrapping with its precision essentially doubled; it can be gen-

eralized to be 𝑘-fold bootstrapping operations for some 𝑘 > 1 while

the ciphertext size is large enough. Our algorithm overcomes the

precision limitation given by the rescale operation.

KEYWORDS
Fully Homomorphic Encryption, CKKS scheme, Approximate Boot-

strapping, High Precision, Small parameters

1 INTRODUCTION
Homomorphic encryption (HE) refers to a class of encryption

schemes that allows computing over encrypted data without de-

cryption. Since Gentry et al. [17] introduced the first construction

of FHE, there have been extensive studies [3–5, 8, 11–16, 18, 26]

suggesting efficient designs and adding new functionalities of HE.

Especially, the Cheon-Kim-Kim-Song (CKKS) [11] scheme is emerg-

ing as one of the notable HE schemes as it provides efficient privacy-

preserving computation over real and complex numbers. To be spe-

cific, unlike other HE schemes that support exact computation over

finite fields [3–5, 16] or of binary circuits [13–15], the CKKS scheme

has complex vector space C𝑁 /2 as its default message space and

naturally supports approximated SIMD(Single Instruction/Multiple

Data) computation over real and complex numbers.

In order to support complicated applications, HE should be

equipped with faster homomorphic operations and should be able

Conference’22, July 2022, -
. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

to evaluate circuits of huge depth. However, as homomorphic oper-

ations progress, the ciphertext modulus decreases and finally be-

comes too small to sustain further operations in the CKKS scheme.

To solve these problems, Gentry’s blueprint of bootstrapping pro-

vides the idea of homomorphic re-encryption of a ciphertext. Re-

encryption of a ciphertext means making the ciphertext modulus

larger again while retaining the encrypted message of the cipher-

text, and the resulting ciphertext is ready for further homomorphic

operations.

In the CKKS scheme, the standard way for re-encryption, or

bootstrapping (BTS) of ciphertexts is to evaluate an integral modu-

lar reduction homomorphically. Although the CKKS scheme pro-

vides the addition and the multiplication of ciphertexts, it is highly

nontrivial to represent such a modular reduction with these ba-

sic algebraic operations. This means the bootstrapping requires a

complicated combination of these basic operations, and it causes a

major running time degradation and consumes a large amount of

ciphertext modulus after bootstrapping. In practice, this is a severe

bottleneck to use HE for various applications.

Also, in real use of HE, there are many cases require high preci-

sion bootstrapping. Evaluating a circuit of large multicative depth,

including ML/DNN training, statistics, and sorting, require high

precision bootstrapping since the ciphertext loses precision with

each multiplication and bootstrapping procedure.

Recently kim et al. [21] achieves high precision with small 𝑁 by

using blind rotation which used for FHEW/TFHE bootstrapping.

More precisely, when 𝑁 is 2
13
, their precision is 73.58 where the

number of slot is 2
10
. However, unlike other CKKS bootstrapping

algorithms, it does not support SIMD(Single Instruction Multiple

Data) computation during bootstrapping procedure. They split a

ciphertext by the number of slots, bootstrap each piece, and combine

them back into a ciphertext. Such split increases memory and time

consumption in proportion to the number of slots, making it difficult

for this method to deal with a large number of data.

Therefore, to preserve SIMD computation, various studies [2,

6, 7, 9, 19, 20, 22–24] have been conducted to represent modular

reduction as a polynomial approximation to improve running time

performance and precision of bootstrapping. Despite these efforts,

improvements on the bootstrapping precision are limited with re-

spect to the ciphertext dimension 𝑁 , once we require a reasonable

security level in practice, and it turns out that we cannot avoid

from adopting larger parameters in order to obtain a bootstrapping

with better precision.

1

Conference’22, July 2022, - Bae et al.

To address these problems, we propose a novel bootstrapping

algorithm, called Meta-BTS, which can be used to obtain higher

precision on given parameters.

1.1 Overview of Our Algorithm
CKKS bootstrapping can be understood as a homomorphic evalu-

ation of the decryption circuit to re-encrypt a ciphertext. In boot-

strapping, a bootstrapping error is added because the modular

reduction is only approximated by evaluating a polynomial. Here

we briefly present the main idea of Meta-BTS algorithm.

(1) Extract bootstrapping error by subtracting the original ci-

phertext from the naïvely bootstrapped ciphertext.

(2) Bootstrap the extracted error.

(3) Subtract the bootstrapped error from the bootstrapped ci-

phertext.

By repeating this procedure, the bootstrapping error can be par-

tially removed from the bootstrapped ciphertext and the resulting

ciphertext is in higher precision.

TechniquesWe describe our new algorithm to achieve a 2𝑛-bit pre-

cision bootstrapping BTS(2) using an 𝑛-bit precision bootstrapping

BTS(1) , as shown in Fig. 1. Before we define bootstrapping and its

precision, we first define a ciphertext of HE. Let 𝑅 = Z[𝑋]/(𝑋𝑁 +1)
be the cyclotomic ring with a power-of-two dimension 𝑁 , and

m ∈ C𝑁 /2 be a message. We denote 𝑅𝑄 = 𝑅/𝑄𝑅 for a positive

integer 𝑄 . When used in this context, we call 𝑄 a modulus. Let

ct(m, 𝑞) ∈ 𝑅2𝑞 denote a ciphertext whose modulus is 𝑞 and the

message is m.

Now, we define bootstrapping precision as follows. By apply-

ing a bootstrapping to a ciphertext ct(2𝑟m, 𝑞), we obtain the new

ciphertext ctBTS = ct(2𝑟m + 2−𝑛e, 𝑄𝑟𝑒𝑚) where the infinite norm
of the message ∥2𝑟m∥∞ is less than or equal to 2

𝑟
to apply the

bootstrapping, 𝑄𝑟𝑒𝑚 is the ciphertext modulus after bootstrapping,

e ∈ C𝑁 /2, and ∥e∥∞ is less than or equal to 1. The precision of the

bootstrapping is defined to be 𝑟 + 𝑛.
2-fold Bootstrapping, the simplest case of Meta-BTS, consists of

two bootstrapping steps: bootstrapping the ciphertext and boot-

strapping the error.

Bootstrapping of a ciphertextGiven a ciphertext ct𝐼 = ct(2𝑛m, 2𝑛 ·
𝑞) where ∥m∥∞ is less than or equal to 1, we rescale the ciphertext

by 2
𝑛
. Then, we get the new ciphertext ct1 = ct(m, 𝑞). Now, we

apply an 𝑛-bit precision BTS(1) to ct1 and obtain new ciphertext

ct2 = ct(m + 2−𝑛e1, 𝑄𝑟𝑒𝑚) where ∥e1∥∞ is less than or equal to 1.

To extract the bootstrapping error, we multiply ct2 by 2
𝑛
, and get

new ciphertext ct3 = ct(2𝑛m + e1, 𝑄𝑟𝑒𝑚). Since 𝑄𝑟𝑒𝑚 is multiple

of 𝑞 in the CKKS scheme, we can compute the ciphertext of the

bootstrapping error, ct𝑒𝑟𝑟𝑜𝑟 = [ct3]𝑞 − [ct𝐼]𝑞 = ct(e1, 𝑞). Now, we
get the ciphertext of the bootstrapping error e1.
Bootstrapping the error Now, we apply an 𝑛-bit precision BTS(1)

to ct𝑒𝑟𝑟𝑜𝑟 and obtain new ciphertext ct4 = ct(e1 + 2−𝑛e2, 𝑄𝑟𝑒𝑚)
where ∥e2∥∞ is less than or equal to 1. Finally, we compute ct𝑜 =

𝑐𝑡3 − ct4 = ct(2𝑛m − 2
−𝑛e2, 𝑄𝑟𝑒𝑚). Since ∥e2∥∞ is less than or

equal to 1, the ciphertext ct𝑜 still has 2
𝑛m as a message with 𝑛-bit

precision and 𝑄𝑟𝑒𝑚 is the ciphertext modulus after bootstrapping.

Therefore, we get a 2𝑛-bit precision BTS(2) of using an 𝑛-bit preci-

sion BTS(1) .

In addition, Meta-BTS can easily be extended to iterate the basic

BTS more than twice. The details on how to repeat multiple times

of our algorithm are introduced in Section 3.

1.2 Our Contributions
We propose a Meta-BTS algorithm which enables us to obtain high

precision bootstrapping by iterating lower precision bootstrapping.

That is, given a FHE parameter, it is possible to construct a boot-

strapping algorithm of which precision is even beyond the state-of-

the-art limitation. More specifically, given an 𝑛-bit precision BTS(1)

with an input range of [−1, 1], a 𝑘𝑛-bit precision BTS(𝑘) can be

obtained by repeating BTS(1) 𝑘 times for possible 𝑘 . Until now, the

parameters of HE are optimized for a specific precision, and if a

higher precision operation is desired, a user needs to make new

parameters for a higher precision. But it is hard to do unless a user

is an expert of HE. In contrast, Meta-BTS enables higher precision

operations without changing parameters.

We propose new HE parameters with a much higher precision

than existing one according to the ciphertext polynomial dimension

𝑁 using Meta-BTS method. Since the previous methods use a large

number ofmodulus to increase precision of bootstrapping, precision

is very limited by the ciphertext polynomial dimension 𝑁 . The best

known precision to be implemented was 15 [2], 45 [6], 100 [23]

when 𝑁 is of 2
15, 216, 217, respectively.

Our Meta-BTS can increase the bootstrapping precision by using

a fixed bootstrapping algorithm several times, so we only need

to increase the precision in the multiplication process except the

bootstrapping algorithm. Using Meta-BTS, we can obtain a higher

precision compared to the previous methods for each corresponding

𝑁 , as shown in Table 1. The upper bound of precision and the

parameter sets for obtaining the high precision are described in

Section 4.2, 5, respectively.

Table 1: Comparison of the bootstrapping precision of pre-
vious works and ours. 𝑑𝑒𝑝𝑡ℎ denotes the number of possible
multiplications after the bootstrapping algorithm.

