
Point-Halving and Subgroup Membership
in Twisted Edwards Curves

Thomas Pornin

NCC Group, thomas.pornin@nccgroup.com

6 September, 2022

Abstract. In this short note, we describe a process for halving a point on a twisted

Edwards curve. This can be used to test whether a given point is in the subgroup of

prime order ℓ , which is used by some cryptographic protocols. On Curve25519, this

new test is about twice faster than the classic method consisting of multiplying the

source point by ℓ .

1 Introduction
Twisted Edwards curves are elliptic curves that offer good performance with complete addi-

tion formulas that are relatively simple to implement in an efficient and safe way. However,

they suffer from the cofactor issue: the order of a twisted Edwards curve is always a multiple

of 4, and thus the curve cannot be a prime-order group. The curve will typically be chosen

to have order hℓ for some (big) prime ℓ , and (small) cofactor h, with h being a multiple of 4.

The two most used twisted Edwards curves are Curve25519 (with h = 8 and ℓ ≈ 2
252

)[3]

and Curve448 (with h = 4 and ℓ ≈ 2
446

)[7].

The existence of points on the curve that are not in the subgroup of prime order ℓ can lead

to some serious issues, depending on the protocol in which the curve is used[5]. To obtain a

prime order group out of a twisted Edwards curve, some “cofactor elimination” techniques

can be used, leading to the Decaf/Ristretto groups[6,1]. However, for interoperability rea-

sons, it may be required, in some situations, to use the plain twisted Edwards curve. We use

here as an example the FROST scheme[8]; this is a threshold signature scheme that allows

a quorum of private key share holders to conjointly compute a Schnorr signature on a mes-

sage. The current draft for the FROST standard[4] defines several ciphersuites, over some

existing elliptic curves or other groups. In the case of Curve25519 and Curve448, an explicit

goal of the FROST draft is to achieve signature interoperability, i.e. that signatures generated

with FROST can be verified with an unmodified Ed25519 or Ed448 implementation. This

requires working with the plain curve. In order to avoid cofactor issues, an explicit validation

that incoming curve points (e.g. public keys) are in the prime order subgroup is mandated

(section 6.1):

DeserializeElement(buf): Implemented as specified in [RFC8032],
Section 5.1.3. Additionally, this function validates that the
resulting element is not the group identity element and is in
the prime-order subgroup. The latter check can be implemented
by multiplying the resulting point by the order of the group
and checking that the result is the identity element.

The classic method for this check is, as the FROST draft explains, to multiply the point to

test by the prime ℓ , in order to check whether the result is the curve neutral pointO = (0, 1).
This operation is rather expensive; it is typically a bit faster than multiplying a point by any

scalar (because the multiplier is the known integer ℓ , for which an efficient addition chain can

be precomputed), but still has a cost in the same order of magnitude. In this note, we describe

an alternate method for this subgroup membership test, which offers better performance: for

Curve25519, it is about twice faster than multiplying by ℓ .

2 Isogenies and Point Halving
We consider here a twisted Edwards curve defined in the finite field Fq (of characteristic 5 or

more). We designate by QR the set of quadratic residues in Fq. The curve is the set of points

(x, y) ∈ Fq × Fq that fulfill the curve equation ax2 + y2 = 1 + dx2y2 for two constants a and

d. We suppose that a ∈ QR and d ∉ QR (this is the case for both Curve25519, with a = −1,

and Curve448, with a = 1). We denote E(a, d) this curve. On such curves:

– The neutral point isO = (0, 1).
– There is a single point of order 2: N = (0,−1).
– There are two points of order 4.

The curve is birationally equivalent to a Weierstraß curve of equation v2 = u(u2+Au+B)
(denoted C (A, B)) with A = 2(a + d) and B = (a − d)2, using the following map[9]:

f : E(a, d) −→ C (2(a + d), (a − d)2)

(x, y) ↦−→ (u, v) =
((a − d) (1 + y)

1 − y ,
2(a − d) (1 + y)

x(1 − y)

)
This map is well-defined for all points other than O and N ; for now, we suppose that the

source point to halve is not one of these points.

On the Weierstraß curve, it is convenient to introduce a third coordinatew = v/u = 2/x.