Algorithm 𝑁 slot iter 𝑑𝑒𝑝𝑡ℎ Bit prec.

BMT+21[2] 2
15

2
14

- 3 15.5

JM22 [6]

2
16

2
3

- - 45

2
17

2
3

- - 100

LLK+22 [23]

2
17

2
3

- - 100.11

2
17

2
12

- - 93.03

This work

2
15

2
14

3 1 48

2
16

2
15

17 1 255

2
17

2
16

14 1 420

OurMeta-BTS algorithm also improves asymptotic time complex-

ity in the high precision bootstrapping algorithm. Our algorithm

uses 𝑛/𝑘-bit precision bootstrapping 𝑘 times to obtain 𝑛-bit preci-

sion bootstrapping. The advantage of small precision bootstrapping

is that small precision bootstrapping uses small ciphertext modulus

and performs fewer operations. If the target precision 𝑛 is large

enough, the ciphertext modulus for an𝑛-bit precision bootstrapping

is approximated by 𝑂 (𝑛5/4).
2

META-BTS: Bootstrapping Precision Beyond the Limit Conference’22, July 2022, -

Figure 1: High-level Overview of the Meta-BTS algorithm

Let 𝐶𝑛 be the the number of multiplications used by 𝑛-bit preci-

sionBTS, which is an incremental function for𝑛. Since the time com-

plexity of𝑚-bit number multiplication is at least 𝑂 (𝑚 log𝑚), we
assume of it as𝑂 (𝑚 log𝑚), where our algorithm is least efficient. Us-

ing Meta-BTS, the time complexity of an 𝑛-bit precision bootstrap-

ping decrease from 𝐶𝑛 · 𝑂 (𝑛5/4 log𝑛) to 𝐶𝑛/𝑘 · 𝑂
(
𝑛5/4

𝑘1/4 · log
(
𝑛
𝑘

))
for a positive integer 𝑘 .

Our algorithm provides higher precision bootstrapping under

the same parameters, so smaller parameters are available in cer-

tain situations. If one wants to obtain 100-bit precision FHE, one

uses the ciphertext polynomial dimension 𝑁 = 2
17
, but our new

method achieves the same precision with 𝑁 = 2
16
. According to

Lattigo preset I [2] which uses 𝑁 = 2
16
, total memory for storing

bootstrapping keys is at least 10.25GB. If 𝑁 grows to 2
17
, total mem-

ory is more than four times larger. So Meta-BTS can be useful in

environments such as hardware or IoT with limited memory.

Finally, our new algorithm uses bootstrapping algorithm as a

black box, so it can be used for all bootstrapping algorithms of the

CKKS scheme. We adapt the existing bootstrapping algorithms for

CKKS schemes [7, 9, 19] to build a high precision bootstrapping al-

gorithm. If one applies the state-of-the-art bootstrapping algorithm

[2, 6, 23], one may get a better bootstrapping algorithm in terms of

precision using Meta-BTS.

1.3 Related Works

Bootstrapping of the CKKS Scheme.
The core of the bootstrapping algorithm is the polynomial ap-

proximation of a modular reduction. The first proposed method is to

approximate the modular reduction with a trigonometric function

and approximate it with a polynomial function using Taylor series

[9]. After that, the studies [7, 19] were conducted to change Tay-

lor series to Chebyshev interpolation. Then, a technique for direct

approximation of the modular reduction was proposed using the

least squares method [24] and Lagrange interpolation [20]. Also, to

reduce the error caused by trigonometric approximation, the use of

the inverse sine approximation was presented in [22] and the sine

series was presented in [6]. Separately, to reduce the computation

time for homomorphic linear transformation, the use of double

hoisting technique was presented in [2]. Most recently, a method of

minimizing the error variance in homomorphic computation and

bootstrapping algorithm was proposed in [23].

Difference of Our works.
Our method mitigates the overall bootstrapping precision which

is the combination of error coming from the approximate modular

reduction and error from the CKKS scheme itself (e.g. rescale er-

ror). Many papers in the past have focused on improving modular

reduction errors, and the recent work [23] proposes a first tech-

nique that considered the noise added during the bootstrapping

procedure by the different homomorphic operations. As our paper

takes a completely different point of view from otherworks, we

use a bootstrapping algorithm in a black-box manner. We defined

boostrapping precision in Definition 2.2 as the sup-norm of the dif-

ference between the two decrypted messages of the “original cipher-

text” and the “bootstrapped ciphertext” respectively. We propose

a method to obtain higher precision bootstrapping by repeating a

given bootstrapping.

2 BACKGROUND
2.1 Notation
We denote vectors in lower-case bold face, e.g. a, and matrices in

upper-case bold face, e.g. A. We denote the inner product of two

vector by ⟨·, ·⟩ or simply ·. For a real number 𝑟 , ⌈𝑟⌋ denotes the
rounding function. We denote by [·]𝑞 the modular reduction by 𝑞.

We denote the infinite norm by ∥ · ∥∞ and Hadamard multiplication

by ⊙. We use 𝑥 ← 𝐷 to denote the sampling 𝑥 according to dis-

tribution 𝐷 . When a set 𝑆 is used instead of a distribution, 𝑥 ← 𝑆

means that 𝑥 is sampled uniformly at random among elements of

𝑆 . We set 𝜆 to be a fixed security parameter throughout the paper:

all known valid attacks against the cryptographic scheme under

scope should take Ω(2𝜆) bit operations.
Let 𝑅 = Z[𝑋]/(𝑋𝑁 + 1) be the ring of integers of the 2𝑁 -th

cyclotomic field with a power-of-two dimension 𝑁 and we write

𝑅𝑞 = 𝑅/𝑞𝑅. A polynomial 𝑎(𝑋) can be denoted by 𝑎 by omitting 𝑋 .

2.2 The CKKS scheme
We first recap the FHE scheme CKKS [11] and its packing methods.

3

Conference’22, July 2022, - Bae et al.

Packing method The CKKS scheme uses a complex vector as

a message (i.e. m ∈ C𝑁 /2) and provides homomorphic SIMD op-

erations of ciphertexts (i.e. entry-wise operations) such as addi-

tion, subtraction, and Hadamard multiplication. To encrypt a vec-

tor of complex numbers m ∈ C𝑁 /2, we use an isomorphism 𝜏 :

R[𝑋]/(𝑋𝑁 + 1) → C𝑁 /2 called the canonical embedding and a

positive real number Δ called scaling factor. A method of encod-

ing/decoding a message is as follows:

• Encoding:𝑚(𝑋) ← Ecd(m,Δ). Given a messagem ∈ C𝑁 /2
and a scaling factor Δ, the encoding map returns𝑚(𝑋) =
⌊Δ · 𝜏−1 (m)⌉ ∈ 𝑅. When encoding, ∥m∥ ≤ 1.

• Decoding: m← Dcd(𝑚(𝑋),Δ). Given a plaintext𝑚(𝑋) ∈
𝑅 and a scaling factor Δ, the decoding map returns m =

𝜏 (𝑚′(𝑋)) ∈ C𝑁 /2, where𝑚′(𝑋) = Δ−1 ·𝑚(𝑋) is considered
as an element of Q[𝑋]/(𝑋𝑁 + 1).

The CKKS scheme Consider the CKKS scheme Enc :M×K → C
for the plaintext spaceM = 𝑅, the key space K and the ciphertext

space C = 𝑅2
𝑄
. The ciphertext modulus 𝑄 is one of the positive

integers 𝑄0 < 𝑄1 < · · · < 𝑄𝐿 depending on the level of the cipher-

text, which decreases over the homomorphic computations from 𝐿

to 0. When the level becomes 0, homomorphic multiplication can

no longer be performed on the ciphertext. To enable extra homo-

morphic multiplications, a bootstrapping algorithm is performed to

raise the modulus of the ciphertext. In the bootstrapping algorithm,

the level is recovered only up to some 𝐿BTS < 𝐿 due to the levels

consumed during the homomorphic operations inside of the boot-

strapping algorithm. The distributions 𝜒𝑒𝑛𝑐 and 𝜒𝑒𝑟𝑟 denote the

discrete Gaussian distribution with some fixed standard deviation.

The distribution 𝜒𝑘𝑒𝑦 outputs a polynomial with coefficients in

{−1, 0, 1}.

Basic Operations of the CKKS scheme

• Setup: params← FHE.Setup(1𝜆). Take the security param-

eter as an input and return the public parameters such as

the degree 𝑁 and the chain of modulus 𝑄0 < · · · < 𝑄𝐿 .

• Key Generation: (sk, pk) ← KeyGen(params). Output a
pair of secret and public key.

– Sample 𝑠 ← 𝜒𝑘𝑒𝑦 and set the secret key as sk = (1, 𝑠). We

denote by ℎ = wt(𝑠) the number of nonzero numbers of 𝑠 .

– Sample 𝑎 ← 𝑅𝑄𝐿
and 𝑒 ← 𝜒𝑒𝑟𝑟 . Set the public key as

pk = (𝑏, 𝑎) ∈ 𝑅2
𝑄𝐿

where 𝑏 = [−𝑎 · 𝑠 + 𝑒]𝑄𝐿
.

• Switching Key Generation: swk ← KSGensk (𝑠 ′). For
auxiliary modulus 𝑃 =

∏𝑘
𝑖=0 𝑝𝑖 , sample 𝑎′

𝑘
← 𝑅𝑃𝑄𝐿

and

𝑒 ′
𝑘
← 𝜒𝑒𝑟𝑟 , output the switching key swk := (swk0, swk1) =

(𝑏 ′
𝑘
, 𝑎′

𝑘
) ∈ 𝑅2

𝑃𝑄𝐿
where 𝑏 ′

𝑘
= −𝑎′

𝑘
𝑠 + 𝑒 ′

𝑘
+ 𝑃 · 𝑠 ′ mod 𝑃𝑄𝐿 .

– Set the evaluation key as evk := KSGensk (𝑠2).
– Set the rotation key as rk𝑗 := KSGensk (𝑠 (𝑋 5

𝑗)) for 1 ≤
𝑗 ≤ 𝑁 /2.

– Set the bootstrapping key as btk := {𝑟𝑘 𝑗 } 𝑗 ∈𝐽 where 𝐽 is a
subset of [1, 2𝑁 /2].

• Encryption: ct← Encpk (𝑚(𝑋)). Given a plaintext𝑚(𝑋) ∈
𝑅, sample 𝑣 ← 𝜒𝑒𝑛𝑐 and 𝑒0, 𝑒1 ← 𝜒𝑒𝑟𝑟 , output the ciphertext

ct = [𝑣 · pk + (𝑚(𝑋) + 𝑒0, 𝑒1)]𝑄𝐿
. We call the message m for

Dcd(𝑚(𝑋),Δ).

• Decryption:𝑚(𝑋) ← Decsk (ct). Given a ciphertext ct ∈
𝑅2
𝑄ℓ

, output𝑚(𝑋) = [⟨ct, sk⟩]𝑄0
where 𝑄0 is 0-level modu-

lus.

• Rescale: ctRS ← RS(𝑄, ct). For a given ciphertext ct ∈ 𝑅2
𝑄ℓ

,

output ctRS = ⌊𝑄−1ct⌉ mod 𝑄ℓ/𝑄 for some integer𝑄 which

is a factor of 𝑄ℓ . Rescale process plays two roles: reducing

the size of the error and maintaining the scaling factor of

each slot.

• Addition/Subtraction: ct𝑎𝑑𝑑/ct𝑠𝑢𝑏 ← Add/Sub(ct, ct′).
Given two ciphertext ct, ct′ ∈ 𝑅2

𝑄ℓ
, output the ciphertext

ct𝑎𝑑𝑑/ct𝑠𝑢𝑏 = [ct ± ct′]𝑄ℓ
with the corresponding message

vector m ±m′.
• Multiplication: ct𝑚𝑢𝑙𝑡 ← Multevk (ct, ct′). Given two ci-

phertexts ct, ct′ ∈ 𝑅2
𝑄ℓ

, output a level-downed ciphertext

ct𝑚𝑢𝑙𝑡 ∈ 𝑅2𝑄ℓ−1
with the corresponding message vector m ⊙

m′.
• Homomorphic evaluation:

ĉt← FHE.Eval(𝐶, (ct1, · · · , ct𝑙), {swk𝑠′}) .

Given a circuit 𝐶 , a tuple of ciphertexts (ct1, · · · , ct𝑙) and
the switching keys {swk𝑠′} for computations, outputs a eval-

uated ciphertext ĉt.

For the rest of the paper, we may denote the operations between

ciphertexts or ciphertext and plain vector by common symbols, such

as Add(ct1, ct2) = ct1 + ct2 or Mult(ct, ct′) = ct · ct′ for simplicity.

Also, we denote ct(m, 𝑞) by a ciphertext with themessagem ∈ C𝑁 /2
and the modulus 𝑞.

2.3 Bootstrapping of the CKKS scheme
There have been extensive studies for the bootstrapping of the

CKKS scheme. Although they vary in details, all of CKKS boot-

strapping consists of four steps: StC,ModRaise,CtS, EvalMod. StC
and CtS are specific linear transformations, which require rotation

operations on encrypted vectors.

Slot to Coefficient (StC). In CKKS scheme, the canonical embed-

ding is used to encode a complex vector to a polynomial which is

an element of 𝑅. Homomorphic operations are performed slot-wise

on C𝑁 /2, but changing the modulus is only possible for coefficients

of ciphertext polynomials. Therefore, for modulus raising, the ho-

momorphic linear transformation is performed to move the value

in the slot to the coefficient.

Modulus raising (ModRaise). ModRaise increase the ciphertext
modulus to a larger modulus to recover the level of the ciphertext.

Let ct(m, 𝑄ℓ) = (𝑏 = −𝑎𝑠 +𝑚(𝑋) + 𝑒, 𝑎) mod 𝑄ℓ be a ciphertext

where𝑚(𝑋) = Ecd(m,Δ). By only changing its modulus, the cipher-

text ct(m, 𝑄ℓ) can be considered as ct(m′, 𝑄𝐿) for 𝑄ℓ < 𝑄𝐿 where

m′ = Dcd(𝑚(𝑋) +𝑄ℓ 𝐼 (𝑋),Δ) for some 𝐼 (𝑋) ∈ Z[𝑋]/(𝑋𝑁 + 1).
Coefficient to Slot (CtS). To compute modular reduction, a ho-

momorphic linear transformation is performed to move the value

in the coefficient back to the slot. Then each slot of the ciphertext

has𝑚𝑖 +𝑄ℓ 𝐼𝑖 as its encrypted message where𝑚𝑖 +𝑄ℓ 𝐼𝑖 is the 𝑖-th

coefficient of𝑚(𝑋) +𝑄ℓ 𝐼 (𝑋).
Approximate Evaluation of the Modular Reduction (EvalMod). An

approximate evaluation of the modular reduction is performed in

this step. The modular reduction cannot be accurately expressed

4

META-BTS: Bootstrapping Precision Beyond the Limit Conference’22, July 2022, -

only by addition and multiplication, but it can be approximated by

evaluating a polynomial. Thus, the modular reduction is approx-

imated through a polynomial homomorphic operation, where a

bootstrapping error occurs due to approximation, which is greater

than the rescale error that occurs during homomorphic operations.

Various studies are being conducted to increase the precision of

this polynomial approximation [6, 7, 9, 19, 22, 23].

Definition 2.1. (BTS) A bootstrapping algorithm is an algorithm
that allows to re-encrypt a ciphertext and makes homomorphic op-
erations sustainable in homomorphic encryption. A bootstrapping
algorithm BTS is a PPT algorithm with the following properties:
• BTS(ct(m, 𝑞), btk) → ctBTS = ct(m′, 𝑄𝑟𝑒𝑚): Given input
keys for bootstrapping btk and a ciphertext ct(m, 𝑞) whose
message m satisfies ∥m∥∞ ≤ 2

𝑟 for some 𝑟 , the bootstrapping
algorithm returns a ciphertext ctBTS (m′, 𝑄𝑟𝑒𝑚) where𝑄𝑟𝑒𝑚 >

𝑞 is a ciphertext modulus after the bootstrapping algorithm.
The upper bound of ∥m∥∞, 2𝑟 , is called the input bound of the BTS.
When the input bound is 1, BTS is said to be standard.

Definition 2.2. (PERFBTS) Given a bootstrapping algorithm
BTS, Performance PERFBTS is the measure

PERFBTS = (Precision, RemainModulus, Time)
of BTS with the following properties:
• PERFBTS .Precision → 𝑟 + 𝑛: Returns the average number of
bits preserved by BTS. 𝑛 is the largest positive integer such that
∥m −m′∥∞ ≤ 2

−𝑛 holds without negligible probability where
m′ is the decrypted message of the bootstrapped ciphertext
ctBTS = BTS(ct(m, 𝑞)). 2𝑟 is the input bound of the BTS. That
is, m is assumed to satisfy ∥m∥∞ ≤ 2

𝑟 .
• PERFBTS .RemainModulus → 𝑄𝑟𝑒𝑚/𝑞: Returns the modulus
after bootstrapping except the minimal modulus 𝑞 for BTS.
This means that the size of modulus that we can perform
homomorphic operations excluding bootstrapping.
• PERFBTS .Time→ 𝑡 : Returns the running time of BTS.

As bootstrapping consists of homomorphic operations, an error

is added to the message of bootstrapped ciphertext. By Definition

2.1, 2.2, after bootstrapping, bootstrapped ciphertext contains a

bootstrapped message m′ = m + 2−𝑛e where m is the message of

input ciphertext, ∥m∥∞ ≤ 2
𝑟
, e ∈ C𝑁 /2, and ∥e∥∞ ≤ 1.

3 THE META-BTS ALGORITHM
In this section, we present the Meta-BTS, a new method of combin-

ing bootstraps (in other words, iterating bootstraps) to get a higher

precision bootstrap. We describe the algorithms of 2-fold bootstrap-

ping and combining different bootstrapping. Since Meta-BTS use

bootstrapping algorithm as a black box, it can be used even if a new

bootstrapping algorithm is developed in the future.

3.1 Difficulties in improving the performance of
bootstrapping

In the CKKS bootstrapping, the modular reduction over encrypted

data is required without decryption. Since the CKKS scheme pro-

vides only the multiplication and addition of ciphertexts, the mod-

ular reduction for the bootstrapping algorithms should be approx-

imated by polynomials to compute over encrypted data. In this

process, the bootstrapping error is caused by the homomorpic oper-

ations of the polynomial approximation as well as several rescalings

with errors. In order to obtain high precision, one reduces the boot-

strapping error by increasing a scaling factor Δ and/or increasing

the degree of polynomial approximation. Since the high precision

bootstrapping algorithm consumes a lot of bits of the ciphertext

modulus, it reduces the ciphertext modulus significantly after the

bootstrapping and results in the large HE parameters.

3.2 Algorithm description
In this subsection, we propose a new algorithm of increasing the

bootstrapping precision by bootstrapping the errors caused by the

bootstrapping algorithm. Furthermore, we propose a method of

repeating the bootstrapping more than twice by generalizing our

method. In case of using the RNS variant of CKKS[CITE], every

rescaling by 2
𝑛
below means that we rescale the ciphertext by a

modulus which is close to 2
𝑛
.

3.2.1 2-fold Bootstrapping. We propose an algorithm for construct-

ing a 2𝑛-bit precision bootstrapping BTS(2) using an 𝑛-bit precision
bootstrapping BTS(1) .

We start with a standard bootstrapping algorithm BTS(1) with
PERFBTS(1) = (𝑛,𝑄𝑟𝑒𝑚, 𝑡). In other words, BTS(1) converts a ci-

phertext ct(m, 𝑞) into ct(m + 2−𝑛e, 𝑄𝑟𝑒𝑚) where ∥m∥∞ ≤ 1 and

∥e∥∞ ≤ 1.