In (u, w) coordinates, the curve equation is uw2 = u2 + Au + B. This equation format is

reminiscent of double-odd curves[10], though the curves considered here are not double-odd

(their order is a multiple of 4, not twice an odd integer); indeed, for the curves we are interested

in (with a ∈ QR and d ∉ QR), we have B ∈ QR and A2 − 4B ∉ QR. We can nonetheless

reuse part of the analysis in sections 2 and 3.7 of [10]; we thus define two additional curves

C (A′, B′) = C (−2A, A2 − 4B) and C (A′′, B′′) = C (4A, 16B), and the following functions:

ψ1 : C (A, B) −→ C (A′, B′)

(u, w) ↦−→ (u′, w′) =
(
w2,−u − B/u

w

)
ψ2 : C (A′, B′) −→ C (A′′, B′′)

(u′, w′) ↦−→ (u′′, w′′) =
(
w′2,−u

′ − B′/u′
w′

)
θ : C (A′′, B′′) −→ C (A, B)

(u′′, w′′) ↦−→ (u, w) =
(
u′′

4

,
w′′

2

)
2

Function θ is an isomorphism (curves C (A, B) and C (A′′, B′′) are isomorphic to each

other). Functions ψ1 and ψ2 are isogenies which are obtained by applying Vélu’s formulas[11]

on the 2-torsion subgroup {O, N } in C (A, B) and C (A′, B′), respectively. Therefore, for all

points P ∈ C (A, B), we have:

2P = θ(ψ2 (ψ1 (P)))

This implies that we can halve a given point Q = (u′′′, w′′′) by computing inverses of θ, ψ2
and ψ1, successively.

It is trivial to invert θ:

u′′ = 4u′′′

w′′ = 2w′′′

To invert ψ2, i.e. find (u′, w′) from (u′′, w′′) such that (u′′, w′′) = ψ2 (u′, w′), we can

apply the following formulas:

w′ =
√
u′′

u′ = (w′2 − A′ − w′w′′)/2

The second formula leverages the curve equation:u′+B′/u′ = w′2−A′, thereforeu′−B′/u′ =
2u′−(u′+B′/u′) = 2u′−w′2+A′. These formulas work as long asu′′ is a square; ifu′′ ∉ QR,

then there is no solution, which means that the source point is not the double of any other

point on the curve.

The inversion of ψ2 yields two solutions, depending on which square root of u′′ we use.

The two solutions are (u′, w′) and (B′/u′,−w′). Note that B′ = A2 − 4B = 16ad ∉ QR;

thus, exactly one of u′ and B′/u′ is a square.

Inversion of ψ1 is similar to the case of ψ2:

w =
√
u′

u = (w2 − A − ww′)/2

As noted above, exactly one of the two possible antecedents of (u′′, w′′) by ψ2 has a square

u′ coordinate; using that point, ψ1 can always be inverted, and this finally yields a point P =

(u, w) such that 2P = Q. There again, there are two solutions, depending on the choice of

square root; the other solution is (B/u,−w).
The following salient points must be noted:

– A point (u, w) can be halved if and only if u ∈ QR.

– Halving implies computing two square roots in Fq.

– Formally, the choice of the right u′ (the one which is a square) seems to require an extra

square root attempt or Legendre symbol computation; however, it is often possible to

modify the square root extraction process so that on failure it returns a predictable value

that allows computing the square root of B′/u′ instead, in case u′ ∉ QR, with negligible

extra work. This will be explained in the next section.

The output point (u, w) can be converted back to twisted Edwards curve coordinates

(x, y) using the inverse birational map f −1; see [9] for details.

3

3 Subgroup Membership Test
We now consider the functionality we are interested in: given a point P on a twisted Edwards

curve E(a, d) of order hℓ (with ℓ an odd prime), find out whether P is in the subgroup of

prime order ℓ or not. We limit ourselves to the curves such that:

– h = 2
t

for some integer t ≥ 2.

– There is a point of order exactly h on the curve.

The second property means that the subgroup of h-torsion points is homomorphic to Zh,

and not Zi × Zj for some integers i and j. We note that both Curve25519 and Curve448

match these properties. These properties imply the following:

– a ∈ QR and d ∉ QR (i.e. the curve is in the case covered in section 2).

– A pointQ on the curve is in the subgroup of order ℓ if and only ifQ = hP for some point

P.

– For 1 ≤ i ≤ t, if point Qi = 2
iP for some point P, then there are exactly 2

i
distinct

points P such that Qi = 2
iP. Moreover, there are two points R such that Qi = 2R, and

each of these two points is such that R = 2
i−1P for some point P.

In other words, we can check whether a point Q is in the subgroup of order ℓ by halving it t
times. At each halving, we are free to use either of the two solutions; both work equally well.