Algorithm 1: Construct BTS(2) using BTS(1)

Input :ct𝐼 = ct(2𝑛m, 2𝑛 · 𝑞)
Output :ct𝑂 = ct(2𝑛m − 2−𝑛e2, 𝑄𝑟𝑒𝑚)

1 ct1 ← 𝑅𝑆 (2𝑛, ct𝐼) ⊲ ct1 = ct(m + e𝑟𝑠 , 𝑞)
2 ct2 ← BTS(1) (ct1) ⊲ ct2 = ct(m + e𝑟𝑠 + 2−𝑛e1, 𝑄𝑟𝑒𝑚)
3 ct3 ← 2

𝑛 · ct2 ⊲ ct3 = ct(2𝑛m + 2𝑛e𝑟𝑠 + e1, 𝑄𝑟𝑒𝑚)
4 ct4 ← [ct3]2𝑛 ·𝑞 ⊲ ct4 = ct(2𝑛m + 2𝑛e𝑟𝑠 + e1, 2𝑛 · 𝑞)
5 ct5 ← ct4 − ct𝐼 ⊲ ct5 = ct(2𝑛e𝑟𝑠 + e1, 2𝑛 · 𝑞)
6 ct6 ← BTS(1) (ct5) ⊲ ct6 = ct(2𝑛e𝑟𝑠 + e1 + 2−𝑛e2, 𝑄𝑟𝑒𝑚)
7 ct𝑂 ← ct3 − ct6
8 return ct𝑂 = ct(2𝑛m − 2−𝑛e2, 𝑄𝑟𝑒𝑚)

TheBTS(2) is as follows. Given an input ciphertext ct𝐼 = ct(2𝑛m, 2𝑛 ·
𝑞) where ∥m∥∞ ≤ 1, rescale ct𝐼 to 2

𝑛
to reduce the size of mes-

sage for applying BTS(1) . After rescale process, the ciphertext is
ct1 = ct(m + e𝑟𝑠 , 𝑞). Here, we assume that the rescale error e𝑟𝑠 is
smaller than the error of the basic bootstrapping BTS(1) , so it satis-

fies ∥e𝑟𝑠 ∥∞ ≤ 2
−𝑛

. By applying BTS(1) to ct1, we get ct2 = ct(m +
e𝑟𝑠 + 2−𝑛e1, 𝑄𝑟𝑒𝑚) where ∥e1∥∞ ≤ 1. To extract the error, multiply-

ing ct2 by 2
𝑛
, we get ct3 = 2

𝑛 · ct2 = ct(2𝑛m + 2𝑛e𝑟𝑠 + e1, 𝑄𝑟𝑒𝑚).
To calculate the two ciphertexts ct𝐼 , ct3, we make modulus of

ct3 down. So, we obtain the ciphertext ct4 = [ct3]2𝑛 ·𝑞 = ct(2𝑛m +
2
𝑛e𝑟𝑠 + e1, 2𝑛 · 𝑞). And then, computing ct4 − ct𝐼 , we get ct5 =

ct4 − ct𝐼 = ct(2𝑛e𝑟𝑠 + e1, 2𝑛 · 𝑞).
Now, we get the ciphertext ct5 whose message is the rescale

and bootstrapping error 2
𝑛e𝑟𝑠 + 𝑒1. Since ∥2𝑛e𝑟𝑠 + 𝑒1∥∞ ≤ 1, we

can apply BTS(1) to ct5. By applying BTS(1) to ct5, we get ct6 =

ct(2𝑛e𝑟𝑠 + e1 + 2−𝑛e2, 𝑄𝑟𝑒𝑚) where ∥e2∥∞ ≤ 1.. Finally, computing

ct3 − ct6, we get ct𝑂 = ct(2𝑛m − 2−𝑛e2, 𝑄𝑟𝑒𝑚).
5

Conference’22, July 2022, - Bae et al.

ct1

ct𝐼
𝐼𝑛𝑝𝑢𝑡

ct2

ct3

ct4

ct5 = ct4 − ct𝐼

ct6

ct𝑂 = ct3 − ct6

1

2

3

4

5
6

7

𝑂𝑢𝑡𝑝𝑢𝑡

ct𝑂

Figure 2: Changes in Decrypted Messages along the Algorithm 1. Each rectangle represents the modulus of the ciphertext. The
wider the rectangle, the greater the modulus. The blue colored region is the bits occupied by the decrypted message, the white
colored part is non-occupied(i.e. zero) region. Since capacity in the message space C𝑁 /2 is not uniform as in the plaintext space
𝑅𝑄 , the horizontal length of a rectangle cannot be expressed with an exact number of bits. However, it is clear that the overall
capacity increases through the bootstrapping process, so it is reasonable to draw a wider rectangle for a ciphertext on larger
modulus space. The black dot indicates the decimal point. Since the infinity norm of the message to be bootstrapped must
be no greater than 1, the blue colored part must be located to the right of the decimal point. Parts occupied by the error are
indicated by hatching.

ct3 = 2
𝑛BTS(1) (ct𝐼 /2𝑛)

ct𝑂 = BTS(2) (ct𝐼)

ct𝐼 (The original ciphertext)

Figure 3: Comparison of ct3 = 2
𝑛BTS(1) (ct𝐼 /2𝑛) and ct𝑂 = BTS(2) (ct𝐼). BTS(2) is twice more precise than BTS(1)

Theorem 3.1 (2-fold Bootstrapping Algorithm). Given a
standard bootstrapping algorithm BTS(1) with performance

PERFBTS(1) = (𝑛,𝑄𝑟𝑒𝑚/𝑞, 𝑡),

there is a bootstrapping algorithm BTS(2) whose performance is

PERFBTS(2) = (2𝑛,𝑄𝑟𝑒𝑚/(2𝑛 · 𝑞), 2𝑡),

if

𝑄𝑟𝑒𝑚/(2𝑛 · 𝑞) ≥ 1.

Proof. Given a ciphertext ct(2𝑛m, 2𝑛 · 𝑞) where m ∈ C𝑁 /2
and ∥m∥∞ ≤ 1. According to Algorithm 1, the output ciphertext

of BTS(2) is ct(2𝑛m − 2
−𝑛e2, 𝑄𝑟𝑒𝑚). Since 2

−𝑛e2 is the error of

BTS1, e2 ∈ C𝑁 /2 and ∥e2∥∞ ≤ 1. Therefore, BTS(2) preserves
2𝑛-bit precision of the message m. Also, the minimal modulus

for BTS2 grows from 𝑞 to 2
𝑛 · 𝑞 and the running time of BTS2

is almost 2𝑡 because the running time of BTS is overwhelmingly

large compared to other times. So, the performance of BTS(2) is
(2𝑛,𝑄𝑟𝑒𝑚/(2𝑛 · 𝑞), 2𝑡). □

3.2.2 𝑘-fold bootstrapping. We propose an algorithm for construct-

ing a 𝑘𝑛-bit precision BTS(𝑘) using an𝑛-bit precision bootstrapping
BTS(1) for a positive integer 𝑘 .

Let BTS(1) be a standard bootstrapping algorithm whose perfor-

mance is (𝑛,𝑄𝑟𝑒𝑚/𝑞, 𝑡). Assume that BTS(𝑘) holds the following
conditions for a positive integer 𝑘 .

• Input: ct(2(𝑘−1)𝑛 ·m, 2(𝑘−1)𝑛 · 𝑞).
• Output: ct(2(𝑘−1)𝑛 ·m+2−𝑛e𝑘 , 𝑄𝑟𝑒𝑚) where ∥m∥∞, ∥e𝑘 ∥∞ ≤ 1.

• PERFBTS(𝑘) = (𝑘𝑛,𝑄𝑟𝑒𝑚/(2(𝑘−1)𝑛 · 𝑞), 𝑘𝑡).

To prove above argument, we use mathematical induction for a

positive integer 𝑘 . When 𝑘 is 1, 2, we already propose the Algorithm

1 and BTS(1) , BTS(2) satisfy all conditions by Definition 2.2 and

Theorem 3.1. If we can construct BTS(𝑘+1) using BTS(𝑘) and BTS(1)

for a positive integer 𝑘 and BTS(𝑘+1) satisfies the all conditions, we
can construct BTS(𝑘) which satisfies the all conditions using only

BTS(1) for a positive integer 𝑘 .
The BTS(𝑘+1) is as follows. Given an input ciphertext ct𝐼 =

ct(2𝑘𝑛m, 2𝑘𝑛 · 𝑞) where ∥m∥∞ ≤ 1, rescale ct𝐼 to 2
𝑛
to reduce

the size of message for applying BTS(𝑘) . After rescale process, the
6

META-BTS: Bootstrapping Precision Beyond the Limit Conference’22, July 2022, -

Algorithm2:ConstructBTS(𝑘+1) usingBTS(𝑘) andBTS(1)

Input :ct𝐼 = ct(2𝑘𝑛m, 2𝑘𝑛 · 𝑞)
Output :ct𝑂 = ct(2𝑘𝑛m − 2−𝑛e𝑘+1, 𝑄𝑟𝑒𝑚)

1 ct1 ← 𝑅𝑆 (2𝑛, ct𝐼) ⊲ ct1 = ct(2(𝑘−1)𝑛m + e𝑟𝑠 , 𝑞)
2 ct2 ← BTS(𝑘) (ct1) ⊲ ct2 = ct((2(𝑘−1)𝑛m + e𝑟𝑠 + 2−𝑛e𝑘 ,𝑄𝑟𝑒𝑚)
3 ct3 ← 2

𝑛 · ct2 ⊲ ct3 = ct(2𝑘𝑛m + 2𝑛e𝑟𝑠 + e𝑘 , 𝑄𝑟𝑒𝑚)
4 ct4 ← [ct3]2𝑛𝑞 ⊲ ct4 = ct(2𝑘𝑛m + 2𝑛e𝑟𝑠 + e𝑘 , 2𝑛 · 𝑞)
5 ct5 ← ct4 − ct𝐼 ⊲ ct5 = ct(2𝑛e𝑟𝑠 + e𝑘 , 2𝑛 · 𝑞)
6 ct6 ← BTS(1) (ct5) ⊲ ct6 = ct(2𝑛e𝑟𝑠 + e𝑘 + 2−𝑛e𝑘+1, 𝑄𝑟𝑒𝑚)
7 ct𝑂 ← ct3 − ct6
8 return ct𝑂 = ct(2𝑘𝑛m − 2−𝑛e𝑘+1, 𝑄𝑟𝑒𝑚)

ciphertext is ct1 = ct(2(𝑘−1)𝑛m + e𝑟𝑠 , 𝑞). Here, we assume that the

rescale error e𝑟𝑠 is smaller than the error of the basic bootstrapping

BTS(1) , so it satisfies ∥e𝑟𝑠 ∥∞ ≤ 2
−𝑛

. By applying BTS(𝑘) to ct1, we
get ct2 = ct((2(𝑘−1)𝑛m + e𝑟𝑠 + 2−𝑛e𝑘 , 𝑄𝑟𝑒𝑚) by the condition of

BTS(𝑘) where ∥e𝑘 ∥∞ ≤ 1. To extract the error, multiplying ct2 by
2
𝑛
, we get ct3 = 2

𝑛 · ct2 = ct(2𝑘𝑛m + 2𝑛e𝑟𝑠 + e𝑘 , 𝑄𝑟𝑒𝑚).
To calculate the two ciphertexts ct𝐼 , ct3, we make modulus of

ct3 down. So, we obtain the ciphertext ct4 = [ct3]2𝑛 ·𝑞 = ct(2𝑘𝑛m +
2
𝑛e𝑟𝑠 + e𝑘 , 2𝑛 · 𝑞). And then, computing ct4 − ct𝐼 , we get ct5 =

ct4 − ct𝐼 = ct(2𝑛e𝑟𝑠 + e𝑘 , 2𝑛 · 𝑞).
Now, we get the ciphertext ct5 whose message is the rescale

and bootstrapping error 2
𝑛e𝑟𝑠 + 𝑒𝑘 . Since ∥2𝑛e𝑟𝑠 + 𝑒𝑘 ∥∞ ≤ 1,

we can apply BTS(1) to ct5. By applying BTS(1) to ct5, we get

ct6 = ct(2𝑛e𝑟𝑠 + e𝑘 + 2−𝑛e𝑘+1, 𝑄𝑟𝑒𝑚) where ∥e𝑘+1∥∞ ≤ 1. Finally,

computing ct3 − ct6, we get ct𝑂 = ct(2𝑘𝑛m − 2−𝑛e𝑘+1, 𝑄𝑟𝑒𝑚).

Theorem 3.2 (𝑘-fold Bootstrapping Algorithm). Given a
standard bootstrapping algorithm BTS(1) with

PERFBTS(1) = (𝑛,𝑄𝑟𝑒𝑚/𝑞, 𝑡),

one can construct a new bootstrapping algorithm BTS(𝑘) whose per-
formance is

PERFBTS(𝑘) = (𝑘𝑛,𝑄𝑟𝑒𝑚/(2(𝑘−1)𝑛 · 𝑞), 𝑘𝑡)

by repeating BTS(1) 𝑘 times where 𝑘 is a positive integer with

𝑄𝑟𝑒𝑚/(2(𝑘−1)𝑛 · 𝑞) ≥ 1.

Proof. We only need to show that BTS(𝑘+1) constructed by Al-

gorithm 2 satisfies all conditions. The input and output of BTS(𝑘+1)

are ct𝐼 = ct(2𝑘𝑛m, 2𝑘𝑛 · 𝑞), ct𝑂 = ct(2𝑘𝑛m − 2
−𝑛e𝑘+1, 𝑄𝑟𝑒𝑚), re-

spectively, and satisfy the condition of BTS(𝑘+1) . Also, BTS(𝑘+1)

preserves (𝑘 + 1)𝑛-bit precision of the message m and the run-

ning time of BTS(𝑘+1) is (𝑘 + 1)𝑡 . Therefore, PERF(𝑘+1)BTS = ((𝑘 +
1)𝑛,𝑄𝑟𝑒𝑚/(2𝑘𝑛 · 𝑞), (𝑘 + 1)𝑡). Thus, BTS(𝑘+1) holds all conditions.
By mathematical induction, we can construct a 𝑘𝑛-bit precision

BTS(𝑘) which satisfies the all conditions with just an 𝑛-bit precision
bootstrapping BTS(1) for a positive integer 𝑘 . □

Since the 𝑅𝑒𝑚𝑎𝑖𝑛𝑀𝑜𝑑𝑢𝑙𝑢𝑠 of BTS(𝑘) decreases as 𝑘 increases,

Meta-BTS algorithm also cannot grow 𝑘 infinitely. Therefore, there

is a upper bound of precision that can be obtained for a fixed

bootstrapping algorithm BTS(1) .

4 APPLICATION
In this section, we propose a new method of obtaining high pre-

cision FHE using our Meta-BTS algorithm. Also, we analyze the

upper bound of precision and the time complexity in that case.

4.1 Standardization of Meta-BTS
Before the construction of FHE, we revisit the encoding process of

the message.

Revisit encoding and scaling factor Given a scaling factor Δ and

amessagem ∈ C𝑁 /2, the encoding ofm is𝑚(𝑋) = ⌊Δ·𝜏−1 (m)⌉ ∈ 𝑅
where 𝜏 is the canonical embedding 𝜏 : R[𝑋]/(𝑋𝑁 + 1) → C𝑁 /2.
Since 𝜏 is a linear map, 𝜏 (𝑚(𝑋)) is approximately equal to Δ ·𝑚.

In this sense, 𝜏 (𝑚(𝑋)) could be regarded as a slot-side value of the

ciphertext that encrypts𝑚(𝑋). Let 𝜏 (𝑚(𝑋)) be a scaled message of
the ciphertext.

For example, when we multiply two ciphertexts without rescal-

ing, the output ciphertext has a scaled message of Δ2 · m1 ⊙ m2.

We rescale the ciphertext by Δ to maintain scaling factor, and the

scaled message becomes Δ ·m1 ⊙ m2.

Given a (𝑟 + 𝑛)-bit precision bootstrapping algorithm BTS with

input bound 2
𝑟
and scaling factor Δ, we can understand BTS from

the perspective of scaled message. BTS outputs ct(m, 𝑞) to ct(m +
2
−𝑛e, 𝑄𝑟𝑒𝑚) where ∥m∥∞ ≤ 2

𝑟 , ∥e∥∞ ≤ 1. In the perspective of

scaled message, BTS outputs Δ ·m to Δ · (m + 2−𝑛e).
Lemma 4.1 (Standardization). Let BTS be an 𝑟 +𝑛-bit precision

bootstrapping algorithm with input bound 2
𝑟 and a scaling factor

Δ. If one uses a scaling factor as Δ′ = Δ · 2𝑟 for encoding, one can
construct a fully homomorphic encryption having BTS as its standard
bootstrapping algorithm, retaining (𝑟 + 𝑛)-bit precision.

Proof. Let 𝑄𝑟𝑒𝑚/𝑞 be the remaining modulus of BTS. Let m
be a message such that ∥m∥∞ ≤ 1. Given an input ciphertext

ct(m, 𝑞) with a scaling factor Δ′, it can be considered as ct(2𝑟m, 𝑞)
with a scaling factor Δ. After performing BTS in the initial sense,

we get the output ciphertext ct(2𝑟m + 2−𝑛e, 𝑄𝑟𝑒𝑚) with a scaling

factor Δ, where ∥e∥∞ ≤ 1. Again, the output can be considered as

ct(m+2−𝑟−𝑛e, 𝑄𝑟𝑒𝑚) with a scaling factor Δ′. This gives a complete

construction of a fully homomorphic encryption having BTS as its

standard bootstrapping algorithm. □

Lemma 4.1 gives a standardized version of Theorem 3.2. We get

a following Corollary 4.2.

Corollary 4.2 (Theorem 3.2, standardized). Let BTS(1) be a
standard bootstrapping algorithm with scaling factor Δ1 and perfor-
mance (𝑛,𝑄𝑟𝑒𝑚/𝑞, 𝑡). If one uses a scaling factor as Δ𝑘 = Δ1 ·2(𝑘−1)𝑛
to encode a message for possible 𝑘 , one can construct a fully homo-
morphic encryption having BTS(𝑘) as its standard bootstrapping
algorithm, with 𝑘𝑛-bit precision.

4.2 Getting unbounded operations of high
precision with fixed bootstrapping

We analyze the upper bound of the precision which supports un-

bounded operations using our Meta-BTS algorithm. However, the

CKKS bootstrapping can be implemented in various methods [2,

6, 7, 9, 19, 20, 22–24], and each method has different performance

of bootstrapping. Even the best bootstrapping algorithm can vary

7

Conference’22, July 2022, - Bae et al.

depending on the desired precision. Therefore, we assume that

the bootstrapping algorithm BTS is given, and compute the upper

bound of the number of BTS iterations and the precision at this

time.

Theorem 4.3 (Upper bound of the precision). Let BTS(1) be a
standard bootstrapping algorithm with performance (𝑛,𝑄𝑟𝑒𝑚/𝑞, 𝑡).
Let 𝑁 be the ciphertext polynomial dimension, and ℎ be the number
of nonzero coefficients in the secret key polynomial. Then the 𝑘-fold
bootstrapping BTS(𝑘) can be constructed for

𝑘 ≤ log(𝑄𝑟𝑒𝑚/(𝑞
√
𝑁ℎ)) + 𝑛

2𝑛
.

Let 𝑛max be the maximum precision of BTS(𝑘) in order for ciphertexts
to be multiplied indefinitely. Then 𝑛max is given by

𝑛max = ⌊ log(𝑄𝑟𝑒𝑚/𝑞
√
𝑁ℎ) + 𝑛

2𝑛
⌋ · 𝑛.