If we can compute t successive halvings, then Q is in the subgroup; otherwise, it is not. Each

halving uses the process described in section 2. We can also replace the last halving by a cheaper

single Legendre computation on u, because we are only interested in knowing whether halv-

ing is possible, not in learning the final half point; similarly, we do not have to convert back to

twisted Edwards coordinates. In total, this means that we can check membership of the prime

order subgroup with the following cost (ignoring a few cheap multiplications and additions

in the field):

– Curve25519: four square roots and one Legendre symbol.

– Curve448: two square roots and one Legendre symbol.

In practice, the source pointQ is provided with projective coordinates (X :Y :Z) such that

x = X/Z and y = Y /Z. We want to avoid inversions; to do so, we jump to isomorphic curves

as needed (membership in the prime order subgroup is conserved by isomorphism). We thus

maintain in the implementation an isomorphism factor e ≠ 0, such that the running point

(u, w) is in curve C (Ae2, Be4). Indeed, the isopmorphism is expressed as:

ϕe : C (A, B) −→ C (Ae2, Be4)
(u, w) ↦−→ (ue2, we)

The isomorphism θ encounted in section 2 was really ϕ1/2, and its inverse is θ−1 = ϕ2.

Algorithm 1 applies these formulas to test whether a point is in the subgroup of order ℓ .

4

Algorithm 1 Test membership in the prime-order subgroup

Require: P = (X :Y :Z) in curve E(a, d) of order hℓ (projective coordinates)

Ensure: True if ℓP = O, False otherwise

1: if hP = O then
2: return True if P = O, False otherwise

3: (A, B) ← (2(a + d), (a − d)2)
4: (A′, B′) ← (−2A, 16ad)
5: e← X (Z − Y)
6: u← (a − d) (Z + Y) (Z − Y)X2

7: w← 2Z(Z − Y)
8: for i = 1 to log

2
(h) − 1 do

9: (u′′, w′′) ← (4u, 2w)
10: if u′′ ∉ QR then
11: return False

12: w′ =
√
u′′

13: u′ = (w′2 − A′e2 − w′w′′)/2
14: if u′ ∉ QR then
15: (u′, w′) ← (B′u′,−w′u′)
16: e← eu′

17: w←
√
u′

18: u← (w2 − Ae2 − ww′)/2
19: return True if u ∈ QR, False otherwise

Low-order points. The initial comparison of hP with O is really a test on whether the

source point P is a low-order point. We handle these points separately because O and N do

not have well-defined (u, w) coordinates, and the formulas do not apply to them; conversely,

ifP is not a low-order point, then the successive halvings cannot yield any exceptional case for

our formulas. Among low-order points, only O is in the subgroup of order ℓ . This step can

be performed quite efficiently on Curve25519 and Curve448:

– On Curve25519, P is a low-order point if and only if X = 0, or Y = 0, or X = ±iY (for

a given i =
√
−1 in the field).

– On Curve448, P is a low-order point if and only if X = 0 or Y = 0.

Failed square roots. It is possible to optimize away the Legendre symbol test in steps 10

and 14 by using a specific square root implementation that returns a predictable value on

non-squares.

Suppose that the field modulus is q = 5 mod 8; this is the case for Curve25519. A candi-

date square root y of x can be computed using Atkin’s formulas[2]:

b← (2x) (q−5)/8

c← 2xb2

y← xb(c − 1)

The computed value c is equal to (2x) (q−1)/4, i.e. a square root of the Legendre symbol of 2x.

If x is a non-zero square, then 2x ∉ QR (since 2 is not a square modulo such a q) and we can

5

verify that y2 = x. Otherwise, if x ∉ QR, then c = ±1. We can detect that case by comparing

c with 1 and −1 (or, equivalently, comparing c2 with 1) and computing y = 2xb instead. This

leads to y2 = ±2x. A further comparison of y2 with 2x, and conditional multiplication of

y by a precomputed square root of −1 if y2 = −2x, allows to reliably return

√
x if x ∈ QR

or

√
2x if x ∉ QR. The process also returns whether x was a square, so that the caller knows

exactly what value was obtained.

Using this extended square root, we can modify steps 14 to 17 into the following:

1. Compute w′ as an extended square root of u′.

2. If u′ was not a square, and we really computed z =
√
2u′, then continue the process as:

(u′, w′) ← (2u′2, w′z)
w← −e2

√
2B′

e← ez

3. In both cases, we compute u = (w2 − Ae2 − ww′)/2.

The square root of 2B′ is a precomputed constant.