Proof. Suppose that the multiplicative depth which is the num-

ber of possible multiplication after BTS(𝑘) is 1 to compute the upper

bound of the iteration number 𝑘 and the precision 𝑛max. According

to Theorem 3.2, we can construct a new bootstrapping algorithm

BTS(𝑘) and its performance is (𝑘𝑛,𝑄𝑟𝑒𝑚/(2(𝑘−1)𝑛 ·𝑞)) with a posi-

tive integer𝑘 . Then, we set the scaling factorΔ as𝑄𝑟𝑒𝑚/(2(𝑘−1)𝑛 ·𝑞)
and the precision after a ciphertext multiplication is approximated

by (log(𝑄𝑟𝑒𝑚/(2(𝑘−1)𝑛 · 𝑞)) − log
√
𝑁ℎ)-bit.

Until the precision after the bootstrapping is increased to the

precision after a ciphertext multiplication, the ciphertext can con-

tinue homomorphic operations while maintaining the precision. So,

for unbounded homomorphic operations, we obtain the following

inequality.

𝑘𝑛 ≤ log(𝑄𝑟𝑒𝑚/(2(𝑘−1)𝑛 · 𝑞)) − log
√
𝑁ℎ,

2𝑘𝑛 ≤ log(𝑄𝑟𝑒𝑚/(𝑞
√
𝑁ℎ)) + 𝑛,

𝑘 ≤ log(𝑄𝑟𝑒𝑚/(𝑞
√
𝑁ℎ)) + 𝑛

2𝑛
.

Therefore,

𝑘 ≤ log(𝑄𝑟𝑒𝑚/(𝑞
√
𝑁ℎ)) + 𝑛

2𝑛

and

𝑛max = ⌊ log(𝑄𝑟𝑒𝑚/𝑞
√
𝑁ℎ) + 𝑛

2𝑛
⌋ · 𝑛. □

Based on this analysis, we introduce experiments to obtain a

high precision using Meta-BTS according to 𝑁 in section 5.

4.3 Accelerating bootstrapping with fixed
precision

In this subsection, we analyze the bootstrapping time complexity

when making an 𝑛-bit precision bootstrapping algorithm by repeat-

ing 𝑛/𝑘-bit precision bootstrapping algorithm 𝑘 times. The time

complexity of𝑚-bit integer multiplication is at least 𝑂 (𝑚 log𝑚).
Before we analyze our Meta-BTS algorithm, we analyze the

time complexity of an 𝑛-bit precision bootstrapping algorithm. A

parameter set of HE such as the ciphertext polynomial dimension

𝑁 and the number of nonzero numbers in the secret key ℎ is given.

Also, for a fair comparison, we assume that modulus of a ciphertext

after a bootstrapping is 𝑄𝑟𝑒𝑚 .

The CKKS bootstrapping consists of four step: StC,ModRaise,
CtS, EvalMod. SinceModRaise does not use the level of a ciphertext
and the number of levels to perform StC,CtS are not affected by the
precision, we only define the level for EvalMod, Rest steps of BTS.
Let 𝑑EvalMod, 𝑑𝑟𝑒𝑠𝑡 be the number of levels to perform EvalMod,
rest steps. Then, the size of a ciphertext modulus used by an 𝑛-

bit bootstrapping is (𝑑EvalMod + 𝑑𝑟𝑒𝑠𝑡) ·𝑂 (𝑛 + log
√
𝑁ℎ)-bit where√

𝑁ℎ is added because of a rescale error. Therefore, the total size

of a ciphertext modulus is (𝑑EvalMod + 𝑑𝑟𝑒𝑠𝑡) · 𝑂 (𝑛 + log
√
𝑁ℎ) +

log(𝑄𝑟𝑒𝑚)-bit.
Also, we define 𝐶𝑛 as the the number of multiplications used

by an 𝑛-bit precision bootstrapping with fixed 𝑁,ℎ. Since higher

precision needs a higher degree of polynomial approximation, 𝐶𝑛
is an incremental function for 𝑛.

Lemma 4.4. The time complexity of an 𝑛-bit precision bootstrap-
ping algorithm is at least𝐶𝑛 ·𝑂 (𝑄𝑛 log𝑄𝑛) where the𝑄𝑛 is (𝑑EvalMod+
𝑑𝑟𝑒𝑠𝑡) ·𝑂 (𝑛 + log

√
𝑁ℎ) + log(𝑄𝑟𝑒𝑚).

Proof. The size of a ciphertext modulus is (𝑑EvalMod + 𝑑𝑟𝑒𝑠𝑡) ·
𝑂 (𝑛 + log

√
𝑁ℎ) + log(𝑄𝑟𝑒𝑚). Let 𝑄𝑛 be (𝑑EvalMod + 𝑑𝑟𝑒𝑠𝑡) ·𝑂 (𝑛 +

log

√
𝑁ℎ) + log(𝑄𝑟𝑒𝑚). In the bootstrapping, since multiplication

of 𝑄𝑛-bit integer is performed 𝐶𝑛 times, the time complexity is at

least 𝐶𝑛 ·𝑂 (𝑄𝑛 log𝑄𝑛). □

Furthermore, 𝑑EvalMod increase with precision because higher

precision needs a higher degree of polynomial approximation. We

consider only the cosine function among approximations of the

trigonometric functions in EvalMod. The relationship between de-

gree and bit precision (i.e. − log
2
(∥𝑝 (𝑥) − cos(𝑚𝜋𝑥)∥∞)) is investi-

gated when several cosine functions are approximated by minimax

approximation 𝑝 (𝑥) using the Remez algorithm.

Figure 4: Precision and Degree of the Minimax Approxima-
tion of 𝑐𝑜𝑠 (𝑚𝜋𝑥) by Remez algorithm.

As shown in Fig.4, the degree of approximate polynomial as pro-

portional to the square root of bit precision. Therefore, we assume

that the minimum polynomial degree to achieve 𝑛-bit precision

8

META-BTS: Bootstrapping Precision Beyond the Limit Conference’22, July 2022, -

is approximately 𝑂 (
√
𝑛). Using the BSGS algorithm [2], a polyno-

mial approximation can be computed only by square root of the

polynomial degree multiplications. Thus, the number of ciphertext

multiplication 𝑑EvalMod is roughly 𝑂 (𝑛1/4). To sum up, in the 𝑛-bit

precision bootstrapping, the total size of the ciphertext modulus is

𝑂 (𝑛1/4 (𝑛 + log
√
𝑁ℎ)) + 𝑑𝑟𝑒𝑠𝑡 ·𝑂 (𝑛 + log

√
𝑁ℎ) log(𝑄𝑟𝑒𝑚).

Lemma 4.5. (Heuristic). If 𝑛 is large enough, the time complex-
ity of an 𝑛-bit precision bootstrapping algorithm is at least 𝐶𝑛 ·
𝑂 (𝑛5/4 log𝑛).

Proof. Since the number of ciphertext multiplication 𝑑EvalMod
is roughly 𝑂 (𝑛1/4), the ciphertext modulus is approximated by

𝑂 (𝑛1/4 (𝑛+log
√
𝑁ℎ))+𝑑𝑟𝑒𝑠𝑡 ·𝑂 (𝑛+log

√
𝑁ℎ) log(𝑄𝑟𝑒𝑚). If𝑛 is large

enough to ignore other constant values, the ciphertext modulus can

be simplified to𝑂 (𝑛5/4). Therefore, the time complexity of an 𝑛-bit

precision bootstrapping algorithm is at least𝐶𝑛 ·𝑂 (𝑛5/4 log𝑛). □

Using our Meta-BTS algorithm, an 𝑛-bit precision bootstrapping

can be constructed by repeating a 𝑛/𝑘-bit precision bootstrapping

𝑘 times for some 𝑘 . If 𝑛 is large enough, the time complexity of an

𝑛-bit precision bootstrapping is superlinear for 𝑛 due to the time

complexity of multiplication. By Theorem 3.2, our Meta-BTS algo-

rithm linearly increases the bootstrapping time with the number of

iterations 𝑘 . Therefore, Our Meta-BTS algorithm can improve the

time complexity of high precision bootstrapping.

Theorem 4.6. (Heuristic). Given a parameter set of FHE. As-
sume that 𝑛 is large enough to ignore other parameters and the time
complexity of 𝑛-bit integer multiplication is 𝑂 (𝑛 log𝑛).

When making an 𝑛-bit precision bootstrapping by repeating 𝑛/𝑘-
bit precision bootstrapping 𝑘 times using Meta-BTS, the time com-

plexity of the 𝑛-bit precision bootstrapping is𝐶𝑛/𝑘 ·𝑂
(
𝑛5/4

𝑘1/4 log

(
𝑛
𝑘

))
.

Proof. For the iteration number 𝑘 , which 𝑛/𝑘 is high enough,

the time complexity of 𝑛/𝑘-bit precision bootstrapping algorithm

is 𝐶𝑛/𝑘 ·𝑂
((

𝑛
𝑘

)
5/4

log

(
𝑛
𝑘

))
by Lemma 4.5.

When making an 𝑛-bit precision bootstrapping algorithm by

repeating 𝑛/𝑘-bit precision bootstrapping algorithm 𝑘 times, the

time complexity of Meta-BTS is 𝑘 times the time complexity of

𝑛/𝑘-bit precision bootstrapping algorithm by Theorem 3.2.

Therefore, using Meta-BTS, the time complexity of the 𝑛-bit

precision bootstrapping decrease from 𝐶𝑛 ·𝑂 (𝑛5/4 log𝑛) to 𝐶𝑛/𝑘 ·
𝑂

(
𝑛5/4

𝑘1/4 log

(
𝑛
𝑘

))
. □

5 CONCRETE PARAMETERS AND
EXPERIMENTS

We provide a proof-of-concept implementation to show the per-

formance of Meta-BTS. Our source code is developed in C++ with

our HEaaN library. We summarize our optimization techniques,

recommended parameter sets and some experimental results in this

section. All experiments are conducted single-threaded on an Intel

Xeon Gold 6242 at 2.8 GHz with 502GB of RAM running Linux.