If the field modulus is q = 3 mod 4 (as in the case of Curve448), a similar process can be

applied. The candidate square root of a value x is y = x (q+1)/4; if x ∉ QR then this returns

a square root of −x instead. Comparing y2 with x reveals whether the source was a square or

not. Steps 14 to 17 can then be replaced with:

1. Compute w′ as an extended square root of u′.

2. If u′ was not a square, and we really computed z =
√
−u′, then continue the process as:

(u′, w′) ← (B′u′,−w′u′)
w← z

√
−B′

e← eu′

3. In both cases, we compute u = (w2 − Ae2 − ww′)/2.

The square root of −B′ is a precomputed constant.

Constant-time implementation. Algorithm 1 can be implemeted in a constant-time

way (in case the source point to test is a secret value) by using constant-time tests and re-

placement operations where appropriate. In particular, when the source point is a low-order

point, all halvings are still performed (possibly incorrectly), and the computed output must

be discarded at the end, and replaced with a simple comparison with the neutralO.

4 Implementation
We implemented the subgroup membership test for Curve25519 as part of the crrl library

(written in Rust) available at:

https://github.com/pornin/crrl

6

https://github.com/pornin/crrl

Our implementation is fully constant-time.

On a 64-bit x86 system (Intel i5-8259U “Coffee Lake”, clocked at 2.3 GHz, TurboBoost

is disabled), we get the following performance:

– Generic multiplication of a point by a (secret) scalar: 107638 cycles.

– Multiplication by ℓ of a point: 84686 cycles.

– Subgroup membership test (algorithm 1): 44835 cycles.

Our new method is thus roughly twice faster than the classic method of multiplication by ℓ ,

and down to about 41% of the cost of the generic point multiplication. On Curve448, the

cofactor is only 4 instead of 8, and algorithm 1 is expected to be faster (relatively) since it will

involve only two square root operations instead of four. The subgroup membership test is

still relatively expensive; if possible, use of a true prime-order group such as Ristretto[1] is

highly recommended instead. The plain twisted Edwards curve should be used only when

interoperability with some existing systems (e.g. EdDSA signature verifiers) is required.

Acknowledgements
We thank Giacomo Pope, who reviewed this paper.

References
1. T. Arcieri, I. Lovecruft and H. de Valence, The Ristretto Group,

https://ristretto.group/
2. A. Atkin, Probabilistic primality testing (summary by F. Morain), Technical Report 1779, IN-

RIA, 1992,

http://algo.inria.fr/seminars/sem91-92/atkin.pdf
3. D. Bernstein, N. Duif, T. Lange, P. Schwabe and B.-Y. Yang, High-speed high-security signatures,

Journal of Cryptographic Engineering, vol. 2, issue 2, pp. 77-89, 2012.

4. D. Connolly, C. Komlo, I. Goldberg and C. Wood, Two-Round Threshold Schnorr Signatures
with FROST,

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-frost-08
5. C. Cremers and D. Jackson, Prime, Order Please! Revisiting Small Subgroup and Invalid Curve

Attacks on Protocols using Diffie-Hellman, IEEE 32nd Computer Security Foundations Sympo-

sium (CSF), 2019.

6. M. Hamburg, Decaf: Eliminating cofactors through point compression, Advances in Cryptology -

CRYPTO 2015, Lecture Notes in Computer Science, vol. 9215, pp. 705-723, 2015.

7. M. Hamburg, Ed448-Goldilocks, a new elliptic curve,

https://eprint.iacr.org/2015/625
8. C. Komlo and I. Goldberg, FROST: Flexible Round-Optimized Schnorr Threshold Signatures,

https://eprint.iacr.org/2020/852
9. D. Moody and D. Shumow, Analogues of Vélu’s Formulas for Isogenies on Alternate Models of

Elliptic Curves, https://eprint.iacr.org/2011/430
10. T. Pornin, Double-Odd Elliptic Curves,

https://eprint.iacr.org/2020/1558
11. J. Vélu, Isogénies entre courbes elliptiques, C.R. Acad. Sc. Paris, Série A, vol. 273, pp. 238-241,

1971.

7

https://ristretto.group/
http://algo.inria.fr/seminars/sem91-92/atkin.pdf
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-frost-08
https://eprint.iacr.org/2015/625
https://eprint.iacr.org/2020/852
https://eprint.iacr.org/2011/430
https://eprint.iacr.org/2020/1558

	1 Introduction
	2 Isogenies and Point Halving
	3 Subgroup Membership Test
	4 Implementation