Our parameter sets satisfy at least 128-bit security according to

Lattice-estimator [1] and known best attacks [10, 25].

Using Meta-BTS, one can repeat the existing bootstrapping al-

gorithm to increase the bootstrapping precision without having

to increase the size of primes for bootstrapping algorithm. There-

fore, since we only need to increase the prime used in a ciphertext

multiplication, we can obtain a higher precision than the existing

algorithms on the same parameter.

5.1 A basic example
In this subsection, we provide a basic example of Meta-BTS. We

use a parameter set which maintains an 8-bit precision as described

in Table 2. In this parameter, the bootstrapping algorithm uses

maximum 41-bit primes and the ciphertext multiplication uses 28-

bit primes.

Table 2: The base parameter set. log𝑄𝑃 and log𝑞𝑖 denote the
bit lengths of the largest RLWEmodulus and individual RNS
primes, respectively. ℎ denotes the hamming weight of secret
key. 𝑑𝑒𝑝𝑡ℎ denotes the number of possible multiplications
after the bootstrapping algorithm.

log𝑁 log𝑄𝑃 ℎ log𝑞𝑖 𝑑𝑒𝑝𝑡ℎ bit prec.

15 762 192 28-41 6 9

We apply Meta-BTS to this parameter and observe that the pre-

cision of a ciphertext increases with the number of iterations. All

the parameters satisfy 128-bit security.

Table 3: Experimental result of Meta-BTS. log𝑞Mult denotes
the bit lengths of individual primes which uses a ciphertext
multiplication. 𝑑𝑒𝑝𝑡ℎ denotes the number of possible multi-
plications after the bootstrapping algorithm.

𝑖𝑡𝑒𝑟 log𝑞Mult 𝑑𝑒𝑝𝑡ℎ bit prec. boot time

1 28 6 9 7.86s

2 36 4 17 14.2s

3 44 3 25 19.2s

4 52 2 34 23.8s

Theoretically, the bootstrapping time for the 𝑘th iteration should

be roughly 𝑘 times the initial bootstrapping time. However, it is

actually smaller than the expected value, since we should reduce

the number of multiplication primes in order to satisfy the same

security level.

Remark 1. Even when parameter modification is not allowed,
Meta-BTS could still be applied to achieve higher precision. We can
group several multiplication primes together and consider them as a
rescaling unit, enabling a high precision multiplication.

5.2 Achieving the maximum precision
In Table 1, we described the maximum precision using Meta-BTS. In

this section, we propose the parameter sets obtaining the maximum

precision.

9

Conference’22, July 2022, - Bae et al.

Table 4: Overview of the base parameter for 𝑁 = 2
17. log𝑄𝑃 ,

log(𝑞𝑖), and log(𝑝 𝑗) denote the bit lengths of the largest RLWE
modulus, individual RNS primes, and temporary primes for
Modulus switching, respectively. ΔEcd denotes the encod-
ing scaling factor, 𝐿 denotes the maximum ciphertext level,
and ℎ denotes the hamming weight of a secret key. Base,
StC, Mult, Sine, and CtS denote sloToCoeff, multiplication,
evalMod, and coeffToSlot primes, respectively. The left and
right operands of the dot product denotes the number and
the bit lengths of primes, respectively.

log𝑄𝑃 ΔEcd 𝐿 ℎ 𝜆 boot time

2783 2
54

35 128 > 128 51.4s

𝑙𝑜𝑔(𝑞𝑖)
𝑙𝑜𝑔(𝑝 𝑗)

Base StC Mult Sine CtS

61 3 · 54 16 · 54 13 · 61 3 · 57 12 · 61

5.2.1 Implementation for 𝑁 = 2
17. We construct a parameter for

𝑁 = 2
17
, and achieve the maximum precision with actual imple-

mentation. First, we introduce the base parameter in Table 4.

We iterated Meta-BTS until we achieve the maximum precision

described in theorem 4.3. Table 5 describes the implementation

result including parameter constructions, ordered by number of

iterations.

Table 5: Experimental result of Meta-BTS, achieving the max-
imum possible precision. Div denotes the primes reserved
for dividing by 2

𝑛 .

𝑖𝑡𝑒𝑟 log𝑄𝑃 ΔEcd
𝑙𝑜𝑔(𝑞𝑖)

𝑙𝑜𝑔(𝑝 𝑗) boot time

Div Mult1

1 2783 2
54

- 16 · 54 12 · 61 51.4s

2 2897 2
84

1 · 30 10 · (2 · 42) 14 · 60 128s

3 2777 2
114

2 · 30 7 · (2 · 57) 12 · 61 156s

4 2790 2
144

3 · 30 5 · (3 · 48) 13 · 61 230s

5 2735 2
174

4 · 30 4 · (3 · 58) 12 · 61 259s

6 2742 2
204

5 · 30 3 · (4 · 51) 13 · 61 344s

7 2868 2
234

6 · 30 3 · (4 · 59) 13 · 61 405s

8 2720 2
264

7 · 30 2 · (5 · 53) 13 · 61 465s

9 2810 2
294

8 · 30 2 · (5 · 59) 13 · 61 514s

14 2881 2
444

13 · 30 1 · (9 · 50) 14 · 61 903s

Let 𝑘 be the number of iterations. According to theorem 4.3,

𝑘 ≤ ⌊ log(𝑄𝑟𝑒𝑚/𝑞) − log(
√
𝑁ℎ) + 𝑛

2𝑛
⌋ = ⌊ 16 · 54 − 12 + 30

60

⌋ = 14,

and the maximum possible precision is 𝑛𝑘 = 420 bits. The last

parameter shown in Table 5 achieves the maximum precision. The

actual bootstrapping time for this parameter is 903𝑠 , which is greater

than the expected 51.4𝑠 · 14 = 719.6𝑠 . Due to the implementation

1
The product inside the bracket means that the group of primes act as a rescaling unit.

issues, the maximum ciphertext level 𝐿 increased, so the bootstrap-

ping time increased more. When 𝑖𝑡𝑒𝑟 is 3 or 5, the bootstrapping

time, 156𝑠 , 259𝑠 , is almost same as expected, 51.4𝑠 · 3 = 154.2𝑠 ,

51.4𝑠 · 5 = 257𝑠 .

5.2.2 Construction for 𝑁 = 2
15, 216. We construct parameters for

𝑁 = 2
15, 216, that achieve the maximum precision. The Table 6, 7

describes the base parameters for the construction.

Table 6: Overview of the base parameter for 𝑁 = 2
15.

𝑙𝑜𝑔(𝑄𝑃) ΔEcd 𝐿 ℎ 𝜆 boot time

759 2
36

14 192 >128 6.43s

𝑙𝑜𝑔(𝑞𝑖)
𝑙𝑜𝑔(𝑝 𝑗)

Base StC Mult Sine CtS

49 2 · 33 3 · 36 8 · 49 2 · 47 50

Table 7: Overview of the base parameter for 𝑁 = 2
16.

𝑙𝑜𝑔(𝑄𝑃) ΔEcd 𝐿 ℎ 𝜆 boot time

1549 2
36

29 192 128 16.3s

𝑙𝑜𝑔(𝑞𝑖)
𝑙𝑜𝑔(𝑝 𝑗)

Base StC Mult Sine CtS

49 3 · 36 14 · 36 9 · 49 3 · 49 6 · 50

Table 8, 9 describes the maximum precision parameters con-

structed from the base parameters achieving 48, 255 bit precision,

respectively.

Table 8: Overviewof the high precision parameter for𝑁 = 2
15.

𝑙𝑜𝑔(𝑄𝑃) ΔEcd 𝐿 ℎ 𝜆

755 2
68 = 2

32 · 236 15 192 >128

𝑙𝑜𝑔(𝑞𝑖)
𝑙𝑜𝑔(𝑝 𝑗)

Base StC Div + Mult Sine CtS

49 2 · 33 32 + 1 · (2 · 34) 8 · 49 2 · 47 54

Table 9: Overviewof the high precision parameter for𝑁 = 2
16.

𝑙𝑜𝑔(𝑄𝑃) ΔEcd 𝐿 ℎ 𝜆

1570 2
276 = 2

240 · 236 24 192 >128

𝑙𝑜𝑔(𝑞𝑖)
𝑙𝑜𝑔(𝑝 𝑗)

Base StC Div + Mult Sine CtS

49 3 · 36 4 · 60 + 1 · (5 · 56) 9 · 49 3 · 49 5 · 61

10

META-BTS: Bootstrapping Precision Beyond the Limit Conference’22, July 2022, -

5.3 An improved parameter set based on a set in
[2]

Table 10 describes the overview of the parameter sets I, II and III

suggested in [2]. Here 𝑁 denotes the dimension of the polyno-

mial space, ΔEcd denotes the scaling factor of the input ciphertext,

𝑙𝑜𝑔(𝑄𝐿−𝑘/𝑞0) denotes the remaining coefficient modulus excluding

the base prime after bootstrapping, and 𝜖 denotes the precision of

the bootstrapping. As you can see, Set III leaves twice as much

remaining coefficient modulus as Set II, while providing more than

half a precision compared to that of Set II and maintaining faster

bootstrapping time.

Table 10: Overview of Set I, II and III in [2]

Set 𝑁 ΔEcd boot time
2 𝑙𝑜𝑔(𝑄𝐿−𝑘/𝑞0) 𝑙𝑜𝑔(𝜖−1)

I 2
16

2
40

23.0s 360 25.7(*mean)

II 2
16

2
45

23.4s 225 31.5(*mean)

III 2
16

2
30

18.1s 450 19.1(*mean)

We can construct a new parameter set based on Set III, by taking

Meta-BTS as its default bootstrapping method. The new set is more

precise in terms of bootstrapping precision and faster in terms

of amortized multiplication time, compared with Set II. Our new

parameter set III’ is given as follows. Notations in Table 11 follow

from Table 5 in [2].

Table 11: Suggested parameter Set III’

III’

log(𝑄𝑃) 𝑁 Δ ℎ 𝐿

1545 2
16

2
43

192 24

log(𝑞𝑖)
log(𝑝 𝑗)

Base + Div + Mult StC Sine CtS

55 + (13 + 43) + 9 · 43 30 + 60 8 · 55 4 · 53 5 · 61

Let us compare the performance of Set III’ with other parameter

sets given in Table 10. Homomorphic operations except bootstrap-

ping under Set III’ should be as fast as Set I since they have the same

parameter structure. If we take Meta-BTS using Theorem 3.1 as

the default bootstrapping strategy for Set III’, then we see that the

running time for bootstrapping would be about 46 seconds which

is twice of the bootstrapping running time of Set I. Since Set III’ has

multiplicative depth of 10, which means we can do twice as much

multiplications with Set III’ as with Set II, we see that the amortized

multiplication of Set III’ is approximately the same as that of Set II.

6 CONCLUSION
In this paper, we presented the Meta-BTS algorithm for obtaining

the high precision bootstrapping algorithm in the CKKS scheme.

We provided the experimental results of our algorithms by imple-

menting existing bootstrapping algorithm. The main contribution

2
Data from [2].

is to propose much higher precision after bootstrapping algorithm

with fixed 𝑁 compared to prior works [2, 6, 7, 9, 19, 20, 22–24].

Our technique supported high-precision operations by repeating

the bootstrapping algorithm even on a fixed parameter set. Finally,

we proposed the parameter sets that can obtain higher precision

according to𝑁 than existing one, respectively. It is an open problem

that applies the technique of obtaining high precision by repeating

the bootstrapping algorithm in the BGV or BFV scheme with similar

properties to the CKKS scheme.

REFERENCES
[1] Martin R. Albrecht, Rachel Player, and Sam Scott. 2015. On the concrete hardness

of Learning with Errors. Journal of Mathematical Cryptology (2015). https:

//github.org/malb/lattice-estimator..

[2] Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-

Pierre Hubaux. 2021. Efficient Bootstrapping for Approximate Homomorphic

Encryption with Non-sparse Keys. In Advances in Cryptology – EUROCRYPT
2021, Anne Canteaut and François-Xavier Standaert (Eds.). Springer International
Publishing, Cham, 587–617.

[3] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) Fully

Homomorphic Encryption without Bootstrapping. In Proceedings of the 3rd Inno-
vations in Theoretical Computer Science Conference (Cambridge, Massachusetts)

(ITCS ’12). Association for Computing Machinery, New York, NY, USA, 309–325.

https://doi.org/10.1145/2090236.2090262

[4] Zvika Brakerski and Vinod Vaikuntanathan. 2011. Fully Homomorphic Encryp-

tion from Ring-LWE and Security for Key Dependent Messages. In Advances in
Cryptology – CRYPTO 2011, Phillip Rogaway (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 505–524.

[5] Zvika Brakerski and Vinod Vaikuntanathan. 2014. Efficient Fully Homomorphic

Encryption from (Standard) LWE. SIAM J. Comput. 43, 2 (2014), 831–871. https:

//doi.org/10.1137/120868669 arXiv:https://doi.org/10.1137/120868669

[6] Nathan Manohar Charanjit S. Jutla. 2022. Sine Series Approximation of the Mod

Function for Bootstrapping of Approximate HE. In Advances in Cryptology –
EUROCRYPT 2022.

[7] Hao Chen, Ilaria Chillotti, and Yongsoo Song. 2019. Improved Bootstrapping

for Approximate Homomorphic Encryption. In Advances in Cryptology – EU-
ROCRYPT 2019, Yuval Ishai and Vincent Rijmen (Eds.). Springer International

Publishing, Cham, 34–54.

[8] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrède

Lepoint, Mehdi Tibouchi, and Aaram Yun. 2013. Batch Fully Homomorphic

Encryption over the Integers. In Advances in Cryptology – EUROCRYPT 2013,
Thomas Johansson and Phong Q. Nguyen (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 315–335.

[9] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.

2018. Bootstrapping for Approximate Homomorphic Encryption. In Advances in
Cryptology – EUROCRYPT 2018, Jesper Buus Nielsen and Vincent Rijmen (Eds.).

Springer International Publishing, Cham, 360–384.

[10] Jung Hee Cheon, Minki Hhan, Seungwan Hong, and Yongha Son. 2019. A Hybrid

of Dual and Meet-in-the-Middle Attack on Sparse and Ternary Secret LWE. IEEE
Access 7 (2019), 89497–89506.

[11] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-

morphic encryption for arithmetic of approximate numbers. In Advances in
Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 409–437.

[12] Jung Hee Cheon and Damien Stehlé. 2015. Fully Homomorphic Encryption over

the Integers Revisited. In Advances in Cryptology – EUROCRYPT 2015, Elisabeth
Oswald and Marc Fischlin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

513–536.

[13] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2017.

Faster Packed Homomorphic Operations and Efficient Circuit Bootstrapping

for TFHE. In Advances in Cryptology – ASIACRYPT 2017, Tsuyoshi Takagi and
Thomas Peyrin (Eds.). Springer International Publishing, Cham, 377–408.

[14] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2019.

TFHE: Fast Fully Homomorphic Encryption Over the Torus. Journal of Cryptology
(2019). https://doi.org/10.1007/s00145-019-09319-x

[15] Léo Ducas and Daniele Micciancio. 2015. FHEW: Bootstrapping Homomorphic

Encryption in Less Than a Second. In Advances in Cryptology – EUROCRYPT 2015,
Elisabeth Oswald and Marc Fischlin (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 617–640.

[16] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Ho-

momorphic Encryption. Cryptology ePrint Archive, Report 2012/144. https:

//ia.cr/2012/144.

11

https://github.org/malb/lattice-estimator.
https://github.org/malb/lattice-estimator.
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1137/120868669
https://doi.org/10.1137/120868669
https://arxiv.org/abs/https://doi.org/10.1137/120868669
https://doi.org/10.1007/s00145-019-09319-x
https://ia.cr/2012/144
https://ia.cr/2012/144

Conference’22, July 2022, - Bae et al.

[17] Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic encryption

from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-

based. In Annual Cryptology Conference. Springer, 75–92.
[18] Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic Encryp-

tion from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,

Attribute-Based. In Advances in Cryptology – CRYPTO 2013, Ran Canetti and

Juan A. Garay (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 75–92.

[19] Kyoohyung Han and Dohyeong Ki. 2020. Better Bootstrapping for Approximate

Homomorphic Encryption. In Topics in Cryptology – CT-RSA 2020, Stanislaw
Jarecki (Ed.). Springer International Publishing, Cham, 364–390.

[20] Charanjit S. Jutla and Nathan Manohar. 2020. Modular Lagrange Interpolation

of the Mod Function for Bootstrapping of Approximate HE. Cryptology ePrint

Archive, Report 2020/1355. https://ia.cr/2020/1355.

[21] Andrey Kim, Maxim Deryabin, Jieun Eom, Rakyong Choi, Yongwoo Lee, Whan

Ghang, and Donghoon Yoo. 2021. General Bootstrapping Approach for RLWE-

based Homomorphic Encryption. Cryptology ePrint Archive, Paper 2021/691.

https://eprint.iacr.org/2021/691 https://eprint.iacr.org/2021/691.

[22] Joon-Woo Lee, Eunsang Lee, Yongwoo Lee, Young-Sik Kim, and Jong-Seon No.

2021. High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption

Using Optimal Minimax Polynomial Approximation and Inverse Sine Function. In

Advances in Cryptology – EUROCRYPT 2021, Anne Canteaut and François-Xavier

Standaert (Eds.). Springer International Publishing, Cham, 618–647.

[23] Joon-Woo Lee, Yongwoo Lee, Young-Sik Kim, Youngjune Kim, Jong-Seon No, and

HyungChul Kang. 2022. High-Precision Bootstrapping for Approximate Homo-

morphic Encryption by Error Variance Minimization. In Advances in Cryptology
– EUROCRYPT 2022.

[24] Yongwoo Lee, Joon-Woo Lee, Young-Sik Kim, and Jong-Seon No. 2020. Near-

Optimal Polynomial for Modulus Reduction Using L2-Norm for Approximate

Homomorphic Encryption. IEEE Access PP (08 2020), 1–1. https://doi.org/10.

1109/ACCESS.2020.3014369

[25] Yongha Son and Jung Hee Cheon. 2019. Revisiting the Hybrid Attack on Sparse

Secret LWE and Application to HE Parameters (WAHC’19). Association for Com-

puting Machinery, 11––20.

[26] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. 2010.

Fully Homomorphic Encryption over the Integers. In Advances in Cryptology –
EUROCRYPT 2010, Henri Gilbert (Ed.). Springer Berlin Heidelberg, Berlin, Heidel-

berg, 24–43.

12

https://ia.cr/2020/1355
https://eprint.iacr.org/2021/691
https://eprint.iacr.org/2021/691
https://doi.org/10.1109/ACCESS.2020.3014369
https://doi.org/10.1109/ACCESS.2020.3014369

	Abstract
	1 Introduction
	1.1 Overview of Our Algorithm
	1.2 Our Contributions
	1.3 Related Works

	2 Background
	2.1 Notation
	2.2 The CKKS scheme
	2.3 Bootstrapping of the CKKS scheme

	3 The Meta-BTS Algorithm
	3.1 Difficulties in improving the performance of bootstrapping
	3.2 Algorithm description

	4 Application
	4.1 Standardization of Meta-BTS
	4.2 Getting unbounded operations of high precision with fixed bootstrapping
	4.3 Accelerating bootstrapping with fixed precision

	5 Concrete parameters and Experiments
	5.1 A basic example
	5.2 Achieving the maximum precision
	5.3 An improved parameter set based on a set in Lattigo

	6 Conclusion
	References

